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algorithm is dependent on the flight control law performance characteristics. Ideally,
the flight control law and global FDI designs should be accomplished simultaneously,

especially for a new aircraft design rather than the current practice of serial
iterations on the two Jesigns. Hence, automation of the global FDI design process is
desirable in order to reduce the development time, L.st and isk for advanced flight

control systems.

in this report we describe the automation of the global FI design process using expert

systms technology. An expert system is a comuter program that mimics the problem

solving skill of a human expert in a narrow domain. The development of the expert

systen design assistant is feasible since the domain characteristics associated with

global FD: design meet the following necessary conditions- First, the design of a

global FDJ algorithm involves heavy use of cognitive skills. Second, there are
. .ila.,l' evsiqn experts and analysis models and programs suitable for knowledge

extraction. Third, the task is neither a triial problem nor too difficult to solve.

Fourth, tie task requires sym olic knowledge representation. Finally, finding a

solution requires the use of heuristics and reasoning from first principles.

A secondary objective of our st is to investigate how expert systems and neural

networks can be integrated into .,ae implementation of a global FDI system. Sere we

describe the imlementation of the detection and isolation logic portions of the CRCA

global FD! algerithm as a rule-based expert system so that symbolic knowledge

representation and reasoning can be incorporated into the design. Such an approach can

reduce the false alarm and misisolation rate of a given numeric algorithm by modeling

the deficiencies of such an algorithm using a rule-based approach. We also present a

neural net demonstration for scheduling dynamic thresholds in the CRCA global FI!.
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1. INTRODUCTION

This final report summarizes the results of the Phase I SBIR study entitled "An Expert

System Approach to Global Fault Detection and Isolation Design" supported by the U.S. Air Force
under Contract No.F33615-89-C-3606. The primary objective of this research is the development

and demonstration of a global Failure Detection and Identification (FDI) Design Assistant (DA)
prototype based on expert system technclogy. A secondary objec.;ve is to investigate the

implementation of global FDI algorithms using the artificial inteiiigence techniques of expert
systems and neural networks.

Reconfigurable flight control systems (Chandler 84) make use of the "aerodynamic

redundancy" in compensating for the effects of onboard hardware failure and surface damage

conditions. Such fault/damage tolerant flight control systems reproduce the forces and moments

acting on the airframe using the remaining available resources after the detection, isolation and

estimation of the type and level of a hardware fault and surface damage. The necessary detection,

isolation and estimation information is provided by a global Fault Detection and Isolation (FDI)

system which monitcrs the flight control and surface position sensors (Caglayan et al. 87).

A global FDI algorithm performs its detection, isolation and estimation function by

assessing the global effects of a hardware fault and surface damage on the closed-loop aircraft

dynamics. Since changes in the flight control law affect the signature of a hardware fault and

surface damage, the design of a global FDI algorithm is dependent on the flight control law
performance characteristics. Ideally, the flight control law and global FDI designs should be

accomplished simultaneously, especially for a new aircraft design rather than the current practice of

serial iterations on the two designs. Hence, automation of the global FDI design process is

desirable in order to reduce the development time, cost and risk for advanced flight control

systems.

In this report we describe the automation of the global FDI design process using expert

systems technology. An expert system is a computer program that mimics the problem solving
skill of a human expert in a narrow domain. The development of the expert system design

assistant is feasible since the domain characteristics associated with global FDI design meet the

1



Technical Report WL-'iR-91-3007 Charles River Analytics Inc.

following necessary conditions. First, the design of a global FDI algorithm involves heavy use of

cognitive skills. Second, there are available design experts and analysis models and programs

suitable for knowledge extraction. Third, the task is neither a trivial problem nor too difficult to
solve. Fourth, the task requires symbolic knowledge representation. Finally, finding a solution

requires the use of heuristics and reasoning from first principles.

The FDI/DA is an expert system based computer aided design environment that assists

designers in the global FDI design process. The system incorporates a data base of failure

detection and isolation details and procedures, and is capable of suggesting design reiteration
procedures to the user. Currently, the FDI/DA expert system operates on a MicroVAX II

workstation and interfaces with the global FDI software for the Control Reconfigurable Combat

Aircraft (CRCA) (Weinstein et al., 87).

A secondary objective of our study is to investigate how expert systems and neural
networks can be integrated into the implementation of a global FDI system. Here we describe the

implementation of the detection and isolation logic portions of the CRCA global FDI algorithm as
a rule-based expert system so that symbolic knowledge representation and reasoning can be
incorporated into the design. Such an approach can reduce the false alarm and misisolation rate of

a given numeric algorithm by modelling the deficiencies of such an algorithm using a rule-based
approach. We also present a neural net demonstration for scheduling dynamic thresholds in the

CRCA global FDI.

1.1. Global FDI Overview

Here, we give an overview of the global FDI system used in the second generation

reconfiguration strategy for aircraft flight control systems subjected to actuator failure/surface
damage developed under the SRFCS program (Chandler 84). In this program, three competing
reconfiguration strategies have been developed during the Phase I effort (Caglayan et al. 87) (Lear
Siegler 87), and (Scientific Systems 86). The Failure Detection and Isolation (FDI) system in
(Caglayan et al. 87) and the Reconfigurable Control Law (RCL) in (Lear Siegler 87) have been
integrated .nto a unified reconfiguration strategy, and the unified reconfiguration strategy design

2
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has been transitioned onto the Control Reconfigurable Combat Aircraft (CRCA) (Weinstein et al.

87) under the Phase IT effort. The preliminary performance results for the unified reconfiguration
strategy have been presented in (Caglayan, Allen, and Wehmueller 88).

The reconfiguratior strategy, as shown in Figure 1.1-1, consists of a Reconfigurable

Control Law (RCL) composed of a robust flight control system tolerant of low level surface

damage which is reconfigured after impairment to recover performance and minimize transients; a

hierarchical Failure Detection Isolation and Estimation (FDIE) system identifying actuator failures

and moderate-to-severe surface damage; and a Reconfiguration Logic coordinating the information

transfer between the RCL and FDIE systems. In the developed reconfiguration strategy, the robust

flight control system provides time for the FDIE system to detect and isolate the failures.

Moderate-to-high surface damage effects are compensated based on the control effectiveness

parameter estimates provided by the FDIE system. Low level surface damage effects are handled

by the robust flight control system with the effectiveness estimates stored for use in case of

subsequent failures.

