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algorithm is dependent on the flight control law performance characteristics. Ideally,
the flight control law and global PD1 designs should be accomplished simultaneously,
especially for a new aircraft design rather than the current practice of serial
iterations on the two Jesigns. Herce, automation of the giobal FDI design process is
desirable in order to reduce the development time, o .st ana *isk for advanced flight
contro] systems.

In this report we describe the automation of the global FDI design process using expert
systems technology. An expert system is a computer program that mimics the problem
solving skil! of a human expert in a narrow domain. The development of the expert
systen design assistant is feasible since the domain characteristics associated with
glohal FD!I design meet the following necessary conditions. First, the design of a
global FD! algorithm involves heavy use of cognitive skills. Second, there are
available design experts and analysis models and programs suitable for knowledge
extraction. Third, the task is neither a trivial problem nor too difficult to solve.
Fourth, tne task requires symiolic knowledge representation. Finally, finding a
solution requires the use of heuristics and reasoming from first principles.

R secondary objective of our st ° is to investigate how expert systems and neural
networks can be integrated into .ae implementation of a global FDI system. Here we
describe the implementation of the detection and isolation logic portions of the CRCA
global PDI algcerithm as a rule-based expert system so that symbolic knowledge
representation and reasoning can be incorporated into the design. Such an approach can
reduce the false alarm and misisolation rate of a given numeric algorithm by modeling
the deficiencies of such an algorithm using a rule-based approach. We also present a
neural net demonstration for scheduling dynamic thresholds in the CRCA global FDI.
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1. INTRODUCTION

This final report summarizes the results of the Phase I SBIR study entitled “An Expert
System Approach to Global Fault Detection and Isolation Design” supported by the U.S. Air Force
under Contract No.F33615-89-C-3606. The primary objective of this research is the development
and demonstration of a global Failure Detection and Identification (FDI) Design Assistant (DA)
prototype based on expert system technclogy. A secondary objec'ive is to investigaie the
implementation of global FDI algorithms using the artificial inteiiigence techniques of expert
systems and neural networks.

Reconfigurable flight control systems (Chandler 84) make use of the “aerodynamic
redundancy” in compensating for the effects of onboard hardware failure and surface damage
conditions. Such fault/damage tolerant flight control systems reproduce the forces and moments
acting on the airframe using the remaining available resources after the detection, isolation and
estimation of the type and level of a hardware fault and surface damage. The necessary detection,
isolation and estimation information is provided by a global Fault Detection and Isolation (FDI)
system which monitcrs the flight control and surface position sensors (Caglayan et al. 87).

A global FDI algorithm performs its detection, isolation and estimation function by
assessing the global effects of a hardware fault and surface damage on the closed-loop aircraft
dynamics. Since changes in the flight control law affect the signature of a hardware fauli and
surface damage, the design of a glotal FDI algorithm is dependent on the flight controi law
performance characteristics. Ideally, the flight control law and global FDI designs should be
accomplished simultaneously, especially for a new aircraft design rather than the current practice of
serial iterations on the two aesigns. Hence, automation of the global FDI design process is
desirable in order to reduce the development time, cost and risk for advanced flight control
systems.

In this report we describe the automation of the global FDI design process using expert
systems technology. An expert system is a computer program that mimics the problem solving
skill of a human expert in a narrow domain. The development of the expert sysiem design
assistant is feasible since the domain characteristics associated with global FDI design meet the




Technica! Repost WL-R-91-3007 Charles River Analytics Inc.

following necessary conditions. First, the design of a global ¥DI algorithm involves heavy use of
cognitive skills. Second, there are available design experts and analysis models and programs
suitable for knowledge extraction. Third, the task is neither a trivial problem nor too difficult to
solve. Fourth, the task requires symbolic knowledge representation. Finally, finding a solution
requires the use of heuristics and reasoning from first principles.

The FDI/DA is an expert system based computer aided design environment that assists
designers in the global FDI design process. The system incorporates a data base of failure
detection and isolation details and procedures, and is capable of suggesting design reiteration
procedures to the user. Currently, the FDI/DA expert system operates on a MicroVAX 11
workstation and interfaces with the global FDI software for the Centrol Reconfigurable Combat
Aircraft (CRCA) (Weinstein et al., 87).

A secondary objective of our study is to investigate how expert systems and neural
networks can be integrated into the implementation of a global FDI system. Here we describe the
implementation of the detection and isolation logic portions of the CRCA global FDI algorithm as
a rule-based expert system so that symbolic knowledge representation and reasoning can be
incorporated into the design. Such an approach can reduce the false alarm and misisolation rate of
a given numeric algorithm by modelling the deficiencies of such an algorithm using a rule-based
approach. We also present a neural net demonstration for scheduling dynamic thresholds in the
CRCA global FDL.

1.1. Global FDI Overview

Here, we give an overview of the global FDI system used in the second generation
reconfiguration strategy for aircraft flight control systems subjected to actuator failure/surface
damage developed under the SRFCS program (Chandler 84). In this program, three competing
reconfiguration strategies have been developed during the Phase I effort (Caglayan et al. 87) (Lear
Siegler 87), and (Scientific Systems 86). The Failure Detection and Isolation (FDI) system in
(Caglayan et al. 87) and the Reconfigurable Control Law (RCL) in (Lear Siegler 87) have been
integratec .nto a unified reconfiguration strategy, and the unified reconfiguration strategy design

2
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has been transitioned onto the Control Reconfigurable Combat Aircraft (CRCA) (Weinstein et al.
87) under the Phase I effort. The preliminary performance results for the unified reconfiguration
strategy have been presented in (Caglayan, Allen, and Wehmueller 88).

The reconfiguratior strategy, as shown in Figure 1.1-1, consists of a Reconfigurable
Control Law (RCL) composed of a robust flight control system tolerant of low level surface
damage which is reconfigured after impairment to recover performance and minimize transients; a
hierarchical Failure Detection Isolation and Estimation (FDIE) system identifying actuator failures
and moderate-to-severe surface damage; and a Reconfiguration Logic coordinating the information
transfer between the RCL and FDIE systems. In the developed reconfiguration strategy, the robust
flight control system provides time for the FDIE system to detect and isolate the failures.
Moderate-to-high surface damage effects are compensated based on the control effectiveness
parameter estimates provided by the FDIE system. Low level surface damage effects are handled
by the robust flight control system with the effectiveness estimates stored for use in case of

subsequent failures.
pemmeemememmmmmee - .
. FDI '
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Figure 1.1-1: Reconfigurition Strategy Block Diagram
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The FDIE system consists of a local Actuator Failure Detection (AFD) system which
detects stuck, runaway, and floating actuator failures based on local information; and, a global
Surface Damage Detection and Isolation (SDDI) system which detects partial surface loss failures
and provides an estimate for the surface control effectiveness parameters after the impainment based
on global information. The global SDDI algorithm accounts for expected modelling 2rrors in the
aircraft dynamics description and uses a modified multiple hypothesis test to declare a full isolation
only when a certain distinguishability criterion is met.

