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Abstract

In this thesis we consider problems for which the boundary is not known before
the problem is solved and must be determined as part of the solution. We consider
a time dependent problem which results in a moving boundary. We look at the
heat conduction/diffusion equation in one and two spatial dimensions. We introduce
the fundamental solution or Green’s function and use Green’s Theorem to yield a
Volterra boundary integral equation which involves an unknown function on the mov-
ing boundary. We take the limit of our integral expression to the moving houndary
to oblain a nonlinear system of integral equations for the location of the houndary
and the unknown function, We use the houndary element method to obtain a so-
lution to this system of integral equations. This solution is then substituted back
into the original Volterra equation to obtain the solution of our original problem,

Graphical results for the two dimensional problem are presented.
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THE BOUNDARY ELEMENT METHOD APPLIED
TO THE TWO DIMENSIONAL STEFAN
MOVING BOUNDARY
PROBLEM

I Introduction

1.1 Backround

Typically, the goal iu solving differential equations is to find a solution of the
equation on some domain (? given the value of the solution or the value of the normal
derivative of the solution on the boundary I’ of the domain. But, there is a class
of boundary value problems for which the boundary is not known in advance and
must be determined as part of the solution. These problems are known as unknown
boundary problems. If the differential equation is steady state (no time derivatives)
then the boundary will be unknown but will remain fixed. These are known as
free boundary problems. If the equation is evolutionary then the boundary will
move as a function of time and the domain on which we are solving the differential
equation will be time-dependent. These are known as moving boundary problems.
This thesis will deal with a two-dimensional moving boundary problem. In order
to solve a problem with an unknown houndary, we must impose extra conditions
on the solution’s behavior at the boundary in addition to the typical boundary and
initial conditions. These extra conditions are often drawn from physical concerns
such as the conservation of energy or the physical spatial constraints imposed on a

real-world problem.

Unknown boundary problems arise frequently in the physical world. They can

be found in the study of the solidification of metals, carbon diffusion in steelmaking,
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ablation of materials using a laser beam, welding of two metals, corrosion and oxi-
dation of metals, oxygen diffusion in biological tissues, the melting and freezing of
ice, thermal switching of glasses, stellar evolution, diffusive chemical reactions, elec-
trochemical machining, water seepage through dams, impulse and optimal control,
and crystal growth. This thesis will look at an example involving the melting and

freezing of ice.

When considering the melting of ice it is possible to have a single phase problem
or a two phase problem. In the single phase, the ice is initially at it’s melting
temperature U/ = 0°C' and only the heat of fusion need be transferred in order to
melt it, In the two phase problem, the ice is initially at some temperature below it's
melting point and we must iransfer heat energy in order {o bring it to the melting
poinl and then supply additional heat energy in order to salisly the heat ol fusion,

We will consider the single phase problem in this thesis.

1.2 Goals
The goals of this thesis are:

To model phase change problems in one and two dimensions.

2. To apply the boundary element technique to a two dimensional melting ice
problem.

bl

To use computer graphics as a tool to display the numerical results in a visnal
format.

1.3 Scope

We have limited ourselves to two dimensions and to a circular initial domain
in order to have an analytic solution available for comparison with the numerical
calculation results. Isotropic materials are considered to simplify the heat energy
exchange. Relatively short time intervals are considered to avoid excessive calcula-
tion time. Grid refinement is kept as minimal as possible. also to avoid excessive

compuiation time. \We neglect changes in the density under phase transilions in
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order to avoid dealing with convection currents. Convection currents will occur il
the density is allowed to change even if the liquid phase is incompressible and its
thermal expansion can be neglected (3:227). It should be noted thal our model can

be directly applied to diffusion problems,

1.4 Support

We required the use of a number of computer systems aid software packages
in order to complete this thesis. The main thrust of the computation was borne by
the AFIT ELXSI computer. The large number of test runs and the length of the
runs made the use of this computer a necessity. Shorter length computations were
performed on: a VaxStation II/GPX belonging to WL/AARM. Text procesing was
horne by AFT1"s Scientific Support Computer VAX 11/785 and also by a WL/AARM
VAX 11/785. The text processing was accomplished with the IN[}:X Document

Preparation System.

The programming code was written in the Fortran programming language.
This language was chosen because it is a standard programming language for which
optimized compilers are rea :ily available. All of the code is compliant with the ANSI
X-3.9 1978 (Fortran-77) standard. The support command language routines were
written in the Csh shell programming language. Various Unix utilities, such as awk

and sort, were used in the shell scripts.

The graphics output was generated by subroutine calls to the metalib graph-
ics package on the Scientific Support Computer and by the CA-DISSPLA graphics
package on the WL VAXen. The metalib software is a local adaptation of a package
that was developed at the Air Force Weapons Laboratory at Iirtland AFB. Local
enhancements were made by Lt Col James Lupo of AFIT/ENP. The AFIT Sun work-
station network was utilized in ru.ning the Mathematica software lor calculations

involving Bessel [unctions.
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1.5 Mathematical History of the Problem

Moving boundary problems are often referred to as Stefan problems due to the
work done by J. Stefan. in 1889, on the freezing of the ground (21:173-484) and the

melting of ice layers (22:965-983).

Actually, the first work in the moving houndary area was performed by G.
Lamé and B.P. Clapeyron in 1831. They tried to calculate the thickness ol a solid
crust on liquid cooling in the half space @ > 0 with a constant temperature on the
plane @ = 0. They discovered that the thickness is proportional to the square root

of time but did not arrive at the constant of proportionality (13:25~—256).

There are few analytic solutions to moving boundary problems in closed lorm.
Generally, they are for a one-dimensional geometry on an infinite or semi-infinite
domain with simple boundary and initial conditions and having constant thermal
properties. The solutions are usually functions of the single variable v/\/T and are
called similarity solutions. Both of the problems that Stefan worked on possess
similarity solutions of the form u = 2a/i. The value of o can be determined from
transcendental equations (17:2). The motive behind similarity solutions is to reduce
the number of independent variables by taking an algebraic combination of them

(1:63-75).