FDI

aLT GLOBAL _
~nixrFD1

I
I I . . . .
I a

- - - --- ---

RECONFIGURATON ACTUATOR

PSEUDO-SURFACE AACFS
CONTROL LAW ]ESOLVER FWAM- DYNAMICS SENSORS

RCL

Figure 1.1-1: Reco'lfigurition Strategy Block Diagram
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The FDIE system consists of a local Actuator Failure Detection (AFD) system which

detects stuck, runaway, and floating actuator failures based on local information; and, a global

Surface Damage Detection and Isolation (SDDI) system which detects partial surface loss failures

and provides an estimate for the surface control effectiveness parameters after the impainnent based

on global information. The global SDDI algorithm accounts for expected modelling errors in the

aircraft dynamics description and uses a modified multiple hypothesis test to declare a full isolation

only when a certain distinguishability criterion is met.

The CRCA FDI system uses local information for actuator failure detection and global

information for surface damage detection. The local information used for actuator failure detection

consists of actuator dynamics, flight control system commands into the actuator, and the actuator

output measurement. On the other hand, the global information used for surface damage detection

consists of aircraft force and moments equations providing a dynamic relationship between the

surface position sensors, and flight control sensor measurements. The global information can help

detect and isolate actuation failures that are undetectable by local information analysis.

The global FDI in the CRCA reconfiguration strategy algorithm, shown in Figure 1.1-2,

consists of:

* a no-failfilter based on aircraft equations of motion and expected modelling uncertainty

under no surface damage conditions computing the measurement residuals for flight control

sensors;

* a bank of first order filters (called detectors) compensating the no-fail filter residuals

based on the computed partial surface loss estimates and on the expected modelling errors;

* a bank of likelihood ratio computers computing the like'hood of each postulated surface

damage hypothesis using the compensated residuals;

* a modified multiple hypothesis test for making surface damage detection, partial isolation

to a subset of Ndrfaces, and full isolation decisions.

4
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The no-fail filter is an extended Kalman filter based on the linearized aerodynamic force and

moment equations with nonlinear inertial terms and on the dynamic modelling uncertainty during

maneuvers. The inputs into the no-fail filter are the surface position measurements, and the FCS
sensor outputs comprised of body mounted accelerometers and rate gyros, indicated airspeed

(IAS), inertial measurement unit (MU) attitude, angle of attack, and sideslip measurements. The

output of the no-fail filter is the FCS measurement residuals vector which is the difference between
the FCS sensor outputs and their predictions computed by the no-fail filter.

Associated with each surface, there is a first order filter estimating the percentage gain
reduction in control effectiveness for that surface assuming that the surface in question has been

damaged at a random instant with an unknown damage level. The input to each detector is the
no-fail filter FCS measurement residual vector. The detectors compute the covariance for this

measurement residual vector to account for the modelling effects on the no-fail filter residuals

during maneuvers by using a state and input dependent process noise (Caglayan, Allen and

Rahnamai, June 89).

FCS MEASUREMENTS

SURFACE NO-FAIL PL~
PosnmON • ITR- NP'rS
SENDSORS 7IM

?flA_'SUREPA-.Tr 11S. IU A.LS

DRIMCOR I  . .. ToR DE OR

Figure 1.1-2: Global EDI System
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The output of each detector is the estimate for the control effectiveness loss and the

associated covariance reflecting the uncertainty about the damage estimate. Each detector also

outputs a compensated FCS sensor measurement residual sequence such that the effects of the

hypothesized surface damage are removed from the no-fail filter residuals.

For each detector, a likelihood ratio is computed using the compensated residual sequence

from that detector over a fixed moving window. Each likelihood ratio is a weighted sum of the

compensated measurement residuals adjusted by detection thresholds.

In the modified multiple hypothesis test, first, a detection test is performed which yields a

set of candidates for damaged surfaces. Next, a full isolation test is performed which declares

complete isolation among the damaged surface ;andidates only when a specific distinguishability

criterion is satisfied. The modified multiple hypothesis test therefore has two sets of thresholds: D
detection thresholds for the detection with partial isolation test; II) isolation thresholds for the full

isolation tests. These thresholds are functions of flight conditions.

1.2. Expert Systems Overview

The recent success of expert systems technology (Stefik et al. 82), a subfield of Artificial

Intelligence, in diagnosis, monitoring, prediction, planning tracking and design problems in certain

application domains has initiated similar efforts in other areas. These early successful expert

system applications include SOPHIE in computer assisted instruction (Brown, et al.), MYCIN in

medical diagnosis (Shortcliffe 76), PROSPECTOR in oil exploration (Duda et al. 78), and

DENDRAL in biology (Buchanan and Feigenbaum 78). Recent military applications of expert

systems include ADEPT for battlefield situation assessment analysis (Taylor et al. 84), AIRPLAN

for assisting air operations officers with the launch and recovery for aircraft on a carrier (Masui et

al. 83), EXPERT NAVIGATOR for monitoring aircraft navigation sensors (Pisano and Jones 84)

aircraft and B lB diagnostic expert system (Davis 88).

An expert system is a computer program that can perform a task normally requiring the

reasoning ability of a human expert. Expert systems are highly speci-lized according to their

application domains. Although any program solving a particular problem may be consideied to

exhibit expert behavior, expert systems are differentiated from other programs according to the

C-)n
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manne in which the domain specific knowledge is stuured, represed awl processed io

produce solutions. In partiular, expert systm program parmiion rh&r knowldge into dhe
following three blocks: Data Base, Rule Base, anl Inference Engin Expert sysicutli

symbolic and nuneic re aing in applying the rules in the Rule Base to the fam i, dic Da Base
to reach conclusiom according o the consznc of reasoning specif"ed by die hIferewc Egu

-.2. 1. Knowledge Rpeetto

There are two basic qts of knowledge tht can be incorporated into expert syvcms:

declarative knowledge and procedural knowledge. The kind of knowledge describing the

relationships among objects is called declarative knowledge. The kind of knowledge prescribing

the sequences of actions that can be applied to this declarative knowledge is called procedural

knowledge. In expert systems, procedural knowledge is represented by production rules v hereas

declarative knowledge is represented by frames, semantic networks in addition to poduction riuLs.

Rules are expressed as IF-THEN statements. When the IF portion of a rle is satis fied by

the facts, the rule is fired by executing the statements specified by the THEN portion. Typically.

the production rules deal wih uncertainy through the use of certainty factors. probability or fazzzv

logic. Semantic nets are network representations of declarative knowledge. A semantic net

consists of a collection of nodes - representing arbitrary objects - ,onnected by arcs describing the

relations between nodes. One of the most important characteristics of a semantic net is the

capability of building inheritance hierarchies. Using arcs represening relations such as IS-A and

HAS-PART, objects in the net can inherit properties fron, other ob. ects higher up in the net. A

frame is a knowledge representation about a prototypical instance (Fikes and Kohler 85). Frames

are organized as semantic nets where the topmost nodes represeI general concepts whereas the

lower nodes represent more specific in.tances of these concepts. In a frame based system. the

concept at each node is defined by its attributes (slots) and attribute values. Each slot can also

contain procedures which are executed when the values of the attribute change.

