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Abstract

Barrier Methods for Large-Scale Quadratic Programming
by

Dulce B. Ponceleén
October 1990

We present several new algorithms for solving the general large-scale quadratic
programming (QP) problem.

A feature of QP problems is the presence of linear inequality constraints, which
introduce a combinatorial aspect to the problem. Currently the most common ap-
proach to solving QP problems is to apply active-set methods, in which only some of
the inequalitics are used to produce a search direction at each stage. The combina-
torial element is therefore inherent. As problems become larger, there is a potential
for an excessive number of iterations and consequent inefficiency.

In contrast, we use the now familiar barrier-function approach, which circumvents
the combinatorial aspect by introducing a barrier transformation involving all of the
inequalities. The barrier term enforces satisfaction of the inequalities by modifying
the objective function. The transformed problem is solved by a modified Newton
method applied to the nonlinear equations defining feasibility and optimality.

The main computation at each iteration of the new algorithms is the solution
of an indefinite system of linear equations. Barrier methods are known to lead to
ill-conditioned systems. However, we show by a special sensitiviiy analysis that the
particular manner in which we have forr:ulated the barrier transformation leads to
ill-conditioning that is benign.

We address the many details that need to be resolved in order to define an efficient
algorithm for solving large-scale QP problems. A specific barrier algorithm has been
implemented, with linear programming (I P) included as a special case. Numerical
rcsults are presented for a set of sparse QP test problems. A feature of the imple-
mentation is that its efficiency does not depend on whather the solution is near or far
from a vertex of the feasitle region.
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Chapter 1

Introduction

1.1 Statement of the Problem

In this thesis we present several new algorithms to solve the general quadratic program
(QP) of minin! ing a quadratic objective function subject to linear constraints on
the variables. ¢juadratic programming problems are among the best understood
areas of optimization, with algorithms for them dating back to the 1950’s. Many
mathematically equivalent formulations of the problem are possible, and the choice
depends mainly on the context. It will be seen later that a very specific form of the
problem is crucial to the barrier algorithms presented in this dissertation, but initially
we shall consider quadratic programs in the following form:

v s - T 1 T s
minimize Qz)=cz+ 3z Ha

(1.1.1)
subject to Az > 5,

where the Hessian matriz H of the quadratic function is an n x n symmetric matrix,
¢ is an n-vector, A is an m X n matrix, and § is an m-vector. We are particularly
interested in the case where the matrices A and H are large and sparse, and we
include the gener.l linear programming (LP) problem arising when H = 0.

We shall assume at least one bounded solution to (1.1.1) exists, say z*. When
H is positive semidefinite, the problem is termed a convex QP. A useful property of
a convex QP is that a local minimizer #* of a convex QP is also a global minimizer.
When H is positive definite, z* is unique. When H is indefinite, move than one
local solution may exist. Moreover, some of the local solutions may not be global.
Naturally these characteristics of the solution have an important impact on the design
of an algorithm.

The problem of finding a global minimizer of a general optimization problem is
very difficult and the indefinite quadratic case is no exception. It can be shown that
finding a global minimizer of an indefinite QP is equivalent to finding an integer so-
lution to a linear program, a known difficult problem. Hence, most algorithms do not
attempt to find more than a local minimizer. Indeed, even the verification that some
point is a local minimizer of a general quadratic program is under sorie circumstances

1
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Figure 1.1: Con QP Problem

an NP-hard problem—see Contesse [Con80], Murty and Kabadi [MK87] and Pardalos
and Schnitger [PS88].

Figure 1.1 shows the contours of a strictly convex quadratic function and the
feasible region defined by the linear constraints. The shaded area corresponds to the
infeasible region. In this example the solution z* is unique, i.e. it is a strong global
minimizer. Figure 1.2 shows the contours of a nonconvex quadratic function. This
function has two isolated local minimizers, only one of which is a global minimizer.

In contrast with a typical linear programming problem, the solution to either
problem does not lie at a vertex of the feasible region. Notice that if the minimizer z*
was in the interior, it would imply that z* was also a minimizer of the unconstrained
problem, or equivalently, the linear constraints would not play any role. In general,
the minimizer of a constrained QP is expected to lie on a boundary of the feasible
region, although not necessarily at a vertex.

For large-scale problems, very few practical, general-purpose algorithms are cur-
rently available. Almost all current methods for QP whether for large or small prob-
lems are of a type known as active-set methods. In this thesis we describe algorithms
for QP that are not active-set methods. In developing a large-scale QP algorithm of
a radically different nature, we avoid some of the fundamental drawbacks present in
active-set methods. Certain different difficulties exist, but we anticipate that at least
for some problems the balance will favor the new approach.
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Figure 1.2: Non-convex QP Problem

1.2 Applications

Quadratic programs arise from many diverse applications. For instance, the well
known PILOT problem [SMD86] is a large-scale dynamic model of the U.S. economy
that synthesizes representations of all sectors of the economy in a general equilib-
rium context. PILOT simulates economic interactions among sectors by determining
market-clearing prices and quantities for all commodities over time. The Hessian
matrix is diagonal and semidefinite. Approximately one percent of the variables con-
tribute to the quadratic term.

Portfolio Optimization in the business world constitutes another source of quadratic
programs. Specific applications include asset allocation (such as stocks and bonds),
and optimizing risk-return tradeoffs assuming superior investment judgement. Many
investment advisory firms and pension-plan sponsors today routinely compute mean-
variance efficient portfolios as part of the portfolio allocation process. Given that
investment companies use large-scale portfolio models to trade billions of dollars, the
development of a robust large-scale QP algorithm is of paramount importance.

As well as being important in their own right, quadratic programs often appear
as subproblems within algorithms for nonlinear programming. Our interest in sparse
quadratic programs arises in part from the desire to apply sequential quadratic pro-
gramming (SQP) methods to large nonlinearly constrained problems. As the name
suggests, each iteration of an SQP method involves solving a quadratic programming
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subproblem. These methods are regarded as state-of-the-art methods for the solution
of nonlinear problems. The overall performance depends critically on the efficient
solution of the QP subproblems.

Naively, one might think that to develop an SQP method for solving nonlinear
programs, it would suffice to have a black boz for solving the quadratic subproblems.
Unfortunately, this is not true even in the dense case; see Gill et al. [GMSW85] for
a detailed discussion of the difficulties involved in adapting active-set QP algorithms
to the SQP environment.

1.3 Historical Background

Given the importance of quadratic programming, it is not surprising that many algo-
rithms have been proposed. Some of these were derived as extensions of the simplex
method for linear programming, in the sense that they involved pivot operations on
a simplex-type tableau. These include Wolfe’s simplex method for QP [Wol59] and
some of the algorithms for linear complementarity problems—notably the principal
pivoting method of Cottle and Dantzig [CD68,Cot68,Cot89] and Lemke’s method
[Lem62].

Beale’s method [Bea55,Bea59] was one of the more successful early approaches. It
has the feature of tending to be more efficient if Q(z) is linear in most of the variables
(i.e. if H has low rank). In many early QP algorithms it was necessary for H to be
positive definite and such algorithms were therefore restricted in their application.
In particular, they were unsuited to problems derived as extensions to LP models—a
common source of QP’s.

The equality-constrained quadratic program (EQP) constitutes the simplest QP.
In this :ase, the constraints are of the form Az = b. A distinctive feature of an EQP
is that its solution, if it exists, can be obtained by ¢ .lving a single system of linear
equativns (known as the Karush-Kuhn- Tucker or KKT system) involving the matrix

K= (’f AT). (13.1)

A0

No iterative proceduic is needed, A variety of numerical mcthods have been developed
to compute the solution of EGF. Thc major differences among them arise from the
numerical techniques used to solve the system of linear equations. The method of
choice depends on the size and representation of the problem.

One approach is to use a factorization of K itself—sometimes referred to in the
literature as Lagrangian or Karush-Kuhn-Tucker methods. Other approaches, the
so-zalled projection methods, involve breaking down the system into smaller and
simpler systems. The factorizations needed are then smaller than in Lagrangian-type
methods, but less likely to be sparse.
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The constraint matrix A can be viewed as defining two complementary subspaces:
the nuli space of vectors orthogonal to the rows of A, and the range space of vectors
spanned by the rows of A. From this observation, two categories of projection methods
have been developed, namely null-space methods and range-space methods. In many
cases, the work required to solve EQP is directly proportional to the dimension of the
corresponding subspace.

EQP methods are fundamental for solving subproblems that arise in active-set
methods for the inequality-constrained quadratic program (IQP). Unlike an EQP, an
IQP can be solved only by iteration. In the IQP case, a key piece of information is
unknown—namely, the set of constraints that hold with equality at the solution. Such
constraints are termed the active set of constraints at the solution or simply the active
set. If the active set were known a priori, the solution of an IQP could be computed
directly by solving a single EQP problem (ignoring the inactive constraints).

In the 1970’s and 80’s a number of sophisticated active-set methods were devel-
oped. Such methods are so-called because they maintain a prediction of the active
set, called the working set. This is a linearly independent set of constraints that are
satisfied exactly at the beginning of each iteration. Information is gathered at the
current iterate to allow changes in the working set to improve the prediction. Itera-
tions proceed until the active set is identified. It is common for any given constraint
to enter and leave the working set many times. Although the working sets may not
repeat, the number of possibilities is a combinatorial function of the number of con-
straints and variables. Early active-set methods are those due to Dantzig and Wolfe
[DanG1], Fletcher [Fle71], and Murray [Mur7la}. More recent methods are due to
Gill and Murray [GM78], Powell [Pow81], Goldfarb and Idnani [GI83}, and Gill et al.
[GMSW84c].

Naturally, some of the IQP methods are classified according to the type of n.ethod
they use to solve the EQP subproblems. For example, the methods of Murray
[Mur71a}, Gill and Murray (GM78], and Bunch and Kaufman [BK80] are null-space
methods, and are more efficient when the number of constraints in the working set
is close to n, since the dimension of the null space is then relatively small. Range-
space methods increase in efficiency as the number of constraints in the working set
decreases. For an example of a range-space method, see Gill et ol. [GGM*84].

We emphasize that under certain conditions (for example, when H is positive
definite), many active-set methods for solving IQP are mathematically equivalent, in
the sense that they calculate identical sequences of iterates when applied to the same
problem witl: the same initial working set. (See Djang [Dja79], Cottle and Djang
[CDT79] and Best [Bes8<}.)

Approaches that treat the indefinite system (1.3.1) directly, may be especially
appropriate for sparse problems; see Duff and Reid [DRS2], Forsgren and Murray
[FM90] and Gill ef al. [GMSW84b,GMSW8T].
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An important class of active-set methods are the so-called inertia-controlling algs-
rithms for QP (TCQP methods). Such methods restrict the change that can take place
between successive working sets, placing a strict control on the degree of indefiniteness
of the reduced Hessian matrix (a measure of nonconvexity). Lagrangian, null-space
and range-space methods may all be ICQP methods. A complete description of ICQP
methods is given by Gill et al. [GMSW88].

Let Aj denote the matrix of constraints defining the working set at iteration k.
All active-set methede can be viewed as solving a sequence of linear systems involving

matrices of the form
T
K, = H A; ,
A, 0

i.e.. a sequence of EQF problems. A ieature of most active-set methods is that Ay
differs little from Azyy. Advantage may he taken of this feature by utilizing matrix
factorization updating techniques [GGMST74].

While active-set approaches are well suited to many problems, the potential ex-
ists for tne number of iterations tc ve extremely large even for problems of moderate
size. In fact, in the simplex method for linear programming [Dan63]—an active-set
method—the number of iterations in the worst case can rise exponentially with the
nuvaber of constraints [KM72]. While it is weli known for the simplex method that
nis worst case is rarely attained, the combinatorial aspect of active-set methods im-
plies that the number of iterations often does grow significantly with the number of
constraints. The wish to circumvent this feature of active-set methods is what moti-
vates our interest in barrier methodas, just as it motivated Karmarkar’s approach to
large-scale linear programming [Kar84]. Anoth-r reason is the difficulty in extending
matrix updating procedures to the large-scale case.

1.4 Barrier-functicn Methods

The use of barrier methods for solving nonlinear optimizatio:. -+ bitems dates back
to the laic 1950%s, and was subsequently well established in the 1960’s by Fiacco and
McCormick [FM68]. It can be appreciated from the preces.:g discussion that the
~ombinatorial element in active-set methods arises because of the presence of incqual-
ity constraints. A barrier method eliminates inequality constraints by transforming
the cbjective function. For example, the problem

minimize F(z)
zER" :

(1.4.1)
subject to ¢(3) >0
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(with ¢ € R™) might be transformed into the problem

" 1
minimize B(z,pu)=F(z). | —— 1.4.2)
TER" ( K ( ’ - c,-(z)’ ( ;
where 4 > 0 is a barrier parameter that weiz.. b~ - - uf the perturbation to the

original function. The general idea of the classicat 2 --ier approach was to transform
the original constrained problem into a sequence ¢ .nconstrained problems whose

successive minimizers converge to the desired su!o - Note that barrier methods
are applicable only to problems for which a stricti= "le point exists, i.e., ¢(z) > 0.

In general, minimizers of F{z} will be infeasib, , or FF{z) might be unbounded
below. In order to enforce feasibility of successive iterates, a modified function is
introduced that resembles the original cbjective function but has an additional term
that sharply approaches infinity at each of the constraints. That is, a barrieris created
at the boundary of the feasible region. If the feasible region is cor:pact there must
exist a feasible (with respect to the constraints of the original probiem) minimizer
of the modified function. If the weight assigned to the barrier term is decreased
toward zero, there exists a sequence of minimizers that constitutes a strictly feasible
sequence of approximations to a constrained minimizer of the original prchlem. It
can be appreciated from the example (1.4.2) that the smaller the value of g the
closer B(x, 2} approximates F'(z). However, no matter hew small g, very close ic ine
boundary of the feasible region the two functions will differ.

If the initial estimate of the mininizer of (1.4.2) is feasible with respect to the
constraints ¢(x) > 0, then an algorithm to solve (1.4.2) can usually be adjusted to
generate a strictly feasible sequence of estimates.

Figures 1.3 and 1.4 illustrate the effect of applying a barrier transformation to a
problem with one nculinear constraint. Figure 1.3 shows the contours of the function
F(z) = :::; #2 and the contour line corresponding to a zero value of the constraint
c(z) =2 -} — 23 > 0. In Figure 1.4 no contours of the ba-iier function have been
diawn in tl e iafeabile region, since the function is not meant to be evaluated in that
region.

The two most popular barrier functions are the logarithmic barrier function at-
tributed to Frisch [Fri55], and the inverse harrier function (used in (1.4.2)) introduced
b& Carroll [Car59,Cai#1). Here = consider only the !oganthmxc barrier functicn. Let
2 bea mnn.'mx:z of (14.3;, and let z*(u) be the minimizer of B(z,u) in (1.4.2) “or
a givei: v=iue of 2. Fiacco and McCormick [FM68] have shown, for a wide class of
h? ser {untetons and under qmte general conditions on F(x) an(l c(z). that therc
is & compact set containing ¥ within which the sequence {x¥(p)} converges to
roaop -0

In the 130u’s, the popularity of these methods grew. The attractiveness was due
in ,arl to the sophistication of algorithms then known for unconstrained problems
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\

Figure 1.4: Barrier Transformation Applied to a Nonlinear Problem




1.4. Barrier-function Methods 9

compared to those known for constrained problems. Once the problems were trans-
formed to become unconstrained, “off-the-shelf” software could (in taeory) be used
for their solution.

Since techniques for nonlinear constraints were not well understood at the time,
their removal was specially advantageous. Another desirable feature of the barrier
transformation is that it couples the original objective function and the inequality
constraints in a manner that eliminates motion along the boundary. Hence, no special
techniques are needed to move along the boundary.! However, solution of the barrier
subproblems proved difficult and in the 1970’s interest in barrier methods declined.
One reason for the difficulty is that the Hessian at the solution becomes progressively
more ill-conditioned as 4 — 0 [Mur71b]. Most methods for unconstrained problems
perform poorly on ill-conditioned problems. For example, Newten’s method has a
quadratic rate of convergence only if the Hessian is nonsingnlar (otnerwise the rate is
just linear). Thus, although a constrained problem has been reduced to a sequence
of unconstrained problems, the latter are of the type that are difficult to solve. We
should emphasize that the ill-conditioning is a feature of the barrier transformation
and is independent of the condition of the original optimization problem. For an
approach that circumvents this ill-conditioning, see [Wri76).

Interest in barrier methods has been revived recently, following the discovery that
the much-publicized Karmarkar algorithm for linear programming is in fact equivalent
to a particular type of barrier method [Kar84,GMS*86]. It is now clear that the
removal of inequality constraints can be advantageous even for linear programming,
since it avoids the combinatorial element of finding the active set.

It turns out that linear programming is a special case and that for such problems
the usual ill-conditioning associated with barrier functions is not present (assuming
the problem is not dual degenerate). The reason is that in LP’s the number of
constraints active at the solution is usually at least equal to the number of variables.
In general, this property does not hold for QP and other nonlinear problems. At first
sight, therefore, the extension of the new approaches to LP tc nonlinear problems
does not look promising. However, we have been able to show that provided the
barrier transformation is applied in a certain manner, the inevitable ill-conditioning
is benign.

The crucial element is to apply the barrier transformation to simple bounds only,
instead of to general inequalities. For example, constraints of the form Az > b are
replaced by the equivalent constraints Az — s = b and s > 0. The bounds s > 0 are
then eliminated by the barrier transformation. The barrier subproblems now have
linear equality constraints. In general this is not a drawback since many problems
will already have some naturally occurring equality constraints.

"Motion along the boundary is undesirably complex when the constraint surface is nonlincar.
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1.5 Large-scale Quadratic Programming

While general algorithms for quadratic programming are well understood, computa-
tionally attractive algorithms for large-scale quadratic programming are scarce. The
definition of a large problem naturally Jepends on the size of the machine being used.
It is generally agreed that large problems involve a few thousand variables and con-
straints. When problems of this type arise there is often considerable structure to
both the Hessian and constraint matrices. In particular, the matrices typically have
an average of only 5 to 10 nonzero elements per column [Lus89]. Enormous savings
in computational effort as well as storage can be achieved if the QP algorithm takes
advantage of such structure.

Within the last 15 years a few algorithms have appeared for large-scale quadratic
programming. These include Tomlin’s sparse implementation of Lemke’s method
[Tom76b,Tom76c,Tom76a], and Gould’s method [Gou86a]. The latter is an active-sct
method that uses a sparse solver for matrices derived from KKT systems.

Among the best known algorithms for large-scale optimization is the MINOS
system due to Murtagh and Saunders [MS83]. While designed for general nonlinear
programming, MINOS can be applied to quadratic programs. For linearly constrained
problems, an active-set method is used. A characteristic is that advantage is taken
of sparsity in the constraint matrix but not in the Hessian. Instead, MINOS works
with a dense approximation to the so-called reduced Hessian, and relies on the fact
that for many problems this matrix is relatively small. If the reduced Hessian is of
Jow dimension (say less than 200), the algorithm is quite efficient. The effectiveness
of the method decreases as the size of the reduced Hessian increases. We defer a more
complete description to Chapter 8, where the performance of the barrier method is
compared with MINOS.

1.6 Complexity Results

For an introduction to computational complexity, the theory of NP-completeness
and its significance within this context, techniques for analyzing the complexity of
algorithms, and practical approaches to some intractable probiems, see [GJ79,PS82].
For a study of the computational complexity of fundamental processes in numerical
computation, see [Kar74].

Barrier methods belong to the class of interior-point methods, in which inequality
constraints are strictly satisfied throughout.

A key theoretical property of certain interior-point methods for LP and convex QP
is that they are polynomial-time algorithms; i.e., the number of iterations required to
reach a specified accuracy in the solution is a polynomial function of n, the numnber
of variables.
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T,

For example, for linear programs and strictly convex QP’s, the dualitygap v = =
is one measure of distance from a solution, assuming z and z satisfy the primal and
dual constraints respectively. For a primal-dual algorithm that maintains such points
(z,2), a typical complexity result might state the following. For a given accuracy
parameter &, if 4o = z2z is the duality gap for some initial primal and dual feasible
point (zg, 2o), the number of iterations required to reduce the duality gap to a specified

value ¥ > 0 is at most N. where N satisfies a bound of the form

N < Cv/nlog(1/$),

for a moderate constant C.
Further complexity results are often given in terms of L, the “length” or “size” of
the data specifying the problem. Typically,

L =Y [log,(ld:| + 1)1,

w.ere d; ranges over all nonzero elements of A, b, ¢ and H. In other words, L is the
number of bits of data needed to specify the problem. In r.any cases it is assumed
that the data elements d; are rational.

If the accuracy is required to be v < 2-2L, it may be possible to state for some
algorithm that in the optimal solution (z*, 2*),

zi=0if ;<2% and 2 =0if 5 <27%
The remaini.ig components of the sclution can be computed in O(n®) operations.
Thus, the co. -:;lon
2Tz < 9-2L

could theorciic. 'y be used as a stopping criterion for the aigorithm.

Farmoarka: |{ar84] was the first to prove polynomiality for an interior-point
methosl for L. Many such algorithms have since been developed for LP, convex
QP, and knecar complementarity problems. They are variously known as

o potential-reduction algorithms,

o path-following algorithms,

e barrier algorithms,

o affine-scaling algorithms,

e projective-scaling algorithms.
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It should be emphasized that all these algorithms are closely related despite the many
different names.

The main LP/QP algorithm developed and implemented here is of the barrier type.
For the special case of LP, polynomiality was proved by Gonzaga [Gon87] and by Roos
and Vial [RVSS§]. in the latter case, the barrier parameter p is reduced occasionally
by an arbitrary constant factor in the range (0,1). The algorithms presented in this
thesis are similar in spirit to this approach.

A great deal of background and unifying theory has recently been given by Kojima
el al. [KMNY90] on interior-point algorithms for linecar complem:entarity problems,
including LP aud convex QP. Their results apply to primal-dual algorithms such as
those described in Chapter 6.

Further complexity results for convex QP algorithms have been given by Ye [YeS87]
and by Ye and Tse [YTS6].

While proofs of polynomiality arc of considerable theoretical interest, the theoret-
ical bounds that have been obtained are enormously greater than the actual numbers
of iterations that are typically achieved in practice. If this were not the case, barrier
methods would be of little practical value. Some steps towards bounding the ezpected
number of iterations have been taken recently by Todd et al [TMY90]. but again for
the LP case only.

