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Abstract

In this thesis we consider problems for which the boundary is not known before

the problem is solved and must be determined as part of the solution. We consider

a time dependent )roblem which results in a, moving boundary. We look at the

heat conduction/diffusion equation in one and two spatial dimensions. We introduce

the fundamental solution or Green's function and use Green's Theorem to yield a

Volterra. boundary integral equation which involves an unknown function on the nIov-

ing boundary. We take the limit of our integral expression to the moving boundary

to obtain a. nonlinear system of integral equations for the location of the boundary

and the unknown function. We use the boundary element method to obtain a so-

lution to this system of integral equations. This solution is then substituted back

into the original Volterra equation to obtain the solution of our original problemi.

Graphical results for the two dimensional problem are presented.
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THE BOUNDARY ELEMENT METHOD APPLIED

TO THE TWO DIMENSIONAL STEFAN

MOVING BOUNDARY

PROBLEM

L Introduction

1.1 Backroutid

Typically, the goal in solving differential equations is to find a solution of the

equation on some domain fl given the value of the solution or the value of the normal

derivative of the solution on the boundary P of the domain. But, there is a. class

of boundary value problems for which the boundary is not known in advance and

must be determined as part of the solution. These problems are known as unknown

boundary problems. If the differential equation is steady state (no time derivatives)

then the boundary will be unknown but will remain fixed. These are known as

free boundary problems. If the equation is evolutionary then the boundary will

move as a function of time and the domain on which we are solving the differential

equation will be time-dependent. These are known as moving boundary problems.

This thesis will deal with a two-dimensional moving boundary problem. In order

to solve a problem with an unknown boundary, we must impose extra. conditions

on the solution's behavior at the boundary in addition to the typical I)ouIdary and

initial conditions. These extra conditions are often drawn from physical concerns

such as the conservation of energy or the physical spatial constraints imposed on a.

real-world problem.

Unknown boundary problems arise frequently in the physical world. They can

be found in the study of the solidification of metals, carbon diffusion in steelmaking,
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abla.tion of materials using a. laser beam, weding of two metals, corrosion aid oxi-

dation of metals, oxygen diffusion in biological tissues, the melting and freezing of

ice, thermal switching of glasses, stellar evolution, diffusive chemical reactions, elec-

trochemical machining, water seepage through dams, impulse and optimal control,

and crystal growth. This thesis will look at an example involving the melting and

freezing of ice.

When considering the melting of ice it is possible to have a, single phase problem

or a. two phase problem. In the single phase, the ice is initially at it's meltig

temperature U = 00C and only the heat, of fusion need )e transferred in order to

melt it. In the two phase problem, the ice is initially at some temperature l)elow it's

nieltiig point and we must transfer heat energy in order to bring it to the iielting

point, and then supply additional heat energy in order to satisfy the heat of itusioii.

We will consider the single phase problem in this thesis.

1.2 Goals

The goals of this thesis are:

I. To model phase change problems in one and two dimensions.

2. To apply tht. boundary element technique to a two dimensional melting ice
problenl.

3. To use computer graphics as a. tool to display the numerical results in a, vistal
format.

1.3 Scope

\Ve have limited ourselves to two dimensions and to a circular initial domain

in order to have an analytic solution available for comparison with the numerical

calculation results. Isotropic materials are considered to simplify the heat. energy

exchange. Relatively short time intervals are considered to avoid excessive calcula-

tion time. Grid refinement is kept as minimal as possible. also to avoid excessive

computation time. We neglect changes in the density under phase transitioiis in
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order to a-void dealing with convection currents. Convection currents will occur if

the density is allowed to change even if the liquid phase is incompressible and its

thermal expansion can be neglected (3:227). It should be noted that our model can

be directly applied to diffusion problems.

1.4 SuppOrt

Ve required the use of a number of coml)uter systems and software packages

in order to coml)lete this thesis. The main thrust of the computation was borne by

the AFIT ELXSL computer. The large number of test runs and the length of the

runs made the use of this computer a, necessity. Shorter length computations were

performed on a VaxStation II/CPX belonging to WL/AARM. Text proce,;sinig was

borne 1)y AFIT's Scientific Supl)ort Computer VAX 11/785 and also by a WL/AAIHM

VAX 11/785. The text processing was accoml)lished with the \L'[X Document

Prepa ration System.

The l)rogranmming code was written in the Fortran prograniming language.

This language xas chosen because it is a standard programming language for which

o)timized compilers are rea ly available. All of the code is compliant with the ANSI

X-3.9 1978 (Fortran-77) standard. The support command language routines were

written in the Csh shell programming language. Various Unix utilities, such as awk

and sort, were used in the shell scripts.

The graphics out)ut was generated by subroutine calls to the metalib graph-

ics package on the Scientific Support Computer and by the CA-DISSPLA graphics

)ackage on the \VL VAXen. The metalib software is a local adaptation of a package

that was develol)ed at the Air Force Weapons Laboratory at Kirtland AFB. Local

enihancements were made by Lt Col James Lupo of AFIT/ENP. The AFIT Sun work-

station network was utilized in rui.ning the Mathematica software for calculations

involving Bessel functions.
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1.5 Mathematical !!istory of the Problem

Moving boundary problems are often referred to as Stefan problems due to the

work done by J. Stefan, in 1889, on the freezing of the ground (21:173-484) and the

inelting of ice layers (22:965-983).

Actually, the first work in the moving boundary area. was performed by 0.

Lai and B.P. Clapeyron in 1831. They tried to calculate the thickness of a solid

crust on liquid cooling in the half space a' > 0 with a constant temperature on the

plane a' = 0. They discovered that the thickness is proportional to the square rool,

of' time but did not arrive at the constant of proportionality (13:25-256).

There are few analytic solutions to moving boundary problems in closed form.

Generally, they are for a. one-dimensional geometry on an infinite or semi-infinite

domain with simple boundary and initial conditions and having constant thermal

properties. The solutions are usually functions of the single variable x'/ v/ and are

called similarity solutions. Both of the problems that Stefan worked onl possess

similarity solutions of the form i = 2av/7 . The value of na can be determined from

transcendental equations (17:2). The motive behind similarity solutions is to reduce

the number of independent variables by taking an algebraic combination of them

(1:63-75).

