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FILTERING WITH TWO SIDED FILTRATIONS

ROBERT J. ELLIOTT
Department of Statistics and Applied Probability, Univer-
sity of Alberta, Edmonton, Alberta, Canada T6G 2G1

Abstract The value of a diffusion at an intermediate
point is observed through noisy observations on each side.
Corresponding semimartingale decompositions and recur-
sive filtering equations are obtained.

1. INTRODUCTTION

Suppose a signal process z, is observed through a noisy observation
process y, for s € [0,1]. A situation is ¢ usidered where the observa-
tions y, are known both for 0 < s <t < 1/2, giving a o-field Y;, and
for1/2 < 1-t < s <1, giving a o-field Z;_,, and we wish to estimate
T3/ say, or some function F(zr1/2) of 1/2. In mean square the best
estimate is

E[F(.’rl/g) | },t \% Zl—t]

and a recursive form of this estimate 1s obtained. Such problems
possibly arise in reconstructing images from noisy data if one wishes
to estimate the signal at linear location 1/2 based on observations
from 0 to t and 1 ~t to 1 either side. This estimation involves the two
o-fields, Y;, increasing in the positive t direction, and Z;_; increasing
in the negative t direction. When z and y are diffusions the recursive
equation for

E[F(z12) | Y1V 214

1s derived below. Detailed calculations can be found in {4].
The construction is related to the decomposition of diffusions
with respect to enlarged filtrations, and to Brownian bridges. To
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524 R.J. ELLIOTT

illustrate the methods the decomposition of a Brownian motion with
respect to a two-sided filtration is first obtained.

2. BILATERAL BRIDGES
The technique below was first used by Ito [5] to discuss the reverse
time decomposition of a Brownian motion.

Convention 2.1. We shall assume all filtrations are complete
and right-continuous.

Suppose {B:}, 0 <t < 1 is a standard Brownian motion on

(2, F, P). Write
Fi=0{B,:0<s<t}
Gi=0{B,:t<s<1}

and, (see Convention 2.1), consider the forward and backward filtra-
tions {Fy}, {G¢}, 0<t<1 For0<t< % consider the two-sided
filtration {Fy V G1-.} = {H.}.

Lemma 2.2. For0<t< 5 B is a {H,} semimartingale with

a decomposition

f Bu"'Bl—u
Bt-—-Mt—‘/o _1‘:3’”——(111

. 1
Here M is a {H,} Brownian motion. Similarly, for 0 <t < 3

t

0 1"‘2u

where M is a {H,} Brownian motion independent of M.

1
Proof. Suppose 0 <t < - andt < s £ 1 —t. Any Markov

process is a Markov field, (see the work of Jamison [6] on reciprocal
processes). Therefore, by the Markov field (or reciprocal process)
property:

E(B, | H,) = E(B, | B;, Bi-{| = E[B, | B, By — By_4].

The rundom variables are Gaussian and By, B, — B;_, are inde-
pendent, so this conditional expectation is a projection and equals
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t —
B, + ((—1——;2)-)-(13‘, — By_{). Consequently, E[Bi1y — B¢ | H] =

- (1/2)-6

(1 };t)(Bt - Bl—t)- Therefore, / E'E[Bp*.h - Bt l }I']ldt =
- 0

O(h) and so from Theorem 2 of Stricker [8], (see Theorem 3.10 below),

B is a {H;} quasimartingale with a unique decomposition:

t
B, = M, +/ aydu;
0

here M is a {H,} martingale. Now

t+h
E{Busn - B | H) = E| / audu | H]
t

—h
- (1 _ 2t)(Bl - Bl—t)
‘ ~(By - By -
so dividing by A > 0 and letting h — 0 we see a4 = Z(Bi- By (1' 2t1) )

Furthermore, because the quadratic variation of bounded variation
terms is zero the quadratic variation process

N

(B)—(B), = lim )" (Bu, - B.)

