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FILTERING WITH TWO SIDED FILTRATIONS

ROBERT J. ELLIOTT
Department of Statistics and Applied Probability, Univer-
sity of Alberta, Edihonton, Alberta, Canada T6G 2G1

Abstract The value of a diffusion at an intermediate
point is observed through noisy observations on each side.
Corresponding semimartingale decompositions and recur-
sive filtering equations are obtained.

1. INTRODUCTION
Suppose, a signal process X, is observed through a noisy observation
process y, for s E [0, 1], A situation is c msidered where the observa-
tions y, are known both for 0 < s < t < 1/2, giving a a-field Yt, and
for 1/2 < 1 -t < s < 1, giving a a-field Z,-tj, and we wish to estimate
X112 say, or some function F(x112) of x112. In mean square the best
estimate is

E[F(x,/2 ) I Yt V ZI-tl

and a recursive form of this estimate is obtained.. Such problems
possibly arise in reconstructing images from noisy data if one wishes
to estimate the signal at linear location 1/2 based on observations
from 0 to t and 1 - t to 1 either side. This estimation involves the two
a-fields, Y, increasing in the positive t direction, and ZI-t increasing
in the negative t direction. When x and y are diffusions the recursive
equation for

E[F(z, 2 ) I Y V Z._.]

is derived below. Detailed calculation' zn be found in [4].
The construction is related to the decomposition of diffusions

with respect to enlarged filtrations, and to Brownian bridges. To
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524 R.J. ELLIOTT

illustrate the methods the decomposition of a Brownian motion with
respect to a two-sided filtration is first obtained.

2. BILATERAL BRIDGES
The technique below was first used by Ito [5] to discuss the reverse
time decomposition of a Brownian motion.

Convention 2.1. We shall assume all filtrations are complete
and right-continuous.

Suppose {B1 }, 0 < t < 1 is a standard Brownian motion on
(Q, F, P). Write

Ft = a 0 < s < t}

Gt = {B, :t < s < 1}

and, (see Convention 2.1), consider the forward and backward filtra-
1

tions {F,}, {Gi}, 0 < t < 1. For 0 < t < 1 consider the two-sided

filtration {Ft V Gj-t} = {H 1 }.
1

Lemma 2.2. For 0 < t < - B is a {Ht} semimartingale with
2'

a decomposition

Bi = Mt - BuB - u du.

1
Here M is a { Ht } Brownian motion. Similarly, for 0 < t < -

- 2

B+ t Bu,- B,, du
1 1 - 2u

where H is a {Ht } Brownian motion independent of M.
1

Proof. Suppose 0 < t < 1 andt < s < 1-t. Any Markov
2

process is a Markov field, (see the work of Jamison [6] on reciprocal
processes).. Therefore, by the Markov field (or reciprocal process)
property:

E[B, I H,] = E[B. IB, B,-,] = E[B. I B, --B,_,].

The random variables are Gaussian and Bt, B1 - BI-, are inde-
pendent, so this conditional expectation is a projection and equals
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B1 + - )(b' - BI- 1 ). Consequently, E[B+h - A I Hti =
(1-2t)

11 - t(B1 - B1.... ). Therefore, (12b EIE[BI+h - Bt I II1Ijdt =

0(h) and so from Theorem 2 of Stricker [8], (see Theorem 3.10 below),
B is a {H1 } quasimartingale with a unique decomposition:

Bi = M, + j a,,du;

here At is a {Ht} martingale., Now

E[jh- Bt I H1] E[ i~ adu I Ht]

-h

(1 - 2t)

-(B1 -B_)
so dividing by h > 0 and letting h -+ 0 we see at = (-2t)

(1 - 2t)

Furthermore, because the quadratic variation of bounded variation
terms is zero the quadratic variation process

(B),- (B)s = >i (B11 , - Bt,)

N

= lim E (MAft,+ -Mt,) = (M) - (M)
171"-0 t=

=t - S,

where the limit in probability is taken over partitions 1 = {s < to <1

t <_ tN = t} of [s, t] C [0, -) and Ifrl = max It,+, -t,. Therefore
2

{Mrj is a continuous {Ht} martingale with (M)t = t and so M is a
{ Hj} Brownian motion.