M. Brillouin reduced the solution of the Stefan problem to a system of nonlinear
integro-differential equations in 1929 (2:285-308). However, he did not try to solve

the system as he thought it would be very difficult to do so.

In 1931, L.S. Leibenzon derived an approximation for the solution of the Stefan
problem for many cases (14:435-139). Ile replaced the true temperature distribution
by a quasi-stationary solution. This solution obeved the Laplace equation in space
in a domain that had a moving boundary that corresponded with the solution of

Stefan.
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Another analytic solution technique used in moving boundary problems is
transforming the coordinates so the moving boundary becomes fixed in the new
coordinate system. The concept of conformal transformations is used in the hodo-
graph method which finds frequent application in the field of fluid mechanics. The

hodograph method is presented in (4:288-293) and (15).

Numerical methods applied to unknown boundary problems have an extensive
reperloire. Since the solution of the unknown boundary problem requires that we
solve the known boundary problem, the numerical techniques for known prehlems
find use in the unknown domain. In addition to using the known techniques, we are
able to change the vuknown problem by transformations helore their application if

we so choose.

If we do not manipulate the unknown boundary problem, then we must explic-
itly approximate the boundary throughout our calculations. This approach is called
the trial-free-boundary method for free houndary problems and is called the front-
tracking method for moving boundary problems. We will discuss these methods laler

in Lhis thesis.

Il we do transform the problem before trying to solve it, then we temporarily
remove the unknown boundary. This introduces some complications, however. The
transformed problem will be nonlinear since the original unknown boundary problem
was nonlinear. And we have to perform a recovery transform to get back the unknown
boundary at the end of the calculations. The types of transformations we could use

are called front-fixing, analytical, and fixed-domain.

In the front-fixing method, the unknown domain is transformed onto a known
domain with a more complex differential equation and houndary conditions. An

example of this method is the isotherm migration technique.

In the analytical method, we use techniques such as conformal mapping to

obtain a new problem such as an integral equation. Helmholtz used conformal map-
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ping to solve {luid flow free boundary problems in 1868. IHis work was extended
by Kirchhoff in 1869 (5:614). In 1986, Elcrat and Trefethen made their techniques
the basis of an efficient and effective method for solving integrals that are like those

found in Schwarz-Christoflel mappings (6:251-265).

The fixed-domain method uses a weak or generalized solution defined on a
known domain that implicitly has information about the unknown boundary. Ex-
amples of this method are variational inequalities and the enthaipy method for Stefan
problems. Baiocchi used variational inequalities to study porous flow problems in
earthen dams (5:618). The enthalpy H denotes the total heat content in a region.
The enthalpy method can he applied to “mushy” regions that are the result of the
mixture of two phases such as water and ice. This method is advocated by Solomon,

Alexiades, and Wilson (20:8-12).

This thesis will solve a. moving boundary problem in its original form. The
trial-free-boundary method and the front-tracking method often need to be applicd
to domains with curved boundaries. The approaches which are the most popular
use integral equations, finite-differences with boundary-fitted coordinates, or finite
clements. The boundary element method we will apply will generate a Volterra
integral equation which will allow us to integrate around the boundary of the domain
instead of a double integral over the area of the domain and will thus simplify the

calculations.

Rubinstein provided existence and uniqueness proofs for the one-dimensional
Stefan problem with general initial conditions in 1947 (18:37-54). Originally, he
transformed the domains for each phase to the interval [0. 1] by reducing the problem
to a system of nonlinear integral equations of mixed type (Fredholm with respect
to space and Volterra with respect to time). This system could then be solved by
Picard’s method of successive approximation. However, it required the evaluation of
double integrals and was therefore not effective. Again. in 1947. he gave a method of

reducing the Stefan problem to integral equations of Volterra type hased on direct
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use of the heat potential (19:217-220). Existence and convergence was guaranteed

in the small; i.e., in some neighorhood of ¢ = 0.

Kolodner (12:1-31) used integral equations to solve the Stefan problem of the
freezing of a finite depth lake in the 1950’s. He incorporated simple Green’s functions
in his solution. He noted that the cases of physical interest generate Volterra integral
equations of the second kind. These integral equations can be solved by numerical

methods even though they possess difficulties near ¢ = 0.

Avner Iriedman carried out detailed research in the problems of the evapo-
ration of a spherical drop (8:19-66) and the dissolution of a gas bubble in a liquid
(9:327-345). He also showed the application of the maximum principle to the Stefan
problem (10:201-211), Later, he compiled a text on parabolic partial differential
equalions including a separate chapter on the Stefan problem (7). He demonstrates
how a parabolic differential equation can be transformed into a Volterra integral
equalion which can then be solved by the method successive approximations. "This
is the approach that will be used in this thesis. In addition, we will utilize the
boundary element method in performing the integrations required for the solution

of the Stefan problem.

Stefan problems are essentially nonlinear because of the condition on the mov-
ing boundary, but linearity usually exists in each of the domains on hoth sides of the
boundary and we can still utilize the integral equation approach. It has the acdvan-
tage that only the values of the unknowns on the boundary enter into the solution

when it is coupled with the boundary element technique.




II. Mathematical Development

2.1 The Heat Equation

The partial differential equation which we are trying to solve is

) ,
cp?)% =V (KoVu)+Q

where ¢ is the specific heat of the material, p is the mass density, u is the temperature,
t is time, Ky is the thermal conductivity, and @ is the heat energy generated within
the domain of interest. If there are no sources or sinks within the domain then
Q = 0. Also, if we assume a homogeneous isotropic material with constant thermal
properties then the constants can he combined into a single constant I\ = Ko/cp.
We arvive at the heat equation

gﬁ = KV

ot

For one dimension the heat equation hecomes

du 0%

—_—= N —

19} da?
And for two dimensions we have

Ou I T LT
T K (-3—;-2- + 0—y2)

In order to solve the heat equation on a domain, we must supply initial and boundary

conditions.

