
~Software Safety

I Cuorriculum Module SEI-CM-6-1 .1 (Preliminary)

JU L 2 3 , 9 1

91-05537

Apprend for public rdng 1 s Lat
D~artwtS UnHaltid

Best
Available

Copy

I

Software Safety

SEI Curriculum Module SEI-CM-6-1.1 (Prelininary)

July 1987

I
Nancy G. Leveson

University of California, Irvine

- Carnegie Mellon University

Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.p Approved for public release. Distribution unlimited.

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is r'-,blished in the interest of scientific and technical
information exchange.

RevIew and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN. Capt, USAF

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National TWcn~i Informdtion Service. For information on ordering,
please contact 1,1 -- n -1y.v tz:,i Tc,:,,,iCai intormation Service, US. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

UNLIMITED, UNCLASSIFIED
SIECUAITY CLASSIFICAT ION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATL.ON AUTHOR)ITY _3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. OECL.ASSIrICATIONIOGO'VNGRADING SCHEDULE DISTRIBUTION UNLIMITED

NIA
'PEICIORMiNG ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMSERIS)

SEI-GM-6-1. 1
6& NAME OF PERFORMING ORGANIZATION 6b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

I (If OPPlicable)
SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6 e- ADDRESS (Cily. Slate an I 00 . ltb. ADDRESS (Cily. Stle and ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

Be. NAME OF FUNOINGfSPONSOAING 8bt. OFFICE SYMBO0L 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It appicable I

SEI JOINT PROGRAM OFFICE ESD/ AVS F1962890CO003

Br_ ADDRESS (City. State and ZIP Codel 10. SOURCE OF FUNDING NOS. ______________

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO NA NA N/A.

11. TI TLE (include Security C"c atfloon) 7 2 / / I

Software Safety_______ I
PERSONAL AUTmOR(Si
Nancy G. Leveson, University of California, Irvine

13& TYPE OF REPORT 13&. TIME COVERED 14d. DATE OF REPORT (Yr., Mo.. Day) 15I. PAGE COUNT

FINAL. FROM ___ TO ____ July 1987 I 9
Id. SUPPLEMENTARY NOTATION

I?. COSATI CODES lIt SUBJECT TERMS ICon tVIu~e On IWwrw IfritcitsidCJ7 and idmntify by block nurnberf
FIELD GROUP I SUS GO. software safety risk assessment

safety-critical
I I Ihazard analysis

10. ASTRACT (Contlinue on mvewIE If neceary and idan lfty by block rnumber)

Software safety involves ensuring that software will execute within a system context
without resulting in unacceptable risk. Building safety-critical software requires
special procedures to be used in all phases of the software development process. This
module introduces the problems involved in building such software along with the
procedur-' that can be used to enhance the safety of the resulting software product.

DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNYCLASSIFIEO/UNLIMITEO j) SAME AS APT, 0 OTIC USERS 13 UNCLASSIFIED, UNLIMITED DISTRIBUTION
224. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

JOHN S. HERMAN, Capt, USAF (IcueAm ojES/V

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITED. UNCLASSIFIED

Software Safety

Contents

Capsule Description 1
Philosophy 1

Objectives 1
Prerequisite Knowledge 1

Module Content 2

Outline 2
Annotated Outline 2

Teaching Considerations 6

Suggested Schedules 6

Support Materials 6
Exercises 6

Bibliography 7

I

Accession For
NTIS GRA&I
DTIC TAB 0[J
Unannounced 0 ,3 .
Justificatio

FAvaIlability Codes

, v,'Ai and/op

SEI-CM-6-1 .1 (Preliminary) ii

Software Safety

Module Revision History

Version 1.1 (July 1987) format changes for title page and front matter
Version 1.0 (April 1987) originat version

iv SEI-CM-6-1.1 (Preliminary)

Software Safety

Capsule Description engineering techniques but also an introduction to
some system safety engineering procedures with

Software safety involves ensuring that software will which they will need to be familiar.

execute within a system context without resulting in
unacceptable risk. Building safety-critical software
requires special procedures to be used in all phases
of the software development process. This module Objectives
introduces the problems involved in building such
software along with the procedures that can be used The goal of the module is to equip software engi-
to enhance the safety of the resulting software prod- neers with the extra knowledge and skills necessary
uct. to participate in a safety-critical software develop-

ment project. The positions for which they are
qualified will depend upon the length of time spent
on the module and depth of presentation. All soft-