1.7 Thesis Contents

Elsewhere, the principal form of research on interior-point methods for quadratic
programming has been to investigate their complexity properties (for exampie, see
Kojima et al. [KMNY90]). In this thesis the focus is on defining practical algorithms
and facing the many numerical issues that arise (cf. [Meh89.Mek90,L.MS89.LMS90,
CLMS90}). A key question that is not addressed in the basic theory of barrier func-
tions is how to determine (or approximate) the solution of the subproblem. Much of
the thesis is directed at answering this question.

Although our prime interest is in solving large-scale QP’s, much of the work
presented is equally applicable to large-scale optimization problems whose objective
function is an arbitrary nonlinear function that is twice contiauously differentiable.

In Chapter 2 we state the necessary and sufficient conditions for a solution of a
general quadratic program. For reference purpeses we present several ways of formu-
lating a QP and introduce the concept of duality within the quadratic programming
context. We briefly describe active-set methods, one of the most popular class of
methods for quadratic programming, we motivate the interest in new approaches,
such as barrier methods, by discussing some of the complications that arise in de-
veloping active-set methods for large-scale QP’s. Specifically, we show the nced to
circumvent the combinatorial aspect present in such methods.

O
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In Chapter 3 we review the fundamental properties of barrier functions and the
classical theory of barrier methods for the solution of a general nonlinear problem
with inequality contraints (NIP). Optimality conditions for a minimizer of NIP are
given, and we discuss the relationship of minimizers of the barrier subproblems to
those of NIP. A modei barrier algorithm is presented for the solution of nonlinear
programs subject to a mixture of linear equality and general inequality const-aints.

In Chapter 4 we discuss algorithms for finding or approximating minimizers of
the barrier subproblem {the minimization of a nonlinear function subject to linear
equality constraints). It will be seen that for the large-scale case, such algorithms
are both rare and complex. Optimality conditions for the solution of the barrier
subproblem are given.

Regardless of the method used to solve the subproblem, there are some special
difficulties not present in the usual equality-constrained optimization problem. For
exampie, with a normal problem it is trivial to provide an initial point that satisfies
the hincar equality constraints, but here the point must also be strictly interior with
respect o the bcunds. We propose an alternative o a genera:-purposc algorithm: that
takes specific advantage of the forin of the barrier subproblem.

We are also interested in exactly how the sequence may be computed efficiently. A
key issue in algorithms for large-scale problems is how best to solve the lincar systems
that define the iterative process. A feature of barrier algorithms for LP is that it is
possible to define the sequence by solving symmetric positive definite systems. As it
happeas, algorithms to solve such systems are highly developed. In the QP case the
systems are symmetric but indefinite. Such systems are inherently more difficult to
solve (in part becaase numerical stability depends upon choosing a suitable ordering
of the eguations). We describe procedures to solve such systems.

Our interest is not simply in defining an iterative sequence that converges to 2 QP
solution but also in showing that wher the sequence is computed in finite precision
it converges to the solution of a neignboring problem.

To prove that the proposed barrier algorithm is numerically vizble, we must also
show that the solution to the subproblems can be computed in a stable fashion. To
this end, Chapter 5 presents a detailed sensitivity analysis of the KK'T system arising
from barrier methods. A key result of this analysis is that theill-conditioning normally
associated with the Hessian in barrier methods is benign when the logarithmic barrier
function is applied to a particular formulation of a quadratic programm. \Vhen only
simple bounds are enforced by the barrier functions, the subproblems can be solved
to the required accuracy in spite of the severe ill-conditioning. Thus, a stable barrier
algorithn: is realized.

In Clapter 6 we study some special cases of quadratic programs and the design
of practical methods that take advantage of the special propertics of such problems.
Specificaily we consider the following special cases: when the only constraints present
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are simple bound constraints, when the Hessian is trivially invertible, and when the
reduced Hessian is positive semidefinite. The latter case exhibits the key property
that the minimizer of the barricr subproblem is unique. For such QP’s it is possible
to develop primal, dual and primal-dual methods. The convergence of these special
methods is discussed. In the linear programming context, affine methods have been
proposed. We investigate whether similar approaches are possible for solving convex
quadratic programs.

For linear programming problems, there exists an input/output format that has
become the industry standard and is recognized by all commercial mathematical
programining systems—the so-called Mathematical Program System (MPS) format.
Unfortunately, there is no equivalent standard format for quadratic programming. In
Chapter 7 we define a standard for specifying a QP that we have termed the QPS
format. The basis of designing the QPS format has been to adhere as closely as
possible to the desirable features present in the MPS format. A feature of the new
format is that it is simple to convert an MPS file into a QPS file. (A program to do
this has been written and used in our computational experiments.)

An implementation of the barrier QP algorithm (termed BARQP) has been de-
veloped. In Chapter 8 the details of the implementation are described. Barrier
algorithms are sensitive to many of the parameters used in their definition. A poor
choice of such parameters can lead to very inefficient algorithms. Part of the pur-
pose of the numerical experimentation has been to determine a good choice for these
critical parameters.

In order tu extend the usefulness of the implementation to as wide a class of prob-
lems as possible, attention is given to a number of numerical issues. For example, it
may be that the constraint matrix is ill-conditioned. Inevitably such ill-conditioning
is reflected in the KKT system. If the ill-conditioning is sufficiently severe the algo-
rithms to solve such systems break down. We show how to modify the systems to
ensure that the ill-conditioning does not exceed the bound for which the algorithms
break down.

In contrast to the LP case, there does not exist a standard set of QP test problems.
Most of the problems v.e have used in our tests have been derived from a well known
LP test set by changing the objective function to be quadratic. We have also tested
our algorithm to see how effective it is at solving LP’s. We should stress that the
implementation is still in a relatively primitive form. It has not been our purpose to
develop an implementation suitablc for general distribution. Results are presented
and a comparison mad~ with the performance of MINOS (a well established package
for the solution of nonlinear optimization problems). These results are not meant as
ar. accurate reflection of the performance of a barrier QP algoritm but are intended
to serve as an indication of the algorithin’> potential.




Chapter 2

Fundamentals of Quadratic Programming

In this chapter we present the fundamental properties and characteristics of the gen-
eral quadratic programming (QP) problem. The optimality conditions of the problem
are given, and additionally we motivate some of the issues that arise in developing
practical methods for solving large-scale quadratic programs. We present a brief de-
scription of active-set methods for dense QP problems and highlight the difficulties
in extending these algorithms to the solution of large-scale problems. The latter is
intended to explain the motivation behind new approaches, such as barrier methods.

2.1 Equality-Constrained Quadratic Programming

We first consider the equality constrained quadratic problem (EQP). This is the

simplest category of QP problems, yet it is of fundamental importance in the theory

of nonlinear programming. Problems of the form EQP occur as subproblems within

many active-set methods for inequality constrained quadratic programs as well as in

sequential quadratic programming methods for solving reneral nonlinear programs.
Formally, the EQP problem can be expressed as

EQP miileiar{,l’ize o(z) =Tz + LaTHz o1
> 11)
subject to Az = b,

where ¢ is an n-vector, b is an m-vector, A is an m X n matrix of rank m, and H is
an n X n symmetric matrix. The gradient of ¢ is the linear function g(z) = c+ Hz.
Note that H is the Hessian matrix (of second partial derivatives) of the quadratic
objective function.

When a set of m linear constraints is imposed on an n-dimensional minimization
problem, intuitively we expect to reduce the dimensionality of the optimization tn
n — m. Formally, the constraints Az = b define two complementary subspaces: the
m-dimensional subspace defined by the rows of A and the complementary subspace
of vectors orthcgonal to the rows of A. Let Y denote any matrix whose columns form
a basis for the range space of AT, and Z denote a matrix whose columns form a basis
for the null space of A, i.e., AZ = 0. We emphasize that the matrices Y and Z are
not unique.

15
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Any vector x can be written as a linear combination of the columns of Y and Z,
namely

:U=Y$y+Z$Z

for some m-vector z, and an (n — m)-vector z,. If  is a feasible point of EQP, the
vector z, is the solution of the linear system

AYzy = b, (2.1.2)

When A has full row rank, the matrix AY is nonsingular and the vector zy is unique.
Hence, the constraints entirely determine the range-space portion of the solution z*
of EQP; that is, z, = z%. This is precisely the expected reduction in dimensionality.
It is convenient both conceptually and computationally to express any feasible point
z of EQP as

z =Y + Zz,,

since it implies that solving the constrained problem EQP can be viewed as minimizing
the following unconstrained problem in the variables z,:

minimize ~ ¢(z5) = (c+ HYZY) 22, + 120 Z"H Z)z,. (2.1.3)
xz N~=in
The matrix ZTHZ is known as the reduced Hessian. The following lemma, which

summarizes the characterization of a minimizer of EQP for the case when A has full
row rank, follows immediately from the optimality conditions of problem (2.1.3).

LEMMA 2.1.1. Let A be an m x n matriz of rank m, let Z denote a basis for the
null space of A, and let x = Y5, + Zz,, where AYz, = b and Y is a basis for the
range space of AT. Then

(i) EQP has a strong local minimizer at £* if and only if =¥, is a stationwry point
of (z;) and ZTHZ is positive definite;

(ii) EQP has an infinite number of weak solutions if and only if there is a stationary
point of p(z;) and ZTHZ is positive semidefinite and singular;

(iii) EQP has no solution if no stationary point of g(x,) exists.

Note that when the local minimizer of EQP exists, it is also a global minimizer.

If A is not of full row rank, in addition to the above conditions it is necessary
for the vector b to lie in the column space of A. In theory we can always remove
dependent constraints such that the resulting A has full row rank; however there may
be numerical difficulties in recognizing this situation. In general the cost of achieving
full rank is not negligible.
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The fizst-order necessary conditions ..ate hazt a solutie - of EQ’ must satisfy
V() = ZTVp(z") = 27T9(z*) = ZTc+ H2*) = 0, (2.1.4)

or equivalently. there uxists 7% such that A" = b and
a(z*) = c+ Ha* = AT2* (2.1.5)

for some vector of Lagrange multipliers #*. Thus, «* and 7* satisfy the equation

HATY | =2 c
)

T
K= A
AO
is referred to as the Karush-Kuhn-Tucker (KKT) matrix, and (2.1.6) is the KKT
system of equations. In Chapter 3 we discuss the KKT system in the context of the

barrier method. The above system can also be derived by considering ithe Lagrangian
function associated with the EQP problem, namely

The matrix

L(z,7) = c'z + 1a"Hz — x"(Az - b).

It can be easily verified that if z* and #* satisfy (2.1.6), then (2*,7*) is a stationary
point of the Lagrangiar: function.

Given any point (z,7), let (p,q) be the step to the solution (2*,7*), so that
¥ = 2+ pand 7 = 7 4 ¢. It is convenient to rewrite equations (2.1.6) in terms of p

and ¢
K (“”) = (gb) , (2.1.7)
q T

where g, = ¢+ Hz — ATr is the gradient of the Lagrangian with respect to «, an¢
r = Az — b is the res dual for the constraints.

We can also characterize a minimizer of EQP ‘n terms of the inertia of the KKY
matzix.

DEFINITION 2.1.1. The inertia of a symmetric mairiz I is the i{nlet

In(K) = (iy,i-,d0),

whers i4,1- and 1y are the number of positive, negative ¢nd zero eigenvalues of K
respectively,
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The foitowing lemma gives an important relationship between the KKT matrix
and the reduce’ Weesiun ZTHZ,

LEMMA 2.1.2. Let H be an n X = sym’ ietvic matrizr and A an m X n matriz of
full row rank. If Z is a basis for th”, auil space of A, then

\ H AT Trrr, ’
In(K) = In 10 ]° I(Z HZ)+ {m,m,0). 2 1.8
\

Proof. For a proof, see [Gou85).

Notice that the KKT mal.r: is nonsir ,a'» if and cnly if the reduced Hessian is
nonsingular. Using (2.1.8), Let ima 2.7, can also he stated as follows.

LEMMA 2.1.3. Let A be .n m x n mairiz of rank m, let Z denole a ba#:s for the
wull space of A, and ..z =Yzt + Zz,, where AYZY. = b and Y is a busic for the
mange space of AT. Then

(i) EQP has a strong local minimizer at ¥ if T is a stationary point ¢f EQF uzi
In(K) = (n,m,0);

(ii) EQP has an infinite number of weak solutions if there is a stationary point of
EQP and In(K) = (n - t,m,t), witht > 0;

(ii) EQP has nn solution if no stationary point of EQP exists.

A detailed discussion of the conditions for the existence and uniqueness of solutions
of the EQP problem can be found in [Gou85).

2.2 Inequality-Constrained Quadratic Programming

The general quadratic programming problem is to find a lccal minimizer of a quadratic
function subject to linear constraints. There are many mathematically equivalent
formulations of a quadratic program (although not all have the same computationa!
behavior). We first cousider the problem in the following pure inequality form:

IQF minimize  ¢(z) = 'z + 1zTHz
TzeR"

(2.2.1)
subject to Az > B,

where «he Hessian H is an n X n symmetric matrix, A 1s an m X n matrix, and ¢ and
B are vectors of dimension n and m respectively. An i.nportant special case of the
above problem occurs when H is positive definite.




2.2. Inequality-Constrained Quadratic Progro-..ming 19

We give the first-order and second-order necessary conditions for a solution of
IQP. In order to do so, it is important to distinguish between constraints that are
satisfied exactly at the solution, and those that are not binding.

DEFINITION 2.2.1. The point  is said to be feasible with respect to the inequality
constraint alz > B; if «JZ > Bi. (That is, the constraint is satisfied at 3.) The
constraint afz > f; is said to be active at T if a]% = B; and inactive if JE > Bi. I}
alz < B;, % is infeasible, and the constraint is said to be violated at %.

The active ~~nstrz’..ts play a special role because they restrict feasible perturba-
tions. If a constrai it + in~ctive at the point z, then it will remain inactive for any
perturbation .. a = wdciently small neighborhood. However, an active constraint may
be violated by certain perturbations.

LEMMA 2.2.1. (Necessary conditions.) Let A be the 1 X n matriz containing only
those rows of A for which the corresponding constraint is active at the point z*, let b
be the corresponding =izinents of 8, and let 7 be a basis for the null space of A. The
point ¥ is a minimizer of [P only if there exists a vector = such that

() A%* = H2" +e, orequivaiatly ZTHZ" +¢)=0;
(i) Az* > B; A" =b;
(iii) »¥ >0, i=1,...,t; and
(iv) ZTHZ is positive sexidefinite.

The conditions (i), (3i) and (iii) are referred to as the first-order necessary conel-
tions and (iv) is a second-order necessary condition. In contrast to the EQP case, the

optimality conditions for IQP restrict the sign of the Lagrange multipliers associated
with the aciive constraints at the solution.

LEMMA 2.2.2. Sufficient conditions for z* to be a solution of IQP are given by
a) AT = A 4 e, or equivglently ZT(H:':* +¢)=0;

b) As* > 3; Az* =b;

¢) 7F >0, i=1,...,t; and

d} ZTI1Z is positive definite.
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Under such circumstances, =¥ is an isolated minimizer.
?

An extra complication over the equality-constrzined case arises when the Lagrange
multiplier corresponding to an active constraint is zero. In this case, any set of
sufficient conditions must include certain restrictions to account for perturbations
that are binding for all the constraints with positive Lagrange multipliers but that
may be binding or non-bindiag for constraints with zero Lagrange multipliers.

Wher the suificient conditions hold, ¥ i~ not only optimal but is also locally
unique, i.e., @(z*) < @(z) for all feasible z in a neighborhood or z* (z* # z). The
gap between the necessary conditions and the sufficient conditions arises from the
possibility of one or more zero Lagrange multipliers and/or a positive definite and
singular reduced Hessian. Sets of conditions that are simultaneously necessary and
sufficient are surprisingly complicated and they can seldom be verified in practice.

When the necessary conditions are satisfied but the sufficient conditions are not,
¥ may or may not be a local solution of (2.2.1)—for example, a feasible direction
of decrease may exist. Verification of optimality in such instances requires further
information, and is in general an NP-hard problem (sec Murty and Kabadi [MK87]
and Pardalos and Schnitger [PS88]) that is equivalent tc the copositivity problem of
quadratic programming (see, e.g., Contesse [Con80] and Majthay [Maj71]).

2.3 Convex and Nonconvex Quadratic Programming

Quadratic programs can be grouped into two broad categories: convex and nonconvex
QP. The former category exhibits some interesting properties; for example, a local
minimizer of a convex QP is also a global minimizer. This section is intended to point
out briefly why computing the solution of a nonconvex quadratic program constitutes
a much more difficLIt task than that of solving a convex quadratic program.
Consider an iterative procedure for computing the solution of a quadratic program.
Let ZFH Z; be the reduced Hessian matrix at the point 2. When ZJH Z,. is positive
definite, the search direction py at = can be obtained by solving the Newton equations

ZIHZyps = ~Zlge (2.3.1)

and setting px = Zp;. It can be verified that py is a descent ditection for the yuadratic
function. Furthermore, the minimizer in the subspace defined by Z;. is unique.

A striclly convexr quadralic program is ore for which H is positive definite. In
this case, ZTHZ). is known to be positive definite at every iterate xy, and hence px
is always well defined. For conver QP’s, ZTH Z, might be only positive semidefinite.
However, every minimizer is a global minimizer.

In nonconvex quadratic programs, complications arise when the rcduced Hessian
ZTH Z, is indefinite. In this case, a point satisfying the first-order necessary conditions
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for optimality is not a local minimizer in the current null space. Indeed there may be
no point on a given set of constraints that satisfies the first-order necessary conditions.
Also the direction defined by (2.3.1) is not necessarily a descent direction for the
quadratic function. Hence, a mechanism for computing a feasible direction of descent
must be provided. In terms of efficiency, it is desirable for such a mechanism to
retain as much information about the present (indefinite) Hessian as possible. Hence,
standard approaches for modifying an indefinite matrix may not be suitable. Care
must be exercised in updating a factorization of an indefinite matrix, since there is
a danger of numerical instability (see Gill et al. [GMSW84c] where the Hessian is
allowed to have one negative eigenvalue).

Finally, with nonconvex quadratic programs there may exist so-called dead points
at which it is very difficult to verify optimality. At such points, all conventional
quadratic programming methods will find it difficult to proceed, since it can be shown
that the problem of distinguishing a dead point that is not a minimizer is an NP-hard
problem (see Forsgren, Gill and Murray [FGM89b) for a precise definition of a dead
point and a computational scheme within the context of inertia-controlling methods
for QP that will attempt to determine if a dead point is a local minimizer). We
emphasize that this difficulty is inherent in the problem, and is independent of the
solution method.

2.4 Formulating a QP Problem

The quadratic programming problem can be expressed in several mathematically
equivalent forms. For reference purposes, we introduce in this section several formu-
lations.

The General Form.

minimize 'z + %:cTH z

reR
subject to  Ajxr =b; (2.4.1)
Az 2 b
{<z<u,

where A; and A, are of dimension m; X n and my X . respectively. Constrainis
Az = b, and A;r > b, are called the general constraints. Thus, formulation (2.4.1)
includes a mixture of general equality and inequality constraints as well as simple
upper and lower bounds on the variables.
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The Standard Form.

minimize ¢z + %xTH z
TERD

subject to Az =b (24.2)
(<<,

where all the general constraints are equalities, and the only inequalities are upper
and lower bounds on the variables. For expository purposes we shall usually omit the
upper bounds and take £ = 0.

Any quadratic programming problem can be converted to standard form. It is
sometimes convenient to transform a given QP problem into this form. For instance,
for large-scale quadratic programs, it can be algorithmically advantageous to assume
that the constraints are posed as in (2.4.2) (see, for example, Gill et al. [GMSW87,
GMSWS88]). Indeed it will be seen later that rather than being convenient, it is
essential to the success of the barrier methods described here to convert the problem
to standard form.

A QP problem stated in the form (2.4.1) can be converted into the standard form
by introducing slack variables or by using duality. We shall illustrate the latter in
Section 2.5.

In particular, a general inequality constraint afx > B; caa be replaced by the
equality constraint a’z — s, = f, and the standard-form version of the problem
includes an additional slack variable subject to the bound s; > 0. Slack variables have
many special features; for instance, they do not appear in the objective function. By
adding m; slack variables s, problem (2.4.1) can be transformed into standard form
as follows:

zrexg’r.x'i?éigz% Tz + %xTH T

subject to Az = b
Az —s=b (24.3)
(<z<u
0<s<00.

2.5 Duality in Quadratic Programming

The optimality conditions for linear and quadratic programming problems involve
not only the variables z associated with each column of the constraint matrix but
also L~ range multipliers associated with each row. An interesting theory (duality
theo:  has been developed to explore the relationships between these two sets of
varieoles. Traditionally, the variables z of the “original” problem are called the primal
variables, and the original problem is denoted the primal. The Lagrange multipliers
are sometimes referred to as dual variables.
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The appearance of duality theory in linear programming goes back to the classical
minimax theorem of von Neumann and was first explicitly given by Gale, Kuhn and
Tucker (see [GKT51]). The concept of duality also applies to quadratic programs.
Duality in nonlinear programming started with the results on quadratic programming
given by Dennis [Den57,Den59).

We shall state some of the relationships between certain primal and dual QP
programs. In what follows we assume that H is positive definite. Duality results
can be extended to more general H (see Murray [Mur69]), but the conditions are
somewhat complicated and difficult to verify in practice.

Primal QP (standard form):

min  f,=cz+ %foI T

TER"
subject to Az =b (25.1)
z20.
Dual QP:
= Ty -~ 17,
yER L eRn fa=0by 3w Hw

subject to ATy —Hw <.

The dual (2.5.2) can itself be converted to standard form by adding n nonnegative
slack variables z, thereby giving the following standard-form dual:

T, 1. T
yERm reeRn fa=by—qwHu
(2.5.3)
subject to ATy~ Hw+z=¢, 22>0.

If the original problem is in pure inequality form we may also give a dual form:
Primal QP (inequality contraints):

min  f,=cz+3a"Hz

min (2.5.4)
subject to Az > 6.
Dual QP:
. — A%, 1, Tr
yermy ern Ja=Fy-qulv (2.5.5)

subject to Aly—Hw=¢, y>0.
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The standard and inequality forms are included in the following general form:

Primal QP:
min fr=cz+3aTHz + "y + 147Gy
subject to Az +Dy> b
Bzx+Ey=d
z>0.
Dual QP:

max  fy = bTu+ dTv — JwTHw - 147Gy

uv, Ly

subject to ATu + BTv < ¢+ Hw
D+ Ev=a+Gy
u2>0.