{1—0

where the limit in probability is taken over partitions [T = {s <t <
1
t<--<ty=t}of[st]C [0,—2-) and |IT| = max |t,+; —t,|. Therefore
1
{M.,} is a continuous {H,} martingale with (M), =t and so M is a

{H.} Brownian motion.

t
Similarly By =By =M+ / dudu where M is a {H:} mar-
0
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tingale. In fact

EBy-t-h — Bi~¢ | He) = E[By~t—4 — B1~¢ | By, Bi = D14

2t+h~-1
= By + (—a—:it—)—l(Bz — By-¢) = B1—y
k t+h
= - B¢ = aydu | Hyj.
(1 —Qt)(Bt B] () E[[ Ayadl ' t
_ _ B(-B,_, =7 ‘B, — B)_,
As above, a; = =) mdBl_,—Mt+A T o du

where M is a {H,} Brownian motion.
The random variables M, M are Gaussian, so to establish inde-
pendence it is sufficient to show they are orthogonal.

ot =[5+ [ ) - [ B )

t t
t—u t+u-—1
=1 d —_—d
+/01——2u ”ﬂ{ 1-o2u

op /([ B BB )
=t+ 2t-—1)/ T-—'z_u" /0‘(/01:2“ ds)l__l2u du
_t+(2t—1)/1_2u /0‘(/0“lisg>du

Y odu L(t=s)
=t+ (2t - —_— - d
* 1)‘/(;1—211 2/0 1-2s

=0.

The Brownian motions M and M are, therefore, independent.

3. SEMIMARTINGALE DECOMPOSITIONS
For 0 < ¢t < 1 consider an n-dimensicnal Brownian motion

B = (B',...,B") defined on a probability space (2, F, P). Suppose




s
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the functions a', g belong to C*°(R?) and satisfy growth conditions
of the form

Z @ ()2 + L Sl < K21 +[e).

1=1 =1

Consider the associated vector fields

d

8 d a9
Az) = Za'(fv)g;—‘; Xi(z) = Zg"‘(x)g;,

1=1

for 1 £ k < n, and a second order operator

L(z) = A<x>+2z(zg'*(x>gfk(x)) 5 a (3.)

)J"'l k=1

Suppose an initial condition zg is given which is an R%-valued random
variable independent of Bf — B¥ for 0<s<t<1, 1<k <n,and
independent of the observation process, (see 3.3 below).

Signal 3.1. Consider a signal process which is the solution {z,}
of the system

dz, = A(z,)dt + ) Xi(z() o dBE. (3.2)
k=1

Here odB denotes the Stratonovich integral. For any C® function
$:R* S R

#(z¢) = d(zo) + / Azy)¢(z du+2/ Xi(z W)odDk (3.3)
The Ito integral form of (3.3) is

t d t
oz = dla0) + [ Lededu+ Y [ Xaleu)o@)ist. G.)
0 k=10

Notation 3.2. For 0 £ ¢ <1 write {F}}, resp. {ﬁu, for the right
continuous completion of the filtration generated by o {z, : 0 < s < t},
resp. 0{rg, By — B, :0<u<v <t}
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Similarly, {G¢}, resp. {(’:,}, will denote the right continuous
completion of the (reverse time) filtration generated by o{z, : t <
s <1}, resp. o{zy, B, — B, :t<u<v<1}.

If flu)), 0<u<l,isa iGg} predictable process, continuous

in probability and such that E[f(u)*)du < o, the backward Ito
integral is defined by Kurita [7(] as

[tf(u)JB§=I};fn Lf J+1( ty 41 Bk)

Here I = {s =ty < t; £ --- <ty =t} is a partition of [s,t] and
|| = max [tis1 — ¢l

As in Elliott and Anderson (3], a reverse time Ito integral form
of (3.2) is

t d ot
T =12+ / L(z,)du + Z/ X(z,)dBk (3.5)
1 k=171

where i( )= A(z) - = L ( Z g'k( )gjk(x)) a:ax,'

1,1=1
Observation 3.3. The mgval process is not observed direcily but
via a noisy observation process {y;} where

t
Y = / h(zy)du + wy, for 0<t<1. (3.6)
0

Here y; € R™ and w(w?,...,w™) is an m-dimnensional Brownian mo-
tion on (£, F, P) which is independent of B and z,.
Write

and Ly—Zh -2 _ 1}562
Oy, 24— 0y*
Then if ¢ : R™ — R is any C? function

=0+ [ Puwaae Y. [Laow. @0
0 1=1 '
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Notation 3.4. For 0 <t < 1 write {Y;}, resp. {¥:}, for the

right continuous complete filtration generated by o{y, : 0 < s < t},
resp. o{w, : 0 < s < t}, and Z,, resp. Z, for the right continuous
completion of the filtration generated by o{y, : t < s < 1}, resp.
{1, ws —wy:t <s < 1L

Remark 3.5. Although {y} is not a Markov process, {z¢,y:} is

Markov.