Philosophy ware engineers should have some appreciation of the
problems involved in such projects. Those who will

Software safety has been an important topic for participate in these projects but not be responsible

many years in defense and aerospace systems. Re- for safety should, in addition, have some exposure to

cently it has become even more important for soft- the analysis techniques and be able to implement the

ware engineers to study this topic as computers are design techniques. Software engineers who are

increasingly used to monitor and control safety- responsible for software safety must, in addition, be

critical devices and processes in such disparate areas able to carry out required analysis and verification

as medicine, transportation, energy, manufacturing, activities. The parts of the module taught and the

etc. Unfortunately, few software engineers are depth with which each is presented will depend upon

trained in this area. The purpose of this module is to the objectives of the individual instructor.
introduce the problems involved in building safety-
critical systems and to provide instruction on some
of the procedures and techniques that can be used to
solve these problems. There is a desperate need for Prerequisite Knowledge
software engineers with this training, yet few classes
currently exist. There are no explicit prerequisites beyond a basic

The module could be used as part of another course introduction to software engineering. In-depth

or as a complete course on its own. A survey paper coverage of such topics as software safety design

is available to supplement a short presentation, while techniques and risk assessment and measurement

a book is planned to support a more extensive pres- will require some prerequisite knowledge depending

entation of the subject matter, on how much background material the instructorwants to supply while teaching the course.

The module includes both introductory material and

in-depth presentation of detailed analysis techniques.
Because software engineers building embedded sys-
tems will need to interact with system engineers, the
module includes not only a discussion of software

SEI-CM-6-1.1 (Preliminary) 1

Software Safety

Module Content

Outline

I. What is Software Safety I. What is Software Safety
1. Introduction 1. Introduction
2. What is Safety and Safety Engineering Safety problems arise with the introduction of corn-

3. Why is There a Safety Problem with Software puters into safety-critical systems. An embedded
computer system is one in which the computer and

4. Relationship of Safety with Other Software its software form part of some larger system, usually
Qualities electromechanical, such as a ship, aircraft, missile,

Ii. Introduction to System Safety spacecraft, processing plant, or rapid transit system.
1. Motivation The embedded system m4y be physically or only

logically incorporated into the larger system. Em-
2. Hazard Analysis bedded systems are usually real-time systems that

3. Hazard Control must be capable of responding to input data by pro-
111. Management of Safety-Critical Software Projects ducing control signals within critical real time limits.

Basic concepts of embedded systems should be
1. Importance in Achieving Safety presented, including open and closed loops, and the

2. Responsibilities of Software Management role of computers and humans within these loops.
An introduction to these ideas can be found in

3. Duties of Software Safety Group (AIIworth8l, Kopetz79].

4. Management Structure The instructor may want to present some examples

IV. Suftware Safety Modeling and Analysis of accidents with computer software as a contribut-
1. System Hazard Analysis ing factor. Thle examples should be chosen to il-

2. Software Hazard Analysis lustrate the various ways software can interact with
other factors to lead to accidents. Examples can be

3. Software Safety Requirements found in [Leveson86] and [Neumann85].

V. Software Design Concepts to Enhance Safety The problem is always one of trading off benefits vs.
1. Why the Need for Runtime Measures risks. The reasons for using computers in safety-

2. Hazard Prevention vs. Hazard Control critical systems-versatility, power, performance,
efficiency-must be compared against the added

3. Hazard Prevention risks of inability to provide correct software. Even

4. Hazard Detection and Treatment where computers can improve safety, it is not clear
they will, because technological improvements often

VI. Verification and Certification of Safety allow running greater risks.

VII. Assessment of Safety
1. Introduction to Quantitative Risk Assessment 2. What is Safety and Safety Engineering

2. Probabilistic Risk Assessment Safety may be defined as "freedom from those con-
ditions that can cause death, injury, occupational ill-

3. Software Reliability and Safety ness, or damage to or loss of equipment or
VIII. Man/Machine Interface Considerations property." But safety is a relative concept. Nothing

IX. Miscellaneous Issues is absolutely safe under all conditions. Provide
some examples and then get students to provide
some. Discuss typical tradeoffs. Describe risk
elimination vs. risk displacement. Safety therefore
involves an attempt to provide acceptable risk.

