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PREFACE

This report describes work performed under Contract DACA76-89-C-0019 by the Cen-

ter for Automation Research, University of Maryland, College Park, Maryland for the U.S.

Army Engineer Topographic Laboratories (ETL), Fort Belvoir, Virginia, and the Defense

Advanced Research Projects Agency (DARPA), Arlington, Virginia. The Contracting Offi-

cer's Representative at ETL is Ms. Rosalene Holecheck. The DARPA points of contact are

Dr. Erik Mettala and Dr. Rand Waltzman.
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1. Introduction

Contract DACA76-89-C-0019, for research on Robust Image Understanding-Techniques

and Applications, was awarded to the University of Maryland on 28 September, 1989. This

report describes the work done on the contract during the period September 1989 - July

1990.

The research on the contract dealt with image understanding applications to both nav-

igation and recognition. Thirteen technical reports were issued on the contract during this

period; they are listed in Section 12, and are referred to by numbers in brackets in the

remainder of this report.

Research on navigation was concerned with the following specific topics:

a) Analysis of superimposed moving patterns [1,2]

b) Path and motion planning [5,13]

c) Structure from motion [6)

d) Motion uncertainty [8]

e) Motion illusions [11]

f) Motion recovery in the presence of discontinuities [12]

Recognition research was concerned with

g) Recognition of compact shapes by energy function minimization [3]

h) Learning of invariant shape properties [41

i) Slant-insensitive shape descriptors [7]

j) Edge detection [9] and line fitting [10]

These topics are discussed in the following sections of this report.



2. Analysis of superimposed moving patterns

As we move relative to trees and bushes in a forest we can perceive that their leaves and

branches move in depth. One of the primary sources which permits us to segment the

trees and bushes into regions of different depth is given by the optical flow field. Under

appropriate conditions there exists an intrinsic relation between the motion of objects in

space and the optical flow. For example, the relative motion betwcon an observer and rigid

objects with smooth surfaces generates regions of smoothly varying optical flow in the image

plane. Current motion theories used for the reconstruction of the optical flow field assume

prior information on the optical flow in order to make the problem well-posed from the point

of view of regularization theory. These priors enforce a smoothness constraint on the optical

flow field, and this is only consistent with the motion of objects with smooth surfaces; in this

case the flow field can only assume one value at each image point. In the presence of motion

discontinuities or transparent superimposed surfaces in relative motion the optical flow can

have more than one value at each image point, and this is not addressed by current motion

theories. We have developed a statistical model for the analysis of superimposed patterns in

relative motion.

The perception of superimposeu patterns moving independently relative to one another

was first studied by Adelson and Movshon. By using two sinusoidally modulated contrast

functions in relative motion, with known velocity, contrast. and spatial frequency, they

performed psychophysical experiments in order to determine the conditions under which we

(-an ;ee motion transparency or coherence. Motion coherence corresponds to the perception

4)f nipolind pattern moving with a single velocity in a given direction: in the case of

mlt ion transparency the two patterns are seen as moving independently one across the other.

-hev showed that, for fixed velocities and contrast. we perceive motion transparency if the

,difference between their spatil frequencies is high. On the other hand. if both patterns have

similar spatial frequencies, contrasts. and speeds, then we perceive motion coherence. More

recently Stoner, Albright, and Ramachandran studied the conditions for the perception of

motion coherence or transparency for superimposed transparent patterns. They showedI lhat

the probability of perceiving motion coherence or transparency depends on the hininance of
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the regions of pattern intersection.

Previous studies of motion transparency and coherence have dealt with superimposed

sinusoidal bar patterns whose gray levels combine additively; but the "transparent" patterns

encountered in the real world are composed of opaque elements with gaps between them.

We have analyzed motion transparency for such binary patterns; for simplicity, we have used

patterns made up of lines. The case of straight line patterns is treated in 'i], and that of

curvilinear patterns in [2].

