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Preface

Depot location and routing of delivery vehicles is
a2 longstanding application of Operations Research
techniques. Although the field is replete with optimizing
algorithms which theoretically solve such problems, a more
practical approach is dictated by the limitations of
computing power. Conseguentiy, alternate methodoclogies are
developed which are .easible by modern computer standards,
but which sacrifice solution accuracy by various amounts.
This study applies several of the theoretical and practical
algorithms with the goal of improving the Defense Courier
Service aerial network.

During the course of the research I discovered that
there were many experts in the field who were more than
wiliing to offer their assistance. Major Mike Ackley and
Capt Keith Ware of the MAC Command Analysis Group (HQ MAC
XPY) were two such individuals. Their knowledge and insights
of the DCS problem were key to the success of my effort.

In addition to the fine support 1 received from HQ
MAC, as well as DCS itself, I am indebted to my advisor, Dr
Yupo Chan. His ability to listen, counsel, and direct (when
necessary) makes him an outstanding educator and researcher.

Throughout the research, my sanity was maintained
with the loving support of my wife, Donna, and daughters,
Kelly and Stacy. I hope that I may again provide them with

the time that was formerly consumed by this study.




The current war in the Persian Gulf puts all
defense oriented research in perspective. It is for the
American soldier that all our efforts must be directed, and
I hope this research ultimately makes contribution to that
end. I salute all those currently defending our freedom.

Steven F. Baker
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Abstract

This study extends work done by the Military
Rirlift Command's Analysis Group on reducing the operating
costs of the Defense Courier Service aerial network. The
study's primary focus is to minimize those costs by varying
the number and location of servicing depots, and the routes
flown from those depots.

The theoretical algorithm used in the methodology
1s an expansion of Laporte's (1986) formulation of the
multipie depot multiple travelling salesmen facility-
location problem. Multiple servicing fregquency is addressed
by clustering co-located demands with Kulkarnifs (1985)
subtour breaking constraint. Vehicle range is considered by
redressing a shortfall of the subtour breaking constraint,
which was noted by Brodie (1988). The formulation is used as
a validation of a system wide solution heuristic, since
exact solution is beyond the range of current computing.

The solution heuristic is a combination of the
minimum spanning forest (Prim and Dijkstra) and the Clark-
Wright method. The spanning forest is used for depot
location and partitioning, while the Clarke-Wright computes
the routes flown from the depots to their assigned service
points. The heuristic is suboptimal by 3.3% on average in

six validation runs, with no run greater than 15.25% worse
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than optimal. The results indicate several depots may be

closed without large increase of system mileage,.
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LOCATION AND ROUTING OF
THE DEFENSE COURIER SERVICE

AERIAL NETWORK

Chapter I. Introduction and Background

The Defense Courier Service (DCS) is responsible
for the transportation of classified material between
Department of Defense installations. Some of this material
has a low level of classification and may be carried by the
US Postal Service. Some material is quite large and must be
hauled by either cargo aircraft or truck. Much of the
material, however, is small package size. Fregquently, it is
also too sensitive for ordinary postal procedure. The DCS
has organized a secure network for the transportation of
this material.

According to LTC Hughes of the HQ MAC command
analysis group, the current DCS distribution network
includes over 200 CONUS locations, most of which are
serviced by aircraft. LTC Hughes further stated that the
network is similar to a multiple "hub and spoke" system used
by the nation's commercial airlines. The sys.em also extends
to overseas locations. Because classified material is

generated at all the sites, the system is two-way. Most of




the individual sites are served by contracted small
aircraft, which transport the material to a regional hub.
The hubs serve as a secure transshipment center to United
Parcel Service (UPS) aircraft, which move the accumulated
cargo to another regional hub near the material's
destination. The link is completed when another contracted
general aviation contract aircraft delivers the material to
its final destination. The major exceptions to this system
are two east coast regional centers which are served by

truck from the Washington DC area, a regional center (14).

Specific Problem

Over the years, the aerial portion of the DCS route
structure has grown incrementally to 12 regional hubs
serving 169 additional sites (1). Such a piecemeal growth
pattern has resulted in a less than optimal route structur._,
though many of the current policies are sound. The DCS is
satisfied with the current system of the UPS trunk carrier
serving secure transshipment hubs which, in turn, supply the
sites through general aviation aircraft. The current
security, frequency of service, and capacity of the system
components are adequate and need not be changed. Given these
constraints, analysis of the current routes flown and hub
locations will certainly indicate potential for overall cost

reduction. This research explores the possibility of system

9]




cost reduction by reducing the number of depots, altering
depot locations, and changing the routes flown.

The costs associated with the aerial DCS network
can be broken into 3 categories: 1) trunk cost fees paid to
UPS; 2) payroll and other overhead associated with
maintaining the regional hubs; and 3) contract costs to the
general aviation carriers. Each of these three cost
categories plays a major role in the route structure.

UPS charges the government a flat rate of 45 cents
per pound of freight carried within its route system (18).
This cost implies that there is no incentive in locating
hubs close to each other, as they are separated by identical
cost, regardless of the intervening distance. It also forces
all hubs to be situated at locations served by UPS.
Regarding the latter point, the DCS has stipulated that only
military installations should be considered as potential
hubs for security reasons (19). This constraint considerably
reduces the number of candidate depots when combined with
the UPS servicing requirement. The special government flat
rate also reduces the study's scope, since trunking costs
will not vary much regardless of number and location of
depots.

Total hub operating costs vary with the number of
hubs in the system, and the traffic through each hub.
Clearly, adding more hubs will reduce the mileage flown by

the small aircraft, but may adversely affect the economies




of scale associated with fewer but larger hub operations.
Currently, there are 12 hubs, with yearly operating budgets
(excluding contract costs) averaging $718,000 (24). Though
current depot operating costs are explored in Chapter II1I,
varied regional and relocation expenses make the estimation
of hub costs associated with a future network beyond the
scope of this research.

The general aviation contractors are paid by the
mile flown. The mileage rate is a function of many
variables, including number of stops, total mileage, and
number of bids received, as well as many other factors. A
seperate contract is negotiated each year for each depot,
and the current agreements average between 1 and 2 dollars
per mile (22). According to Capt Smith of DCS, security
requirements generally necessitate that aircraft make only
day-long missions. Furthermore, trip lengths are also
limited by the FAA's 14 hour cap on the crew's duty day, and
a ten flying hour maximum per crew, per day. Since the cargo
is small package size, aircraft capacity is not a problem.
Sites are serviced with established frequencies, generally
either once or twice a week. These frequencies, though not
beyond alteration, are currently satisfactory and are not to
be varied in this study (19).

Since the UPS trunking cost is not largely affected
by depot location and routing, and the depot costs involve

significant regional factors which are best studied by DCS




itself, the primary focus of this research is the
minimization of milage flown for a giver. number of depots.
The methodology focuses on optimizing depot location and
routing for a parametrically varied number of depots.
Though the primary effort of the research is
focused on the scope described above, there are several
additional considerations which will be addressed as
warranted. According to Maj Perry of DCS, three of the hubs
also serve as debarkation points for overseas cargo,
effectively disqualifying them for potential relocation.
Additionally, there are three priority routes which are
flown from the Baltimore-Washington hub despite the higher
costs associated with not providing service from the nearest
depot. Finally, Maj Perry explained that there is no firm
policy on the required servicing freguency of current
depots, should they be relocated. He states that it is
reasonable to use the freguency associated with the most

served site within a given depot's route system (18).

Approach to the Problem

The research inveolves several phases. In order to
determine an improved route structure, the current system
must be examined in detail. Once familiarity with the
structure is gained, mathematical formulation of the problem
is used to gain further insight into practical solution

methodologies, as well as validate thte chosen technigque.