While e.pert systems ha\e been traditionally buil: using collections of rules based on

empirical associations, intieret ha, gro\,kn recent!x in knowledge-hased expert sstems which

perform rea.,,oning from rcprc,,criaions of ,tructure and function kn,, ledzc. [or instance, an

expert ',stcm for di--ital e'.'.tronjc , ,,icm, troublesh(ting i', de,,elopd b\ using a -.tlnural and

7
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bt.a-3ork ocarm-snpi of digital CriLcts (Davis &4). The obiecti-, of this approach to expert

System - Ocntadon is to reason from first principles abog the domaiin rather than from

n l assoca s. On e of the k- id.s in this approach is to use multiple replcscmafions of

the digital circuit (both funcdonal and physical smictme) in roubkshooting appl-.ations The

approach is also similar w dke nulipk k-vtls of abstraction in modelling of mental strategies for

faul diagnos pobkms Rasm sen 5).

Qualitative process thery (Forbus 88) is anodxe approach allowing de representaton of

causal behavior based on a qualitative representation of numerical knowledge using predicate

cakulus. QP theory is a firsz order prtdicaie calculus defined on objects parAmeterized by a quality

consSt ing of two parts: an amount and a derivative, each represented by a sign and magnitude. In

Qualitative Process them, phys.cal sysims are described in terms of a collection of objects, their

properties. and the relationships among them within the framework of a first order predicate

... i. • ,-,..t.,iz k,,owide repr-esenaion a severa els of abst-,ction is also another

approach used in modelling human problem solving strategies for complex systems (Rasmussen

85)_. This hierarchy is two dirrensional. The first is the functional layers of abstraction for the

physical system: functional purpose. abstract function, generalized function, physical function,

and physical form. The second is the structural layers of abstraction for the physical system:

system, subsystem, module. submodule, component-

1.2.2. Inference Strategies

The inference control strategy is the process of directing the symbolic search associzted

with the underlying type of knowledge represented in an expert system: antecedents of IF-THEN

rules, nodes of a semantic net. or collection of frames. In practical expert system applications, the

blind search is an unacceptable approach due to the associated combinatorial explosion. Search

techniques can be basically grouped into three: breadth-first. depth-first and heuristic. The

breadth-first search exhausts all nodes at a given level before going to the next level. In contrast,

the depth-first exhausts all nodes in a given branch before backtracking to another branch at a given

level. Heuristic search incorporates general and domain-specific rules of thumb to constrain a

search.

Expert ,,.sterns emplo, ha,,al, tw o tpes of reasoning strategies based on the search
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techniques above: forward chaining and backward chaining. In forward chaining, starting from

what is initially known, a chain of inferences is made until a solution is reached or determined to be

unattainable. For instance, in rule based systems, the inference engine matches the left-hand side

of rules against the known facts, and executes the right-hand side of the rule that is activated. In
contrast, backward-chaining systems start with a goal and searches for evidence to support that
goal. Pure forward chaining is appropriate when there are multiple goal states and a single initial

state whereas backward chaining is more appropriate when there is a single goal state and multiple
initial facts. Many expert systems utilize both forward and backward chaining.

1.3. Neural Networks Overview

PT.-ural networks (Anderson and Rosenfeld, 88) represent nonalgorithmic class of

information processing for using massively parallel distributed processing architectures. Stimulated

by the efforts directed at understanding the interconnection of neurons in the human brain allowing

the storage, retrieval, and processing of complex data, research over the last 25 years in artificial
neural systems has produced solutions to complex problems in visual pattern recognition,

combinatorial search, and adaptive signal processing.

A generic artificial neural net structure is a network of processing elements (neurons)

connected with each other through interconnects (information links). Each processing element can

have multiple inputs and only one output. The input/output relationship is described by a

first-order differential equation. Specifically, a weighted sum of the nonlinear transformations of

the multiple inputs along with a nonlinear transformation of the current neuron's state are the
driving functions of this first-order differential equation. The weighting coefficients also satisfy a

first-order differential equation driven by a nonlinear transformation of multiple inputs and the

weighting coefficients associated with the input links. These two first-or&Lr differential equations

(also called the update and learning rules) and a specific network topology provide a complete
neural network specification.

Artificial neural networks produce a nearest-neighbor classifier. Since the weighting
coefficients change in an unpredictable manner, the global stability of the neural network

9
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description is an important consideration. The strongest theoretical result to date is due to (Cohen

and Grossberg, 83) who have shown that the neural net converges to one of the finite set of

equilibrium points corresponding to local minima of the energy function under certain restrictive

conditions (e.g., symmetric, positive weighting coefficients). Another advantage of neural nets is

that the convergence to the answer is independent of the number of local minima in the energy

function, thus cemparing favorably to other general search techniques. Although the global

stability and convergence results have not been extended to the case for nonsymmetric weighting

coefficients, several successful heuristic applications with nonsymietric weighting coefficients

have been reported (Grossberg, 82), (Hecht-Nielsen, 86).

Conceptually, artificial neural networks are applicable to failure detection problems for

learning the spatiotemporal patterns associated with failure signatures. Here, the spatiotemporal

pattern would be the measurement residual trajectory as a function of time in the measurement

vector space. The relationship between artificial neural network approach to spatiotemporal pattern

recognition and conventional signal processing structures (i.e., finite impulse filters, correlation

detectors, etc.) has been discussed by (Myers, 86). Used in this context for FDI application,

neural networks would be the nonalgorithmic counterpart of spatiotemporal filters. The direct

application would involve the training of a neural network representation of a structure with a

multitude of failure scenarios and using the neural net as a classifier. Neural networks can also be

appiied to model empirical relationships for covariance expressions, likelihood ratio thresholds

under modelling errors.

The recent interest in artificial neural networks is due to the availability of fast, relatively

inexpensive computers made possible by advances in VLSI design for realizing neural network

structures. Given that the neurons in the human brain process information in milliseconds while

outperforming current serial supercomputers with a processing rate in nanoseconds, there is

considerable interest in the new generation neurocomputers and computing environments.