Specifically, we have anaiyzed cases involving two superimposed line patterns moving in

the frontoparallel plane. If these patterns have regions of high curvature, or features like

end-points or corners, we are able to solve the aperture problem for each pattern separately,

and consequently we perceive motion transparency. On the other hand, in the absence of

features, or for small curvature, we perceive motion coherence which is given by the motion

of the compound pattern. We have developed a statistical model for the perception of motion

transparency and coherence which is given by a two-stage process for the extraction of the

opical flow and the velocity histogram. The velocity histogram, which is a plot of the

number of occurrences of each velocity vector, is unimodal for motion coherence and bi- -

modal for motion transparency. The image is divided into regions, and inside each of them

we compute the optical flow; for line end-points and corners we compute their velocities by

matching them between images; and for lines we combine the normal velocity components

by computing the intersection of the corresponding constraint lines in the velocity space. We

use a generalized version of the two-stage process for the extraction of the optical flow which

takes into account superimposed patterns. Our model is also able to predict the transition

between the perception of motion transparency and coherence, and it is in good agreement

with informal perceptual experiments done with line patterns.

3. Path and motion planning

The problem of navigation is related to sensory mediated movement and usually ron's I lhe

ability to move successfully from one point to another in some environment. The problem.

for the most part, has been treated in the robotics literature from the viewpoint of pa1h

• • u u II II :



planning. In this work, complete knowledge of the environment is assumed. But in real-

ity, information dbout the environment is generally unknown (with the exception of sor,.e

specific industrial environments) and it is acquired through sonr,, sensory modality-for ex-

ample, touch (or hitting an obstacle) has been used in a static unknown environment for

the purpose of planning a successful path. In our research the sensory modality used to

acquire environmental information is vision. Using as input a series of images acquired by

the navigating robot, we find how the robot should move in order to accomplish its task (i.e.

plan a successful (safe) path). Given the nature of the problem (incomplete information),

we cannot guarantee that the robot will accomplish the task.

We have developed [5] a solution to the problem of finding the 3-D motion of a moving

obstacle on the basis of visual information. We assume that the obstacles are translating

locally and that they are sufficiently textured so that there are enough "points of interest"

on their surfaces (and consequently on their images). Our imaging system consists of four

cameras and we assume that the obstacle in motion is visible from all four cameras. Each

obstacle, for the vision algorithm, is treated as a cloud of points in 3-D; these points are

extracted through some interest point operator. The algorithm does not use any point

correspondences. It derives the 3-D motions of the obstacles directly from the image data.

The solution has been shown to be robust.

Using this information, we can treat the path planning problem as one of moving a robot

(assumed to be a polygon) from an initial point to a goal point in the presence of other

moving polygons whose motions are uncertain. We assume that there are bounds on the

speed and acceleration of the robot. Under these assumptions we want to optimize the

probability of reaching the goal.

Because of the uncertainty of the obstacles* motion. we regard them as growing in ,pace-

time. We can then determine what regions are reachable by the robot without changing

velocity in a given interval. \We then need to determine trajectories that reach lhe goal. WO

have considered two specific problems:

(i) finding smooth acceleration trajectories, and

(ii) obtaining strategies that try to minimize the maximum acceleration.
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Our solutions are useful contributions to the problem of planning paths using local inaccurate

information. The details can be found in [5].

In more recent work [13] we have addressed the problem of efficiently planning a path for a

robot between two points when the path is forced to change dynamically by the occurrence of

certain events in the environment. The event, for example, may be the discovery of another

moving object on a collision course with the robot. The robot would be forced to take

evasive action whenever such an alarm occurs. We have developed a probabilistic model

that represents the dynamic behavior in terms of alarms following a Poisson distribition.

Fnd safety rules that assume that some regions are safe. We have derived a provably optimal

expected solution for the problem and studied the effect of the probabilistic parameter (A) of

the dynamic environment on the optimal path, and the effect of -vision- (or time to coll1.io)

on the planned paths. The results can be used in designing heuristics for path planning in

a more general framework. Our study gives insights into the role of various parameters on

the average efficiency of path-planning in a simple dynamic, unknown environment. The

simplicity of the model used in justified in the difficulty of analyzing a more complicated

(unknown) dynamic environment, and by the generality of the results obtained using this

simple model.

