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ABSTRACT

An empirical orthogonal function (EOF) representation of relative vorticity is used
to forecast recurvature (change in storm heading from west to east of 000° N) of western

V North Pacific tropical cyclones. The time-dependent coefficients of the first and secone

EOF eigenvectors vary in a systematic manner as the tropical cyclone recurves aro.. d
the subtropical ridge and tend to cluster about the same values at recurvature time. In
contrast, the coefficients for straight-moving storms tend to cluster in a diflerent region
in EOF space. Exploiting this Euclidean distance approach, additional EOF coefficients
are identified that best represent the vorticity fields of recurving and straight-moving
storms. Classification of an individual case is then into the closest time-to-recurvature
in 12-h intervals or straight-moving storm category as measured in multidimensional
EOF space. Although rather subjective, the Fuclidean method demonstrates skill rela-
tive to climatological forecasts. A more objeclive discrirninant anal- sis technique is also
tested. A final version that involves the first six EOF coefficients of the 250 mb vorticity
field is useful (72% correct) in identiQing recurvers or straight-movers during the 72-h
forecast period. Skill in classifying situations within 12-h time-to-recurvature groups is
low, but iright be improved using other aaalysis techniques or in combination with other
predictors.
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I. INTRODUCTION

Tropical cyclones have formidable destructive power and annually exact tremendous

losses in lives and property. The western North Pacific Ocean is the most active tropical

cyclone basin in the world. An average of 31 tropical cyclones have occurred annually
during the 25-year period ending in 1984 (ATCR 1984). The damage from these storms

can be minimized only through preparedness and avoidance. Precautionary measures
can require considerable time, Therefore, accurate storm forecasts are critically impor-

tant to both the military and civilian communities.

A. BACKGROUND

Tropical cyclones can be classified into three broad categories based on their track.

If a storm moves west or northwest throughout its life, it is classified as a straight-mover

(TY Agnes in Fig. 1). A storm that turns from a westward or northwestward path

through North to a northeastward track is defined as a recurver (ST Vanessa in Fig. 1).

Storms that do not fit either the straight-mover or the recurver categories are classified

as odd-movers (ST Bill in Fig. 1). Odd-moser tracks are typically erratic and may dis-

play loops or a stairstep-type track. The largest forecast errors occur when recurving

storms had been forecast to move straight toward the west or northwest, or when

straight-movers had been forecast to recurve to the north or northeast. Incorrect re-
curvatuie forecasts result in 72-h track forecast errors of over 1850 km (1000 n ni) al-

most every year (Sandgathe 1987). Situations associated with recurvature, due either to
cydone-midlatitude trough interaction or to cyclone-subtropical ridge interaction, are

listed among the Joint Typhoon Warning Center's (J'FWC's) most difficult forecast
problems (Sandgathe 1987)., Since nearly half of all western North Pacific tropical

cyclones eventually recurve, these recurvature forecast questions are frequently faced by

operational forecasters.

None of the present objective fuccast aids in operational use are specifically de-

signed to identify recurvature situations. Leftwich (1979) and Lage (1982) used re-

gression analysis techniques to predict recurvature, which they defined as a net

displacement north of 315' during the forecast period. Leftwich (1979) included posi-
tLtIVI,, IL.IV~~UVAS, lllkt1,,01, l 6lU/ 1VVV.-1VV 111V kj;UFL,. 11r1,A1l~ 11U1611k P.lUU.Lt,,ULS to lur A s t hc[,~

probability of recurvature in Atlantic tropical cyclones. Geopotential heights were re-

presented by gridpoint values on a relocatable storin-centeied grid. Leftwich concluded
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Fig. 1. Examples of 1984 tropical cyclones classified by track type. Straight-
mover, TY Agnes (dashed line); recurver, ST Vanessa (dotted line); and odd-miovcr,
ST Bill (solid line).

that the inclusion of synoptic predictors improved the model forecast skill, but none of'
his statistical models out-performed climatological forecasts. Lage (1982) used an em-
pirical orthogonal function (EOF) representation of 500 mb geopotential height fields
plus persistence-related variables to predict western North Pacific tropical cyclone re-
curvature or non-recurvature at 36-, 54- and 72-h forecast intervals. The combination
of persistence plus EOF predictors consistently out-pcrformed the persistence alone or
the EOF predictors only methods. Each of these three techniques was superior to

climatology and chance at all forecast times.

The purpose of this study is to test the feasibility of using an EOF representation

of the synoptic vorticity fields at 700, 400 and 250 mb to identify recurvature situations
in western North Pacific tropical cyclones. Because horizontal pressure gradients are

generally weak and geostrophic relationships deteriorate in the tropics, zcopotential

heights provide a poor estimate of the steering flow. Since vorticity combines the
steering elfects of both Lonal and meridionai winds, it shouid provide a more accurdic
measure of steering with fewer predictors than would be required if the two components

of the wind were used separately as predictors. An EOF representation of a synoptic
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field such as vorticity offers several important advantages over gridpoint values. Because

EOF predictors represent spatial patterns in environmental fields, they contain more

synoptic information and are less affected by observational errors, Because relatively

few EOF predictors are required to represent large amounts of variance in synoptic

patterns, considerable savings in computer storage and forecast model run times can be

realized using this method.

EOF predictors have been used successfully in statistical-synoptic models to forecast

tropical cyclone motion (Shaffer and Elsberry 1982; Peak et al. 1986; Schott et al. 1987;

and Elsberry et al. 1988). ShafIhr (1982) demonstrated the usefulness of EOF represen-

tation of 500 mb geopotential heights as synoptic forcing predictors in statistical-

synoptic track prediction schemes. In a similar study, Wilson (1984) used EOF

representation of 700, 400 and 250 mb wind component fields to forecast tropical

c.clonc motion. Schott (1985) stratified forecast situations by the cyclone direction of

motion to develop a statistical adjustment scheme involving EOF predictors that reduced

the s\steniatic errors in a dynamical track prediction model. Meanor (1987) used

Schott's stratification scheme and EOI1 predictors of vertical wind shear to develop a

sinlar model to adjust fur systematic errors in a dynamical track prediction model.

\Veniger (19S7 adopted Meanor's EOF predictors of vertical wind shear to develop a

successful tropical cyclone intensity forecast model. Gunzelman (1990) used the EOF

approach as a filte to represent the "signal" in the %orticity field, and suggested that

sexeral ditllrent forecast situations could be interpreted as an idvection of these filtered

Norticity fields.

B. OBJECTIVE
1 he objective of this study is to demonstrate the ability of an EOF representation

of the synoptic vorticit field to identify potential recurvature situations. The hypothesis

is that the "idjacent s-nuptic features cause the turning motion that leads to tropical

c clone recurvature. Consequently, the sets of [OF coefficients for the vorticity fields

associated with recurvature should be diflfrcnt from those associated with straight-track

situations. The question is, how far in advance of recurvature are the recurvature EOF

coefficients distinguishable from the straight-track EOF coefficients? Classification

goals arc two-fold: first, to identify the overall track type as a recurver versus a

straight-mover; and second, to identify the time to recurxaturc with the best possible

time resolution. Recurvature is defined here as the time when the storm heading changes

fi, m west of Ol' North to cast of 000* North. A track segment will be clh.ssified as a

3



straight-mover if the storm does not recurve during the next 72 h, which corresponds to
the official JTWC Forecast period. The time to recurvature will be specified in 12-h in-
crements. In summary, the first goal of the study is to determine whether the present
vorticity field is representative of a recurvature situation within 72 h versus that of a
straight-mover; if so, the second goal is to specify the most likely time to recurvature.

Two methods are used to develop the classification model. In the Euclidean distance
approach, classifications are into the group that has the closest mean EOF predictor
values as measured in multidimensional space. This simple approach provides physical

insight into the classification problem. The difficulty is in determining which predictors
best separate the groups. Therefore, a discriminant analysis package also is used to
more objectively demonstrate the predictive capabilities of an EOF representation of the
vorticity field.



II. DATA AND METHODS

A. DATA DESCRIPTION

The cases in this study are 12-hourly data for western North Pacific tropical

cyclones during 1979-1984. These cases are a combination of the cases analyzed by

Wilson (1984), Peak et al. (1986) and Gunzelman (1990). Wilson and Peak et al. ex-

tracted the Global Band Analyses (GBA) wind fields for each case. Gunzelman com-

puted the relative vorticity from these wind fields and performed the EOF analyses of the

vorticity fields. The following restrictions were applied to the selection of cases:

* a tropical cyclone attaining at least tropical storm strength (maximum sustained
winds of 18 m. s (35 kts) or greater);

* a best track position west of the dateline, cast of 1000 E and south of 34.60 N; and

* the meridional and zonal wind components of the GBA are available at 700, 401)
and 250 nb.

A total of 1573 cases met these requirements and were analyzed.

I. Field description

The GBA wind fields are operationally generated every 12 h by the United

Stateg Navy llecet Numerical Oceanography Center (FNOC). The GBA provide global

lungitudinal coverage between 40.956 ° S and 59.745* N. The analyses are produced on

a .Mcrca~or grid with spacing of 2.5' latitude at 22.50 N and S. Although zonal and

meridional Nxind fields also are available at the surface and 200 rob, onl) the 700, 400

and 25 mb levels are used. Analyses are based on surface observations, ship reports,

Yawinsondes. pibals, aircraft reports and satellite-derived cloud motion vectors. When

a tropical cyclone is prescnt, eight bogus winds are inserted at the surface 80 kit (43 n

mi) from the center of the cyclone, and are coupled vertically via the thermal wind

equation using temperature analyses at the intermediate levels. A detailed description

of the GPA is contained in the U.S. Naval Weather Service (1975).

Wilson (1984) and Peak et al. (1986) used a bi-linear interpolation scheme to

interpolate the zonal (u) and meridional (%') GBA wind components onto a storm-

. ,, , T,a 4 .fl'%IS Ste %r ; 7 ,j.t , nn;ntc %th a rived 7*nn*l at d

meridional separation of 277.8 km (150 n nii). It is geographically-oriented with 17

gfidpoints north-to-south and 31 gridpoints east-to-%est. The center of the c~cloiie,



based on the JTWC warning position, is always located at gridpoint (16,9). Gunzelman
(1990) computed relative vorticity

I - - (2.1)

using centered finite differences at the internal gridpoints, and one-sided differences at

the grid boundaries. Gunzelman noted that the mean vorticity fields are nearly vertical
near the tropical cyclone, and the largest positive vorticity values around the cyclone are
at 700 mb and decrease with height. The 700 mb vorticity field also has the largest dif-
1'erence betwveen the positive values associated with the cyclone and the negative values

associated with the subtropical ridge, and the gradient decreases with height. However,
the magnitude of the vorticity associated with the subtropical ridge increases with height

and is greatest at 250 nib.
2. Empirical orthogonal function analysis

The EOF method used by Gunzelman (1990) paralleled the procedures used by
Wilson (1984) and Meanor (1987), except that it was applied to relative vorticity rather

than wind components or the %ertical wind shear. The EOF analysis was on the 527
point storm-centered grid (Section II.A.1) and was based on the same 6S2 depcnd,'nt

cases during 1979-1983 that Wilson used.

In this method, orthogonal eigenvectors and their associated cisenvalues (coef'-

ficients) are calculated from the dependent set vorticity fields at each pressure level.
r irst, X (527) eigenvectors are calculated from a normalized XY (527 x 6S2) matrix of

Y (527) gridpoint values for the Y (682) cases. The original synoptic gridpoint vadues
can be recovered by the linear summation of the products of the eigenvectors and their
assoLiated coefficients. The first eigenvector (spatial pattern) contains the largest vari-
antce. The second eigenvector contains the largest amount of the variance not explained
by the first, and so on. Once the cigenvectors are determined from the dependent data

set, the time dependence in the synoptic pattern for each case is contained in the EOF

coefficients.
One of the advantages of the EOF representation is that a relatively small

number of EOF eigenvectors can be used to represent a synoptic pattern. To determine
the minimum number of cigenvectors that are needed to represent the signal in the
vorticit' field, Gunzelman (1990) applied the Preisendorfer and Barnett (1977) Monte
Carlo technique to distinguish between eigenvcctors with signal vice those with noise.

In this method, eigenvalues for the physical data arc compared to cigenvalues for

6



randonly generated data. If the physical eigenvalue deviater significantly from thz

eigenvalue computed from a random vorticity field, there is reasoviable assurance that

the associated eigenvector is describing signal rather than noise. Based on Gunzelman's

(1990) results, the first 45 vorticity modes are retained as potential descriptors of the

synoptic fields associated with recurvature in this study. The first 45 modes explain be-

tween 72.8 and 77.5% of the vorticities at the three pressure levels (Table 1).

Table 1. PERCENTAGE OF EXPLAINED VARIANCE WITH I TO 45
MODES: Cumulative percentage of variance (95% confidence) with I to
45 EOF modes retained for the relative vorticity fields at three pressure
levels (after Gunzelman 1990).

MODE 700 nB 400 NS 250 MB

1 7.6 10.2 11.4
2 13.4 18.1 19.1
3 16.9 22.0 23.6
4 20.0 25.5 27.6
5 22.7 28.7 31.0
6 2S.3 31.S 33.9
7 27.7 34.1 36.6
8 30.1 36.5 39.2
9 32.3 38.7 41.4

10 34.4 40.8 43.4
Ni N N N

'0 69.4 73.8 74.7
41 70.1 74.5 75.3
42 70.8 75.1 75.9
43 71.5 75.7 76.4
44 72.1 76.- 77.0
45 72.8 76.9 77.5

Each eigenvector consists of 527 values that represent a spatial pattern on the

31 x 17 analysis grid. The magnitude of the associated time-dependent EOF coefficient

indicates the relative importance of that pattern in each specific case, A negative EOF

coefficient indicates that the identical spatial pattern applies, except that the maxima

and minima are reversed.

The first eigenvector for 700 mb vorticity (Fig. 2) can be interpreted as a tropical

cyclone in the subtropical ridge if this pattern is multiplied by a negative coefficient.

For example, the 700 mb Mode I coefficient for ST Vanessa at recurvature time is -4.57.

Therefore, the opposite pattern with a positive vorticity value at the storm center (dot)

applies, and represents a recurving tropical cyclone at the axis of the subtropical ridge.

Mode I eigenvectors for 400 and 250 nb relative vorticity (not shown) represent

7



large-scale patterns similar to the Mode I pattern for 700 mb in Fig. 2. As the spatial

patterns become increasingly more complex for higher mode eigenvectors, the patterns
become increasingly more dissimilar among the three pressure levels (see Gunzelman

1990 for ftrther discussion).

S....., . . .. . .

.... ................~ .
.- .. ... ........... 6........... ...........

©'_ / I .,,,' ,,' °4 ~~... . ,- ........ ..........

.....................................................................

I.. .... '.... ... .5 .. . :3 ... . . . . ... - ........... .*................... ::::. ; ...........;;;

-510-5 0 101
X (77.8 KWO

Fig. 2. M ode I igenvector at 700 nib. Positive (negative) values are solid
(dashed). North latitude is along the y-axis and cast longitude is along the x-axis.
T he black dot indicates the storm center position (after Gunzelman 1990).