1.4. Outline of Report

In chapter 3, we describe the development and implementation of the design assistant

prototype. ,e present the fomvulation of the FDI/DA prototype in Chapter 2. Expert system and

10
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neural network implementations of global FDI algorithms are described in chapter 4. In Chapter 5

we describe the requirements of a full scale FDI/DA research prototype.
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2. FORMULATION OF PROBLEM

2.1. Determination of Problem Scope

Global FDI design is an iterative and time consuming process which requires the

knowledge and expertise of an expert FDI designer. There are three main steps in the global FDI

design process, which is illustrated in Figure 2.1-1. First, the FDI design expert analyzes aircraft

and FDI time history data to produce an assessment of the FDI performance for the simulated

damage scenarios. Second, if the designer is not satisfied with the FDI performance he uses his

domain expertise to determine FDI design parameter modifications which will improve FDI

performance. The designer also determines simulation scenarios which will test that the FDI

design parameter modifications improve FDI performance. Third, the designer runs the simulation

scenarios, which results in new time history data, and the process repeats until the desired FDI

performance is reached. The third step also includes running a matrix of simulation scenarios in

order to ensure that the design modifications do not adversely affect FDI performance.

No AIRCRAFT RECONFIGURATION
SIMULATION STRATEGY

FDI performance data
Simulation time history

-m DESIGN
EXPERT

Simulation scenarios Modified design parameters

Figure 2.1-1: FDI Design Process
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Increasing the efficiency of the global FDI design process requires achieving two main

development goals. The first goal is to decrease the amount of time required for an expert FDI
designer (someone with expertise in both FDI theory and aero application knowledge) to design the
global FDI. This goal can be achieved by automating FDI performance analysis and the running

of simulation scenarios. The second goal is to enable a designer with aero application knowledge

expertise but minimal FDI expertise to design the global FDI. In order to achieve this goal, the

inexperienced FDI designer will need assistance in determining design parameter modifications and

selecting simulation scenarios.

2.2. Determination of Development Environment

In addition to the conventional Al programming languages (i.e., various flavors of LISP
and PROLOG), general purpose knowledge engineering languages such as OPS5, CLIPS, and
M.1 can be used to build customized expert systems. Several commercial integrated expert system
development tools are also available for building expert system applications. General purpose
commercial expert system shells for building expert systems can be grouped into three classes:
rule-based, frame-based and hybrid. In rule-based expert system shells, the domain knowledge is

captured using if-then decision rules. These rules capture informal heuristics about a given
domain. In frame-based expert system shells, domain knowledge ;: captured as data structures
that relate the characteristics of objects in a hierarchy of classes. The organization of frames into
taxonomic hierarchies provide an efficient method of knowledge representation through
inheritance. Hybrid expert system shells provide a combination of rules, frames and inheritance
networks using object oriented representation with multiple inheritance. Hence, hybrid shells

allow the partitioning of domain knowledge for representation.

The expert system 3hell CLIPS (Giarratano 88) is chosen as the development environment

for the FDI Design Assistant expert system. CLIPS - C Language Integrated Production System -
is a tool for the development of rule based Expert Systems. CLIPS provides a powerful rule syntax
and an inference engine based on the Rete match algorithm (Forgy 82). We have selected CLIPS
for the FDI/DA implementation since it is written in C, embeddable to other programs written in

13
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different languages (C, Fortran, Ada), and portable across hardware platforms. Although CLIPS
is a pure rule-based expert system de' elopment tool (e.g. it does not support inheritance), the

production system models have been advocated as computational models for human cognition

(Anderson 83), thus suitable for representing the FDI design expert's knowledge in terms of

production rules.

2.3. Performance of Knowledge Engineering

Knowledge engineering is the process of transferring a domain expert's knowledge from

the expert to a computer program or expert system. The knowledge engineering process for the

FDI/DA is illustrated in Figure 2.3-1. The knowledge engineer is responsible for converting an

experts knowledge into the facts and rules that make up the expert system. This is accomplished

by interviewing the expert, observing and formalizing the expert's reasoning during the design

process.

des xetise

structured ,
FD KOWEDE knowledge FDI/DA
DESIG ENGNEERKNOWLEDGE
EXPERTBASE

Figure 2.3-1: FDI/DA Knowledge Engineering Process
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3. FDI/DA PROTOTYPE IMPLEMENTATION

The FDI/DA prototype is implemented on a Microvax I workstation running under

MicroVMS V4.5. The prototype interfaces with the non-real time CRCA simulation, version 7.

The control and data flow structures of the FDI/DA is shown in Figure 3-1. As seen in the figure

fie FDI/DA consists of three main sections: the fact list, the rule base, and the inference engine.

The fact list consists of facts about FDI performance, which are input from the CRCA simulation,

facts about the current design process, and facts concerning user inputs. The rule base has rules

for processing user inputs, rules for FDI performance analysis, and rules for design iteration. The

inference engine constantly looks for matches between the facts in the fact list and and the left hand

sides of the rules in the rule base. When a match occurs, the matched rule is put on an agenda.

The inference engine then selects a rule from the agenda and executes, or fires, the rule. The firing

of the rule can place additional facts on the fact list and can cause other rules to fire.
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CRCA SIMULATION

FACTS: RULES:
- USER COMMANDS - USER INTERFACE
- FDI PERFORMANCE - PERFORMANCE
- DESIGN STAGE ANALYSIS

- DESIGN ITERATION

MATCH

INFERENCE
ENGINE SELECT

EXECUTE CONTROL FLOW

DATA FLOW

Figure 3-1: FDI Control and Data Flow

3.1. FDI/DA Knowledge Base

3.1.1. FDI/DA Fact List

As mentioned earlier, the fact list consists of facts concerning FDI performance, the

current design process, and user inputs. An initial set of facts is placed in the fact list when the

FDI/DA is started. Additional facts are asserted into the list when certain rules fire. The firing of a

rule can cause facts to be removed from the fact list.
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Figure 3.1.1-1 shows the facts that initialize the fact list when the FDI/DA is started. The

CLIPS syntax for specifying initial facts is the deffacts statement. The first fact asserted into the
fact list, prompt-user, is a user command fact and it matches a pattern in the left-hand side of the

prompt rule. When the prompt rule fires it prompts the user to enter an FDI/DA command. The

flight-condition and threshold-abb facts are used in design rules for determining simulation script

file names. The facts included in the group of facts named current-design-state describe what is

known about the current FDI design. As shown in this group of facts, there is initially minimal

information about the current design.

(deffacts initial-facts
(prompt-user)

)

(deffacts abbreviations
(flight-condition (name stol) (abbreviation s))
(flight-condition (name exit) (abbreviation x))
(flight-condition (name entry) (abbreviation e))
(flight-condition (name tfta) (abbreviation t))
(threshold-abb (name static-detection) (abbreviation sd))
(threshold-abb (name static-isolation) (abbreviation si))
(threshold-abb (name dynamic-detection) (abbreviation dd))
(threshold-abb (name dynamic-isolation) (abbreviation di))

)

(deffacts current-design-state
(design-flight-condition unknown)
(safety-margin (name threshold) (value 20))
(script-file)

(reason-why one
'The 'why' command explains why the last conclusion printed to the screen
was reached. Type 'why' at the FDI/DA command line prompt, but not in
response to an input request.")
)

Figure 3.1.1-1: Initial FDI/DA Fact List
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3.1.2. FDI/DA Rule Base

The FDI/DA knowledge base is a representation of FDI design expert's knowledge as a set
of production rules and facts. The rule base has rules for processing user inputs, analyzing FDI

performance, and iterating the current design. When patterns on the left hand side of a rule match
facts in the fact list, the rule fires.