2.2 Boundary Conditions

In solving differential equations it is not sufficient to state only the equation

itsell. A parlicular equation could have an infinite number of solutions. In order to




select a single unique solution out of this infinite number, it is necessary to specify
initial and/or houndary conditions for the equation. Attempting to fit a solution to
the conditions can be as difficult as trying to solve the differential equation in the

first place.

Initial conditions are those that must l.= atisfied by the solution throughout
the domain at the instant when consideration of the system begins. A typical ini-
tial condition will prescribe both the solution at the beginning time and the time
derivatives up through order m — 1 at the beginning time. Here m is the order of

the highest time derivative in the differential equation.

Boundary conditions specify the value of the solution on the boundary of the
domain (Dirichlet condition), the normal derivative of the solution on the boundary
of the domain (Neumann condition), or a combination of value and normal derivative

on the houndary (Robin or mixed condition).

'The prescribed initial and boundary conditions, together with the coeflicients
and any inhomogeneous terms in the partial differential equation, comprise the
“data” in the problem modeled. The solution depends continunously on the data

il small changes in the data produce correspondingly small changes in the solution.

A problem that is modeled by the partial differential equation is said to be

“well-posed” if:

1. A solution to the problem exists.
2. The solution is unique.

3. The solution depends continuously on the data.

If any of these conditions is not satisfied, then the problem is said to be “ill-posed.”

Because the heat equation is evolutionary, it is necessary to specify an initial

condition. However, it involves only the first time derivative of the temperature.

Therelore, it will require specifving only the value of the solution al the initial time




value and not the values of any time derivatives. If we specify the value of the
solution at any time other than the initial tiie, the problem may not be well-posed.
This is related to the fact that it is difficult to solve the heat equation backwards in
time. At any time t > t;ui01, the solution to the initial value problem atl an arbitrary
point in the domain depends on “all” of the initial data. This implies an infinite

speed of propagation of effects.

The specification of the initial condition along with the behavior of the solution
at infinity constitutes a Cauchy problem for the heat equation. A solution to the
C‘auchy problem is infinitely differentiable with respect to position and time for cach
point in the domain and for all values of time greater than the initial instant. This
shows the smoothing property of the heat evolution operator. A sectionally contin-
uous initial state can always evolve forward in time. However. il it is not infinitely
differentiable with respect to both position and time, then it cannot have originated
from an earlier state. Thus, the heat equation is irreversible in that “forward™ time
is distinguishable from “backward™ time. This property in the mathematical model

corresponds with the second law of thermodynamics in the physical world modeled.

Thus we see that we must have the correct number of initial and boundary
conditions of the correct type in order for our problem to be well-posed and to have

a physically realizable solution.

2.3 The Method of Successive Approxvimations

In order to describe the method of successive approximatioas, we begin by
considering the space Cp of bounded continuous functions. If 4 C R”, let V be the
set of all [unctions f: A — R™. The zero function is the memberof V that maps cach
@ € A to the zero element of R™. We define addition on V by (f+¢)(x) = [(«c)+g(r)
for all v € A and for all f.g € V. Also. we define multiplication by a scalar on V
by (Af)(@) = A([f(x)) for each A € R and [ € V. Then. V is a veclor space.

We now consider the subspace C of V defined by ¢ = {f € V| [ is continuous}.




The subspace C of continuous functions is also a vector space. We now choose
the subspace Cy of C to be the elements of C that are bounded, i.e., ¢, = {f €
C|lIIf(@)| < M for all z € A, M constant € R}. If A is compact, then C, = C
since continuous mappings on a compact set are hounded. The new space Cj is also
a vector space. We define a norm on C, by || f|| = sup{|f(2)| | v € A} for all [ € C,.
This norm will exist since f is bounded. Every Cauchy sequence in C; converges
to a point in Cy, so Cy is complete. Thus, Cy is a complete normed space which is

equivalent to saying that it is a Banach space.

A contraction mapping is any map I": Cp(A,R™) — Cp(A,R™) such that 3 a
constant A € R, 0 < A <1 and |T(f) =T (g)]] £ Alf — 9|l for all f,g € C,(AR™).
The mapping T is continuous and there is a unique point in C; that is mapped to
itself, i.e., 3 fo € Cy(A,R™) such that T(fo) = fo. The point f; is called a fixed

point of the mapping. We now form the sequence

Yo = f

ry = T(f)

x = TT() = TH/)
(

v3 = PIT() = T

T'his sequence is a Cauchy sequence and it converges to the unique fixed point of the
mapping T'. Thus, we see that if we have a system which is described by a contractive
mapping or transformation that we are guaranteed to converge to a unique solution
il we take the output from the system and apply it again to the input in a repetitive
feedbaci process. This process is illustrated in Figure (2.1). This is the essence
of the method of successive approximations. We determine an initial “guess” [or
the solution to our contractive system. We then input this initial solution into the
system to obtain a new solution. This new solution is then used as input to the

system and this process is repeated until we have achieved the required convergence.

9.4
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We can illustrate the method by applying it to the solution of an integral

equation. Consider the equation

—— / k(. €) F(€)dE (2.1)

This equation is a transformation on the function f since we can write it as

=+ / a (lf

The transformation T will be contractive and there will be a unique solution on the
interval [0, r] if
.
sup / HERIUEPR!

J‘E[OJ'] 0
This places a restriction on the kernel of the integral equation transformalion k(x,§).
The solution will be the function f(x) that is the fixed point of the transformation.
We solve equation (2.1) with an appropriate kernel by making a trial guess for
J(€) and substituting it into the right hand side of the equation. We perform the
operations required by the equation and obtain a new function f(x) on the left hand
side of equation (2.1). This new function can then be substituted back in the right
hand side and the process repeated. As the process is repealed, we compare the new
function created with the old function that was input. When they are as close as we
require, the repetitive cycle is stopped and we have converged to our solution f(x).
We will show later how to apply this method to the solution of the Stefan problem

in one and two dimensions.