Reconstructed 700 mb vorticity fields for ST Vanessa at recurvatur time using
only the first 45 EOF modes and all 327 modes are compared in Fig. 3. The basic pat-

tern of a tropical cyclone at the axis of the subtropical ridge with a strong vorticity

gradient to the east, and cyclonic vorticity associated with the ndlatitude trough to the

north, is represented equally well with 45 EOF modes as with all 527 modes. The addi-

tion of the higher EOF modes adds smaller scale features, which are assumed to repre-

sent noise in the vorticity field.

B. SELECTION OF CASES

A recurvature forecast model learning set is selected from the 1573 cases in the

1979.1984 data set. As a first step in the selection process, the data are categorized by

track type and time to recurvature. Initial identification of the cases as recurvers,

straight-movers and odd-movers is based on the tropical cyclone track categories
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assigned by Miller et al. (1988). For each recurving tropical cyclone, the storm heading
between successive 6-h JTWC best track positions is computed and the recurvature time

is identified as the 00 or 12 UTC nearest the 6-h interval in which the storm heading
changed from west of 000° North to east of 000' North. This synoptic map time, for

which a GBA is available to calculate the vorticity EOF coefficients, will be referred to

as R.00h where R indicates recurvature and -00h indicates the number of hours (0) prior
to recurvature time. Recurver cases within 96 h of recurvature are then categorized
based on the time to recurvature into the R-96h through R-00h classification groups.

Cases more than 96 h prior to recurvature are identified as pre-recurvers (PR). Cases

after recurvature are excluded from the forecast model learning set. The straight-mover

cases are identified as non-recurvers (NR) if a minimum of 72 h remains in the track to

establish that recurvature does not follow in that time. This requirement excludes from

the learning set all straight-mover cases that cannot be verified as non-recurvature situ-
ations throughout a 72-h forecast period. Odd-mover cases (382 cases from 33 tropical

cyclones) are not included in the model learning set, but will be used to test the ability
of the final EOF recurvature forecast model to classify these cases into the straight-

mover or recurver group that most closely describes the storm motion.

After screening, a total of 782 cases from 97 storms are retained in the model

learning set (Tabi . 2). Although the learning set cases in the Euclidean distance ap-

proach and the discriminant analysis approach differ, the entire learning set will be used

to compare the overall prediction skill of the approaches.

C. CRITERIA FOR EVALUATING MODEL PERFORMANCE

Evaluation criteria are chosen to test the forecast model's ability to meet the two

classification goals: identification of track type and identification of the time to recur-

vature. Since no objective guidance is available (or official forecast is issued) as to

whether a storm will be a recurver or a straight-mover, the only absolute measure of
usefulness is a comparison with a climatological forecast of recurvature.

1. Percent correct

The percent of cases correctly forecast as recurver (%R) or straight (%S) and

the total crrectly forecast in both track type categories (%T) tests the model's ability

to identify the overall track type. The percent correct is calculated for recurver and

straight-track types defmd by the thnes in Table 2. That is, a classification into ally

of the R-72h through R-00h groups is crusidered to be a correct forecast of a recurver.

Similarly, classification into the NR, PR and R-96h through R-84h groups represent

10



Table 2. IECURVATURE MODEL LEARNING SET CASES BY FORECAST
CATEGORY: Number of 1979-1984 tropical cyclones that are categor.
ized as recurver or straight track types. The recurver learning set is defined
as those times within 72 h of recurvature time (R-00h). The straight
learning set includes all times preceding 72 h of recurvature time, plus se-
lected times from the straight-track storms. The number of cases retained
in the model learning set is listed for each track-type category and for each
12-h forecast category.

NWIBER OF 11-H FORECAST ltSER
TRACK TYPE TROPICAL CYCLONES CATIOP.ES OF CASES

RECURVER 60 R-OOH S

R-14H 55
R-56H 1t

R-ASH 46
R-6011 41
R-72H 32
.. .. .. oe mem ...... .......

TOTAL 337

STRAIGHT 37 R-64H 30
R-96N 24
PR 1131 hR 278

TOTAL 445

TOTAL 97 782

correct forecasts of a straight-track situation, because the tropical cyclone did not re-
curve during the 72-h forecast period. The simple percent correct measure is also used
in evaluating the time-to-recurvature prediction performance of the model. In that case,
only a classification into the appropriate time-to-recurvature group will be credited as a
correct forecast.

2. Classification matrix scores
Classification matrix scores assign penalty points to misclassifications as a linear

function of the number of 12-h categories betveen the prediction and the verification
groups. That is, one additional penalty point is assigned for each 12-h group between
the model forucast and the verification. Since a misclassification of a recurvaturc case
into the PRNR forecast group represents a larger error, two additional penalty points
are assigned in the PRNR category relative to the R-96h category. Because this is a

11



penalty score, higher skill is represented by numbers close to zero, A penalty score of
1.0 would indicate that the average misclassification is off by one category.

Three classification matrix scores are defined based on the matrix of penalty
points in Table 3: D-score (dependent); I-score (independent); and R-score (recurver).
Given a classification matrix that contains the number of cases that are forecast in each
classification group (columns) and verify in each verification category (rows), the penalty
points in Table 3 are assessed by multiplying the number of cases by the penalty points
for that error. No penalty points are given to the correct classifications along the
diagonal.

Table 3. MATRIX OF PENALTY POINTS FOR CLASSIFICATION MATRIX
SCORES: Penalty points are assessed for erroneous forecasts of time-
to-recurvature in 12-h increments or as PRNR. These penalty points are
surmmed over three subsets to calculate the classification matrix D-, I- and
R-scores. The matrix columns (forecast model classification groups) and
rows (case verification categories) are the same as those in the model
classification matrix.

CLASSIFICATION
VERIFY 00 12 24 36 48 60 72 54 96 PRNR

R-014 0 1 2 3 4 5 6 7 8 10
R-2H 1 0 1 2 3 4 5 6 7 9
R-1411 2 1 0 1 2 3 4 2 6 8
R-3611 1 2 1 0 1 1 3 4 A 7
A-4811 4 3 2 1 0 1 2 3 4 6
4-60H4 5 4 3 2 1 0 1 2 3 S
R-7H 6 S 4 3 2 1 0 1 1 4
R-84H 7 6 5 4 3 2 1 0 1 3
R-96H 8 7 6 A 4 3 1 1 0 2
PR 10 9 8 7 6 5 4 3 2 0
HtN 10 9 0 7 6 5 4 3 2 0

The three classification matrix scores are obtained by multiplying the classifica-
tion matrix of model results by the penalty point matrix and calculating three sums of
the products. These sums are then normalized by the number of cases in the sample so
that the scores can be compared for different sample sizes. The three classification ma.
trix scores examine various aspects of the forecast model skill by scoring only cases that
belong to certain verification categories. The classification matrix I-score includes cases
in all of the verification categories (R-00h through R-96h plus PR and NR) that are in
the independent sample. The D-score is designed to compare results from dependent

12



and independent -.qmples, which contain different sets of cases. Since the PR cases are

not always incluc),d in the dependent set to define a PRNR classification group, the PR

case forecasts are excluded in the classification matrix D-score. Consequently, the D-

score and I-score will have similar magnitudes, with an offset that is proportional to the
performance of the forecast model on the PR cases. The D- and I-score will provide an

exact comparison of forecast skill only if the ratio of the combined number of PR and

NR cases to the combined number of R-00h through R-96h cases is the same for both

data sets (e.g., in the learning set). Since the PR and NR cases are assigned more pen-

:Uty points for misclassifications than the R-00h through R-96 cases, the relative number
of cases in each group will affect the matrix scores that score PR and NR forecasts. The

R-score is an indication of the model's ability to correctly identify the time to recurva-

ture in recurver cases, That is, the penalty scores in Table 3 are only summed over the

R-00h through R-72h verification categories.

3. Climatological forecasts and scores

A climatological forecast is obtained by counting the number (N in Table 4) of

JTWC best track 00 and 12 UTC positions for 1979-1984 cyclones of tropical storm

strength or greater in each classification group (R.00h through R-96h plus PRNR).

Thus, the cliatology data set contains all the learning set cases, plus additional cases

that were excluded from the learning set because either the best track position did not

meet the requirements in Section l1.A or the GBA wind fields were not available at all

three pressure levels. The percentage of recurving (41.7), straight-moving (36.4) and

odd-mo~ing storms (21.9) for these six years is representative of the percentages (42.5,

36.4 and 21.1, respectively) for the 28-year period 1945 to 1987 (Miller ct al. 1988).

To obtain the climatological forecast classification matrix (Table 4), a fraction

of the learning set cases in each 12-h verification category are forecast into each of the

ten classification groups based on the percent of climatological cases in each of the ten

groups (percent in Table 4). By ignoring the straight-mover cases with less than 72 h

remaining and the odd-mover cases, these climatological forecasts can be compared to

the model forecasts predicated on similarly screened data. The skill scores for the

climatological forecasts of the learning set cases are given in Table 5. Any forecast

model should have higher percent correct and lower D-score, I-score and R-score to be

considered as useful to the forecaster.
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Table 4. CLIMATOLOGICAL FORECASTS FOR THE LEARNING SET: The
learning set cases belonging to each verification category are classified into
the ten classification groups with the relative frequency (column labeled
percent) that the cases in the 1979-1984 climatology data set belong to
each of the ten classification groups. Since the number of classifications
is rounded to the nearest whole integer, the total is 780 vice 782.

CL TOLOGY LEARNING SIT CLASSUIFCATIONS
VERIFY N PERCENT 00 12 24 56 48 60 72 64 96 PENO

--------------- ------------------------
RECURVER: R-OOH 61 ( 6.31) 3 3 3 3 3 2 I I 1 32

R-12H 60 ( 6.21) 4 3 3 3 3 1 1 1 1 32
R-24H " ( 6.00) 3 3 3 3 3 2 9 2 1 32
R-36H 53 ( 5.49) 3 3 3 3 2 2 2 2 1 30
R-48f 46 ( 4.76) 3 3 3 5 t a 2 1 1 27
R-60H 42 ( 4.35) 3 3 2 2 2 2 1 1 1 24
A-72H 33 ( 3.42) a 2 2 2 2 1 1 1 1 19

STRAIGHT R-84H 30 (3.11) 2 2 2 2 1 1 1 1 1 17
R-96H 2 4 2.48) 2 I 1 1 1 1 1 1 1 14
PR 114 (PRNMRs 7 7 7 6 5 5 4 4 3 6
NE '45 57.87) 18 17 17 15 13 12 9 9 7 161

Table 5. FORECAST SKILL FOR CLIMATOLOGICAL FORECASTS: Percent
of recurver (%R), straight (%S) and total (%T) cases correctly classified
according to track type. D-, I- and R-score are classification matrix scores
that indicate skill in correctly classifying cases with 12-h accuracy. Scores
are computed from the actual number of learning set cases that
cliniatologically occur in each group vice the integer values presented in
Table 4.

%R 36.5

%S 63.5

%T 53.6
D-score 4.1 1
l-score 3.93

R-score 3.30
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III. EUCLIDEAN DISTANCE METHOD

A. BACKGROUND
The Euclidean distance approach in this section examines both the physical changes

in the vorticity patterns that precede tropical cyclone recurvature and the ability to dis-
tinguish among these patterns using an EOF representation. Since the time-dependent
EOF coefficients represent the synoptic fields that exist at each time, the coefficients
should vary in a systematic manner as the tropical cyclone moves around the subtropical
ridge during recurvature. Simple two-dimensional plots of the first and second EOF
coefficients on the x- and y- axes in Fig. 4 indicate that these coefficients for the 1984
recurvers have similar traces. The Mode 1 coefficients are initially positive, which indi-
cates a large-scale positive vorticity pattern centered along the latitude of the storm
center in the first eigenvector (Fig. 2) and represents the synoptic pattern while these
storms are still located in the monsoon trough. As these storms move northward out
of the monsoon trough and recurve, the magnitude of the Mode 1 coefficients decreases
and then becomes negative to represent the negative vorticity associated with the sub-
tropical ridge. At the time of recurvature, the first and second EOF coefficients for the
1984 recurvers tend to cluster in the same region on the two-dimensional plot. In con-
trast, the 1984 straight-moving cyclones have EOF coefficients that cluster in a separate
region, and the odd-moving cyclones have coefficients that exhibit characteristics of both
the recurvers and straight-movers (Fig. 5). This leads to the hypothesis that an individ-
ual cyclone may be distinguished as a recurver (straight-mover) if the EOF coefficients
for that cyclone are closer to the mean of the cluster associated with recurvers
(straight-movers). The questions are how far in advance of recurvature can these dif-
ferences in EOF coefficients be detected and with what time accuracy.

B. MODEL DEVELOPMENT
To test the hypothesis that individual cases may be classified according to the

closeness of their EOF coefficients to the mean values for the recurver and straight sets,
a classification model is developed using the Euclidean distance method. The Euclidean
distance (D) is calculated in multidimensional EOF space using the formula

D= + ... + (awi- (i))2 , (3.1)
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-15.0 -

Fig. 4. Time progression of the first and second EOF coefficients for 1984
recurvers. Markcrs indicate the values of the first (x-axis) and second (y.axis) EOF
coefficicnts of the 700 mb vorticity fields for all 12-hourly cases analyzed by
Gunzelman (1990). Values at recurvature time are circled and arrow heads mark the
last case in each storm sequence (see legend for storm number). The start and end
of the sequence for ST Vanessa (storm number 25 during 1984 is denoted 2584) are
labeled.

where a is the EOF coefficient for the case, 3 is the mean of the EOF coefficients for the

forecast classification group, and the indices a through i represent the EOF modes used

as predictors. Separate distances are calculated relative to the mean EOF value of each
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Fig. S. Time progression of the first and second EOF coefficients for 1984
* straight-movers and odd-movers. As in Fig. 4, except for 1984 straight-moving

storms (left) and odd-moving storms (right).

* potential classification group, and ther llw classification is into the group wit!, Elie

smallest distance.

1.* Forecast group means

Two issues in the development of this simple model are the selection of the

representative rc,.urver and straight-mover cases to calculate the classification group

means, and the specification of the set of lEOF modes that best distinguishes between the

recurver and straight-mover situations. A "clean' set of 15 recurving and 15 straight.

moving storms is selected from the 1979-1984 data set in hopes of identifying the most

representative vorticity patterns for the classification categories. The following criteria

arc used to select the clean sets:

e a tropical cyclone attaining a least typhoon strength (maximum sustained winds
of 33 ins-' (65 kts) or greater);

9 formation east of 130* E; and

# a typical recurvcr or straight track exhibiting no significant deviations.
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Tracks for the clean shn storms are shown in Fig. 6. Because the clean norms
exhibit typical recurver- or straight-track motion, the EOF coefficients for these storms
should be representative of the typical vorticity patterns associated with recurver- or
straight-track motion.

The mean values of the first 45 time-dependent EOF coefficients are computed
from the clean recurver set at times R-00h through R-96h and from the clean straight-

mover set that is labeled NR. As in the time progressions of the first two EOF coeffi-
cients for the 1984 storms in Figs. 4 and 5, considerable variability exists around the
12-hourly mean coefficients even in these clean set storms (not shown). To obtain more
representative transitions among the time-to-recurvature groups in EOF space, a run-
ning mean value is calculated from three times centered on the desired time. For ex-
ample, the mean for recurvature time R is calculated from the EOF coefficients at
R-12h, R-00h and R+ 12h. The NR group averages also are calculated from three
consecutive 12-hourly cases. These cases are selected so that the average longitude of
the clean set straight-mover cases (132.06* E) is close to the average longitude of the
clean set recurvers at recurvature time (130.99" E). Although only straight-mover data
are used to define the PRNR classification group, the Euclidean distance approach
should distinguish straight-moving cases (NR) as well as recurving storm cases that are
more than 96 h before recurvature (PR).