Since DCS routing is a large problem, exact solution via
mathematical programming is not possible using curren:
algorithms and computers. Consequently, the problem must
then be reformulated using heuristics, which will
approximate an optimal system wide solution. Development of
the the mathematical formulation as well as the appropriate
heuristics is addressed in Chapters I1I and III.

System familiarity and data gathering are the
central components to an understanding of the current DCS
route structure. The HQ MAC analysis group has provided a
large "head start" on data gathering, since they have
already done considerable research on the problem. In
addition to compiling the 181 locations and service
frequencies, the analysis shop has completed a two stage
series of recommendations to DCS (14). According to HQ MAC's
report, the first stage involved reducing the current yearly
system mileage of 1,550,395 without changing depots, depot
assignments, or frequency of service. Their recommendation
rearranged routes so as to fly only 1,454,609 miles per
year, a 6.2% savings (13). The second stage recommended
altering the depot assignments of some of the service sites.
These changes resulted in a yearly mileage total of
1,400,070, cr an additional 3.7% savings (13). Therefore,
this research represents a third stage of MAC's analysis, in
which the number of depots and their locations are varied

in addition to the routing.




Summary

Although the DCS routing problem can basically be
summarized as a multiple depot, multiple tour facility
location and routing problem, it represents several
challenges from a theoretical as well as a practical
stdndpoint. Foremost among these is the problem size, which
preéludes exact solution by existing algorithms. This
research focuses on tayloring existing mathmatical
algorithms to the specific problem, as well as developing a

heuristic methodology for full scale solution.




Chapter 1I1. Literature Review

Scope

The DCS zerial routing structure is a large network
which schedules depot based aircraft to numerous demand
locations, with subsequent return to base. This description
squarely places the DCS network into the travelling salesman
problem (TSP) category of Operations Research methodologies.
Consequently, TSP literature is at the heart of the research
background required for this study. While methodologies for
solving TSP's are widespread, several specific formulations
are applicable to the DCS aerial network. Those addressed in
this review include: 1) the Vehicle Routing Problem (VRP);
2) modifications to the VRP; 3) the multiple depot multiple
TSP; 4) TSP coefficient determination; and 5) heuristic
solution techniques. These methodologies show great promise

for adaptation to the DCS network.

The Vehicle Routing Problem

The Travelling Salesman Problem seeks the shortest
route which connects a group of points (nodes) that begins
and ends at the same pcint. One of the most comprehensive
formulations of the TSP is the Vehicle Routing Problem as
described by Chan and Rowell (6:13-14). The follo.ing list
includes the notation used in this and subsequent

formulations:




I= set of nodes

i= departing node

j= arriving node

H= vehicle fleet

h= individual vehicle

d= arc distance

x= 0,1 arc use indicator
= set of incident nodes

N= set of eminent nodes
= amount of demand at a node
= vehicle capacity
= dwell time at a node
= tour time limit

J= any node subset < 1

The formal VRP problem statement is:

min X = = dijxhij (1)
iel jel heH

The first two constraints insure each point (except the
depot) is served by only one vehicle:

{lHI if j=1
s.t. = = xby. = 1 if 322,3..,]1| (2)
iel heH
b {jHj if i=1
S T 1 if i=2,3.., 1| (3)
jel heH

The third constraint insures flow conservation:

= xh, - = x%; =0 V¥ h, ¥ pel (4)

: : P]
1EMp jENp

The fourth and fifth constraints restrict vehicle payload
and range, respectively:

= fi = Xhij < Vy Vv h (5)
iel Jjel

= thi = xhij + = = dhij xhij < Uy VYh (6)
iel jel iel jel

Constraints six and seven insure the fleet size is not
exceeded:

= xf; <1 v h (7)
jEMl
%Py <1 V h (8)
iENl

0




Finally, tours which do not originate at the depot
{subtours) are prohibited:

= = = %521 v (9)
heH j¢J ied
Though this formulation is very comprehensive, it is also
somewhat cumbersome, and may be "streamlined" in many

applications.

Vehicle Routing Problem Modifications

Merrill offers a considerably simplified multiple
vehicle TSP (which eliminates the superscripts that
delineate individual vehicles). The formulation combines the
fleet size equations (7) and (8) into equations (2) and (3)
above, and eliminates the paylcad and range considerations
(16:2-3). Merrill also offers a much simpler subtour
breaking method, which works for up to seven nodes.
Merrill's primary effort, however, was focused on
probabilistic demands within the network, a complication
which the DCS network does not exhibit.

In an expanded discussion of the TSP, Chan and
Rowell offer numerous ways of subtour breaking for problems
with many nodes (€6:12-15). Perhaps the most promising
involves the use of "nodal potential"™ variables &. These
real variables force all connected nodes to be also
connected with the depot in order to reduce thei:
"potential" difference to 1l:

10
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Chan and Rowell note work done by Kulkarni and
Bhave which expand this constraint to restrict vehicle
capacity and range:

®,o- ms o+ VR V- f) ¥V R4L < iF) < (I (11)

o; - o5 + Uxjs £ U - dﬁ vV K+l < i#3 < |1} (12)
Here, the problem has been expanded to include K depots
(discussed further below), and n and ¢ are capacity and
range potentials respectively (6:15). Though the range
restriction has been partially refuted by Brodie and Waters,
both show promise after some modification (5:403-404).

One aspect of the multiple travelling salesmen
problem which offers potential cost reduction is split
delivery as described by Dror and Trudeau (11:139-145).

Consider a vehicle which is close to a demand point, yet has

insufficient capacity remaining to fully service the node.

By partially serving the demand, other nearby vehicles may
be enabled to use their remaining capacity to fully satisfy
the node. Dror's algorithm is based on one and two node
swaps among routes of a feasible solution. This haé
potential application to the DCS proklem because the same
node may require service from more than one vehicle. Such a
split load in the DCS network is not capacity driven, but is
required by the varying service frequencies of the demand

sites.

1i




Multiple Depot Problems

The complete DCS network involves the use of a
trunk carrier (UPS) in order to supply the 12 regional
depots. Though this research focuses on delivery from
regional centers, the full nature of the network is best
described by a hierarchical depot model. Such a model 1is
formulated by Perl and Daskin, and described by Chan and
Rowell (6:26-27). The hierarchical model consists of a
single source which supplies regional depots by way of a
trunk mode. From the regional centers, a second mode
delivers the product to a final destination. The model 1is
very comprehensive; consideration is given to trunking
costs, regional operating costs, transshipment costs, and
delivery costs. Because of its detail in describing a
complex operation, the model formulation becomes quite large
when even a small problem is considered.

Many delivery problems simply involve regional
factories or distribution centers serving proximate demand
locations. As described earlier, the DCS network 1is
effectively such a problem, since the delivery costs to the
centers (trunking costs) are independent of depot location.
Laporte et al describe such a "multi-depot, multi-tour
model" (15:293-302). In addition to those listed above, the
following variables are used in Laporte's formulation:

c= fixed cost of a depot
b= fixed cost ot a vehicle

m= number of vehicles at a
depot

.