2.4 The One Dimensional Problem

Our first example is one dimensional diffusion or heat propagation. The prob-
lem counsidered in this section is consistent with the problem presented in (7:216)

where existence and uniqueness results are presented. Suppose {7 satisfies




U, = Ups O<a<s(t), t>0

U = ) f20, t0
U(z0) =  $x)  Bx)20,0<c<b
#b)=0,b6>0
Us(tht) = 0 £>0, s(0)=b
Ufs(hl) = —1s(t) £ 0

The boundary condition for the end @ = 0 is non-homogeneous. The houndary con-
dition on the moving boundary, x = g(t), is homogeneous (Dirichlet). The initial
condition is non-homogeneous. We know from physical constraints that the temper-
alure in the domain must be bounded. This set of conditions along with the partial
differential equation form a well-posed problem. The domain of interest for this
problem is shown in Figure (2.2). To solve this problem, we use Green’s Theorem

as follows. We suppose that U satisfies the equation

and, following (7:220), choose

G, 4 €,7) = K(a,4€,7) = K(—a,t,6,1)

where

K(a,t;€,71) (& ~ 5)2]

= 2rl/2(t — 1)1/2 exp [— 4(t-T1)

so G, 1;€,7) satisfies the adjoint equation

G, = —Clee
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with the boundary condition at £ =0
G(z,t;0,7)=0
Then, we introduce Green's identity
0= (GU¢ - UGg)e — (GU), (2.2)

and we inlegrate equation (2.2) with respect to ¢ from 0 to s(7) and with respect to

7 from 0 to t — ¢ to obtain
t=c ra(r)
0= ./o /o [(GUg = UG ~ (GU), Jd¢dr

t- o(7)
/0 ’ /O "(GUe = UGe)e dedr

-/ a | (G dedr

t—c pa(7)
- (GU),dedr
0 b

t=c
= [ (U - UG lemutrrir

t—e¢

= [ (6Ue - UGy) emodr (23)
b t—¢

- / / (GU),drd¢

_ /"‘"" /'_:;) ), drde

In equation (2.3) we have used the fact that for any integrable function F(£,7).

[T [ et = [T [ pereds

t—c s(r)r 1ed
+/0 , (& T)dédr




and have interchanged the order of integration in the last two integrals in (2.3). We

are guaranteed that we can change the order of integration by Fubini's Theorem

/ { / F(f,r)d{} ar= | { / F(§,T)dr} de

This relation holds for Lebesgue integrals whenever

which states:

// IF(fsT)ldftIT < 0o

Fubini's Theorem applies to Riemann integrals when they exist. If we take into

account that {/(s(r),7) = 0 and that G(x,t;0,7) = 0, equation (2.3) becomes

0 = /OMG(a:,t;s(r),r)(fe(s(r).T)(IT

+ OH Ge(x, 8,0, 7) f(r)dr

- [ Gt et - et - e

+ [ Gl e 00, 00t (2.4)
0
s(f—¢

—/;( ) Gla, €t —e)U(&,t — e)dE
a(t—¢) ) 1 -1

+ [T et s OUE s (©)e

Combining the third and fifth integrals, taking into account that U(£,s™1(€))| b =

0, and taking the limit as ¢ = 0 we obtain

t
Ua,t) = /0 G, t; 8(r), T)Ve(s(), 7)dr

t CI * I ‘
+/0 (0, 1.0.7)f(r)dr (2.

o
i |
~

+ UbG(.r,tzf,O)U(E‘O)([E




d . _—
Il we take —— of hoth sides of equation (2.5) and take the limit as ¥ — s(¢) and let

dx

V() gy = %U (w,¢) we obtain

r=a(t)

, 1 e )
Vg = 5 Vi@ Olomy + [ Gelo(®)Bs(r),1)V(s(r), 7)dr
t
+ [ Gugla®), 50,1 (1)dr (2.6)

b
+ / Gl (1), 1 €.0)p(€)dE
0

For details concerning the limit we have taken see Appendix B. We now integrate

the houndary condition

1d
T(s(t),t) = ==
Ua(s(t),t) kcts(t) t>0
from 7 =0 to 7 =t to obtain
¢
s()y=b—k | V(s(r),r)dr (2.8)

0

where we have used the facts that $(0) = b, k is a constant independent of ¢, and

, J
‘. (“"t)lx-—'s(t) = %Ll(il:,t)

We use equations (2.6) and (2.8) as the key part of the solution algorithm for the

r=s(t)

one dimensional Stefan problem.
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Algorithm 1:

1. Guess SO(t)a V’O(mat)lr=a(t)’

2. Substitule into the right hand side of (2.6) and (2.8) to obtain s, (t), ¥i(,1)],—(
from the left hand side of (2.6) and (2.8).

3. Iterate until convergence.

4. Substitute s,(t) and V,(¢) into (2.5) to obtain U(ax,t).

This algorithm is the embodiment of the method of successive approximations. In
step (1), we generate the initial input for the method. In step (2), we apply the
input to the system in order to allow the contractive transformations to give us a
“better™ estimate of the solution to the system. We then apply this better estimate
to the wystem input in a feedback iteration loop in step (3). We repeat uniil the
output from the system is within the accuracy envelope of the input that we have
determined we require. We are guaranteed that we will obtain convergence since
the transformations are contractive. We then use the solutions we obtained for the
moving boundary position s(t) and the heat flux V'(¢) by the method of successive

approximations in the equation for the temperature U(a, t) in step (4).