4. Structure from motion

When one looks at a real image one can see a number of i '"ntifiable features such as points

and lines. It has been a-ued that these features are the only things needed for computing

the motion and structure because they carry reliable information, there exist mathemat-

ical and computational tools to treat them, and extensive experience and literature from

photogrammetry can be tapped. On the other hand the number of image pixels that are

covered bv these features is only a tiny fraction of the total number of pixels in the image.

If one uses only point and line features, the vast majority of the image remains unused. The

feature points carry more information than the rest of the pixels. but the rest of the pixels

are much more numerous. They should not be left unused. This underutilizatioit is not ilihe

only problem; two additional, more solid problems arise. First, there is no consensus among
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researchers in computer vision on what a feature point or line is, either in a rigorous math-

ematical sense or even in an intuitive practical sense, judging frorm what different detectors

detect as features. The main consequence of this is that there is no general algorithm to

detect features and match them. Second, even if one can detect point and line features, there

exists no algorithm that works with both of them at the same time and guarantees a u~nique

solution, although there are algorithms for each one separately.

There is another approach to structure from motion that assumes continuous mot ion and

grey level images that are differentiable in time and space. Despite its theoretical elegance.

this approach is plagued by the aperture problem: the motion (optic flow) of a point on a

moving curved line (isophote, zero crossing, etc.) cannot be recovered fully: we can recover

only its projection on the normal to the ne. Most algorithms based on this approach

assume that derivatives up to second order of the (not fully known) image flow are given

or can be computed, and that the flow is smooth. The resulting algorithms are local (and

hence unstable) in nature.

Obviously there is need to overcome these difficulties and combine the advantages of all

the existing methods. This does not seem to be an easy task within the exist ing I theories.

since they all are rather incompatible, with different input requirements arid coritlictiit0

assumptions, and they operate on dlifferent geometric entities. But are points. lines. ,I'rve

or isophotes different entities or can they be defined in a uniform way" The truth is that

they are different when compared as abstract geometric entities. In the context ,)f vis;ual

motion a feature point is a sma',l area of the image that (besides the statistics t" i rev

level that made the d'etector locate it) is moving with a motion whose 1mcertait \ int re',

or less circularly svmmetric and small (finite). In the same context. a line is alit ara I hose

motion has an tincertainty that is finite in one direction (normal to the line) and intiliit, ili

the other direction (along the line). These definitions. having an obvioiis stalist ical ttavr.

seem natural and uniform. We can forget the separate iefinitiois of pot its and li e ant

concentrate instead on tie statistics of the dispi:1 f. tields. The only geonlet ric ,1it it we

need is the curve in its most general sense. whether it be a chain of e I gels. a zer(o cr)ssi ,,i i.

or an isophote. Thus any point in the i nage Can be considere I. If such a curve is mvutin

then a point that was on it in the first frame will move with t he c,'rv hiit we ,do iot know
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where on the length of the curve it will be in the next frame. We only know that it is

on the curve but we have only a probability distribution for where it can be on the curve.

This probability distribution accounts for the tangential component of the uncertainty of

the motion of the point. There is also another component of uncertainty, the normal one.

because due to the fuzziness of the curve we cannot assume that the motion of the point

along the normal direction can be recovered exactly. Thus we have a probability distribution

along both directions. So we do not assume that we shall be given the exact displacement

vector of any point but only a probability distribution for it. As a working assumption we

assume that this distribution is Gaussian and its parameters are given. Gaussian is a ve:v

good choice because it makes sense intuitively and leads to very stable statistics. meaning

that if this assumption holds only approximately then the consequences are not catastrophic

and the degradation is graceful. Also, coupled with maximum likelihood it gives rise to

least-squares estimators which have nice analytic expressions [6].