Annotated Outline Provide definitions of relevant terms including sys-
tem, software safety, risk, hazard, accident, mishap.

Most material directly supporting this module can be t,

found in [Leveson86]. Specific references are made Provide a brief definition of system safety engineer-
to other sources where appropriate. ing and its history. Describe characteristics of acci-

dents: multifactorial, occur in interfaces, related to

2 SEI-CM-6-1.1 (Preliminary)

Software Safety

complexity and coupling. This is a good place to occurrence and/or severity (effects). Present the or-
provide a detailed description of a complex accident der of precedence for applying safety design meas-
showing how tiese facLors were involved. Ex- ures along with examples of each in hardware:
amples can be found in [Perrow84]. a design for ir-insic safety

3. Why is There a Safety Problem with Software e design to prevent or minimize the occurrence
of hazards (e.g., monitoring, automatic con-

Safety is not just a matter of increasing reliability. trol, lockouts, lockins, interlocks)
We are currently unable to achieve ultra-high to cot hoc in itocs
reliability in software (explain how reliability is * design to control hazard if it occurs using au-
specified and defined, hardware reliability vs. oft- tomatic safety devices (e.g., hazard detection,
ware reliability). Hardware reliability techniques fail-safe designs, damage control, contain-
are aimed toward random failures. Software sys- ment, isolation)
tems often involve increased coupling and com- * provide warning devices, procedures, and
plexity. Extensive reuse of certified software is training to help personnel react to hazard.
presently infeasible. Exhaustive testing and verifi-
cation is impractical for most software. Operating III. Management of Safety-Critical Software Projects
conditions often differ from test conditions. There is 1. Importance in Achieving Safety
no way to guarantee that simulations are accurate. Degree of safety achieved is directly related to the
Assumptions must be made about the controlled amount of management emphasis. Management al-
process and its environment. The problem is aysunto management opcos. goal-
amplified when writing software for hardware that is ways needs to prioritize conflicting or costy goals.
new or does not yet exist. There are great dif- 2. Responsibilities of Software Management
ficulties in writing correct software requirements.
Software fault tolerance techniques are limited in ef- Discuss the implications of setting policy and defin-
fectiveness. ing goals, delegating and assigning responsibility for

safety, granting authority, fixing accountability, and
4. Relationship of Safety with Other Software delineating lines of authority, coordination, and ad-

Qualities ministration.

Discuss the relationship of safety with reliability, 3. Duties of Software Safety Group
availability, security. All can be put under a general
label of dependability [Laprie82]. Discuss the duties of the software safety group, in-

cluding the following:

II. Introduction to System Safety * Participation in planning the software aspects

1. Motivation of the system safety plan. Describe what such
It is important for software engineers to understand a plan is and provide an example. Requires
Ismtant fbor sotwaety e r to esand that software group interact closely with sys-
something about system safety for two reasons: tem safety group.

Software is just one part of the system; in fact, * Overall responsibility for software safety anal-
software is only unsafe when operating within yses.
a hazardous system context. Software engi-
neers must work closely with safety and sys- e Participation with delegated software safety
tem engineers to make the entire system safe. responsibility in all design reviews and con-
This requires that software engineers under- figuration board activities.
stand basic system safety techniques. * Establishing and overseeing audit trails for all

* Software often replaces standard hardware identified software hazards. This may involve
safety devices such as interlocks. Unless the merely responsibility for input to system haz-
software includes the software-equivalent de- ard auditing for software hazards.
vices, safety will be compromised. e All necessary interfacing with the system

2. Hazard Analysis safety group.
9 General participation or auditing of all aspects

Describe the goals and techniques involved in the of software development activities to ensure
following analyses using examples to illustrate that software hazards are minimized and con-
them: preliminary hazard analysis, subsystem haz- trollem to an acceptable degree.
ard analysis, system hazard analysis, operating and * Production of any documentation of the safety
support hazard analysis. aspects of the software which are needed for

3. Hazard Control certification or licensing of the system.

The goal is to eliminate hazards or to minimize their 4. Management Structure

SEI-CM-6-1.1 (Preliminary) 3

Software Safety

Discuss the position of the system safety manage- The goal is intrinsic safety through design to make
ment within the overall management structure of software faults and failures non-hazardous. General
typical engineering projects and where the software techniques include:
safety group should be inserted. o minimization of complexity

