Donohue

Landfill Impact Evaluation

USAR Center Complex and Training Area Milwaukee, Wisconsin

U.S. Army Corps of Engineers Omaha District

April 1985

DEFIRITION OF ATOMANT A Approved to: public felocies Distances an Approved

91-04107

Engineers & Architects

Best Available Copy

Donohue

April 8, 1985

Fort McCoy AFZR-FDP Sparta, WI 54656-5000

- Attn: Mr. John Ipsen, Chief Engineering and Planning Services
- Re: Transmittal of Report Titled "Landfill Impact Evaluation" U.S. Army Reserve Center Complex and Training Area Milwaukee, Wisconsin Donohue Project No. 13590.008

Dear Mr. Ipsen:

Enclosed is our final report discussing our soils, groundwater, and surface water evaluation at the USAR Center Complex and Training Area on West Silver Spring Drive in Milwaukee, Wisconsin. We found no significant impact of the landfill on the soil and groundwater immediately surrounding the landfill or on the surface water of Lincoln Creek. We recommend that the monitoring wells used in this study be abandoned in accordance with DNR guidelines to eliminate the possibility of well destruction or groundwater contamination by vandals.

If you have any questions concerning the results discussed in this report, please contact this office.

Very truly yours,

DONOHUE & ASSOCIATES, INC.

Richard E. Fedler, P.E. Vice President

Muchael & Crosser

Michael L. Crosser Project Manager

MC/dlj

cc: Major Donald Rinzel

R/COE2/AB1

Donohue & Associates, Inc. 4738 North 40th Street Sheboygan, Wisconsin 53081

Engineers & Architects 414-458-8711

LANDFILL IMPACT EVALUATION UNITED STATES ARMY RESERVE CENTER COMPLEX AND TRAINING AREA 84TH DIVISION MILWAUKEE, WISCONSIN

TABLE OF CONTENTS

٠

TABLE OF CONTENTS	i
LIST OF TABLES	i i
LIST OF FIGURES	ii
INTRODUCTION	1
REGIONAL GEOLOGY AND HYDROGEOLOGY	2
FIELD INVESTIGATION PROCEDURES	2
Well Locations	2
Monitoring Geology Groundwater Flow	2 6 6
WELL DEVELOPMENT AND SAMPLING	6
Development Purging Sample Collection Field Measurements and Filtration Preservation Field Quality Control Recordkeeping and Chain of Custody Surface Water Sampling	6 8 9 12 12 13 13
RESULTS	13
Field Measurements and Observations Groundwater Chemistry Surface Water Chemistry	13 13 20
CONCLUSIONS	20
RECOMMENDATIONS	20
REFERENCE	

•

APPENDIX

LIST OF TABLES

Table		Page
1	Monitoring Well Locations and Elevations Wisconsin State Plane Coordinate System, South Zone	4
2	Water Elevation and Well Volumes Purged	10
3	Field Measurements	14
4	Laboratory Analysis (January 1985 Sampling Program)	16
5	Laboratory Analysis (February 1985 Sampling Program)	18
6	Lincoln Creek Analysis	21

LIST OF FIGURES

.

Figure		Page
1	Groundwater Monitoring Wells	3
2	Groundwater Contour Map	7

REP/COE2/AB3

i i

INTRODUCTION

The Department of the Army proposes expansion of the building complex and development of the outdoor training area at the Milwaukee USAR Center Complex and Training Area located on West Silver Spring Drive in Milwaukee, Wisconsin. In February, 1984, the Department of the Army issued an Environmental Assessment and a Finding of No Significant Impact Report addressing the project (Department of the Army, 1984).

The land use history section of the Environmental Assessment indicates that the Milwaukee Sanitation Department disposed of approximately 500,000 cubic yards of solid waste on the present complex site between 1957 and 1966. According to correspondence from the City of Milwaukee, the material disposed at the site was furniture, appliances, street sweepings, leaves, tin cans, bottles, ashes, cinder, and sewer pipe. There were no newspapers, garbage, or other types of putrescible materials disposed. No industrial or hazardous waste was accepted. During the landfill operation, earth berms were constructed to minimize the flow of potential pollutants to Lincoln Creek which flows In 1983, the Wisconsin DNR between the two landfill cells. collected a sample of seepage from the landfill berm to Lincoln Creek. The DNR had the sample analyzed at the Wisconsin State Laboratory of Hygiene and concluded that the seepage discharge contain pollutant concentrations that would be did not detrimental to public health, wildlife, fish and aquatic life. (Department of the Army, 1984).