J= subset of I including only
depots
B= arbitrarily large constant
Pi,Pi= lower and upper limits
on total depots
t,T= lower and upper limits on
fleet size at a depot

The arcs are two-way and not capacitated by a binary

variable, therefore the problem is symmetric. The model

formulation is:

mip b dij Xij + Z (¢ yp + bym ) (13)

1, €l red
s.t. = Xp v+ =2 Xy = 2 kel-J (14)

i<k k<3
= Xip * = er = 21"!'&r red (18)
i<r r<j

ZE x:- < |L| - LEg L<I-J (16)

1el jel A
Xivin # 3Xi213 + Xiayy < 4 11,14€J 12,13€1-J (17)

v v 2 = X135 < Zh-5 h>5 (18)
i,3e{i2..1(h-1)} 1il,ihed
i2..1i(h-1)eI-J

Y <m < By, red (19)
t <m <T red (20)
P <y, <P reld (21)

The objective function seeks to minimize the sum of
the leg costs, the depot overhead costs, and the aircraft
overhead costs. Therefore, for routes of equal length, a
single base with one aircraft is cheaper than multiple bases
with multiple aircraft. Constraint (l14) specifies that all
nodes not used as a depot must be serviced exactly once. The

second constraint (15) insures that m vehicles travel from




their depot. Constraint (16) is a combined subtour breaking
constraint and vehicle capacity constraint. Constraints (17)
and (18) are chain barring constraints. They preclude a
vehicle from originating at one depot and terminating at
another. Constraint (19) requires that at least one vehicle
is based only where depots are used. Equation (20) limits
the number of vehicles at any depot, and (21) limits the
total number of depots used.

One drawback of mathematical TSP formulations is
that subtour breaking and chain barring constraints expan!
geometrically with problem size. Many such constraints are
not binding on problem optimization however, and can be
selectively eliminated. Chan offers such a constraint
relaxation of the Laporte formulation described above
(7:8-13). The process is iterative; it begins by comparing a
known feasible (but not optimal) solution to a sub-problem
solution which does not consider chain barring or subtour
breaking. When such a sub-problem offers solution
improvement, integer, subtour, and chain barring
restrictions are added as necessary tc induce sub-problem
feasibility. If that sub-problem still offers improvement,
it is stored as the best known and a new sub-problem is
considered. The process continues until all sub-problems are

considered.

14




Coefficient Determination

All of the vehicle routing problems described above
regquire usable data regarding inter-network distances. Most
of the formulations also simultaneously require fixed and
variable costs for both depots and aircraft. Some research
is warranted on transforming location data into distance
information, as well as the factors which affect depot
operating costs.

Transforming the latitudes and longitudes of two
locations into inter-nodal distance is accomplished by the
gfeat circle distance formula provided in the Air Force
Manual of Air Navigation (10:23-4):

D = 60cos'1[:sin(latl)sin(latz)
+ cos(latl)cos(1at2)cos(longz - long)) ] (22)

Here, lat and long denote latitude and longitude

respectively, and distance (D) is given in nautical miles.

Since a statute mile (used exclusively in this research)
equals 5280 feet, and a nautical mile equals 6076 feet, the
conversion is trivial.

Although cost evaluation of individual depots is
beyond the scope of this research, relevant background 1is
given by Corbett (9:25-39). Central to that research is the
analysis of payroll and O&M costs of the southwestern depots
of the DCS. While the research notes that the depots operate
with some inefficiency, it finds that the basic DCS

structure is sound.
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Heuristic Soclution Technigues

For large problems, the methodologies previously
described become unusable. The constraints quickly become so
numerous that the processing time becomes prohibitive.
Consequently, heuristics have been developed to yield
approximate solutions to large TSP's. The space filling
curve, sweep, spanning tree, and Clarke-Wright are all
heuristic methodologies which relate to travelling salesmen
problems and their variants.

Space Filling Curves. Bartholdi and Platzman

describe the space filling curve (SFC) as a curve of unit
length which connects a given set of sub-squares within a
region (2:121-125). The central operation of the curve is to
join a point with its immediate neighbors befoire proceeding
to the next subregion. Each '"neighborhood" is defined by
repeated division of the entire region into 4 smaller and
equally sized regions. The division continues until all
points of interest (in this case, network nodes) occupy a

square of their own. Figure 1 illustrates this. Once the

~
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Figure 1. Space Filling Curves. Reprinted from (2:123)

space filling is complete, the points are assigned a value

between 0 and 1, as specified by their position on the unit




curve. The order of points determines the vehicle's route.
Bartholdi and Platzman claim solution accuracy to be no
worse than 25 percent from optimal, and Merrill produced
results averaging 4.5 percent (16:10).

The space filling curve may be used to solve
problems other than the single TSP. In several works,
Bartholdi and Platzman offer numerous such applications.
Vehicle assignment to particular demand nodes can be
formulated with the SFC (3:298), which applies space filling
to a multiple TSP. In the same reference, multiple depot
location is addressed. By segmenting the elongated curve
into equally spaced portions, demand points are assigned to
the potential depot location which is nearest the center of
the segment. Alternately, segmenting and depot location may
be done by placing a depot at intervals defined by egqual
number of demand points (3:298). Both of these methods are
very simple, though they completely ignocre natural clusters
of demands which may occur along the curve. Even so, the
multiple depot extension of the SFC make it potentially
useful in solving the DCS problem.

Sweep Heuristic. Vehicle range limitation for a

single depot is addressed by Teodorovic's description of the
sweep heuristic (21:138-141). This heuristic plots the

network on polar coordinates, with the depot located at the
origin. An arbitrary starting demand point is chosen, which

is point 1 in Figure 2. In this case, the heuristic sweeps
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Figure 2. The Sweep Heuristic

counterclockwise through points 2 and 3, checking for range
limitation prior to moving on. At point 3, the heuristic
forces a return to the depot because proceeding to point 4
would exceed vehicle range. A new tour includes points 4 and
5, but proceeds back to the depot in lieu of exceeding
vehicle range. The remaining points are added similarly
until the sweep returns to point 1. The heuristic is simple,
yet could be used to address aircraft range in the DCS
aerial network.

Spanning Trees. A minimum spanning tree (MST)

connects every point of a network to every other point with
a minimum arc length. The name of the method springs from
the resemblance of this collection of nodes and arcs to the
branches of a tree. Prim and Dijkstra devised similar
methods for MST construction; the latter is described by
Syslo (20:259-265). Prim's algorithm begins at a seed (or
depot) node and selects the least cost arc which includes an
additional node into the "tree." At first this is simply the

nearest neighbor to the seed. Thereafter, the nearest
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unconnected neighbor to any node within the current tree is
selected. At each iteration, the total arc length from the
seed to the most current inclusion is added to the total
network cost. Syslo also offers a PASCAL coding of Prim's
algorithm which demonstrates the simplicity of MST
construction (20:263-264).

B A heuristic which transforms an MST into a
tra&elling salesman problem is described by Nemhauser &
Wolsey (17:475-482). The heuristic operates by doubling each
of the arcs of an MST, then selectively eliminating those
which cause node repetition along a continuous path. This
formulation implies a relationship between the minimal
spanning tree of a network and a suitable travelling
salesman counterpart.

The connection between a network's MST and an
efficient TSP tour is exploited by Ware in numerous
applications within the Military Airlift Command's analysis
group (23). One such application is the extension of the MST
to include a forest, or many independent spanning trees
within a system of nodes. In the minimal spanning forest,
connecting arcs are grown from many seed nodes until every
node is included in exactly one tree (23). This formulation
has dual advantages: 1) demand points are assigned to
depots; and 2) the MST algorithm which Nemhauser describes

may be applied.
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Clarke-Wright Method. Once demand nodes are

assigned to depots, the DCS problem becomes an extension of
the single depot multiple travelling salesmen problem.
Several heuristic algorithms exist which solve such a
formulation. One such formulation which shows promise for
dealing with the DCS considerations of range and multiple
frequency servicing is the Clarke-Wright algorithm.
Originally described in 1964 (8:568-581), the Clarke-Wright
algorithm initializes by assigning a separate "out-and-back”
t ur from the depot to each demand point. It iterates by
combining the tours which offer the greatest savings as
computed by the equation:
Siy = Dj; + Dyj; - Dij (23)

In this equation, the savings S equals the combined cost of
travel to the depot from both nodes i and j, minus the cost
of travel between nodes. This makes sense intuitively, as
returning to the depot between proximate tasks can waste
nearly an entire round trip from the depot. The algorithm
terminates when no additional savings may be made, either
through demand point exhaustion or vehicle capacity. Though
the DCS problem is not restricted by vehicle capacity, range
considerations could potentially be incorporated into the
algorithm.