IV. Software Safety Modeling and Analysis 9 separation of safety-critical functions and data

1. System Hazard Analysis • limit actions of software
* minimize interfaces (not only for

The goal is to show the system is safe if it operates reliiiteaceen t onaidfin

as intended and to show it is safe in the presence of reliability enhancement, but to aid in

faults. System safety techniques try to show that no

single fault causes a hazard and that hazards from 9 firewalls
sequences of faults are sufficiently remote. The lat- e authority limitation, access limitations
ter approaches the impossible if an attempt is made * minimization of hazardous states or time in
to combine all possible failures in all possible se- hazardous states
quences and to analyze the output. Instead, system
safety approaches often involve techniques that first e control flow limitations, sequence control
define what is hazardous and then work backward to (e.g., concurrency and synchronization,
find all combinations of faults that could produce batons, handshaking)
that event. e protection against credible hardware failures

2. Software Hazard Analysis * hierarchical design.

SHA starts from the system hazard analysis and 4. Hazard Detection and Treatment
identifies software hazards including both operating a. Detection of unsafe states
and failure modes, single and multiple failure se- The first step is identification of safety-critical
quences. The purpose is to identify the safety- items. General techniques include: assertions,
critical areas of the software for further attention. its. e el hni ng, in c d og mer s,monitoring, exception-handling, watchdog timers,

3. Software Safety Requirements acceptance tests, algorithn. redundancy, and

Using examples, differentiate between mission and voting. Types of checks include: replication

other requirements, including safety. Software checks, timing checks, reversal checks, coding

safety requirements are derived from the software checks, reasonableness checks, structural checks,

hazard analysis and system preliminary hazard anal- ditions.

ysis. They should include the requirements for de-

tecting, eliminating, and controlling hazards and for b. Recovery
limiting damage in case of an accident; the ways in
which the software and system can fail safely; and Differentiate between fail-operational, fail-soft,
the extent to which failure is tolerable. Stress the and fail-safe behavior; backward vs. forward
fact that safety requirements may conflict with other recovery. Discuss masking through redundancy
requirements, and these conflicts must be deter- and "oting (n-version programming), backward
mined and resolved before software can be built, recovery (recovery blocks), forward recovery

(robust data structures, dynamic alteration of flow
V. Software Design Concepts to Enhance Safety of control, reconfiguration, ignoring single cycle

1. Why the Need for Runtime Measures errors, reduced function multiple control modes,
designing for a safe side).

Verification and analysis is not enough because the
techniques are so complex as to be error-prone VI. Verification and Certification of Safety
themselves, the cost may be prohibitive, and Differentiate between verification, validation, and cer-
elimination of all hazards may require too severe a tification in terms of product and process. Describe
performance penalty. and give examples of SFTA, Software Common Mode

2. Hazard Prevention vs. Hazard Control Analysis, SNSA.

Risk is reduced by reducing hazard likelihood or VII. Assessment of Safety
severity or both. Hazards can be prevented, or they 1. Introduction to Quantitative Risk Assessment
can be detected and treated. Prevention of hazards
tends to involve reducing functionality or inhibiting Present a general introduction to quantitative risk
design freedom, while detection of hazards is diffi- analysis [Morgan81a, Morgan81bj: single-valued
cult and unreliable, best estimate, probabilistic, bounding. Discuss the

pros and cons of assessment (caveats). As an ex-
3. Hazard Prevention ample, it might be interesting to include a discussion

4 SEI-CM-6-1.1 (Preliminary)

Software Safety

of WASH 1400 and the pro and con discussion
raised by it. Discass the Titanic effect.

2. Probabilistic Risk Assessment

Present probabilistic use of fault trees and event
trees, minimal cut sets, evaluation of boolean ex-
pressions [Vesely81].

3. Software Reliability and Safety

Describe the state of the art in software reliability
and safety models and general principles of software
reliability modeling along with weaknesses of
metrics and reliability growth models [Littlewood8O,
Kopetz79]. Discuss the general approaches that have
been proposed for adding cost into these models
[Arlat85, Friedman86, Cheung8O].

VIII. Man/Machine Interface Considerations

Software engineers need to interact with human factors
experts and thus should understand some of the impor-
tant issues to be resolved with respect to human factors
and software requirements.