Part of the difficulty in structure from motion is its absolute separation from the preceding

stage of computing the displacement vector field (or flow field or correspondence; they all

are of the same flavor). This unavoidably leads to the idea of trying to find the exact

displacement field using restrictive assumptions such as smoothness and then, pretending

that this is the correct field, find the structure and motion. In our approach we require much

less from the preceding step than a complete, accurate disparity field, thus eliminating the

complete reliance on assumptions such as smoothness. Then, using only the assumptions

of rigidity and Gaussian ncise, we find the motion and structure (with some uncertainty

depending o.' the data). If indeed the error in the data follows the Gaussian (listribution,

then the structure and motion we compute is the optimal one. Otherwise it is not. and what

we have computed is a good approximation which is the collective result of information from

a large area of the image. Once wve have this collective result. which is a con:-traint on the

flow (by backprojection). we can couple it with the original grey level based constraint and

compute the displacement field again.
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5. Motion uncertainty

In the process of extracting velocity through energy filters, it is possible to reduce the motion

uncertainty to a minimum if we choose the spatial and temporal filter sizes such that the

temporal bandwidth is larger than the spatial bandwidth. This means that it is possible to

reduce the arbitrariness in the choice of filter parameters if we assume that the error in the

extraction of velocity is a minimum. In our analysis [8), we assumed that the images are

highly textured, so that they have a flat power spectrum. The image noise was assumed to

be white and Gaussian, which leads to a , 2 energy noise probability distribution.

The process of extracting velocity (optical flow) by space-time filtering uses the convo-

lution of a sequence of images with a collection of space-time filters each of which is tuned

to a given space-time orientation. The individual energy filters are not velocity tuned. and

therefore it is necessary to use a collection of them in order to extract velocity. One of the

consequences of this is that the extraction of velocity through these filters can only be lone

with limited precision. and so there always exists a non-zero motion uncertainty.

We have analyzed the properties of space-time energy filters, and in particular we have

computed and analyzed the motion uncertainty An elegant way to study the properties

of the motion uncertainty is through the use of the Cramr-Rao inequality which gives us

the lower bound on the mean square error for the estimation of the velocity. To dedluce

this inequality we need to describe the process of extracting velocity in the framework of

estimation theory, and this requires the knowledge of a conditional probability function.

By assuming that the images are corrupted by white Gaussian additive noise we were ablo

to show that the conditional probability function for the energy noise is given by the \2

(list ribution. The resulting motion uncertainty lower bound depends on the velocity and on

the filter parameters. \Ve have shown that this lower bound is minimum, that is. it is. on

average, smallest and smoothest as a function of the velocity. when the filter paramineters

vary inside a given range of values. In particular we have explicitly computed the iot ion

uncertainty lower bound for the Gabor energy filter and have shown that, this lower hound

is minimum if the temporal bandwidth of the filter is larger than the spatial bandwidlhth.

The fact that the temporal bandwidth is larger than tile spatial bandwidth is in accord
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with physiological data obtained from the primary cortex of cats. We may therefore conjec-

ture that this difference between the spatial and temporal bandwidths has the purpose of

making the extraction of velocity Ihrough cells in the primary visual cortex more efficient.

that is, it minimizes the motion uncertainty. Here we are not interested in describing a

detailed model for motion sensitive cells in the primary visual cortex, but instead in quali-

tatively analyzing some common properties of these cells and energy filters. We conjecture

that, because the motion uncertainty lower bound is minimum for the case in which the

temporal bandwidth of the Gabor energy filter is larger than its spatial bandwidth, motion

sensitive cells are built in such a way that they extract velocity in an efficient form.

There are some important open questions which are worth meniioning. First. consider

the sampling of the energy filter orientation. Instead of arbitrarily fixing the frequency

orientations we could assume that the energy filters "learn" these orientations from examples.

The most important point to be proven here is that we should get qualitatively similar values

for the minimum uncertainty as the number of samples becomes large. Second, we should be

able to obtain similar results by using other oriented filters. Third, for the case of having to

deal with an arbitrary type of image model, which is different from the flat power spectrum

images used here, it is necessary to deal with the aperture problem. which. in the framework

of energy filters, is still unresolved. Fourth. there exists a collection of open problems in

connection with the mathematical modelling of motion sensitive cells in biological systems.

As one example we mention the need to use more realistic oriented filters: the Gabor filter.

although simple in its mathematical structure. is non-causal in the space-time domain.

6. Motion illusions

Humans use various cues in order to understand the structure of the world from images. One

such cue is the contours of an object formed by occlusion or from surface discontinuities. It is

known that contours in the image of an object provide various amounts of information aboult

the shape of the object in view, depending on assumptions that the observer makes. Anot her

powerful cue is motion. The ability of the human visual system to discern structure from a

motion stimulus is well known and it has a solid theoretical and experimental foundation.