Beltrami and Bodin discuss the use of the Clarke-
Wright algorithm for a network involving multiple servicing

frequencies (4:406-427). In their discussion, New York City
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garbage trucks are routed to locations with varying service
frequencies using a modified Clarke-Wright algorithm. Though
the detailed formulation is not given, the general procedure
is discussed, which indicates usefulness to the DCS
methodology.

Modifications to the Clarke-Wright algorithm are
also discussed at length by Golden (12:113-148). Of
pgrticular note is his discussion of a multiple depot
formulation. Unfortunately, the formulation includes only
fixed depots, and does not iterate potential depot sites.
Such a formulation could still be useful to the DCS
solution, but only when a small number of iterations are

reguired.

Summary

There is much literature which is both current and
applicable to the DCS aerial network. Mathematical
programming algorithms are available which solve problems
which are virtually identical to courier routing, size being
the only major difference. Heuristic algorithms are
availabie which solve larger problems with reduced, but
acceptable accuracy for many applications. These two areas
of Operations Research provide the foundation for the
research reported in this thesis. The remainder of the study

is based on this foundation.
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Chapter I11. Methodology

Overview

The methodology outlined in this chapter is divided
into two portions. First, a mathematical programming
algorithm is developed which considers the DCS aerial
network peculiarities. As stated earlier, such an approach
is not applicable for solution of the full problem, though
is useful from the standpoint of validation and analytical
rigor. Second, a dual heuristic strategy is developed which:
1) approximates the optimal depot locations; 2) assigns
demand locations to one of the depots; and 3) develops
routing of aircraft between demand nodes and their depots.
Together, the formulations provide for either redesign or
modification of the DCS routing structure, as well as a

reduced scale validation of results.

Mathematical Programming

The DCS aerial network most closely resembles the
formulation given by Lapcrte, which is described in the
previous chapter (egquations 13-21). The formulation provides
for multiple depots and multiple tours, though does not
include provisions for range limitation or multiple
servicing frequency. Additionally, some estimate of both
fixed and variable depot cost is required for this model.

Consequently, major foci of the DCS formulation involve




computation of suitable depot costs, and modifying Laporte's
formulation for range and multiple servicing.

Depot Costs. Unlike many travelling salesman

variants, Laporte's objective function seeks to minimize
values which are not often thought of as being eguivalent
units. Furthermore, the DCS system involves numerous
contracts spread throughout the CONUS, which implies that
node and arc costs are dependent on numerous regional
factors. Data is available on the current depot and per mile
costs, but none exist for potential relocations. One way to
approach the subcrdination of regional costs into the £ful}
network might be to assume that potential hubs would have
equivalent costs to nearby existing hubs. Unfortunately,
this method becomes rather uncertain when two existing hubs

are proximate to a potential relocation site. The chosen

method for regional smoothing of data is to predict
potential depot and arc costs by using national data.
Specifically, coefficients must be established for arc cost
(d), depot fixed cost (c), and aircraft fixed cost (b).
Since the demand servicing frequency is most often weekly,
the model is formulated on a per week basis.

Contracts are awarded to small aircraft operators
based on a negotiated per mile fee. As stated in Chapter I,
this fee is a function of many variables including number of
bidders, total miles flown, stops made, and operational

complexity. Many of these factors are highly variable, but




are reasonably independent of the exact routing and depot
location within the region. Using a national average might
result in a slightly lower than optimal depot density where
arc costs are relatively high (and vice versa), but the
alternative of modelling so many variables makes the problem
much less tractable. Therefore, a national average per mile
arc cost of $2.2287 (22) is used. This cost is not used
directly in the formulation; rather it is used as a
conversion factor between dollars and miles when
incorporating depot costs. Note that the fee paid to the
contractor includes ali aircraft costs. This is wvory
attractive as it assimilates the b,m, terms of the objective
function into the dﬁ per mile coefficients. The dﬁ terms
are computed in statue miles, and the ¢, terms are computed
as described below and converted into a milage eguivalent.
The depot overhead (including payroll and 0O&M
costs) coefficients c,, are a function of many disparate
regional factors as well as more identifiable national ones.
Appendix R shows the available data on the current number of
total visits to demand points per two week period (labeled
STA), number of yearly miles traveled by the contractor
(MILES), number of sorties flown by the contractor (MSNS),
and yearly depot overhead costs (COST). The three depots
which are debarkation points for international traffic have
disproportionally high operating costs, and are

inappropriate for use in the 0O&M cost data set. The
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semainiang nine data points are analywed asing linear
regression for coefficient determination.

Appendix A gives the results of the regressions
done by SAS. Simple correlation indicates STA has the most
promise for a good regression. That suspicion is borne out
by.scattergrams of the three candidate predictors. Though
lfié_most error is "captured" by the full model (as
expected), the two predictor model including STAR and MILES
has a nearly identical R? of 0.2027. Unfortunately, both of
these models have an unacceptably high p value associated
with the F test. In each case, the null hypothesis of
statistical model significance is rejected with greater than
50% confidence. The model with the most promise includes
only the predictor STA. Its R? is 0.1525 and has a
relatively low p value of 0.2988. A residual plot and Wilk-
Shapiro test confirm normality of the error terms. While
these results are hardly convincing cof a strong regression
relationship, they are a better measure than a raw average
of depot cost, which completely ignores variable costs. It
is also important to note that this calculation will
ultimately be used only when a decision must be made between
the cost of one additional depot versus the potential
mileage saved. Since this decision is not included in the
heuristic solution methodology, statistical skepticism of
the depot cost model does not impact the validating power of

the mathematical formulation, which is its primary goal.
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Because the chosen model includes only the first
order term STA, the size of a depot as measured by demand
points served (per week) does not benefit from an economy of
scale. Consequently, for a system with n nodes and I depots,
the total per year depot cost (in thousands) is
I*b: + by*(n-1), where by and b; are the regression lines's
slope and intercept, respectively. Because of the linear
relationship (which the scatterplot verifies), b;*(n-I) is
constant regardless of how the demand is split among the
depots, and may be added to the total cost after the optimal
solution 1s reached. Appendix AR shows that the intercept by
is $392 thousand per year (or $7538 per week), which
corresponds to the fixed depot cost without the "stations
serviced" constant. When converted to a statute mile cost
equivalent, the weekly fixed cost is 3382 sm. Effectively,
by/(52%2.23) = ¢, ¥ r € (I-J), provided a constant 45.0
statute miles (5220/[52%2.23]) per demand serviced is added
to the minimum weekly cost.

Since the regression attempt has severe statistical
limitations, little value can be placed on the exact
relative cost of depot overhead versus contracted operating
costs. The regression does indicate that depots are

relatively "expensive," since approximately 176,000 miles

(392,000/2.23) must be saved in order for an additional
depot's overhead to be justified. Additionally, depot

construction costs are not considered, whose amortization




only increases the premium paid for potential depot sites.
Although exact computation of relative depot costs 1is
clearly beyond the scope of this research, system cost may
be expressed by parametric weighting of operating versus
depot costs. Stated in mathmatical terms, Total cost =
L;(number of depots) + Lj,(yearly mileage), where the L's are
weighting variables that equate the two disparate
expenditures. Using this approcach, the best solution is

ffered for each of a given number of depots, whereupon the
DCS may asses depot costs on a case by case basis.