Discuss the issues in allocation of tasks between man
and machine: complementary vs. incompatible tasks,
static allocation vs. dynamic allocation, the human as
monitor vs. controller, complacency and situational
awareness; issues in selecting amount and type of in-
formation to give human under normal and emergency
conditions; maintaining human confidence in the sys-
tem.

IX. Miscellaneous Issues

Discuss social issues: e.g. what systems should be
built using computers; regulation (how? does the gov-
ernment have the right to regulate?); ethical and moral
considerations for those who must build potentially
dangerous systems; liability issues.

(
SEI-CM-6-1 .1 (Preliminary) 5

Software Safety

Teaching Considerations

Suggested Schedules the introduction of a robot into such a setting. The
overall safety requirements would be Asimov's

The material in the module can be taught in different Three Laws of Robotics [Asimov84]:

ways, depending on the time available. The follow- 1. A robot may not injure a human being, or

ing examples show the number of hours that might through inaction, allow a human being to

be spent on a short course (first number in the come to harm.
parentheses) or a full length course (second number 2. A robot must obey the orders given to it by
in the parentheses). These numbers are based on a human beings except where such orders
tor. course length of 10 to 30 hours. Shorter pres- would conflict with the First Law.
entations could be derived by lea\ -.:g out topics and 3. A robot must protect its own existence as
longer ones by presenting more in-depth material. leng as such protection does not conflict
I. What is Software Safety (1 - 3) with the First or Second Laws.

II. Introduction to System Safety (I - 2) Using these high-level requirements, the student

III. Management of Safety-Critical Software Projects must write system and software safety requirements
(.5 - 2) for the robot. The results might be used by the class

IV. Software Safety Modeling and Analysis (2 - 4) in a inock safety review.

V. Software Design Concepts to Enhance Safety (2 - Another type of exercise might involve the students
4) actually performing a software fault tree analysis on

VI. Verification and Certification of Safety (2 - 4) a piece of code.

VII. Assessment of Safety (.5 - 5)

VIII. Man/Machine Interface (.5 - 2)
IX. Miscellaneous Issues (.5 - 4)

Support Materials

It is recognized that teaching this material will re-
quire amp!e support materials. There is a survey
paper available now to be used witl a short version
of the course and a book in preparation for a more
in-depth course. fhe support materials package for
the module will eventually include sample safety
plans, sample safety requirements, sample system
and software hazard analyses, a fault tree analysis,
etc.

Exercises

Exercises and discussion questions are provided in
the annotated outline for the course. In addition, a
semester project might involve the students prepar-
ing a preliminary hazard analysis and fault tree for
some common activity with which the student is
familiar. The second step would be to hypothesize

6 SEI-CM-6-1.1 (Preliminary)

Software Safety

* Bibliography

Because the subject is new, it will be necessary for Cheung80
anybody teaching this module to do some reading Cheung, R. C. A User-Oriented Software Reliability
and learning. The main reference available right Model. IEEE Trans. Software Eng. SE-6, 2 (March
now is [Leveson86], which has pointers to other 1980), 118-125.
papers and textbooks. A textbook on .oftware safety Abstract: A user-oriented reliability model has
by Leveson to accompany this module is in prepa- been developed to measure the reliability of service
ration and should be ready by early 1988. that a system provides to a user community. It has

been observed that in many systems, especially soft-
AIIworth81 ware systems, reliable service can be provided to a
Allworth, S. T. Introduction to Real-Time Software user when it is known that errors exist, provided
Design. Springer-Verlag, New York, 1981. that the service requested does not utilize the defec-

tive parts. The reliability of service, therefore, de-
A nice introduction to real-time systems and how to pends both on the reliability of the components and
build them. This provides a very good introduction the probabilistic distribution of the utilization of the
to the basic techniques involved in designing soft- components to provide the service. In this paper, a
ware for these systems. user-oriented software reliability figure of merit is

defined to measure the reliability of a software sys-
Anderson8l tem with respect to a user environment. The effects
Anderson, T., and P. A. Lee. Fault Tolerance: Prin- of the user profile, which swnmarizes the character-
ciples and Practice. Prentice-Hall, Englewood istics of the users of a system, on system reliability

Cliffs, N.J., 1981. are discussed. A simple Markov model is for-
mulated to determine the reliability of a software

A comprehensive introduction to fault tolerance. system based on the reliability of each individual
This book may be out of print. If so, see module and the measured intermodular transition
[Anderson86]. probabilities as the user profile. Sensitivity anal-

ysis techniques are developed to determine modules

Anderson86 most critical to system reliability. The applications
of this model to develop cost-effective testing strat-

Anderson, T. Resilient Computing Systems. John egies and to determine the expected penalty cost of
Wiley, New York, 1986. failures are also discussed. Some future refine-

This book is not as complete as [Anderson81]. ments and extensions of the model arc presented.