2.5 The Two Dimensional Problem

We now consider the two dimensional problem. Suppose that U satisfies

U = Un+U,) (09)€N), 0<t<T

Uga) = 0 (e,y) € T(1) = 20(1)

Ua,y,0) = ol y) (¢ y) € 2(0) (2.9)
‘(IT; = —kUs(ogd)  (eay) € D(D)
Yo bl ey el

[
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We see that we have a homogeneous (Dirichlet) boundary condition for the temper-
ature on the boundary. The initial condition is non-homogeneous. Again, we know
from physical constraints that the temperature in the domain must be bounded.
We also require that the temperature be bounded at the origin w+ = y = 0. This
will lead to our expressing the theoretical solution to the fixed boundary problem in
terms of a Bessel function of the first kind of order zero. We will give details on this
solution in the next chapter. This set of conditions along with the partial differen-
lial equation are a well-posed problem. The domain of interest for this problem is
shown in Figure (2.3). The velocity of the moving boundary is proportional to the
cnergy flow actass the boundary since the melting of the ice is directly proportional
to the amount of heat energy transferred. Fourier’s law states that the heat flux is

proportional to the temperature gradient:
é = —kVU (2.10)

‘The minus sign is due to the fact that heat energy flows in the direction of decreasing
temperature so that the heat flow vector is in the opposite direction to the tempera-
ture gradient. Therefore, the velocity of the moving boundary is proportional to the

temperature gradient:

7 = —’\‘()VU
= —ko(W; +JjU,) (2.11)
Since
. S dy
Y = Jm— o J— 2.12
! T (2.12)
we have:




da

Ay 7
dt ol
.‘c_’l’% = —kl, (2.13)

To allow for different expansion rates in the 7 and J directions we assume dil-
ferent. proportionality constants ky and k; and arrive at the last two equations
in (2.9). Thus these equations represent the transfer of latent heat necessary to
melt or freeze the ice. They are known as ‘Stefan conditions’. These expressions
for dw/dt and dy/dt are similar to expressions found in (16:741-752). Since the
heat operator L = 0/0t — «*V? is not self-adjoint, we introduce the adjoint operator

= —0/Ot — a*V? and obtain the adjoint equation:
Gr+ @ (Gee + Gyy) =0 (2.14)
If U salisfies (2.9) and G satisfies (2.14) ‘then
0 = C[(UeG) + (UyG)y = (UGe)e — (UGy)y) = (UG),

If we integrate this equation with respect to 7 from 0 to ¢ — € and with respect to ¢
and 7 on the region (7) and let Q(T) = (1) — Q(0), we obtain
" Ue G U,G), }dédnd
0 = /0 - ){[a ¢ Gle + [® U,G), }dédndr
t~
- / M UGl + UG, + (UG, Ydedudr
= / /r( [2U:Ghg + PU,Gy)dodr (2.15)

fme
- / /l( )[(leGﬁﬁﬁ + PUG,)y)dodr
o Jrr

(e t—e
- "G, dedndr — ‘@),
/0 /‘;(0)(( G),dédyd /0 »/fl(r)(( G dédndr
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In equation (2.15) we have used Green’s Theorem §. A-fds = IYAR A dady
to obtain the boundary integrals on I'(7) from the area integrals over Q(r). For

(&,n) € Q(t =€), let t*(€,9) be determined by (£,9) € T(t*).

We can now interchange the order of integration in the last two integrals in equa-
tion (2.15) and take these two integrals to the left hand side of the equation to

obtain

f—e t=—¢
IG),drd TG drdéd
/n(o)/o (UG) drdédy +/(t ) /t_(m)(l )rdrdédy

t- "
/ c/ ( QC’OL - LQU(?()JU dr (2.16)
I'(r) n dan

In equation (2.16), we have used U /dn = Ugirg + Uy, Thus

,"r=—c— I”r=
/ﬂ(o)[cq e = UG =0 dEdy

TG rmtee = (UG rmtoten
+ fl(t—e)[(L G)lr=t (UG r=to(e,m)dédn

¢ (?[ oG
Juidl § ubid 217
/ /r(r) ™ 4 o )dodr (2.17)

In equation (2.17), the last term on the left hand side and the second term on the

right hand side vanish hecause U vanishes on I'(¢). Thus,

7 = ) = S .
/Q(t—c)c Clr=t-cdtely /n(o)c (@, y,t;€m,0)8(&, n)d€dn

t—e
2 —
/ /F(r)a Gf)n dodr (2.18)

We now choose ¢ to he

{ 1 ~[(x~8)? -, da(t- .
Gla,y i 6,1) = T (=€) +(y=n)?)/[ra*(t=r)] (2.19)




which is the two dimensional Green’s function for the heat equation on an infinite

domain. It is the solution of the heat equation with a Dirac delta source:

E)(-)—Cit = a®V2G + 8(a — €)8(y — n)é(t —17) (2.20)

The Green’s function G is a solution of the adjoint equation (2.14) and if we take

the limit as ¢ = 0 we obtain from equation (2.18)

Ua,y,t) = /Q o G,y 8560, 0)B(E, n)dédy

-—-l d 2,21
//l(r)a 0115,,(6” ( )

In equation (2.21) we have included a &, 5 subscript on the normal derivative d/on be-

cause we are now going to take the partial derivative of hoth sides of equation (2.21)

with respect to the normal at (x,y). We take take the limit as (@, y) — I'{t),

U
81"(“,11,
; v
and define V(x,y,t) on T'(t) by V(2.4 t)|ry = 5=
M ry

then

Vi Ol = [, anw"(‘ it 6,0, 0)8(6 e

1 t G
—‘/"’ N / / L 2,22
+3 (@, ¥, )| + b Jro « a”a‘y‘ dodr (2.22)

[3

Note that, for the integral on I'(7), G'and V are evaluated at (x, y,t; &(0, 7),9(0, T), 7).
Thus

’ a '
V(@,y.8)|re =2 /;)(0) o Go(E.n)dédy
ry

-}-7(1//l oG Vidodr (2.23)

N
| O]

*(r) Oyy




—\_

By integrating the last two equations from equations (2.9) we obtain the following

two equations which describe how the boundary moves with time:

t
2o ()l = 22(0)lr(o) — M1 /0 Ur(@ ¥ T (eawe)er(ndr (2.24)

t
Yo(t)|rey = ¥o(0)lro) — k2 /0 Uy(@, ¥ T)l(wope)er(ndr (2.25)

Here ¢ is an index that denotes the particular point on the boundary that is of
interest. We use equation (2.24) to determine the x-coordinates of the trajectory ol
this boundary point desigrated by ¢ and we use equation (2.25) to determine the

y-coordinates.