Range Limitation. Both the Vehicle Routing Problem

and Kulkarni formulations addressed in the previous chapter
offer range limiting constraints which may be used in a
travelling salesman problem formulation. Neither is exactly
suited to Laporte's formulation, but Kulkarni's constraint
has fewer disadvantages. The VRP range constraint forces the
use of a vehicle superscript, which adds dimensionality and
fixes number of vehicles. Consequently, Kulkarni's
constraint is chosen and restated here for easy reference:
Ux:: + 0. - o- < U - dij vV | J+1|<ifig]T] (12)
The set { |J+1],}]J+2|,...|I| D} represents the set of
non-depot nodes; ¢ is an unrestricted variable associated
with each node which indicates how much range capability
remains in the associated tour (6:15). Note that the
notation used here is the same as that used in the Laporte

formulation (eguations 13-21).
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Careful inspection of the above egquation reveals

L

how o serves as a tour "odometer." If an arc x.. 1s used,

its value is one, and the egquation becomes:

U+°1'°jiU'd1j (23)
which can be simplified to:
o; + dj; < o, (24)

This states that the "odometer' variable associated with a
demand node must be incremented by at least the distance
separating it with the prior node on the tour. 1f the arc
between two nodes is not used, the equation's right hand
side becomes large relative to the left hand side, and the
constraint is non binding.

Kulkarni's range equation reguires %2 to be
distinct from X Otherwise, the incrementing from i to 3
is nondirectional, zad a running total of milage is not
forced. This complicates Laporte's heretofore symmetrical
f{ormulation by nearly doubling the number of variables, as
well as forcing more rigorous conservation of flow
equations. Specifically, equations (14) and (15) of the

Lavporte formulation become:

m. for J€J
= x5 = 1" for jeIl-J (2%)
1€l

m. for 1€J
= Rij = { l] for i1i€1-3 (2€)
1e€d

Additionally, the chain barring constraints must be altered

to reflect the asymmetric formulation. The alternative to

this approach is to ignore range considerations, or revert




to the vehicle routing problem formulation. Resorting to an
asymmetric formulation remains preferable to either of these
options.

The other major problem with incorporating
Kulkarni's eguation into the DCS problem formulation is that
it ignores distance to and from the depot, which makes it
incomplete. From the discussion above, it is clear that the
o associated with the first demand point on a tour should
equal the distance from the depot. Additionally, the
distance from the last node prior to returning to the depot
cannot exceed the remaining range of the vehicle.
Consequently, two constraints are added to redress
Kulkarni's omission:

V1<i<|J| V¥|JI+l|<3<] 1] (27)
. < U V1<i<|J| V¥ |J+1|<i<|I] (28)
These equations, when used in conjunction with Kulkarni's,
sufficiently restrict range.

By strictest definition, the DCS problem is not
restricted by range, but by either the crew's duty day
limitation of 14 hours, or by the less restrictive ten hour
flying time limitation. According to Capt. Smith of DCS, 45
minutes is allocated at each stop for preflight and rpackage
delivery. Additionally, when circuitous routing and terminal
procedures are considered, the aircraft travel at 200
statute miles per hour (19). Thus, the effective range of

the aircraft is 2800 sm (14 hrs * 200 sm/hr), and the '"range
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cost" per stop is effectively 150 miles (200 sm/hr * .75
hr/stop). Prudence dictates that an error margin be added to
these calculations, so Capt. Smith feels that no trip should
be scheduled to last more than 13 hours, which corresponds
to 2600 statute miles (19). Of course, the computed mileage
between nodes must include 150 miles of '"dwell time" in
order to properly account for range considerations. This 150
mile cost per arc should be subtracted from the optimized
cost after the program is completed.

Servicing Frequency. The most obvious way to allow

for different servicing frequencies is to relax the binary
mixed integer program into a simple mixed integer program.
This would allow an arc flow greater than one, which permits
a node to be served more than once. Because of the subtour
breaking constraint (12), such a repeat servicing would have
to occur on separate tours, lest a cycle occur which does
not include the depot. This reformulation of eguations (25)
and (26) (conservation of flow) sets the right hand side
equal to s: or S5 for i€1-J and jel-J, respectively. S in
this case equals the number of required servicings in a
given period. Unfortunately, this prescription has one
significant drawback; the "odometer'" variables ¢ in eguation
(12) would no longer be multiplied by a binary variable, and
would thus not record accurate '"mileage."”

Another method of forcing multiple servicing of a

demand node is to redefine that node as a group of co-
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located nodes, between which no arcs exist. Such a scheme
allows the formulation to remain a binary one (e:cept for
the 0's), since each node of the group requires one and only
one servicing. One problem remains with this formulation.
Theoretically, a path can visit one node of a collocated
group, subsequently visit an adjacent node outside the

' group, and return to another node within the group. Since
thege visits all occur on the same tour, such a scenario
does not conform with the intent of forcing multiple visits
by different tours (conceivably at different times). To
force all visits within a node group to occur via different
tours, all nodes of a group are assigned only one "odometer"
variable (o). BAs before, this prohibits a tour from
servicing any grouping of nodes more than once, effectively
forcing as many tours as there are nodes into a given group.
Thus, Kulkarni's constraint serves the DCS model by forcing
multiple servicing, as well as subtour breaking and range
limitation.

Full Mathematical Model. The complete DCS aerial

network mathematical model is stated below in its entirety.
Note that most of the equations have already been stated,
and all bear close resemblance to previous equations:

I= set of all nodes
d= statute mile distance + 150
x= 0,1 arc use indicator
= vehicle range
6= unrestricted "odometer" variable
c= fixed cost of a depot
= number of vehicles at a
depot
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J= subset of I including only
depots
B= arbitrarily large constant
pi,Pi= lower and upper limits
on total depots
t,T= lower and upper limits on
fleet size at a depot

min £ dij x5y + T ¢, ¥, (29)
1,Jjel redJ
s.t. m; for jedJ
= Xjj = 1 for jei-J (25)
iel
m; for ieJ
= Xij = l for iel-3J (26)
ied
Uxij + 0, - Oj <U - d*] ¥ |J+ll_<_i#j$l1l (12)
d:j %35 < 04  V1i)J| V|I+1|<3<| T} (27)
dji Xy + o < U Vl_<_i_<_|J| VlJ+l'ij_§_lIl (28)

X132 * Xypi1 + 3(Xigq3 *Xy349) * Xyzqq o xju3 £ 4
il1,i4eJ 1i2,1i3el-J (30)

X:350 X * o Xi(p-1)ib toXini(n-l)

+2 = x5 < 2h-5 h>5 (31)

i,5e{i2..i(b-1)) i1,iheJ
i2..i(h-1)el-J

Yp £ m < By, reld (19)

t <m <7 rel (20)

P Ly <P red (21)

The above model may be input into any mixed integer
algorithm and serves as a reduced scale validation of the

heuristics described in the next section.