Figure 3.1.2-1 shows three of the rules used for processing user inputs. In CLIPS, rules

are defined using the defrule statement. The rule named prompt will fire when the fact prompt-user
is in the fact list. The salience statement helps the inference engine determine which rule to fire if

more than one rule is on the agenda. The higher the salience the higher priority a rule has. When

this rule fires the FDI/DA command line prompt DA>> is printed on screen and the system waits
for the user to input a command. After a command has been entered, it is converted from a string
into a fact using the str-explode function, it is then asserted into the fact list using the (assert

(command $?command)) statement. The next rule, unknown-command, is used to alert the user when

an invalid command has been entered. The reset-prompt rule reasserts the prompt-user fact into
the fact list so that the prompt ru!e will fire and prompt the user for the next command. The
salience on the reset-prompt rule is set to -100 to ensure that the actions resulting from the last
command have finished executing before the user is prompted for another command.
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(defrule prompt
(declare (salience -25))
?prompt <- (prompt-user)

(retract ?prompt)
(printout t crlf)
(printout t 'DA>>
(bind ?string (readline))
(bind $?command (str-explode ?string))
(assert (command $?command))

)

(defrule unknown-command
(declare (salience -50))
(command ?command&-help&-diag&-gt&-why&-facts&-rules

&-agenda&-watch&-unwath '- -quit&-fc&-ed
&-dir&-load&-trans&-cfa&-d1

&-time $?command-2)

(printout t '*" ?command..
$?command-2" is not a valid command! ***" crlf)

)

(defrule reset-prompt
(declare (salience -100))
?command <- (command $?)

(retract ?command)
(assert (prompt-user))

)

Figure 3.1.2-1: FDI/DA User Interface Rules

Examples of FDI/DA rules for analyzing FDI performance are shown Figure 3.1.2-2. The

first rule determines whether or not there was an FDI false alarm during the simulation run. The

fact check for FD! anomalies is asserted into the fact list when the user inputs the command cfa at

the command line prompt. The run-fact facts are asserted into the fact list after the FDI time history

data generated during a CRCA simulation run has been translated into a CLIPS readable form.
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The first rule reads as follows: If there was not a failure and damage was detected, then there was a
false alarm. The second rule determines whether or not canard damage was isclated correctly.

(defrule check-for-fals a-alarms
(check for FDI anomalies)
(run-fact there was-not a-failure)
(run-fact damage was detected)

(assert (there was a-false-alarm))
)

(defrule check-for-correct-canard-isolation
(check for FDI anomalies)
(run-fact there was a-failure)
(run-fact damage was detected)
(run-fact damage was isolated)
(run-fact failure ?failure&cl I cr $?)
(run-fact isolated-damage ?iso-dam&cl I cr $?)
(test (eq ?failure ?iso-dam))

(assert (there was-not an-incorrect-canard-isolation)))

Figure 3.1.2-2: FDI Performance Analysis Rules

The FDI/DA rule base also contains a fundamental set of rules for determining static

detection thresholds. These design iteration rules assist the user in setting static detection
thresholds for four flight conditions: STOL, TF/TA, ACM Entry and ACM Exit. Figure 3.1.2-3

shows two of the rules used in the design iteration process. When the user enters the command to

design threshold at the command line prompt, the rule prompt-user-for-type-of-threshold- to-design

fires and the user is asked which type of threshold they want to design. The user then picks an

option from the menu that appears. After an option has been entered the FDI/D.', will tell the user

which simulation script file to run in order to generate the FDI time history data needed to design

the thresholds requested. The current version of the FDI/DA will only design static thresholds.
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(printout t I crif)
(pintA ut cr Enieran option: 1
(asseut (thredtokd-option =(read)))

(defrule tefI-user-to-ru-a-script-ffle
?.run <- (run script-fie ?filename)

(retract 7rn)
(printout t 'Exit io TAE to run the followiir, script file ?flenanw crif)
(printout t "At the TAE prompt, type the following: esia-scr - ?filename crlf)

)dfuegreaesakdtcintrsod

(fegenerate-static-detection-thresholds

(run-fact mnax-rd surface-type ?surface ?max-lrd)
(safety-margin (name threshold) (value ?reliability))

(bind ?threshold (4- ?rnax-Ird (* ?max-lrd (* ?reliability 0.01)
(assert (threshold (surface ?surface) (name static-detection)

(value ?threshold)))

Figure 3.1.2-3: FDIIDA Design Iteration Rules
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After the FDI/DA has been started and the vielcomr nssage has appeared, the user can

input a cowmand at the command line pronpt, DA>>. Typing help produces a list of valid

conm.nd&

WVecore to the FD! Deign Assistant

type "Ip" for a list of commands

DA>> help

FDI DESIGN ASSIS-TANT COMMANDS
trans transiate CRCA time history to facts

" load load translated facts into fact base
" cfa check for FDI anomalies
* dt design thresholds

gt generate new threshold values *
tae exit to TAE to run script files *

•wh explain why a conclusion was reached *

CLIPS COMMANDS
* facts display facts in the fact list

rules display names of rules in data base *
*agenda show activated rules *
" watch watch facts, activations, or all
" unwatch deactivates watch command *
• quit exit to CLIPS *

SYSTEM COMMANDS
* ed 'filename" edit 'filenare', e.g. 'ed fdifil.dat'
" dir 'files" directory of 'files'

In this example the user wants to design thresholds so the command dt will be entered. At

this point the FDI/DA does not know which flight condition the design is for so the user is
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prompted for the design flight condition- After a valid flight condition is entered, the FDI/DA

presets the user with a menu from which to chose the type of threshold to design. Si-ce the user

wants to design static detection hrsholds the sd option is chosen. Now the FDI/DA has enough

information to suggest a course of action: Exit to TAE to run the following script file:.

"'ESDT DSGSCR. The user can inquire into the reasoning behind the suggested course of action

by using the why command.

DA > dt
The current design flight condition is UNKNOWN.
Enter the new design flight condition (entry, exit, stol, tfta): entry
The current design flight condition is ENTRY.

Design which threshold for flight condition ENTRY?