Vorticity fields at each pressure level (700, 400 and 250 mb) reconstructed from
the mean EOF coefficients for each classification group (Figs. 7, 8 and 9) illustrate the
evolution of the synoptic patterns associated with recurvature. These patterns are sim-
ilar at all three levels. The sequence starts with the NR pattern in which the subtropical

ridge is well defined by the broad anticyclonic (negative) vorticity center to the north of
the cyclone center. Such a pattern would be expected to produce westerly or
northwesterly storm motion and a straight-type track. At R-96h, the anticyclonic
vorticity associated with the subtropical ridge is weaker to the north and stronger to the
northeast of the storm center than it was in the NR pattern. Proceeding toward recur-
vature time, the cyclonic (positive) vorticity associated with the storm and the
anticyclonic vorticity associated with the subtropical ridge increase in magnitude as the
composite "clean-set storm" moves north-northwest around the ridge. At recurvature
time, the storm center position is at the axis of the ridge and only a relatively v'Aak rc-
gion of anticyclonic vorticity is found between the storm and the nidlatitude cyclonic
vorticity to the north. The differences among the recurvature patterns at the three
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Fig. 6. Clean sets of recurvers and straight-movers for the Euclidean distance
approach. JTWC best tracks for the 13 recurving (top) asd 15 straight-moving
(bottom) clean set storms during 1979-1984. These storms are used to calculate the
mean time-dependent EOF coefficients that identify the recurvers and the straight-
movers for the Euclidean approach.
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longitude is along the x-axis. The black dot indicates the storm center position.

pressure levels are similar to the relative vorticity differences with height noted by

Gunzelman (1990), as described in Section Il.A.I.
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Fig. 9. Reconstructed 250 mb vorticity fields for clean set composites. Time in-
tervals and contours are similar to Fig. 7.

objective selection criteria, such as the F. to-eniter and other statistics in regression and

discrimninant analysis packages, the final choice of predictors will be based on model

classification skill. Although the initial tests are conducted for aill three pressure levels,
the Euclidean model development is presented here for 700 mb data only.
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Potential predictors are first screened by the ability to distinguish the clean set
recurving cases from the straight.moving cases (NR) at eah 12-h time (R-00h through
R.96h). In this procedure, the clean set cases in one time-to-recurvature group (plus or
minus 12 h) and all straight-moving storm cases are classified as recurvers (straight-
movers) if the Euclidean distance is closer to the clean set mean values for the
time-to-recuivature group (PRNR group). The skill in identifying the storm type is
expressed as the percent correctly classified.

To illustrate the importance of the choice of the predictor set modes, clean set
classifications into recurvers versus straight-movers using 200 randomly selected sets of
ten EOF modes are compared in Fig. 10. One hundred sets of ten modes are selected
randomly from the first 45 EOF modes (top) and 100 sets are formed from EOF Mode
I plus nine other randomly selected modes (bottom). The combined skill in distin-
guishing between recurving and straight-moving storms is better than 50% for all times
before recurvature for all random sets. The highest skill is achieved when EOF Mode I
is forced and ranges from 95% at R-O0h to about 80% at R-48h to R-96h. However,
the skill among the random sets varies by as much as 40 percentage points. In the tests
with ten randomly selected predictors (top, Fig. 10), notably better classification skill in
the R-00h through R-36h groups also is achieved when Mode I is included. These re-
sults illustrate the importance of Mode I in distinguishing recurving storm vorticity
fields near recurvature time. However, the remaining EOF predictors are necessary to
discern the R-48h through R-96h recurving storm vorticity fields from the straight-

mover fields. The problem is how to determine the optimum set of predictors without
having to evaluate all possible permutations of the first 45 EOF modes.

Since the optimum set of predictors must be able to distinguish recurver and
straight vorticity fields at all 12-h time steps before recurvature, the set should consist
or some combination of the modes that best distinguish at each of the individual times
before recurvature. Thus, recurver versus straight-mover classifications are evaluated for
each of the 45 EOF modes separately for each 12-h time group. For each time-to-
recurvature group, the first 45 modes are ranked as potential predictors in the order of
their individual skill. Then a prototype set of predictors is forled from the two predic.
tors with the highest individual skill. If the skill for this set is greater than when only
the highest individual predictor is included, the second predictor is retained in the set.

This stepwise process is continued by hicludihg the individual predictor with the next
highest skill until the 45th best EOF mode is evaluated. In each step, the new predictor
is only retained if the percent correct classifications is increased over the previous step.
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rig. 10. Euclidean method classification skill into recurvers and straight-movers
using randomly selected EOF predictors. Classification skill for the clean set cases
using 100 sets often randomly selected EOF modes (top) and using 100 sets of EOF
Mode 1 plus nine other randomly selected modes. Clean set cases in each time-to-
recurvature group (R-OOh through R-96h) (abscissa) are distinguished from the clean
set straight-mover case~s (NR). The percent correct clatssifications (ordinate) is for
both the recurving and straight-moving storm cases,
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Surprisingly, only the EOF Mode I is included in the 700 mb set for the R-00h
group using this stepwise screening process. That is, no other mode increases the clas-
sification skill relative to EOF Mode 1 alone, However, the skill of this Mode I
Euclidean model in distinguishing clean set recurver and straight-mover cases (top, Fig.
11) rapidly declines from 95% for R-00h to 75% for R-36h and only 50% at R.96h.

This result is consistent with Fig. 10, and indicates that Mode 1 alone is not adequate
for distinguishing recurvers versus straight-movers at other times prior to recurvature.
When the stepwise addition of predictors is applied at each of these times, multiple

modes are selected. The skill of these sets of predictors to distinguish recurver and
straight storm cases (bottom, Fig. 11) ranges from 80-95%. Consequently, this result

indicates the optimum performance of an Euclidean model with the dependent set of
clean storms. In practice, the time to recurvature is unknown and the forecaster would
not know which of these sets for individual times would apply. The objective is then to

select a set of predictors that can be applied at all times, but does not degrade too se-
verely from the optimum performance at the individual times shown in Fig. 11.

Potential overall best sets are formed from the EOF modes included in the sep-

arate sets determined for each time step in Fig. 11 plus other time-step sets. Two addi.
tional time-step sets are formed using the less restrictive selection criteria that inclusion

of a specific EOF mode does not change (degrade) skill. In another time-step set se-
lection approach, the EOF modes simply are entered in numerical order, rather than

according to their relative skill in discerning storm type. Using the lower mode EOF
coefficients, which are less likely to contain noise than the higher modes and are related

to larger scale features in the vorticity fields, may provide more reliable separation

among the classification groups. A summary of these five selection criteria for the

time-step sets is given in Table 6. Since each of these selection criteria leads to tht
inclusion of different EOF modes in the Euclidean method for the time-step groups, no

consensus is evident for use in forming the overall best sets.
Various subjective criteria involving the number of times an EOF mode is se-

lected for one of the individual time-step sets are tested to form an overall best set. For

the collection of R-00h through R-96h predictor sets selected using one of the criteria

A through E in Table 6, a mode may be required to appear in a certain number of these
individual sets to be included in a potential overall best set. Each potential overall best

set of predictors is evaluated by scoring the Euclidean distance classifications into the
12-h time-to-recurvature groups (R-00h through R-96h) plus PRNR. Claqsification
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Fig. 11. Euclidean method classification skill using time-step sets of 1EOF predic-
tors. Classification skill as in Fig. 10, except for only the EQE Mode 1 (top) and
for separate sets of EOF predictors at each time-to-recurvature group (bottom).
Recurvers (dotted), straight-movers (dashed) and the total correctly classified in
both storm categories (solid) are indicated.
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matrix scores for the dependent clean set (161 cases) and for the learning set cases not
belonging to any of the clean set storms (458) are presented in Table 7.

Table 6. EOF MODE SELECTION CRITERIA FOR EUCLIDEAN METHOD
TIME-STEP PREDICTOR SETS: Sets are formed from the stepwise
selection of the first 45 EOF modes in the order (column 2) of their indi-
vidual skill in distinguishing between clean set recurvers and straight-
movers (predictability) and or simply in numerical order. A mode is
selected (column 3) if the new set skill is greater than (GT), or greater than
or equal to (GE) the skill before the addition of that mode. This stepwise
process is continued until all 45 modes are tested. Then, the total number
of predictors retained in the set is limited to the number specified in col-
unin 4. "NONE" indicates that no restriction is placed on the total nun-
ber of predictors that may be retained in the set. "10 (MIN)" indicates
that only the minimum number of modes required to achieve the same skill
as the first ten modes selected in the stepwise selection process are ulti-
mately retained in the time-step set.

SELECTION4 SELECTION OSES RETAINED IF NEH
CRITERIA ORDER SET SKILL IS GE OR OT BEFORE LNIT

A PREDICTABILITY QT Now
a PREDICTABILITY GE 10
C PREDICTABILITY GE 10 (MHN)
0 IERICAL GE is
E NUHERICAL GE 10 tIN)

The stability of the Euclidean model is judged first by comparing the D-score
for the independent and dependent samples. This D-score evaluates only the categories

R-00h through R-96h plus NR that comprise the dependent sample. As expected, skill
is best (D-score - 1.78-2.07) for the dependent set classifications. The degradation in
the D-scores for the independent sample, which range from 2.56 to 2.73, is not linear.

For example, the second-best score for the independent sample (2.57) is for a model that

has the worst D-score (2.07) for the dependent sample. In addition, the model with the
best D-score (1.78) in the dependent sample has one of the worst D-scores with the in-

dependent sample. Notice that higher skill is attained when the selection of the EOF

predictors is according to their relative predictability (lines 1-6) than if selection is simply
in numerical order (lines 7-9). However, the selection of such a large number of EOF
predictors, and especially the selection of such high order modes as 41 and 42, is a
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Table 7. CLASSIFICATION SKILL FOR TWO METHODS OF SELECTING
EUCLIDEAN MODEL PREDICTORS: 700 mb classification skill in
terms of D- and I-scores for the independent set forecasts (first two col-
umns) and D-scores for the dependent (clean set) forecasts. Predictor
EOF modes in lines 1-9 are from various subjective combinations of the
sets of predictors that separate the individual time-to-recurvature groups
(R-00h through R.96h) from the PRNR group. Selection criteria for these
time-step sets (column 4) are explained in Table 6, and the number in pa-
rentheses indicates the number of R-00h through R-96h sets in which an
individual mode must have appeared to be retained in the potential overall
best set. R-00h (lines 10 and I1) time-step sets are also evaluated as
Euclidean model predictors.

IHOEPENDEHr g PPEONINTa TIME-STEP SET
P-SCORE I-SCORE O-SCORE SELECTION CRITERIA HOESt

;S _0ES C01S0N -T- "----------------- ---------------------------------SETS 0? HOPES CCIION TO R-0OO1 THROUGH R-96 SETS,

2.63 2.52 1.92 A (3) 1 4 10 30 31 34
2.64 2.52 1.84 5 (3) 1 4 * 10 20 9$ 25 30 31 34 37 38 41 42
2.88 2.52 1.81 5 (4) 1 4 20 25 30 31 34 37 41 42
2.56 2.46 1.81 C (3) 1 410 20 25 30 31 14 38 41 42
2.68 2.16 1.92 0 (8) 1 4 7 10 I 13 15
2.57 2.50 2.07 a I9) 1 4 12
2,72 2.54 1.78 1 (3) 1 2 S 4 5 1 4 9 10 12
2.73 2.60 1.89 E (6) 1 2 3 4 5 7
2.69 2.60 2.00 1 (7) 1 4 7

------------------------------------------------------------------R-OO14 SETS a

2.85 2.40 2.27 A 1
2.48 2.41 1.87 C 1 31 20 34 24 4223 4

concern. It may be that the dependent set is being well described, but this is at the
expense of degradation in the independent sample performance.

Another subjective, but physically based, approach can be used in the selection
of predictors for the Euclidean method. Recall that the time-to-recurvature coefficients

in Fig. 4 trace out a smooth path in the EOF 1 - EOF 2 domain. Since these coefficients
are in time order, increasing the geometric distance between the beginning and end time
coefficients should also increase the distances between the intermediate time values.
Thus, the hypothesis is that the set of predictors that best distinguishes between the
R-00h and NR clean set cases may also be best for identifying the intermediate 12-h
time-to-recurvature cases. To test this hypothesis, the R-00h sets formed using the
stepwise selection criterion A and C in Table 6 are evaluated as overall Euclidean model
predictor sets (bottom group, Table 7). Both sets are selected from the first 45 EOF
modes in order of their individual predictability. As Indicated above, only EOF Mode

28



1 enters the 700 mb model if selection criteria A is applied. If the mode retention crite-
rion is relaxed to just greater or equal (selection c-itera C), seven additional modes are
included in the set. These additional modes significantly improve dependent sample

classification skill (D-score - 1.87 versus 2.27 obtained using Mode 1 alone). Rated
on the D-score performance, independent sample classification skill is also higher (2.48
versus 2.55 for Mode I alone). Surprisingly, the I-score for the independent sample

classifications is slightly less (2.41 versus 2.40) for Mode I alone. This indicates that the
independent sample PR cases, included only in the I-score, must be well classified using
EOF Mode 1 alone, Both Euclidean models based on the R.00h sets demonstrate higher
skill in classifying the independent sample (D-score - 2.48-2.55 and I-score -

2.40-2.41) than those models based on the predictors common to all R-00h through R.96
sets (D-score - 2.56 - 2.73 and I-score = 2.52-2.60). Therefore, the conclusion from

these tests is that the EOF modes that best distinguish between the R-00h and straight-
mover cases also provide the best Euclidean model skill in identifying the correct 12-h
time-to-recurvature (R-00h through R-96h) or non-recurvature (PRNR) forecast group.

Based on the above conclusions, the search for an overall best set of predictors
for the Euclidean model is confined to those sets that provide the best distinction be-
tween the clean set R-00h and straight-mover cases. Since the problem is reduced to the
separation of only two categories of data, univariate hypothesis testing can be used to

identil' the modes with the greatest difference between R-00h and NR mean values.
Individually these modes provide the greatest separation between the R-00h and PRNR
groups in one-dimensional space. Therefore, some combinations of these modes also
should provide the best separation of the R-00h and PRNR classification groups in
multidimensional EOF space. An EOF mode is identified as having significantly differ-
ent R-00h and NR means if the p-value for a two sample t-test of the clean set R-00h
and NR coefficients for that EOF mode is less than or equal to 0.01. Since the p-value
is the smallest significance value at which the null hypothesis (that the R-00h and NR
means are equal) can be rejected, this test objectively identifies the modes with the
greatest separation between the R-00h and NR means (Fig. 12). As expected, the largest
difference between the mean EOF values for the R-00h and NR groups at 700 mb is for
Mode I. Ten other modes also have significant differences in mean EOF values ac.
cording to this test. Overall predictor sets are then cho':en from among these significant
modes using the stcpwise selection criteria described in Table 8.

Euclidean model skill in identifying recurvers and straight-movers is compared
in Fig. 13 for R-00h predictors selected from only the significant modes (top) and for the

29



2.04.

W : ,

> 00-- 4 -1 4,, * , * 4 4, 4 4 4 4 44 4 6-4~ 44

z #

W .... ..
- .... I44444444 4, 4 -4 . I 4. 444e I t

4.0

.V . . .. ..