The key relationship between the primal and dual is that from the solution of one
problem we may recover the solution of the other. For example, in the case of the
primal in standard form let * denote the minimizer, 7* the Lagrange multipliers of
the equality constraints, and z* the Lagrange multipliers of the bound constraints. It
follows that the solution of the dual problem is given by y = 7*, w = ¥ and z = 2*.
Obviously if the dual problem were solved we could recover the solution of the primal
problem.

The relationship between the two solutions may be verified by observing that the
necessary conditions for a solution of the two problems reduce to the same system of
equations. Another interesting relationship between the primal and dual problems is
that for any primal feasible point and any dual feasible point we have

fp"f420~

To show why this result is true we prove it when the primal is in standard form. If z
is primal feasible then
Az = b, z2>0. (2.5.6)

If (w,y, 2) is dual feasible then
Aly—Hw+z=c (2.5.7)

Premultiplying (2.5.7) by zT and substituting b for Az we obtain

Tz = 27ATy ~ 2THw + 272
= bTy — z"Hw + 2™=.
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Since
(z — w)TH(z — w) = £"Hz — 22" Hw + v Huw,
we get
'z + 12THz = by — LwTHw + L(z — w)"H(z — w) + 2Tz
Hence,

fo(®) = fa(w,y,2) =27z + }(z — w)TH(z — w) 2 0. (2.5.8)

If a primal feasible point and a dual feasible point were known then an upper and
lower bound on the solution would also be known. The difference f, — fy is referred
to as the duality gap. It is easily seen from the above result that

fo@*) = fola" 9", ) = 0. (2.5.9)

2.6 Active-set Methods

We briefly describe one of the most popular classes of methods for quadratic program-
ming, namely active-set methods. Qur primary purpose is to illustrate the difficulties
that arise in applying such methods to large-scale problems, thus motivating the
barrier approach. It will also give us a basis for comparing the efficiency of barrier
methods.

If the active set at the solution were known a priori, the solution to the IQP
problem (2.2.1) could be determined by solving a single KKT system of equations.
Active-set methods are iterative methods that maintain an estimate of the set of
constraints active at the solution—called the working set—which is a linearly inde-
pendent set of constraints. In the active-set methods described in this section, it is
assumed that at a particular iterate z, all constraints in the working-set are active.

We shall illustrate the steps of a QP method for a primal-feasible active-set method.
Each iteration has the following general structure: given the current iterate x, the
next iterate is defined by

I=2z+ ap,

where the vector p is the search direction, and the nonncgative scalar a is the
steplength. An initial feasibility phase is performed to find a point that satisfics the
constraints of (2.2.1), and all iterates are thereafter constructed to retain feasibility.
Thus, if A,y denotes the working-set matrix and b, the associated right-hand side
vector, we have A,z = by .

The search direction p is defined as the solution of the following equality-constrained

QP:

[ T .l_ T
mx}rjlelargmc gp+ap Hp

subject to  Ayp =0,
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where g denotes g(z), the gradient of ¢ at the current iterate. The constraints
Awp = 0 ensure that constraints in the working set remain unaltered by any move
along p.

The following (standard) terminology is useful in characterizing the relationship
between p and ¢:

) { descent direction if ¢’p < 0;
pisa

direction of negative curvature if p’Hp < 0.
Because ¢ is quadratic,
@z + ap) = ¢(z) + ag’p + 1a’p Hp. (2.6.1)

This relation shows that every direction p for which ¢ decreases must be either a
descent direction, or a direction of negative curvature with ¢™p = 0. If ¢"p < 0 and
pTHp > 0, we see from (2.6.1) that (z + ap) < ¢(z) for all 0 < a < 7, where
T = —29"p/pTHp. If ¢"p < 0 and p"Hp < 0, or if ¢'p = 0 and p"Hp < 0, (2.6.1)
shows that ¢ is monotonically decreasing along p, i.e., ¢(z +ap) < ¢3(z) for all a > 0.

If the reduced Hessian with respect to the working set is positive definite, a min-
imizer on the subspace defined by these constraints can be found. The step p to the
minimizer on the current working set satisfies the equation

(H A?,.) ( P )=_ (c-&-Hx)’ (262)
Ay 0 —Tw 0

where 7y contains the Lagrange multipliers corresponding to the constraints in the
working set. The minimizer on the subspace is then found as = + p. However,
since there are other constraints present in the problem, the point = 4+ p may not be
feasible. In this situation, the maximum feasible step a = @, along p is computed.
If amer < 1, the constraint that becomes active at the new iterate is added to the
working set. If the unit step along p is accepted, a minimizer on the subspace has
been found. The Lagrange multiplier vector is then examined to see if 7,y > 0. If
not, a constraint corresponding to a negative multiplier is deleted from the working
set.

An active-set method of this kind usually deletes and adds only one constraint at
a time. Such a method allows use of computationally efficient updating schemes for
the matrix factorizations. Strategics that add and delete more than one constraint
at a time are possible.

One class of active-set methods is the inertia-controlling methods for quadratic pro-
gramming (ICQP methods); for example see [Fle71,GMSW84¢c,GMSWSS,Gou86al.
Such methods control the working set so that the associated reduced Hessian has
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at most one nonpositive eigenvalue. (For a full description of ICQP methods see
[GMSWS8S]). Usually only one constraint is added or deleted at a tin:e. The working
set at the initial point must be chosen so that the reduced Hessian is positive definite.
By appending certain artificial or temporary constraints to the problem this condi-
tion can be satisfied at an arbitrary point. A necessary requirement for an artificial
constraint is linear independence relative {0 constraints already in the working set.
Artificial constraints do not restrict the leasible region, since they may be climinated
from the problem whenever the algorithm permits.

For the solution of moderate-sized quadratic programming problems, ICQP meth-
ods have proved to be very efficient. This is due in part to the use of sophisticated
techniques for updating factorizations of dense matrices, and to the fact that the
factorizations needed to compute a direction of descent may also be used to compute
a direction of negative curvature when such a direction exists.

Unfortunately, the cfficient application of active-set methods to large-scale prob-
lems is non-trivial. Only two large-scale ICQP methods have been proposed and both
are based on a direct factorization of the KKT system. Gould [GouS6a} has proposed
a method based on the use of an LU factorization together with procedures to update
the LU factors. Gill et al. [GMS\VST7] have proposed a method based on an LBLT
factorization, which is for symmelric indefinite matrices {(sce Chapter 4 for a defini-
tion of this factorization). The updates are not performed on the factorization itself.
The required KKT solution may be recovered by solving a system that augments
the original KKT system. The solution of the augmented system is found by using
the Schur complement of H in the original KKT matrix. (The Schur complement is
defined in Equation (4.11.1).) A benefit of this approach is that a “black-box™ LBLT
package may be used, which would not be possible if it were necessary to update the
LBLT factorization.

A key difference in solving large-scale problems is that updating resuits in an
mncreasingly large data file (whereas in the dense case the elements of the factors are
updated explicitly}. Eventually the data file exceeds available memory or becomes
large enough that it is worthwhile to discard it and restart with 2 new refactorization
of the current KKT matrix.

Another difficulty in the large-scale case is the provision of artificial constraints. In
the dense case a sophisticated procedure is known for generating artificial constraints
that are in some sense ideal {GMS\V84a, Section 5]. For example, they do not ex-
acerbate the condition of the KKT system. Unfortunately, this procedure requires
computing an orthogonal basis for the null space of A, which is not practical in the
large-scale case. The only procedure that can be guaranteed to generate a suitable
starting point in the large-scale case may gencrate a near vertex even when the re-
duced Hessian at the initial point has only a few negative eigenvalues. We mia
require many iterations simply to eliminate the artificial constraints. Such dJif

then

heultics
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are not intractable in that special iterations may be performed to try and eliminate
many constraints at a single iteration. However, the special iterations are themselves
problematical.

A further difficulty with an active-set strategy is that the number of iterations
usually grows with the size of the problem. However, it is known that the number of
iteration. can grow exponentially with the number of variables (see {Fat78]). Thus,
in the application of active-set methods to large-scale quadratic problems the number
of iterations is likely to be large and potentially may be astronomical.

It will be seen that none of the above difficulties arises in the barrier algorithms.
However, such methods do have some unique complications of their own. It is then a
question of which difficulties are the more serious when solving a specific problem.




Chapter 3

Barrier Methods

In the previous chapter we considered some of the difficulties in applying conventional
methods to large-scale problems. Specifically, we emphasized the combinatorial as-
pect introduced by active-set methods. In this chapter we present the fundamental
properties of barrier functions and give a model barrier algorithm for the solution
of quadratic programs. The observed performance of barrier methods is that the
required number of iterations to achieve some specified approximation to the solu-
tion is largely independent of the number of constraints and the number of variables.
Although the work per iteration may be considerably greater than in active-set meth-
ods, the hope is that the number of iterations is so small that the total effort required
by the barrier approach will be less.

3.1 Optimality Conditions

Consider a problem in which all the constraints are assumed to be inequalities:
NIP  minimize F(z)
z€R"

(3.1.1)
subject to  ¢(z) 2 0,

where c(z) is an m-vector of nonlinear functions with i-th component ¢;(z), i =
1,...,m, and F and {c¢;} are twice-continuously differentiable. Let g(z) denote the
gradient vector of F'(z), ai(z) the gradient vector of ¢;(z), and A(z) the m x n
Jacobian matrix of ¢(z). A solution of NIP will be denoted by z*.

Let &(z) denote the vector of constraints that are active at x, and A(z) the Ja-
cobian of ¢. We emphasize that A(z) includes only the gradients of the active con-
straints, whereas A(z) is the Jacobian of all the constraints.

The derivation of optimality conditions for NIP requires that the constraint func-
tions satisfy a constraint qualification at z*. We will assume that A(z*) has full
row rank, which implies that the constraint qualification holds at z*. Necessary and
sufficient conditions for a feasible point * to be a local minimizer of NIP are given
in the following theorems (see, e.g., Gill et al. [GMWS1]):

THEOREM 3.1.1. (First-order necessary optimality conditions.) If A(z*) has full
row rank, a necesszry condition for a feasible point 2% lo be @ minimizer of NIP is

29
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that there exist a vector X* such that

g(2*) = AN, with X >0. (3.1.2)

THEOREM 3.1.2. (Sufficient optimality conditions.) Assuming A(z*) has full row
rank and Z(z*) is a basis for the null space of A(z*), a feasible point z* is a strong
local minimizer of NIP if there exists a vector X* such that

(i) g(z*) = AT(*)N¥;
(i) X > 0;

(i) Z(z*)TV2L(2*,X*)Z(a*) is positive definite.

Condition (ii) of Theorem 3.1.2—that the Lagrange multipliers corresponding to
active constraints are strictly positive—is usually termed strict complementarity. If
any multiplier corresponding to an active constraint is zero, the optimality conditions
become more complicated. (For details, see, e.g., Fiacco and McCormick [FM68].)

3.2 Barrier Functions

Barrier-function methods constitute a class of sequential minimization methods for
solving the inequality constrained problem NIP (3.1.1), where the feasible region has
a nonempty interior. They are characterized by requiring strict satisfaction of all
constraints at the initial estimate of the solution and subsequent iterates. This can
he advantageous if the objective function is not defined outside the feasible region,
or if only a solution of limited accuracy is required.

A barrier-function method creates a sequence of modified functions having mini-
nizers that are strictly feasible to the constraints of NIP. This property is achicved by
introducing a weighted barrier term, which is a continuous function with a positive
singularity at the constraint boundaries. As the weight assigned to the barrier term
is decreased towards zero, the minimizers of the barrier function tend to minimizers
of the original problem. Since barrier methods generate strictly feasible iterates, they
belong to the class of so-called interior-point methods.

Many barrier functions have been considered in the context of nonlinear optimiza-
tion [FM68]. In this dissertation we consider only the logarithmic barrier function
originally suggested by Frisch, 1955 [Fri55).! Application of the logarithmic barrier

1We note that Frisch did not minimize the barrier function directly, but instead used its gradient
in combination with the objective function to enforce feasibility.
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A I A " A b

Figure 3.1: Contours of B(z, ) for p = 0.1

transformation to NIP yields the following subproblem:

BNP miileig‘ize B(z,p) = F(z) = p ) In(ci(z)) (3.2.1)

i=1

where the positive scalar p is known as the barrier parameter.

Some fundamental issues have to be addressed when using a barrier method. For
example, how well does the unconstrained problem approximate the constrained one?

Typical graphs of the contours of B(z,u) for two values of p are illustrated in
Figures 3.1 and 3.2. They exhibit some of the features of barrier functions. As
expected, the effects of the logarithmic terms extend further into the interior when
p is large. When g is small their effect is negligible away from a small neighborhood
of the constraint boundaries. By inspection it is clear that for any positive value of
i, the minimum of B(z,u) can never lie on a constraint of the original problem. It
can also be observed that the iterates z*(u) approach 2* as u — 0. This behavior is
expressed formally in Theorem 3.3.1.

Notice also that as p decreases the contours of the corresponding barrier function
become more elongated, almost parallel. Hence, we can foresee the difficulty a method
might encounter in computing accurately the component of the search direction that
is tangential to the constraints active at z*.
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e " e, 'y b i e i e

Figure 3.2: Contours of B(z, 1) for p = 0.01

3.3 Convergence Results

We shall consider the behavior of the barrier function along a given trajectory. The
first theorem shows that all feasible minimizers of B(z, 1) are related to those of NIP
as p— 0.

THEOREM 3.3.1. Let x* be the set of minimizers of NIP (3.1.1), and x*(u) the
set of feasible minimizers for the barrier subproblem BNP (3.2.1). Let z*(p) be any
point in x*(u) and let 2}, be the closest point to z*(u) in x*. If conditions (i)-(iii)
of Theorem 3.1.2 hold then

lim[12* (1) — 23 = 0.
Proof. See Fiacco and McCormick [FM68].

Convergence Analysis.
For completeness we present a result equivalent to the one stated in Theorem
3.3.1, but for the special case of strictly convex quadratic programs.

THEOREM 3.3.2. Consider the following quadratic program:

minimize  f,(z) = ¢z + 1z7Hz
zER" #() 2 (3.3.1)
subject to Az =, z2>0,
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where A is an m X n matriz of full row rank. We shall assume that
(i) strict complementarity holds at the solution;
(i) a strictly feasible point exists;
(iil) the feasible region is compact;
(iv) the matriz H is positive definite.
Then,
limz (p) = 2%,
u=—0

where 2* is the solution of the QP and z*(n) is the minimizer of

i3
- . - T 1 T
minimize B(z =c'z+2z'Hx - ‘E Inz;
g 1 (z, 1) 2 ,j—x i

subject to Az =b.

Proof. Let D = diag(x;) be defined for any 2 > 0, and let Z be a basis for
the null space of A. If H is positive definite, the reduced Hessian for the barrier
subproblem, namely ZT(H + pD~?)Z, must also be positive definite for any p > 0
and z > 0. Hence the minimizer z*(u) and the asscciated Lagrange multipliers =¥ (1)
exist and are unique. From the first-order necessary conditions (3.1.2) for the barrier
subproblem (3.3.1), we have that

V.L = V.B(z*(u),n) — AT () = 0,

le.,

e+ Ha*(p) — pD™'e — ATx"(n) = 0 (3.3.2)

where L = B(z,u) — #(Az ~ b). Premultiplying this equation by 2*(y) gives
Tz () + " () TH2* (p) — pe™D7'2* () — () 'AT7" () = 0.
Since Az*(n) = b,
T (i) + 2 () THZ* (1) = b7 (1) = np. (3.3.3)
Defining 2*(0) = lim,_o 2" (1), we sce that

cT2*(0) + 2*(0)TH2* (0) - b7 (0) = 0. (3.3.4)
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The dual of the quadratic program considered is

maximize  fy(w,7) = bTr — lwTHw
ik (3.3.5)
subject to ATr - Hw<ec.
Since pD7'e > 0, it follows from (3.3.2) that (z*(u),#*(y)) is dual feasible. In
particular, (z*(0),7*(0)) is dual feasible. Also, the duality gap is

fo(x) = falw,7) = "z + 3aTHz - b1 + Lw Hw,
so that
fo(25(0)) = fa(="(0),7%(0)) = c=*(0) + 2" (0)"H="(0) - b™x*(0) = 0,

using (3.3.4). It follows from (2.5.9) that z* = £*(0).
|

Existence of an Isolated Trajectory.

Under suitable assumptions, the set of feasible minimizers of the barrier function
can be regarded as a function of an independent variable p, tracing out a smooth
trajectory of points z*(p) converging to z*.

The assumptions needed to define a unique trajectory of local minima are stronger
than those needed to prove the existence of points ccaverging to a local minimizer of
NIP. We are interested in an isolated trajectory, i.e., a trajectory that is locally unique.
An isolated trajectory is a continuous function z*(u), where every point z*(jz) on the
trajectory is a feasible isolated local minimum of B(z, ). The following result is
proved in Fiacco and McCormick [FM68].

THEOREM 3.3.3. If A(z*) has full row rank and the sufficient conditions of The-
or=m 3.1.2 hold at z*, then for sufficiently small p there exists a continuously differ-
entiable trajectory =¥ (i) such that

lim z* () = %,
u—0

where =*(p) is a local minimizer of B(z, u).

Figure 3.3 depicts the trajectory of minimizers of the barrier function applied to
the convex QP problem given in Chapter 1.

The trajectory z*(u) has several interesting properties. Expanding about g =0
gives the following expression:

z(p) = 2" + py + O(n?),
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Figure 3.3: Trajectory of z*(u), with po > sy > 2

.‘L‘(p) -z = dz(#) . (336)
H dp lu=o0

y = lim

By definition of an unconstrained minimizer, the following relation holds at z*(u):

m pla
VB=g—pz-c:a.-=g-AT : =0. (33.7)
= p/m

Differentiating (3.3.7) and using (3.3.6), we obtain the following expression:

X
Ay=| : |. (3.3.8)
1/X%

The relationship (3.3.8) implies that the minimizers of successive barrier functions do
not approach z* tangentially to any constraint for which 0 < A¥ < co.
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Existence of Derivatives of z(u) for u > 0.

In general, the trajectory has an order of differentiability with respect to gz (when
¢ > 0) that is one less than that of the original problem functions and is analytic
when the functions are analytic. It has also been shown [FM68] that under certain
assumptions the limits of the derivatives at u = 0 exist and are finite. This has some
computational implications.

3.4 Properties of Barrier Functions

Let {jx} be a strictly decreasing positive sequence, with limg_e ptx = 0. The min-
imizers of successive barrier functions along a given trajectory exhibit the following
properties:

(1) {B.} is strictly decreasing for sufficiently small gx and bounded ¢;
(i1) {F.} is nonincreasing;
(i) — X7, In{c:(z*(114)}} is nondecreasing,

wheie B, denotes B(z*(ur),pr), F, denoies F(z*(ux)) and cx denotes c(x*(u)).
Property (iii) does not imply that all constraint values decrease at successive z*(j).
A reduction in the barrier parameter allows the constraints to approach the boundary
of the feasible region, but does not enforce a decrease in the components of ¢.

Since ¢ > 0 and ¢, > 0 for all 1, identity (3.3.7) shows that the gradient of F
at z*(p) is a nonnegative linear combination of all the constraint gradients, where
the coefficient of a; is u/c;. As p approaches zero, the quantity su/e(z*(n)) will
converge to zero if ¢; is not active at z*, since ¢; is strictly bounded away from zero
in a neighborhood of z*. Assume that 7 constraints are active at z*. Then for
sufficiently small g, the relation holding at z*{g) can be written as

nlé
g=AT|  |+0(w), (3.4.1)
i/Cq
where é; denotes the i-th active constraint, and A denotes the m x n matrix of active

constraint gradients.
It follows from (3.4.1) that the quantity

I

Ai(n) E,_-(-:c_i‘(—y)-;’ (3.4.2)
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defined only for the active constraints, satisfies a relat:onship with ¢ and A analogous
to the multiplier relation that must hold at z*. The vzctor A(g) satisfies

Mp) = A"+ O(p),

where X* is the vector of Lagrange multipliers at z*.

3.5 Barrier Methods

At first sight, it might seem that the solution to NIP could be found simply by setting
i to a very small value and using a standard unconstrained method. Unfortunately,
there are difficulties associated with computing an unconstrained minimum of (3.2.1)
for a small value of is. Also, for a given problem it may not be known a priori what the
relatively small value of y should be. Hence a sequence of subproblems with decreasing
values of the barrier parameter must be solved. The choice of values for p constitutes
an interesting subject of study. The efficiency of the approach critically depends upon
a sensible strategy for choosing u. We are also required to solve an unconstrained
problem whose objective function contains a barrier term. Such problems are difficult
to solve for several well known reasons.

Most practical barrier methods proceed as a classical continuation algorithm,
where the solution from the 1:zevious minimization problem is used as an initial es-
timate of the solution for the next problem. If an accurate solution of a subproblem
is found it has been shown (e.g., see [FM68]) that advantage 1-ay be taken of the
asymptotic behavior of h = z*(ui) — 2* to estimate 2" (j1441), the solution for the
next barrier subproblem.

3.6 A Moedel Algorithm
In this section we shall outline a model algorithm for solving
minimize F(z)
ZER™ ,
subject to Az =1b 13.6.1)
(z) 20,

using a barrier function. Assume the following quantities are known: a strictly feasibie
initial point z¢ (Aze = b, ¢(z0) > 0), a sequence {yx} such that limy_ ., s = 0 and
I > prgr > 0, and a sequence {6}, where M > & > 0.




38 Chapter 8. Barrier Methods

Algorithm BARALG (Model Barrier Algorithm)
BA1. [Initialize] Set £, = zo, k=0.

BA2. [Solve the barrier subproblem] Using z: as the first point, generate a set of
strictly feasible points {Z,(ux)}, s =0,1,..., sk, that estimate a solution z* ()

of the subproblem
migeirgnﬁize B(z, i) = F(z) — py i‘;ln ci(z) (362)
subject to Az = b,
where Z,,(ui) is the only point of the set that satisfies the conditions
WZTVB(Z,, (), pa)]| < Expis, (3.6.3)
Ak 2 =i p, (3.6.4)

where ) is the smallest eigenvalue of ZTV2B(z,, (ux), ui)Z, and Z is a matrix
whose columns span the null space of A.

BA3. [Update the estimate of the solution] Set z14; = Z,, (j11).
BA4. {lUpdate the iteration count] Set k& = k + 1 and return to step BA2.