M. Brillouin reduced the solution of the Stefan problem to a system of nonlinear

integro-differential equations in 1929 (2:285-308). However, he did not try to solve

the system as he thought it would be very difficult to do so.

In 1931, L.S. Leibenzon derived an approximation for the solution of the Stefan

problem for many cases (14:435-439). lie replaced the true teml)erature distribttion

by a. quasi-stationary solution. This solution obeyed the Laplace equation in space

in a domain that had a. moving boundary that corresponded with the solution or"

Stefan.
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Another analytic solution technique used in moving boundary problens is

transforming the coordinates so the moving boundary becomes fixed in tle new

coordiinate system. The concept of conformal transformations is used ill the hodo-

graph method which finds frequent application in the field of fluid mechanics. The

hodograph method is presented in (4:288-293) and (15).

Numerical methods applied to unknown boundary problems have all extensive

repertoire. Since the solution of the unknown boundary problem requires that. we

solve the known boundary problem, the numerical techniques for known problems

find use in the unknowh, domain. In addition to using the known techniques, we are

able to change the u'iknown problem by transformations before their application if

we so choose.

If we do not manipulate the unknown boundary problem, then we must exj)lic-

ily approximate the boundary throughout our calculations. This approach is called

the trial-free-boundary method for free boundary problems and is called the front-

tracking method for moving boundary problems. We will discuss these methods later

ill this thesis.

If we do transform the problem before trying to solve it, theii we temporarily

remove the unknown boundary. This introduces some complications, however. The

transformed problem will be nonlinear since the original unknown boundary problem

was nonlinear. And we have to perform a. recovery transform to get back the ukiiovn

bouidary at the end of the calculations. The types of transformations we could use

are called front-fixing, analytical, and fixed-domain.

In the front-fixing method, the unknown domain is transformed onto a knowi

domain with a more complex differential equation and bouiidary conditions. An

example of this method is the isotherm migration technique.

In the analytical method, we use techniques such as conformal mappig to

obt.ain a new problem such as all integral equation. Hehnholtz used conformal map-
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ping to solve fluid flow free boundary problems in 1868. His work was extended

by Kirchhoff in 1869 (5:614). In 1986, Elcrat and Trefethen made their teciniques

the basis of an efficient %nd effect.ive method for solving integrals that are like those

found in Schwarz-Christoffel ma.ppings (6:251-265).

The fixed-domain method uses a weak or generalized solution defined on a.

known domain that implicitly has information about the unknown boundary. Ex-

amples of this method are variational inequalities and the enthaipy method for Stefian

problems. Baiocchi used variational inequalities to study porous flow l)roblems in

earthen damns (5:618). The enthalpy H denotes the total heat content in a region.
Time enthalpy method can be applied to "mushy" regions that are the rcsult of the

mixture of two phases such as water and ice. This method is advocated by Solonmon,

Alexiades, and Wilson (20:8-12).

This thesis will solve a. moving boundary problem in its original form. 'i'he

trial-free-boundary method and the front-tracking method often need to be applied

to domains with curved boundaries. The approaches which are the most popular

use integral equations, finite-differences with boundary-fitted coordinates, or finite

elements. The boundary element method we will apply will generate a. Volterra.

integral equation which will allow us to integrate around the boundary of the domain

instead of a. double integral over the area, of the domain and will thus simplify the

calculations.

Rubinstein provided existence and uniqueness proofs for the one-dimensional

Stefan problem with general initial conditions in 1947 (18:37-54). Originally, he

transformed the domains for each phase to the interval [0, 1] by reducing tie problem

to a system of nonlinear integral equations of mixed type (Fredlhohm with respect

to space and Volterra with respect to time). This system could then be solved by

Picard's method of successive approximation. However, it required the evaluationi of

doulble integrals and was therefore not effective. Again, in 19,17. he gave a method of

reducing the Stefan problem to integral equations of Volterra type based oi direct
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use of the heat, potential (19:217-220). Existence and convergence was gua.raiiteed

in the small; i.e., in some neigborhood of t = 0.

Kolodner (12:1-31) used integral equations to solve the Stefan problem or the

freezing of a, finite depth lake in the 1950's. He incorporated simple Green's fuctions

in his solution. He noted that the cases of physical interest generate Volterra integral

equations of the second kind. These integral equations can be solved 1)y numerical

iethods even though they possess difficulties near t = 0.

Avner Friedman carried out detailed research in the problems of the evapo-

ration of a. spherical drop (8:19-66) and the dissolution of a. gas bubble in a liquid

(9:327-345). le also showed the application of the maximum principle to the Stefati

problem (10:201-211). Later, he compiled a, text on )arabolic partial differential

equations including a. sel)arate chapter on the Stefan problem (7). He demonstrates

how a, parabolic differential equation can be transformed into a Volterra integral

e(uation which can then be solved by the method successive approximations. T his

is the approach that will be used in this thesis. In addition, we will utilize the

boundary element method in performing the integrations required for the solution

of the Stefan problem.

Stefan problems are essentially nonlinear because of the condition on the mov-

ing boundary, but linearity usually exists in each of the domains on both sides of the

boundary and we can still utilize the integral equation approach. It has the advan-

tage that only the values of the unknowns on the boundary enter into the solution

when it is coupled with the boundary element technique.
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II. Mathematical Development

2.1 Te Heat Equtation

The partial differential equation which we are trying to solve is

cp-C = V. ( 0\VU) + Q

where c is the specific heat of the material, p is the mass density, u is the temperature,

t is time, K0 is the thermal conductivity, and Q is the heat energy generated within

the domain of interest. If there are no sources or sinks within the domain then

Q = 0. Also, if we assume a. homogeneous isotropic material with constant thermal

p)roperties then the constants can be combined into a. single constant K = Ko/cp.

We arrive at the heat equation Ou - KV~u

at

For one dimension the hea.t equation becomes

O9 it 02u

at =KOZx2

And for two dimensions we have

T-- = K (0- +  -yi )

In order to solve the heat equation on a. domain, we must suIplply initial and boundary

conditions.

;2.;2 Boundary Conditionis

In solving differential equations it is not sufficient to state only the equation

itself. A particular equation could have an infinite number of solutions. In order to
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select a. single unique solution out of this infinite number, it is necessary to specify

initial and/or boundary conditions for the equation. Attempting to fit a solution to

the conditions can be as difficult as trying to solve the differential equation in the

first place.