Heuristic Methodology Selection

The literature review suggests three possible

methodologies for solving the full-scale DCS network
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problem. Space filling curve (SFC) heuristics offer
simplicity and a combined ability to accomplish both the
depot location and routing aspects of the problem. The
minimum spanning tree (MST) formulation (and the minimum
spanning forest (MSF) extension) is a bit more complex, but
potentially offers improved depot location. The Clarke-
Wright algorithm, though somewhat more complex than either
the SFC or MSF approach, is very adaptable to the DCS range
and multiple frequency extensions of the TSP. Unfortunately,
none of these methods are without significant drawback.
Space filling curves do not have a sophisticated approach to
multiple tours, which is a critical factor in multiple
servicing route design. The transformation of a spanning
tree into a TSP is also poorly suited to multiple tours. The
Clarke-Wright algorithm can only handle pre-defined depot
locations, and requires too much time to iterate between all
the potential DCS depot locations. Consequently, a hybrid
approach to depot location and routing is appropriate.
Regarding depot location, speed is the chief
advantage of space filling curves. The minimum spanning
forest must iterate through all possible depot combinations
before selecting the best single solution. However, the MSF
is very well suited to grouping proximate demand points and
depot sites, which is a shortcoming of the SFC.
ARdditionally, a demand node may be weighted so as to reflect

its regquired servicing frequency. In this way, depot
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selection will tend to favor proximity to multiple frequency
demand peoints. Finally, The MSF algorithm can be forced to
preclude branches from becoming so long as to violate the
range requirement. Because of these advantages, the MSF is
selected as the depot location algorithm for the DCS
solution heuristic.

Once the optimal forest is chosen, the individual
trees indicate depot-demand assignments. Although
Nemhauser's MST-TSP transformation heuristic seems
appropriate for use here, its application to a multiple TSP
is not provided in any of the reviewed literature. Moreover,
the transformation from a MST to a TSP does not appear to
readily lend itself to multiple tours. Since multiple tours
are central to both the range and service frequency aspects
of the DCS network, the MST-TSP transformation is not
considered further. On the other hand, the Clarke-Wright
heuristic does provide a workable incorporation of range and
service freguency. For that reason, a combination minimum
spanning forest and Clarke-Wright algorithm is chosen for
solution of the DCS location-routing problem. Examples of
the codes used are included in Appendix B, as well as the
diskette included with this document. They should be

referenced while reading the next two sections.




Minimum Spanning Forest Coding

As mentioned in Chapter 11, Prim's spanning tree
algorithm successively finds the shortest arc whi~h adds
another node into the current collection of nodes and arcs.
The spanning forest expands this idea to several unconnected
node-arc collections. The algorithm is a modified nearest
neighbor heuristic, and the procedure for forest selection
1s as follows:

1. Select a combination of depots for branching.
Define this set as the nodes currently included in
the forest.

2. BRdmit the nearest node to the current forest
unless the new branch connects that node to a depot
which is greater than 1000 miles away.

3. Repeat step 2 until all nodes are included in
the forest. Save as the best solution if the
weighted distance is the smallest yet found.

4. Repeat step 1 until all combinations of depots
have been explored.

The FORTRAN coding of this algorithm is
straightforward. Initialization occurs by creating an inter-
arc distance matrix, which is measured in statute miles and
includes 150 miles per arc dwell time. Depot assignments are
done first by declaring the f£ixed depots at Baltimore
(KBWI), Kelly AFB (KSKF), and Travis AFB (KSUU). Thereafter,
a succession of DO loops (FORTRAN syntax) define the current
iteration of depot candidates. Initialization is completed

by resetting the counters used during each iteration of

depot combinations.
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The main body of the code begins by pairing each
deraand node with its closest neighbor that is currently
included in a collection (tree). Initially, this is simply
the closest depot. Once each demand node is assigned a NEAR
(variable name) tree branch, the current depot locations are
defined as "collections of one," since no node-arc pairs
have yet been formed. The program then searches the for the
smallest NEAR value, whose index corresponds to the next
node to be included into a tree. Nodes whose inclusion would
cause a potential tour to exceed 2000 miles (round trip
distance to the depot) are disqualified. This is the upper
bound on the distance to a service location, since the round
trip flight time at this distance is approximately ten
hours. Once a suitable candidate for inclusion into a tree
is found, its distance to the tree's depot, times its
service freguency rate is added to the total cost. Finally,
the NEAR array is updated to determine if the proximity of
each unattached node to the enlarged forest is changed.

The branch selection process continues until all
nodes are included in exactly one tree. If the total cost is
the best so far, it is stored along with the associated
node-arc forest. A new initialization of depots occurs until
all possible depot combinations are explored. The best
solution is then written to an output file.

The main drawback of the spanning forest approach

is the large number of iterations required to explore zll
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possible depot combinations. In addition to the current 12
depots, there are 18 CONUS locations where UPS provides
service to a city near an active military airfield. Since
only three of the depots are fixed, 27 choices remain from
which to choose. In a problem which seeks 11 depots, the
nuﬁber of iterations required is over 2.2 million. The
Aé%feétion process requires considerable computer time.
Despite the daunting size of the depot selection
process, the MSF coding is highly effective as it
incorporates range and multiple frequency weighting. These
advantages make it a critical part of the DCS solution

heuristic.

Modified Clarke-Wright Coding

The original Clarke-Wright (CW) algorithm was

designed as a multiple tour, vehicle capacity constrained
heuristic for solving single depot TSPs (8:569). The DCS
problem relaxes the vehicle capacity portion, but includes
range and multiple frequency servicing. As with the
mathematical programming approach, range is constrained by
disallowing links on a tour which would cause the overall
length to exceed 2600 sm. Also borrowed from the
mathematical programming formulation is the concept of node
clustering to simulate multiple demands. Both of these

methods require keeping track of which tour each node is on,
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which is the major extension of the CW algorithm used in
this research. The procedure follows these steps:

l. Construct the savings matrix using equation
(23).

2. Select the arc offering the greatest savings
unless the new tour length would exceed range, or
the new tour involves revisiting a cluster already
served along the route.

3. Proceed until ..o further savings can be achieved
due to the restrictions in step 2.

FORTRAN implementation of this algorithm
initializes by assigning a unigque tour number to each node,
except for clustered nodes, which are assigned one number
per cluster. Each node is then assigned the number two,
representing the number of connections with the depot it
currently has. During the course of the run, this number is
reduced to as low as zero, indicating that no further route
consclidation can be considered using this node. Finally,
the distance and savings matrices are computed, using
equations (22) and (23), respectively.

The code's main body scans the savings matrix for
the maximum value, which is chosen unless: 1) either of the
nodes cannot further consolidate an arc; 2) consolidation
would exceed range; or 3) the consolidation would revisit a
cluster already included in the tour. The range and tour
number arrays are then updated to include the most recent

consolidation. This is a rather arcane piece of code,

replete with buffer arrays and arrays used as indices for




matrices. The foundation lies in accurate updating of the
tour number array (NC) of every node of a newly consolidated
tour. This is accomplished by combining and then scanning
the NCV matrix row for each of the newly combined nodes,
which keeps track of the other nodes in the indexed node's
tour. In turn, this information is copied into those nodes'
NC and NCV arrays, which completes the update. Finally, the
new arc is written and tallied into the total network cost.
When no further consolidations are feasible, the total cost
and remaining depot connections are written, and the run

terminates.

Heuristic Summary

As noted earlier, depot location and routing for
the DCS problem is a two part process, first nvolving an
exhaustive search of location possibilities, then designing
routes from those depots which conform to the DCS network
constraints. As expected for any large network, the combined
process involves considerable computer time, but promises to
be quite flexible. Though the principal focus of this
research is a long term relocation strategy, a more useful
short term application is selection of a depot for closure
as a cost cutting measure. It is this flexibility which will
allow the combined heuristic to serve the DCS for the

foreseeable future.
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Chapter Summary

The mathematical program offered at the beginning
of the chapter is a rigorous formulation of the problem
which confronts the DCS location and routing analyst. The
heuristic solution approach offered in the chapter's second
half provides a medium by which those problems can be solved
at a system sized level. The combination of the two
methodologies offer not only a solution scheme, but a means

by which to validate the results. The next chapter describes

the outcome of that process.