The CRCA FDI system uses local information for actuator failure detection and global
information for surface damage detection. The local information used for actuator failure detection
consists of actuator dynamics, flight control system commands into the actuator, and the actuator
output measurement. On the other hand, the global information used for surface damage detection
consists of aircraft force and moments equations providing a dynamic relationship between the
surface position sensors, and flight control sensor measurements. The global information can help
detect and isolate actuation failures that are undetectable by local information analysis.

The global FDI in the CRCA reconfiguration strategy algorithm, shown in Figure 1.1-2,
consists of:

* a no-fail filter based on aircraft equations of motion and expected modelling uncertainty
under no surface damage conditions computing the measurement residuals for flight control

Sensors;

* a bank of first order filters (called detectors) compensating the no-fail filter residuals
based on the computed partial surface loss estimates and on the expected modelling errors;

* a bank of likelihood ratio computers computing the likeithood of each postulated surface
damage hypothesis using the compensated residuals;

* a modified multiple hypothesis test for making surface damage detection, partial isolation

to a subset of surfaces, and full isolation decisions.
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The no-fail filter is an extended Kalman filter based on the linearized acrodynamic force and
moment equations with nonlinear inertial terms and on the dynamic modelling vncertainty during
maneuvers. The inputs into the no-fail filter are the surface position measurements, and the FCS
sensor outputs comprised of body mounted accelerometers and rate gyros, indicated airspeed
(IAS), inertial measurement unit (IMU) attitude, angle of attack, and sideslip measurements. The
output of the no-fail filter is the FCS measurement residuals vector which is the difference between
the FCS sensor outputs and their predictions computed by the no-fail filter.

Associated with each surface, there is a first order filter estimating the percentage gain
reduction in control effectiveness for that surface assuming that the surface in question has been
damaged at a random instant with an unknown damage level. The input to each detector is the
no-fail filter FCS measurement residual vector. The detectors compute the covariance for this
measurement residual vector to account for the modelling effects on the no-fail filter residuals
during maneuvers by using a state and input dependent process noise (Caglayan, Allen and
Rahnamai, June 89).

FCS MEASUREMENTS

¥

SURFACE PILOT
NO-FAIL
POSITTON -« e g INPUT'S
SENSORS FILTER
N[BASUREIWENT* RESIDU ALS
DETECTOR DETECTOR e © o DETECTOR DETECTOR
CL CR ELR RUD
COMPENSATED
MEASUREMENT RESIDUALS AND DAMAGE ESTIMATES
LIKELTHOOD LIKELITHOOD LIKELTHOOD LIKELIHOOD
RATIOCL RATIO CR e o o RATIO ELR RATIO RUD
-l
1 1 1 ]

MODIFIED MULTIPLE
HYPOTHESIS TEST

STRATEGY

Figure 1.1-2: Global FDI System
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The output of each detector is the estimate for the control effectiveness loss and the
associated covariance reflecting the uncertainty about the damage estimate. Each detector also
outputs a compensated FCS sensor measurement residual sequence such that the effects of the
hypothesized surface damage are removed from the no-fail filter residuals.

For each detector, a likelihood ratio is computed using the compensated residual sequence
from that detector over a fixed moving window. Each likelihood ratio is a weighted sum of the
compensated measurement residuals adjusted by detection thresholds.

In the modified multiple hypothesis test, first, a detection test is performed which yields a
set of candidates for damaged surfaces. Next, a full isolation test is performed which declares
complete isolation among the damaged surface candidates only when a specific distinguishability
criterion is satisfied. The modificd multiple hypothesis test therefore has two sets of thresholds: I)
detection thresholds for the detection with partial isolation test; II) isolation thresholds for the full
isolation tests. These thresholds are functions of flight conditions.

1.2.  Expert Systems Overview

The recent success of expert systems tecunology (Stefik et al. 82), a subfield of Artificial
Intelligence, in diagnosis, monitoring, prediction, planning tracking and design problems in certain
application Jomains has initiated similar efforts in other areas. These early successful expert
system applications include SOPHIE in computer assisted instruction (Brown, et al.), MYCIN in
medical diagnosis (Shortcliffe 76), PROSPECTOR in oil exploration (Duda et al. 78), and
DENDRAL in biology (Buchanan and Feigenbaum 78). Recent military applications of expert
systems include ADEPT for battlefield situation assessment analysis {Taylor et al. 84), AIRPLAN
for assisting air operations officers with the launch and recovery for aircraft on a carrier (Masui et
al. 83), EXPERT NAVIGATOR for monitoring aircraft navigation sensors (Pisano and Jones 84)
aircraft and B1B diagnostic expert system (Davis 38).

An expert system is a computer program that can perform a task normally requiring the
reasoning ability of a human expert. Expert systems are highly speci~lized according to their
application domains. Although any program solving a particular problem may be considered to
exhibit expert behavior, expert systems are differentiuted from other programs according to the

s}
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manner in whkich the domain specific knowledge is structured, represensed and processed 0
produce solutions. In particalar, expent sysiem programs partition therr knowledge mio the
following three blocks: Data Base, Rule Base, and Inference Engine. Expert sysiems utilize
symbolic and numeric reasoning in applying the rules in the Rule Base 10 the facts in the Data Base
to reach conclusions according 10 the construct of reasoning specified by the Inference Engine.

1.2.1. Knowledge Representation

There are two vasic types of knowledge that can be incorporated into expert systems:
declarative knowledge and procedural knowledge. The kind of knowledge describing the
relationships among objects is called declaranve knowledge. The kind of knowiedge prescribing
the sequences of actions that can be applied to this declarative knowiedge is called procedural
knowledge. In expert systems, procedural knowledge is represented by production rules whereas
declarative knowiedge is represented by frames. semantic networks in addition 1o production rnules.

Rules are expressed as IF-THEN siatements. When the IF portion of a rule is satisiied bv
the facts, the rule is fired by executing the statements specified by the THEN portion. Typically.
the production rules deal with uncertainty through the use of certainty factors. probability or fuzzy
logic. Semantic nets are network representations of declarative knowledge. A semantic net
consists of a collection of nodes - representing arbitrary objacts - connected by arcs describing the
relations between nodes. One of the most importani characteristics of a semantic net is the
capability of building inheritance hierarchies. Using arcs represering relations such as IS-A and
HAS-PART, objects in the net can inherit properties fron. other objzcts higher up in the net. A
frame is a knowledge representation about a prototypical instance (Fikes and Kohler 85). Frames
are organized as semantic nets where the topmost nodes represent general concepts whereas the
lower nodes represent more specific instances of these concepts. In a frame based system. the
concept at each node is defined by its attributes (slots) and attribute values. Each slot can also
contain procedures which are executed when the values of the attribute change.

While expert systems have been traditionally built using collections of rules based on
F 3 £

empirical associations, interest has grown recently in knowledge-based expert systems which

perform redsoning from representations of “tructure and function hpowledge. For instance. an

expert systen for digital electronic sy siems troubleshoeting is developed by using « ~tructural and
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behavioral oescriptoa of digital circuits (Davis 84). The obiective of this approach 10 expert
system implemerHaton is to reason from first principles abou: the domzia rather than from
eanpinical associzions. One of the key ideas in this approach is to use multiple representations of
the digital circuit (both functional 2nd physical structure) in troubleshooting applications. The
approach is aiso ssmilar 0 the maitipic levels of abstraction in modelling of mental strategies for
fauk diagnosis probicms (Rasmuessea 85).