Initial conditions are those that must 1,- .atisfied by the solution throughout

the domain at the instant when consideration of the system begins. A typical iiii-

tial condition will prescribe both the solution at the beginning time and the time

derivatives up through order in - 1 at the beginning time. Here in is the order of

the highest time derivative in the differential equation.

Boundary conditions specify the value of the solution on the boundary o1' the

domain (Dirichlet condition), the norma.1 derivative of the solution on the boundary

of the domain (Neumann condition), or a combination of value and normaIl derivative

on Iie boundary (Robin or mixed condition).

The prescribed initial and boundary conditions, together with the coeflicieJts

and any inhomogeneous terms in the partial differential equation, comprise the

"data. in the problem modeled. The solution depends continuously on the data,

if small changes in the data. produce correspondingly small changes in the solutiou.

A problein that is modeled by the partial differential equation is said to be
"well-posed" if:

1. A solution to the problem exists.

2. The solution is unique.

3. The solution depends continuously on the data.

If any of these conditions is not satisfied, then the prolblem is said to I)e "ili-posed."

Because the heat equation is evolutionary, it is necessary to specify an initial

colldition. However, it involves only the first time derivative of the temperature.

Therelore, it, will require specifying only the value of the solution at the initial tine
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value and not the values of any time derivatives. If we specify the value of the

solution a.t any time other than tile initial time, the problem may not be well-posed.

This is related to the fact that it is difficult to solve the heat equation backwards in

time. At any time t > tilitial, the solution to the initial value problem at an arbitrary

point in tihe domain depends on "all" of the initial data,. This implies an infinlit-e

speed of 1)ropaga.tion of effects.

The specification of t le initial condition along with tihe behavior of the solution

at, infinit.y constitutes a. Cauchy problem for the heat equation. A soltion to the

Cauchy problem is infinitely differentiable with respect to position and time for each

point, in the domain and for all values of time greater than the initial instant. This

shows the smoothing property of the heat evolution operator. A sectionally cont.iu-

uous initial state can always evolve forward in time. However, if it is not infinitely

differentiable with respect to )otll position and time, then it cannot have originated

fi'om an earlier state. Thus, the heat, equation is irreversible in that "forward" time

is distinguishable from "backward" time. This property in the mathematical model

corresponds with the second law of thermodynamics in the physical world modeled.

Thus we see that we must ha~ve the correct number of initial and boundary

conditions of the correct type in order for our problem to be well-posed and to have

a, physically realizable solution.

2.3 The Method of Successive Approximations

In order to describe the method of successive approximations, we begin by

considering the space Cb of bounded continuous functions. If .4 C R?", let V be the

set, of all functions f : A -- R". The zero function is the member of V that maps each

x E A to the zero element of R"'. Ve define addition on V by (f+g)(x) = f(x)+g(x)

for all x E A and for all .,g E V. Also, we define multiplication by a scalar on V

by (Af)(x) = A(f(x)) for each A E R and f E V. Then. V is a vector space.

\e now consider the subspace C of V defined by C = {f E V If is co:ilinuous}.
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The subspace C of continuous functions is also a vector space. W¥e now choose

the sul)space Cb of C to be the elements of C that are bounded, i.e., Cb = {f E

C I If,/(.r)lI < Al for all x E A, Al constant E R}. If A is compact, then Cb = C

since continuous mappings on a compact set are )ounded. The new space Cb is also

a vector space. We define a. norm on Cb by II.fI1 = SUP{If(x) I x E A) for all .f E C(,.

This norm will exist since f is bounded. Every Cauchy sequence in C,, converges

to a. point in Cb, so Cb is complete. Thus, Cb is a, complete normed space which is

equivalent to saying that it is a Banach space.

A contraction mapping is any mal) T : Cb(A, R"') . Cb(A, R"') such that 3 a

constant A E R, 0 < A < 1 and lIT(f) - T(g)II Allf - all for all f,g E Cb(A, RM").

The mapping T is continuous and there is a unique point in Cb that is mapped to

itself, i.e., 3 .fo E Cb(A, R..) such that T(f0 ) = fo. The point .fo is called a. fixed

point of the mapping. We now form the sequence

0

x, = T(f)

X2 = T(T(f)) = T2(f)

X'3 = T(T(T(f))) = T 3 (f)

This sequence is a Cauchy sequence and it converges to the unique fixed point of the

mapping T. Thus, we see that if we have a system which is described by a contractive

mapping or transformation that we are guaranteed to converge to a unique solution

if we take the output from the system and al)l)ly it again to the input in a repetitive

feedback process. This process is illustrated in Figure (2.1). This is the essence

of the method of successive approximations. W¥e determine ail initial "guess" for

the solution to our contractive system. W-Ve then input, this initial solution into the

system to obtain a new solution. This new solution is then used as input. to the

system ail(I this process is repeated until we have achieved the required con\vergence.
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We can illustrate the method by applying it to the solution of an integral

equation. Consider the equation

f(x) = a + k(x, )f( )d (2.1)

This equa.tion is a transformation on the function .f since we can write it as

T(f)(x) = , + k(x, ),f( )d

The transformation T will be contractive and there will be a unique solution on the

interval [0, 1] if

sup jk(x,)Id = A < 1

This places a restriction on the kernel of the integral equation transformlion k(x, ).

The solution will be the function f(x) that is the fixed point of the transformatioi.

We solve equation (2.1) with an appropriate kernel by making a trial guess for

.(() and substituting it into the right hand side of the equation. We perform the

oplerations required by the equation and obtain a new function ,(x) on the left hand

side of equation (2.1). This new function can then be substituted back in the right

hand side and the process repeated. As the process is repeated, we compare the new

function created with the old function that was input. When they are as close as we

require, the repetitive cycle is stopped and we have converged to our solution f(x).

We will show later how to apply this method to the solution of the Stefan problem

in one and two dimensions.