Chapter IV. Results

Overview

This chapter focuses on validation of the heuristic
methodology via mathematical programming, and solution of
the DCS network by the verified heuristic. The validation
portion consists of three separate problems of sharply
reduced size. They are each solved to optimality using the
modified Laporte formulation developed in Chapter III; those 2
solutions in turn are used as performance measures of the
approximated solution using the combined minimum spanning
forest/Clarke-Wright (MSF/CW) heuristic. The chapter then
‘describes the use of the heuristic to offer best known
routings for a given number of depots (using the criteria
for depot location given in chapter III). Finally, a near
term restructuring of the network is presented which offers
savings through depot closures without drastic system

change.

Validation

The three "mini-networks" used for validation
purposes consist of locations served by the DCS network.
Since even regional DCS modelling is beyond the capability
of current computers, the maximum number of locations
considered is six. This allows for co-location of demand and

potential depot sites, as well as multiple servicing demands
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(recall that a demand freguency of 2 effectively reguires 2
nodes within the formulation). Although the locations
correspond to actual DCS service points, the servicing
frequencies and depot suitability do not mimic reality,
since those parameters are chosen to test various aspects of
the code.

Since number of depots must be varied manually in
the MSF/CW heuristic, two separate problems must be
considere? for each test case (each of the three regions
offers two potential depot locations). Each region is first
solved for optimality, which results in a single depot
selection since depots are relatively expensive. A two depot
case is forced after the results of the single case are
known, and both cases are compared with the heuristic
solution.

The Laporte algorithm is coded into MIP83, a FPC-
based mixed integer solver. Run times on an AT class
microcomputer at 8 MHz (with math coprocessor) varied
between 15 minutes and 6 hours, which is testament to the
limitation of the algorithm to small problems. Samples of
the input code as well as all of the output files are given
in Appendix C and the accompanying diskette. Also included
in Appendix C are the output files for all of the (test
region) heuristic code runs.

Once the exact solution has been determined by the

Laporte algorithm, the test region data are loada2d into the




MSF code in order to select depots and assign demand
locations to depots. The optimal forest is then broken into
its component trees for input into the CW code. Thus, the
validation process for each case consists of three steps: 1)
exact solution by Laporte algori .hm; 2) selection of
heuristic forest by the MSF code; and 3) tour selection by
"thé CW code, using the MSF results as input. Total system
miléage is the measure of effectiveness used to evaluate the
heuristic methodology.

Region 1. This test consists of several Northwest
bases, including potential depots at McChord (TCM) and

Travis (SUU), single demands at TCM, SUU, Klamath Falls
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Figure 3. Validation Region 1
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(LMT) and Boise (BOI), and a double frequency demand at
Mountain Home (MUO). Figure 3 summarizes the various
computer outputs. It is chosen because the geometry offers
two nearly equal depot candidates from a visual inspection.
It also forces at least two sorties since MUO must be
visited twice. The graphics conventions for this and the
ensuing routing figures depict the chosen depot within a
box, and multiple servicing requirements by repeated station
name (i.e. MUO written twice). The leftmost portion of the
figure illustrates the optimal solution as delineated by
Laporte's algorithm run using MIP83; the center portion
depicts the Minimum Spanning Forest solution as computed by
the code in Appendix B. The far right portion depicts the
approximate solution as computed by the Clarke-Wright code
and the depot-demand pairings given by the MSF. The
objective function values are also given as a reference.

The results of this first validation run show the
heuristic to be suboptimal by only 1.61% for the single
depot case, and just 3.01% when two depots are forced.
However, the MST heuristic chose SUU instead of the optimal
TCM in the one depot case, and did not fully utilize TCM in
the two depot instance. Fortunately, these deviations did
not result in significant loss of overall performance.

Region 2. This validation includes six Midwest
bases which all require only one servicing. The depot

candidates are Offutt (OFF) and Wright-Patterson (FFO). The
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other bases reguiring service are McConnell (IAB), Battle

Creek (BTL),

Bloomington IL (BMI),

and Ft.

Campbell (HOP).

The demands are geographically distanced so as to exceed the

maximum sortie range,

missions.

thereby forcing at least two separate

Despite the proximity of more of the servicing

locations to FFO, OFF is chosen for the single depot because

of the remoteness of IAB. The MSF/CW heuristic is not fooled

by this; it chooses the optimal solution in both the one and

two depot cases.

missions of excessive length,

Additionally,

properly constrains range.

none of the solutions include

indicating that the code

Region 3. This region consists of bases located in

the Southeast with potential depots at Charleston (CHS) and

45




TTT——NCA MSF

CLT CLr

(9]
I
w

N
2
5/

2:23814
NiP

2:2689 e [~ 23080

Suboptimal by 15.25%
. 2 DEPOT
cLT Optimal

\ NCA MSF cw \ /NCA

R
Z=1310
Lild

Z2:=2307 : <T//ZQMH

Suboptimal by D%

E

=

MCF

|

ERE'NY

\

\

Figure 5. Validation Region 3

Jacksonville FL (NIP). Service must include the depot
candidates as well as Charlotte (CLT), Jacksonville NC
(NCA), and MacDill (MCF). The locations are chosen in order
to force a choice between a depot with a proximate multiple
servicing requirement (NIP serving MCF), and a depot nearby
two single-service locations (CHS serving NCA and CL.).
Although the optimal single depot solution selects CHS, the
MSF forces a solution using NIP, which restricts the
solution to 15.25% from optimal. This does not occur when a
two-depot solution is forced; the heuristic replicates the
optimal solution.

Validation Summary. The heuristic solution averages

3.32% from optimal for the six problems considered. The
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range of error spans between 0% (three occurrences) and
15.25% (1 occurrence). Although an upper bound is not
established by this method, one may be reasonably assured
that other results would not be markedly worse than those
produced by the runs, since the region geometry was
purposely chosen to make location-routing selection
difficult. Depot selection appears to be the weakest ability
of the MSF/CW heuristic; both division of service among
depots and routing within a depot system mimic the optimal
with reasonable accuracy. Consequently, MSF/CW results
produced on the full DCS network should be reasonable
(within 15%), though some depot misplacement may occur. This
characteristic may be ameliorated by serendipity; one of the
strengths of parametrically varying the number of depots may
well be the continued reselection of many of the same

depot: Indeed, Ware of the MAC analysis group has found a
robustness of depot selection in similar networks (23). If
indeed this is true for the DCS network, greater confidence
of these robust depots may be assumed. The next section
addresses this aspect, as well as the entire MSF/CW

heuristic solution of the DCS network.

MSF/CW Heuristic Solution

Since the MAC analysis group has already offered a
restructuring of the DCS network using the 12 current

depots, and since depots appear to be relatively expensive
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entities, solutions offered in this research only consider
fewer than the 12 current depots. To that end, the number of
depots is varied between 11 and four; the latter figure
proves to be infeasible due to inadequate aircraft range. At
the outset of each iteration, the data set listed in
Rppendix D is input into the MSF code described in Chapter
III. That set first lists the three unmovable depots,
followed by the remaining 27 depot candidates and the 151
service-only locations. The data are arranged with the
current depots first in order to award ties to those
locations.

As stated earlier, the MSF code is computationally
intense; in the case of the 11 depot run the code must find
the best of "27 choose eight" forests, which is in excess of
2.2 million iterations. Fortunately, the number of possible
combinations drops quickly as the required number of depots
is reduced. The ten depot problem involves less than 900
thousand combinations, and the seven depot problem requires
scarcely 17.5 thousand forests. All runs were made on a VAX
8550. The 1l depot problem required just over 2.7-CPU days.
Each remaining problem was run in decreasing order of
complexity and, predictably, took less than half the CPU
time of its antecedent. Each CW run took nominal CPU time
and most were accomplished on a microcomputer. The output of

each MST and appropriate CW runs are given in Appendix E.
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Once the best forest is chosen it is split into its

component "trees," which are (in turn) input to the CW code.
Since the frequency of service varies from every other month
to six times per week, many of the "trees" have a different
least occurring frequency, which corresponds to the smallest
usable increment of time when computing the route structure.
"Th-other words, a depot which serves an every-other-month
locétion must have its routes computed for two months before
repetition, which cannot be directly compared with a depot
whose least occurring service frequency is weekly. Another
standardization measure is the subtraction of the 150
statute miles per leg which was added in order to restrict
range. Each of these two computations is done manually and
accompanies the CW output. Since many of the CW output files
apply to several of the MSF runs, the output is only given
the first time it is needed. The following is a summary of

those runs.