In 1983, samples of Lincoln Creek upstream and downstream of the landfill cells were collected and analyzed. The analysis showed no indication of pollution from the landfills. (Department of the Army, 1984).

In September of 1984, the U.S. Army Corps of Engineers, Omaha District retained Donohue to conduct evaluations to determine the impact of the landfill on nearby soil and groundwater. Donohue installed monitoring well nests to determine the water quality of the groundwater near the surface of the groundwater table and at depth. During the soil boring operations, soil samples were analyzed in the field using an HNu photoionization detector to determine the presence of hydrocarbons. The air in the bore hole was also analyzed to determine the presence of methane or other hydrocarbons.

In this report we present a description of the regional geology and hydrogeology, a description of our field investigation procedures, the results of our investigation and our conclusions and recommendations.

REGIONAL GEOLOGY AND HYDROGEOLOGY

The Army Reserve site is located over glacial drift material. The most important glacial unit occurring at the site is interpreted to be the Oak Creek formation which consists of fine grained till, lacustrine clay, silt, and sand and glaciofluvial sand and gravel. Beneath the Oak Creek till is the New Berlin till which is substantially coarser grained, consisting of silty and clayey sands and gravels. Below the glacial material is bedrock which consists of Silurian Age Niagara dolomite which forms the first aquifer in the area.

FIELD INVESTIGATION PROCEDURES

Well Locations

Nine nested wells were placed surrounding the closed landfill to monitor the groundwater around the site. The general locations The location coordinates and elevation are shown on Figure 1. Wells 101 and 102 were located in the are given in Table 1. suspected upgradient groundwater flow direction. All other wells placed to surround the site and detect downgradient were contamination if present. Nested wells were installed to serve two purposes. First, they allowed the determination of the water table and vertical hydraulic gradients in the site; secondly, they allowed groundwater monitoring at the water table surface and deeper in the groundwater flow system. The depth of the shallow observation wells was 20 feet while the deeper wells were generally 40-45 feet deep.

Well Installation Procedures and Borehole Monitoring

Wells were constructed of 2 inch, Schedule 40 PVC. Observation wells were fitted with a 10 foot section of factory slotted, No. 10 slot well screen, while piezometers were constructed with 5 foot slotted sections. Wells were installed using a 6 inch O.D. hollow stem auger or flight augers and roller bitting into bedrock. Standard split-spoon samples were taken at 5 foot intervals. Boring logs and well installation diagrams are attached as Appendix A.

Well screens were surrounded by a silica sand pack which extends to 7 feet below ground surface in observation wells and approximately 1 foot above the screen in piezometers. In shallow observation wells a minimum 2 foot thick bentonite seal followed by a concrete cap was placed at the top of the installation. In the piezometers, a minimum 5 foot bentonite seal was placed above the screen followed by either bentonite cement grout or the hole was allowed to cave above the seal and backfilled with sand. At the surface, a second 2 foot thick bentonite seal was placed with a concrete cap above.