*OI1IONS DESCRIPTION *
* sd static detection *

Ssi static isolation
* dd dynamic detection
* di dynamic isolatiun *

Enter an option: sd
Exit to TAE to run the following script file: "ESDTDSGSCR"
At the TAE prompt, type the following- ena-scr "ESDTDSG.SCR"

DA>> why
"In order to design a surface's static detection thresholds a run
with maximum maneuvers, maximum gusts, and no damage needs to be made.
The xSDTDSG.SCR file will automatically make such run for the current
design flight condition lxi. A surface's static detection thresholds should be
set to some percentage greater than the surface's maximi'm likelihood ratio
difference [LRD] generated during this run."
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To run the scriptfile the user exits to TAE using the tae command and enables the scriptfile

at the TAE prompt. After the scriptfile has finished running the FDV/DA automatically restarts and

suggests values for the static detection thresholds at the ACM Entry flight condition. Again, the

user can use the why command for an explanation.

DA>> tae
TAE>ena-sa esdLdsg.s

Set the CANARD static-detection threshold for ENTRY to 1.00
Set the TRAILING-EDGE static-detection threshold for ENTRY to 1.43
Set the RUDDER static-detection threshold for ENTRY to 1.00

DA>> why
'These values are a percentage greater than the maximum likelihood
ratio, for these surface types, generated during the design run.
The percentage increase is the value in the fact 'safety-margin'
and can be modified if necessary for desired performance."
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4. ARTIFICIAL INTELLIGENCE IMPLEMENTATION OF FDI ALGORIT-MS

Artificial intelligence technologies can be used to enhance the performance of the global

FDI strategy. We implemented global FDI algorithms using expert system production rules and

neural networks to demonstrate the potential these technologies have for improving global FDI

performance.

4. 1. Expert System Implementation of Global FDI Strategy

In this section, we discuss the implementation of the global FDI as an expert system. We

demonstrate the feasibility of expert system implementation of the global FDI algorithms by
writing the isolation logic of the CRCA global FDI algorithm as a set of production rules and

integrating it into the existing FDI code.

4.1.1. Expert System Implementation of Global FDI Algorithms

Current global FDI systems can be described using the block diagram shown in Figure

4.1.1-1. In these systems, the monitored signals drive a predictor which is either a closed loop or

an open loop numerical simulation based on the assumption of current postulated faults in the

monitored signals. The predictor provides a discrepancy called the residual between the monitored

signal and its expected value.
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If the detection test indicates the presence of a fault, then the residuals are processed

through several hypothesis conditioned correlators to generate a set of compensated residuals.

Then, a mu'ltiple hypothesis test is employed to isolate the fault. This is followed by a module

performing reconfiguration of the predictor and correlator blocks.

What are the common problems encountered in these fault/event monitoring applications?

Most of the serious problems are due to false alarms, incorrect isolations, and missed detections.

The main reason for these shortcomings are due to the inaccuracy of the numerical model used for

the system in designing either the predictor or detection or isolation algorithm.

In a conventional approach, how does a designer try to eliminate these problems? He has

two options: First, he can use a better numerical model for the predictor. For instance, the model
can be modified to incorporate the effects of attack changes on the aircraft stability and control

derivatives. A second choice is to accept the inaccuracy of the predictor model and to account for
the inaccuracy of the model. For example, the test thresholds can be dynamically changed to

compensate for the effect of modelling errors on the residuals during maneuvers.

In short, the designer either has to increase the complexity of his predictor or detection and
isolation algorithm by using a more elaborate numerical model in conventional fault monitoring and

diagnosis applications. So where can expert systems be of help in theses applications? We believe

that there are several areas in which expert systems technology can be of help. There are:

-Symbolic knowledge representation: While conventional FDI implementation

environments (i.e. Fortran, Ada, C) support mainly sequential procedural knowledge

constructs, expert systems support a hybrid knowledge representation allowing both

structural declarative knowledge and sequential procedural knowledge. For instance,

the description of the interconnections between the various actuators, surface position

sensors and hydraulic lines require a topological knowledge representation capability
ideally suited for an expert system implementation.
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-Rapid prototyping with successive refinement: Expert systems offer an environment

where FDI systems can be rapidly prototyped. This is mainly due to the inheritance
mechanism supported in hybrid shells and the data-sensitive unordered rules (as

opposed to sequential instructions) in the rule based programming paradigm.
Moreover, expert systems can be incrementally modified by adding to their knowledge

base.

- Explanation Facility: Expert systems offer a facility for explaining the reasoning

behind the reached decisions. This can be useful not only in advising the pilot (using,
for instance, a positive pilot alert system) but also in formalizing the global FDI

decision logic.

Expert systems can totally replace some modules in Figure 4.1.1-1. For instance, the

hypothesis generator in Figure 4.1.1-1 can be replaced with an expert system with its own

knowledge base. Expert Systems can also enhance global FDI performance by augmenting their

decision logic in a supervisory role. For instance, the Data Base would include assertions to be

used in reasoning by the expert system. Hence, the Data Base would take inputs from the

predictor, correlator, detection and isolation test, and reconfiguration logic. For instance, the

predictor states can be used to assert events such as "the aircraft is executing a 9g pullup

maneuver."

The Rule Base can include the rules describing the inaccurate behavior of the model used in

the design of the conventional global FDI algorithm. These rules in a monitoring application may

take the form: "If the aircraft is executing & pitchup maneuver greater than 9 g's, and if the FDI

algorithm indicates surface damage, then the detection. test indication is a false alarm." Ideally, the

system knowledge easily expressed numericaUy should be incorporated into the conventional

global design model whereas the system knowledge easily expressed as rules would get

incorporated into the expert system Rule Base.

The application of expert systems technology to global FDI systems is not limited to the

decision logic portion of these systems. In fact, object oriented hybrid shells are more appropriate

in the implementation of FDI systems since they support knowledge constructs (objects,
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inheritance, methods, topological hierarchy) ideally suited for developing knowledge based

systems. In particular, these hybrid shells support the representation of both structural and
functional knowledge. Structural knowledge encompasses (physical units such as actuators,
hydraulic systems, FCS, surface position sensors, FCS sensors, etc. and interconnection between

these physical units such as wires, hydraulic lines, forces, moments, etc). In contrast, functional
knowledge encompasses the functional behavior of these physical units captured as methods

(procedural code representing input/output behavior, consistency check, etc.).

The major problem in implementing global FDI systems as expert systems is the real time
requirements. Current commercially available expert system building tools (shells) are not
generally applicable to building expert systems for onboard applications due to the following
reasons (Laffey et al. 88): 1) the shells are not fast enough; 2) the shells have insufficient facilities

for temporal reasoning; 3) the shells are not easily embeddable into conventional high level
programming languages and most cannot run on numeric microprocessors used for embedded
applications; 4) the shells have insufficient facilities for devoting attention to significant events; 5)
the shells are not designed to accept onboard sensor data; 6) the shells have no integration with a

real-time clock and do not handle hardware interrupts; and 7) the shells cannot provide guaranteed

response times.