Since Emg—oo pk = 0, it is self-evident that limy.,, ||zx — z}|| = 0, where z§ is
the nearest peint to z; in x* (the set of minimizers of 3.6.1). The difficulty lies in
being able to generate the set of points Z;(u:) so that a point satisfying the relevant
conditions will eventually be found. This issue is addressed in the next chapter.




Chapter 4

Solution of Barrier Subproblems

4.1 Introduction

In the previous chapter we described a barrier algorithm. The key step was to de-
termine a point that satisfies conditions (3.6.3) and (3.6.4) for each value of . A
minimizer of the barrier subproblem is one such point. Moreover, all points in a finite
neighborhood of a minimizer satisfy these conditions. Therefore a means of finding
the required point is to use an algorithm that finds a minimizer of the barrier subprob-
lem. Since all points in a finite neighborhood satisfy the conditions, any algorithm
that generates a subsequence converging to a minimizer will find a suitable point in
a finite number of iterations.

A difficulty with general nonlinear minimization is that no known practical al-
gorithms are guaranteed to find minimizers. The best that can be hoped for is an
algorithm to find a point that satisfies the necessary conditions for optimality. We
can assume that any such point is a minimizer, or accept the fact that the barrier
algorithm may converge to a point that satisfies only the necessary conditions. This
is no less satisfactory than for current active-set methods. Note that for the orig-
inal QP, any point satisfying the necessary conditions is a minimizer provided all
active constraints have nonzero multipliers, and the only difficulty is distinguishing
dead-points from minimizers (see Section 2.3).

In this chapter we discuss algorithms for finding minimizers of the barrier subprob-
lem (3.6.2) arising in step BA2 of the model barrier algorithm BARALG. It wili be
seen that for the large-scale case, such algorithms are both rare and complex. We also
propose an alternative to a general-purpose algorithm that takes specific advantage
of the form of the barrier subproblem.

Whatever approach is used, the subproblem has some special difficulties not
present in the usual equality-constrained optimization problem. For example, with a
normal problem it is triviai to provide an initial point that satisfies the linear equal-
ity constraints, but here the point must also be strictly interior with respect to the
bounds. If a trust-region approach is used [DS83,Fle87], it would imply that the
usual trust-region subproblem has hidden constraints, which may therefore not be
satisfied at the solution. Consequently, it may be necessary re-solve the trust-region
subproblem. We have restricted our attention to linesearch methods.

39
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4,2 Optimality Conditions

Barrier subproblems in algorithm BARALG have the following form:

LEP minimize F(z)
TER" (4.2.1)
subject to Az =0,

where F(z) is a twice continuously differentiable function and A is an m X n matrix
of full row rank. Let g(z) and Hy(z) denote VF(z) and V?F(z) respectively.

We begin by stating the optimality conditions for LEP. The necessary conditions
for ¥ to be a solution of LEP are given in the following theorem.

THEOREM 4.2.1. (Necessary conditions for a solution of LEP). If A has full row
rank and 7 is a basis for the null space of A, necessary conditions for a feasible point
=¥ to be a minimizer of LEP are

(i) there ezists a vector x* such that g(z*) = ATz,
or equivalently, ZT¢(z*) = 0; and

(i) ZTH(z*)Z is positive semidefinite.

The vector ZTg(z) is termed the reduced gradient of F at z. Any point Z such
that Z7g(Z) = 0 is termed a constrained stationary point of F (with respect to the
constraints Az = b). The matrix Z7H,(z)Z is called the reduced Hessian.

Sufficient conditions for optimality are analogous to those for NIP (see Theo-
rem 3.1.2), except that no sign restriction on x* is imposed and the Hessian of the
Lagrangian becomes the Hessian of F(z) itself.

THEOREM 4.2.2. (Sufficient conditions for an isolated solution of LEP). If A has
Jull row rank and Z is a basis for the null space of A, a feasible point =* is an isolated
solution of LEP if

(i) there ezists a vector x* such that g(z*) = ATa*,
or equivalently, ZTg(z*) = 0; and

(i) ZTH(2*)Z is positive definite.

If * satisfies the necessary conditions of Theorem 4.2.1, the problem of determin-
ing whether or not it is an isolated minimizer is an NP-hard problem.
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4.3 Methods for Solving LEP

Almost all current methods for solving LEP are feasible descent methods. Given
an initial feasible point, a sequence {z;} is generated that retains feasibility and
for which { F(z)} is strictly monotonically decreasing. Normally all function values
F(z;) must be computed. For a logarithmic barrier function it means evaluating
many logs. While this is not prohibitively expensive it is not wholly desirable. We
shall discuss means of avoiding such computations.

We shall be interested in linesecarch methods, in which a step s is chosen to achieve
a “sufficient” decrease in some merit function. Initially we assume that the current
point z satisfies Az = b, and we use F(z) itself as a merit function. The next iterate
z + s must satisfy A(z + s) = b, and F(z + s) must be sufficiently less than F{z).
The exact meaning of “sufficiently less” will be made clear later.

Ordinarily, obtaining a feasible point to a set of linear equality constraints is a
trivial problem. However, in our case we require an initial point that satisfies Ax = b
and = > 0. We shall therefore consider an approach that does not require the initial
point to be feasible with respect to the linear equality constraints.

We shall restrict our interest to Newton’s method and its many variants.

4.4 Transformation to an Unconstrained Problem

\We may solve LEP by first transforming it to an unconstrained problem. Suppose a
point Io is known such that Az, = b. A solution of LEP is given by zo + Zy*, where
y* is a minimizer of the functiou F(y) = F(z¢ + Zy}. If Newton’s method is applied
io the problem

min F(y),

the search direction in the y-space. say p;, is given as the solution of the following
equations:
Z2TH.2Zp, = ~274. (4.4.1)

The equivalent search direction in the r-space is given by p = Zp.. Clearly this
approach is practical only if it is computationally convenient to form the products
ZTH:Z aud 27g for some appropriate matrix Z.

Many methods have been proposed to solve unconstrained minimization prob-
lems {see, e.g., Fiacco and McCormick [FM68], Gill and Murray [GM74], McCormick
IMcCT77], Fletcher and Frecman {FF77}, Mukai and Polak [MP78!, Kaniel and Dax
[KD79], Moré and Sorensen [MS79], Goldfarb [Gol80] and Forsgren. Gili and Murray
:FGMS92a]) and some can be extended to the large-scale case. The methods are based
mainly on computing a direction of sufficient descent and a direction of sufficient
negative curvature whenever such directions exist. The methods vary on how to com-
pute such directions. Typically a descent direction is determined by first identifying a
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matrix E such that ZTH.Z + E is positive definite. The modified matrix is then used
in place of ZTHzZ in (4.4.1). Computing a direction of negative curvature is often
more difficult but a number of methods are known [McC77,MS$79,Gol80,FGMS8S

In some applications such as siructural analysis, A is such that a sparse null-sp...e
matrix Z can be found. If H, is diagonal and positive definite (as in the barrier
subproblems for the LP case), it is conceivable that ZTH.Z might also be sparse,
and that current sparse Cholesky factorization [GL81,CGLN84] methods could be
applied.

For a gene.al Hy, however, ZTH.Z is not likely to be sparse, and a direct fac-
torization will not be practical unless n — m (the column dimension of Z) is quite
small (say < 50). The difficulty is not the need to store a dense matrix but rather
the considerable effort require to form the matrix product. Some economy is possible
in the case of the barrier function when all the inequalities are simple bounds. Tne
Hessian is then of the form H; = H 4+ D, where D is a diagonal matrix. Only D
is a function of z, and we may form ZTH.Z by forming ZTHZ only once. If Z is
sufficiently sparse {as in the structural analysis example), each subsequent matrix
ZTDZ may be sparse and cheap to form.

If Hr and Z have the property that products of the form Hru, Zv and Z%w can
be computed efficiently, a conjugate-gradient method [HS52,GL89] could be applied.
It ZTH,Z is positive-definite for all relevant values of Hr(z), the theory of inexact
Newton methods [DES82] shows that p, need not be comnuted accurately (but the
accuracy should increase as z — z*).

In general, conjugate-gradient methods are likely to require too many iterations
unless the system involved has a low condition number or a favorable clustering of
eigenvalues. 3ometimes a preconditioner M = CCT might be known that induces
such properties in the transformed system C~*(ZTH,Z)C~T. (See [GL89] for a dis-
cussion of preconditioners.) However, there is no general procedure for finding a good
preconditioner in this context.

4.5 The KKT System

It has been shown that while a null-space approach may be possible for some problems
it is not viable for genera' problems. Rather than using (4.4.1), a mathematically
equivalen* way to obtain p is to solve the KT system

K ("f) = (g) (4.5.1)

Hy AT
K= .
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Recently Forsgren and Murray [FM90] have proposed a method based on a direct
factorization of K. The approach we have taken in our implementation is similar
and involves the same matrix K (see Section 4.7). When A and H are sparse, it is
reasonable to suppose that a sparse factorization of K exists.

When Z7H.Z is not available, the many methods to obtain both a descent direc-
tion and a direction of negative curvature are no longer applicable. When Z7HZ is
not pesitive definitr  suitable descent direction can be computed by replacing this
matrix by any posi’  definite matrix. If the inertia of K is known, we can determine
when ZTH.Z is n. _ositive definile by applying the result of Lemma 2.1.2. Unfor-
tunately if I does not have the correct inertia, to obtain a suitable direction it is not
sufficient to replace K with just any matrix with suitable inertia. More significantly,
it was not clear until the work of Forsgren and Murray how to compute a direction
of negative curvature efficiently knowing only a factorization of K.

4.6 The LBLT Factorization

Since K is symmetric but indefinite, the preferred method of determining a solution
to (4.5.1) is via the factorization PTK P = LBLY, where P is a permutation matrix,
L is unit lower triangular, and B is block diagonal with blocks of dimension 1 or 2;
see Bunch and Parlett [BP71], Bunch and Kaufman [BK77].

The LBL” factorization in the large-scale case is performed in two stages: an
analyze phase and a numerical phase. The analyze phase is a symbolic factorization
that determines a pivoting strategy (a row and column ordering) to minimize the
fill-in in the factor L. Since the sparsity pattern of the KKT systems is constant, the
analyze phase is needed only once. A strategy commonly used is the minimum-degree
ordering, which seeks to reduce fill-in by choosing a diagonal pivot corresponding to
the r_-v that currently has the least number of nonzero elements. In the numerical
plits .he pivot order may be changed to ensure numerical stability. A consequence
of . .. second level of ordering is that ||L|| is bounded. Forsgren and Murray [FM90]
have suggested a third level of ordering, in which the objective is to ensure that
the inertia of the partially formed factorization satisfies certain rules. The pivoting
strategy they propose is shown to be both necessary and sufficient for computing a
direction of sufficient descent and a direction of sufficient negative curvature (when
such a direction exists) using the LBLT factorization.

Having obtained a direction of sufficient descent and a direction of sufficient neg-
ative curvature, Forsgren and Murray suggest that the two directions be used in a
curvilinear linesearch, or combined in a particular fashion for a regular linesearch. In
our case we have a strong preference for a regular linesearch, since it is imperative
that the steplength be chosen to ensure that the new iterate is feasible with respect to
the constraints of the original problem. The existence of such a point is guaranteed,
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since F(z) and its derivatives are infinite at the boundary of the original feasible re-
gion. No matter which of the standard steplength criteria are used, a strictly feasible
point satisfying them exists.

Although the method of Forsgren and Murray could be applied to the subproblem,
it would be useful if we could avoid introducing the third level of ordering. Moreover,
it would be beneficial if some merit function other than the barrier function could be
used. The method of Forsgren and Murray also requires an initial feasible point (for
the original constraints) and in general such a point will not be known. In the next
sections we describe an approach that attempts to circumvent these difficulties.

4.7 Newton’s Method Applied to the Optimality Conditions

The first-order optimality conditions for LEP can be expressed by the nonlinear equa-
tions

z) — ATr = 0,
g(A) . (4.7.1)
T — =0.

In order to simplify the problem of finding an initial point satisfying Az = b, we have
chosen to treat these equations directly. Newton’s method applied to these nonlinear
equations leads to a KKT system similar to (4.5.1).

Let the optimality equations (4.7.1) be written as

_ [9(z)~ AT _
flz,m) = ( Ao —b ) = 0. (4.7.2)

Newton’s method applied to (4.7.2) corresponds to the iteration

J(zx, k) (z) = —f(xr, mk),

(=)= (%) +=(2).

where J(zx,mx) is the Jacobian of f(z,7) at (zx,7) and 0 < @ < 1. The linear
system in (4.7.3) is analogous to the KKT system for optimization with nonlinear
objective functions, and is of the form

(#4) (+) - (+) -
A 0 q r)’ o

(4.7.3)
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where
91 = g(zx) - ATry
is the gradient of the Lagrangian for LEP, and

r= Az —b

is the constraint residual. If the Jacobian at z* is nonsingular, Newton’s method
converges quadratically to a stationary point when (zo, mo) is sufficiently close to the
solution.

In the following we shall use the notation (p,q) to denote the column vector
T  T\T

" q")"

LEMMA 4.7.1. When the vector (p,q) is obtained via (4.7.3) and a sufficiently
small a is chosen for the steplength, every nonzero component of the vector (g,,7)
decreases.

Proof. The proof of this fundamental property of Newton’s method follows from
the Taylor series expansion of f(z, ).

Define the following notation: f = f(zk, k), f = f(@ks1,Thp1), 7 = Az — b,
7= Azpyy — b, g, = VF(z) — ATy, §o = VF(2k4a) ~ ATreyr, and J = J(zk, Tk).
Then

F=f+al (Z ) +(a), (4.7.5)
where the ¢{(a) term is O(a?). From equations (4.7.3) and (4.7.5) we have
f=(1=a)f+a)

For (4.7.1) this implies
§. = (1 - a)g. + {(a),

(4.7.6)
F o=(1-a)r

For a sufficiently small «, t(a) is negligible and the result follows.
|

The lemma implies that every nonzero component of r decreases for any value
of @ € (0,1]. Zero components of r will remain zero, but those of g, may become
nonzero, according to (). We note that when Newton’s method is applied to the
specific barrier functions considered in this thesis, an explicit expression for ¢(a) can
be determined (see Section 4.9).

Although Lemma 4.7.1 seems a satisfying result, a very small step may be needed
if we required all components of f to decrease. A more useful result is given in the
following lemma.
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LEMMA 4.7.2. When the vector (p,q) is obtained via (4.7.8) and a sufficiently
small a is chosen for the steplength, ||(g.,7)||2 decreases.

Proof. The required result is a specific case of a standard result for Newton’s method
applied to f(z) = 0; namely, that the Newton direction generated from Jp=—fisa
descent direction for the function M(z) = 3| fll3:

(VM)p=(JTf)p=fTIp=~fTf <0.

For the rest of this chapter, ||.|| will denote the Euclidean norm. It follows that a
steplength o can be chosen to ensure a decrease in [|(g,,7)||*>. In other words,

Ma(z, ) = |lg. I + [I7||?

could serve as a merit function for determining . The choice of a will depend on the
linesearch criteria. Almost any criteria will do. For example, for the Goldstein-Armijo
conditions [Arm66,Gol67] it can be shown that the sequence {zx} will converge to
a stationary point provided the Jacobian matrix is nonsingular at all the iterates.
While this property cannot be shown to be true in general, we shall show later that
for barrier functions with a judicious choice of {yx} and {6}, we can arrange for K
to be almost always nonsingular.

A key property of M, is that (like F) both the function and its derivatives are infi-
nite on the boundary of the original feasible region. Hence we may choose a steplength
satisfying standard criteria that ensures that the new iterate remains strictly feasible
with respect to the original constraints.

4.8 An Alternative Merit Function

For our specific nonlinear equations (4.7.1), we shall consider an alternative merit
function,! namely
M(z,7) = llg.] + l7ll- (4.8.1)

LEMMA 4.8.1. Let M(z,7),p and ¢ be defined by (4.8.1) and (4.7.4) respectively.
Then VM (z,7) projected along (p,q) satisfies

(" ¢")VM(z,1) = —|lg.]| — |Ir]l-

INote that a decrease in the merit function does not necessarily correspond to a decrease in the
objective function F(z). However, if the reduced Hessian of F(z) is positive definite and r = 0, the
search direction is also a direction of descent for the objective function.




4.8. An Alternative Merit Function 47

Proof. Rewriting M(z,n) as

M(z,7) = (g79.)"* + (rr)"/?, (4.8.2)
we have
oM (z,n dgT - Br r
a(x ) — %(g{gb) -1/29919¢ ngL 2( T) 12071
r (4.8.3)
OM(z,7) _ 1, T -1/269L9L
o = 2(91.91.) or
We can simplify the terms in (4.8.3) by differentiating:
agLJI. = oV
a - "'( ) . 8 4\
= %(V(g(z) — ™))y, (4:54)
= 2H,(z)g.
and
.ar_r. = 24T, (4.8.5)
0z
From (4.8.3), (4.8.4) and (4.8.5), we now get
OM(z,7x) 1 dglg. + 1 orlr
oz 2] 9o Il gz " 2fr| Oz’
=H + AT d
o TN

Repeating a similar procedure for the differentiation with respect to 7 yields

OM(z,7) 1 d97g,
or 2 " g. || Or
ge
” [/} "

If we use §, and 7 to denote the normalized vectors g, and r respectively, the gradient
of M(z,7) can be written as

T -~
VM(z,7) = (H;’:) ) (91,)'
- T
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Finally, the projected gradient of M(z,r) can be determined:

-A 0

o [ H. —AT
= (g7 rT)(A’ 0 )

(
-l )
(

--at (" AT)

= —(aT F 9.
= —(3; T)(r)-

T ~
(" ¢")VM(z,7) = (»* ) (HF A ) ( 7:

Hence,
(p" ¢")VM(z,7) = ~flg.|| - [Irl}
!
Notice that once z is feasible (i.e. r = 0) the merit function becomnes
M(z,7) = |lg.]l, (4.8.6)
and satisfies
(" ¢")Vlig.ll = —llg.ll (4.8.7)

4.9 Newton’s Method Applied to the Barrier Subproblem

In this section we apply Newton’s method to the logarithmic barrier-function sub-
problems arising from a QP in the following standard form:

minimize %:cTH z+clz
TERN

(4.9.1)
subjectto Az =58 £<z<u,

where £ and u denote upper and lower bounds. The barrier reformulation yields the
subproblems

minimize B(z, p) =z +i2"Hz - pgln(z,- —¢) — ,ujg;ln(u,- - z;)

(4.9.2)
subject to Az = b.
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Since the equality constraints cannot be treated by a barrier transformation, they are
handled directly. Denote

yi =zi—4; z =uj—zj
D, = diag(1/y,), D, = diag(1/z;), (49.3)
D, = Dy - D,, Dy = D} + D2
To deduce the KKT system corresponding to (4.9.2) we differentiate B(z,p) with
respect to r;:
(a) gB(z) = B,(:L', I‘) =c+Hz— I‘Dye1

(4.9.4)
(b)  Hs(z) = Bez(z,pt) = H+ pDp.
Thus, the K. KT matrix K has the form
T T
K = Hg A _ H+upuDy, A . (4.9.5)
A0 A 0

Notice that changes in z and g only affect the diagonal of the upper block of K.
This implies that only the diagonal changes between Newton iterations and between
changes to the parameter p. This fact has significant consrquences for both the sensi-
tiviiy of the linear system (to be discussed in Chapter 5) and the efficient computation
of subprobiem solutions (see Chapter 8).

We recall from Lemma 4.7.1 that the gradient of the Lagrangian is given by

g = (1 —a)g, + ¢(),

where §, is the gradient at z;4; and t(a) = O(a?). In the case of the logarithmic
barrier functio.1, we can derive an explicit expression for {(a). Writing §5 = gp(2x+1)
as a 1unction oi gp = gp(xk) yields

go=c+Hi—puDge
=g+ aHp—pDye

_ (4.9.6)
= (9 —nD,e) + uDye + aHp — pDye
= g5+ aHp + (Dy — Dy)e.
From (4.7.4) we obtain
ATq = g, + Hep, (4.9.7)
and from (4.9.7) and the definition of g,
9. =Ggp — ATz
= jp— ATr — aA”g (4.9.8)

Ga — ATr — alg, + Hpp).




50 Chapter 4. Solution of Barrier Subproblems

Using expression (4.9.6) for g5 and (4.9.8) we have

g = (95— AT7") —ag, +a(Hp — szl’) + u(Dy - D_,,)e
= (1 —a)g, — paDsp + p(Dy — Dy)e.

I

(4.9.9)

The nonlinear term in (4.9.9) is therefore
t(a) = u(Dy — Dy)e — paDgp.

Each component of t(a) can therefore be expressed as

t(a)._”(_1___1____1_+____1__)_mp_(_;_+_1_)
J yi Witep) =z (z—op;) "\of o #

ap ( 1 4 1 \ " (1 + 1)
= pap; —pap; | = +—
"\yi(y; +ap;)  zi(2z5— an)} "\y? 22

ap; ap; )

= pap; ~
! (z}(z,— —ap;) Yy + ap;)

1 1
2.2
= pa'p; - . 4.9.10

Pi (z}-(z,- —ap;)  yi(y;+ 01’:')) ( )

For components corresponding to free variables, the nonlinear term is not present and
hence g,, decreases monotonically for any value « in (0,1]. For variables with lower
(upper) bound only, we see that {(a); is large when either the quantity y; (z;) or the
quantity y; + ap; (2; — ap;) is small. That is, when we are near a bound and g is not
small, the o necessary to guarantee a decrease may be quite small. We shall return
to this issue in Chapter 8.

4.10 Backtracking Linesearch

Given the search direction (p, q), we choose a steplength o to reduce the univariate
function

#la) = M(z + ap, 7 + aq),

using a simple backtracking linesearch (Dennis and Schnabel [DS83]). Some initial ‘
steplength a = a4 is accepted if the following test is satisfied:

$(a) < 4(0) + vad'(0),
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where 4 is a constant controlling the accuracy of the linesearch. A typical value is
4 = 0.5. Otherwise the test is repeated for the sequence {()'ao, 7 = 1,2,...} until
the test is satisfied. We have shown in Section 4.8 that the chosen function M(z,r)
satisfies
¢'(0) = —¢(0),
so that
¢(a) < (1 - 7a)¢(0).

This result is interesting because it provides a bound on the reduction in || f(z, 7)||
at the new point.

The simple backtracking strategy is typically both efficient and convenient for
barrier functions. We may choose ap = min(1, Baax), where apmax is the maximum
feasible step along p and 0 < B < 1, and we are then assured of determining a
steplength that guarantees the new iterate is stricily feasible. For iterates not close
to a minimizer it is often the case that Bama.x < 1. The initial step then usually
satisfies the termination test.