2.4 J'if Oic Dimensionial Problem

Our first examl)le is one dimensional diffusion or heat propagation. The l)roI)-

lem considered in this section is consistent with the problem )resented iii (7:216)

where existence and uniqueness results are presented. Suppose 1, satisfies
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(t = Ux, 0 < x < s(t), t > 0

u(0t) = f(t) f(t) >0 0, t > 0

U(x, 0) = O(X) O(x) > 0, 0 < -x < b,

0(b) = 0, b > 0

U('9(t),t) = t > 0, q (0) = b
I d
()- (t) t > 0

The boundary condition for the end x = 0 is non-homogeneous. The boundary con-

dition on the moving boundary, x = s(t), is homogeneous (Dirichlet). The initial

condition is non-homogeneous. We know from physical constraints that the temper-

ature in the domain must be bounded. This set of conditions along with the partial

dilferential equation form a well-posed problem. The domain of interest for this

problem is shown in Figure (2.2). To solve this problem, we use Green's Theoreni

as follows. We suppose that U satisfies the equation

U,. = Ui

and, following (7:220), choose

G(x, t; , r) = K(x, t; , r) - K(-, t, , r)

where 1 [(x _)21
K(xt;,)= 27rI/2(1- r)1/2exp I- 4(t- ]

so G(.r, 1; ,, r) satisfies the adjoint equation

G', = -6'
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Figure 2.1. Feedback in a. (Coitractive.System

T

4X =S(T)

x
0 b

Figure 2.2. Domain for the One Dimensional Problem
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with the boundary condition at = 0

G(x, t; 0,,r) = 0

Then, we introduce Green's identity

0 = (Gui - lGf) - (GU)r (2.2)

and we iptegrate equation (2,2) with respect to from 0 to .9(7) and with respect, to

r from 0 to t - e to obtain

0 = I-C 10 (r) [(Gt f - ua" - (ae )]ddr

= J(')(GT - LTG,), d~dT

'-' jo (GU)Ad

- jt-( (GL¢ - UGb. ) ( ,dr

- (Gt - 11G) Ie=odr (2.3)

ob o- (GU),drd

-~ ~ Mat c) (GU)T drd

It e(uation (2.3) we have used the fact that for any integrable fuiction F(7,T).

Jt-( Jo(r) F(, r)d~dT = fot- j ob F( , T)d d r

+ f J- ) F(, r)d~dr
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and have interchanged the order of integration in the last two integrals in (2.3). We

are guaranteed that we can change the order of integration by Fubini's Theorem

which states:

If F(,,r)d} dr= J{JF(,r)dr} d1
This relation holds for Lebesgue integrals whenever

I I F( ,,r) Id~dr < (,:,

Fubini's Theorem applies to Riemann integrals when they exist. If we take into

account, that U(s(),r)= 0 and that G(.',t; 0, r) = 0, equation (2.3) becomes

0= j -G(x, t; s(r), r)U(s(r), r)dr

+ j G((x, t; 0, r).f(r)dr

.Jb.G' t; , t - )(,t - e)(k

+ fG(x,t; ,O)U(,o)d (2.4)

- [fb- G(x, t; , t - t)U(,- e)d

+ °l-G(r, t; , s-1 ( ))U( ,s-()d

Combining the third and fifth integrals, taking into account that U(-, -1 (i)) Y>b =

0, and taking the limit as c 0 we obtain

U(x',It) = j (rt; S(T), f)Ut(S(T), T)dT

+f' G,(x, t, 0. T)f(r)d (2.5)

+ fl)G(,,; ,o)T(2,-O)d9
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If we take 2 of both sides of equation (2.5) and take the limit as x- s(t) and let

1/(,')1,=,(, = v-U(.,t) we obtain
ax J=3(t)

1 o
(x,, , l = 7 V(X, t) + I Gx(s(t), t; s(r), r)V(s(r), r)dr

+ oGg (s (t), t;0, T) f(r) dr (2.6)

+ C.(q(t),t;.O)S(f )

(2.7)

For details concerning the limit we have taken see Appendix B. We now integrate
the boundary condition

= 1 d t
( s(t) T t > 0

from r = 0 to 7- = to obtain

s(t) = b - k j V(s(r), r)dr (2.8)

where we have used the facts that s(O) = b, k is a constant independent of t, and

a~~t

We use equations (2.6) and (2.8) as the key part of the solution algorithm for the

one dimemsional Stefan problem.
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Algorithm 1:

1. Guess so(t), V,(l,t).=8(t).

2. Substitute into the right hand side of (2.6) and (2.8) to obtain sl(t), 1(x, i)Im.=(t)

from the left hand side of (2.6) and (2.8).

3. Iterate until convergence.

4. Substitute 4,,(t) and 1(t) into (2.5) to obtain U(x,t).

This algorithm is the embodiment of the method of successive approximations. In

step (1), we generate the initial input for the method. In step (2), we apply the

input to the system in order to allow the contractive transformations to give us a

"better" estimate of the solution to the system. We then apply this better estimate

to he tiystem input in a feedback iteration loop in step (3). We repeat until the

output from the system is within the accuracy envelope of the input that we have

determined we require. We are guaranteed that we will obtain convergence since

the transformations are contractive. We then use the solutions we obtained for the

moving boundary position s(t) and the heat flux V(t) by the method of successive

approximations in the equation for the temperature U(xx, t) in step (4).

2.5 The Two Dim enisional Problem

We now consider the two dimensional problem., Suppose that U satisfies

Ut= a2(U + UYY) (x, y) E Q(t), 0 < t < T

t) 0 (xry) E 1(1) = ff(l)

U(.x, Y, 0) = Y(.r.y) (., y) E Q(o) (2.9)

( = -l k2U., y. ) (x, Y) E r()

= l -.'(X, , 0-1 (xY) E r(t)
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We see that we lave a homogeneous (Dirichliet) boundary condition] for the temper-

ature on the boundary. The initial condition is non-homogeneous. Again, we know

from physical constraints that the temperature in the domain must be bounded.