9



But when humans interpret a visual scene they use various cues in order to understand what

they observe, and the interpretation comes from combining the information acquired from

the various modules devoted to specific cues. In such an integration of modules it seems that

each cue carries a different weight and importance.

We have performed several experiments [11] in which we made sure that the only cues

available to the observer were contour and motion. It turns out that when humans combine

information from contour and motion to reconstruct the shape of an object in view. if the

results of the two modules-shape from contour and structure from motion are inconsistent.

they totally discard one of the cues and an illusion is experienced.

The mathematical model that we have introduced reconstructs, from occluding contour

and local motion information, the surface which is as smooth as possible and best satisfies

the motion constraint everywhere, while satisfying the boundary conditions provided by the

form of the contour. The results of applying the algorithm to a wide variety of illusion-

producing inputs are also consistent with human perception. It thus appears that when

humans combine the cues of occluding contours and local motion to reconstruct the moving

object in view, they reconstruct (see) the surface which is consistent with the boundaries, is

as smooth as possible, and best satisfies the local motion constraints.

Based on our experimental and theoretical results, one cannot reject the hypothesis that

cortical connections in the primate visual cortex implement some form of regularization for

motion perception, in both the estimation of retinal motion and its interpretation for the

purposes of reconstruction. It has been suggested that the theory of regularization may be

used as a theory for low-level vision. Our work demonstrates that it is beneficial to think in

this paradigm.

7. Motion recovery in the presence of discontinuities

Many problems in low-level vision are ill-posed in the sense that their solutions do not exist.

are not unique, or do not vary continuously with the data. W\e are primarily concerned with

the difficulties caused by substantial amounts of noise or inaccurate constraints relating the

image data to the unknowns. We also often have more unknowns than constraints, so there

10



is no unique solution. We need to use a priori information about smoothness (regularization)

in order to handle these difficulties, but we do not want to smooth over discontinuities. Ve

must also realize that we do not know a priori the relative amounts of smoothness and

noise or the exact probability distributions of measures of noise and smoothness. A well-

known paradigm of discontinuous regularization requires solution of variational conditions

with multiple local minima and is not maximally robust against the possibility that we have

misspecified the probability distribution of the smoothness measure. The condition must

be solved by slow Monte-Carlo methods, by deterministic methods that may not find the

optimal solution, or by continuation methods that if properly implemented always work but

are sometimes very slow.

We have applied [12] Huber's theory of robust statistics (so-called M-statistics) to obtain

a convex variational condition which has a unique solution. The problem we have addressed

is optical flow or more precisely small-motion depth from stereo. Thus we know the motion is

translational. Because of calibration errors, we do not know the exact direction or distance

between the two cameras. Ignorance of the distance means that, unavoidably, our depth

estimates are only accurate modulo a scale factor that we cannot precisely estimate. We

can use image data to refine our rough knowledge of inter-camera directions. Our primary

object is to determine the depth at each point.

Stereo is a typical example of an ill-posed problem. We are interested in the case of

short-range motion. Thus we really are estimating flow. The standard optical flow equation

is extremely noisy, so it is important to use a priori smoothness information to regularize

the solution, but we do not wish to smooth over discontinuities. Thus we should penalize

deviations from smoothness but we should not over-penalize large deviations. \Ve do not

know how to penalize such deviations; so we use the penalty function that woiks best in the

worst case. This function is convex and thus we do not need to worry about multiple local

minima. We are not implicitly assuming the scene in view to be piecewise smooth modilo

Gaussian fractal deviations, so we can handle deviations from smoothness such as rounded

corners. This method of convex or robust regularization can also be applied to smoothing

the intensity function which we need to do in order to estimate the derivatives of intensitv

occurring in the flow equation.

11



The flow equation itself, however, is very unreliable at certain points and we can use

convex regularization to study errors in the flow equation caused by errors in the fundamental

assumption that corresponding points have the same intensity. Thus the error term tends

to be smooth and small, but not everywhere is it smooth and small.