".. ... GROUP4. ' 'I4l .. ..

o~o..e-! ! i.F . .. i ... .. . . . .
.... ;. ........ .. . . ° . .I

* 0 s 2 O 3 4 0 45

Fig 12 Sinfiac tesin 6?:: Euliea cla se essN

(odnae bae on a tw sapl West.

j._4 4 4 4 4 4t:,,4 4 4 4 4 4,:

Bot of ths esdmntae etrsil n dsigihn euv n

2 0 3

A. 44 44 4 44 4 44 4 44 4.44 44 4

44 44 4 4 4 4 4 4 4 ,4 4o,

,, , , * a 4 , ,

* .. °owl

-2.0 .. .. i-- ..... .. , - -i " .'i. .

4.4 4,,0 .445 4,40 45 44 3044 3 4 044 4.

C,.) :..., 4 444 ,4 444 444EOF4 444MODE44

Fig.12. Si 4i .44,,..,tin 4 or4444, lid4.4 lean, s444440h44 ersus4N
means 4old 4er 44albarsindi 4te 4te 7 4 4b444F4 od4s abscisa)4tht4 ha
signi4i4antl4 (p-valu 4 4.1 4iffernt4444 4n NI 44 ean44 o44. i4 ntvalue

(ordnt)bae na w apl*~et

-4enm.0 (ih)ofpeitrsslcefo mn the 45 EOF mdes (bottom)

B th J toe st e ostae Jtr sil i distinguishing,44 444 44~4 re 4 r4 s an

4.4 4 ,4, 4,, ,,, . . . . 44 4444 444 443444



Table 8. SIGNIFICANT MODE SELECTION CRITERIA FOR R-OOH PRE-
DICTOR SETS: Criteria as in Table 6, except applied only to those
modes identified by a two sample t-test as having significantly (p-value <
0.01) different R-00h and NR mean coefficient values.

SELECTION SELECTION MODES RETAINED IF NEN
CRITERIA ORDER SIT SKILL 1S E OR T BFORE LIMIT

F N1JERKICAL GE NON ( MIN)
a MIJMERICAL of NONE
H IUERICAL OT NONE
I PREDICTABILITY oE NONE I MIN)
J PREDICTABILITY OT NONE

straight-movers than the Mode I model in Fig. 11 (top), and less skill in tile R-36h
through R-96h periods for the optimum time-step model in Fig I 1 (bottom). One ad-
vantage of the model based on the significant modes is that the separate levels of skill
for recurvers and straight-movers a-e more consistent. By contrast, the nearly equal

combined skill for the numerical Et F mode model is gained by much better skill for
straight-movers than for recurvers.

The final step in the Euclidean distance model development is then to evaluate

the R-O0h predictor sets (F through J in Table 8) and identify the set and pressure level

with the highest time-to-recurvature classification skill. The classification matrix scores
for the independent and dependent sample classifications for the EOF modes selected

on the basis of hypothesis tests are presented in Table 9.
Even though the number of EOF modes is limited by the significance testing,

the selection criteria in Table 8 can lead to different Euclidean models. Except for the

700 nib NIode 1 model, the largest sets of predictors are selected at 700 mb (6-8 modes)
and 400 mb (4-8 modes). The 250 mb model using only two or five modes demonstrate

the best skill in identifying the 12-h time-to-recurvature groups in the dependent sample

(250 mb D-score - 1.81-1.83, 400 mb D-score - 1.81-1.92 and 700 nib D-score -
1.93-2.27). As noted previously for the Euclidean models in Table 7, the degradation in

the D-score for the independent samples typically is not linear. For the independent

sample, the skill for 250 mb (D-score - 2.43-2.45 and I-score - 2.40-2.45) and 700 mb
(D-score - 2.44-2.55 and I-score - 2.36-2.40) are nearly comparable. Less skill is
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Fig. 13. E~uclidean method classification skill using R-0011 sets of EOF
prcdictors. Classification skill for 700 nib as in Fig. 10, except for a R-0011 set
chiosen (selection criteria I in Table 8) from only thosc modes identified with s;gnif-
icantly different R-00h and NR clean set EOF mean coefficient values according to
a two sample t-test (top), and for a R-O0h set of a similar number (eight) of modes
sclcctcd (similar to critcria D in Table 6, except limited to eight vice ten predictors)
from all 45 EOF modes (bottom).
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Table 9. CLASSIFICATION SKILL FOR EUCLIDEAN MODELS AT THREE
PRESSURE LEVELS: Classification skill as in Table 7 for the live se-
lection criteria F through J (described in Table 8) of EOF mode predictors
at each pressure level with significantly different (two sample t-test p-value
< 0.01) clean set R-00h and NR mean EOF coefficient values.

1INDEPENWENTs DEPEIOENTs SELECTION
D-SCORE I-SCORE D-SCORE LEVEL CRITERIA NODES:

.--..-.----.--..--...---.-.- w-.....-.-.---------------------------------------
2.50 2.39 t.01 700 F 1 4 6 to 23 28
2.47 2.37 1.94 700 a 1 4 6 202 3 28 34
2.55 2.40 2.27 700 H 1
2.44 2.36 1.93 700 1 1 31 04 23 4 6 39
2.55 2.40 t.27 700 J 1

------------------------------------------------------------ -------- ------------
2.67 2.62 1.8 400 F 1 2 4 6 10 13
2.62 2.55 1.83 400 a 1 2 4 6 10 13 14 18
2.56 2.50 1.91 400 H 1 2 4 10
2.61 2.49 1.81 400 I 1 4 6 14 18 2
2.66 Z.55 1.92 400 J 1 4 6 2

2.45, 2.40 1.81 250 F 1 6
2.43 2.45 1.83 250 6 1 6 10 12 15
2.45 2.40 1.81 250 H 1 6
2.43 2.45 3.83 250 1 1 6 15 10 12
2.45 2.40 1.81 250 1 1 6

noted at 400 mb (D-score - 2.56-2.67 and I-score = 2.49-2.62). These sets of Euclidean
inodl predictors identified by significance testing tend to outperform the R-OOh sets se-
lectcd (criteria A through E in Table 6) from all 45 Modes 1-45 (not shown), unless by
chance they contain the same modes.

Judged on the independent sample classification matrix D-scores, the best

Euclidean distance model using the 250 mb vorticity includes EOF Modes 1, 6, 10, 12
and 15 (lines 12 and 14). Two advantages of this set are that only five predictor variables
are required and no EOF mode greater than 15 is included. By contrast, the best 700
mb set selected using criteria I has eight EOI modes, and includes higher order modes
such as 31, 34 and 39.

C. MODEL EVALUATION
The final Euclidean model at 250 mb is evaluated in terms of skill in classifying the

learning set of 782 cases (Table 10). The combined skill in correctly identifying recurvers

(75%) and straight-movers (6%) during the 72-h forecast period is 71%. This com-

pares with %R, %S and %T scores of 36, 64 and 54 for climatology (Table 5). Skill in
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identifying the time to recurvature is best near recurvature (R-00h 45%, R-12h -

21% and R-24h - 35%), and in the straight-track categories (R-96h - 38% and PRNR
= 35%). The higher skill at the ends of the forecast interval may be because the EOF

predictor modes were selected to achieve maximum separation of the R-O0h and the NR
mean EOF coefficients. In addition, there may be more variability in the vorticity fields
as rccurvature conditions develop (R-36h through R-84h).

Table 10. CLASSIFICATION MATRIX FOR FINAL EUCLIDEAN
MODEL: Classifications for observations in each 12-h verification cat-
egory and the percent correctly forecast by the 250 mb Euclidean model.
Percent of recurvers and straight-movers correctly predicted is also listed.

HIORES, 1 6 10 1t 15

CLASSIFICATION
VERIFY CORRECT 00 12 24 36 48 60 72 84 46 PRNR

-------------- -.. ---------- mm ...----------------
RECURVERi R-OCH 445?.) 25 9 11 4 1 1 1 0 1 2

(75%) R-12H (21X) 14 12 13 7 3 0 0 1 3 3
R-24H 135.) 4 9 19 7 3 3 1 0 5 4
R-3611 (17M 3 3 9 9 S 3 2 2 5 8
R-481 (22x) 1 2 3 9 10 a 3 a 7 7
R-60H 11.2) 1 0 2 7 2 5 7 1 10 6
R-7211 !113;.) 1 0 1 3 3 3 4 2 8 7

-------------------- m------- ------ -------------------

(68X) R-96H !387.) 0 0 0 1 4 2 5 0 9 3
PRtIR (35X) 1 5 16 24 28 23 22 17 120 135

------ ------ ---- mmm........m - -i............... lm ... ...

TOTAL 171X)

Bar charts (Fig. 14) of the percent or learning set cases in each 12-h verification
category that are classified into each time-to-recurvature group further confirm the rel-
atively poor ability of the Euclidean method for the R-84h through R-36h cases. The

intermediate 12-h categories not shown in Fig. 14 tend to have similar characteristics as
the 24-h bar charts. Times near recurvature and in the straight-track categories are
better classified and are also more likely to be classified within only one or two classi-
fication groups of the correct value. Cases in the intermediate forecast intervals (R-36h

through R-84h) are more likely to be misclassified, and the classification errors, in terms
of the number of 12-li categories between the forecast and the verification groups, are

greater.
The Euclidean model classifications presented above have higher skill than the

climatological forecasts of the learning set cases (Table 5). For example, the I- and
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R-scores of these Euclidean model 12-h forecasts are 2.34 and 2.10 versus 3.93 and 5.30

for the climatological forecasts, respectfully. However, the skill in identifying the time

to recurvature is less than desired for operational use. Because of the subjectivity in the

development of the Euclidean model, these results should not be used to make final

conclusions regarding the usefulness of an EOF representation of vorticity to forecast

tropical cyclone recurvature. No definitive method was found for selecting the optimum
set of EOF predictors in the Euclidean method. In a-ddition, each EOF mode that is

selected is given the same weighting, rather than assigning additional influence to the

modes that have the most significance. Furthermore, the use of a small clean set of

storms in this approach may not provide the most robust definition of the time-to-
recurvature classification groups. Nevertheless, the Euclidean method has easily under-

stood physical interpretation for using an EOF approach in identifying the vorticity

patterns associated with recurvature. The above results indicate the approximate levels

of skill that can be expected using these rredictors. However, a more objective approach
is needed to identify the optimum set of EOF predictors and to better exploit the relative

contributions of each mode in the recurvature forecast model.
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IV. DISCRIMINANT ANALYSIS APPROACH

The approach in this section is to use discriminant analysis techniques to better ex-
ploit the predictive skill of EOF coefficients of vorticity in forecasting tropical cyclone
recurvature. The UCLA Biomedical Computer Program BMDP7M (Dixon 1988) is used
to select the predictors and develop the discrimiriant analysis model. Although
discriminant analysis is a seemingly more objective approach than the Euclidean distance
method, the user must still make many choices both in its application and evaluation.
Searching for the optimum discriminant analysis model requires extensive testing and
should be conducted on a much larger sample population. Thus, the goal of this study
is to isolate a justifiable prediction model that indicates the potential of this method.

A. DISCRIMINANT ANALYSIS
Discriminant analysis is a statistical procedure for identifying the boundaries be-

tween groups in terms of the variable characteristics that distinguish one group from
another. It is used to classify cases into one of several groups and to examine the rela-
tive contributions of one or more variables in distinguishing between groups. The pro-

cedure was first introduced by Fisher (1936). The Fisher discriminant function has the
form

Z=aX, + a2X2 + ... + app, (4.1)

where Z is the discriminant score, A, X, ...X, are the values of each predictor and
a,, a,, ...a, arc coefficients that, if standardized by pooled standard deviations, give an
indication of the relative weight of each predictor. Discriminant functions are derived

such that the differences in discriminant scores or the relative distances between groups
are maxinized. The first function separates the members of the most distinguishable
group, K, from the remainder of the groups, K through 1.. The second discriminant
function separates the next most recognizable group, K2, from the remaining groups, K3

through ,. The number of functions required is one less than the total number of
groups, g. For each discriminant function, a cutoff score is found by taking the mean

of the acragc score for all cases in the group K, and the average score for all cases in
the remainder of the groups K,, through K. An individual case is classified into group
K if its discriniinant score Z, is greater than the cutolr score for the first discriminant
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function. If the discriminant score is less than the cutoff, a second discriminant score
is calculated using the second discriminant function. The second discriiclnant score is
compared to a second cutoff score to determine if the case is in group K2 or the re-

maining groups K3 through K,. The process continues until the case is classified.
A simpler adaptation of Fish,..'s classification procedure is used in statistical pack-

ages such as BMPD7M (Klecka 1980 and Dixon 1988). A classification function for
each group is derived as a linear combination of coefficients and predictors plus a con-
stant term. Predictors can be specified or they can be selected in a stepwise fashion
based on user-specified criteria. To determine group membership, each function is
evaluated using the predictor values of the test case to obtain a classification function
score for each group. The case is classified into the group for which it has the highest
classification score.

Classification function coefficients cannot be standardized and interpreted in the
same manner as discrininant function coefficients because there is a different function
for each group. However. discriminant functions can be computed from classification
functions to examine the relationship between predictors and group classification (Afifi
and Clark 1984). More commonly, statistics derived from canonical correlation analysis
techniques are used for this purpose. Canonical correlation analysis examines the linear
relationship between independent variables (predictors) and one or more sets of de-
pendent variables (groups). A linear combination of predictors called a canonical vari-
able or canonical discriininant function is formed that provides the best separation
among groups. Second and subsequent canonical discriminant functions are then
formed that are orthogonal and best separate the groups on the basis of associations not
used in the preceding canonical discriminant functions. The maximum number of
canonical discriniinant functions is equal to the number of groups minus one or the

number of predictor variables, whichever is less. Canonical discriminant functions can
also be used to classify. Final classifications will generally be identical to those obtained
with classification functions unless the group covariance matrices are not equal (Klecka
1980). A complete discussion of the application of canonical correlation statistics to
discriniinant analysis can be found in Klecka (1980) or Afifi and Clark (1984).

B. MODEL ISSUES
Several issues basic to the development of a discriminant analysis model are con-

sidered in this section. These issues include the selection of a dependent sample, how far
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in advance recurvature can be recognized, and the optimum number and composition
of the classification groups. Decisions in these areas are based on the ability of EOF
modes to predict recurvature as well as the classification goals of the forecast model.
These decisions, in combination with choices in the application of the discrininant
analysis method, will affect the level of classification skill that can be achieved with a
given set of predictors and predictands. Only 250 mb data are considered in this section,

because the data for this level provided the best discriminating power in the Euclidean
distance approach and in comparative tests (not shown) using discriminant analysis.