We also require that tile temperature be bounded at tile origin x = y = 0. This

will lead to our expressing the theoretical solution to the fixed boundary problem in

terms of a Bessel function of the first kind of order zero. We will give details on this

solution in the next chapter. This set of conditions along with the partial differen-

tial equation are a well-posed problem. The domain of interest for this problem is

shown in Figure (2.3). Tile velocity of the moving boundary is proportional to the

energy flow across the boundary since the melting of the ice is directly proportional

to the amount of heat energy transferred. Fourier's law states that the heat flux is

proportional to the temperature gradient:

= -kVU (2.10)

The minus sign is due to the fact that heat energy flows in the direction of decreasing

temperature so that the heat flow vector is in the opposite direction to the temlpera-

ture gradient. Therefore, the velocity of the moving boundary is proportional to the

temperature gradient:

= -koVU

= -ko(i"T,+ AlJ) (2.11)

Since

T +j- (2.12)
it (it

we have:
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-- = ko Ux
Titd(_-lx ( .3
dyd' = -koUy (2.1:3)

To allow for different expansion rates in the I and J' directions we assume dif-

ferent, proportionality constants k, and k2 and arrive at the last. two equalios

in (2.9). Thus these equations represent the transfer of latent heat necessary to

melt or freeze the ice. They are known as 'Stefan conditions'. These expressions

for dlx/dt and dldt are similar to expressions found in (16:741-752). Since the

heal. operator L = 010t - a 'V 2 is not self-adjoint, we introduce the adjoint operator

-= -Ol - a2V2 a.d obt.aii the adjoint equation:

G, + a2 (G + G,,n) = 0 (2.[4)

If U satisfies (2.9) and G satisfies (2.14) then

0 = 2a[(U(Gx + (Unc), - (UGt)t - (UG,,),,] - (UG),

If we integrate this equation with respect to r from 0 to t - c and with respect to

and ij on the region 11(r) and let (r) = fl(r) - fQ(O), we obtain

= jot-'0() 1J 1 2 U G] + [, 2 U,,L,,,,lddlidr
- JJ ) {1(12 UG J + [,AUGj,,, + (UG)r)}(1hdTl

-*/' r) 1 + (12(T UGh,1]dod'- (2.15)

J- 10 WT~h + ((2L)fi,Idd7

- / fSi , ( <,d,,ijd - fo (T) (UG),d2didr

2-13



In equation (2.15) we have used Green's Theorem fc A " - A ds = fR f \7 A d.rdy

to obtain the boundary integrals on F(r) from the area integrals over Q(r). For

( , 11) E Q(t - c), let r(, 1 ) be determined by ( , 7) E F(t*).

We can now interchange the order of integration in the last two integrals in equa-

tion (2.15) and take these two integrals to the left hand side of the equation to

obtain

i(o) JO ([UG)rIrd~di, + J j(t-c) (UG)rdrd~dij

70'[ - j( ((9cO aUG) do,(2.16)

In equation (2.16), we have used OU/On = U(N[ + ,,i,. Thus

fJ, Gjr=t - tGlrn=o dd

+ . G[(U)l=- -( ).,l ,

I) a2(G - U-)dadr (2.17)

In equation (2.17), the last term on the left hand side and the second term on the

right hand side vanish because U vanishes on r(t). Thus,

U _jr~ q =f J (x yt; , i;, O)O( , )dU

+J 12o G-0ddr (2.18)

WVe now choose G to be

,;71 e_[(x._)'+(yIo)2]/[.t r)] (2. M)

C"((, Y' t; 71, "r) r 4a 2(t - T)
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which is the two dimensional Green's function for the heat. equation oil an infintite

domain. It is the solution of the heat equation with a. Dira.c delta. source:

O = a'V 2G + 8(a' - -)(y - ij)b(t -,r) (2.20)
Ot

The Green's function G is a. solution of the adjoint equation (2.14) and if we take

the limit as e - 0 we obtain from equation (2.18)

U(x, y, t) = G(x, y, t; , ij, 0)0( , i)dd<

+ J I',I G--Tddr (2.21)0 (r) ;aIql

In equation (2.21) we have included a, , 7 subscript on the normal derivative 0/0n be-

cause we are now going to take the partial derivative of both sides of equation (2.21)
aU ,aetelmt s(~)-+1()with respect to the normal at (x, y). We take -, take the limit as (,,,) (

and define V(:',y,1) on r(t) by V(.ryt)Ir() =alf then,~ ~~~n Y0It T1 r(t)

V 0!,,0 t)( = 0)n-,G(x , y t;  , j O)0( ',y)d~di

+-V(x, y, t)Ir(t) + J -a 2 - ddrc (.2')

r(r) Onxy(

Note that, for the integral on P(r), G and V are evaluated at (x, y, t; (u, r), y(u, T), r).

Thus

V(,y,t)1r(t) = 2 J (1(o) an ,--yG ( '  h

+2a 2 1' j j9'G Vddr (2.23)
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By integrating the last two equations from equations (2.9) we obtain the following

two equations which describe how the boundary moves with time:

31,(tlr(,) = ax(O)lr(o) - ki 0 U.(X, y, T)I(X.,y )r(r)dT (2.24)

,Yq,(r(t) = y,(O)r(o) - k2 0 (',Xy, r)I(x,,E)r(T)dr (2.25)

Here a is an index that denotes the particular point on the boundary that is of

interest. We use equation (2.24) to determine the x-coordinates of the trajectory of

this boundary point desigiated by LT and we use equation (2.25) to (letermine the

y-coordinates.

In order to solve for the temperature distribution on the domain and the po-

sition of the moving boundary, we will employ the following algorithm:

Algorithm 2:

1. Guess o(x,y,t)lr, xo(x,y,t)lr, yo(x,y, t)j.

2. Use V'o(x,,,, t)Ir' in the right hand side of equation (2.23) to obtain 1,'(xY, )1r

from the left hand side of equation (2.23). Use 11j Ir in (2.21) to calculate

UQ.r, UyJr, Use these values in (2.24) and (2.25) to obtain xrlr, YmIr.