Qualitative process theory (Forbus 88 is another approach allowing the representation of
causz! behavior based on a qualitative representation of numerical knowledge using predicate
caiculs. QP theory is 2 first order predicaie calculus defined on objects parameterized by a quality
consisting of two parts: an amount and a denvative, each represented by a sign and magnitude. in
Qualitazive Process theory, physical systems are described in terms of a collection of objects, their
properties. and the relatonships among them within the framework of a first order predicate
calcuis. Hierarchical knowledze representation at several levels of absiaciion is also anoiher
approach used in modeliing human problem solving strategies for complex sysiems (Rasmussen
85). This hierarchy is 'wo dimensional. The first is the functional lavers of abstraction for the
physical system: functional purpose. abstract function, generalized function, physical function,
and physical form. The second is the structural layers of abstraction for the physical system:
system. subsystem. module. submedule. component.

1.2.2. Inference Strategies

The inference control strategy is the process of directing the symbolic search associzted
with the underlying type of knowledge represented in an expert system: antecedents of IF-THEN
rules, nodes of a semantic net. or collection of frames. In practical expert system applications, the
blind search is an unacceptable approach due to the associated combinatorial explosion. Search
techniques can be basically grouped into three: breadth-first. depth-first and heuristic. The
breadth-first search exhausts all nodes at a given level before going to the next level. In contrast,
the depth-first exhausts all nodes in a given branch before backtracking to ancther branch at a given
level. Heuristic search incorporates general and domain-specific rules of thumb to constrain a

search.

Expert systems employ basically two types of reasoning strategies based on the search
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techniques above: forward chaining and backward chaining. In forward chaining, starting from

- what is initially known, a chain of inferences is made until a solution is reached or determined to be

unattainable. For instance, in rule based systems, the inference engine matches the left-hand side
of rules against the known facts, and executes the right-hand side of the rule that is activated. In
contrast, backward-chaining systems start with a goal and searches for evidence to support that
goal. Pure forward chaining is appropriate when there are multiple goal states and a single initial
state whereas backward chaining is more appropriate when there is a single goal state and multiple
initial facts. Many expert systems utilize both forward and backward chaining.

1.3. Neural Networks Overview

M-:ural networks (Anderson and Rosenfeld, 88) represent nonalgorithmic class of
information processing for using massively parallel distributed processing architectures. Stimulated
by the efforts directed at understanding the interconnection of neurons in the human brain allowing
the storage, retrieval, and processing of complex data, research over the last 25 years in artificial
neural systems has produced solutions to complex problems in visual pattern recognition,
combinatorial search, and adaptive signal processing.

A generic artificial neural net structure is a network of processing elements (neurons)
connected with each other through interconnects (information links). Each processing element can
have multiple inputs and only one output. The input/output relationship is described by a
first-order differential equation. Specifically, a weighted sum of the nonlinear transformations of
the multiple inputs along with a nonlinear transformation of the current neuron's state are the
driving functions of this first-order differential equation. The weighting coefficients also satisfy a
first-order differential equation driven by a nonlinear transformation of multiple inputs and the
weighting coefficients associated with the input links. These two first-orc-r differential equations
(also called the update and learning rules) and a specific network topology provide a complete
neural network specification.

Artificial neural networks produce a nearest-neighbor classifier. Since the weighting
coefficients change in an unpredictable manner, the global stability of the neural network

9
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description is an important consideration. The strongest theoretical resuit to date is due to (Cohen
and Grossberg, 83) who have shown that the neural net converges to one of the finite set of
equilibrium points corresponding to local minima of the energy function under certain restrictive
conditions (e.g., symmetric, positive weighting coefficients). Another advantage of neural nets is
that the convergence to the answer is independent of the number of local minima in the energy
function, thus ccmparing favorably to other general search techniques. Although the global
stability and convergence results have not been extended to the case for nonsymmetric weighting
coefficients, several successful heuristic applications with nonsymmetric weighting coefficients
have been reported (Grossberg, 82), (Hecht-Nielsen, 86).

Conceptually, artificial neural networks are applicable to failure detection problems for
learning the spatiotemporal patterns associated with failure signatures. Here, the spatiotemporal
pattern would be the measurement residual trajectory as a function of time in the measurement
vector space. The relationship between artificial neural network approach to spatiotemporal pattern
recognition and conventional signal processing structures (i.e., finite impulse filters, correlation
detectors, etc.) has been discussed by (Myers, 86). Used in this context for FDI application,
neural networks would be the nonalgorithmic counterpart of spatiotemporal filters. The direct
applicaiion would involve the training of a neural network representation of a structure with a
multitude of failure scenarios and using the neural net as a classifier. Neural networks can also be
appiied to model empirical relationships for covariance expressions, likelihood ratio thresholds
under modelling errors.

The recent interest in artificial neural networks is due to the availability of fast, relatively
inexpensive computers made possible by advances in VLSI design for realizing neural network
structures. Given that the neurons in the human brain process information in milliseconds while
outperforming current serial supercomputers with a processing rate in nanoseconds, there is

considerable interest in the new generation neurocomputers and computing environments.

1.4.  Outline of Report

In chapter 3, we describe the development and implementation of the design assistant
prototype. Ve present the formulation of the FDI/DA prototype in Chapter 2. Expert system and

10
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neural network implementations of global FDI algorithms are described in chapter 4. In Chapter 5
we describe the requirements of a full scale FDI/DA research prototype.
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2. FORMULATION OF PROBLEM
2.1.  Determination of Problem Scope

Global FDI design is an iterative and time consuming process which requires the
knowledge and expertise of an expert FDI designer. There are three main steps in the global FDI
design process, which is illustrated in Figure 2.1-1. First, the FDI design expert analyzes aircraft
and FDI time history data to produce an assessment of the FDI performance for the simulated
damage scenarios. Second, if the designer is not satisfied with the FDI performance he uses his
domain expertise to determine FDI design parameter modifications which will improve FDI
performance. The designer also determines simulation scenarios which will test that the FDI
design parameter modifications improve FDI performance. Third, the designer runs the simulation
scenarios, which results in new time history data, and the process repeats until the desired FDI
performance is reached. The third step also includes running a matrix of simulation scenarios in
order to ensure that the design modifications do not adversely affect FDI performance.

AIRCRAFT >
—>  SIMULATION RECONFICURATION le—o
P ——
FDI performance data

Simulation time history

FDI
L — DESIGN
EXPERT
Simulation scenarios Modified design parameters

Figure 2.1-1: FDI Design Process
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Increasing the efficiency of the global FDI design process requires achieving two main
development goals. The first goal is to decrease the amount of time required for an expert FDI
designer (someone with expertise in both FDI theory and aero application knowledge) to design the
global FDI. This goal can be achieved by automating FDI performance analysis and the running
of simulation scenarios. The second goal is to enable a designer with aero application knowledge
expertise but minimal FDI expertise to design the global FDI. In order to achieve this goal, the
inexperienced FDI designer will need assistance in determining design parameter modifications and
selecting simulation scenarios.