Similarly BT = BI-t = M + ]o adu where T7 is a {Ht} mar-
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tingale. In fact

E[B,.th - Bj_ I Ht] = E[BI-t-h, - B,_t I Bi, Bi,- BI-,]

(2t + h - 1)
(1- ) B- - 2

-(1-h2t) (B i t ~ ,uH]

As above, Bi = - B-t - du
(1-2t) and B, Mt J 1-2u d

where M is a {Ht) Brownian motion.
The random variables M, M are Gaussian, so to establish inde-

pendence it is sufficient to show they are orthogonal

E[MMt]t = E[I(Bt + jo -B u ) ~(Bi- - j B I s ds)1I

t t-u du+ t + j1 Idu
=t 1-2u J1 -d2u

2E J -2j(j -s dz-u

- t + (2t - 1) 1du 2j (j 2u d.) 1 du
1 -2u 0 1 2s 1 2u

jt+(2t - 1) du 2f--f du

'l-u (t 1
=t + (2t - 1) du -- 2 2 f -sds

=0.

The Brownian motions M and V are, therefore, independent.

3. SEMIMARTINGALE DECOMPOSITIONS
For 0 < t < 1 consider an n-dimensional Brownian motion
B = (B', .. ,Bn) defined on a probability space (0,FP). Suppose
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the functions a i, g3) belong to C (Rd) and satisfy growth conditions
of the form

d d~ ng(~j

SIlai(x)l 2 + j jg (X)2 <K 2(1 + I12)..
=1 .E=1

Consider the associated vector fields

d d k

A(x) = Za'(x)-,x,; Xk(X) E gW
1=1 t=1

for 1 < k < n, and a second order operator

1 d n ik 2
L(x) = A(x) + 9 ( "(x)g,"(X) (3.1)

I '=l k=l

Suppose an initial condition x0 is given wlich is an Rd-valued random
variable independent of Bk - Bk for0<s <t<1 1 <k<n, and
independent of the observation process, (see 3.3 below).

Signal 3.1, Consider a signal process which is the solution {st}
of the system

n

dx, = A(x)dt + Xk(x)odB. (3.2)
k=l

Here odB denotes the Stratonovich integral, For any C' function
R Id --+R

i.d fZ
¢(xt) = O(xo)+ A(xu)¢(x,)du + Xk(Xu)(x,,)od. (3.3)

. 0 k=l

The. Ito integral form of (3.3) is

¢(xt) = ¢(xo) + L(x,)(x,)du + E X,(x,)d(x,,)dB . (3,4)
k=1

Notation 3.2. For 0 < t < 1 write {Ft}, resp. {FtS, for the right
continuous completion of the filtration generated by o{x, :0 < s < t),
resp. ar{xo, B, - Bu :0 < u < v < t}.
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Si:zilarly, {Gj}, resp. {t}, will denote the right continuous
completion of the (reverse time) filtration generated by o {r : t <
s < 1}, resp. cr{xl, B,, - B_: t <u <v <l

If f(u), 0 5 u < 1, is a {Gt} predictable process, continuous

in probability and such that E[f(u) 2]du < oo, the backward Ito

integral is defined by Kurnita [7I as

n-1

]f(u)dB k = lim Zf(t+)(B,+ k-B k).

I=o

Here 17 = {s = to < t .< tN = t} is a partition of [s,t and
111 = max ltj+x - tjl1

As in Elliott and Anderson [3], a reverse time Ito integral form
of (3.2) is

t d

X= X +] L(x,,)du + YkXT(,, )dBu (3.5)

where L(x) = A(x) - , ( , gxl&
21' =1 k=1 x,)

Observation 3.3. The signal process is not observed directly but
via a noisy observation process {yt} where

Ytj h(xu)du + w,, for 0 < t < 1. (3.6)

Here yt E R' asid w(w',..., w m) is an m-dimensional Brownian mo-
tion on (Q, F, P) which is independent of B and x0.

Write
m a I m a 2

and 2 = a - i a

Then if R :" --4 R is any C 2 function

&¢Yt) = 0(0) + Lyo(yu)du + a j (Y,.)dwu. (3.7)
S=JoY,
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Notation 3.4. For 0 < t < 1 write {Y}, resp. {fY), for the
right continuous complete filtration generated by a{y, : 0 < s < t),
resp. a{w8 : 0 < s < t}, and Zt, resp. Zt, for the right continuous
completion of the filtration generated by a{y, : t < s < 1}, resp.
{i, W - w:t < S < .