The unreliability of the flow equation at certain points is a fundamental issue in motion

research; as we have seen, this can be handled to some extent using convex regularization.

But there are some difficulties that still have to be confronted; we have been emphasizing the

errors in the flow equation due to corresponding points not having the same intensity, but

there is also an error that occurs because it is intrinsically difficult to compute derivatives.

The error due to derivative misestimation varies greatly from point to point. We would like

the relative weight of the flow term A in the variational condition to reflect this variability;

thus A should vary with position. It is not obvious how to do this: natural suggestions

one could make are that A should depend on the second derivatives of intensity or on the

sum of the data consistency and smoothness terms in the variational condition that we use

to smooth the intensity. In both cases, we are using a crude estimate of how much the

derivatives vary from pont to point in a neighborhood of the given point. The danger is

that we will down-weight points with large intensity derivatives and it is at these points that

depth discontinuities tend to occur. This is a topic for future research.

8. Recognition of compact shapes

We have developed a method of recognizing compact objects in an image by energy function

minimization. The energy function is based on a polar coordinate object representation.

defined using any center from which the object's contour is visible. It incorporates hoth

low-level and high-level information about the object: contour sharpness and smoothness at

the low level, and contour shape at the high level.

Our approach [3] differs from previous work on optimization-based methods for shape

extraction in several important respects:

1. It represents the object in polar form; this constrains the contour of the object to

surround the center and to be entirely visible from it.

12



2. It incorporates both local information (contour sharpness and smoothness) and global

information (object shape) simultaneously during the optimization, and operates on

raw image data, thus making backtracking unnecessary.

3. These types of information are given weights that change during the course of the

optimization.

4. No noise model assumptions are needed. Conditional probabilities are not calculated

directly.

5. The method is highly parallelizable, since it makes use only of local information.

6. Highly correlated geometrical models can be employed, thus enabling the discrimina-

tion of subtly different objects.

7. The algorithm outputs the object's classification along with a measure of confidence.

Unknown objects can be identified as such.

8. The complexity of the energy function does not greatly increase the computational

burden on the procedure. The increase is on the order of a constant.

We define a compact object in an image as an object that can be represented in polar

coordinate form by a smoothly varying radius function. Our basic approach consists of three

main stages:

1) Detection. Detecting a candidate object "centered" in the image. This center can be

anywhere inside the object, preferably close to its centroid.

2) Representation. Representing the candidate object in polar coordinate form. relat ive

to the center, and identifying the location of its boundary along each radius.

3) Matching. Comparing the polar coordinate representation of the object with a set of

stored representations.

We have incorporated the second and third stages into the energy function. This has the

advantage that all known information about the objects is utilized simultaneously. Our use
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of the polar coordinate representation reduces the dimension of the Markov random field

and increases the efficiency of the solution. More specifically,

a) It reduces the optimization problem from 2-D to 1-D, resulting in a considerable re-

duction in the amount of computation needed.

b) It uses the image grey level information as data in an optimization process bent on

detecting the best field configuration, which is given in distance units.

c) The radial scheme provides a scaling and orientation invariant representation which is

highly compatible with compact object recognition.

The energy function used is also a novel feature of this approach. Two weight functions

W1 and W2 direct the optimization by putting the emphasis on the proper energy function

level. Initially the low level is dominant and the high level is used to keep the configuration

compact in a very general way. Later, as W2 increases in value as the confidence of the

match improves, the low level performs the function of insuring that the high level does not

deviate from what is present in the raw data.

9. Learning of invariant shape properties

We receive knowledge form the world around us through our various senses: that is. each bit

of information from our senses corresponds to an input from the outside world to the brain.

For example, the retina of the eye may be likened to a large number of binary inputs. A

particular input would have value 1 if the rod or cone retinal cell that it corresponds to were

currently picking up a particular kind of signal. Correspondingly, an output would have

value 1 if a particular target object were present in the visual field.