2.2. Determination of Development Environment

In addition to the conventional Al programming languages (i.e., various flavors of LISP
and PROLOG), general purpose knowledge engineering languages such as OPSS5, CLIPS, and
M.1 can be used to build customized expert systems. Several commercial integrated expert system
development tools are also available for building expert system applications. General purpose
commercial expert system shells for building expert systems can be grouped into three classes:
rule-based, frame-based and hybrid. In rule-based expert system shells, the domain knowledge is

captured using if-then decision rules. These rules capture informal heuristics about a given

domain. In frame-based expert system shells, domain knowledge i captured as data structures
that relate the characteristics of objects in a hierarchy of classes. The organization of frames into
taxonomic hierarchies provide an efficient method of knowledge representation through
inheritance. Hybrid expert system shells provide a combination of rules, frames and inheritance
networks using object oriented representation with multiple inheritance. Hence, hybrid shells
allow the partitioning of domain knowledge for representation.

The expert system shell CLIPS (Giarratano 88) is chosen as the development environment
for the FDI Design Assistant expert system. CLIPS - C Language Integrated Production System -
is a tool for the development of rule based Expert Systems. CLIPS provides a powerful rule syntax
and an inference engine based on the Rete match algorithm (Forgy 82). We have selected CLIPS
for the FDI/DA implementation since it is written in C, embeddable to other programs written in

13
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different languagés (C, Fortran, Ada), and portable across hardware platforms. Although CLIPS
is a pure rule-based expert system de elopment tool (e.g. it does not support inheritance), the
production system models have been advocated as computational models for human cognition
(Anderson 83), thus suitable for representing the FDI design expert's knowledge in terms of
production rules.

2.3.  Performance of Knowledge Engineering

Knowledge engineering is the process of transferring a domain expert's knowledge from
the expert to a computer program or expert system. The knowledge engineering process for the
FDI/DA is illustrated in Figure 2.3-1. The knowledge engineer is responsible for converting an
experts knowledge into the facts and rules that make up the expert system. This is accomplished
by interviewing the expert, observing and formalizing the expert's reasoning during the design
process.

questions,
problems

structured

knowledge FDI/DA
KNOWLEDGE KNOWLEDGE
ENGINEER BASE

design expertise

Figure 2.3-1: FDI/DA Knowledge Engineering Process
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3. FDI/DA PROTOTYPE IMPLEMENTATION

The FDI/DA prototype is implemented on a Microvax II workstation running under
MicroVMS V4.5. The prototype interfaces with the non-real time CRCA simulation, version 7.
The control and data flow structures of the FDI/DA is shown in Figure 3-1. As seen in the figure
the FDI/DA consists of three main sections: the fact list, the rule base, and the inference engine.
The fact list consists of facts about FDI performance, which are input from the CRCA simulation,
facts about the current design process, and facts concerning user inputs. The rule base has rules
for processing user inputs, rules for FDI performance analysis, and rules for design iteration. The
inference engine constantly looks for matches between the facts in the fact list and and the left hand
sides of the rules in the rule base. When a match occurs, the maiched rule is put on an agenda.
The inference engine then selects a rule from the agenda and executes, or fires, the rule. The firing
of the rule can place additional facts on the fact list and can cause other rules to fire.

15
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CRCA SIMULATION
FACTS: RULES:
- USER COMMANDS - USER INTERFACE
- FDI PERFORMANCE - PERFORMANCE
- DESIGN STAGE ANALYSIS
- DESIGN ITERATION
MATCH
INFERENCE
ENGINE SELECT
EXECUTE CONTROL FLOW —>
DATA FLOW —_—

Figure 3-1: FDI Control and Data Flow

3.1. FDI/DA Knowledge Base
3.1.1. FDI/DA Fact List

As mentioned earlier, the fact list consists of facts concerning FDI performance, the
current design process, and user inputs. An initial set of facts is placed in the fact list when the

FDI/DA is started. Additional facts are asserted into the list when certain rules fire. The firing of a
rule can cause facts to be removed from the fact list.

16
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Figure 3.1.1-1 shows the facts that initialize the fact list when the FDI/DA is started. The
CLIPS syntax for specifying initial facts is the deffacts statement. The first fact asserted into the
fact list, prompt-user, is a user command fact and it matches a pattern in the left-hand side of the
prompt rule. When the prompt rule fires it prompts the user to enter an FDI/DA command. The
flight-condition and threshold-abb facts are used in design rules for determining simulation script
file names. The facts included in the group of facts named current-design-state describe what is
known about the current FDI design. As shown in this group of facts, there is initially minimal
information about the current design.

(deffacts initial-facts
(prompt-user)

(deffacts abbreviations
(flight-condition (name stol) (abbreviation s))
(flight-condition (name exit) (abbreviation x))
(flight-condition (name entry) (abbreviation e))
(flight-condition (name tfta) (abbreviation t))
(threshold-abb (name static-detection) (abbreviation sd))
(threshold-abb (name static-isolation) (abbreviation si))
(threshold-abb (name dynamic-detection) (abbreviation dd))
(threshold-abb (name dynamic-isolation) (abbreviation di))

)

(deffacts current-design-state

(design-flight-condition unknown)

(safety-margin (name threshold) (value 20))

(script-file)

(reason-why one
"The 'why' command explains why the last conclusion printed to the screen
was reached. Type 'why' at the FDI/DA command line prompt, but not in
response to an input request.”)
)

Figure 3.1.1-1: Initial FDI/DA Fact List
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3.1.2. FDI/DA Rule Base

The FDI/DA knowledge base is a representation of FDI design expert's knowledge as a set
of production rules and facts. The rule base has rules for processing user inputs, analyzing FDI
performance, and iterating the current design. When patterns on the left hand side of a rule match
facts in the fact list, the rule fires.

Figure 3.1.2-1 shows three of the rules used for processing user inputs. In CLIPS, rules
are defined using the defrule statement. The rule named prompt will fire when the fact prompt-user
is in the fact list. The salience statement helps the inference engine determine which rule to fire if
more than one rule is on the agenda. The higher the salience the higher priority a rule has. When
this rule fires the FDI/DA command line prompt DA>> is printed on screen and the system waits
for the user to input a command. After a command has been entered, it is converted from a string
into a fact using the str-explode function, it is then asserted into the fact list using the (assert
(command $?command)) statement. The next rule, unknown-command, is used to alert the user when
an invalid command has been entered. The reset-prompt rule reasserts the prompt-user fact into
the fact list so that the prompt rule will fire and prompt the user for the next command. The
salience on the reset-prompt rule is set to -100 to ensure that the actions resulting from the last
command have finished executing before the user is prompted for another command.