In order to solve for the temperature distribution on the domain and the po-

sition of the moving boundary, we will employ the following algorithm:

Algorithm 2:

o

. Guess Vo(x,4,t)|r, 2ol 9,8)|r, yol2,y,8)|r.

o

. Use Vo(, y,t)|r in the right hand side of equation (2.23) to obtain Vi(w,y,!)|r
from the left hand side of equation (2.23). Use Vj|r in (2.21) to calculate

Uy |r, Uylr. Use these values in (2.24) and (2.25) to obtain a4|r, yi|r-
3. Iterate until convergence.

4. Use converged values in (2.21) to obtain U.

In step (1), we generate the initial input for the method. In step (2), we apply
the input to the system in order to give us a “better” estimate of the solution to
the system. We then apply this better estimate to the system input in a leedback
iteration loop in step (3). We repeat until the output from the system is within
the accuracy envelope that we require. We then use the solutions we obtained for
the moving boundary position and the heat flux in the equation for the temperature

U(a.y ) instep (1).
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III. Results

3.1  Temperature and Moving Boundary Calculations

We choose the domain at time ¢ = 0, Q(0), to be the open disk ? + y* < 0.36
in the x-y plane. We also choose our initial condition U(x,y,0) = é(a.y) =
Jo(ey/x? + y2) where Jy is the Bessel function of order zero. Here ¢ is a constant that
we need to determine. If we choose &y = k; = 0 in equation (2.9) and thereby let
the boundary be fixed, we will have a well-posed two dimensional initial-boundary
value problem for the heat equation. This problem can be solved by the method of

separation of variables to yield the solution
Ua,y,t) = exp(—=2c%t)Jo(ev/a% + 42)

for the cylindrically symmetric fixed domain Q(t) = Q(0), ¢ > 0. The boundary
condition requires the temperature to be equal to zero on the boundary of the domain
for all values of time. Therefore, the above equation for U(wx, y,t) is a solution if 0.6¢
is the smallest zero of the Bessel function Jy. The smallest zero of Jy is equal to
24048256 and we thus determine that ¢ is equal to 4.0080426. If we substitute
this value for ¢ into our expression for the temperature, we will obtain the initial
temperature surface shown in Figure (3.1). If we now allow time to progress from
t =0 to t = 0.225, we will obtain the series of heat surfaces shown in Figures (A.l)
and (A.2). The exponential decay with respect to time is readily apparent in the
figures. Also, note that the houndary does not move as time progresses. We now
look at the above solution for the fixed boundary problem at the points shown in
Table (3.1) and also at the origin (0.0). We allow ¢ to take on the values in the
interval 0 £t £ 0.3. The solution at the given points is shown by the solid curves
in Figure (3.2). Curve A is the solution (2. y,t) as a function of time at the origin

(0,0). Curve B is U(a,y,1) lor (x,y) being any of the eight points of group B in
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Figure 3.2. Solution for a Fixed Boundary




Point Number Angle(radians) X-Coordinate  Y-Coordinate

1 0. 0.1500000 0.

2 0.7853981 0.1060860 0.1060660
3 1.5707963 0.0000000 0.1500000
4 2.3561045 -0.1060660 0.1060660
5 3.1415927 -0.1500000 -0.0000000
6 3.9269910 -0.1060660 -0.1060660
7 4.7123890 0.0000000 -0.1500000
8 5.4977870 0.1060860 -0.1060660
1 0. 0.3000000 0.

2 0.7853981 0.2121321 0.2121320
3 1.5707963 0.0000000 0.3000000
4 2.3561945 -0.2121320 0.2121320
5 3.1415927 -0.3000000 -0.0000000
] 3.9260910 -0.2121320 -0.2121321
7 4.7123890 0.0000000 -0.3000000
8 5.4977870 0.2121320 -0.2121321
1 0. 0.4500000 0.

2 0.7853981 0.31819081 0.3181981
3 1.5707963 0.0000000 0.4500000
4 2.3561945 -0.3181981 0.3181981
3 3.1415927 -0.4500000 -0.0000000
6 3.9269910 -0.3181980 -0.3181981
7 4.7123800 0.0000000 -0.4500000
8 5.4977870 0.3181980 -0.3181981
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Figure 3.3. Domain Increments Used for Integration

‘able (3.1). The plot of the solution for each point repeats on the same curve due
to the symmetry of the problem. Curve C is U(a.y,1) at the eight points shown in
group C in the table. And finally, curve D is U(x, y,t) at the eight points shown in
group D. We now use our algorithm to solve the fixed boundary problem. We evaluate
the integral over Q(0) in equation (2.23) by dividing the x-axis into 80 incremeuts.
This will result in a division of the y-axis which is allotted proportionally as we
move across the domain along the x-axis. We used this proportional spacing {o save
computation time. It is unnecessary to use a very fine grid as we are integrating over
v when the length of the y-segment is short, as occurs towards the outer edges of the
domain as viewed along the x-axis. This is completely due to the specilic geometry
we Liave chosen for our domain. If we had chosen a square. then the y-axis would be
broken up into the same number of increments as the x-axis. We break the boundary
into 32 boundary elements. and the time axis into 100 increments. The spalial

division ol the domain is shown in Figure (3.3). We now ilerate 12 times to reach
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BOUNDARY TIME EVOLUTION

Figure 3.4. Fixed Boundary Time Evolution

B

convergence in the successive approximation. The squares in Figure (3.2) represent
the solution at selected time values, again at the above selected spatial points. using
our algorithm. The squares fall on or very close to the curves which represent. the
theoretical solution. We will analyze the errors later. If we draw a three-dimensional
graph showing the boundary time evolution for the fixed boundary, we will have
the result shown in Figure (3.4). The vertical lines show the time trajectories of
the boundary points used in calculating the boundary integral around the fixed

houndary. The circles represent the boundary at each moment of time.