Ariat85 Fried man86
Arlat, J., and J. C. Laprie. On the Dependability Friedman, M. Modeling the Penalty Costs of Soft-

Evaluation of High Safety Systems. Proc. 15th Intl. ware Failure. Ph.D. Th., Univ. of California, Irvine

Symp. on Fault Tolerant Computing. IEEE Com- March 1986.

puter Society Press, June, 1985, 318-323. Kopetz79
Abstract. The definition and application of depen- Kopetz, H. Software Reliability. Springer-Verlag,
dability measures (including both safety and availa- New York, 1979.
bility aspects) suited to the evaluation of high-safety
computer systems is described. Based on the This small paperback book serves as an excellent
derivation of exact and approximate values for the introduction to software reliability concepts and
considered measures using homogeneous Markov techniques.
processes, a comprehensive evaluation methodolo-
gy is presented and applied to the design and vali- Laprie82
dation of a specific computerized interlocking sys-tem for railway applications. Laprie, J. C., and A. Costes. Dependability: AUnifying Concept for Reliable Computing. Proc.

Aslmov84 12th Intl. Symp. on Fault Tolerant Computing.
Asimov, Isaac. I Robot. Ballantine, 1984. IEEE, June, 1982, 18-21.

Abstract: Presents an attempt to provide a concep-
tual framework for expressing the attributes of what

SEI-CM-6-1.1 (Preliminary) 7

Software Safety

constitutes reliable computing. The topics ad- given of mathematical implementations. Model ver-
dressed are dependability achievement, error ification via real-life data is discussed and mini-
characterization, error processing, and deten- mum requirements are presented. An example
dability measures. shows how these requirements may be satisfied in

practice. It is suggested that current theories are

Leveson83 only the first step along what threatens to be a long

Leveson, N. G., and P. R. Harvey. Analyzing Soft- road.

ware Safety. IEEE Trans. Software Eng. SE-9, 5 An explanation and evaluation of software
(Sept. 1983), 569-579. reliability measurement.

Abstract: With the increased use of software con-
trols in critical real-time applications, a new dimen- Morgan81a
sion has been introduced into software Morgan, M. G. Probing the Question of Technology-
reliability-the "cost" of errors. The problems of Induced Risk. IEEE Spectrum 18, 11 (Nov. 1981),
safety have become critical as these applications 58-64.
have increasingly included areas where the conse-
quences of failure are serious and may involve Abstract: In the first of two articles on risk assess-
grave dangers to human life and property. This ment and management, the author explores what
paper defines software safety and describes a tech- constitutes risk. A second article will examine
nique called software fault tree analysis which can questions of regulation and management of risk.
be used to analyze a design as to its safety. The An introduction to the problems and techniques in-
technique has been applied to a program which volved in risk assessment.
controls the flight and telemetry for a University of
California spacecraft. A critical failure scenario
was detected by the technique which had not been Morgan81 b
revealed during substantial testing of the program. Morgan, M. G. Choosing and Managing
Parts of this analysis are presented as an example Technology-Induced Risk. IEEE Spectrum 18, 12
of the use of the technique and the results are dis- (Dec. 1981), 53-60.
cussed. Abstract: This is the second of two articles on risk
An introduction to software fault tree analysis along assessment. In the first, the author developed a
with an example of the technique applied to a real framework for thinking about risk. In this

satellite control software program. framework, two processes-exposures and effects-
act upon natural processes and human activities to

Leveson86 produce some effect or change. The other two proc-

Leveson, N. G. Software Safety: Why, What, and esses-perception and evaluation--act upon this
change and develop some notion of risk throughHow. Computing Surveys 18, 2 (June 1986), costs and benefits, and this is developed upon.

125-163.