18
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(defrule prompt
(declare (salience -25))
?prompt <- (prompt-user)
=>
(retract ?prompt)
(printout t crlf)
(printout t "DA>> ")
(bind ?string (readline))
(bind $?command (str-explode ?string))
(assert (command $?command))

)

(defrule unknown-command

(declare (salience -50))

(command ?commandé&-~help&-~diagk~gté~why&~facts&~rules
&~agenda&~watch&~unwaih > ~quit&~fc&~ed
&~dir&~load&~trans&~cfak~as

&~time $2command-2)
=>

(printout t ™** " ?command " "
$2command-2 " is not a valid coommand! **" crlf)

)

(defrule reset-prompt
(declare (salience -100))
2command <- (command $?)

=>
(retract 2command)
(assert (prompt-user))

Figure 3.1.2-1: FDI/DA User Interface Rules

Examples of FDI/DA rules for analyzing FDI performance are shown Figure 3.1.2-2. The
first rule determines whether or not there was an FDI false alarm during the simulation run. The
fact check for FDI anomalies is asserted into the factlist when the user inputs the command cfa at
the command line prompt. The run-fact facts are asserted into the fact list after the FDI time history
data generated during a CRCA simulation run has been translated into a CLIPS readable form.
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The first rule reads as follows: If there was not a failure and damage was detected, then there was a
false alarm. The second rule determines whether or not canard damage was isclated correctly.

(defrule check-for-fals>-alarms
{check for FDI anomalies)
(run-fact there was-not a-failure)
(run-fact damage was detected)

=>
(assert (there was a-false-alarm))

)

(defrule check-for-correct-canard-isolation
(check for FDI anomalies)
(run-fact there was a-failure)
(run-fact damage was detected)
(run-fact damage was isolated)
(run-fact failure ?failureéecl i cr $?)
(run-fact isolated-damage ?iso-damécl!cr $?)
(test (eq ?failure ?iso-dam))
=>
(assert (there was-not an-incorrect-canard-isolation)))

Figure 3.1.2-2: FDI Performance Analysis Rules

The FDI/DA rule base also contains a fundamental set of rules for determining static
detection thresholds. These design iteration rules assist the user in setting static detection
thresholds for four flight conditions: STOL, TF/TA, ACM Entry and ACM Exit. Figure 3.1.2-3
shows two of the rules used in the design iteration process. When the user enters the command to
design threshold at the command line prompt, the rule prompt-user-for-type-of-threshold- to-design
fires and the user is asked which type of threshold they want to design. The user then picks an
option from the menu that appears. After an option has been entered the FDI/D.’, will tell the user
which simulation script file to run in order to generate the FDI time history data needed to design
the thresholds requested. The current version of the FDI/DA will only design static thresholds.
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(defrule prompit-user-for-type-of-threshold-t0-design
2get <- (get threshold-type)
(design-fHig} Jition Mig} Sitiond—unk ;

>
(retract 2get)
(bind ?fc (upcase flight-condition})
(printout t aif aif)
{printout ¢ ™*** Design which threshold for flight condition ~ 2c 2 *>~ a¥f}
(printout t™  *"cif)
(prinkout t™ OPTIONS  DESCRIPTION " aif)
(prinloutt™ sd  static detection ~ aif)
(prinbout t™ si  static isolation " off)
(prinboutt™ dd dynamic detection " aif)
(prinbibutt™ di  dynamic isolation ~aif)
(printout t ™ ~aif)
(printout t resee uee * crif)
(printout t crif “Ender an option: %)
(assert (threshold-option =(read)))
)

(defrule tell-user-to-run-a-scripit-file
?run <- (run script-file ?filename)
=>

(retract ?run)
(printout t "Exit o TAE to run the followirg script file: ~ ?filename crif)

(printout t ~ At the TAE prompt, type the following: ena-scr * ?filename crif)
)

(defrule generate-static-detection-thresholds
(generate static-detection thresholds)
(run-fact max-Ird surface-type ?surface ?max-ird)
(safety-margin (name threshold) (value ?reliability))

=>
(bind ?threshold (+ ?max-Ird (* ?max-Ird (* ?reliability 0.01))))
(assert (threshold (surface ?surface) (name static-detection)

(value ?threshold)))

Figure 3.1.2-3: FDI/DA Design Iteration Rules
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3.2. FDIDA Prototype Demonsration

In this seciior: of the report we present an interactive session with the FDI/DA for designing
static detection thresholds for the ACM Entry flight condition. The output that the FDI/DA
presents to the user will be shown in this font and user inputs wiil be in bold print.

Afier the FDI/DA has been staried and the welcome message has appeared, the user can
input 2 command at the command line prompt, DA>>. Typing heip produces 2 list of valid
commands.

Welcome to the FD1 Design Assistant
type help’ for a list of commands
DA>> nelp
FD! DESIGN ASSISTANT COMMANDS *ttteetse

* trans transiate CRCA time history to facts g
* load load translated facts into fact base *
*cfa check for FDI anomalies *
*dt design thresholds *
*gt generate new threshold values *
* tae exit to TAE tc run script files *
* why explain why a condusion was reached *
bt 222222 c 22222242 22 3 CLII)S COM MANDS 2222 2222222222322 24
* facts display facts in the fact list *
* rules display names of rules in data base *
* agenda show activated rules *
* watch watch facts, activations, or all *
* unwatch deactivates watch command *
* quit exit to CLIPS *
E2 2223122222222 23 22323 SYSTEM CON‘L{ANDS SHS SRS RSN EES RIS NS S
* ed ‘filename™ edit ‘filename’, e.g. ‘ed fdifil.dat’ .
* dir ‘files’ directory of ‘files’ *

(1222223222 2222222222 2222222 222222 2222 2222222 222222222 2R 2 2 2

In this example the user wants to design thresholds so the command dt will be entered. At

this point the FDI/DA does not know which flight condition the design is for so the user is
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prompied for the design flight condition. Afer a valid flight condition is entered, the FDI/DA
presents the user with a menu from which to chose the type of threshold to design. Siace the user
wants to design static detection thresholds the sd option is chosen. Now the FDI/DA has enough
information to suggest a course of action: Exit to TAE to run the following script file:
“ESDT_DSGSCR*. The user can inquire into the reasoning behind the suggested course of action
by using the why command.

DA>> dt

The current design flight condition is UNKNOWN.

Enter the new design flight condition (entry, exit, stol, tfta): entry
The current design flight condition is ENTRY.

**** Design which threshold for flight condition ENTRY? *****

E »
* OPTIONS DESCRIPTION *
* sd static detection *
* s static isolation *
* dd dynamic detection *
* di dynamic isolatiun *
P2 22 2222 22 R 2azdd 2 a2 222t at 2222t ]
Enter an option: sd

Exit to TAE to run the following script file: “ESDT_DSG.SCR”
At the TAE prompt, type the following: ena-sar “ESDT_DSG.SCR”

DA>> why

“In order to design a surface’s static detection thresholds a run

with maximum maneuvers, maximum gusts, and no damage needs to be made.
The xSDT_DSG.SCR file will automatically make such run for the current
design flight condition [x]. A surface’s static detection thresholds should be
set to some percentage greater than the surface’s maximvm likelihood ratio
difference [LRD] generated during this run.”
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To run the scriptfile the user exits to TAE using the tae command and enables the scriptfile
at the TAE prompt. After the scriptfile has finished running the FDI/DA automatically restarts and
suggests values for the static detection thresholds at the ACM Entry flight condition. Again, the
user can use the why command for an explanation.