TABLE 1 MONITORING WELL LOCATIONS AND ELEVATIONS WISCONSIN STATE PLANE COORDINATE SYSTEM, SOUTH ZONE

Well No.	Y Value	X_Value	Elevation (NVD 1929)
OW101	417,120.9	2,539,200.1	686.95 TOPP 686.89 TPVC
P101	417,122.9	2,539,195.3	686.88 TOPP 686.86 TPVC
OW102	417,114.4	2,539,732.2	686.20 TOPP 686.04 TPVC
P102	417,113.1	2,539,738.2	686.12 TOPP 685.99 TPVC
OW103	415,878.8	2,538,943.5	681.72 TOPP 681.18 TPVC
P103	415,879.8	2,538,946.4	682.11 TOPP 681.98 TPVC
OW 104	416,344.7	2,540,766.0	692.25 TOPP 691.98 TPVC
P104	416,341.5	2,540,761.6	692.39 TOPP 692.11 TPVC
OW 105	415,395.9	2,539,101.0	677.47 TOPP 677.28 TPVC
P 105	415,392.3	2,539,100.6	677.67 TOPP 677.43 TPVC
OW 106	415,405.4	2,539,464.0	677.21 TOPP 677.07 TPVC
P106	415,408.5	2,539,462.7	677.17 TOPP 677.02 TPVC
OW 108	415,740.9	2,540,544.3	696.90 TOPP 696.58 TPVC

TABLE 1 Continued

Well No.	Y Value	X Value	Elevat (NVD 19	ion 29)	
P108	415,733.8	2,540,540.	4	696.62 696.48	TOPP TPVC
OW109	415,810.7	2,540,797.	2	695.15 694.99	TOPP TPVC
P109	415,814.4	2,540,793.	9	695.01 694.88	TOPP TPVC
OW111	415,375.6	2,541,016.	9	691.07 690.93	TOPP TPVC
P111	415,372.3	2,541,016.	7	691.10 690.97	TOPP TPVC
TOPP = Top TPVC = Top	of Protector Pipe of PVC				

NVD = National Vertical Datum

R/COE2/AA8

During drilling, a photoionization analyzer (HNu) was used to determine presence of organic vapors. Auger cuttings and split spoon samples were placed in zip-lock bags and allowed to equilibrate with the air for 5-10 minutes, then the HNu probe was inserted through a small opening in the bag and the reading recorded. Water samples collected during drilling from the well were placed in a glass jar and capped with a screw-on lid. The HNu probe was inserted through a small hole in the lid and the measurement recorded. Vapors in the borehole were also monitored for oxygen concentration and the lower explosive limit using a combustible/oxygen monitor.

Geology

Bedrock across most of the site was usually deeper than approximately 45 feet, however, at Bl09 and Bl08 bedrock was encountered at a depth of 27 feet and 32 feet respectively and at Bl11 auger refusal occurred at 38.5 feet. These depths indicate that a bedrock high occurs in the Southeast portion of the site and the bedrock surface becomes deeper to the west.

Groundwater Flow

Figure 2 shows a water table contour map that was constructed from water elevations taken on February 13, 1985. This groundwater contour map indicates that there is a water table high located in the south central portion of the site. Flow from this area moves laterally and downward towards the east, west, and north. It is expected that away from the mound the predominant local direction of groundwater flow is towards the west. Wells along the eastern portion of the site (104, 108, and 111) show downward vertical gradients indicating groundwater recharge occurring in these areas. Wells along the western portion of the site including 101, 102, 103, 105, and 106 show either very little vertical gradients or upward gradients. Since the vertical gradients become upward along the western portion of the site, groundwater recharge which occurred on the eastern portion of the site would not be expected to move deep into the groundwater flow system.

WELL DEVELOPMENT AND SAMPLING

Development

The groundwater monitoring wells and piezometers were developed after initial well installation but no sooner than 48 hours after grouting was completed. Field records of the well development procedures can be found in Appendix B.

Wells were developed using a gas driven centrifugal pump and a submersible Johnson Keck pump. All equipment, tubing and hose were rinsed with deionized water between use at each well. Where the well boring was made without the use of drilling fluid, five times the standing water volume in the well was removed. The standing water volume included the water volume within the well screen and casing plus the saturated annulus. Wells where the boring was made or enlarged with the use of drilling fluid (water), five time the amount of standing water volume in the well was removed in addition to the estimated water lost during drilling.

Where water still remained turbid after development, additional volumes of water were removed.

Chemical and physical characteristics of the water removed at each well were measured before, during, and after completion of well development. These measurements included turbidity, color, odor, conductivity, pH, temperature, and the physical description of the sediment. These measurements are presented on the well development field logs in Appendix B. Following development, the wells were allowed to stand without activity for a minimum of two weeks before purging and sampling.

Purging

To remove stagnant water from the monitoring wells and to draw representative groundwater into the well for sample collection, all wells on-site were purged prior to sample collection.