3. Iterate until convergence.

4. Use converged values in (2.21) to obtain U.

Il step (1), we generate the initial input for the method. In step (2), we apply

tihe input to the system in order to give us a "better" estimate of the solution to

tie system. We then apply this better estimate to the system inl)Ut in a feedback

iteration loop in step (3). We repeat until the output from the system is withiin

the accuracy envelope that we require. Ve then use the solutions we obtained for

the moving boundary )osition and the heat flux in the equation for the temperature

L7(x,y, I) in step (.1).
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Figure 2.3. Domain for the Twvo Dimuensional Problem
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III. Results

3..1 T perature a-nd Moving Boundary Calculatio ns

We choose the domain at time t = 0, Q(0), to be the open disk x2 + y < 0.36

in the x-y plane. We also choose our initial condition U(x, y, 0) = q(x, y) =

JO(cv."P2 + y2) where Jo is the Bessel function of order zero. Here c is a. constant that

we need to determine. If we choose k, = k2 = 0 in equation (2.9) and thereby let

the boundary be fixed, we will have a. well-posed two dimensional initial-boundary

value problem for the heat equation. This problem can be solved by the method of

separation of variables to yield the solution

U(x, y,t) = exp(-2ct)Jo(cV/X2 + y2)

for the cylindrically symmetric fixed domain fQ(t) = SI(0), t > 0. The boundary

condition requires the temperature to be equal to zero on the boundary of the domain

for all values of time. Therefore, the above equation for U(x, y, t) is a. solution if 0.6c

is the smallest zero of the Bessel function Jo. The smallest zero of Jo is equal to

2.4048256 and we thus determine that c is equal to 4.0080426. If we substitute

this value for c into our expression for the temperature, we will obtain the initial

temperature surface shown in Figure (3.1). If we now allow time to progress from

t = 0 to t = 0.225, we will obtain the series of heat surfaces shown in Figures (A.1)

and (A.2). The exponential decay with respect to time is readily apparent in the

figures. Also, note that the boundary does not. move as time progresses. Ve now

look at. the above solution for the fixed boundary problem at. the points shown in
TabI)le (3.1) and also at the origin (0.0). We allow t to take on the values in the

interval 0 < t < 0.3. The solution at the given points is shown by tie solid curves

in Figure (3.2). Curve A is the solution U(,r, y, t) as a function of time at. the origin

(0,0). Curve B is U(x, y, 1) for (x, y) being any of the eight point.s of group B in
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HEAT SURFACE AT TIME ZERO

4A.

Figutre 3.1. Initial Condition Temperature Surface

Temperature vs. Time f or Fixed Boundary

d[

Time

Figure :3.2. Solution for a Fixed lBouuidarx
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Point Nuaber Angle(radians) X-Coordinate Y-Coordinate

1 0. 0.150OO0 0.
2 0.7853981 0.1060660 0.1060660
3 1.5707963 0.0000000 0.1500000
4 2.3561946 -0.1060660 0.1060660
5 3.1415927 -0.1500000 -0.0000000 B
6 3.9269910 -0.1060660 -0.1060660
7 4.7123890 0.0000000 -0.1500000
8 5.4977870 0.1060660 -0.1060660

1 0. 0.3000000 0.
2 0.7853981 0.2121321 0.2121320
3 1.5707963 0.0000000 0.3000000
4 2.3561945 -0.2121320 0.2121320
5 3.1415927 -0.3000000 -0.000000C
6 3.9269910 -0.2121320 -0.2121321
7 4.7123890 0.0000000 -0.3000000
8 5.4977870 0.2121320 -0.2121321

1 0. 0.4500000 0.
2 0.7853981 0.3181981 0.3181981
3 1.5707963 0.0000000 0.4500000
4 2.3561945 -0.3181981 0.3181981
5 3.1415927 -0.4500000 -0.0000000 D
6 3.9269910 -0.3181980 -0.3181981
7 4.7123890 0.0000000 -0.4500000
8 5.4977870 0.3181980 -0.3181981

Table 3.1. Solution Evaluation Points
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Initial Boundary and Integration Points

.............

(0*

.7AM 4M -4~.=.............. .m Lw 7

X-axis

Figure 3.3. Domain Increments Used for Integration

Table (3.1). The plot of the solution for each point repeats on the same curve due

Co the symmetry of thie prob~lem. Curve C is UI(x. V,, t) at the eight. points shown i ii

groupj C iin the table. And finally, curve D is U(x, y, t) at thle eight, poiiit , shown iii

gr~oup D. We now use our algorithmn to solve the fixed boundary p)roblemf. W-e evaluat-e

the integral over Q(0) in equation (2.23) by dividing the x-axis into 80 inicrements.

This will result in a division of the y-axis which is allotted lprop~ortionally as we

move across the domain along the x-axis. W-e used this proportional1 spacing to save

comp~utationl time. It is unnecessary to use a very fine grid as we are integrating over

- whent t lie leiigth of thle y-segment is short, as occurs towards thle ouiter edges of' the

(lmaill as viewed along the X-axis. This is completely clue to the specific geoinet.r.\

we have chosei for our domain. If wve had chosen a. sqjuare. then the y--axis wouild be

broken upl into thie same numbler of increments as the x-axis. N\e break tie boundarY

itit.o :32 boundary elements. and the time axis into 100 incremenits. The spatial,

diViSiOn1 Of the dom11ainl is Shown ini Figure (3.:3). W-e now iterate 12 times to reach
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BOUNDARY TIME EVOLUION

Figure 3.4. Fixed Boundary Time Evolution

'onvergence in the successive approximation. The squares ill Figure (3.2) represent.

the solution at. selected time values, again at the above selected spatial points. using

our algorithm. The squares fall on or very close to the curves which represent, the

theoretical solution. \Ve will analyze the errors later. If we draw a three-dimensional

graph showing the boundary time evolution for the fixed boundary, we will have

the result shown in Figure (3.4). The vertical lines show the time trajectories of

the boundary points used in calculating the boundary integral around the fixed

boundary. The circles represent the boundary at each moment of time.

We next use our algorithm to solve the moving boundary problem correspond-

ing to k, = ,'2 = 1.0 in equation (2.9). For this moving boundary problem, we

iterat ,d 11 times to obtain the solution indicated in Figure (3.5). The curves il

Figure (3.5) are t.',? same curves that appear in Figure (3.2) and thus they represent.

the theoretical solution. They are included for reference to compare the solution o1

t-he moving boundary problem with the solution of the theoretical fixed boundary

problvIe. The squares in Figure (3.5) represent the solution obtained using our al-

gorithm at. the same points as the data points in Table (3.1). The squares which
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Temperature vs. Time for Moving Boundary

F'igure :3..5. Solution for Moving Boundary withi ki =1,2 = 1.0

indicate our soluion of the mioving boundary problemi show a, shift. as tlhe IbouindaryN

ino\es which is as we would expect. Tihe temperature is higher at a specific point at.

a. given Chie since the boundary of the domain is moving outward fl'oni the cente(r

of the domain. The Iboundary time evoltion for tie moving botundary is shown ill

Figure (1.6). Again, the vertical lines show t-lhe time rajecories of the boundary

points used ill Calculating tie tie boundary integral around the inoving b~oundary. If

we look at dihe motion of the boundary inl two dinensions. we will obtain d e graph

shown inl Figure (3.7). The decay of the temperature surface with respect, Co Chie

is shown in t~he series of grap~hs in Figures (A.3) and (AA-). W\e can see lihat, the

teniperature falls off at a faster flhan linear rate and that tlh, surface spreads out as

(,he b~oundary exlpands. The expaisioln rate is equal in the x- and \y-direction~s.