Abstract: Software safety issues become important Neumann85
when computers are used to control real-time, Neumann, P. G. Some Computer-Related Disasters
safety-critical processes. This survey attempts to and Other Egregious Horrors. ACM Software Engi-
explain why there is a problem, what the problem neering Notes 10, 1 (Jan. 1985), 6-7.
is, and what is known about how to solve it. Since
this is a relatively new software research area, em-
phasis is placed on delineating the outstanding is- Perrow8
sues and research topics. Perrow, C. Normal Accidents: Living with High

There is a very long bibliography at the end to aid Risk Technologies. Basic Books, New York, 1984.

in finding further information. This book does not really deal with computers, but
it is an excellent study of the factors involved in

Llttlewood8O accidents in complex systems. It includes details of

Littlewood, B. Theories of software reliability: How many accidents in various application areas includ-
ing nuclear power, transportation, manufacturing,good are they and how can they be improved. IEEE energy, and defense. It also discusses the causes of

Trans. Software Eng. SE-6, 5 (Sept. 1980), 489-500. accidents from an organizational standpoint. It is

Abstract: An examination of the assumptions used extremely interesting and easy to read.
in early bug-counting models of software reliability
shows them to be deficient. Suggestions are made
to improve modeling assumptions and examples are

8 SEI-CM-6-1.1 (Preliminary)

Software Safety

Petersen7l
Petersen, D. Techniques of Safety Management.
McGraw-Hill, New York, 1971.

This is just one of many basic textbooks on system
safety engineering. Most libraries have a selection
of several, all of which are basically similar.

Roland83
Roland, H. E., and B. Moriarty. System Safety Engi-
neering and Management. John Wiley, New York,
1983.

Another basic textbook on system safety engineer-
ing, somewhat newer than [Petersen7l].

Rouse81
Rouse, W. B. Human-Computer Interaction'in the
Control of Dynamic Systems. Computing Surveys
13, 1 (March 1981), 71-100.

Abstract: Modes of human-computer interaction in
the control of dynamic systems are discussed, and
the problem of allocating tasks between human and
computer considered. Models of human perfor-
mance in a variety of tasks associated with the con-
trol of dynamic systems are reviewed. These
models are evaluated in the context of a design ex-
ample involving chemical plants, and ships.

A nice introduction to human factors issues. It also
includes an extensive bibliography.

Vesely81
Vesely, W. E., F. F. Goldberg, N. H. Roberts, and
D. F. Haasl. Fault Tree Handbook. NUREG-0492,
U.S. Nuclear Regulatory Commission, Jan., 1981.

A very easily read textbook on fault tree analysis
and probabilistic hazard analysis.

(
SEI-CM-6-1 .1 (Preliminary) 9

The Software Engineering Institute (SEt) is a federally funded research and development center. operated by Carnegie
Mellon University under contract with the United States Department of Defense.

S The SEI Software Engineering Curriculum Project is developing a wide range of matenais to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area. and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI. by Carnegie Mellon University, or by the United States government

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that anl copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEl educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education~sei.cmu.edu on the Internet.

Cumculum Modules (* Support Materials avajta) Educational Materials

CM-I (superseded by CM-191 EM-I Software Maintenance Exercises for a Software
CM-2 Ito6ion to Software Design Engineering Project Course
CM-a The Software Technical Review Process* EM-2 APSE Interactive Monitor: An Arid act for Software
CM-4 Software Configuratin Management' Engineering Educaboai
CM-5 Inrmatin Protection EM-3 Readiing Computer Programs: Instuctoes Guidead
CM4 Softwere SafetyExrie' CM-? Assurance of Software Cuality
CMA4 Formal Specification of Software*
CM-B Unk estkng&WdAnalysis
CM-IO Models of Softwre Evofu~on: Uif. Cycle and Promes
CM-1I Software Speciflcallons: A Frameworti
CM-12 Software Metrics
CM-1 3 knroducion to Saofr Vanificatior and Validation
CM-14Id lelec~all Prope"l Protection for Software
CM-15 Software Development and Licensing Contracts
CM-IS Software Development Using VDM
CM- 17 Use Interface Development
CM-I8 (superseded by CM231
CM-IS Software Pequrements
CM-20 Formal Verificauion of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems'
CM-23 Technical Writing Joe Software Engineers
CM-24 Concepts of Concurreant Programming
CM-25 Language and System Support for Concurrent

Programming'
CM-26 Understanding Program Dependencies