To determine the volume of water to be purged from each well, the depth to the static water level and depth to the bottom of the well were measured from the top of the two-inch diameter PVC well pipe using a fiberglass tape. Between measurements at each well, the tape was rinsed several times with deionized water. Based on the depth to water, the total depth of the well and the diameter of the well, the volume of water standing in the well (well volume) was calculated using the following equation:

Well Volume = $3.14 \frac{d^2}{4} \times H \times 7.48$

Where:

For wells with rapid recovery rates, a total of three well volumes of water was removed. Where water recovery rates were not rapid, the wells were bailed dry and then allowed to recover prior to sample withdrawal.

Table 2 shows the well water elevation measurements and volumes of water removed from each well during the sampling events.

All wells on site were purged using a PVC single check valve bailer attached to a rope. In practice, the single check valve bailer is lowered into the well annulus, water enters the chamber through the bottom, and the weight of the water column once in the bailer closes the check valve upon bailer retrieval. Upon bailer retrieval, the ball immediately seats itself without water loss through the check valve.

All water purged from the monitoring wells was discarded. Two bailers were used for the bailing process, dedicating one bailer for use on all observation monitoring wells with depths up to 25 feet and one bailer for use on all piezometers with depths up to 45 feet. At each monitoring well, the bailers and rope were rinsed with deionized water before bailing the next well. The approximate time between purging and sample collection was from 1 to 1.5 days.

Sample Collection

Samples were collected from all 18 monitoring wells and piezometers. On the first day of sampling, samples from sites 101, 102, 103, a~1 104 were collected. On the second day of sampling, samples were collected at sites 105, 106, 111, 109, and 108. Before sampling at each well, depth to static water level was measured and recorded.

As established during initial bailing of the wells, samples from each well were collected using dedicated PVC single check valve bailers. At each well the first water sample collected with the bailer was discarded and the second bailer volume collected was used to rinse out the plastic Nalgene sample bottle. The following bailer volumes of sample were transferred from the bailer to the sample holding container, filling the container slowly to avoid unnecessary aeration of the sample. Between each well sampling, the bailer and rope were rinsed several times with deionized water before collecting the next well sample.

Field Measurements and Filtration

Immediately upon collection, sample temperature, color, odor, and visual turbidity were recorded. The sample was transferred from the sample holding container to a Millipore pressure filtration

TABLE 2

WATER ELEVATION AND WELL VOLUMES PURCED

Well No.	Depth to Bottom of Well from Top of PVC Pipe (feet)	Well Elevation Top of PVC Pipe (Feet)	Depth to Water Level from Top of PVC Pipe (feet)	Well Volume Purged (<u>gailons</u>)	Groundwater Elevation (Feet)
P101A 1/3-4/85	48.92	686.76	12.19	18	674.57
2/13-14/85	48.92	686.76	12.63	17.5	674.13
OWI DIB				Ţ	673 00
1/3-4/85	21.46	586.89 201 00		-	20.010 25 573
2/13-14/85 2/13-14/85	21.46	686.89	20.21	÷	05.570
1/3-4/85	47.43	685.99	11.18	7*	674.81
2/13-14/85	47.43	685.99	11.76	7*	674.23
0W102B					
1,3-4/85	21.46	686.04	11.28	ۍ ا	674.76
2/13-14/85	21.46	686.04	11.75	ŝ	674.29
P103A					
1/3-4/85	46.88	681.98	10.43	7*	671.55
2/13-14/85	46.88	681.98	11.13	5*	670.85
UM103B			1	C	
1/3-4/85	22.47	681.18	11.35	× 7	669.83
2/13-14/85	22.47	681.18	12.20	m	668.98
P104A					
1/3-4/85	38.32	692.11	17.18	* m	674.93
2/13-14/85	38.32	692.11	17.75	7*	674.36
OW104B					
1/3-4/85	23.23	691.98	10.51	×₽	681.47
2/13-14/85	23.23	691.98	12.12	A.⊁	679.86
Plo5A				(-	
C8/8-5/T	99.64	6//.43	0.10	E T	61.019
2/13-14/85	45.86	677.43	7.43	18	670.00
		00 CC 2	0 C C	٢	00 077
20/4-C/T	20.02 20.02	07.110		- ۲	667 98
2/112-14/03	20.02	07.110		•	****
PIU6A 1 / 3 / 4 / 05	16 A5		00 0	*0	56B 17
				-	71:000
2/13-14/07 2013/06 B	64.04	20.1.0	10.20	K _	70.000
UW1095 1/3-4/85	20 93	677 07	6.90	¥۲	670.17
				4 F	568 3A
CO/41-51/2	24.02	. 0.1.0	0.10	۲. ۲	

TABLE 2 (Continued)

....