As discussed in (Gupta 85), most interpretive expert system shells spend 90% of their time

in matching the current facts against the antecedent of rules in their rule base. Hence, an expert

system development approach where the enterpretive processing is performed off-line would offer

a substantial execution time improvement. Similarly, the execution efficiency is a strong function
of the knowledge representation facilities employed in the expert system shell. For instance, an
approach based on multiple hierarchical representations of a physical system and using forward

chaining would have a linear execution time complexity as compared to a rule based system with
forward chaining having exponential time complexity.

For ease of integration into conventional high level programs, programming language of the

expert system shell is an important choice. For instance, the choice of a programming language

commonly used for embedded applications such as Ada or C would be advantageous from an
integration viewpoint. Moreover, such an expert system would be easily portable to

microprocessors commonly used for embedded applications (e.g., 1750A, 80386, 68020).
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Moreover, the language constructs for handling real-time issues (tasking, interrupt servicing,

exception handling) would be available to such an expert system development tool.

As discussed by Duke et al. (86), what is needed for real-time onboard expert systems

development is a knowledge compiler for converting the developed knowledge base into a

conventional program, thus retaining the desirable attributes of the expert system during the

development stage while producing an efficient conventional code for a target embedded

microprocessor.

One such shell is the System Description Language Processor (SDLP) (Edwards and

Caglayan 88) which allows the specification of topological and procedural application knowledge

for time-critical applications using a System Description Language (SDL), the interactive

development of an expert system based on this specification, and the integration of a compiled

version of this knowledge into a conventional time-critical application. SDLP in an object-oriented

shell written in Ada.

4.1.2. Rule-Based Representation of FDI Algorithms

In order to demonstrate the feasibility of implementing FDI algorithms as an expert system,

the detection and isolation logic of the CRCA global FDI algorithm is written as a set of production

rules. Figure 4.1.2-1 shows the FORTRAN implementation of the current CRCA global FDI

detection logic. In this section of code, values associated with each surface are evaluated in order

to determine if surface damage has occurred. First, a surface's damage estimate (PHEI (I) ) is

evaluated to ensure that it is within the valid range. Next, the sum of the surface's likelihood ratio

(ALAMDA (I)) and surface's detection threshold (TRSHDE (1)) are compared to the no-fail filter's
likelihood ratio ( ALAMDA (NFT1)). If the no-fail filter's likelihood ratio is larger than the sum, then

damage detection flag is set to true (IFLDET = 1).
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DO 10 I=1,NSUR
ISOSUR(1) = 0
TTEMP = ALAMDA(I) + TRSHDE(I)
IF((ALAMDA(NFrl).GT.ALAMDA(I)+GRDTA(10))) THEN

IF((PHEI(I).LE.ESTHIG).AND.(PHEI(I).GE.ESTLOW)) THEN
KNTLR(I) = KNTLR(l) + 1
KNTFAL = KNTFAL + 1
INDAIJ(KNTFAL) = I
IF(ALAMDA(NFr).GT.TTEMP) TI-N
IFLDET = 1
KNTLRD(I) = KNTLRD(I) + 1

ENDIF
IF(ALRMIN.GT.ALAMDA(I)) THEN
ALRMN = ALAMDA(I)
INDMIN =I

ENDIF
ENDIF

ENDIF
10 CONTINUE

Figure 4.1.2-1: Surface Damage Detection FORTRAN Code

A more comprehensible form of this logic can be written using three CLIPS production

rules, as shown in Figure 4.1.2-2. The first rule determines if a surface's damage estimate is

within the valid range. If it is, the fact ?surface estimate is ok asserted into the fact list. The second

rule determines if the sum of the surface's likelihood ratio and the surface's detection threshold is

greater than the no-fail filter's likelihood ratio. if it is, the fact ?surface

likelihood-ratio-beats-detection-threshold is asserted into the fact list. Finally, damage is

detected if both the facts ?surface estimate is ok and ?surface

likelihood-ratio-beats-detection-threshold are in the fact list.
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(defrule determine-if-surface-estimate-is-ok
(surface-estimate ?surface ?surf-est)
(surface-estimate-mn ?surf-est-min)
(surface-estimate-max ?surf-est-max)
(test (< ?surf-est ?surf-est-max))
(test (> ?surf-est ?surf-est-min))

(assert (?surface estimate is ok))
)

(defrule determine-if-surface-Ir-beats-detection-threshold
(likelihood-ratio ?surface&-no-fail-filter ?surf-lr)
(likelihood-ratio no-fail-filter ?nff-lr)

(detection-threshold ?surface ?surf-dt)
(test (> ?nff-lr (+ ?surf-lr ?surf-dt)))

(assert (?surface likelihood-ratio-beats-detection-threshold))
)

(defrule detect-surface-damage
(?surface estimate is ok)
(?surface likelihood-ratio-beats-detection-threshold)

(assert (surface-damage has been detected))
)

Figure 4.1.2-2: Surface Damage Detection CLIPS Code

4.1.3. Integration with Existing FDI Software

Integrating the expert system implementation of the global FDI algorithms with existing

FDI software requires embedding the CLIPS rules into the existing FDI FORTRAN routines.

Since, CLIPS is based on the C programming language, embedding CLIPS into FORTRAN

requires the use of special programs for passing information between CLIPS and FORTRAN.

Figure 4.1.3-1 illustrates embedding the CLIPS implementation of the surface damage detection

and isolation logic into the existing FORTRAN code.
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Modified Multiple Hypothesis Test
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FORTRAN
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Figure 4.1.3-1: CLIPS Embedded In FORTaN
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Accessing the CLIPS rules from inside the FORTRAN code is accomplished by using the
FORTRAN CALL statement to start the execution of a specialized FORTRAN subroutine. Before
the production rules can begin checking for surface damage, the FORTRAN variables needed by
the rules must be converted into facts and placed in the fact list. As shown in Figure 4.1.3-1, the
inputs to the FORTRAN-to-CLIPS-convertor are FORTRAN variables and the output is the fact
list. For example, the surface damage detection rules (Figure 4.1.2-2) need access to the detection
thresholds in order to fire. The FORTRAN-to-CLIPS-convertor takes the FORTRAN array
variable for detection thresholds, TRSHDE (I), and converts it into the fact (detection-threshold
?surface ?surf-dt). The index, (i), indicates a surface and after conversion is placed into the
?surface slot in the detection-threshold fact. The value for the detection threshold is placed in the
?surf-dt slot. Once the conversion is complete the entire fact is placed into the fact list.