-

and

We shall require the following hypotheses satisfied:
Hypotheses 3.6. Suppose the diffusion {,y,} is such that:
For each t € [0, 1] there is a smooth density ¢(t,z,y) of (zi,y:).

. For each s,t € [0, 1], s < t, there is a smooth transition density

p(zsvyn'chyl,s)t)'
. Xt z,y) -
Ikt Ly =—(d1vX,:c + 1 ———————) for 1 <1 < n,
(t2.9) () + Lo q(t,2,v)
and A¥(t,z,y) = — q;eg——q—(t,x,y) cq(t,z,y)y P for 1 <k <m,

Y
then «' and AF € L1([6,1] x Q) for any § > 0.
' and A* € L} _([6,1] x Q) for any § > 0.

Consider p(z,y,£,(,s,t) and write

3 a B
ek($7y76’613,t)=lp¢00—;—%-p 1
_ a _
ek(x’y7€'/ (,S,t) = Ip?ﬁo—azp; p 1_

, 4 1
Then €(zy, vy, Ti-t, Y-t t, 1 =1) € L*([O,-z- — 6] x Q) and
_ 1 .
ék(mt) Yty Ti-ty Y1~1, t) 1 - t) € Ll([O’T)— - 6] X Q) f()r any

56(0,-;:), 1<k<m.

From Elliott and Anderson [3] we can quote:
Theorem 3.7. Under Hypotheses 3.6(1), (3) and (4)

{B.~ B} ={B{ -By,....B" - B}

{wy —w} = {w, —wl,...,w" —w™)
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are reverse time {G,V Z,} quasimartingales. In fact, if B} = B{~ B} -
1 1
/ K (U, Ty, yu)du forl <i < n, and Gf = wt‘—wf—/ /\k(u,mu,y,,)du
t t

for 1 < k < m, then {B, w} is an n 4+ m dimensional {@t \Y 2,} Brow-
nian motion.

Notation 3.8. Corsider now the two-sided o-fields for 0 < ¢ <

2| -

H =F VG- and H =F,vG,_ for thesignal z,
Ki=Y,vZ.; and I?, = ?, \Y 21_, for the observation y, and

H,V K,, HVE, for (z,y).

In a manner similar to [1] and Section 2 we shall now deterriine the
semimartingale decompositions of {w,} and {we} = {wi1—¢—wy } with
respect to the filtration {H, vV K,).

Theorem 3.9. Suppose Hypotheses 3.6 are satisfied. Then for
1<k<m

hl_i_{gl+ h"lE[w:‘M ~wi | H VK] = (ze, ye, 210, Y10, 8, 1- 1)

(3.8)
weakly in LY(Q).
If 0, = wy_¢ ~ wy,
"li_}(l)l+ h= Elwpyp —wf | He V ]/\;g]
= ;,1’3?+ W Elwt_,_, —wi_, | H VK|
zék(ln Yty Ti=t, Y1-t, ¢, 1 — 1) (3.9)

weakly in L'(S2).

Note the right hand sides of (3.8) and (3.9) are H, V K, measur-
able.

Proof. The proof uses the reverse time differentiation rule and
Stricker’s characterization of quasimartingales ([8], Theorem 2). De-
tails can be found in [4].

We then have

Theorem 3.10. Write

e=(6,...,0m
P=(@,...,0".

}
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Then {w} and {w,} arc {H,V K} quasimrartingales with decompo-
sitions

t
Wy =ﬂi+/e($“, Yuy Tlw-uy Y1-u, U, l—u)du
0

t
Wy = Wy =,Bt +/€(Iu, Yuy Tl1-uy Y1—-uy Y, 1-—u)du.
0

Here § and B are independent m-dimensional {H, V K} Brownian
motions.

4. BILATERAL FILTERING

Notation 4.1. IT will denote the predictable projection with
respect to the two-sided complete, right continuous filtration {K,}
generated by y,, 0 <s<t,and1-t<s<1.

The ‘forward’ part of the observation process is

-t

Yy = / h(cy)du + wy. (4.1)
0
With respect to the filtration {H, V K} this can be written

v - /0 hra)du+ /0 t(a)du + B (4.2)

where 3 is an {ﬁ, \% f:’t} Brownian motion. Taking the {K,} projec-
tions this can be expressed ac

t 4
Yy = / Hh(xu)du+/ I (u)du + vy. (4.3)
0 0

Here v is {K,} adapted and

v = [ (h(zy) ~ Oh(zy))du + /0 (8(u) — ITE(u))du + Bt.