,

We 1 1 No .	Depth to Bottom of Well from Top of PVC Pipe (feet)		Well Elevation Top of PVC Pipe (Feet)	Depth to Water Level from Top of <u>PVC Pipe (feet)</u>	Well Volume Purged (<u>gallons</u>)	Groundwater Elevation (Feet)
F111A 1/3-4/85 2/13-14/85	40.70 40.70		690.97 690.97	11.68 13.25	5 × ×	679.29 677.72
OW111B 1/3-4/85 2/13-14/85	22.50 22.50	u€'	690.93 690.93	7.22 10.49	3*	683.71 680.44
P109A 1/3-4/85 2/13-14/85	39.14 39.14		694.88 694.88	13.60 15.40	ហ ហ * *	681.28 679.48
0W109B 1/ <u>3-4/65</u> 2/13-14/85	22.46 22.46		694.99 694.99	13.00 15.19	n a	681.99 679.80
P108A 1/3-4/85 2/13-14/85	44.62 44.62		696.48 696.48	14.20 16.08	15 14	682.28 680.40
OW108B 1/3-4/85 2/13-14/95	23. 4 5 23.45		696.58 696.58	7.26 8.46	≪ ¥9	689.32 688.12
* Railed Drv						

Bailed Dry

11

R/C0E2/AA9

vessel where it was filtered through a 0.45 micron filter using pressurized nitrogen. Immediately after filtration, the field pH and conductivity were measured. Field pH was measured using an Orion Research Model 201 digital temperature compensating pH meter. Prior to any sample measurements, the pH meter was standardized using pH buffer solutions of 4.01, 7.41, and 10.00. During sample measurement, standards were checked periodically. The pH probe was rinsed with deionized water after each standard and sample measurement. All pH measurements were recorded on a field record log.

A Lab-Line conductivity meter that is temperature compensating was used to measure field conductivity on all samples collected. Prior to measuring samples, the meter was standardized against a known standard. The measurement cells were rinsed several times with deionized water after checking standards and after each sample measurement. All field conductivity measurements were recorded on a field record log.

Preservation

Samples collected from the monitoring wells were contained in plastic bottles that had been previously washed and rinsed with deionized water. After filtration, sample collected from each monitoring well was divided into four separate bottles each with the appropriate volume of chemical preservatives added for required sample analytes.

Labels were secured to each sample bottle noting sample location and identification, date of sample collection, analysis required, and initials of personnel collecting the samples. One liter of sample was left unpreserved for total dissolved solids, nitrate nitrogen, chloride, fluoride, and sulfate. A 500 ml bottle of sample was preserved with zinc acetate and sodium hydroxide for sulfide analysis, one 500 ml bottle of sample was preserved with concentrated nitric acid for total hardness and metals analysis, and one 250 ml bottle of sample was preserved with sulfuric acid for low level chemical oxygen demand.

Field Quality Control

Prior to sample collection, a trip blank of deionized water used throughout the sampling program was prepared in the same manner used for all samples collected. The trip blank was preserved with the same chemical preservatives used on all samples and was analyzed for the same analytes. In addition to the trip blank, two duplicate samples were collected, prepared, preserved, and analyzed for the same analytes. These duplicates were coded in the field upon collection and given a different sample identification number to correspond to the first sample collected at the site.

Recordkeeping and Chain of Custody

During purging and sample collection at each monitoring well, field logs were used to record all field measurements and other pertinent information. This included water levels, volumes of water removed prior to sampling, pH, conductivity, and other physical measures.