11 Depot Model. The MSF computation finds that nine

of the 11 depots chosen are current depots. Only Griffiss
AFB (which is served by UPS at Syracuse), and Little Rock
AFB (served by UPS at the adjacent city) are new to the
system. The McChord AFB, Norfolk, and Denver depots have
been deleted f£rom the system. A graphic presentation of the
MSF structure is given in Figure 6. The forest cost, though
not physically representative of any network cost, is

279,481 statute miles. The inter-depot boundaries appear
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logical in nearly all locations, and even appear similar to
many current boundaries. An unnatural association with one
Montana location and the depot at Offutt exists, and is due
to the range limitation of aircraft stationed at the Travis
depot.

The combined total mileage flown is computed by the
CW code to be 24,070 sm per week, or 1,251,640 sm per year.
This compares very favorably with the current yearly mileage
of 1,550,395 (13). It also compares well with MAC's stage
two suggestion of 1,400,070 sm per year (13). Although many
factors (addressed in the next chapter) must be considered
before directly comparing these models with the current
system, the results are, nonetheless, encouraging.

10-4 Depot Models. Each of the reduced depot

models is similar to its predecessor model with regard to
forest appearance. In all cases, the service stops of one
depot are assimilated into a nearby depot, and the widowed
depot is closed. This characteristic makes the new route
mileage very simple, since only one depot's routes are
changed (due to the inclusion of its former neighbor’'s
service locations).

Table 1 lists the number of depots in each of the
reduced models ('"Depots"), the name of the eliminated depot
("Loss"), the assimilating depot ("Expand"), the yearly
mileage cost, and the difference in mileage from the next

larger system model.
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Table 1.
Iterated Depot Closures
Depots Loss Expand Yearly Mileage Mileage added
10 NZY SUuU 1,275,924 24,284
9 LRF NIP 1,332,344 56,420
8 CHS BWI 1,360,424 28,080
7 RME NZW 1,374,152 13,728
6 NZW BWI 1,428,284 54,132
S FFO BWI 1,635,764 207,480

The only exception to the iterated depot closure routine is
between the six and five depot models. Two of the service
locations (DSM and MSP) of FFO are not within range of BWI,
so the MSF attached those locations to the OFF tree. Limited
range also precludes a system with less than 5 depots. Since
three of the depots are fixed, a four depot model only
allows one variable depot location. Significant voids exist
in both the North-Central and Southeast CONUS, and a single
depot cannot serve both regions. The MSF code notes this by

assigning a very large penalty cost for infeasibility.

Depot Closure Sequence. Since depot closures
appear to be events which affect only one other depot in the
system, it is clear that the depots ought to be closed in an
order where the mileage increase is always the least. In
other words, there is little merit in merging North Island's
routes into Travis' (at a yearly cost of 24,284 miles), when
Griffiss' routes may be merged into Boston's for a lower
yearly mileage addition (13,728). The fact that the MSF code
does not shut down depots in this order shows some

limitation of its effectiveness.




The inherent difference between a spanning forest
and a travelling salesman route system is to blame for the
less than optimal ordering of depot closures. When Appendix
E is examined, the MSF objective function differentials are
continuously increasing. Unfortunately, Table 1 testifies
that this does not translate into a continuously increasing
cost differential for the CW route structure. This
discrepancy may be rectified by examination, however. Table
2, supported by the calculations at the end of Appendix E,
accomplishes this reordering. BAs with Table 1, it uses the

11 Depot model ‘(shown in Figure 6) as a starting point.

Table 2.
Improved Depot Closure Seguence
Depots Loss Expand Yearly Mileage Mileage added
10 RME NZW 1,265,368 13,728
9 NZY suu 1,289,652 24,284
8 CHS BWI 1,317,732 28,080
7 NZW BWI 1,371,864 54,132
6 LRF NIP 1,428,284 56,420
5 FFO BWI 1,635,764 207,480

The order of depot closure stated in this table presents a
more cost effective closure sequence, since the minimal
incremental cost is added at each level.

The data in Table 2 are central to finding the
optimal number of depots for the DCS network. The curved
line in Figure 7 is a plot of these data, and it portrays
the cost line formed by trading depot and operating
(mileage) costs. The straight lines in Figure 7 are the

budget lines (estimated, 90% upper, and 90% lower bounds)
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Figure 7. Depot Versus Operating Costs

computed in the regression done in Chapter III. The
regressed slope of the estimated budget line is -5.681, or
2.229 dollars per mile divided by .392 million dollars per
depot (the negative sign accounts for the inverse
relationship of depots and mileage). Budget estimation based
on these coefficients must also include a constant term for
the number of stations served, since the regression model
incorporates that parameter. BAs caveated in Chapter III,
these computations are more of an example than a
statistically sound estimate, since: 1) the hypothesis test
associated with the depot cost model is not convincing; and
2) the dollars per mile estimate is a nationwide average.
However, based on these cost figures, a six depot system is

optimal. Stated another way, the yearly mileage cost of a
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depot in this model is (3382%52) = 175,864 miles. Since the
transition from six to five depots is the first reduction
which exceeds that cost, the six depot network is the
cheapest alternative.

Formal restatement of the depot versus mileage (5 <
debots < 11) optimization for the DCS network is best done

ﬁ;fhématically.

min L, DEP + L, SM (32)
s.t. - 72.55 MS8M + 102.33 < DEP (33)
- 41.19 MSM + 62.13 < DEP (34)
- 35.61 MSM + 54.90 < DEP (35)
- 18.47 MSM + 32.34 < DEP (36)
- 17.72 MSM + 31.31 < DEP (37)
- 4,82 MSM + 12.86 < DEP (38)

Here, DEP, SM, and MSM denote the number of depots, statute
miles, and million statute miles per year, respectively; L,
and L, equal their associated costs. Regional estimations of
these coefficients by DCS will dictate the system optimal.
finally, a constant term is included in the objective

function in order to convert to a budget estimate.

Near-Term Recommendation

Since the methodology discussed so far calls for
radical restructuring of the DCS aerial network, a near term
solution is proposed which looks much more like the current

structure. Notably, this proposal does not include any new
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depots, and preserves the three "priority routes" between
Baltimore and FFO, LFI, and HUA. This proposal is much more
problem specific; it is consequently less theoretically
rigorous.

Because the priority routes to Wright-Patt,
Langley, and Huntsville are high-frequency events (six, six,
and two times per week, respectively), there is considerable
ability for aircraft flying these missions to also serve
other locations along the route. Since these aircraft are,
by definition, Baltimore based, all locations between BWI
and the priority destinations are good candidates to be
included in the BWI depot structure. Although the term
"between" is somewhat ill-defined, use of the system map
aids in approximating good potential enroute stops. Figure 8
shows the approximation used in this research; it is a
combination of prior depot divisions and '"eyeball

estimation.” Analytical selection is a clear topic for
further research.

The number of depots is another variable which
could be altered prior to final system selection. In this
case, however, the MAC analysis group has already made
recommendations regarding a 12 depot structure.
Additionally, 