Remark 3.5. Although {yi} is not a Markov process, {xj, yt} is
Markov.

We shall require the following hypotheses satisfied:
Hypotheses 3.6. Suppose the diffusion {Zg,yf} is such that:

1. For each t E [0, 1] there is a smooth density q(t, x, y) of (x,, yt).
2. For each s,t E [0, 1], s < t, there is a smooth transitioD density

p( s, y8, £t, yt, s, t).

3. If n'(t,x,y) = -(divX,(x) + q$o Xq (t,x,y)) for 1 < i < n,

andAk(t,x,y)= .(t,,y). q(t,x,y)-' for 1 < k < m,

tben r,' and Ak E L'([S, 1] x Q) for any 6 > 0,
4. t' and Ak E L'o([6, 1] x 2) for any 6 > 0.
5. Consider p(xy, s, s,t) and write

ek(x, Y, ,,st) = -I 1O P

!k(x,Y'.,St) =/Po0 7

Then fk(xt, y,, xl-t, YJ-tg t, 10-) E L'([0, - 6] x () and

!k(x,, Yt, xi-t, yi-t, t, 1 - t) E L'([0, - -6] x Q) for any

bE(0,) 1<k<m.
From Elliott and Anderson [3] we can quote:
Theorem 3.7. Under Iypotheses 3.6(1), (3) and (4)

and

{Wt-Wl} {WI -W , ,.. ,V -- 7n
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are reverse time { G, V Zt ) quasiziartingales. In fact, if Bt = B -- B] -

I c '(?I,Xt,,yu)du for I <i <n, and@- =w -' WLAk(ux,,)du

for 1 < k < 7, then {B, @ I is an n + 77 dimensional {G V Z1I Brow-

nian motion. 1
Notation 3.8. Cotsider now the two-sided o-fields for 0 < t <

H1 =FvG.-.1 and H'=F1 gG.- 1t for the signal x,

Ki =' V Z1-t and K =Yt V Z1-t for the observation y, and

HV K , HV V k, for (x,y).

In a manner similar to [1] and Section 2 we shall now determine the
seinimartingale decompositions of {wt } and {t-vt} = {w 1 - w1 } with

respect to the filtration {fH V K}.
Theorem 3.9. Suppose Hypotheses 3.6 are satisfied. Then for

1 < k < m

lim h-E[4,+h- w I H, V K, = yt, x1-1, Y-t, t, 1- t)
h-0+

(3.8)
weadkly in L'(Q).

If t =: Wl. t - Wi,

= im h-'E[w _,_h - 1 RIH1 V P1 ]
h -0+

= ek(X,, t' ,' , YI-t, t, 1- t) (3.9)

weakly in L 1 (Q).
Note the right hand sides of (3.8) and (3.9) are H V Kt measur-

able.

Proof. The proof uses the reverse time differentiation rule and
Stricker's characterization of quasiinartingales ([8], Theorem 2). De-
tails can be found in [4].

We then have
Theorem 3.10. Write
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Then {wt} and {wti} arv {H V fit) quasiirartingales with decompo-
sitions

wt= t + Y0 t ,u, ,i u1-, yl-u, U, 1 u)du

=fvt u'l-t = fit + (xU, Y, X-U, Yl-u, u, 1- u)du.

Here f and f3 are independent m-dimensional {H, V Kt) Brownian
motions.

4. BILATERAL FILTERING
Notation 4.1. 11 will denote the predictable projection with

respect to the two-sided complete, right continuous filtration {Kt}
gcneratedbyy , 0<s<t, and 1-t <s<l.,

The 'forward' part of the observation process is
- t

Yi =J h(xu)du + w,. (4.1)

With respect to the filtration {iH V K1 1 this can be written

yt =- h(x,,)du + j(u)du + f#t (4.2)

where 3 is an jifI V Kt} Brownian motion. Taking the {Kt) projcc-
tions this can be expressed a-

Y,= j Jh(x,)du + j lt,(u)du + v. (4.3)

Here vt is {Kt} adapted and

vt h~x,)- H7h(xu,))du + jY?(u) - lM(u))du + fit..Jo

Therefore, v is a continuous {Kt) martingale, As in [2] the product
rule show that

(v', v')1 = (f', l) = 6, t
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for 1 < i, j !S M, SO v is a {Kt} Brownian motion. Now
[1

S= jo h(x,)du + wi.