DA>> tae
TAE>ena-scr esdt_dsg.scr

Set the CANARD static-detection threshold for ENTRY to 1.00
Set the TRAILING-EDGE static-detection threshold for ENTRY to 1.43
Set the RUDDER static-detection threshold for ENTRY to 1.00

DA>> why

“These values are a percentage greater than the maximum likelihood
ratio, for these surface types, generated during the design run.

The percentage increase is the value in the fact ‘safety-margin’

and can be modified if necessary for desired performance.”

24




Technical Report WL-TR-91-3007 Charles River Analytics Inc.

4. ARTIFICIAL INTELLIGENCE IMPLEMENTATION OF FDI ALGORITHMS

Artificial intelligence technologies can be used to enhance the performance of the global
FDI strategy. We implemented global FDI algorithms using expert system production rules and
neural networks to demonstrate the potential these technologies have for improving global FDI
performance.

4.1. Expert System Implementation of Global FDI Strategy

In this section, we discuss the implementation of the global FDI as an expert system. We
demonstrate the feasibility of expert system implementation of the global FDI algorithms by
writing the isolation logic of the CRCA global FDI algorithm as a set of production rules and
integrating it into the existing FDI code.

4.1.1. Expert System Implementation of Global FDI Algorithms

Current global FDI systems can be described using the block diagram shown in Figure
4.1.1-1. In these systems, the monitored signals drive a predictor which is either a closed loop or
an open loop numerical simulation based on the assumption of current postulated faults in the
monitored signals. The predictor provides a discrepancy called the residual between the monitored
signal and its expected value.
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Figure 4.1.1-1: Generic FDI System Structure
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If the detection test indicates the presence of a fault, then the residuals are processed
through several hypothesis conditioned correlators to generate a set of compensated residuals.
Then, a multiple hypothesis test is employed to isolate the fault. This is followed by a module
performing reconfiguration of the predictor and correlator blocks.

What are the common problems encountered in these fault/event monitoring applicat.ons?
Most of the serious problems are due to false alarms, incorrect isolations, and missed detections.
The main reason for these shortcomings are due to the inaccuracy of the numerical model used for
the system in designing either the predictor or detection or isolation algorithm.

In a conventional approach, how does a designer try to eliminate these problems? He has
two options: First, he can use a better numerical model for the predictor. For instance, the model
can be modified to incorporate the effects of attack changes on the aircraft stability and control
derivatives. A second choice is to accept the inaccuracy of the predictor model and to account for
the inaccuracy of the model. For example, the test thresholds can be dynamically changed to
compensate for the effect of modelling errors on the residuals during maneuvers.

In short, the designer either has to increase the complexity of his predictor or detection and
isolation algorithm by using a more elaborate numerical model in conventional fault monitoring and
diagnosis applications. So where can expert systems be of help in theses applications? We believe
that there are several areas in which expert systems technology can be of help. There are:

- Symbolic knowledge representation: While conventional FDI implementation
environments (i.e. Fortran, Ada, C) support mainly sequential procedural khowledge
constructs, expert systems support a hybrid knowledge representation allowing both
structural declarative knowledge and sequential procedural knowledge. For instance,
the description of the interconnections between the various actuators, surface position
sensors and hydraulic lines require a topological knowledge representation capability
ideally suited for an expert system implementation.
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- Rapid prototyping with successive refinement: Expert systems offer an environment
where FDI systems can be rapidly prototyped. This is mainly due to the inheritance
mechanism supported in hybrid shells and the data-sensitive unordered rules (as
opposed to sequential instructions) in the rule based programming paradigm.
Moreover, expert systems can be incrementally modified by adding to their knowledge
base.

- Explanation Facility: Expert systems offer a facility for explaining the reasoning
behind the reached decisions. This can be useful not only in advising the pilot (using,
for instance, a positive pilot alert system) but also in formalizing the global FDI
decision logic.

Expert systems can totally replace some modules in Figure 4.1.1-1. For instance, the
hypothesis generator in Figure 4.1.1-1 can be replaced with an expert system with its own
knowledge base. Expert Systems can also enhance global FDI performance by augmenting their
decision logic in a supervisory role. For instance, the Data Base would include assertions to be
used in reasoning by the expert system. Hence, the Data Base would take inputs from the
predictor, correlator, detection and isolation test, and reconfiguration logic. For instance, the
predictor states can be used to assert events such as “the aircraft is executing a 9g pullup
maneuver.”

The Rule Base can include the rules describing the inaccurate behavior of the model used in
the design of the conventional global FDI algorithm. These rules in a monitoring application may
take the form: “If the aircraft is executing & pitchup maneuver greater than 9 g's, and if the FDI
algorithm indicates surface damage, then the detection test indication is a false alarm.” Ideally, the
system knowledge easily expressed numerically should be incorporated into the conventional
global design model whereas the system knowledge easily expressed as rules would get
incorporated into the expert system Rule Base.

The application of expert systems teéhnology to global FDI systems is not limited to the
decision logic portion of these systems. In fact, object oriented hybrid shells are more appropriate
in the implementation of FDI systems since they support knowledge constructs (objects,
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inheritance, methods, topological hierarchy) ideally suited for developing knowledge based
systems. In particular, these hybrid shells support the representation of both structural and
functional knowledge. Structural knowledge encompasses (physical units such as actuators,
hydraulic systems, FCS, surface position sensors, FCS sensors, etc. and interconnection between
these physical units such as wires, hydraulic lines, forces, moments, etc). In contrast, functional
knowledge encompasses the functional behavior of these physical units captured as methods
(procedural code representing input/output behavior, consistency check, etc.).

The major problem in implementing global FDI systems as expert systems is the real time
requirements. Current commercially available expert system building tools (shells) are not
generally applicable to building expert systems for onboard applications due to the following
reasons (Laffey et al. 88): 1) the shells are not fast enough; 2) the shells have insufficient facilities
for temporal reasoning; 3) the shells are not easily embeddable into conventional high level
programming languages and most cannot run on numeric microprocessors used for embedded
applications; 4) the shells have insufficient facilities for devoting attention to significant eveats; 5)
the shells are not designed to accept onboard sensor data; 6) the shells have no integration with a
real-time clock and do not handle hardware interrupts; and 7) the shells cannot provide guaranteed
response times.

As discussed in (Gupta 85), most interpretive expert system shells spend 90% of their time
in matching the current facts against the antecedent of rules in their rule base. Hence, an expert
system development approach where the enterpretive processing is performed off-line would offer
a substantial execution time improvement. Similarly, the execution efficiency is a strong function
of the knowledge representation facilities employed in the expert system shell. For instance, an
approach based on multiple hierarchical representations of a physical system and using forward
chaining would have a linear execution time complexity as compared to a rule based system with
forward chaining having exponential time complexity.