4.11 The Inertia of K

It has been essential to the discussion of Newton’s method applied to the optimality
conditions that K has inertia (n, m, 0). In general this cannot be guaranteed. In
this section we discuss how to ensure that K has the correct inertia in most cases,
and what steps may be taken on those occasions when it does not. It should be noted
that difficulties can arise only when ZTH Z is not positive definite.

First note thtat i can be singular if and only if ZTHZ is singular. Moreover, if
ZTH 4 Z is positive definite then K has the required inertia. We can certainly ensure
this at the initial point simply by choosing p sufficiently large, since

ZTH,2 = Z"HZ + n2'DZ

where D is positive definite. We shall endeavor to take advantage of this relationship
to ensure that K has the required inertia. If u is large enough, K has the required
inertia at all points in the level set { @ | M(z,p) < M(z,p)}. It follows that
convergence to a point satisfying the required conditions is possible for g = pq. It is
nontrivial to select a value of ug that satisfies our criterion. However, there is a simple
remedy in practice. If the initial choice for yy proves to be too small (because the
inertia of K is incorrect) then po can be increased until K has the required inertia.

Another useful relationship is that the reduced Hessian is positive definite in
the neighborhood of a minimizer at which the reduced Hessian is positive definite.
Suppose we are within such a neighborhood. If u is reduced only slightly, the reduced
Hessian of the new barrier function will also be positive definite. This suggests the
following strategy for ensuring that K has the correct inertia:




52 Chapter 4. Solution of Barrier Subproblems

¢ Select a large value for yo and increase it if necessary until X has the required
inertia.

e Whenever p is reduced, if K does not have the required inertia at the new value
of u, change p to be less than the old value but greater than its current value.

It also suggests that the criterion for reducing p should be quite stringent. However,
if a large po is chosen and the neighborhood for which ZTHZ is positive definite is
large, it may be possible to reduce y quite significantly, and without the need to find
a close approximation to a minimizer. (See Figures 4.1-4.3.)

Two questions remain to be answered. Firstly, we need to show that a significant
reduction in g is always possible. Secondly, we need to know how to proceed if K does
not have the required inertia. Note that the latter is only of concern when p # g or
it is not the first iteration after x has been changed.

There is no loss of generality if we assume r = 0 at any iteration for whick K
does not have the required inertia, and if i remains sufficiently nonsingular (so that
a is bounded away from zero). Since r « (1 — a)r, r — 0 and once it reaches zero it
remains zero.

By having a sufficiently stringent termination criterion for g = gy, it is always
possible to ensure that » = 0 for 4 = po and hence for all 4 < po. Note that even
if r # 0, a point satisfying r = 0 would eventually be found provided the weaker
condition of K being nonsingular was always satisfied.

Reusing Factors of K.

The discovery that K does not have the correct inertia may be made during
the process of computing the LBLT factorization of K. We could then employ the
pivoting strategy suggested by Forsgren and Murray [FM90], but the following lemma
suggests that a suitable descent direction or a direction of negative curvature may be
obtained by decreasing u to i (say) and using the current factors.

LEMMA 4.11.1. Let p be defined as follows:

()2

and assume p # 0 and K(u) is nonsingular. If ji < p then at least one of the following
inequalities holds:

PHy(R)p<—y or  gs(@)p< —7,

where ¥ > 0.
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Proof. We have
Hp(p) = Hg(t) + (1 — g)D,

where D is a positive definite diagonal matrix. It follows that
Hy(m)p + (p — B)Dp — ATq = —g. ().
Premultiplying by p” gives
P Ho(jp = ~p"95(R) — (1 — #)p"Dp,

so that
p'9s(it) + p"Ho(t)p = - B,
where 8 = (g —, jp"Dp > 0.
Clearly, either pTga() < —18 or p"™Hy(fi)p < —1B. Setting v = 1P gives the
required result.
1

Note that if pTHg(ji)p < —v and pTgs(@) > 0 then we must have pTH,(ji)p < —v
and plgp(jz) < 0, where 5 = —p. Thus, if we have a direction of negative curvature
we can always construct a direction that is a non-ascent direction and a direction of
negative curvature.

The significance of this result is two-fold. Firstly, we are able to compute a suitable
descent direction and/or a direction of negative curvature. Secondly, we can do so
without the need to refactorize the KKT matrix. The assumption that p # 0 and
K (1) is nonsingular is not unduly restrictive. If either condition does not hold at z,
there exists 0 € (0,1) such that K'(0u) is nonsingular and g,(0u) # 0. This last resuit
implies p(0p) # 0. It is of course necessary to refactorize the KKT matrix if K ()
proves to be singular. The following lemma shows that the set of values 0, for which
K(0y) is singular, is finite.

LEMMA 4.11.2. If K(x, ) is singular there ezist at most n —m values of 0 such
that K(x,0pu) is singular.

Proof. K is singular if and only if ZTH,Z is singular (sec Forsgren and Murray
(FA190]). Now ZTH,(0p)Z = ZTHy(p)Z + (0 — 1)uZTDZ. where D is nonsingular
and positive definite. Hence

ZTHy0,0)Z = ZTHo(1)Z + (0 - DVR'R
= R(RTZTH(w)ZR™ + (0 - )[R

where

R'™R =nZ"D2Z.




34 Chapter 4. Solution of Barrier Subproblems

Thus, ZTH5(0, 1) Z is singular if and only if (§—1) is equal one of the n—m eigenvalues
of R-TZTH () ZR L.

|

Asymptotic Reduction of u.

We use the notation K'/H to denote the Schur complement of H for a matrix K
partitioned as follows:

H AT
K= , K/lH=M - AH'AT, (4.11.1
x (A M) / @1L.)

where H is assumed to be nonsingular.
To show that we are not inhibited in the asymptotic rate at which p can be reduced
we first need the following lemma.

r HFR Ag‘x
Kep =
. (Am ;

has inertia (ngg, m, 0), where Hyy is an ngy X ngy symmelric matriz and Agy is an
m X ngx matriz of rank m, then there exists ¥ < oo such that the inerlia of

, (H'*'Tlpx AT)
K=

LEMazA 4.11.3. If

A 0

is (n, m, 0), where H is an n X n matriz and A is an m x n matriz such that

H Hea

A= (.’1pxg AFR):

io0
]x-‘x=(0 0)‘

In([() = In(I{px + '71) + In(l\’/(Hpv( + :’I)). (4.1 1.2)

and || H|| + || A < co.

Proof. We have

If v > —Anin, where Ay, is the smallest eigenvalue of H;y, then

In(Hex +7l) = (nex, 0, 0). (4.11.3)




4.11. The Inertia of K 55
By definition,
. - g -1/ T T
FX
and have _
tim [ 7 ) (e + 207, AT =0,
Randtd Apx
Hence there exists M < oo such that
In{K[{Hex + 1)) = In(Key) (4.11.4)

for v > M. It follows from this result, (4.11.2) and (4.11.3) that In{K) = (n, m, 0}.
|

We now show that eventually x can be reduced at an arbitrarily fast rate. We
assume for simplicity that the QP (4.9.1) has only lower bounds and that these are
zero. In the following lemma, z{z) denotes the current iterate, u the current barrier
parameter, and p the next barrier parameter to be used (u, < pul.

LEMMA 4.11.4. Let 2* be a strong local minimum of QP at which we have strict
complementary slackness. Lel z{y) be such that

In(Ks(z(p), ) = (n, m, 0),

fim () ~ 2*(u)]| = 0

and
lim izt - ()l =0,
where
= g Ti‘
Ko(z(o ) = [ HoE@Em ATy
i% 0 )

If pe = B(ulp, where 3(u) is the smallest positive scalar such that In{ Kp{x{p}. ps)} =
(n. m, 0), then lim,_o B(u) = 0.

Proof. There is no loss of generality if we assume 2* = (2, , 7}, ). where 2%, denotes
the variables on a bound and £}, denotes the variables not on a bound. We shall also
use tie suffices to denote a partition of H and A, as in the preceding lemma.

It follows from the assumptions on £* and z{j) that

i H s o312 — Fs =
lim p/(rea{pe}); = 0 {(1.1L.53}

F
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and
E‘i}}gll/(a'w(l‘))? = 0.

Consequently, there exists € > 0 such that if g < e then p/(zer(p))? > 8 for all j,
where 0 < oo.

It follows from Lem - a 4.11.3 and the assumptions on 2* that there exists v such
that In(K,) = (n, m, 0), where

T
X, = (H+71Fx A )
A 0

By definition,

H+ B(p)p X3 ar Al
Ko(z(p),pv) = H Heo + B(p)u X5 AL
Arx Apr 0

where Xex = diag(zex(p)) and Xen = diag(zea(p)). it follows from (4.11.5) that
In(K) = (ngs, m, 0), wheie

o (Hm +8, R Az;.) .

.ipR 0
Therefore, provided B(u)p/zrx (,u)f > 4 for all j,
In(F5(z(1), pay) = In(K,) = (n, m, 0).

Since lim,_o ;L/:CFX(;L)? = for all j, we have lim,—o (1) = 0.
1

4.12 A " mple Example
Consider solving the fcilowing QP by BARALG:
minirg}ize Qz,y) = (e +y-3)*~(z —y - 2)°
x,y€
subject to
Jr4+y—-120
z—y+120
-z -3 +520
-z+3y+42C
20
v 2 0.
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Figure 4.1: Contours of B{z,u) for 4 = 10

Figures 4.1-4.3 show contours of the logarithmic barrier function for decreasing
values of the barrier parameter: u = 10,1,0.1. Clearly for u = 10 the barrier function
is convex. Although the barrier function is not convex for £ = 1 the minimizer is the
only stationary point. It follows thet the first subproblem could have been terminated
at any stage. Even though for u = 0.1 the function now has more than one stationary
point, thz required minimizer could be found provided the initial point was a quite
modest approximation to the minimizer for the second subproblem. Had the reduction
in u been less severe, an even cruder approximation t. the minimizer of the second
subproblem would suffice.
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2*(w)

Figure 4.3: Contours of B(z, y) for p = 0.1




Chapter 5

Sensitivity Analysis

In Chapters 3 and 4 we have described a model barrier algorithm that theoretically
converges to the solution of a QP. To prove that the algorithm is numerically viable, we
must show that the solution to the subproblems can be computed in a stable fashion.
To this end, we perform a detailed sensitivity analysis of the KKT system arising from
barrier methods. A key result of this analysis is that the ill-conditioning normally
associated with the Hessian in barrier methods is benign when the logarithmic terms
are applied only to simple bounds. Thus, a stable barrier algorithm is realized.

5.1 Y.arrier Methods Applied to General IQP Problems

In general, unconstrained minimization techniques are not well suited for minimiz-
ing barrier functions (see [Mur71a]). This is primarily due to the progressive ill-
conditioning of the Hessians as the solution is approached. In this section we briefly
illustrate the structure of the Hessian and explain why its condition number is un-
bounded. In later sections we prove that accurate subproblem solutions can be ob-
tained despite this ill-conditioning when the barrier terms are applied only to simple
bounds.
Consider the general IQP problem,

I1QP mineig}‘ize F(z) =z + 1aTHz

(5.1.1)
subject to Az > B,

where the Hessian H is an n X n symmetric matrix, A is an m x n matrix, and c and
B are vectors of dimensio:: n and m respectively. Let z* denote the minimizer and
let A be the /2 X n motrix ssociated with the constraints that are active at 2*.

Applying a logarit.. ‘trier function to the inequality yields the following un-
constrained minimization problem:

m
migeiarg}‘ize B(z,p) =Tz + %:cTHm - Z In(a’x — B), (5.1.2)

1=1

where a7 refers to the i-th row of A. By definition of an unconstrained minimizer,
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the following relation holds when z = «*(u):

pfr

m R .
VB=c+Hx—yZ%=g—AT . =0, (5.1.3)
i=1"t .
plrm
where r; = aJz — ;. Thus, the gradient of F(x) at z*(u) is a nonnegative linear
cotabination of all the constraints. Further, if the constraint afz > B; (of the original
problem) is not active at z*, its corresponding coefficient p/r; must approach zero
(because r; is bounded away from zero in a neighborhood of z*). On the other hand,
if the constraint is active at z*, it can be shown that its coefficient approaches the
corresponding Lagrange multiplier of the original problem (assuming A has full row
rank). That is, for sufficiently small p it follows from (5.1.3) that

= =7
G,T:l)*([t) _ bi =7 + 0(”’)
To arrive at the Hessian of the barrier function, we differentiate (5.1.3):
ke
HB == H + -AT . A'
plrm

We shall focus on the values of Hy at z*(u) as u — 0.

LEMMA 5.1.1. Let Hp be the Hessian of the barrier function (5.1.2) evaluated at
z*(jt). Let A be the o xn submatriz of A associated with the constraints active at z*,
and assume A has full row rank . If0 < m < n, as the solution of the original prob-
lem (5.1.1) is approached, the condition number of the Hessian becomes unbounded.
Further, as p — 0, the Hessian has m unbounded eigenvalues with eigenvectors in the
range of AT and (n — m) bounded eigenvalues with eigenvectors in the null space of

A.

Proof. For inactive constraints, r; is bounded away from zero and hence u/r; and
1t/r® approach zero as z*(u) approaches z*. For active constraints, the quantity
p/r; approaches the Lagrange multiplier. Thus, 7 ratios u/r? must be unbounded
as r; — 0. This implies that if 0 < 72 < n, the dominant rank-deficient matrix causes
the condition number of the Hessian to become unbounded and the result follows.
]

Finally, we remark that the ill-conditioning of the Hessian matrices of barrier
function does not result from the barrier perameter, but from the singularities caused
by tue active constraints. (See [Mur71b] for more details.)
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5.2 Standard Formulation of QP Problems

In this thesis, we only consider the barrier method applied to QP problems in standard
form:

« e _ 1.T
minimize Qz)=cz+ 3z Hr

(5.2.1)
subjectto Az =0, [<z<u.

As we illustrate in this chapter, the standard formulation is of fundamental impor-
tance to the successful application of the barrier method. An intu*"" -e understanding
can be obtained by examining the Hessian of the barrier funci:z... kor (5.2.1) the
barrier function is given by (4.9.2) and the corresponding Hessian is given by (4.9.4):

Hy=H + pDj. (5.2.2)

Notice that in this special case the effects of the logarithmic terms appear only
on the diagonal of the Hessian. The m singularities of Lemma 5.1.1 are therefore
separable. It is in fact this decoupling that allows accurate solutions to be computed.
In the sensitivity analysis that follows, we make specific use of this particular form of
the Hessian.

Let K'v = w denote the KKT system associated with the barrier subproblem
arising from the standard formulation (5.2.1).

We have said Hj is ill-conditioned. It is clear from the nature of the ill-conditioning
of Hy that K is also ill-conditioned. We show that v can be computed reliably
nevertheless.

5.3 Standard Sensitivity Analysis

Given the KKT system Kv = w, our aim is to examine how perturbations in K
and w affect the solution v. In this section we recall some results from the standard
perturbation theory for solving linear systems.

Let ) and éw be perturbations for K and w respectively, so that the perturbed
KKT system can be expressed as

(K + 6K) (v + 6v) = (w + bw), (5.3.1)

which we shall write as

—

Kv = . (5.3.2)

Even when K is nonsingular, K may be singular if X" is not restricted. It is known
[GL89] that if 6K is such that [|6K|| < 1/||K~Y|, then the following hold:
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o K + 6K is nonsingular;
o (K +68K) ' =(I+K16K) 'K = YR (K W8K)Y K,
o The relative error in the solution of (5.3.1) can be bounded by

lI6]] cond(K)
Rl = T=cond(K)p() U + 2 (), (5.3.3)

where cond(K) = ||[K~||||K]|. The quantities p(K) = ||6K||/||K]| and p(w) =
||60]|/]|w|| constitute the relative changes in K and w respectively.

The condition number cond(/X) attempts to measure the worst possible effect on
the solution v when K and w are perturbed by a small amount.

Unfortunately, as we pointed out in the previous section, for the linear systems in
consideration, cond//) — oo as p — 0. Ironically the system becomes increasingly
ill-conditioned precisely when we are more interested in solving it accurately, that is,
as we approach the solution.

5.4 Useful Identities and Inequalities

ATV = B! = AY(B- A)B™!

(I-4)" = i A
(A+7D) = 27 ¥ (-1)yi(aD™)

(A+9D)™ = 47D =y 2D'AD™ + O(77%)

5.5 Analysis of the KKT System

The KKT system for the barrier subproblem is

H, AT -\ _ {9 _ [ H AT
(Y- wo

where Hy = H + D, and Dy = D} + D? (see Equation (4.9.3)). Without loss of gen-
erality and for clarity of exposition, we will consider only problems with nonnegativity
bounds, so that for the remainder of this chapter, D, = diag(1/z}).

We are interested in analyzing the behavior of the solution of system (5.5.1), es-
pecially the limiting behavior as the barrier parameter tends to zero. For the purpose
of the analysis we will consider a particular ordering of the KKT equations. The
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motivation is to distinguish (or treat separately) those elements of D, that become
unbounded as we approach the solution.! Let us assume that the rows and columns
of D, have been permuted so that the unbounded elements appear first. If we define

B =az?=minz}
7

7 =u/B

d; = ﬂ/“’?

then
o Hy=H+4pD,=H+~D;

e 0<d;<1,and ||D|| = 1.

This ordering induces the following partition in the matrices D, H, and K:

Dl -Dl
D= , Hy=H ,

Hy+~Dy Hg; AlT
K(y) = Hy  Hy++D, Ag‘ )
Ay As

where vD;, — oo as g — 0, in contrast to yD,, which by construction remains
bounded as u — 0.

Without loss of generality we can assume that the original QP has been scaled so
that ||H|| = 1 and ||A|| = 1. Therefore, the system of interest (5.5.1) becomes

H+~D AT

K(v)v('r)=( A 0

) v(y) = w, (5.5.2)

where 4 is a positive scalar; K and D are square matrices; /' is symmetric, indefinite
and || K ||= 1; D is diagonal, positive semi-definite and || D ||= 1. With the chosen
partitioning we also have ||D;|| = 1 (since z, will be in D;). We are interested in the
quantity

lim v(7). (5.5.3)

o =)

If there are no unbounded elements in Dy, i.e., if none of the components of z approaches a
bound, standard sensitivity analysis applies.
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Equation (5.5.2) is equivalent to
Ky KT\ [v(7) _ (= (5.5.4)
K; K, () wy )’
Ky = Hy ++vD,

Ky = H; ++D, Ag ,
Az 0

Hj
K5 = .

Note that K, is a KKT system of smaller dimension, namely the submatrix obtained
from the original system after eliminating variables that are near their bounds.

Let S = K/K, be the Schur complement of K with respect to K;. The system
(5.5.4) can be written as

where

Kyvy(y) = wy — K3 va(7), (5.5.5)
S‘Ug(’y) = Wy — Is’;,K,"lwl. (5.56)

In order to find an expression for (5.5.3), we need to present three lemmas.

LEMMA 5.5.1. If v is sufficiently large, the matriz K, is nonsingular and its
inverse has the form

1
K= ;D,“ - %D;‘H; DrY+ O(v3). (5.5.7)
Proof:
K, =H + ~D,
= (I + 4" H,D")yD;.
Hence,

K =407+ B D7)
If v is sufficiently large we have

(I+~"HyD{Y) ' =1—-+4""H,D{' + O(y7?).
1

The required result follows.
i
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LEMMA 5.5.2. If IK; is nonsingular and 7 is sufficiently large, S is nonsingular
and its inverse can be written as

ST =K'+ :1;1(;‘1(30;‘1(} K;'+0(r7%).

Proof: We have from (4.11.4) in Lemma 4.11.3 that if « is large enough,
In(S) = In(K3).

It follows that for v large enough, S is nonsingular. In all that follows we assume
that 4 is always chosen suitably large.
By definition we have

S = (K>~ A(7))™!
= K;'(I - A(v)K;')™

= K;' + K A(E; + S KA K, (5.5.8)

=2

where A(y) = K3K['KT. 1t follows from Lemma 5.5.1 and the definition of A(7)
that

Aly) = K3y Dy! = 7D H DT + O(y2))K3
1
= ;1(31);‘1{,{ +0(77?). (5.5.9)
The required results follows from substituting this expression for A(7y) into (5.5.8).
]
LEMMA 5.5.3. If K; and D, are nonsingular and v > || Dy Hy|, then

vp(7) = K3 wy + v K5 KDy (KK w, — w1) + O(772),
1
w(”) = D7 (w ~ KY K3 wz) +0(r7).

Proof: From (5.5.6) and Lemma 5.5.2 we have

va(y) = S™Hwg — IGKT wy)
= (K;' + %]&I;IIX’:;D;II{:{I{;I)(Wz + K3KT'wy ) + O(y7%).

Substituting for K| from Lemma 5.5.1 gives the first required result.,
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Similarly, from (5.5.5) and Lemma 5.5.1 we have

v(7) = K7 (wy — KJva(7))

1. 2y
=-D; Yw, — KTva(7)) + O(772).

Substituting for v,(v) gives the second required result.

i
From the last lemma we can derive the limiting value of v(7):

Jim v(y) =0,

.,ll.‘?o v2(7) = K w,.

These results indicate that when ¥ — oo (or equivalently when g — 0) the KKT
system decouples. This is precisely what we would obtain if we fixed the components
of v that are on a bound at the solution and solve for the reduced system.

5.6 Specific Sensitivity Analysis

Here we analyze the sensitivity of the solution of the KKT systems arising in barrier
methods. It was shown in the previous section that these systems can be expressed

B+ yDy K5\ (o)) _ (w) o (K KT (5:5.1)
1&3 1(2 vg('y) wy ]X3 182

where K; = Hy + vD;.