Consequently the 'reverse time' part of the observation process can
be written

9f = Yl-t = Yl - h(xu)du + wl-t - wl

I- t

= y, - h(xu)du + j 1(u)du + Pt

-t

= 90 - j h(x_.-)du + j .(u)du + Pt. (4.4)

Taking the {Kt) projection this can be written

9t = 90 - jHh(x,_u)du + I H(u)du + v, (4.5)

where, as above, P is a {Kt} Brownian motion independent, of Y
We can now derive tile bilateral prediction formula:
Theorem 4.2. Consider the signal and observation processes

determined by (3.2) and (3.6), respectively. Suppose F is any real
valued C2 function with compact support defined on Rd. For 0 < s <
1. write
2

A. = E[F(x1/2) I H. V K3 ].

Then

H(At) = E[F(z112 ) IK]

= 11(Ao) + I{I(A (h( x) + f(u)))

- n(A.)(H(h(xu)) + r(e(u))) }dv,

+ 11(A:)(n(h(x 1 ,)) - H(1(u))) }dfu.
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Proof. First note that A is introduced for notational convenience
and because, for example,

II(At) = E[F(x112) I Kt]

/H(A.(I(u))) = E[E[F(x1/2) IH,, V Kl,, I Ku]

= E[F(xl/2)(u) I Ku]

the final equation could be written just in terms of F(x112).

At = E[F(x1/ 2) I Ht V K] (4.6)

is a martingale by definition and H(At) = E[F(x112) I Kt] is a {K}
martingale. Now A is the solution of a prediction or smoothing prob-
lem, and as in Theorem 16.22 of [2], At has a representation as a
stochastic integral.

At = A0 + j audB, +ji adB ,.

The nature of the integrands a, 6 could be investigated. However,
this would not contribute to the solution, because what is required is
a recursive expression for H/(At). Now again, !/(At) has a represen-
tition as a stochastic integral,

H!(At) = fl(Ao) + o 7 :dv , + ztd. (4.7)

We wih:h to determine the processes -t and 1. Forming the products
of A with (4.2) and (4.4)

Aty, = j A,,h(xu)du -- A(u)du

+ jAudu + j ydAu + (A,y)t (4.8)

Atlt = Aoio - j Au h(xI-u)du + jAuf(u)du

+ j Audu + j0,,dAu + (A,9),. (4.9)
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However, because (B, y) = 0, (B, p) = 0, the quadratic variation
terms in (4.8) and (4.9) vanish. Taking the {Kt} projection of both
sides of (4.8)

fl(Ay,) = fl(At)yt

= ] U(A. (h(x,) + e(u))du + M, (4.10)

where M is a {K, }-martingale., Similarly, taking the {JK} projection
of both sides of (4.9):

Hf(At9t) = 17(At)9 = fl(Ao)9o

ft
+ f!(Au(f(u) - h(x 1 _ )))du + .At, (JO (4.11)

where Ml is a {Kt}-martingale. However, if we take the product of
7(At), as given by (4.7), and (4.3)

H7(At)yt = j0 1(Au)(I1h(xu) + Hef(u))du

ft tt

+ y1jdiu, + udu + 7udu + Nt(4JO (4.12)

where N is a {Kt) martingale. The stochastic integrals with respect
to v anid il are also {Kt} martingales., The process H(A,)yt is clearly a
special semnimartingale, so the decompositions (4.10) anid (4.12) must
be the same.

Equating the bounded variation terms we have

-i = H(At(h(x,) + (t))) - 17(At)(Ifh(xt) + IfH(t)). (4.13)

Similarly, forming the product of (4.7) and (4.5):

HI(Ai)9i = fl(Ao)go + jH(A,,)(He(u) - Hh1(xi-,,))du

if
.- f o q d iu + 2j , di2 A -- ,,du + N t.(4.14)
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Again, the decompositions (4.11) and (4.14) must be the same, so
equating their bounded variation terms we see

=H(Ait((t) - h(xj_,))) + fl(A,)(nh(xi_,) - 171(t)). (4.15)

Substituting (4.14) asid (4.15) into (4.7) the result follows.
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