1. Dependent Sample Selection
Ideally, the sample population should be divided into dependent and independ-

ent subsets to permit validation of the discriminant analysis classification model. Clas-
sification functions may be fit well to a small dependent sample, but not be effective in
predicting an independent sample. Independent testing is thus necessary to better esti-

mate the ability to correctly predict the total population. Opinions vary onl the appro-
priate sizes of the subsets. However, the dependent subset must be sufficiently large to

ensure the stability of the classification function coefficients (Klecka 1980).
Several aspects of the discriminant analysis must be specified to test the effect

of the dependent subset options. As a first test, the classification groups will be the same
ten categories as in the Euclidean distance approach: recurvature time to recurvature
time minus 96 h in 12-h increments plus the non-recurvers. Although only straight-

mover storm data are used to describe the non-recurver group while developing the
discriminant analysis model, later tests will consider the observations more than 96-h
prior to recurvature as part of the straight-mover set. Classification functions are de-
rived from predictors selected in a stepwise fashion using a common F-to-enter value of
2.5. Although dependent subsets vary in size from 158 to 510 cases, this F-to-enter value
is significant at better than the 99th percentile for all subsets. Therefore, differences in
predictors selected in the discriminant analysis procedure can be mainly attributed to
statistical differences among the dependent subsets. The classification functions then
are used to classify both the dependent subset and the remaining independent cases in-
cluding pre-recurver cases. Classification matrix scores (described in Section II.C.2), are
computed for dependent and independent subset classifications separately and for the
entire sample classifications.

The purpobe of the intercoimparison of tile clasbification models derived from
13 diferen' dependent subsets of the 250 nib sample (Table 11) is to test the stability
of the classification functions. Whole-storm data from the same set of clean recurving
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and straight-moving storms in the Euclidean distance approach are used to form the first

dependent subset. Since EOF coefficients tend to progress in a similar manner as storms

approach recurvature, analyzing a subset comprised of entire storms may lend statistical

stability to the analysis. Two other whole-storm dependent subsets are formed from all

1979 to 1982 storms and from a random selection of two-thirds of the storms in the

sample population. To test the stability of these classification functions, ten dependent

subsets are formed by random selection of two-thirds of the cases in the sample

population.

Table 11. DEPENDENT SUBSET SELECTION: Stepwise discriminant analysis
of the times to recurvature for 13 dependent/independent subsets of 250
mb vorticity EOF .oefficients, which are indicated in the order they were
selected.

INDEPENDENT DEPENDENT CO!BINED DEPENDENT PREDICTORS
D-SCORE D-SCORE 1-SCORE SUBSET N 1EOF MODES):

2.86 1.99 2.59 CLEAN STORMS 18 I 19
2.3S 2.43 2.40 79-82 STORNS 510 1 2 3 5 36 6 45
2.62 1.99 2.17 RANDO1! STORMS 449 1 3 1 5 41 7 6

2.47 2.37 2.41 RANO)€l CASES 1 442 1 2 3 5 1s
2.27 2.20 2.23 RANDOlI CASES 2 457 1 2 3 5 24 6 41
2.32 2.08 2.15 RAIDO CASES 3 454 1 2 5 3 9 6 24
2.49 2.35 2.36 RANDOIJ CASES 4 443 1 2 3 5 6
2.50 2.06 2.25 RAIIDO1l CASES 5 427 1 S 2 3 6 24 23
2.55 2.48 2.so RANDOM CASES 6 435 1 3 2 5 45
2.38 2.24 2.31 RANDOM CASES 7 452 1 2 3 541 14
2.33 2.23 2.22 RADOM CASES 8 451 1 3 5 14
2.11 2.15 2.10 RA1ID0t CASES 9 426 1 2 5 7 24 4
2.12 2.11 2.00 RANDOM CASESZO 435 1 2 5 24 6 4

The results in Table 1 I reflect diflrenccs due to the independent sample com-

position as well as to the dependent sample composition. If the classification functions

were very stable, the various methods of subsampling in Table I I should have involved

the same predictors and have nearly equivalent dependent-independent verification
scores. In practice, predictors vary in number, modes and in the order selected. This

order is not necessarily indicative of their relative importance because a strong
discriminator may be selected late or not at all in a stepwise analysis if the intercorre-
lation with other variables reduces its unique contribution to the analysis. Mode I EOF
coefficient is the only predictor selected for all 13 dependent subsets tested. Modes 5, 2
and 3 are selected in 12, 11 and 10 of the subsets respectively. Since Mode 6 appears in
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eight of the subsets, it is potentially important in the discriminant analysis. Notice that

Mode 4 is selected only once, and that many higher order modes are selected after Mode

6.

Classification matrix scores also vary. Classification functions derived for the

clean storm sample in Table 11 demonstrate a high degree of skill in classifying the de-

pendent subset cases, but perform poorly in classifying independent subset cases. The

combined classification matrix score for this subset pair is much worse than for other

pairs, which indicates that the model is well-fitted to the dependent subset only and is

not accurate on an independent subset. This result may suggest a flaw in the use of the

clean storm set for the Euclidean method, where the excellent distinction in the depend-

ent set was not sustained in the remaining cases.

The independent test results can be overly optimistic if the subset contains a

disproportionate number of cases that are statistically easy to classify. For example, the

classification functions derived from 1979-1982 storm data demonstrate better skill in

classifying the independent subset (1983-1984) than the dependent subset. This unex-

pected result can be explained by examining the differences in the storms between the

two subsets. Patrick Harr (personal communication) found that western North Pacific

tropical cyclones during 1983 and 1984 had recurvature tracks that were similar to

climatology and were relatively easy to forecast in comparison to those in the previous

four years.

The 10 random subsets in Table II were generated to test whether the classi-

fication functions derived from dependent subset predictors would work equally well on

the independent subset. In other words, the randomly selected cases should have nearly

equal classification matrix scores. Only the two subset pairs formed from the ninth and

tenth randomly selected cases have nearly equal dependent and independent classifica-

tion matrix scores. Because the classification model derived from randomly selected

storms (line 3 in Table 11) outperforms those derived from randomly selected cases in

dependent subset classification, retaining data from entire storms in the dependent set

may aid in the derivation of skillful classification functions. However, the marked de-

gradation in the independent D-score for the random storm independent subset indicates

that the differences in skill are also a function of which subset contains more storms that

are inherently easier to classify.

The conclusion from Table II is that classification functions derived from ran-

domly selected subsaniples of this data set are not statistically stable. To improve the

stability, the entire sample population will later be used to both derive and test

41



classification functions. In lieu of independent testing, jackknifing is employed to assess

the degradation in classification skill expected in the total population. In this procedure,

N sets of classification functions are derived by successively withholding one case from

the sample of N cases. Each of the N sets of classification functions is tested on the one

case that was withheld, and the summation of these verifications is an indication of the

likely accuracy of a single discriminant analysis based on the entire sample. Although

jackknifed results are computed for each discriminant analysis, they will be presented
only in the selection and testing of an optimal classification model for this sample of

storms (Sections IV.D and IV.E.l).

2. Limits of discrimination for time to recurvature

A basic question is the limitation of the discriminant analysis to separate the

EOF coefficients associated with storms more than 96 h before recurvature from the

straight-mover coefficients. To illustrate this limitation, univariate statistics for EOF

Mode I coefficients are compared. Mode I not only accounts for the largest percent of

the variance in the synoptic vorticity patterns, but also demonstrates the greatest pre-

dictive capability. It is the only predictor consistently selected and is selected first in all

subset analyses (Table 11).

Distributions of the Mode I means, 95% confidence intervals and the standard

deviations for times R-00h through R-96h in 12-h increments, plus the pre-recurvers

(PR) and non-recurvers (NR) in the entire 250 nib data set are presented in Fig. 15.

Univariate statistics for a combined PR anId NR group are also plotted. Group statistics

can be interpreted in terms of the physical processes they represent. Recall that the

pattern for Mode 1 (Fig. 2) is representative of the vorticity pattern associated with a

storm in the monsoon trough and that the magnitude of the coefficient is indicative of

the importance of the pattern (or the opposite pattern if it is negative). Group means
vary almost linearly from large positive values for non-recurver and pre-rccuarver situ-

ations to large negative values at recurvature. Variances are large and the considerable

overlap among groups indicates the variability in vorticity patterns that lead to recur-

vature. These group means are most separated in the 36 h preceding recurvature.

However, variances are also largest during these times. These large differenccs are as-

sociated with rapid changes in the storm-centered vorticity patterns accompanying

storms moving around the subtropical ridge. In contrast, vorticity patterns change little

for storms moving along the monsoon trough well prior to recurvature.

The challenge for the discriminant analysis (or the Euclidean method) is to dis-

tinguish those EOF modes that best indicate the time to recurvature. With the similar
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group means for NR, PR, R-96h and R-84h times, it is unlikely that the discriminant

analysis could consistently separate these groups from Mode 1 only. The NR group

mean is slightly smaller than the group means for pre-recurvers and the R-96h cases.

Combining non-recurver and pre-recurver subsamples provides a smoother and more

physically plausible transition among groups. That is, the R-96h and R-84h samples
might also have been added to the new PR and NR group. However, since the official

JTWC forecast period is 72 h, retaining the R-96h and R-84h as separate classification
categories provides a forecast 'buffer'. The R-96h and R-84h predictions provide an
alert of a trend toward recurvature, but not within the current 72-h forecast period.
Statistically, these intermediate groups decrease the likelihood that non-recurvature sit-
uations will be misclassified into the next similar group, and thus prompt the fbrecaster

to erroneously predict recurvature within the 72-h forecast period.
Based on the above considerations, the PR sample is combined with the

straight-mover sample to define the PRNR classification group. The merits of other
data combinations are better assessed in terms of gains in classifiability versus loss of

time resolution. These issues are explored in the next section.

N R -- -- --
PR NR X............ o ............ x

P R -x - -, - -,
R-96 - X I --- 4N II X

R-84 - '
CL R-72 -X
o R-60 -
- R-48 -
R-36
R-24 - I- _X

R-12 - I I X
R-OO x " X

-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12

EOF MODE 1 COEFFICIENT

Fig, 15. Univariate statistics for 250 nib vorticity EOF Mode 1. Mean (open
circle), 950% confidence interval (solid bar) and standard deviation (x) for individual
groups (solid line) and for the combined PR and NR group data (dotted line).
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3. Number and composition of classification groups

The analysis goal is to fully utilize the time resolution of the data set to predict
the time to recurvature in 12-h increments. However, the EOF coefficients for the

vorticity fields may not have enough discriminating power to reliably discern between
synoptic situations with this time resolution. Perhaps these predictors would be suited

to classify some combination of groups with decreased time resolution. Thus, combi.

nations of groups are tested to increase the percent of correct classifications and still

retain some of the time resolution desired by the forecaster.

The univariate distributions of EOF Mode 1 coefficient for each 12-h group in
Fig. 15 indicate that this predictor alone cannot adequately discriminate among neigh-

boring groups. Other EOF modes may provide additional dimensions that distinguish

differences among the 12-h groups. The effect of multiple predictors and the effect of

combining groups on classification skill is best examined by discriminant analyses and

canonical correlation statistics.

To evaluate the trade-off between time resolution and forecast accuracy, com-

binations of time groups are tested that are potentially easier to classify and are still

useful to the forecaster. Stepwise discriminant analysis is performed using F-to-enter
values significant at the 0.01 level for the sample size. Analysis models with two, three

and ten classification groups are compared in Tables 12, 13 and 14. Verifications are

identified by their 12-h data categories so that the loss of time resolution in the classi-

fication groups can be appreciated. Pre-recurver data are combined with non-recurver

data for both classifications and verifications.

The minimum useful distinction for the forecaster is between recurving and

straight-moving storms. The recurver group is defined by R-00h through R-72h sam-

ples, and the straight-moving group is defined by R-84h through pre-recurver and

straight-mover data. Thus, a successful prediction would identify either a recurving or

straight track during the current 72-h forecast period. The two-group discriminant

analysis (Table 12) correctly identifies R-00h to R-72h cases as recurvers with 76 % ac-

curacy. The verifications within each 12-h category do not have the same skill. The

percent correctly classified decreases from 95% for cases at recurvatu:e time to 44% at

R-7211. This is because times closer to recurvature are more distinct from the straight

classification group and are, therefore, more readily recognized as recurvers. Non-

recurvature is correctly predicted for 81% of the R-84h through PRNR cases. The

combined sample skill is 79%, but this total is dominated by skill in prediction of
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straight track motion because of the larger number of non-recurver cases (445) than
recurver cases (337) in the sample population.

Table 12. TWO-GROUP DISCRIMINANT ANALYSIS MODEL: Percent of
recurvers and straight-movers in the sample population correctly pre-
dicted by the two-group discriminant analysis model with the EOF modes
indicated. Number of classifications as recurvers or straight-movers are
provided with 12-h time resolution to indicate at what times this analysis
model succeeds or fails.

HODES: 1 3 5 36 41 24 14 38 43 6 39 27

CLASSIFICATION
VERIFY RECURVER STRAIGT

RECURVER: R-OOl 52 3
(76.) R-1ZH 53 3

R-24H 47 a
R-3611 37 15
R-4,8H 31 15
R-60H 21 20
R-72H 14 18

STRAIGHT: R-84H 9 21
(81?) R-96H 5 19

PRNR 72 319

TOTAL (79%)

A more useful distinction to the forecaster would be separation into high, me-
dium and low likelihood of recurvature (Table 13). The high group is defined as the
R-00h to R-24h cases, the medium group as all R-3611 to R-72H cases, and tile low
group as the R-84h through PRNR cases. Classification functions correctly classify the
sample into high, medium or low categories with 75%, 56% and 73% accuracy, respec-
tively. While this three-group classification scheme increases the time resolution in the
recurvature prediction, the ability to correctly classify track types during the 72-h fore-
cast period (77%) is less than that in the two-group model (79%). In addition, skill in
identifying straight-moving situations is degraded. The addition of another recurver
group can be viewed as increasing the number of correct classification categories for
recurver cases and increasing the number of" incorrect classification categories for non-
recurvers. The intermediate group also increases the discriminant analysis model
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separation between the 12-h data categories in the high recurver group and the

non-recurver categories.

Table 13. THREE-GROUP DISCRIMINANT ANALYSIS MODEL: Percent of
recurvers and straight-movers correctly predicted by a three-group
discriminant analysis model. Format is similar to Table 12.

HOOESi 1 3 2 4 5 14 41 9 24 38 12 36 15 37

CLASSIFICATION
VERIFY HIGH "ED LON

RECURVER: HIGH R-0O01 47 7 1
(821.) 475.) P-1211 45 7 4

R-24H 32 18 5

tED R-36H 15 28 9
16W) R-8H 4 28 14

R-6011 2 24 15
R-72H 3 16 13

STRAIGIIT: t LO4 R-84H 2 11 17
(73.) 473,Y) R-96H 0 6 18

PRNR 13 89 289

TOTAL 177Z)

Discriminant analysis into the ten 12-h classification groups R-00h to R-96h
plus PRNR (Table 14) maximizes the time resolution of the predictions for this data set,
but at the expense of classification accuracy. The ability to distinguish between rccurver

and straight-track situations is only 72% as compared to the 79% and 77% accuracy

achieved by the two-group (Table 12) and the three-group (Table 13) forecast models,

respectively. Also, the ability to discern high, medium and low likelihood of recurvature
is 2-6% less than for the three-group model. The improvement in recurver classification
skill relative to skill in forecasting straight track situations between the two-group model

and three-group model is again noted. The ten-group model correctly classifies recurver

and straight situations with 79% and 67% accuracy, respectively. The greater difference

in recurver versus straigbt classification skill for the two-group model (6%) than for the

three-group model (2%) may be due to the increase in the ratio of the number of

recurver to straight groups from 2.0 (two-group model) to 2.3 (three-group model). As
expected, classification accuracy within each 12-h verification category is considerably

less than for the broader high-medium-low or recurver-straight categories. Higher skill
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exists in correctly classifying cases at the extremes of the forecast continuum, i.e., at re-

curvature (60%) and PRNR (48%). Skill in identifying cases in the intermediate cate-

gories ranges from 15% to 38%.