After the fact list has been created, the detection and isolation rules become active and
perform the detection and isolation tests. When all rules have finished firing a CLIPS-to-
FORTRAN-convertor transforms the modified fact list, which now contains information regarding

surface damage, into FORTRAN variables and passes them back to the FORTRAN routine. At
this point the FORTRAN routine continues execution.

4.2. Neural Network Implementation of Dynamic Thresholding

As discussed in Chapter 1, there are two different approaches in using neural nets in global

FDI design problems. The first one is the direct implementation of the global FDI system as a
neural network. The second is to embed neural networks into conventional FDI algorithms. In the

first approach, the usual problems associated with an algorithmic approach (e.g. modelling errors,
environmental disturbances) would be mapped into the domain of neural network design (e.g. the

determination of training data). The second approach is more appropriate for the conventional
design stages which do not yield themselves to a well defined algorithmic solution. For instance,
the process and measurement noise covariances of a linear design model representing the modelling

error uncertainty compared to the underlying nonlinear aircraft model, the no-fail filter estimation
error covariance expressions under modelling errors, and likelihood ratio dynamic thresholds
compensating the effect of modelling errors are suitable candidates fur using a neural net approach.
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interconrec~t topology, the neural net solution can be used to weed variables which do not have an
impact on the likelihood ratio outputs (i.e. by observing the links with zero gains). inally,

known functional dependencies can be supplied as inputs for increased representation efficiency.

Figure 4.2-2 shows the two layer neural net used for modelling the dynamic threshold for

the left canard likelihood ratio. As seen from the figure, the inputs into the neural net are the

ccmmanded and actual roll rates, and the commanded and actual normal accelerations. A ten node
intermediate layer with a fully connected topology has been employed. Figure 4.2-3 compa:.s the
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5. FULL SCALE RESEARCH PROTOTYPE REQUIREMENTS

Here, we outline the desirable attributes of a full scale research prototype for a Computer

Aided Engineering (CAE) solution to the global FDI design problem. The proposed FDI/CAE full

scale research prototype consists of a Design Assistant and a Development Environment. Design

Assistant assists a designer in optimizing the global FDI design over the entire flight and

failure/damage envelopes while the Development Environment supports the implementation of FDI

systems as knowledge based expert systems and neural networks.

5.1. Global FDI Design Assistant

A full scale FDI/DA will be an expanded and enhanced version of the FDIIDA prototype

described in previous sections of this report. The primary goal of an FDI/DA is to aid the designer

in efficiently determining the global FDI design parameters which produce the best FDI

performance for the current global FDI strategy. A secondary goal is to help an inexperienced FDI

designer learn the design process.

In order to design the global FDI, performance data, generated during simulation runs,

must be analyzed. Performing simulation runs and analyzing the data is a time consuming process,

so automation of this process is desirable and feasible as demonstrated by the Phase I effort. A

full scale research prototype should be able to set up and execute simulation runs as well as analyze

performance data beyond the simple discrete event detection (false alarms, misdetection) capability

provided in Phase I. Hence, the ultimate objective is to capture the high level information

processing capability of an FDI design expert in analyzing the graphic outputs of various

performance related variables.

A full scale FDI/DA must have a knowledge base containing all the knowledge necessary

for designing the global FDI for optimal performance over the entire flight and damage envelopes.

Capturing this knowledge will require formalizing FDI design expert's reasoning during all phases

of the design process and transferring their expertise into a structured knowledge base. In

particular, the full scale research prototype should include all of the design tradeoffs identified in

the FDI Criteria Study (Caglayan, Allen, and Rahnamai 89).
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A full scale FDI/DA will contain an explanation facility for explaining to the designer why
the suggested actions should be taken and why conclusions were reached.

5.2. Global FDI Development Environment

The global FDI development environment will allow the global FDI designer an efficient

environment for developing and evaluating global FDI strategies using artificial intelligence

techniques. The global FDI development environment will support the rapid prototyping of FDI

strategies which can be successively refined. The designer will be able to experiment with using

different programming techniques (knowledge based expert systems, neural networks) in different

sections of the global FDI system design to determine which strategies work t .st for the given

section. Using an object-oriented programming development approach, a real time version of the

current strategy will be maintained.

The FDI development environment will support the implementation of a global FDI system

as a knowledge based expert system supporting reasoning from both structural and functional

knowledge. Hence, this expert system development environment will support the specification of

topological and procedural FDI knowledge. Furthermore, the development environment will

support the interactive development of the knowledge based expert FDI system, and the integration

of a compiled version of this knowledge into a real-time version.

The FDI development environment will also support the development of nonalgorithmic

subsystems for FDI design using neural networks, and the embedment of the neural net

subsystems into the overall FDI design. The development environment will also support the

experimentation and evaluation of direct use of neural nets in the FDI design.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this study, we have shown the following:

We have shown the feasibility of capturing FDI design expert's knowledge as a rule

based expert system (FDI Design Assistant) by demonstrating such an approach in

designing the static thresholds for the current CRCA global FDI design.

We have investigated the implementation of the global FDI as an expert system, and

demonstrated feasibility by implementing the CRCA global FDI detection logic as

an expert system, and embedding it into the current global FDI software.

We have investigated the integration of neural networks into global FDI, and

demonstrated feasibility by training a neural net modelling the likelihood ratio

dynamic thresholds in the current CRCA global FDI system.

Based on the successful results of our Phase I study, we recommend the development of a

full-scaie research prototype Computer Aided Engineering (CAE) solution for designing,

evaluating and embedding FDI systems. Our proposed FDI/CAE system consists of two major

components:

FDI Design Assistant: We recommend the refinement and expansion of the FDI Design

Assistant developed w'der the Phase I effort. The full-scale research prototype would cover all

stages of the FDI desig', process. Moreover, the expansion would enable the coverage of full
flight maneuver and damage scenarios. We believe that the rule-based programming paradigm

employed in Phase I is sufficient for the proposed full scale Design Assistant development effort.
The proposed FDI Design Assistant will be able to set up and execute simulation runs, analyze

simulation results, assess FDI performance based on this analysis, and decide on the best course of

action for design iteration using its knowledge about the FDI design tradeoffs.

FDI Development Environment: We recommend the construction of an FDI Development

Environment enabling the implementation of global FDI using artificial intelligence techniques of

expert systems and neural networks. We believe that the rule based programming paradigm

employed in Phase I is not sufficient for the proposed Phase II Development Environment. We
propose to use an object-oriented expert system development tool for building such an environment
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so that a model-based approach can be taken in representing structural and functional knowledge.
Similarly, the environment would also enable the use of neural nets either directly as damage/failure

classifiers or indirectly as nonalgorithmic modelling inaccuracy modellers. Hence, the

Development Environment would enable the implementation and evaluation of competing

techniques and the incorporation of the best ones into an overall design.
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