In the following analysis it is tacitly assumed that [Jv(v)]| > 0 for all v sufficiently
large. We wish to address how sensitive the solution of (5.6.1) is to perturbations in
the matrix K and the vector w. Thus if

(K + 86K)(v + 6v) = (w + 6w), (5.6.2)

where

T
SK = 0H, + 6D, 8K and P dvy ’
61{3 61{2 61}2

we are interested in how the relative and absolute perturbations behave when v — 0.
Since limy~ o [JU1(7)]]| = limy—o [lv1(y) + 6v1(7)]| = 0, cur interest is in the behavior
of the perturbation §v,.
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We use the Schur complement, so that for the original KKT system we have

Klvl =w - 1\’;"02,
S'Ug = Wy — 1(31{1-1101, (5.6.3)

and for the perturbed KKT system

7~ o~ 7T~
IXI‘UI = w; — 1(3 Uy,

§52 = ‘LT)z - K;;ifi_lﬁ;l, (564)

where

v = v+ buy,

Uy = vyt vy,

K\ = Ky +§H, + 46D,

K, = K; + 8K,

Ky = Ky + 6K,

S =K,— K:K{'KY.
It follows from Lemma 5.5.2 and the nonsingularity of K, (a consequence of the
nonsingularity of K) that

lim S = K,
Yoo

lim § = K, + 6K,
Also from Lemma 5.5.1 we obtain

lim K;'= lim K['=0.
Y0 it bnd =]

In the limit (allowing v — oc), we therefore have from (5.6.3) and (5.6.4) that

Koy = 1wy,
(K2 + 6K5) (2 + dvg) = ury + by

We can now apply the classical analysis of perturbed systems to obtain

I6el] cond( k)
lo2li = 1 = cond(K3)p(K2)

(p(K3) + plaea)).

These results show that the sensitivity of systems involving A becomes the same
as the sensitivity of the systems involving I, as y — oc.
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5.7 An Example

The analysis demonstrates that provided the problem is in standard form, the sensi-
tivity of the solution to the KKT system arising from the barrier subproblem depends
in the limit on the condition of the underlying KKT system for the optimal active
set for the original problem and not on the condition of K. Here we demonstrate
by a counterexample that this is not the case for problems in nonstandard form. We
contrast the relative errors made when solving two specific systems of equations; one
of the type arising from problems in nonstandard form and the other of the type
arising from problems in standard forin.
Suppose the QP problem has some general inequalities, i.e.,

minég}‘ize Q(z) = 'z + 12"Hx
subject to Az =b, (5.7.1)
Az > b.

When a barrier transformation is applied, the subproblem is of the form

L _ T, ., 1Ty
minimize B(z,p)=cz+ ;' Hr —p ;ln r{z)

——
o
-1
(5

Mot

subject to Ar=b,

where ri(z) = @;7z — b;.
Superficially this subproblem looks identical to the subproblem for the standard-
form QP (4.9.2). The key difference is the form of the Hessian of the two barrier

functions. In the standard-form case, H, has the form
Hg=H++4D,

where D is a diagonal matrix satisfying 0 < [|D|| < oc. In the nonstandard form the
Hessian is of the form o
Hg =H + “;"4TD,"1’

where D is also a diagonal matrix. In both cases we have

Iin}k v = 00.

IX—X
Ir the standard-form case there is a loss of figures in some of the diagonal eieincnts
of H when Hy is computed in finite precision. The previous analysis shows that this
is not of significance. For the nonstandard form there is a loss of figures in all the
clements of H for which A”A has a nonzero element (which could be all clements of
H). Eventually, loss of figures in the off-diagonal elements of /I becomes catastrophic.
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7 €p
1 1.5e-15
10° | 2.4e-11
10 | 1.4e-6
10'% | 2.1e-1

Table 5.1: Relative error for systems arising from problems in nonstandard form.

To illustrate, we first consider systems of the form
(H++B"B)z =d, (5.7.3)

where H is an n x n symmetric orthogonal matrix and B is an m X n matrix with
m < n. The matrix B (like H) has a condition number of one, so that errors in the
computed solution arise from the form of equation (5.7.3}. For v > !, the condition
number of H + 7B7B is approximately equal to 4. The specific choices of H, B and
d are
—0.4179 04528 0.2045 0.7606
H= 0.4528 0.8554 —0.0653 —0.2429
| 02045 -0.0653 09705 -0.1097 |’
0.7606 —0.2429 —0.1097 0.5920

-

-1.7

13
—0.3844 —0.4856 0.2404 0.7474 3
B= ) and d= ;
0.6325 0.3162 —0.3162 0.6325 ]

0.5 )

We solved (5.7.3) for a variety of values of 7, using MATLAB [MLBS87] on 2 DEC
VAX workstation with approximately 16 decimals of precision. Let T denote the
computed solution a.x! ez = ||F — z]i/| ] its relative error.

It is clear from Tzb > 5.1 that the loss of figures in the computed solution to
systems of the form (5.7.%s_ °s close to the bound predicted by the standard sensitivity
analysis.

We now consider equatic. .- f the form

w!t
o
-

P+ D) =d, {(5.7.4)
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Y €p
1 1.6e-15
10° | 6.3e-17
1010 | 1.5¢-25
1015 | 1.4e-16

Table 5.2: Relative error for systems arising from problems in standard form.

where D is a diagonal matrix of rank m < n. Specifically we use the same matrix H
of the previous example and choose D = diag(1,1,0,0). Let  denote the computed
solution and e, = ||Z — z||/||z|| its relative error.

According to the <pecial sensilivity analysis, the loss of ligures in the solution
should not depend on the condition number of H 4+~ but on the condition of

2:‘

0.9705 —0.1097
—0.1097 0.5920

as ¥y — oo. This matrix has a condition number of only 1.8. It can ke seen from
Table 5.2 that as predicted the errors are indeed very small.
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Special QP Problems

6.1 Introduction

In this chapter we discuss various special cases of QP. Specifically we consider the case
when ZTHZ is positive semidefinite and vatious special forms of H. Much of what
follows in this chapter is also appiicable to the general case when the circumstances
considered hold locally. A key property when ZTHZ is positive semidefinite is that
ti:e minimizer of the barrier subproblem is unique. It follows that there exists a single
constrained stationary poirt. Consequently we may apply Newton’s method directly
to the nonlinear equations that define the stationary point.

It is often possible to take advantage of specific structure in H when solving the
KKT system of equations, We are particularly interested in the case when H is
trivially invert:ole. The last special case considered is when the only constraints are
simple bounds.

Threughout Sections 6.2-6.6 we assume that Z7H Z is positive semidefinite

6.2 A Primal Method
Let us recall the primal barrier subproblem
G H — T T n
minimize B(z,p) =z + J2"Hz — pj; Inz,
subject to Az = b,

and the associated KKT equations

v T T
Hy A Nzx __ gs — A'm . (6.2.2)
A 0 ~AT Az =

If 72TH Z is positive semidefinite, the matiix ZTH,Z is positive definite and the barrier
subproblem has a unique solution corresponding to a unique constrained stationary
point.

71
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The equations defining a constrained stationary point of (6.2.1) are:

c+ Hz—pXte-ATr =0

Az - = 0.
Defining z = uX e gives
z~—pXle
foz,zym)=| c+ Hz ~2—ATn | =0. (6.2.3)
Az -

The vector v will denote the vector (z,x, —r). The Newton direction Av = (Az, Az, —Ar)
satisfies the linear system

JoAv = ~f,, (6.2.4)
where
I pX7%2 0
Jo=|-1 H AT
0 A 0

Apart from the last block of columns being multiplied by -1, J, is the Jacobian of f,.
We shall refer to J, as the Jacobian. For the Jacobian to be well defined we assume
x > 0. It is easily seen that if a step o were taken such that any z; + aAz; = 0 for
some 7, then || f,]I* = fg fp = 0o. Therefore there exists a minimizer of

minimize {Lf,(v + SO | B> 0},

say B, such that z + fAz > 0if z > 0.

The next iterate vy is given by wey1 = vi + aAv, where v = (2k, 2k, —7%) and a
is chosen to ensure a sufficient decrease in || f,]|?. Specifically we choose a to satisfy
the Goldstein-Armiio conditions:

0 < =2y fy(vr) < Nfp(w)lP = fp(mman)IP < ~2m2ab0™S] £ (i),

where 4, and v, are scalars satisfying 0 < v < 72 < 1. Since J,Av = —f,(vi) the
conditions rcauce to

Iyl
el =2

The trial values of the steplength are defined in terms of an initial step of® =
min(1l, 0ay,,) and a positive scalar w (w < 1), where a,, is the largest feasible step

0<2na<1 Yax.
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along Av and 0 < 6 < 1. Typically 8 = .99 and w = 0.5. The value of « is taken
as the first member of the sequence {w/a(®},j =0, 1, ..., for which the conditions
are satisfied. It is because B3 exists that we can assert that there are suitable points
satisfying the Goldstein-Armijo conditions.

Given that the initial value of v, say wg, satisfies || f,(vo)|| < oo, it follows that
there exists M < oo such that (zx); > M/p for all k. Censequently, ||J,|| is bounded
and J, has a bounded condition number at all iterates. Hence Newton’s method
is well defined. It follows from standard convergence analysis that limp_ vx =
(2*(11)73:*(/‘)’ "77*(/‘))'

The vectors Az and Ax are identical to those defined by the KKT equations
(6.2.2). Indeed if Az is eliminated from (6.2.4) we also eliminate z, giving the KKT
equations

H+pX-? AT Ax\ e+ Hz—pX-te— ATx 625)
A 0 J\-ar; " Az —b ' -

Newton’s method applied to the nonlinear equations (6.2.3) differs from the preceding
definition of Newton’s method (applied to the barrier subproblem) in that Az and o
are used to ensure a sufficient decrease in || f,|| rather than B(z,z). An advantage of
the new formulation is that || f,|| is easier to compute than B(z, p).

By utilizing the Schur complement of H + pX~? in the KKT matrix we obtain
equations in just Aw, namely

A(H 4 pX~*)ATAr = b— Az + A(H + pX 2" (gp — ATr), (6.2.6)

where g5 = ¢+ Hx — pX"'e. In coutrast to the linear programming case, these equa-
tions do not appear to be an attractive option for computing Ax unless H happens
to be diagonal (cf. [CL.LMS90]). In Section 6.7 we show that H can be made diagonal
for any semidefinite QP.

It is clear from (6.2.5) that Az is independent of z. A closer inspection of (6.2.5)
reveals that Az is also independent of 7. It is therefore unnecessary to take the same
step in the z variable. as that taken in z and .

We could define the iteration as follows:

Tryr = Tk + 0z
2pp1 = 2k - 0 A2 (6.2.7)
Tet1 = Tk + azA"n

where « is chosen as before, but a, is chosen to ensure zxqy > 0 if 2 > 0. The intent
is to choose zp > 0, which then ensures z; > 0 for all k.
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In addition to the sequence {z}, we may recur the sequence {z} as follows:

3—70 = Ty
Tpp1 = &k + azAEk,

where
AZy = o) + Az — T4

We could choose o, to be the maximum feasible step (subject to it being less than
unity). However, since we know at the required solution z* > 0, we choose instead
to take some step that ensures z;,, > 0. We have yet to formulate the best rules for
choosing «,. Qur purpose here is to note that we do have the choice. Our reason for
choosing a, different from « is that we are able to generate a dual feasible point and
maintain such a point, as the following lemma proves.

LEMMA 6.2.1. If at the K-th iteration we have

ct+ Hig~2— ATmye = 0
Aty = b,
it follows that
c+ Hik—zk—ATﬂ'k =0
Az, = b
fork> K.

Proof. It is enough to show that the result holds for k¥ = K + 1. By definition we

have
c -+ H(.TK + A.'.CK) - (ZK + AZK) - AT(TFI\' + A'IT,()
A(xl\' + A.’C}")

0
b.

]

It follows from these equations and the assumptions that
A(:BK + AQ:K - .'i]") =0.
Since ATy = x4 + Azy — %, we have

HAZy — Azge — ATA7,: =0
AA:E_K = 0.
it follows that
c+ Hikﬂ — Zrky AT"Kﬂ =0
Ai}{_'.l = b.




6.2. A Primal Method 75

|

An immediate consequence of this lemma is that if ever a, = 1, then all subsequent
elements of the sequence {Z, 2z, 7} are dual feasible (even if a; # « at some stage).
At such points we are able to compute a tower bound on the objective function at the
solution. If ever o = 1, then all subsequent elements of {z} are primal feasible and
we are able to compute an upper bound on the objective function at the soluiion.
Once a primal and dual feasible solution are known, then at every subsequent iteration
we may compute the duality gap given by

Tz + %x{H.‘ck — b + -;-:EZH:F:k,
which when z; = £, becomes
chk + :cfH x5 — by

Knowledge of the duality gap may be used to estimate a suitable change to the
value of 1 and as an overall termination criterion.

Since the sequence {21} is unaffected by choosing a, # «, and since a step
bounded away from zero may still be taken, it follows that we still have limg—o 1 =
2*(1). However, it is necessary to show that limi_e 2x = 2 () and limpeoo i =

().

rules, then limg,, 23 = 2*(pt) and limg_.o, m = 7* ().

Proof. By definition we have
Az — [l,)\’;zA.'Ek = —z+ pX'e.

Hence
2k + Az = p X7 e + u X Axy.
Since there exists ¢ such that (z4); > € > 0, and since limy_., Az, = 0, it follows

that
lim z¢ + Az = lim pX{'e = :-:*(/t).
k—o0 k—o0

It also follows that there exists K such that a, = 1 for all £ > K. Hence limp_, zx =
= (p). i i

Since limg_.qo A1 = 0, there exists K such that a« = o, = 1 for all k£ > K.
Consequently, for k > K we have & = z,. It follows from this result and from
Lemma 6.2.1 that for I > K,

c+ Hex— 2z — ATm = 0.
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Since limgo 2x = 2* (1) and limg_o, 5 = (1), it follows that limg_,. 7 = 7 ().
]

Since a unit step in all the variables is assured after a finite number of iterations,
it follows that eventually both a primal and dual feasible point will be identified
regardless of the value of u.

6.3 A Dual Method

Let z = ¢+ Hz — ATr. The dual barrier subproblem can then be written as

minimize B(z,7,z,p) = —bTr + 3zTHz — Y Inz,
nim = (6.3.1)
subject to —z+c+ Hz— ATr =0.

A stationary point of (6.3.1) satisfies the equations
r—pZ e
filz,z,7)=| c+ Hz—z— AT | =0. (6.3.2)
Az —b
This system is equivalent to (6.2.3) in the sense that the solution to both systems

with z*(u) > 0 is identical. We could have arrived at (6.3.2) by multiplying the first
n equations of J, in (6.2.3) by XZ~'. The Jacobian of f; is given by

pZ21 0
Jg= -1 HAT
0 A0

If we apply Mawton’s method to (6.3.2) then the following system is solved at each
iteration:

Az T—-pZle
Ja Az | =—]|c+Hz—2z—ATx |. (6.3.3)
~Ar Az —b

Observe that || fall = co whenever an element of = is zero. The next iterate is given
by taking a step a along (Az,Az,Ar), and we now require z to remain positive.
The proof that the sequence converges to the required solution follows an identical
argument to that given for the primal method.

The corresponding KKT system is

172 AT 9 ATr . L2
H+“Z A Az - c+ Hzx—-22—-A +“Za: ' (6.3.4)
A 0 —~A7 Az -b
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As in the primal case we can obtain equations in just Am:
A(H+lz2)~‘ATA7r =b- A:z;+A(H+-1—Z2)"‘(c+ Hz—ATn-2z+lZ%,. (6.3.5)
7 p p

Since z appears linearly in (6.3.2) it follows that Z = 2 + Az is independent of z.
Rearranging (6.3.4) gives

H + %Zz AT z _ c—2: - ATx
A 0 —Ar | —~b '

Hence, Ar is independent of z. We have from (6.3.3) that
pZ32 Az =—z - Az +pZ e =—F+pZ 7 e.

Hence, Az is also independent of z and there is no need to take the same step along
Az and Arx as Az. We are therefore in an analogous situation to the primal case,
and we define the iterative sequence as

Ty = Tk + aA.’.C
Zkp1 = 2z + Dz
Tkl = Tk + aAr.

Again, we mav -=2cur an additional variable Z; according to

Ty =xo

- - ~ AT
Fpp1 = Tp + 0 A%y,

with
Az =z + Azp — T4,

Exactly as in the primal case, if a; =1 at iteration K, then (Zx, zx, 7)) are dual
fcasible for k > K. Similarly if @ = 1 at iteration K, then z; is primal feasible for
k> K.

A similar convergence analysis to the ~rimal case shows that

m z; = lim & = 2" ()
k—oo k—oo

lim 2 = 2% (p)

k—oo

lim 7 = 7 ().

K= XD
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6.4 A Primal-Dual Method
If we premultiply the first n elements of f, in (6.2.3) by X we obtain
Zz —pe=0.

Consequently, the solution of (6.3.2) such that = > 0 is also the solution of the
following system of equations:

Zzx — pe
fri(z,z,w) = c4+ Hz—2—ATn | =0. (6.4.1)
Az - b

These are termed primal-dual equations not because they can be shown to arise from
a primal-dual form of LP, but simply because it is now desirable that both z and =
remain strictly positive. The Jacobian of f,4 is given by

XZo
Joau=| -1 HAT
0 A0

If we apply Newton’s method to (6.4.1), the following system is solved at each itera-
tion:

Az Zzx — pe
Ja| Az|=—-|c+Hz—2z-ATx]. (6.4.2)
—An Az~ b
The corresponding KKT system is
X-1Z AT A - pX"le - AT
H+ T) o _[etHe-pXTe . (6.4.3)
A 0 —-Ar Az - b

As in the primal and dual cases, we may obtain equations in just Ax:

AH+ X 'Z) "ATAr =b— Az + A(H + X1 Z)"(gp — A™r). (6.4.4)

A proof of convergence is no longer obvious since it is no longer transparent that
restricting z; > 0 and z; > 0 will not inhibit convergence. If we introduce a separats
step for z and 7 as before, we can show that the resulting sequence converges to
ihe desired values provided the step for z is chosen as in the primal method. To
appreciate why, observe that the right-hand side of (6.4.3} and (6.2.5) are identical.
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Assume for the moment that z; is feasible; then the right-hand side of both systems
is (ATr — g5,0). Let V denote a basis for the null space of the columns of 4, i.e.,
AV = 0. Since AAz; =0, it follows that

Axk = VAxv,
where
VI(H+ X"'Z)VAz, = =V,

Premultiplying this equation by Az? gives
Azlgs = A2V, = ~ALTVIH + X' 2)V Az,

Since the largest eigenvalue of VI(H+X~'Z)V is bounded and the smallest eigenvalue
is bounded away from zero for all k, it follows that Az is a direction of sufficient
descent of B(xz, u). Given that we choose a to satisfy the Goldstein-Armijo condition,
it follows from standard convergence analysis that limg_.o {|gs|| = 0. The convergence
of {zi} and {=} follows from Lemma 6.2.2.

We have assumed that z; is feasible. A similar analysis based on the use of a merit
function such as M(z) = B(z,u) + p||Az — b||; makes this assumption unnecessary.

6.5 A Second Primal-Dual Method

If we premultiply the first n equations of (6.2.3) by %Z ~1 we get
“1 -1 1
X'Z¢e——e=0.
I8

Consequently, the solution of (6.2.3) such that £ > 0 is also the solution of the
following sytem of equations:

X177 le— ie
fodlz,z,m) = e+ He — 2 ATr | =0. (6.5.1)
\ Az —b

The Jacobian of fpd is given by

A0 U e S|
Ja=| -1 H AT
0 A 0
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If we apply Newton’s method to (6.5.1), the following system is solved at each itera-
tion:

Az X-1Z-1le— ﬁe
Jua| Az|l=—|c+Hz—2—-ATr|. (6.5.2)
—Ar Az —b

The corresponding KKT system is

r— ~ 1 — AT
H+ X2 AT\ [ Ac\_ _[e+He-2:417% Aw\. (653)
A0 )\-Ar Az —b )

Note the matrix on the right-hand side of 6.5.3 is identical to that of 6.4.4. Again,
using the Schur complement of H + X~1Z, we obtain equations in Axn:

A(H+X"'2) ATAx = b= Act+ A(H+X"'2) " (c+ Ha—2z4+> 22— ATx). (6.5.4)
J7;

In this primal-dual method a proof of convergence is quite straightforward. We
now have || f,4| = oo if any element of z or z is zero. Consequently, “aking a step that
satisfies the Goldstein-Armijo conditions ensures that the smallest singular value of
J 4 is bonded away from zero and that the largest singular value is bounded. Uniike
the three previous methods, it is not apparent that the step taken in the x variables
may be different from that taken in z and .

6.6 Affin: Variants

In the LP case it can be shown that the vector

. Az(p)
= lim ————
P= L az(w)]

exists. Algorithms based on using p as the search direction have been advocated
by a number of researchers. A proof that such an algorithm converges is given by
Vanderbei and Lagarias [VL90]. It is of some interest therefore to consider whether
similar algorithms exist for the quadratic case. In this section we assume H is positive
definite.

In the case of the primal method, simple inspection of the equations (6.2.5) shows
that if H is nonsingular,

H AT P\ _ c+H:1:—AT7r\
(A 0 ) (—An—)——ﬂ( Az—b )’ (66.1)
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where  is a positive constant chosen to ensure ||p|| = 1. The search direction in the =
variables always points towards the constrained stationary point of the QP problem
with no bounds. Obviously such an algorithm will not in general converge to the
desired solution.

In the case of the dual method we get

22 AT P _ 221

Clearly any search directiou that does not involve the Hessian of the quadratic is not
likely to be sensible. There is somewhat more hope that the primal-dual methods
will lead to sensible search directions since p only occurs on the right-hand side of the
Newton 2quations. For the first primal-dual method the corresponding KKT system

H+X1Z A7 p c+ Hx — AT
= , 6.6.3)
( A 0 ) (—Avr p Az —b (

which reduces to the usual primal-dual affine algorithm fcr LP when H = 0. Even
though the right-hand side ¢ + Hz — ATz does not tend to zero, such a method
converges, though more slowly than when p is smoothly reduced.

The second primal-dual method reduces to

H4+X1Z AT P -2z
= ~f . 6.6.4
( A 0 ) (-—é'n' Az —-b ] ( )

N\

and in this case the right-hand side does tend to zero. It is not immediately apparent
that this gives a sensible direction. However, there is no prima facie case to dismiss
it.

6.7 The Case When H + D is Trivially Invertible

If H+ D is trivially invertible (where D is a diagonal matrix), we may obtain Ar by
first obtaining A from equations (6.2.6), (6.3.5), (6.4.4) or (6.5.4). Such an approach
is popular in the LP case, in spite of the fact that the Schur complements ADAT (for
various diagonal D) are much more ill-conditioned than the KKT systems themselves.
The approach is particularly attractive if m € n.

A number of importan. QP problems have an /I that is of the required structure
or may be converted to such a problem. Fxamples of two such objective functions

are

minr’r

rexRm
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and

min -;—fo’!l r+ -%xTV vz,

reR"
where M is a positive definite diagonal matrix and V is an n x ¢ matrix with { << n.
In the second case it may appear that H = M + VVT is not trivially invertible.
However if we introduce the variable y = V7z, the problem is transformed into one
whose Hessian is diagonal, at the cost of adding ¢ variables and ¢ general constraints
to the problem.