Table 14. TEN-GROUP DISCRIMINANT ANALYSIS MODEL: Percent of
recurvers and straight-movers correctly predicted by a ten-group
discriminant analysis model. Format is analogous to Tables 12 and 13.

NODES: 1 2 3 5 4 6 24 45 9 14 41

CLASSIFICATION
VERIFY CORRECT 00 12 2.4 36 48 60 72 84 96 PRPIR

-------------------------------------------------------------------
RECURVER: HIGH R-OO (607) 33 8 4 3 1 1 0 4 1 0
(797) (73Y.) R-12H 1347) 19 19 7 1 3 0 1 4 0 2

R-24H (26y) 5 12 14 7 4 1 4 4 2 2

------------------------------------------------------ ftHED R-36H (19y) 1 6 8 10 7 2 3 6 3 6
153X) R-481 15) 2 2 5 9 7 4 3 28 4

R-60H (207) 1 1 1 6 5 8 7 1 6 5
R-72H (38%) 1 1 0 2 2 4 12 4 2 4

STRAIGHTt LO R-84H (17%) 0 0 1 2 1 3 7 5 4 7
167) (67,) R-96H 125X) 0 0 0 2 1 4 1 56 5

PRNR (48e) 2 3 15 24 25 25 32 31 47 187
---------------------------------- ---------------------------------
TOTAL 172X)

The distributions of group centroids in discriminant space (Figs. 16, 17 and 18)

provide a graphic representation of the ability of the two-, three-, and ten-group

discriminant analysis models to separate, and thus classify, the cases belonging to each
group. Individual cases and group centroids may be located in discriminant space using
canonical correlation analysis techniques discussed in Section V.A. An x- and y-
coordinate for each case is found by evaluating the first and second canonical
discriininant functions, respectively, using the predictor values for the case. Group

centroids are then located at the mean of the x-coordinates and the mean of the y-
coordinates for all cases in the classification group. The mean cot-dinates of the cases
in each 12-h verification category, hereafter referred to as time centroids, are also com-
puted for the two. and three-group models (Figs. 16 and 17). Because these time
centroids are equivalent to the group centroids for the ten-group model, they provide a
means of comparing the relative separation achieved by each of the three discriminant

analysis models.
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As the 12-h time centroids are in sequential order, they reflect the time trends

in the patterns accompanying recurvature. Notice that the relative separations between

consecutive time centroids are generally similar along the first canonical discriminant

function for all three models (Figs. 16, 17 and 18). These relative distances between

group centroids indicate how well the model is able to distinguish between groups. The

proximity of the 12-h time centroids to their parent group centroid gives an indication

of the classification accuracy for each 12-h verification category or combination of 12-h

categories.
Since the number of canonical discriminant functions computed is one less than

the number of groups, a one-dimensional plot is presented for the two-group model (Fig.

16). The time centroids of the R-84h through PRNR verification categories that com-

prise the straight-track group are all closer to the straight-group centroid than to the

recurver-group centroid. In addition, the R-72h time centroid (which belongs in the

recurver group) is closer to the straight-group centroid. While the actual Jistribution

of individual cases determines the model skill reported in Table 12, the relative positions

of the time and group centroids in Fig. 16 illustrate why the model is better at correctly

classifying straight track cases (81%) than it is at correctly identifying recurver cases

(76%). The fitted distributions of the straight-mover and recurver cases confirm these

observations. The cases in the straight group are more closely distributed about their

group centroid than are the cases in the recurver group. The amount of overlap between

the two distributions indicates the number of cases that may be misclassified by the

two-group model. As previously noted, canonical discriminant functions can be used to

classifI, by computing a canonical discriminant function score (not shown) to divide the

cases into straight-movers and recurvers. Such a dividing line in Fig. 16 would give an

exact representation of the number of cases that would be misclassified into each group

by the first canonical discriminant function.

In the multiple-group discriminant analysis models, classification skill is a

function of how well an individual group is separated from its neighboring groups and

the actual distribution of its individual members. The three-group and ten-group model

centroids (Figs. 17 and 18) are spatially separated in a curvilinear fashion that reflects a

consistent time trend in the group centroids. These separation patterns explain why the

classification skill is highest for the groups on either end of the time spectrum. Consider

a normal distribution of sample cases for each group in an ellipsoidal pattern centered

around each group centrold. For a middle group with neighbors on either side, classi-

fication skill is a function of its separation from neighboring groups and the distribution
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Fig. 16. Canonical discrininant function centroids for the two-group
model. Group centroids are located at the mean of all cases in each group (vertical
lines). Time centroids for PRNR through R-OOh in 12-h intervals are indicated by
(0) for categories belonging to the straight group and (X) for categories belonging
to the recurver group. Fitted distributions of the straight-movers and recurvers
along the first canonical discriininant function axis illustrate the overlap of the dis-
tributions.

of the individual cases belonging to the group. Since the end groups have no neighbor-
ing group on one side, sample cases on the no-neighbor side of the distribution will be
classified into the end group. For both the three- and ten-group models (Tables 13 and
14), classification skill is notably higher in the end groups. Note that for the three-group

model, the skill is higher for the high likelihood of recurvature group, than the low like-
lihood of recurvature group because the high group is better separated from the inter-

mediate medium group than the low group. Dilerences in group classification skill for
the ten-group model are more difficult to interpret. For example, the R.00h to R-36h
group centroids are better separated in Fig. 18 than those for R-48h to R-96h. In gen-
eral, better separated groups in Fig. 18 demonstrate better classification skill. One ex-

ception is the R-72h group, which has higher skill than the more separated groups and
may reflect the elfect of the distribution of the sample cases on classification skill.

Ultimately, the number and composition of classification groups must be a
trade-off between the forecaster's need to specify a precise time of recurvature versus the
diminishing skill as more precision is attempted. To illustrate this trade-off in forecast
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Fig. 17. Canonical discritninant function centroids for the three-group
model. The first two canonical discriminant functions form the axes along which
group centroids (solid markers) and 12-h time centroids (open markers) are plotted
for high (circles), medium (triangles) and low (squares) likelihood of recurvature
classification groups.
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Fig. 18. Canonical discriminant function centroids fcr the ten-group model. The
first two canonical discriminant Functions formi the axes along which group centroids
(solid circles) are plotted for R-O01h through l'RNR classification groups.



accuracy and time resolution, a ten-group model will be pursued using the entire 250

mb sample population. The ten-group model is chosen to fully test the predictive ca-

pability of EOF representation of the synoptic vorticity fields to predict recurvature at
the resolution of the data set.

C. APPLICATION
Discriminant analysis packages include options that permit flexibility in the selection

of predictors and in the method of computing the classification functions. The optimal

application of these program features is, of course, a function of the goals of the analy-

sis. In this section, several discriniinant analysis options available in BMDP7M are

considered. These features include prior probabilities, contrasts and three different

methods for entering predictors into the analysis. An in depth discussion of all the fea-

tures available in computer packages and a comparison of BMDP7M with other

discriminant analysis packages can be found in Tabachnick and Fidell (19S9).

1. Adjusting for prior probabilities and the cost of misclassification

The prior probability is the probability that an individual case selected for a

group is actually a member of that group. Unless otherwise specified, cases are assumed

to have an equal probability of belonging to any g'oup, and the classification functions

are derived with equal probabilities of misclassification. Specifying group probabilities

in the analysis procedure changes the ratio of the probability of errors by adjusting the
discriniinant function scores, or equivalently by adjusting the constant terms in the

classification functions to achieve a ratio of errors consistent with the designated prior

probabilities. Prior probabilities have the greatest effect on classification skill when

groups are relatively indistinct from one anothcr.

In this study, prior probabilities could be assigned on the basis of the group

sizes in the sample or according to the climatological probability that a synoptic situ-

ation belongs to each group. For example, prior probabilities based on the relative size

of each of the ten 12-h groups would range from 50% for the PRNR group to 3-7% for

the remaining groups. Thus, a discriminant analysis model including these prior proba-

bilities would only classify a case into one of the groups with a low prior probability if

there was very strong evidence that it was not in the PRNR group. Prior probabilities

could al6o be used to achieve some other desired ratio of errors that would be better

suited to the needs of the forecaster. That is, if the cost of misclassification of a certain

group was high, assigning a high prior probability to that group would decrease the
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likelihood that a case belonging to that group would be misclassified into another group

with a lower prior probability.

Assigning prior probabilities may be advantageous in future applications of

discriminant analysis to fine tune the recurvature forecast model using EOF predictors.

Since such adjustments to the analysis may not give a true indication of the

discriminatory power of the EOF coefficients, prior probabilities will not be specified in

this study.

2. Contrasts to direct stepwise selection of predictors

In discriminant analysis, a contrast is a series of coefficients, one for each clas-

sification group, that modifies the stepwise selection of predictors. The coefficient for

each group indicates the relative amount of differentiation desired between groups.

Coefficients must be specified such that the sum of the coefficients for all groups equals

zero. Contrasts do not affect the computation of the classification functions as do

posterior probabilities. Rather, contrasts affect the computation of the F-to-enter and

F-to-remove statistics. Therefore, they alter the stepwise selection of predictors such

that only those predictors that maximize the differences between groups are selected in

the analysis. Thus, contrasts can also be used to determine which predictors are im-

portant in distinguishing between specific pairs of groups. In developing a ten-group

discriminant analysis model, this is not practical because of the large number of pairwise

tests to be considered. Furthermore, it may not be a sound method of selecting a final

set of predictors because the predictors that are useful in distinguishing between some

pairs may adversely affect discrimination between other pairs.

Several contrasts are tested in Table 15. Because F-to-enter compatations are

different for each analysis, stepwise selection of EOF modes is stopped after selection

of the ten predictors. No contrasts are specified in the first analysis in Table 15 to allow

comparison with the different contrasts. The second analysis is designed to maximize

the difference between the recurvature cases and the straight-track cases. The third

maximizes distinction among all recurver situations (less than 72 h) and among all

straight situations equally. The fourth and fifth analyses are designed to maximize the

recurvature and non-recurvature situations and also to enhance the distinction among

recurvature groups.

Maximizing the difference between R-00h and PRNR groups (line 2 in Table

15) improves the overall classification skill (I-score), but skill in distinguishing time to

recurvature (R-score) is less than using no contrasts. The contrast designed to increase

the dilcrences equally among -ill recurver and straight groups (line 3) improves
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Table 15. COMPARISON OF MODELS USING CONTRASTS: Effect of vari-
ous contrasts on predictor selection and discriminant analysis model
performance. Predictor modes are in the order selected.

I-SCORE R-SCORE XR Y.S Xr CONTRASTS tOO THRU PRUR) PREDICTOR HOOESs

2.1138 1.8665 77 69 72 NONE I 1 5 4 6 24 45 9 14
2.0959 1.9228 78 69 73 -1,O#OPpOPP #OO01 I 2 3 5 6 7 45 14 5 24
2.1867 1.7033 83 67 74 -31-3,-3,-3,-3,-3,-S,77 1 3 36 2 38 14 8 21 7 34
1.0320 1.7715 82 67 73 -S,-7,-6,-S,-4,-3,-2,o1,O,36 1 3 5 41 24 14 1 9 6 36
2.2097 2.6647 85 64 73 "7,-6,-S,-4o3--2g999 1 3 2 38 36 14 8 41 34 7

discrimination among times to recurvature (R-score), but the overall classification skill

(1-score) is less than without contrasts (line 1). Contrasts designed with the additional

goal of improving the ability of the model to correctly forecast the time to recurvature

(lines 4 and 5) result in improvement in the time accuracy of recurver forecasts (R-score)

and in the ability to recognize recurver situations (%R = 82 and 85, respectively).
lowever, this is at the expense of weaker discrimination of straight-movers (%S - 67

and 64, respectively).

Except for EOF Mode 1, the modes selected and the order of selection vary for
the various contrasts tested in Table 15. Higher mode predictors are selected earlier in

those analysis models with contrasts that are designed to increase differences among

multiple groups (lines 3-5) than in the analysis model using a simpler contrast between

only two classification groups (line 2).

In summary, specifications of different contrasts as in Table 15 do lead to im-

proved recurvature-related scores or straight-mover scores relative to a discriminant

analysis model without contrasts. However, both scores are not improved simultale-
ously. Due to the complexities of a ten-group model, the changes in predictors and

forecast skill produced by these contrasts are difficult to interpret. As in the specifica-

tion of prior probabilities, this analysis feature may be better utilized to fine tune an

EOF forecast model than to demonstrate the usefulness of EOF's in identifying recur-
vature situations. Since the forecast skill without the use of contrasts (line 1) is com-
parable to with contrasts (lines 2 through 5), the contrasts feature will not be used
further in this study.
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3. Direct, hierarchical and stepwise selection of predictors

Discriminant analysis model performance depends primarily on the
discriminatory power of the predictor variables. When many potential predictors are

available, such as the first 45 EOF coefficients for synoptic vorticity considered in this

study, the question is which combination of predictors will produce the best distinction

among classification groups and in what order they should enter the analysis.

Three options of selecting and entering predictors in the discriminant analysis

are the direct, hierarchical and stepwise methods. In the direct method, the predictors

are selected by the user and all are entered into the analysis in one step. In the hierar-

chical method, the user specifies both the predictors and the order they enter the analy-

sis. The stepwise method relies on statistical criteria specified by the user to select the

predictors and determine their order of entry.

The direct and hierarchical discriminant analysis methods are advantageous be-
cause they allow the user to control the predictors in the analysis. However, they require

prior knowledge of the relative discriminatory value of each potential predictor. Except

for EOF Mode 1, which is shown in Section II.A.2 to represent a straight-mover situ-

ation with the storm in the monsoon trough or a recurvature situation depending upon

the value of the coefficient, little can be inferred about the potential discriminatory
power of the increasingly complex patterns for the EOF coefficients. Therefore, a step-

wise discriminant analysis will be used to select the most significant predictors.

D. FINAL MODEL DEVELOPMENT

The final model to predict time to recurvature with 12-h resolution is developed with

a stepwise analysis of the entire sample population. Potential predictors are selected

from the first 45 EOF coefficients representing the 250 mb synoptic vorticity fields. No

prior probabilities and no contrasts are specified.

The final question is the criteria to limit the number of predictors selected in the

stcpwise analysis. Mathematically, the maximum number of predictors is equal to the

total number of cases in the sample minus two (Klecka 1980). Although all 45 EOF
coefficients could be used to develop a discriminant analysis model for these data, the

objective is to obtain the best classification skill with the fewest possible predictors.

Such a parsimonious solution is sought by performing ten stepwise discriminant analyses

(Table 16). The first analysis is restricted to one mode, the second is restricted To two

modes, and so on until ten modes are selected in the tenth analysis model. Low F-to-
enter (1.0) and F-to-remove (0.996) values are specified in the analysis procedure to
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ensure the selection of up to ten predictors. However, the F-to-remove values (not
shown) for the modes selected in the analyses in Table 16 indicate that each of the
selected modes is significant to the separation of recurver groups at the 0.01 level or
better.

Table 16. STEPWISE SELECTION OF ONE TO TEN MODES: Classification
skill in terms of I-score, R-score and percent correctly classified recurver
(R-00h to R-72h) or straight (R-84h to PRNR) for ten discriminant an-
alyses that are limited to one to ten modes successively. Jackknifed re-
sults (discussed in Section IV.B.I) reflect the skill expected with
independent testing.