We next use our algorithm to solve the moving boundary problem correspond-
ing to k; = k = 1.0 in equation (2.9). For this moving boundary problem, we
ilerated I1 times (o obtain the solution indicated m Figure (3.5). The curves in
Figure (3.5) are the same curves that appear in Figure (3.2) and thus they represent
the theoretical solution. They are included for reference to compare the solution of
the mo\'iﬁg boundary problem with the solution of the theoretical fixed houndary
problem. The squares in Figure (3.5) represent the solution obtained using our al-

gorithm at thie same points as the data points in Table (3.1). The squares which

3-5




Temperature vs. Time for Moving Boundary
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Figure 3.5. Solution for Moving Boundary with &y = &y = 1.0

indicate our solution of the moving boundary problem show a. shift as the boundary
moves which is as we would expect. The temperature is higher at a specific point at
a given lime since the boundary of the domain is moving outward from the center
of the domain. The boundary time evolution for the moving boundary is shown in
Figure (3.6). Again. the vertical lines show the time trajectories of the houndary
points used in calculating the the boundary integral around the moving boundary. If
we look at the motion of the boundary in two dimensions. we will obtain the graph
shown in Figure (3.7). The decay of the temperature surface with respect to time
is shown in the series of graphs in Figures (A.3) and (A.1). We can see that the
temperature falls off at a faster than linear rate and that th- surface spreads out as

the boundary expands. The expansion rate is equal in the x- and y-directions.

We now will allow different expansion rates in the x- and y-directions. \We set

ki = 3.0 and ky = 0.5. \We obtain convergence after 12 iterations. The expanding

boundary will be graphed as shown in Figure (3.8). It is readily apparent that the
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BOUNDARY TIME EVOLUTION

FFigure 3.6. Moving Boundary Time Evolution
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Figure 3.7. Moving Boundary for by = 1.0 and &y = 1.0
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Figure 3.8. Moving Boundary for &y = 3.0 and &, = 0.5

houndary is moving much more in the x-direction than in the y-direction. This case
is no longer cylindrically symmetric and hence represents a true two-dimensional
solution of the heat equation. The decay of the temperature surface is shown in
Figures (A.5) and (A.6). We can see the greater broadening of the surface in the

x-direction than in the y-direction.

For added emphasis of the different expansion rates, we set ky = 5.0 and
k, = 0.5. The two-dimensional moving boundary is shown in Figure (3.9). The
expansion in the x-direction is very pronounced. The three-dimensional houndary
time evolution for tlie moving boundary is shown in Figure (3.10). The temperature
surfaces are shown in Figures (A.7) and (A.8). Here the surface becomes much

thinner in the y-direction as time progresses.

2.2 [xceution Times

The execution times were determined as a function of both the division of the

{ime axis and the division of the space axes. The division of the boundary was allowed

s‘.'é
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Figure 3.9. Moving Boundary for &y = 5.0 and &k, = 0.5

BOUNDARY TIME EVOLUTION

Figure 3.10. Moving Boundary Time Evolution for k& = 5.0 and k&, = 0.5
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to vary from nps = 22 to nps = 32 points in increments of two elements. The three-
dimensional plots of the execution times are shown in Figures (A.9) and (A.10).The
execulion limes as a function of the division of the time axis, nt, are shown in
Figures (A.11) and (A.12). Here we notice that the execution time increases alimost
linearly with respect to nt. We expect this since the time division will determine
the amount of time spent in the integration loop for the line integral and this is a
single loop as opposed to the nested loop for the spatial integrations. The execution
times as a function of the division of the space axes is shown in Figures (A.13) and
(A.14). Here one must remember that the division of the y-axis is dependent upon
the division of the x-axis. Therefore, the label “nx” actually represents the compound
effect of the division of both space axes. This is why the growth of the execulion
time curve is geometric with respect to na. The spatial integrations are performed
by a nested loop which effectively represents the product of the spatial dimensions,
thereby reflecting a quadratic growth rate. Thus we see that the execution times
are almost independent of the number of boundary elements and that they depend
most strongly on the spatial division of the domain. Therefore, in order to keep
computational time to a minimum, it is advisable to keep nx as small as possible
and still retain the accuracy that we require. We can allow nps to he larger since it
has a smaller effect on the execution time. The value of the time division, ni, will
determine the execution time at an intermediate rate. We can consult the graphs and
pick values that give reasonable execution times for the accuracy that we require.
T'he execution times given are all for the ELXSI computer of the Air Force Institute

of Tecimology.
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IV. Conclusions and Recommendations

4.1 Satisfaction of Goals

We have presented the mathematical derivation of models for phase change
problems in one and two dimensions using the boundary element technique, We
then applied this houndary element technique to a specific series of two dimensional
melting ice problems. We note that our models are also applicable to the solution
of the diffusion equation. This thesis has amply demonstrated the facility of using
computer graphics as a tool to display numerical results. The sheer volume ol the
results from the calculations would overwhelm our ability to see the patterns of

meaning without the use of computer graphics.

4.2 Future Work

This research is ripe for further development. Viable areas for further work

include:

o Consider other two dimensional domains on which to solve the heat equation.
‘I'hese could include:
1. Convex and non-convex shapes.
2. Symmetric and non-symmetric shapes.

o Extend the problem to three dimensions. For a development of the three dimen-

sional equations that is similar to our development in this thesis, see (11:105-

110).

o Allow the medium to become non-omogeneous or anisotropic. This implies

allowing IV, c. and p to be spatially-dependent.

o Change the boundary conditions. Possible changes include:
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1. Allow the temperature to be non-zero along parts of the boundary (non-

homogeneous problen:).

2. Insulate parts of the boundary (Neumann condition).

3. Allow mixed or Robin boundary conditions along parts of the boundary.
Make the problem non-homogeneous by allowing sources and/or sinks of heat
energy within the domain.

Allow the medium properties Ko, ¢, and p to be time-dependent.

Utilize alternate methods, such as Gaussian quadrature, for performing the

numerical integrations.

Use other numerical methods, such as finite differences or finite elements, to

solve the Stelan problem.

Perform an execution time comparison and analysis between the solutions using

alternate numerical methods.

Perform an error comparison and analysis between the solutions using alternate

numerical methods.