Free Variables.

We may like to use this approach when H is only positive semidefinite. Under
such circumstances H + D will normally be positive definite. However, if there are
some free variables it may be that H + D is singular. We shall consider just the primal
algorithm but the approach we advocate may be used in all the methods. Suppose
that just z; is a free variable. In place of (f;); = z; — p/x; we now have (f;); = z,.
Provided the KKT system is solved, the effect this equation has on the Jacobian is
of no consequence. However, in the KKT system in place of / 4+ 1X~? we now have
H + D, whered; = 0 and d; = puz;? for i # j. Since H+ D may be singular, its Schur
complement may not exist. A means of circumventing this difficulty is to replace the
equation z; = 0 by

€9z = pu.
We then have d, = z;. Since z}'(p) = e~ at the solution we may keep z, > ¢ > 0.
It follows that H + D is nonsingular and its Schur compiement exists.

6.8 No General Constraints

If there are no general constraints, the barrier subproblemn is an unconstrained min-
imization problem. A problem of considerabie interest in this category is bound-
constrained linear least squares. For the primal method the subproblem is

minég}‘ize B(r,p) =z + %zTHI - Z Inz,. {(6.8.1)
7

Even if H is indefinite, such a problem may be solved by a modified Newton method
based on a Cholesky factorization. For example, see Forsgren, Gill and Murray
[FGMS89al.

When H is positive definite as in the least-squares case, the equivaleni reduction
of equations (6.3.2), (6.4.1) and (6.5.1) is also possible. Ncte that when there are
only simple bounds, degeneracy cannot arise in the primal or the dual.
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6.9 Combination Methods

Any linear combination of the four sets of equations (€ 2.3:, (6.3.2), (6.4.1) and (6.5.1)
may also be used to define a method. If the linear ccmbination is such that the re-
sulting function is infinite if any element of z or z is zero, then the convergence of
Newton’s method follows from an identical argument to that given for the second
primal-dual method. To illustrate the approach, consider the following linear combi-
nation of the foq and fou:

- 1
pfpa + ;fpd =0.
The resulting Jacobian is

—pZX 41X 12— px2Z27 0
-1 H AT
0 A 0

If v = p2(Z2%X?* — p?I)(pe — 221 + 12%2X?e), the corresponding KKT system

reduces to
H+X'Z AT Az  [c+Hz—-ATz+v
A 0 -Ax ] Az - b '

which has the same KKT matrix as the two individual primal-dual methods.




Chapter 7

QPS Format

7.1 Introduction

For linear programming problems, the MPS format [IBM76] has become the industry
standard and it is recognized by 2ll commercial mathematical programming systems.
Unforiunately, there is no equivalent standard format for quadratic programming. In
this chapter we define a format suitable for large, sparse quadratic programs of the
form

minimize ¢z + 1oTHz
TERD
subject to b <Az < b, (7.1.1)
{<z<u

The basis of designing the format has been to adhere as closely as possible to the
desirable features present in the MPS format.

7.2 The QPS File

A QPS file is required to define the quadratic program. The file contains names for
the variables and constraints, as well as the nonzero elements of A, H, by, b, ¢, £ and
u. As with an MPS file, a fized format must be usc !, i.e., each item of data must
appear in specific columrs. The QPS file is divided into the foliowing sections:

84




7.2. The QPS File 85

NAME
VARIABLES

ﬁESSIAN
éVECTDR
AOWS

éOLUMNS

ENDATA

Each section starts with a header line that is the section name beginning in col-
umn 1. The remaining data within a section has the following fixed format:

Columns 2.3 5...12 15...22 25...36 40...47 50...61
Contents Key Name() Namel  Valuel  Name2  Value?

In addition, “comment” lines are allowed; these have an asterisk ‘*’ in column 1
and any characters in columns 2-22.

The NAME Section.

1..4 5..12 15...22
NAME MYQPNAME (for example)

This section constitutes just one line with the word NAME in columns 1-4, and a
name for the problem in columns 15-22. This NAME line is normally the first one in
the MPS file, but it may be preceded or followed by comment lines. The name for
the problem is used to label the solu‘ion output and it may be from 1 to 8 characters
of any kind, or it may be blank.
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The VARIABLES Section.

Key Namell Namel Valuel Name2  Value?
2.3 5...12 15...22 25...36 40...47 50...61 (fields)

VARIABLES
LO VARO1 1.0
UP  VARO2 3.5
RA  VARO3 ~4.6 90.7 (for example)
MI VARO4 200.0
FR VAROS

This section contains one line for each variable. Field Name( gives the variable
an 8-character name, and field Key defines the variable type by specifying its bounds.
The default bounds on all variables z; (excluding slacks) are 0 < z; < oo. If necessary,
the default values 0 and oo can be changed to ! < z; < u. The various bound-types
are:

Key RBound-type
FR  Eree variable
FX Fixed variable
MI  Minus infinity
PL  Plus infinity
RA  Range

L0 Lower bound
UP Upper bound

All these bound specifications overwrite the default values. The numerical values
for the bounds are specified in the fields Valuel and Value2. For in~tance, they define
respectively the lower and upper bound for the range type. Incidentally, only this type
(RA) needs two values. The remaining bound-types need at most one. The numerica!
value, say f, can appear either in field Valuel or Value2, but not :n both. That is,
one of them should be blank in the input file; otherwise the sum of the two values will
be taken as ihe bound. In all sections of the QPS file, fields Valuel and Value2 are
read using Fortran format E12.0. This allows values to be entered in several forms;
for example, 1.2345678, 1.2345678E+0, and 12.345678E-1 all represent the same
number. It is usually best to include an explicit decimal point. In some computer
systems, spaces within the value field are taken as 0’s. Hence, if an exponent like E-3
is used, it must be right-justified in the value field.
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The types LO and UP are modifiers of the default values. The tyne LO will overwrite
only the default lower bound. Analogously, the UP type will overwrite only the default
upper bound. Every variable must appear in the VARIABLES scction and at most
once. If a variable is missing, it will not be recognized when its name appears in later
sections. If there are duplicates (more than one entry with the same varizbie name)
an error message will be issued indicating so. For instance, the following combination
cannot be used to define a bounded variable:

LO VAR123 -5.0
UP VAR123 7.0

Instead, the range bound-type should be used:
RA VAR123 -5.0 7.0

For the bound-types other than RA, let ! and u be the default lower and upper
bounds respectively, and let = and 8 be the variable and bound specified in the
VARIABLES section. The various types allowed result in the following bounds:

Key Bound-type Resulting bounds
L0  Lower bound B <z<
UP  Upper bound ¢ <z<
FX Fixed variable g <z<
FR  Free variable —-o00 <z <
MI  Minus infinity —-o0 <z<
PL  Plus infinity p <z<

g e

Applying these rules to the examples at the beginning of this section gives rhe
following bounds:

10 < VAROL < oo
—00 < VARO2 £ 35
-4.6 < VARO3 < 90.7
—oo < VARO4 < 200.0
~o0 < VAROS € oo

Note that types FR, MI, or PL should always be used to specify “infinite™ bounds:
they imply values of £10%°, which are treated specially at certrin times. Note also
that types MI and PL are different from the MPS format.
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The HESSIAN Section.

Namel Namel Valuel Name2 Value?
5...12 15...22 25...36 40...47 50...61 (fields)

HESSIAN
VARO1  VARO1 1.0 VARO3 -3.0
VARO1  VAR11 2.0 VAR21 4.5
VARO1 VAR30 5.5
VAR11  VAR12 ~1.0  VAR1S 80.
VAR11  VAR23 -8.4
VAR25 VAR25 3.3
VAR25  VAR33 2.2
VAR22  VAR25 3.3 VAR22 0.4

This section contains the nonzero elements of the Hessian of the quadratic pro-
gram. To specify the indices for the nonzero element h;;, the names associated with
the variables z; and z; in the previous section are used. Each line defines at most
two elements, h;; and hy; say. Fields Name0, Namel and Name2 contain the names
for the jth variable, 7th constraint and kth constraint respectively. Fields Valuel and
Value2 contain *he numerical values h;; and hy; respectively.

Since the Hessian is symmetric, only the elements in either ike lower or the upper
triangular block need to be specified. If both elements k;; and hj; are entered, an
error message will be issued indicating that there is a duplicate.

Notice that the element a;; of the constraint matrix invoives indices of two distinct
sets: the VARIABLE names and the ROW names. In contrast, the indices of the
element h;; of the Hessian are both VARIABLE names. Therefore, the ordering of
the variables becomes critical when entering the Hessian. It is more efficient and
comj.utationally convenient to have an ordering already assigned t« the variables
before tiie Hessian it read in. For this reason, we chose the VARIABLE section to
be the one that defines the ordering of the variables, namely the order in which they
appear,

The nonzern elements of the Hessian must be entered by coluran; that is, they
must appezr gionped iugether bafore the elements of the next column in the QPS
file. If a celym. bas several nenzeros it does not matter what order they appear in.
Coiunmns a2, 2l.c be specified in any order. However, sorting the Hessian elements
can be avaided if tite columns of the Hessian are entered in the order defined in
the VARTABLES scction, and only the elements in the lower triangular block are
specified. The implcmentation recognizes such a case and economizes accordingly.
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The CVECTOR Section.

Namel Value! Name?2 Value2
15...22 25...36 40...47 590...61 (fields)

CVECTOR
VARO1 1.0 VARO2 -3.0
VAR50 2.2
VAR33 ~1.3  VAR20 50.1
VAR40 2.2

This section contains the nonze;o elements of the vector ¢ involved in the linear
term of the quadratic objective function.

For each nonzero component of ¢, say c;, field Name! (or Name2) contains the
name for the jih variable and field Valuel (or Value2) contains the numerical value
c¢j. At most two nonzero components of ¢ can be specified per line.

The ROWS Section.

Key Name0 Namel Valuel Name2 Value2
2.3 5..15 15..22 25..36 40..47 50..61 (fields)

ROWS
E ROWO1 -3.0
G ROWO02 2.2
RA ROWO3 -1.3 50.1
L ROWO4 100.2

In this section we have kept the terminology used in hucar programming, where
the general constraints are referrea as rows. The i:OWS section contains one line for
each constraint.

Key Row-type Resulling constraint

E = alz =4
G > alzt > 3
L < alz <8
RA range (<d’z<u

The 1-character Key may be in column 2 or 3. Row-types have the natural
interpretation in terms of a linear function a’z and bounds 8,1 and u. Nonzero

tlements of the row-vector a will appecar in appropriate parts of the next section.
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The COLUMNS Section.

Name0 Namel Valuel Name2 Value2
5..12 15..22 25...36 40..47 50...61 (fields)
COLUMNS

VARO1 ROWO1 1.0  ROWO02 -3.0

VARO1 ROWOS 2.5  ROWO3 1.123

VARO2 ROWO2 -11.123

VARO2 ROW20  7.777

VARO3 ROWO1  1.2E-02

This section defines the constraint matrix. It uses the name assigned to each
variable z; in the VARIABLES section and lists the nonzero entries a;; in the cor-
responding column of the constraint matrix, using the same fields as the HESSIAN
section. As in the latter, the nonzero elements within a particular column must be
grouped together. If a column has several nonzeros, it does not matter what order
they appear in (as long as they all appear before the next column). Columns in the
constraint matrix correspond to variables in the problem; hence the VARIABLES
section also defines an ordering for them. As in the HESSIAN section, it should be
possible to enter columns in any order, and a sort would again be required. This
option has not yet been implemented.

In general, Name0 is the column/variable name, and Name!l, Valuel give a row
name and a value for some element in that column. If there is another nonzero
element in that column, it may appear «s Name2, Value2 on the same line, or may
be on the next line. If either Namel or Name2 is blank, the corresponding value is
ignored.

There is no need to specify columns for the slack variables; they are incorporated
implicitly.

If the columns appear in tue same order as in the VARIABLES section, the im-
plementation recognizes that the constraint data need not be sorted.

7.3 Differences from MPS Format

The design of the QPS format combines the desirable features present in the MPS
format for linear programs, with the necessary extensions to be able to specify a
quadratic program. In this section we describe the differences betwcen the two for-
mats.

In the MPS format the names for the variables are specified in the COLUMNS
section and their bounds are defined in the BOUNDS section. In the QPS format
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there is no BOUNDS section. Instead, a new section, the VARIABLES section, has
been introduced where both names and bounds are specified.

With the MPS format it is possible to define several related problems in just one
file, by specifying several right-hand sides (for example) or several bound sets. At the
moment only one problem can be specified in a QPS file.

In order to minimize the storage required, the QPS fo: nat does not allow a VARI-
ABLE name to be the same as a ROW name.

The general constraints are referred to as rows in both formats. In the MPS
format a constraint is defined as follows: its name and type are specified in the
ROWS section, its right-hand side (if nonzero) is defined in the RHS section and
for the case where the constraint has lower and upper bounds, they are specified
implicitly in the RANGES section. In the QPS format the ROWS section contains
not only the name and type of a constraint, but also its bounds. Hence, the RHS and
RANGES sections are no longer needed.

Unlike the MPS format, in the QPS format the COLUMNS section does not
include the vector c involved in the linear term ¢’z of the objective function. Instead,
it is defined in the CVECTOR section.

A new section has been introduced in order to specify the Hessian matrix. The
format used to express this matrix is identical to the one used in the COLUMNS
section of the MPS format to define the constraint matrix.

In the MPS format there are only two sections where the variables appear: the
COLUMNS section and the BOUNDS section. The ordering assigned to the variables
corresponds "o that in which they appear in the COLUMRNS section. In the QPS
format, there are three sections involving the variables: the VARIABLES section,
the HES “IAN section, and the COLUMNS section. The VARIABLES section must
come first and it is used to define the ordering of the variakles. This extension proved
necessary because the HESSIAN and COLUMNS sections may not contain a. complete
list of variables. (In a general QP, both H and A may contain empty colurnns.)

If the HESSIAN section was required to contain a complete list of variables, it
would seem that we could use it as the one that defines the ordering in the variables.
Unfortunately it vculd no lgnger be possible to avoid sorting the Hessian elements if
we insist on checking for duplicates.

7.4 Test Problems

Linear programs are a subset of the problems under study. Hence, a code has been
developed that takes as input the specification of a linear proyramming problem in
MPS format and produces as output the corresponding definition in QPS format. In
this way, test problems can be generated from the set of linear programs ivailable in
the software library clib {Gay85].




92 Chapter 7. QPS Format

Finally we point out that the QPS format i¢ particularly appropriate to define
problems that result from adding a quadratic term to an existing linear program,
whose specification in the MPS format is already available. For instance, regularized
linear programs can be defined in a straightforward manner, i.e., those with objective
function of the form

'z + Jpllz — zoll?,

where p > 0. (By varying the size of p a serles of test cases can be generated with
varying degrees of nonlinearity.) On the other hand, a different format might be
more suitable when the sparsity pattern of the constraints and the Hessian of the
Lagrangian function are related. Quadratic programs of this form arise in the opti-
mization of electrical power transmission (the Optimal Power Flow problem [SAMS80))
when one applies a sequential quadratic programming method using exact second
derivatives.

In general, the QPS format will be appropriate as long as the Hessian can be
expressed using one of the common formats for sparse matrices, namely, a list of

riples (i, j, hij)-




7.5. Erample

93

7.5 Example
* This is an example of a QP in QPS format.
... S b SN X R L SO 5......... 6
XAME DIET
VARIABLES
RA OATMEAL 0.0 4.6
RA CHICKEN 0.0 3.0
RA EGGS 0.0 2.0
RA MILK 0.0 8.0
RA PIE 0.0 2.0
RA PORKBEAN 0.0 2.0
UP BREAD 2.0
L0 BUTTER 9.5
FX PASTA 33.3
MI COFFEE 6.57
PL TUNA 4.3
HESSIAN
JATMEAL  OATMEAL 2.0 EGGS 5.0
OATMEAL PIE 0.5
EGGS PORKBEAN 7.0 EGGS 4.0
PGRKBEAX PORKBEAN 0.7 PASTA 30.
PORKBEAN COFFEE 10. TUNA 50.
BREAD BUTTER 60. PASTA 70.
PASTA PASTA 80. COFFEE 90.
PASTA TUNA 100.
CVECTOR
COSsT OATMEAL 3. CHICKEN 24.
CoST EGGS 13. MILK 9.
COsT PIE 20. PORKBEAN 19.
ROWS
RA ENERGY 2000. 12000.
G PROTEIN 85.
G CALCIUM 800.
COLUMNS
OATMEAL  EMNERGY 110. PROTEIN 4.
OATMEAL  CALCIUM 2.
CHICKEN  ENERGY 205. PROTEIN 32.
CHICKEN  CALCIUM 12.
EGGS ENERGY 160. PROTEIN 13.
EGGS CALCIUE 54.
MILK ENERGY 420. PROTEIN 8.
MILK CALC 4 285.
PIE ENE! &% 420. PROTEIN 4.
PIE CALCIUN 22.
PORKBEAX ENERG™ 260. PROTEIN 14.
PORKBEAN CALCIu 80.

ENDATA




Chapter 8

fmplementation Issues and Numerical Results

8.1 Introduction

An implementation of the barrier algorithm BARQP was developed for the solution
of both linear and quadratic programming problems in the standard form

P . - T l T
minimize Qz)=cz+ 5 Hz

subject to Az =8, [<z<u

The implementation treats A and H as sparse matrices and b, ¢, [ and u as sparse
vectors, specified in the QPS format of Chapter 7. The algorithm follows closely that
described in Chapters 3 and 4.

Barrier algorithms are sensitive to many of the parameters used in their definition.
The development of 2 practical implementation involves considerabie experimentation
to determine values for these critical parameters that strike a balance between effi-
ciency and reliability. In this chapter we describe the main parameters, such as the
initial g, the final u, and the distance of the initial point from its bounds.

Not all the features are curreatly incorporated in the code. For example, we have
yet to include procedures for computing directions of negative curvature. As previ-
ously mentioned we hope to reduce the need for such directions by a suitable choice
of parameters. However, any complete implementation would need such procedures
as a safeguard.

One of the aims has been to explore the performance of the barrier algorithmon a
set of real-world problems, and to compare its execution time with that of MINOS. a
well known code for sparse linear and nonlinear prugramming [MS83l. These resuits
are not meant as an accurate reflection of the performance of a barrier QP algorithm
but are intended to serve as an indication of the algorithin's potential.

8.2 Free Variables

The form of the problem discussed so far assumes that a variable has one or two
bounds. In practice some variables may have no bounds. Such variables are termed
Jree and they are not included in the barrier term. The resulting zero diagonals present

94
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a Jifficulty if the KKT system is solved via the Schur complement {sce Equation
{6.2.6}). (In contrast, free variables are an asset to the simplex algorithm since they
may be included in the basis throughout.) If the KKT system is solved directly, the
only difficulty is that the pivot order chosen in the symbolic factorization may be
revised in the numerical phase. hterfstipg} v for QP’s, free variables may not present
a difficulty even if the KKT system is solved by the Schur compizment approach,
since Hg = H + uD could be nonsingular even if D is singular.

8.3 Feasibility

interior-point methods «iffer from the simplex method in satisfying the bounds

£ < r < u throughout and dec.aring ~primal feasibility” when Az = b. {The primal

simplex method satisfies Az = b throughout aid achieves feasibility when € < 7 < u.}
Farly interior-point ;rnpse;. ntations for LP achieved primal feasibility by setting

up a Phase | problem of the form

211] ¢
=L

subject to Az +&rg =b,

£<zr<u §20.

(e.g. (Kar84,GMS*86, Mar89]), where rg = b— Az, is the residual for some g*wr initial
oix-:.. rq with £ < 1o < u. A refinement is to use a “composite objective™ of the form
‘l".t + £ for some w > 0, in order to drive the feasibility phase closer to optimality
the original problem.
This approach was {ollowed in the initial versions of our barrier QP method. The
Phase | problem took the form

min % fc?xé--:t}-ﬂz- - £
EF 2

subject to  Ax +€rp =5,

and feasibility was declared when £ decreased from & = | to zero. Unfortunately
r3 is 1ypically a dense vector, and the parameter w must be chosen carefully. Also.
provision must be made to reduce « at any iteration if £ does not decrease

These difficiities are avoided by treating the barnf-r inethod as the ap
of Newton's method to the QP feasibility and optimality conditions. as des

Chapter 4. The result is a "single-phase”™ primal method in which the ment function

r

Miz.py =gl +

£3
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is reduced at each iteration. In general, r = b — Az is reduced to zero before ¢,, and
remains zero thereafter (since the equations Az = b are linear). Thus, feasibility may
be achieved even if the algorithm is terminated prematurely.

8.4 Solution of the KKT Systems

Our main software tool for solving the KKT systems is the Harwell Subroutine Library
package MA27, due to Duff and Reid [DR82,DR83]. This is a multifrontal code for
solving sparse symmetric linear equations Ky = 2. When K is sufficiently positive
definite, MA27 computes a sparse Cholesky factorization K = UTDU, where D is
diagonal and U is unit upper triangular. Otherwise, MA27 uses an implementation
of the Bunch-Kaufman algorithm [BK77] to compute K = UTDU, where D is now
block-diagonal with blocks of dimension 1 or 2.

Two of the design aims for MA27 were to be competitive with existing Cholesky
codes on definite systems, and to be nearly as efficient on indefinite systems. The
first airn was achieved and the second was at least partially achieved, in the sense
that the package has proved to be efficient on systems that are only slightly indefinite
(i.e. systems where nearly all eigenvalues have the same sign). Unfortunately, the
KKT systems arising in our context are usually very indefinite (unless m < n). The
analyze phase of MA27 assumes that K is definite and in particular that all diagonals
of K are nonzero. When this is not true, the tentative pivot order is sometimes
drastically revised in the numerical phase, with a consequent increase in nonzeros in
the numerical factors. The associated increase in computation time is substantial in
the case of KKT systems.

In the near future, we expect a significant improvement will be realized using a
new version of the package to be called MA4T; see Duff et al. [DGR*89].

In general, Aasen’s tridiagonalization method [Aas71] is considered competitive
with the Bunch-Kaufman approach for solving dense indefinite systems. Aasen’s
method computes a factorization of the form K = UTTU where T is tridiagonal.
However, we do not know of a sparse implementation.

8.5 Rank Deficiency in the Constraint Matrix

In many practical applications, the constraint matrix is either poorly conditioned

or singular. The associated KKT system is then also ill-conditioned or singular.