MODEL RESULTSt JACKKNIFED RESULTSt

I-SCORE R-SCORE XR XS T I-SCORE R-SCORE X.R XS XT STEPS HOOES:

2.32 2.24 77 66 71 2.32 2.24 77 66 71 1 1
2.29 2.23 74 69 71 2.30 2.25 74 69 71 2 1 2
2.19 2.01 78 70 73 2.22 2.06 77 70 73 3 1 2 3
2.22 2.02 75 69 72 2.27 2.07 75 69 71 4 1 2 3 5
2.24 1,95 77 67 71 2.30 2.04 76 67 71 5 1 2 3 54
2.24 1.91 77 64 70 2.30 1.98 76 64 69 6 1 2 3 5 4 6

2.18 1.88 80 66 72 2.26 2.00 79 65 71 7 1 2 3 5 4 6 24

2.26 1.95 77 6671 2.36 2.09 76 64 69 8 1 2 3 5 4 62445
2.17 1.89 78 67 72 2.2S 2.00 77 66 71 9 1 2 3 5 4 6 24 4S 9
2.11 1.87 77 69 72 2.23 2.08 75 68 71 10 1 2 3 5 4 6 24 45 9 14

An optimal forecast model is selected from Table 16 by examining gains in classi-
fication skill as the number of modes in the analysis is increased from one to ten. As

expected, the jackknifid results in columns six through ten are worse than the learning

model results in columns one through five. The general trend is toward improved skill
(smaller penalty scores and higher percent correct classifications) as the number of
modes increases from one to ten. The seven-mode discriminant analysis model best

meets the analysis objectives because the addition of Mode 24 as the seventh mode im-
proves all measures of classificatioi skill relative to the skill for the models with six or

fewer modes. However, the addition of Mode 45 as the eighth mode results in degra-

dation in all measures of skill. The addition of Mode 9 in the nine-mode model produces
only a slight improvement over the eight-mode analysis and only results in skill scores
nearly equal to those for the seven-mode analysis. Some improvement is again noted
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by the addition of a tenth predictor, but the %R (77) is less than the %R (80) for the

seven-mode model. The seven-mode discriminant analysis model is also preferable be-
cause predominantly low-numbered EOF modes are used in the analysis. Since these

lower modes represent large-scale patterns and account for a larger fraction of the vari-
ance in the synoptic vorticity fields than the higher modes, the coefficients for the lower

mode EOF's should be better discriminators of recurvature than those for higher modes.
Furthermore, the higher mode predictors may represent noise in the synoptic field, yet
be statistically useful in predicting recurvature in this data set. Based on these consid-
erations, the seven-mode model in Table 16 is chosen to demonstrate the potential of

discriminant analysis of the EOF representation of synoptic vorticity fields to forecast

time to recurvature with 12-h resolution.

E. FINAL MODEL EVALUATION

The discriininant analysis model derived in Section IV.D from the stepwise selection
of seven EOF coefficients of 250 mb vorticity is indicative of the forecast skill obtainable

with this analysis method and these data. In this section, the final discriminant analysis

model is evaluated and compared to the Euclidean distance model derived in Section

lll.B. Since both the discriminant analysis and Euclidean distance models were derived
from the 250 mb vorticity data, the comparison is between the two analysis methods.

I. Forecast skill

The classification matrix for the final discriminant analysis model is presented
in Table 17. The model correctly identifies synoptic situations that will lead to recur-
vature within the next 72-h forecast period with 80% accuracy. Skill for straight-track

situations is 66%. Thus, there is a greater chance of a false alarm of recurvature than
a missed recurvature prediction. The combined skill in predicting track type is 72%.
Group classification skill is best near recurvature (R-00h = 60%, R-12h = 29%, and

R-24h = 29%) and in the straight-track categories (R-96h - 29% and PRNR - 47%).
Skill in the intermediate categories only ranges from 7-22%. This result was anticipated
based on initial testing with the ten-group discriminant analysis model in Section IV.B.3

(Table 14). The ten-group model in Section IV.B.3 is the eleven-mode model that would

have been included in Table 16 if the stepwise selection of one to ten modes had been
carried one step further. It was derived using the same analysis options from the step.

wise selection of the same seven modes in the final discriminant analysis model plus
Modes 45, 9, 14 and 41. Canonical discriminant functions for the final discriminant

analysis modul (not shown) arc nearly identical to those in Fig. 18 for the ten-group
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model and show relatively little separation among the centroids for the intermediate
R-86h through R-36h groups.

Table 17. CLASSIFICATION MATRIX FOR THE TEN-GROUP
(SEVEN-MODE) MODEL: Classifications for data in each 12-h verifi-
cation category and the percent correctly forecast by the ten-group
(seven-mode) discriminant analysis model. Percent of recurvers and
straight-movers correctly predicted is also listed.

MODESs 1 2 3 5 4 6 24

CLASSIFICATION
VERIFY CORRECT 00 12 24 36 48 60 72 84 96 PRNR

-------- --------------------------------------------------------------------
RECURVERt R-OOH 1600.) 33 12 2 2 1 0 1 3 0 1

(80) R-1211 129:) 17 16 10 4 3 0 1 1 2 2
R-24H 129X) 5 13 16 4 6 3 0 3 2 3
R-3611 412.) 2 8 9 6 7 3 2 6 4 5
R-48H (13?) 1 3 6 7 6 7 3 1 7 5
R-60H (22X;) 2 0 1 9 3 9 6 2 3 6
R-72H (119x) 0 2 1 2 3 5 6 4 3 6

STRAIGHTt R-84H (077.) 0 0 2 1 2 6 2 2 6 9

(66;1) R-9611 (29Y.) 0 0 0 3 1 5 0 3 7 5
PRNR (47Y.) 2 5 16 22 31 32 21 2S 53 184

-------- --------------------------------------------------------------------
TOTAL (72Y)

Bar charts (Fig. 19) of the percent of cases in each 12-h verification category

that are classified into each group further illustrate the relatively poor ability of the

model to pinpoint the time to recurvature among the R-84h through R-36h cases. The

intermediate 12-h categories not shown in Fig. 19 tend to have characteristics interme-
diate to the 24-h bar charts. Cases belonging to the better separated groups (R-00h,

R-24h, R-96h, and PRNR in Fig. 19) are mure frequently correctly classified or classified
within one to two 12-h groups of the correct classification group than those belonging

to the less separated groups (R-48h and R-72h in Fig. 19). The R-36h (not shown), and

to a lesser extent the R-48h through R-72h cases, are classified into all groups with
nearly the same frequency, which reflects little ability to correctly distinguish the time

to recurvature for these synoptic situations. Notice that only 28% (30%) of the R-48h

(R-36h) cases were misclassified into straight-track groups.

2. Additional model output to assist the forecaster
The discriminant analysis model classifies an individual case into the group that

has the highest classification function score (discussed in Section IV.A). Discriminant
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Fig. 19. Classification bar charts at 24-h intervals for the ten-group (seven-mode)
model. Percent of N cases (ordinate) verifying as R.00h (top left), R-24h (top
right), R-48h (mniddle left), R-72h (middle right), R-96h (bottom left), and PRNR
(bottom right) that are classified into each group R-00h through PRNR (abscissa).
Shaded bars indicate the percent in the correctly classified category.
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analysis provides additional information that may assist the forecaster in subjectively

assessing the validity of a model forecast. These outputs are the Mahalanobis distances

and the posterior probabilities.

The Mahalanobis distance (DI) is the squared distance of an individual case to

each group centroid. Since D2 has the same properties as the chi-squared (X2) statistic

with degrees of freedom (d) equal to the number of predictors, Mahalanobis distances

are measured in chi-square units.

Tht posterior probability is the probability that an individual case belongs to a

group, which is calculated from D1 by assuming the cases in each group are clustered

around the centroid in a multivariate normal distribution and that every case belongs to

one of the groups. Posterior probabilities are more useful to the forecaster because a

set of nearly equal (small) percentage values for the time categories indicates the likely

uncertainty in time to recurvature. Because posterior probabilites are used subjectively

in this study, their contribution to forecast skill will not be evaluated in this section.

3. Comparison of discriminant analysis and Euclidean distance models

Classification skill for the final ten-group discriminant analysis model and the

Euclidean distance model is compared in Table 18. Although the learning data sets dif-

fer, the skill scores reflect the ability of each model to forecast all 782 cases. As ex-

pected, the discriniinant analysis model (line 1) outperforms the Euclidean distance

model in all areas except %S (discriminant analysis = 66, Euclidean distance = 6S).

Because the learning set for the Euclidean diFtance model is comprised of only 161 cases,

the results for this model (line 3) are predominantly independent test results. Thus, a

more equitable comparison is between the jackknifed results for the discriminant analysis

(line 2) and the Euclidean distance model. In this comparison, the discrininant analysis

model still outperforms the Euclidean distance model in all areas except %S (jackknifed

discriminant analysis = 65). The conclusion that discriminant analysis is a better

method for exploiting the predictive capability of the EOF coefficients is based on rela-

tive performance of the two forecast models. The Euclidean distance method is an in-

tuitive, and thus more subjective, method of forecasting tropical cyclone recurvature

using EOF predictors of synoptic vorticity. Discriminant analysis is a statistically-based,

and thus more objective, method for classifying the time to recurvature. Both analyses

demonstrate skill compared to the climatological model (line 4) in which predictions are

based on the relative historical frequency of occurrence of each 12-h classification group

in stiaight and recurving best track data.
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Table 18. COMPARISON OF MODEL FORECAST SKILL: Classification skill
in terms of I-score, R-scorc and percent correctly classified recurver
(R-00h to R-72h) or straight (R-84h to PRNR) for the final ten-group
discriminant analysis model and the Euclidean distance model based on
250 nib vorticity EOF coefficients and climatological forecasts based on
1979-1984 best track data. Discriminant analysis jackknifed results (dis-
cussed in Section IVB.I) reflect the skill expected with independent test-
ing.

ANALYSIS METHOD LEARNING SET I-SCORE R-SCORE XR VS XT MODESs

DISCRIhthUA*T ANALYSIS ENTIRE SAMPLE 2.18 1.88 80 66 72 1 2 3 5 4 6 24
JACKKNIFED RESULTS 2.26 2.00 79 65 71

------------------------------------------------------------------ ------
EUCLIDEAN DISTAICE CLEAN SET 2.34 2.10 76 68 71 1 6 10 12 15
CLIMATOLOGY 1979-1984 3.93 6.30 37 63 54

F. VIOLATION OF ASSUMPTIONS
Although discrininant analysis is a robust procedure, the analysis results may be

adversely affected by the violation of the requirements or assumptions to apply thc
method:
1, two or more distinct groups must be specified;

2. at least two cases must be present in each group;
3. the number of discriminating variables must be less than the total number of cases

minus two;
4., the discriminating variables must be measured such that the differences between

successive values are always the same;
5. the discriminating variables must not be a linear combination of the other dis-

criminating variables;
6. the variance-covariance matrices must be approximately equal for each group; and

7. the group distributions must be multivariate normal.

Effects of violating the seven discriminant analyr. ' assumptions are explained in detail
in Klecka (1980), who notes that the best guide for a prediction model is the percentage
of correct classifications. If the percentage is high, any violations *.ere not harmful. If
the percentage is low, it could be due to the violation of the assumptions or weak dis-
criminating variables.
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The first four assumptions are met by the data in this study. The BMDP7M pro-

gram incorporates tolerance criteria in the stepwise selection of discriminating variables
that protect against violations of multicollinearity (fifth assumption). Homogeneity of

the variance-covariance matrices (sixth assumption) is more important in classification
than in stdtistical inference. Cases tend to be over-classified into more disperse groups.
Homogeneity of the variance-covariance matrices is tested by examination of the group
standard deviations for each predictor and by inspection of the scatter plots of the first
two canonical function scores for the cases in each group. The ten group standard de-
viations have no gross discrepancies in predictor variance. The largest differences in the
variances are observed in Mode 1, and range from 39.2 for the R-00h group tc 15.4 for
the R-96h group. Tht canonical discriminant function scatter plots for each group (not
shown) have roughly equal dispersion, which indicates that the variance-covariance
matrices are approximately homogeneous.

Testing the multivariate normality (seventh assumption) of all linear combinations
of the sample predictors is not currently feasible (Tabachnick and Fidell 1989). How-
ever, discriminant analysis is robust to violations of normality if they are caused by
skewness rather than outliers. To test for outliers, the Mahalanobis distance from each

group centroid to its member cases is evaluated as y2 with degrees of fireedom equal to
the number of predictors. Only three of the 782 cases in the sample population (Table
19) exceed the critical X: = 24.32 at a = 0.Y01 with seven df. These three outliers arc from
recurving storms at R-00h or R-12h and two of them are from the Euclidean distance
clean set storms (TY Vernon and ST Forrest). Eliminating the three multivariate
outliers from the discriminant analysis (not shown) does not appreciably change the
classification accuracy for the ten 12-h groups, regardless of whether the same seven
predictors are hierarchically entered into the analysis or seven new predictors are selected
in a stepwise fashion. However, the exclusion of these three cases from the sample
population causes subtle changes in the F-to-enter statistics for each predictor. For ex-
ample, the first seven modes selected in the stepwise analysis are Modes 1, 2, 3, 5, 4, 45,
and 6 instead of Modes 1, 2, 3, 5, 4, 6, and 24. Such multivariate outliers should be
eliminated from the analysis to develop an operational forecast model. Since one goal
of this study is to compare the classification skill for the discriminant analysis model
with the Euclidean distance model that was derived using two of these cases, the
mujti:'ar-.te outliers are not excludcd from the filial dis4rininant anaiysis model.

Kachigan (1982) questioned whether discriminant analysis is an appropriate analysis
technique for the dichotomization of a continuous criterion variable, such as time to
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Table 19. MULTIVARIATE OUTLIERS: Cases for which the Mahalanobis dis-
tance to the group centroid exceeds the critical X1 value of 24.3 for the
final discriminant analysis model.

STORM1 STORIM VERIFICATION HODEL NAHALANOIS DISTACE TO
NO/YR 1N4IE CATEGORY FORECAST VERIFICATION GROUP CENTROID

1679 TY LOLA R-OOH R-1211 25.?
2280 TY VERNON R-itH R-O01 27.9
1183 ST FORREST R-OO R-0011 41.1

recurvature in this study. A!though the recurvature and non-recurvature samples rep-

resent distinct sets, the synoptic situations that lead to recurvature do evolve contin-
uously in time and thus may not be easily distinguished. Regression analysis may be a
more powerful and efficient anaiysis procedure since the regression method would fully
utilize the time resolution cf the observed data and the time trends in the EOF predictors

to model the time to recurvature as a continuous variable. The ten-group discriminant
analysis model also makes full use of the time resolution of the data, but without any
data transformations that might be required to meet the linearity assumptions of the

regression model. Thus, discriminant analysis provides an efficient first look at the

ability of EOF coefficients of synoptic vorticity to predict time to recurvature.
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V. FORECAST EXAMPLES

Operational application of a discriminant analysis model using EOF predictors to
forecast tropical cyclone recurvature is relatively simple. Only a personal computer or
programmable calculator would be required to interpolate the analyzed wind fields onto
the storm-centered grid, compute the vorticity at the gridpoints, calculate the EOF
eigenva.lues corresponding to the vorticity field and to solve for the classification func-
tion scores and posterior probabilities for each of the model's classification groups. In
this section, forecast examples from the learning set are presented. The use of posterior

probabilities to assess the validity of a forecast is also discussed.