\'\Ve now will allow different expansion rates in the x- and y-direc'tios. \\:e set

kt = 3.0 and A-'2 = 0.5. \Ve ob~tain convergence after 12 iterat.ios. Tie exp~and~ing

b~oundlary will be graphed as shown in Figure (3.8). It, is readily applarent that the
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BOUNDARY TIME EVOLUTION

Figure 3.6. Moving Boundary Time Evolution

Moving Boundary Plot

x

Figure 3.7. M~ov'ing Boundary for k,1 = 1.0 anld A-.2 1.0
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Moving Boudary Plot

;0

V4 -* 4A -4. 64 is 64 ii4 i4 Le
X

Figure 3.8. Moving Boundary for k, = 3.0 and k.-2 = 0.5

bouidary is moving much more in the x-direction than in the y-direct-ion. This case,

is no longer cylindrically symmetric and hence represents a true two-dimensiotal

solution of' the heat equation. The decay of the temperature surface is shown il

Figures (A.5) and (A.6). We can see the greater broadening of the surface in the

X-direction than in the y-direct.ion.

For added emphasis of the different expansion rates, we set k, = 5.0 and

1,2 = 0.5. The two-d(imensional moving boundary is shown in Figure (3.9). The

expansion in the x-direction is very pronounced. The three-dimensional boundary

time evolution for the moving boundary is shown in Figure (3.10). The temperature

surfaces are shown in Figures (A.7) and (A.8). Here the surface becomes much

thinner in the y-(direction as time progresses.

•L2 L.r'c~tiown "1'imps

The execution times were determined as a finiction of both the division of t le

tlime axis and the division of the space axes. The division of the boundary was allowed
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Movn Bomday Plot

0

I,

I'

a.

x

Figure 3.9. Moving Boundary for k, = 5.0 and A2 = 0.5

BOUNDARY TIME EVOLUTION

0.4

Figure 3.10. Moving Boundary Time Evolution for k = 5.0 and k2 = 0.5
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to vary from vps = 22 to rps = 32 points in increments of two elements. The three-

dimensional plots of the execution times are shown in Figures (A.9) and (A.10).The

execution times as a. function of the division of the time axis, nt, are shown ill

Figures (A.11) alnd (A.12). Here we notice that the execution time increases alost

linearly with respect to it. We expect this since the time division will determine

the amount of time spent in the integration loop for the line integral and this is a.

single loop as opposed to the nested loop for the spatial integrations. The execution

times as a function of the division of the space axes is shown in Figures (A.13) and

(A.14). Here one must remember that the division of the y-axis is dependent upoI

the division of the x-axis. Therefore, the label "nx" actually represents the conpoumd

effect of the division of both space axes. This is why the growth of the execution

time curve is geometric with respect to nx. The spatial integrations are performed

by a. nested loop which effectively represents tihe product of the spatial dimensions,

thereby reflecting a. quadratic growth rate. Thus we see that the execution times

are almost independent of the number of boundary elements and that they ldepend

most strongly on the spatial division of the domain. Therefore, in order to keep

coml)utatiol time to a. minimum, it is advisable to keel) na as small as possible

and still retain the accuracy that we require. We can allow nps to be larger since it

has a, smaller effect on the execution time. The value of the time division, Wi, will

determine the execution time at an intermediate rate. We can consult the graphs and

pick values that give reasonable execution times for the accuracy that we require.

The execution times given are all for the ELXSI computer of the Air Force Institute

of Technology.
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IV. Conclusions and Recommendations

4.1 Satisfaction of Goals

We have presented the mathematical derivation of models for 1)hase change

)roblems in one and two dimensions using the boundary element technique. Ve

then applied this boundary element technique to a, specific series of two dimensional

melting ice )roblems. We note that our models are also applicable to the solutiol

of' the diffusion equation. This thesis has amply demonstrated the facility of using

computer gral)lics as a. tool to display numerical results. The sheer volume of the

results from the calculations would overwhelm our ability to see the patterns of

meaning without the use of computer gral)hics.

4.2 Fintire IWork

This research is ripe for further development. Viable areas for further work

include:

* Consider other two dimensional domains on which to solve the heat equation.

These could include:

1. Convex and non-convex shapes.

2. Symmetric and non-symmetric shapes.

9 Extend the problem to three dimensions. For a development of the three dimen-

sional equations that is similar to our development in this thesis, see (11:105-

110).

* Allow the medium to become non-homogeneous or anisotropic. This implies

allowing Ko, c. and p to be spatially-deependent,.

* Change the boundary conditions. Possible changes include:
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1. Allow the temperature to be non-zero along parts of the boundary (no-

homogeneous problem).

2. Insulate parts of the boundary (Neumann condition).

3. Allow mixed or Robin boundary conditions along parts of the l)oundary.

9 Make the problem non-homogeneous by allowing sources and/or sinks of heat

energy within the domain.

* Allow the medium properties I 0 , c, and p to )e time-dependlnt.

o Utilize alternate methods, such as Gaussian quadrature, for performing the

numerical integrations.

o Use other numerical methods, such as finite differences or finite elements, to

solve the Stefan prol)lem.

o Perform an execution time (,omparison and analysis between the solutions using

alternate numerical methods.

o Perform an error comparison and analysis )etween the solutions using alternate

numerical methods.

o Establish the contractive nature of the mapping for the two and three dimen-

sional prol)lems.