For ease of integration into conventional high level programs, programming language of the
expert system shell is an important choice. For instance, the choice of a programming language
commonly used for embedded applications such as Ada or C would be advantageous from an
integration viewpoint. Moreover, such an expert system would be easily portable to
microprocessors commonly used for embedded applications (e.g., 1750A, 80386, 68020).
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Moreover, the language constructs for handling real-time issues (tasking, interrupt servicing,
exception handling) would be available to such an expert system development tool.

As discussed by Duke et al. (86), what is needed for real-time onboard expert systems
development is a knowledge compiler for converting the developed knowledge base into a
conventional program, thus retaining the desirable attributes of the expert system during the
development stage while producing an efficient conventional code for a target embedded
MiCroprocessor.

One such shell is the System Description Language Processor (SDLP) (Edwards and
Caglayan 88) which allows the specification of topological and procedural application knowledge
for time-critical applications using a System Description Language (SDL), the interactive
development of an expert system based on this specification, and the integration of a compiled
version of this knowledge into a conventional time-critical application. SDLP in an object-oriented
shell written in Ada.

4.1.2. Rule-Based Representation of FDI Algorithms

In order to demonstrate the feasibility of implementing FDI algorithms as an expert system,
the detection and isolation logic of the CRCA global FDI algorithm is written as a set of production
rules. Figure 4.1.2-1 shows the FORTRAN implementation of the current CRCA global FDI
detection logic. In this section of code, values associated with each surface are evaluated in order
to determine if surface damage has occurred. First, a surface's damage estimate (PHEI (1)) is
evaluated to ensure that it is within the valid range. Next, the sum of the surface's likelihood ratio
(aLaMpa (1)) and surface's detection threshold (TRSHDE (1)) are compared to the no-fail filter's
likelihood ratio ( ALaMDA (NFT1) ). If the no-fail filter's likelihood ratio is larger than the sum, then
damage detection flag is set to true (IFLDET = 1).
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DO 10 I=1,NSUR

ISOSUR() =0

TTEMP = ALAMDAC(I) + TRSHDE(I)

IF( (ALAMDA(NFT1).GT.ALAMDA(D+GRDTA(10)) ) THEN
IF((PHEI(I).LE.ESTHIG).AND.(PHEI(I). GE.ESTLOW)) THEN
KNTLR(I) = KNTLR(D) +1
KNTFAL = KNTFAL +1
INDALM(KNTFAL) =1
IF(ALAMDA(NFT1).GT.TTEMP) TH™N

IFLDET =1
KNTLRD(I) = KNTLRD(D) + 1
ENDIF
IF(ALRMIN.GT.ALAMDA(D) THEN

ALRMN = ALAMDA()
INDMIN =1

ENDIF

ENDIF
ENDIF
10 CONTINUE

Figure 4.1.2-1: Surface Damage Detection FORTRAN Code

A more comprehensible form of this logic can be written using three CLIPS production
rules, as shown in Figure 4.1.2-2. The first rule determines if a surface’s damage estimate is
within the valid range. If it is, the fact ?surface estimate is ok asserted into the fact list. The second
rule determines if the sum of the surface's likelihood ratio and the surface's detection threshold is
greater than the no-fail filter's likelihood ratio. If ir is, the fact ?surface
likelihood-ratio-beats-detection-threshold is asserted into the fact list.  Finally, damage is
detected if both the facts ?surface estimate is ok and ?surface
likelihood-ratio-beats-detection-threshold are in the fact list.
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(defrule determine-if-surface-estimate-is-ok
(surface-estimate ?surface ?surf-est)
(surface-estimate-min ?surf-est-min)
(surface-estimate-max ?surf-est-max)

(test (< ?surf-est ?surf-est-max))
(test (> ?surf-est ?surf-est-min))

=>
(assert (?surface estimate is ok))

)

(defrule determine-if-surface-lr-beats-detection-threshold
(likelihood-ratio ?surface&~no-fail-filter ?surf-1r)
(likelihood-ratio no-fail-filter ?nff-Ir)

(detection-threshold ?surface ?surf-dt)
(test (> Inff-Ir (+ ?surf-Ir ?surf-dt)))
=>
(assert (?surface likelihood-ratio-beats-detection-threshold))
)

(defrule detect-surface-damage
(?surface estimate is ok)
(?surface likelihood-ratio-beats-detection-threshold)
=>
(assert (surface-damage has been detected))
)

Figure 4.1.2-2: Surface Damage Detection CLIPS Code

4.1.3. Integration with Existing FDI Software

Integrating the expert system implementation of the global FDI algorithms with existing
FDI software requires embedding the CLIPS rules into the existing FDI FORTRAN routines.
Since, CLIPS is based on the C programming language, embedding CLIPS into FORTRAN
requires the use of special programs for passing information between CLIPS and FORTRAN.
Figure 4.1.3-1 illustrates embedding the CLIPS implementation of the surface damage detection
and isolation logic into the existing FORTRAN code.
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Accessing the CLIPS rules from inside the FORTRAN code is accomplished by using the
FORTRAN CALL statement to start the execution of a specialized FORTRAN subroutine. Before
the production rules can begin checking for surface damage, the FORTRAN variables needed by
the rules must be converted into facts and placed in the fact list. As shown in Figure 4.1.3-1, the
inputs to the FORTRAN-to-CLIPS-convertor are FORTRAN variables and the output is the fact
list. For example, the surface damage detection rules (Figure 4.1.2-2) need access to the detection
thresholds in order to fire. The FORTRAN-to-CLIPS-convertor takes the FORTRAN array
variable for detection thresholds, TRSHDE (1), and converts it into the fact (detection-threshold
?surface ?surf-dt). The index, (1), indicates a surface and after conversion is placed into the
?surface slot in the detection-threshold fact . The value for the detection threshold is placed in the
?surf-dt slot. Once the conversion is complete the entire fact is placed into the fact list.

After the fact list has been created, the detection and isolation rules become active and
perform the detection and isolation tests. When all rules have finished firing a CLIPS-to-
FORTRAN-convertor transforms the modified fact list, which now contains information regarding
surface damage, into FORTRAN variables and passes them back to the FORTRAN routine. At
this point the FORTRAN routine continues execution.

4.2.  Neural Network Implementation of Dynamic Thresholding

As discussed in Chapter 1, there are two different approaches in using neural nets in global
FDI design problems. The first one is the direct implementation of the global FDI system as a
neural network. The second is to embed neural networks into conventional FDI algorithms. In the
first approach, the usual problems associated with an algorithmic approach (e.g. modelling errors,
environmental disturbances) would be mapped into the domain of neural network design (e.g. the
determination of training data). The second approach is more appropriate for the conventional
design stages which do not yield themselves to a well defined algorithmic solution. For instance,
the process and measurement noise covariances of a linear design madel representing the modelling
error uncertainty compared to the underlying nonlinear aircraft model, the no-fail filter estimation
error covariance expressions under modelling errors, and likelihood ratio dynamic thresholds
compensating the effect of modelling errors are suitable candidates for using a neural net approach.
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Here we describe the design of a ncural net for desermining the likelihood ratio dynamic
thresholds in the CRCA global FDI a2lgorithm. Figure 4.2-1 shows the block diagram of the neura!
net design process. As seen from the figure , the firs: step is 10 create a solution (input/output
pairs) database. The solution daiabase can be buil: cither by grouping physically related
input/output pairs or by grouping all possibly related input/output pairs. For instance, in the
second approach, the pilot inputs, actuator commands, surface position sensor measurements, FCS
sensor measurements and likelihood ratio outputs can serve as the initial database.