A. TEST CASES
The final discriminant analysis model forecasts are presented for the 1984 examples

(Fig. I) of a recurver (ST Vanessa), a straight-mover (TY Agnes) and an odd-mover (ST
Bill). The forecast skill for these three storms is typical of other storms in the data set.

1. Recurver
The final discritninant analysis model fo'ecasts of the time to recurvature for

ST Vanessa are shown in Fig. 20. ST Vanessa tracked along the southern side of the
subtropical ridge, which had redeveloped in the wake of TY Tad, for nearly five days
before recurving (ATCR 1984). Only the two discriminant analysis model forecasts of

R-72h for times greater than 96 h before recurvature are clearly erroneous. All forecasts
within 72 h of recurvature are correct predictions of a recurver-track type. Although
only three of the seven recurver-track type forecasts are correct (R-00h, R-48h and

R-721), the forecasts all progress in a sequential manner toward recurvature (R-72h,
R-72h. R-48h, R-48h, R-36h, R-36h, R-00h). The 12-h forecast sequences for most of
the recurving storms in the sample have a similar progression. Although a prediction
may be repeated at successive 12-h forecasts and one or more sequential classification
groups may be skipped between successive forecasts, the predictions tend corrcctly to-
ward recurvature. Such a consistent trend toward recurvature in successive operational

forecasts would add confidence to the individual 12-h recurving-track forecasts.

2. Straight-mover
The final discriniinant analysis model forecasts for TY Agnes arc presented in

Fig. 21. TY Agnes tracked west-northwest under the influence of an easterly steering

flow along the south side of a broad mid- to low-level subtropical ridge that extended
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Fig. 20. Time-to-recurvature forecasts for recurving ST Vanessa. Discriminant
analysis model forecasts (top number) and verifLing time (bottom) to recurvature (h)
at the JTWC best track 00 and 12 UTC positions during 22.31 October 1984 (dots).
The letters P'R indicate a pre-recurvature situation of more than 96 h prior to re-
curvature.

from the dateline west to the coast of Vietnam (ATCR 1984). Seven of the nine fore-

casts correctly predicted straight-track motion during the 72-h forecast period. Two
forecasts of recurvature in 60 h are mispredictions of the track type. These two R-60h
forecasts are 48 and 60 h (72 and 84 h) befbre landfall in Vietnam and subsequent

dissipation.

3. Odd-mover

The forecast model in this study was not designed to distinguish odd-mover b#..

havior such as loops and stairstep tracks. Therefore, forecasts based on the vorticity

fields preceding or during erratic motion cannot provide accurate information on the

storm's track. i lowever, classifications may indicate storm motion if the next segment

of the track fits either of the model's straight or recurver track categories.

The time-to-recurvature forecasts for ST Bill are shown in Fig. 22. Although

ST Bill was expected to recurve similar to ST Vanessa, the complex environmcntal

steering associated with an interaction with TY Clara caused Bill to track southeastward

before dissipating east of the Philippines (ATCR 1984). In the first 48 h after the
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Fig. 21. Time-to-recurvature forecasts for TY Agnes. Discriminant analysis
model forecasts of time to recurvature (h) at the JTWC best track 00 and 12 UTC
positions (dots) during 1-8 November 1984. Definition as a straight-moving storm
requires a minimum of 72 h after the forecast time to ensure verification as a
straight-mover. PRNR refers to the forecast model classification group for recurv-
ing cases more than 96 h prior to recurvature time and straight-moving cases.

tropical cyclone formation alert (TCFA), Bill tracked slowly in a 25 n mi (46 kin)

diameter cyclonic loop. Although the next track segment is straight, forecasts during

Bill's first loop predict recurvature in 60 h (first forecast) to 72 h (second through fourth

forecasts). Once the erratic looping is completed, the model correctly identifies the

straight-track segment in the next eight forecasts. As Bill began to recurve around the

western end of the subtropical ridge, the midlatitude trough passed to the north and

weakened the ridge, which slowed Bill's progress. The intense low-level circulation in the

Philippine Sea associated with TY Clara, and the strengthening northeas: monsoon now,

forced Bill to the southeast in an anticyclonic loop, and Bill rapidly weakened,

This set of model forecasts is unusual in that there is a sudden transition from

straight-track predictions (R-96h) to the recurver predictions (R-24h, R-12h and R-Oh).

The model forec:asts for rcciurving storms tend to transition more appropriately through

successive recurvature classification categories. The model classifies the vorticity fields

during the anticyclonic loop as recurvature (R-Oh) situations. Since the forecast model
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is unable to predict looping or southeast motion, synoptic situations after Bill' .. uld-be

recurvature time (fifth R-00h forecast) are classified into the most similar of the ten
straight plus recurver groups. While these recurvature forecasts correctly predict the

recurvature-like motion as Bill moves northwest aid then north and northeast, there is

no indication in the model forecasts that the Bill will subsequently loop toward the
southeast. The last two forecasts of R-12h and R-36h are based on the synoptic situ-

ation associated with Bill's southeast motion and precede a small cyclonic loop. These
last forecasts indicate that the situation has changed, but continue erroneously to predict

recurvature.
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Fig. 22. Time-to-recurvature forecasts for ST Bill. Discriminant analysis modelforecasts of time to rcurvature (h) are indicated at the JTWC best track 00 and 12
UTC positions (dots) during 8-21 November 1984.

B. POSTERIOR PROBABILITIES AS AN AID IN THlE FORECAST DECISION
The posterior probability is the probability that an individual cast belongs to a

group. The probabilities for all groups sum to one. The posterior probability (P) that

0 *€*



case i belongs to group j is computed from the Mahalanobis Distance (D2) or directly

from the classification function score (S) for the ith case for thejth group:

exp(SY) (5.1)

zexp(Sk)
kml

Posterior probabilities can be used subjectively by the forecaster to assess the likeli-

hood that a classification is correct. If the posterior probability for one classification

group is high relative to the probabilities for the remaining groups, the forecaster can

have more confidence that the model forecast is correct. If the posterior probability for

the classification group is low and nearly equal to the probabilities for one or more of

the other groups, then the forecaster should have less confidence in the prediction.

Posterior probabilities can also be useful when a classification is repeated at successive

12-h forecasts to indicate whether the forecast is more or less likely to be correct.

The posterior probability would be more useful if some cutoff value existed that

would indicate the forecast was likely to be correct. To exanine whether this is the case

for the discriminant analysis model, posterior probabilities for all cases classified into

each 12-h forecast category are plotted as a function of the actual verification categories

(Fig. 23). The ranges of the posterior probabilities vary with the forecast classification
group. Probabilities are highest for the R-00h and PRNR forecasts and are lowest for

the R-36h through R-84h forecasts. Unfortunately, the posterior probabilities are not

distinctly higher for the correct predictions than for the incorrect predictions. Posterior

probabilities for correct classifications are most distinct from incorrect classifications

when PRNR is forecast. Therefore, posterior probabilities are most useful in evaluating

PRNR forecasts.

Posterior probabilities for recurving storm ST Abby are presented in Table 20. ST
Abby continually tracked to the right of the 1983 JTWC official forecasts (ATCR 1983).

Although the JTWC forecast aids and numerical progs had consistently indicated a

west-northwest track for Abby, the subtropical ridge over Japan never intensified as

anticipated and Abby recurved to the northeast. Sandgathe (1987) cites ST Abby as an

unusual example of a cyclone-subtropical ridge interaction, defined as a "through-the-

ridge" case, in which the cyclone unexpectedly moves through an apparently

well-established subtropical ridge.
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Fig. 23. Posterior probabilities of classifications into time-to-recurvature
groups. Posterior probabilities (ordinate) for the N cases forecast as R-OOh (top
lcft), R-24h (top right), R-48h (middle left), R-72h (middle right), R-96h (bottom
left), and PRNR (bottom right) plotted in the verifying groups R-00h through
PRNR (abscissa). Vertical lines indicate the correct classifications.
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On 5 August 1983, the discriminant analysis model correctly forecasts Abby's
straight-track motion during the next 72 h and the posterior probability (35%) is rela-
tively high. Referring to Fig. 23, only one case in the learning set had a PRNR forecast
with a posterior probability greater than 35% and then recurved within the 72-h forecast
period (R-12h). Therefore, the 35% posterior probability indicates that it is highly likely
that the PRNR forecast is correct. Similarly, the second PRNR forecast has a relatively

high posterior probability for the PRNR classification, which indicates the reliability of
the PRNR forecast. Although the third PRNR forecast correctly predicts straight-track
motion during the next 72-h period, the posterior probability that it belongs to that
group is only 21%. Based on the learning set results in Fig. 23, a forecaster would have
relatively less confidence in this PRNR forecast (line 3) than in the previous two PRNR
forecasts (lines I and 2). However, the model continues to predict Abby as a straight-
mover (or at least 84 h to recurvature) throughout the remainder of the recurvature pe-
riod. The small posterior probability values indicate that the erroneous straight-track
PRNR predictions are not likely to be correct.

Table 20. DISCRIMINANT ANALYSIS MODEL FORECASTS rOR ST
ABBY: Nionth-day-tinies from 5-9 August 1983 are indicated in the
DTG column. Verification times to recurvature are given in the VERF
column. The prediction of the most likely classification group (time to
recurvature in hours or PRNR) is based on the highest classification
function score and ,orresponds to the highest posterior probabilities
given in the coluns labeled 00 through PRNR.

HODEL CLASSIFICATION GROU

OTC VERF PRED 00 12 24 36 48 60 72 864 96 PRUR

080500 PRHR PRNR 2 4 4 5 6 8 10 13 13 35
080512 96 PRa 5 6 5 6 6 8 9 11 11 34
080600 84 PRItR 14 10 6 S 6 9 10 10 9 21
080612 72 PRUl 10 6 5 4 6 12 14 13 13 16
080700 60 PRI 7 4 5 5 7 14 111 15
080712 468 PR1R 2 2 4 5 9 14 14 17 14 19
080800 36 84 1 2 5 a 9 10 i 19 15 10
080812 24 PUR 0 2 S 7 7 8 112 1 17 1
080900 2 864 0 1 4 6 6 A 11 14 18 23
080912 00 84 1 2 4 6 7 12 14 22 is is
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Vi. SUMMARY AND CONCLUSIONS

The feasibility of using an empirical orthogonal function (EOF) representation to

identify the synoptic vorticity associated with tropical cyclone recurvature is examined.

Recurvature, which is defined as a change in storm heading from west to east of 000

N, is evaluated from the Joint Typhoon Warning Center best track positions. In this

EOF approach, the vorticity field is represented by the sum of 45 orthogonal

eigenvectors that represent spatial patterns. Time-dependent coefficients are derived

that indicate the importance of each pattern in the map series. The EOF coefficients are

derived by Gunzelman (1990) from the 12-hourly U.S. Navy Global Band Analyses at

700, 400 and 250 mb for 1979-1984 western North Pacific tropical cyclones. The first

45 modes account for 73-78% of the variance in tie relative vorticity fields.

The classification goals are two-fold: first, to identify tropical cyclone motion during

the 72-h forecast period as either straight or recurving; and second, to forecast the time

to recurvature with 12-h accuracy. The time series of the first and second EOF coeffi-

cients for recurving storms vary in a systematic manner as the tropical cyclone moves

around the subtropical ridge. In contrast, the coefficients for straight-moving storms

tend to cluster about different mean EOF 1-2 values. Taking this Euclidean distance

approach, additional EOF predictors are identified that best separate recurvers and

straight-movers in multidimensional EOF space. Classification of an individual case is

then into the closest 12-h time-to-recurvature group or straight-mover category as

measured in multidimensional EOF space. The Euclidean approach provides physical

insight into the classification problem and demonstrates skill relative to climatological

forecasts. However, there is no objective method of determining the optimum set of

predictors or weighting the individual predictors in the model according to their signif-

icance is separating among the classification groups.

A more objective discriminant analysis technique is employed to more fully exploit

the predictive capabilities of these EOF coefficients. In this approach, the entire set of

782 cases from 97 recurving and straight-moving tropical cyclones is used to both derive

and test the recurvature model classifications. A final 250 mb discriminant analysis

model is useful (72% correct) in identifying recurving (80%) and straight (66%) motion

during the 72-h forecast period. Skill in distinguishing among the 12-h time to recurva-

ture groups (R-00h through R-96h) plus the combined straight-mover and recurving
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storm cases more than 96 h prior to recurvature (PRNR) is only 60, 29, 29, 12, 13, 22,

19, 7, 29, and 47%, respectively. While these results represent improvement over the

Euclidean model forecasts, the skill in identifying the time to recurvature is less than

desired for operational use. The relatively poor skill in classifying cases in the interme-

diate time to recurvature categories is attributed to the high variability among the

synoptic fields that precede recurvature. Better skill (79% correct) in identifying storm

motion during the 72-h forecast period can be achieved if classifications are only into

two groups (recurver versus straight), rather than into the nine 12-h time-to-recurvat:.re

groups plus PRNR. Thus, the number and composition of the classification groups

must be a trade-off between the forecaster's need to specify a precise time of recurvature
versus the diminishing skill as more time precision is attempted in the forecast model.

The EOF coefficients for 250 mb vorticity provide the best time-to-recurvatre

forecast skill. The coefficients for this pressure level are statistically the most distinct

among the time-to-recurvature groups and the 250 nib cigenvectors represent more var-

iance in the vorticity fields than those for the other two pressure levels. In addition, the

magnitude of the vorticity of the subtropical ridge increases with height and is greatest

at 250 nib. The 700 nib coellicients provide the next best model skill. Although the

cigenvectors fbr this pressure level account for less variance than those for 400 mb, the

relative vorticity gradients between the cyclone and the subtropical ridge are greatest at

700 nib. Since more reliable data are available over open ocean areas at the upper levels

from pilot reports and satellite-derived winds, the individual 12-hourly cases should be

better defined and better forecast at 250 nib.

Since no classification groups aic included for odd-mover motion, such as loops and

stairsteps, these types of tracks are forecast into the most similar tinie-to-recurvature

group. For example, an anticyclonic loop might be classified as recurvature. Perhaps

the EOF representation of synoptic vorticity will not be able to identify the precise type

of odd-mover motion resulting from the smaller and faster time scale forcing mech-

anisms such as multiple storm interactions. Thus, distinction between a storm that will

merely step or loop to the northeast and one that will continue recurvature motion to

the northeast is needed.

The results from these feasibility tests indicate the usefulness of an EOF represen-

tation of synoptic vorticity at one pressure level. Better skill may be achieved if the EOF

coeilicicnts for more than one pressure level are ubed, or if this EOF representation of
the synoptic fields is combined with other factors such as persistence and climatology.

Other analysis methods, such as multiple linear regression, that better exploit the time
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trends in continuous data of this type should also be tested. As more data become

available, independent testing and stratification of the sample will be possible. One

problem with this initial investigation is that it is assumed that only one set of vorticity

patterns leads to recurvature. In P , several distinct paths may be defined by the

time-dependent coefficients in multidimensional space. Such differences could be due to

different forcing mechanisms associated with recurvature, or more simply due to the

differences in the large-scale vorticity patterns with latitude. While these preliminary

results in pinpointing the precise (12-h) time to recurvature are somewhat discouraging,

other statistical techniques may prove more successful.
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