4.3 Rem arks

We would recommend that effort be given to finding a, numerically efficient

method for performing the integrations used in solving the moving boundary prol)-

Intus. This thesis required an enormous amount of comlputer time. Further thought

must be given to improving the execution speed and the memory requirements of

the code, especially if more intricate geometries are to be considered. If fast conmput.-

ing resources are not available, the moving boundary prol)lem becomes a formidable

computational task. Also, the data files generated are rat-her large and it, is not
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possible to keep many of them on disk storage. Tape storage is one possibility. Also,

further thought could be given to reducing the amount of required information to

a. minimum. We kept only recent results, but, found later that it would be advan-

tageous to be able to refer back to earlier data.. The computer graphics files also

require a large amount of storage space.

Overall, this problem is quite intriguing and also satisfying. It is possible to

obtain good results that fit well with one's intuitive expectations. Our appetite has

certainly been whetted, and we would like to consider future work in this interestig

a rea..
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Figure A.] . Tlempherature Surfaces for Exact Solution (I ol 2)
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Figure A.2. Temperature Surfaces for Exact Solution (2 of 2)
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Figure A.4. Temperature Surfaces for k, 1  10 aII(I k2 = 1.0 (2 of' 2)
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Figure A.6. Temperature Surfaces for ki 3.0 and k-2 =0.5 (2 of 2)
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Figure A.7. Temnperature.Surfaces for k, 5.0 and k.2 =0.5 (1 of 2)
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Figuire A.S. lenipIerat tre Surfaces for k, -5~.0 and 4-2= 0.5 (2 of 2)
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Figure A.9. Three Dimensional Plot of Execution Times (I of 2)
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Appendix B. Derivation of the Limit
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We want to show, for v(i) (0 < t < a) a. continuous function, anid the moving

boundary s(t) (0 < t < o,) satisfying a. Lipschitz condition, that for every 0 < t < a

-,oO 2 , v(r)K(x, t; (r),r)dr = -v(t)+ ] v(r) di;s(T),T) (I
( .r (01 2lox IX=,(t)

Here we have used the fundamental solution to the heat equation defined by:

K(x, t; ,r) = 27r'/ 2(t 1 )/e-

In the following Cl, where i is an integer, denotes a, constant. We start, by defining

the integral 1:

2( (x, t; (T), T)dT - jK((t), 1; q(T),T)17

We can write I as the sum of two other integrals, I, and 12, where

t - s(t)11 =1 -(t (-. r) K(v, t; 5(T), T)dr

alld[

12 qT [K (x, t; q(T),rT) - K(s (t), t; (T),T)]d(T
It- (t- 7()

The Lipschitz condition on the boundary s(t) gies us

Is(t ) - s(r)I < CI t - Tl

This implies that.
1I d - 21Y61/2

-, /2 -
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so 1111 will go to zero as 6 goes to zero. We now want to look at III and in order to

(to so we introduce the integral J11 defined by

t .9(t)J *1- K(x, t;s(t), r)dT-. &,52( -r)

If we make the substitution z = (t - 7)/(X- s(t))2 ill d1 End note that x - .9(t) < 0,

we will ha.ve
4711' z-3 /2e,1/ 4z dz

Here =/( - s(t))2 . When , -+ s(t) then oo - o. Evaluating the integral for J,
1

we see that l -, -1. We look at .J1 - I,

[ {~ (x - s(T)), - ('x - "()),2

J _l = _ -(t) - h ) 4(t - 7) d

If we expand the numerator of the exponent and combine terms we see that the

exponent is bounded by

4(t- r)Is() - s(r)l(IX - 8(t)l + Ix - s(')l) < C2(I;r - s(t)l + Is(')- s(T)l)

We have used the Lipschitz condition on the boundary to obtain the last inequality.

Since we are going to let b become close to zero and hence have r become close to I

and we want x to approach s(t), we .an assume that the last inequality is less than

unity. This implies that the expression in the brackets in J, - I, will be bounded by

C'3(1I. - s(t)l + .s(1) - s(T)1)

11' we use this fact in .J - I, and use the known inequality yE- < ('4 for y 0. we

will have
J (1 3 J~t- d (<.T)1I'2 + J1-6 dr Clo61/2
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Since we know that J11 ) when x - s(t), that 1121 C.561/2, and that I = 11+ 12,

we see that

limsup i1 + 1I C6'11 (B.1).--.(,)-o1 2'< C61 BL

We can also see that II _ C. We now define the integral Ko

lxo - sTj
A0  & 2(t K r)i(x, t; 8Trd

We see that
t_6 2.(t- r)lK0~ < Ihl + ja I. (-) K7(.a',1; s(r'),T)d,"

The last integral is bounded because of the Lipschitz condition so we have

K0 < C8

We now introduce the integral K,

ft Is M)- S (r) I
K,2( -7) K(s(t), t; 4(r), r)dr

This integral is bounded by a constant because of the Lipschitz condition on the

boundary s(t). We now look at the equation

L = , ,r) - s(r I(T t; (rr) T)l t - , ()r ) - s(r) K (t),t; s(r), r)dr

Jo 2(t - t) Jo 2(t-r) T)

W\e break L into the sum of two integrals L = L1 + L 2 where

fL = j )X - 8(T) .______t) ___r

L, =_() _ -s((1,t;s(r),r)dr- f (r) - s(r) K(s(t), t; s(r), T)dT2(t --r 2(1-r

anld

L2 = ( ) K(,r, t; (T), r)dr - v(_r)_97) - )(12(1 - r) 2(1 - Tr)
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We see immediately that

lim L2 = 0
x- (t)

If we write V(T) = v(t) + (v(r) - v(t)) in our expression for LI and use (B.1) and the

fact that Ko and K, are bounded by constants, we see that

lim sup ILI + xv(t)I _ C9(812 + Sup It'(t)- ,()I
--* O O . t-6t<r<t

We thus have

lim supl I(L + L2) + M I< C9(61/2 + SUP I((t)- V(7)I
x-0- 2 t-6_r t

Since the left, side is independent of 6 and the right side goes to zero when 6 O

we ha've

lim sul) I(LI + L2 ) + 1)(t)I =
X--S(=-O

This is equivalent to

ft 1 ft [r (9
lira ( v(r)K(x, t; s(),r)dr- = ,(t)+ u(-) a I(,t; s(T),) (IT

x -(1-o Os O I

This completes our derivation. We have followed closely the proof given in (7:217-219).
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