Many of the objecL recognized by the brain correspond to certain combinations of the

states of these inputs. These objects can be very simple and well-defined (such as "'square")

or complicated and harder to define precisely (such as "chair"). In this context learning

an object may be defined as finding those input combinations that correspond to the target

object. This means determining (1) which of the many inputs are relevant to the existence of
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that concept and (2) the states (1 or 0) of those relevant binary inputs. Using this knowledge,

the brain can create a detector for that object. If those relevant inputs are all in the correct

states, then the detector will indicate that the target object exists in the sensory field.

Point (1), the isolation of relevant input, is an important and often overlooked part of

the learning process. Supposed we wish to learn the concept of "square"-that is, to form a

detector that determines whether or not a square is formed by a set of active input (retinal)

units. In this case, we are only interested in the square itself, and not in any other information

available in this context. This detector checks those and only those inputs necessary to

confirm the square. Other inputs corresponding to "background noise" are ignored. If these

inputs were not ignored, then the brain might have to construct an enormous number of

square detectors, one for each different kind of "background noise". In previous work we

have outlined a system called constraint motion that is capable of this kind of learning.

So far, we have described target objects in terms of a set of fixed inputs. If these specific

inputs are in the correct state, then the object is present in the image; otherwise, it is not.

In most cases, however, an object is not restricted to a single area of the visual field. Ve

can easily recognize objects independent of conditions such as translation, rotation, or scale

change in the image. That is, object detection is invariant with respect to these conditions.

We have expanded the idea of constraint motion learning [4] to take into account the

problems associated with invariance. One of the strengths of the constraint motion system

is its ability to learn many concepts simultaneously. Each detector starts with an example

of a specific concept, and over time it comes to focus on that concept, learning the relevant

inputs while ignoring data from other concepts being learned by other detectors.

We have shown that the constraint motion system can use a similar method to focus on

the most likely transformations of the target object, giving it a better idea of its relevant

inputs. We have mathematically described the learnability of a concept as a function of the

number of possible transformations.

An interesting result of our work is the similarity we have found between the credit assign-

ment problem for learning with multiple processors and the problem of learning the location

of an unknown object in an image. The same properties of the constraint motion algorithm

that facilitate distributed learning also expedite learning in the presence of invariance.
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10. Slant-insensitive shape descriptors

Recognizing a 3-D shape on the basis of its single 2-D image (from an unknown viewpoint)

is difficult because the shape looks different from different viewpoints and is partly visible

from any viewpoint. When a 3-D object rotates, the transformation of its 2-D silhouette

depends on its shape. If the object is flat, the transformation is equivalent to perspective

distortion; if it is solid, parts of the silhouette can be distorted to a degree greater or less

than perspective distortion.

We have developed a method of shape recognition based on analysis of the shape's silhou-

ette, using descriptors that are insensitive to perspective distortion (i.e., to slant), and that

also allow the slant of the shape to be estimated. The details of the method and examples

of its performance can be found in [7].

11. Edge detection and line fitting

An edge, a discontinuity, or an abrupt change in gray level or color, is one of the fundamen-

tally important primitive features of an image necessary for image analysis. Edge detection.

a local operation at every pixel, can be classified into two categories: template matching and

discrete approximations of differential operators. An important set of template-matching

operators are the Frei-Chen masks. These 3 x 3 masks were proposed on the basis of a

vector space approach, but the way the masks were chosen was not fully explained.

We have developed [9] an interpretation of the Frei-Chen masks in terms of eight-

dimensional Fourier transform coefficient vectors. The linear transformation between nine-

dimensional Frei-Chen space and the eight-dimensional Fourier transform has been derived.

We have also proposed a modified set of eight orthogonal masks based on the frequency

space analysis.

Detection of straight edges is usually based on fitting straight lines to detected edge

points. A set of n distinct points in the plane defines (') lines by joining each pair of

distinct points. The median slope of these O(n 2 ) lines was proposed by Theil as a robust

estimator for the slope of the line of best fit for the points.
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We have developed [101 a randomized algorithm for selecting the k-th smallest slope

of such a set of lines which runs in expected O(n log n) time. Our emphasis has been on

designing an algorithm which is provably efficient (with very high probability), which handles

degenerate cases correctly, and which has a simple and efficient implementation. We have

experimented extensively with the implementation in order to establish its efficiency and

robustness.
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