Jo

Therefore, v is a continuous {J{,} martingale. As in [2] the product
rule show that

(v v7) = (B B)y = byt
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for1<1t,j <m,sovisa{K} Brownian motion. Now

/1
Yy = ./o h(zy)du + w;.

Consequently the ‘reverse time’ part of the observation process can
be written

1
Y=Y1—t =Y — / h(zy)du + wyo¢ — wy
1

—t

1 t
=y —-/; h(:cu)du+/of_(u)du+/§t

—1

= Yo — '/Oth(Il—u)du + /:l?(u)du + B (4.4)

Taking the {K,} projection this can be written

t t
Gy = g — / ITh(zy-y)du + / ITé(u)du + oy (4.5)
0 0

where, as above, 7 is a { K} Brownian motion independent of v

We can now denive the bilateral prediction formula:

Theorem 4.2.  Consider the signal and observation processes
determined by (3.2) and (3.6), respectively. Suppose F is any real
valued C? function with compact support defined on R¢. For0 < s <

3 write
Ay = E[F(z12) | H, V K.
Then

H(A) = E[F(a12) | K]
= 1(0) + [ {H(Au(hiz) + )
~ I (=) + T(Ew))) bdva
+ /:{n(mmu) ~ h(z1-))

+ (A (T ((z1-4)) — T(Ew))) b
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Proof. First note that A is introduced for notational convenience
and because, for example,

(A = ElF(e172) | I
(AE)) = BIE(F(z1/2) | Hy v oA | K
= BlF (e )i(w) | K.
the final equation could be written just in terms of F(zy/s).

Ag =E[F($1/2) | HgVI{t] (46)

is a martingale by definition and II(A,) = E[F(zy/2) | Ky] is a {K,}
martingale. Now A is the solution of a prediction or smoothing prob-
lem, and as in Theorem 16.22 of [2], A; has a representation as a
stochastic integral.

t 1
A=Ay +/ aydB, +/ aydBy.
0 t

The nature of the integrands «, & could be investigated. However,
this would not contribute to the solution, because what is required is
a recursive expression for IT(A;). Now again, IT(A,) has a represen-
tation as a stochastic integral.

t

t
H(A,) = H(Ao) + ,/ 'Y:;qu + / e dvy. (47)
0 0

We wich to determine the processes v and . Forming the products
of A with (4.2) and (4.4)

t t
A,y,=/1\uh(xu)du —{-/ Ay l(u)du
0 0
¢ t
# [ Mt [ nadia+ (), (48)
0 0
¢ t
A,g,:Aogo—/A.,h(ml_u)du+/ Ay f(u)du
0 0

t t
+ [ Mudho+ [gudhis 0, (4.9)
0 0
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However, because (B,y) = 0, (B,§) = 0, the quadratic variation
terms in (4.8) and (4.9) vanish. Taking the {I;} projection of both
sides of (4.8)

H(A,y,) = H(At)yz
- / (A (h(ze) + €u))du + M, (4.10)

where M is a {K,}-martingale. Similarly, taking the {X,} projection
of both sides of (4.9):

II(Age) = H(Ae)g = I (Ao)o

0 (4.11)

where M is a {K,}-martingale. However, if we take the product of

II(A,), as given by (4.7), and (4.3)

DY = / (A (ITh(zy) + ITE(u))du

t t
+ / Yu /uqu + / yus’udi/hu + / 7udu + Nt
0 0 0 (4.12)

where N is a {K,} martingale. The stochastic integrals with respect
to v and 7 are also {K,} martingales. The process IT(A;)y, is clearly a
special semimartingale, so the decompositions (4.10) and (4.12) must
be the same.

Equating the bounded variation terms we have

g0 = I(A(h(ze) + €8))) — M(A)ITh{(ze) + TE)).  (4.13)

Similarly, forming the product of (4.7) and (4.5):

O(A)y = IT(Ao)yo + /0 IHAN)(IT(u) ~ Th(ry_y))du

t t 1
4-/gu7uduu+/gnudi)u +/‘yudu+N,.
0 0 0 (4.14)
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Again, the decompositions (4.11) and (4.14) must be the same, so
equating their bounded variation terms we see

Fo= T(AL(E) = hzs-0)) + T(A)(Th(zy-0) - TEL).  (4.15)

Substituting (4.14) and (4.15) into (4.7) the result follows.
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