Establish the contractive nature of the mapping for the two and three dimen-

sional problems.

Remarks

We would recommend that effort be given to finding a numerically efficient

method for performing the integrations used in solving the moving boundary prob-

lems. This thesis required an enormous amount ol computer time. Further thought

must be given to improving the execution speed and the memory requirements of

the code, especially if more intricate geometries are to be considered. If fast comput-

ing resources are not available, the moving boundary problem becomes a formidable

computational task. Also. the data files generated are rather large and it is not
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possible to keep many of them on disk storage. Tape storage is one possibility. Alsc,
further thought could be given to reducing the amount of required information to
a minimum. We kept only recent results, but, found later that it would be advan-
tageous to be able to refer back to earlier data. The computer graphics files also

require a large amount of storage space.

Overall, this problem is quite intriguing and also satisfying. It is possible to
obtain good results that fit well with one’s intuitive expectations. Our appetite has
certainly heen whetted, and we would like to consider future work in this interesting

area,
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Appendix B. Derivation of the Limit
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We want to show, for v(t) (0 <t < #) a continuous function, and the moving

boundary s(t) (0 <t £ o) satisfying a Lipschitz condition, that for every 0 < { < @

.9t .
lim — [ o(7)K(x,t;8(7), 7)dr

A2 l)=0 8:1' 0

1 t J .
§v(t)+/0 L’(r)[zi;I\(.z,i,s(r),r)] dr

r=s({)

Here we have used the fundamental solution to the heat equation defined by:

Bt —4)2}
K(x,t:€,7) ! Wt —7)

T ri(f — T)1/2€

In the following C', where ¢ is an integer, denotes a constant. We start by defining

the integral I

t o —a(r)
T Jis 2t = 1)

I\’((I:J‘;S(T).T)(IT _ /f S(t) - 3(T)

s ‘—Z(t—:_T)—I\ (3(1)9 1; 'S(T)’ T)(]T

We can write [ as the sum of two other integrals, I; and I, where

=t
I = s A= 7) v(x,t8(r),7)dr

and

I, = /;_6 1(2%;_-%%—) (K (a,t;8(7),7) = K(s(t),t;8(7), 7)) dr

The Lipschitz condition on the boundary s(t) gives us
|s(t) = s(r)] < Cift — 7]

This implies that

t
|L| < Cl/ & = 201"/

t=5 (t —7)1/2




so |I,] will go to zero as § goes to zero. We now want to look at |I;] and in order to

do so we introduce the integral .J; defined by

t a—s(t)
t-§ 2(t — 1)

K(a,t;8(t), 7)dr

J1 =

If we make the substitution z = (t — 7)/(2 — 8(£))? in J; and note that x — s(¢) <0,

we will have

1 (,,—3'2—14: -
J1=_47r1/2/(;é 2=/

Here ¢ = 6/(a — s(t))2. When & — s(t) then ¢ — oco. Evalualing the integral [or J;

we see that J, — —é. We look at Jy — I;

4

' {(;z' —s(1))? — (v .s(f))')}
t g —a(t) . - —
J—-L= ./z-s ;W—;(—:%I\(m,t;s(t),r) l1—¢ 4t —) dr

If we expand the numerator of the exponent and combine terms we see that the

exponent is hounded by

|
4(t — )

|s(t) = s(r)(Je = s()] + la — s()]) < Calfr = s(t)] + |s(t) = s(7)])

We have used the Lipschitz condition on the boundary to obtain the last inequality.
Since we are going to let 6 become close to zero and hence have 7 hecome close to ¢
and we want @ to approach s(t), we can assume that the last inequality is less than

unity. This implies that the expression in the hrackets in Jy — I} will be bounded by
Ca(|x = s(8)] + [s(1) = s(7)])

I we use this fact in Jy — I; and use the known inequality ye=¥ < (' for y > 0. we
will have

s — | SCP,/ dr

t t
' < 1/2
s __——(f — T)1/2 4+ CS/t‘—S dr > (105
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1
Since we know that J; — -3 when & — s(t), that || < C56'/2, and that [ = I;+1,,
we see thatl

lim sup
T—2(t)—-0

I+= |<c' 6172 (B.1)

We can also see that |I;] < C7. We now define the integral Iy

I{O_/is-l%(%_—(;;lf\(z ts(r). 7)dr

We see that

. t1s(1) —s .
Ko < L] + /f-s |—‘;—('-2-({5—_—:_(-)z-)—lI\(:l',i.;s(r), T)dr

The last integral is bounded because of the Lipschitz condition so we have
Ko < (s

We now introduce the integral It

This integral is bounded by a constant because of the Lipschitz condition on the

boundary s(t). We now look at the equation

L= / ‘2(t I\(1 t;s(7), )dr—/ot l?(T)i(Qt()—t—T__—sglj\’(S(t),t;S(T),T)([T

We break L into the sum of two integrals L = L; + Ly where

L= [; v(r);;(;j(:))h’(.r,t;s(r),r)(lr—/t; v(r)———-sg()l—_ul_(;)I\'(s(t),t;s(r)sr)(lr
and

O = I N RO R L RN R
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We see immediately that

lim Ly, =0

x—ge(t)

If we write v(7) = v(t) + (v(7) — v(t)) in our expression for L; and use (B.1) and the

fact that Iy and Iy are bounded by constants, we see that

limsup |L, + -v )] < Co(6Y% + sup |o(t) — v(7)]

x—s(t)=0 t—8<r<t

We thus have

limsup |(Ly + L2) + £v 1)) < Co(6% 4 sup |o(t) — v(r)|

x=—23(t)=0 t=6<r<t

Since the left side is independent of é and the right side goes to zero when é — 0.
we have

limsup |[(Ly + L) + év(t)l =0

X=—s(t)=0

This is equivalent to
{

t
lim 03 o(r) N (x,t; 8(7), )clr-——v +/ (T [91\(1 t;s(1), )] dr

F=a(}=0 J Jo

This completes our derivation. We have followed closely the proof given in (7:2
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