(Consider the case when the rows of the constraint matrix A are linearly dependent.)
When A is ill-conditioned, we consider the following modified KKT system:

Hy AT —PY _ {9
EOEE)
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where § > 0, g, = ¢+ Hzy — ATy, and r = b — Az, In most cases the modified
system will be better conditioned when A is pcorly conditioned. If & is small we
would not expect the convergence of Newton’s method to be significantly affected.
In practice we have used § values in the range (10~%,107%). Systems of the form
(8.5.1) have been studied in the context of sequential quadratic programming by
[Mur69,Big75,Gou86b).

The modified system corresponds to the following perturbed QP:

min p+ %pTHBp + %6yTy
i (8.5.2)
subject to Ap—by=r.

We obset~. that the dual to (8.5.2) is

min rTy + 1pTHep + 1637y
i (8.5.3)
subject to Ay + Hpp=c.

In this formulaiion we see that the modification term serves to bound the Lagrange
multipliers, which are unbounded when A is rank deficient. (The modification can
therefore be viewed as a trust-region treatment of the Lagrange multipliers.)

We conclude this discussion by simply stating that the search direction given by
the modified system is usually still a descent direction for the merit function given in
Chapter 3. More specifically,

: )
@ dYVM(z,m) = ~llgull ~ lIrl = ™
which is negative if ¢Tr > 0 or § is sufficiently small.

8.6 Simple Extrapolation

Let z and g.(z,p) be the final point and gradient obtained for a particular barrier
parameter g. When p is reduced, we generally retain a as the starting point for
the new subproblem. Unfortunately, ||g.|| inevitably suffers a sharp increase. Ior
example, consider a variable z, that is close to its lower bound of zero, and suppose
i changes to fu (0 < B < 1). By definition, the j-th component of g, changes by the
amount

plzi = Bufz; = (1 - Bufz; = (1 - )z,

where z; is the j-th element of ¢ + Hz ~ A™r. If z; > 0 and ||g.|| was previously
small, we sec that [|g,]| will no longer be small.
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A simple means for counteracting this effect is to change z, to Bz;, i.e., to reduce
“small” elements of = by the same factor as p, so that the corresponding gradient
element does not change. Our experience has been that this strategy can reduce
the number of minor iterations needed to solve each of the subproblems, as long as a
conservative test is used to judge whether «; is “close” to a bound. (The main danger
lies in moving the “wrong” elements cf z towards their bounds.)

8.7 Conventional Extrapolation

Let x(px) be the solution to the nonlinear subproblem B(z, pux). As described in Fi-
acco and McCormick [FM68], if u;, were steadily reduced to zero, the infinite sequence
of points {z(u;)} would defiuc a trajectory leading to 2, the solution of the origi-
nal problem. In practice we estimate () for only a few points on the trajectory.
Using conventional extrapolation we can define an approximation to z* = 2(0) by
extrapolating the solutions of two subproblems. Consider the expansion

(p) + v + O(}), (8.7.1)

where v = 2(0), and let z(y;) and 2t “e the solution of subproblems B(z, 4;) and
B(z, ;) respectively, with p; > pg. 1 3.7.1) we obtain

pz(pe) = pax(pn) = (1 — p2)z* + O(1d),

so that I
*
g & z(p2) — p2(p01)).
(11 = p2)
Since * = z(u,) + p for some p, we can define an approximate step to the solution
as follows:

p= ' — z(p2)
~ P18(p2) = paz(m) — (i1 — p2)e(pta)
2 (B2 — 1)

= ——(xz -z .

s (alin) = (i)

When p is decreased in a linear fashion, i.e. gz = Bu; with 0 < f < 1, we have
p= s (z(2) — =(p1)), (8.7.2)
(1-5)

which can be used as a search direction to obtain an estimate 2* ~ z(u3) + ap for
some positive steplength a. Note that nothing is lost if the search proves unsuccessful,
since the effort expended in the search is negligible.




8.8. Parameter Selection 99

In the early iterations when we are far from the solution, it may seem better to
extrapolate to z(u3), the solution of the next subproblem B(z, u3), instead of to z*.
Analogously to (8.7.1) we have

z(pe) = z(pa) + Y(px — #3) + O(pk — pa)?,

where 7 = z'(p3). Hence,

(B2 — pa)e(p) — (1 — pa)z(pz) = (w1 — pz)za + O(4}),

so that

2{ytz) ——g-j—jx(m )+ @xwz) (8.1.3)

where S, = pr — p,. As before, when p decreases linearly, (8.7.3) becomes

als) 0 = () + (—@;—”x(m

Since z(pu3) = z(u;) + p for some f, we can define an approximate step to z(u3z) as

p = 2(ps) — (a)
- %(z(m) — o). (8.7.4)

When p is decreased in a linear fashion, (8.7.4) becomes

P = B(x(p2) — z(p11)). (8.7.5)

Comparing (8.7.2) and (8.7.5), we see that the extrapolation to z* or to z(u3) leads
to the same search direction (to within a scalar factor). Hence the only difference can
be that the linesearch may give a non-equivalent steplength.

8.8 Parameter Selection

Within the barrier framework, a number of parameters must be specified. In general,
we have found that the method is somewhat sensitive to this parameter selection,
though there is a fairly broad range of suitable choices. In this section we summarize
the criteria used in our barrier method and highlight some of the issues.

¢ Initial barrier parameter yo

This parameter must be normalized by the number of logarithmic terms and
the initial function value. That is, for a specified value fip we take

fto = (=) F(2o)-

T




L

100 Chapter 8. Implementation Issues and Numerical Results

This corresponds to setting the weight of the logarithmic perturbation relative
to the original QP function value F(zo). In general, if yo is too large, a number
of iterations will be wasted. That is, we solve a series of subproblem that are
distant from the one we are interested in.! If, on the other hand, o is chosen
too small, the iterates tend to progress near the boundary of the feasible region
similarly to an active-set method. In practice, a range of values for Jip between
1 and 10® work reasonably well on most problems.

e Final barrier parameter p;
As discussed in Chapter 3, the relative accuracy of the final answer is propor-
tional to the size of the smallest u that is used in minimizing B(z,p). Thus,
for a specified value iy,

By
ps = (77 )F(zo)

yields |log(fis)| digits of accuracy. We have used iy = 107.

¢ Initial point z,

The provision of a “good” initial point is critical to the performance of the
algorithm. In general, both feasibility as well as optimality should be considered.
Ideally, the initial point should be chosen near the solution of the minimization
problem for the corresponding choice of p. If, for example, approximate values
of the variables are known, they can be used for an initial point. Unfortunately,
this information is normally not known and we must be satisfied with a “rough”
initial point that is judiciously far from the bounds.

For he barrier method, it is necessary that the initial point be feasible with
respect to the inequality constraints. Since the inequalities are only simple
bounds, this is easily accomplished. However, feasibility of the equality con-
straints as well as the overall optimality conditions should be considered when
determining the starting point.

A number of possibie strategies have been proposed in conjunction with the
barrier method [Mar89)]. One possibility is to choose zq such that

lizoll = [18]],
where b is constructed from positive lower bounds and negative upper bounds

as follows: )
b= b— Zé’,-a,—— E ujaj.

{50 u, <0

1t should be noted that even when the barrier function is far from the original objective function,

significant progress can be made toward feasibility.
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If the matrix A is well-scaled, this choice generates a starting point that is
probably of the same magnitude as the true solution. Other possibilities include
using some kind of greedy algorithm to choose each component of z, such that
the initial residual 7o = b — Azg is to some extent minimized.

In our implementation, the initial point has been chosen to encourage rapid
convergence to the solution of the first barrier subproblem. To illustrate some
of the issues involved, consider the barrier function

B(z) = F(z)—p iln(x,-) (8.8.1)

j=1

corresponding to the bounds z > 0. Let us first assume that zq is chosen to lie
“close” to the bounds (i.e., ||zo]] € 1). In a neighborhood of the bounds, the
objective function is highly nonlinear; that is, the nonlinear logarithmic term
dominates the overall function value. This nonlinear behavior can be seen from

(4.7.6),
g = (1 - a)g, + ¢(a),

which expresses the new gradient as a function of the old gradient and the
current point. The last term t(«) accounts for the nonlinearity of the function.
We can see from (4.9.10) that when some of the z;’s are near their bounds,
this nonlinear term will dominate the equation (unless the corresponding p;’s
are cmall). Newton’s method proceeds by forming a linear approximation to
t(«). However, the linear approximation does not accurately capture the highly
nonlinear behavior of the function when some components of z arc near their
bounds. Therefore, Newton’s method cannot be expected to converge quickly
{as is observed experimentally for many problems).

Now consider the converse situation; that is, assume that the starting point
lies far from the bounds. In this case, z¢ is probably far from the true solu-
tion (assuming that some components of z* lie on their bounds). However, the
gradients of the logarithmic terms in (8.8.1) are now almost negligible. Un-
fortunately, it is these terms that force the iterates to pass through the center
of the feasible region (as opposed to moving along the boundary). Now that
they are small, the iterates tend to move toward the perimeter of the feasible
region and thus require more iterations. Roughly speaking, a typical sequence
of iterates might be as follows:

a) The initial point is far from all bounds.

b) The search direction is chosen as if the problem were unconstrained (since
the barrier terms are negligible).
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c) The steplength is chosen so that the next iterate is near one bour.d but far
from all others.

d) The computation of the third point proceeds in a similar fashion to tie
computation of the second point. Since only one barrier term is significant,
the search direction is computed almost as if only one bound were present.

Similarly for the subsequent iterates. To some extent the algorithm acts like an
active-set method where the initial working set is empty.

To overcome these difficulties, we follow [Mar89] and introduce a linear term
into the barrier function. Specifically, consider the QP

min 'z 4 12THz
z
subject to Az =b, [<z,

and the logarithmic/linear transformation

B(:t,p) = m:in Iz + %:cTHx - p(Zln(a:,— -L)-v Z(:rj - L)),
i=1

i=1

where v > 0 {e.g., v = 10™*). Notice that B(xz, 1) again approaches the true
solution as u approaches zero. The advantage of this modified barrier transfor-
mation is that good initial points can be more easily found. In particular, the
new fuaction B(z, 1) has the property that

- * ~ A Y
Jim (2 () = ) = .

This is in contrast to the standard barrie: function, which is unbounded. A
second advantage is that when we are far from the bounds, the gradients of
the {inear terms (thongh small) are not negligible like those of the logarithmic
verms. This bas the advantage of making the code somewhat less sensitive to
the point being far from the bounds. {See [M-+89] for some computational
experiments on the sensitivity of the initial point fo: - .."" .e.) Therefore,
we choose the initial point (the z;’s) by the following ....eria:

0 if z; is a free variable,

u; — 1/v if z; has only an upper bound,

l; +3/v if z; has only an lower bound,

3(st; + i;) i zj contains upper and lower bounds.

Experimentally we have found that. this choice of z¢ behaves well over a wide
range of problems.
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¢ Merit function

It can be shown that the search directic~ senerated by the KKT system is a
descent direction for the class ¢f merit fv =~ = given by

ME,n}—~, . - """
where w is a weighting parameter (see { +nter 3 for the case w = 1). In

practice, we find that it is generally better . tavor feasibility in deciding when
to backtrack. Typically we choose w = ;¥

o Adjustment of u

The strategy adopted for adjusting p is similar to that described in [GMS*86].
Specifically, y is decreased vy a factur g if either ||{g.,r)|l is reduced by a factor
+ or a maximum of ten iterations is reached. In the results reported, both 3
and v were 0.3. The efficiency of the algorithm was not unduly sensitive to this
choice. However, a more elaborate strategy may prove to be more efficient; for
example, 4 could be reduced by a factor that depends on the current point.

8.9 MINOS

MINOS is a Fortran-based mathematical programming system designed to solve a
wide variety of large-scale linear a:xd nonlinear programs [M383]. For our comparisons
we make use of the facilities for solving optimizatien problems with a smooth nonlinear
objective and sparse linear constraints {MS73].

As in the implementation of our barrier algorithm, linear coustraints are defined
in the form Az = b, 1 < z £ u. A nonlinear objective F(z) is represented by a Fortran
subroutinc that computes both F(x) and its gradient g(z) for any given feasible z.

“or linearly constrained optimization, MINOS uses a reduced-gradient algorithm.
This is an active-set method that computes a szarch direction using a null-space
approach. (See Chapter 2 for a discussion of active-set and null-space methods.)
The constraiat matrix is partitioned as A={ B § N ) where B is nonsingular. The
assnciated variables are termed basic, super\)asic and nonbasic respectively. The
active-sct matrix ~nd the nnil-space matrix then take the form

B-'s
— S N
A:(Bb ) z=| 1
I
0

wwel: satisfy AZ = 0 as required.
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MINOS maintains a quasi-Newton approximation to the reduced Hessian in the
form ZTHZ ~ RTR, where R is upper triangular. The key equations for computing
a search direction are therefore

R'Rps=-2"g, p=Zps.

A sparse LU factorization of B allows Z%g and Zps to be computed efficiently, but R
is stored as a dense triangular matrix of order s (the numbe: of superbasic variables).
Quasi-Newton updates to R invcive O(s?) arithmetic operations, as do various other
updates that are made to R as the active set changes.

In many cases s remains “moderate” (say less than 100) and the linear algebra
involved in using and updating R is not excessive. For QP, this may be true if
only a few of the variables are involved in the Hessian, or if the linear terms in the
objective deminate the quadratic part. However, if the number of active constraints is
substantially less than the number of variables, i.e., if s is large, the work involved in
maintaining R is correspondingly substantial. In such cases we can expect alternative
methods (such as a range-space approach or the barrier algorithm) to ke superior.

8.10 The Test Environment

Both BARQP and MINOS are implemented in Fortran 77 and were run on cne
processor of an Alliant FX/8 with the U "< operating system. The test runs were
made as background jobs when the machir 2 was lightly loaded. Although the Alliant
has virtual memory, sufficient real memory was availabie to prevent significant paging
activity. The recerded CPU times should be accurate to within about 1 per cent.
Times are measured in CPU seconds.

For consistency we have scaled the constraint matrix A using the same scaling
routine as in MINOS. It may seem that all of the KKT system should be scaled.
However, such 2 scaling would have to be applied at every iteration (since H + uD
changes). Notice that scaling A does imply a symmetric scaling of H.

The problems were solved without any preprocessing of the data other than scal-
ing. Most results reported in the literature for barrier methods are on problems that
have been preprocessed, a procedure that apart from reducing the size of the problem
can significantly improve the condition of the constraint matrix. Although prepro-
cessing may be a sensible first step in practice, our purpose has been to try and test
the limits of our method.

8.11 Quadratic Test Problems

A large collection of sparse linear programs resides in the Ip/data chapter of netlib
[Gay85]. The QP test problems were obtained from linear programs in this collection
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Rows Columns Nonzeros
SHARE2B 97 79 730
SHARE1B | 118 225 1182
SCFXM1 331 457 2612
E£226 224 282 2767
SCAGR25 | 472 500 2029
SHELL 537 1775 4900
SCTAP1 301 480 2052
SCSD1 78 760 3148
SCSD6 148 1350 5666

Table 8.1: LP test problems from netlib

by introducing a sparse matrix H into the objective. Initially we planned to set
H = pI for some fixed positive scalar p, but the choice of p was soon found to be
problematical because of the widely varying scale of the vector ¢. For any given p,
the quadratic objective
minimize ¢’z + pz’z
rERN

is sometimes essentially the same as cTx, while in cther cases it is dorainated by the
term prx.

One solution would have been to set p to be a constant multiple of |jc||. For
simplicity we chose to ignore ¢ and to set p = 1, thus obtaining the “minimum-
length” objective

minimize z7z.

zER"

This is one of the simplest possible quadratic objective functions, but it provides a
well-posed problem that often has physical meaning. Recall that the objective for
any convex QP may be converted to this form (with some help of some additional
constraints and variables), though only some of the variablcs then appear in the
transformed objective.

Table 8.1 gives details of the constraint matrix A for a representative set of the QP
test problems that were solved. Table 8.2 summarizes the performance of MINOS and
BARQP on these problems. The iteration counts for both methods are included for
interest, but of course the work per iteration differs substantially. Oniy the execution
times should be compared.

The column headed s shows the “degrees of freedom” in the solution obtained
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QP Problems MINOS | BARQP
Name s || Itns | Time H Itns | Time
SHARE2B| 6 ! 116 | 34 | 31 | 233
SHAREIB| 7 | 228 | 89 | 43 | 329
SCFXM1 | 34 || 509 | 352 | 37 |144.9
E226 72 | 832 | 53.0 || 41 |182.1
SCAGR25 | 95 || 610 | 62.6 || 30 | 49.3
SHELL | 188 762 | 119.5 | 37 | 72.9
SCTAP1 | 189 | 821 | 89.0 || 34 | 39.2
SCSD1 | 303 || 955 | 207.6 || 25 | 77.8
SCSD6 | 528 || 1707 | 1930.0 || 32 | 94.5

Table 8.2: Comparison of MINOS and BARQP on QP test problems

by MINQS, as measured by the final number of superbasic variables. This is the
dimension of the subspace in which MINOS applies a quasi-Newton method for un-
constrained minimization, using a densc triangular matrix of dimension s.

It can be seen that as s grows, the efficiency of MINCS degrades substantially.
In contrast, the efficiency of BARQP appears to depend only on the dimensions of
A. We can conclude that barrier algorithms typified by BARQP are likely to be
more efficient than conventional active-set reduced-gradient algorithms (typified by
MINOS) on the class of QP problems having many degrees of freedom.

Regarding linear programs, several examples in the collection were chosen to pro-
vide realistic LP test problems. The implementation is capable of processing the
larger netlib examples, but the execution time would be correspondingly greater. The
iteration counts for BARQP are comparable to those obtained by primal barrier al-
gorithms elsewhere (e.g. [GMS*86,Mar89}).

In most of the LP problems tried in our experimentaticn, the computation times
for BARQP were higher than for the simplex implementation in MINOS. The expla-
nation for this behavior lies in our use of the KKT system to obtain search directions,
and the use of MA27 to solve each system. We anticipate the BARQP times might be
reduced significantly by the use of MA47. For LP problems, H, is diagonal and vir-
tually all existing implementations reduce the KKT system to the Schur-complement
form AD?ATAr = d, where D® = H3' is diagonal. In many practical cases, AD?AT
and jts Cholesky factors are very sparse and can be computed efficiently with state-of-
the-art software. Our use of the full KKT system rather than AD?A47 can be expected
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to provide greater reliability.

8.12 Sparsity in H

The sparsity of H affects the two algorithms in different ways. In MINOS the only
requirement is to evaluate Hx and zTHz at each trial point. If H were in fact dense,
the work would increase with problem size as a function of n?, whereas in BARQP it
would be of order n3.

Thus without experimentation we can say that a large dense H may be more
efficiently handled by MINOS, unless as before it leads to a large number of degrees
of freedom. In general, increased sparsity in H helps both methods.

8.13 Conclusions

The purpose of the experiments has not been to conclude that BARQP in its present
state is a highly efficient algorithm. Our goals have been more modest. Firstly, it is
comforting that the number of iterations taken on the QP problems is similar to those
taken on the LP problems. If a development of BARQP is to be competitive with
active-set methods for QP then this is an essential requirement. Secondly, the CPU
times for BARQP are in the same ballpark as those of the active-set method MIN JS.
Undoubtedly a special-purpose QP active-set method may perform rather better than
MINOS, especially on a problem with many degrees of freedom. It is also highly likely
that (he «fliciency of BARQP can be improved dramatically. A comparison of such
codes ; 1ust await both the development of BARQP and the provision of a large-scale
active-:.-* QP code. While such codes do exist the current approaches are not based
on ihe -1 nmetric factorization of the KKT matrix, which is likely to be the most
efficiei:l -~ wproach. An interesting characteristic of the barrier approach for QP is
that the  ost effective methods for both the barrier algorithm and the active-set
approzch tse the same matrix factorization. This should greatly facilitate numerical
ccmaticon.

At the moment the only approach advocated for the indefinite case is based on
a piimal algorithm. In the LP case it is known that primal-dual methods are the
most effective approach. As described in Chapter 6, such an approach is possible in
the case of convex QP; also see [CLMS90]. We could attempt such an approach in
the indefinite case if we conld be assured that at every iteration the KKT matrix has
the required inertia. Failing that we would need to develop methods for computing
appropriate directions of negative curvature.

At the commencement of this work it was uncertain that the barrier approach to
LLP could be extended to more general problems. It was known that the complexity
results did extend to the convex QP case, but this was of little comfort. The concern

]
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was whether the numerical performance of such algorithms was inherently flawed,
since it was known that the barrier subproblems are in general ill-conditioned. (LP
was the exception to this rule.) We can now assert that provided the barrier trans-
formation is applied to a suitably formulated problem, there is no a priori reason
for assuming that the performance of barrier algorithms on general problems is any
different from that for the LP case. We anticipate that both barrier algorithms and
active-set methods will play a significant role in solving large-scale nonlinear opti-
mization problems.
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SOL 91-2: Barrier Methods for Large-Scale Quadratic Programming, Dulce B. Ponceledn
(June 1991, 117 pp.).

We present several new algorithms for solving the general large-scale quadratic programming (QP)
problem.

A feature of QP problems is the presence of linear inequality constraints, which introduce a com-
binatorial aspect to the problem. Currently the most common approach to solving QP problems is to
apply active-set methods, in which only some of the inequalities are used to produce a search direction
at each stage The combinatorial element is therefore inherent. As problems become larger, there is a
potential for an excessive number of iterations and consequent inefficiency.

In contrast, we use the now familiar barrier-function approach, which circumvents the combinatorial
aspect by introducing a barrier transformation involving all of the inequalities. The barrier term enforces
satisfaction of the inequalities by modifying the objective function. The transformed problem is solved
by a modified Newton Method applied to the nonlinear equations defining feasibility and optimality.

The main computation at each iteration of the new algorithms is the solution of an indefinite
system of linear equations. Barrier methods are known to lead to ill-conditioned systems. However, we
show by a special sensitivity analysis that the particular manner in which we have formualted the barrier
transformation leads to ill-conditioning that is benign.

We address the many details that need to be resolved in order to define an efficient algorithm
for solving large-scale QP problems. A specific barrier algorithm has been implemented, with linear
programming (LP) included as a special case. Numerical results are presented for a set of sparse QP
test problems. A feature of the implementation is that its efficiency does not depend on whether the
solutuion is near or far from a vertex of the feasible region.
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