R Global FDX
; ]
Likelibood Nearal Net } oo vmamic ThvesholdDetection :
Raio | Model ' Raio Nt [Togc :
Database ' '
L
3 ; :
: , :
s“. : ,/ 1
oo, tmmmmmmema e cmececcccoaaood '
Off-linc Training Ou-Line Realization

Figure 4.2-1: Neural Net Design Process

The next step in the design is the neural net modelling of the solution database. For a given
interconrect topology, the neural net solution can be used to weed variables which do not have an
impact oa the likelihood ratio outputs (i.e. by observing the links with zero gains). Finally,
known functional dependencies can be supplied as inputs for increased representation efficiency.

Figure 4.2-2 shows ih¢ two layer neural net used for modelling the dynamic threshold for
the left canard likelihood ratio. As seen from the figure, the inputs into the neural net are the
ccmmanded and actual roll rates, and the commanded and actual normal accelerations. A ten node
intermediate layer with a fully connected topology has been employed. Figure 4.2-3 compa: 25 the
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neural ~ti dynamic threshold with the one in the cumrent CRCA design. In the current CRCA
design, the dynamic thresholds have been comservatively scheduled as a function of pilot
commands. As seer from Figure 4.2-3, the neural net approach yviclds a less conservative bound
over the likelihood ratio time history. Here, the likelihood ratio excursions are solely due 10
modeiling errors induced by mancuvers shown in Figures 4.2.4 and 4.2-5.
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Figure 4.2-2: Two Layer Dynamic Threshold Neural Network
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Figure 4.2-3: Neural Net for Dynamic Threshold
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3. FULL SCALE RESEARCH PROTOTYPE REQUIREMENTS

Here, we outline the desirable attributes of a full scale research prototype for a Computer
Aided Engineering (CAE) solution to the global FDI design problem. The proposed FDI/CAE full
scale research prototype consists of a2 Design Assistant and a Development Environment. Design
Assistant assists a designer in optimizing the global FDI design over the entire flight and
failure/damage envelopes while the Development Environment supports the implementation of FDI
systems as knowledge based expert systems and neural networks.

5.1.  Global FDI Design Assistant

A full scale FDI/DA will be an expanded and enhanced version of the FDI/DA prototype
described in previous sections of this report. The primary goal of an FDI/DA is to aid the designer
in efficiently determining the global FDI design parameters which produce the best FDI
performance for the current global FDI strategy. A secondary goal is to help an inexperienced FDI
designer learn the design process.

In order to design the global FDI, performance data, generated during simulation runs,
must be analyzed. Performing simulation runs and analyzing the data is a time consuming process,
so automation of this process is desirable and feasible as demonstrated by the Phase I effort. A
full scale research prototype should be able to set up and execute simulation runs as well as analyze
performance data beyond the simple discrete event detection (false alarms, misdetection) capability
provided in Phase I. Hence, the ultimate objective is to capture the high level information
processing capability of an FDI design expert in analyzing the graphic outputs of various
performance related variables.

A full scale FDI/DA must have a knowledge base containing all the knowledge necessary
for designing the global FDI for optimal performance over the entire flight and damage envelopes.
Capturing this knowledge will require formalizing FDI design expert's reasoning during all phases
of the design process and transferring their expertise into a structured knowledge base. In
particular, the full scale research prototype should include all of the design tradeoffs identified in
the FDI Criteria Study (Caglayan, Allen, and Rahnamai §9).
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A full scale FDI/DA will contain an explanation facility for explaining to the designer why
the suggested actions should be taken and why conclusions were reached.

5.2. Global FDI Development Environment

The global FDI development environment will allow the global FDI designer an efficient
environment for developing and evaluating global FDI strategies using artificial intelligence
techniques. The global FDI development environment will support the rapid prototyping of FDI
strategies which can be successively refined. The designer will be able to experiment with using
different programming techniques (knowledge based expert systems, neural networks) in different
sections of the global FDI system design to determine which strategies work t st for the given
section. Using an object-oriented programmine development approach, a real time version of the
current strategy will be maintained.

The FDI development environment will support the implementation of a global FDI system
as a knowledge based expert system supporting reasoning from both structural and functional
knowledge. Hence, this expert system development environment will support the specification of
topological and procedural FDI knowledge. Furthermore, the development environment will
support the interactive development of the knowledge based expert FDI system, and the integration
of a compiled version of this knowledge into a real-time version.

The FDI development environment will also support the development of nonalgorithmic
subsystems for FDI design using neural networks, and the embedment of the neural net
subsystems into the overall FDI design. The development environment will also support the
experimentation and evaluation of direct use of neural nets in the FDI design.
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6. CONCLUSIONS AND RECOMMENDATIONS
In this study, we have shown the following:

- We have shown the feasibility of capturing FDI design expert's knowledge as a rule
based expert system (FDI Design Assistant) by demonstrating such an approach in
designing the static thresholds for the current CRCA global FDI design.

- We have investigated the implementation of the global FDI as an expert system, and
demonstrated feasibility by implementing the CRCA global FDI detection logic as
an expert system, and embedding it into the current global FDI software.

- We have investigated the integration of neural networks into global FDI, and
demonstrated feasibility by training a neural net modelling the likelihood ratio
dynamic thresholds in the current CRCA global FDI system.

Based on the successful results of our Phase I study, we recommend the development of a
full-scale research prototype Computer Aided Engineering (CAE) solution for designing,
evaluating and embedding FDI systems. Our proposed FDI/CAE system consists of two major
components:

FDI Design Assistant: We recommend the refinement and expansion of the FDI Design
Assistant developed under the Phase I effort. The full-scale research prototype would cover all
stages of the FDI desig" process. Moreover, the expansion would enable the coverage of full
flight maneuver and damage scenarios. We believe that the rule-based programming paradigm
employed in Phase I is sufficient for the proposed full scale Design Assistant development effort.
The proposed FDI Design Assistant will be able to set up and execute simulation runs, analyze
simulation results, assess FDI performance based on this analysis, and decide on the best course of
action for design iteration using its knowledge about the FDI design tradeoffs.

FDI Development Environment: We recommend the construction of an FDI Development
Environment enabling the implementation of global FDI using artificial intelligence techniques of
expert systems and neural networks. We believe that the rule based programming paradigm
employed in Phase I is not sufficient for the proposed Phase II Development Environment. We
propose to use an object-oriented expert system development tool for building such an environment
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so that a model-based approach can be taken in representing structural and functional knowledge.
Similarly, the environment would also enable the use of neural nets either directly as damage/failure
classifiers or indirectly as nonalgorithmic modelling inaccuracy modellers. Hence, the
Development Environment would enable the implementation and evaluation of competing
techniques and the incorporation of the best ones into an overall design.
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