Prior to the delivery of the samples to the laboratory, a chain of custody form was prepared identical to the labels secured on each sample bottle noting sample location and identification, date of sample collection, number of samples, and names of personnel collecting the samples. In addition, an analytical work request form was completed indicating laboratory analysis for all samples.

The original forms were sent along with the samples to the laboratory and a copy was retained by Donohue. The samples were placed in coolers with ice and delivered to the laboratory by Donohue personnel. All samples were delivered to the laboratory within 24 hours of sample collection.

Surface Water Sampling

Two samples of water from, Lincoln Creek were collected on March 4, 1985. One sample was obtained at a point approximately 100 feet upstream of the landfill and the second from a point immediately downstream. The samples were handled by the same procedures used for the groundwater samples.

RESULTS

Field Measurements and Observations

During the installation of the groundwater monitoring wells, a photoionization detector was used to measure organic vapors in the soil, water, and air in the borehole. There was no positive meter reading for any of the samples. During the sampling of the monitoring wells, we noted that samples from all of the wells were odorless and colorless following filtration. There is no obvious indication of contamination in any well. A summary of field measurements and observations is given in Table 3.

Groundwater Chemistry

Results of laboratory analysis of the groundwater samples collected in January and February 1985, are given in Tables 4 and 5. Organic matter content of the water is very low, as indicated by the chemical oxygen demand (COD) values. No biochemical oxygen demand (BOD) readings were measured for the samples; TABLE 3

1

FIELD MEASUREMENTS

	Depth to Mater [eve]				
We 1 1 . No.	from Top of PVC Pipe (feet)	Temp.	Color	0dor (<u>Y/N)</u>	<u>Turbidity</u>
Blank					
1/3-4/85	N/E.	σ.	None	Z	N/A
2/13-14/85	N/A	11	None	N :	N/A
LULA 1/3-4/85	12.15	α	None	. 2	Clickt Murbidita
2/13-14/85	12.70	2	None	2 2	Clear
1/3-4/85	12.95	8	None	N	Very Turbid
CB/41-51/2 P102A	13.60	6.5	None	Z	Very Turbid
1/3-4/85	32.20	7.5	None	Z	Slight Turbidity
2/13-14/85	13.80	Q	None	Z	Clear
OM102B					
I/3-4/85	11.18	7.5	None	Z	Very Turbid
2/13-14/85	11.82	Q	None	Z	Very Turbid
PI03A					•
1/3-4/85	• 22.38	6	None	Z	Moderate Turbidity
2/13-14/85	11.33	8	None	Z	Clear
L/3-4/85	11.28	7.5	None	Z	Very Turbid
2/13-14/85 2/01048	12.23	7.5	None	N	Very Turbid
		,	:	:	
	11.07	Ċ,	None	Z	Slight Turbidity
C115-14/83	11.83	٩	None	X	Clear
1/3-4/85	14.68	Y	None	N	Vers Tribid
2/13-14/85	13.70	ع ر در	e con	2 2	thirbid
P105A		,		:	
1/3-4/85	6.48	5,5	None	Z	Clear
2/13-14/85	7.50	6.5	None	Z	Clear
0M105B					
1/3-4/85	8.18	ع،	None	Z	Slight Turbidity
2/13-14/85 D1668	9.40	6.5	None	Z	Turbid
F 100A	17 21	7	None	2	2
2/13-14/85	29.10	د. م	None	5 2	Clear Jurpid
1		1		5	01001

14

, , **,**

TABLE 3 (Continued)

.

Me 1 1 No.	Depth to Water Level from Top of PVC Pipe (feet)	Temp.	Color	0dor (<u>Y/N)</u>	Turbidity
0M106B		•			
1/3-4/85	7.00	5	None	Z	Extremely Turbid
2/13-14/85	8.95	6.5	None	Z	Turbid
FIIIA		ر،	N N	N	() asr
27.4-2.4	11.40	د		2 :	
2/13-14/85	13.35	6.5	None	Z	Clear
OWILLB					-
1/3-4/85	7.29	5	None	N	Slight Turbidity
2/13-14/85	10.10	۰c	None	N	Turbid
P109A					
1/3-4/85	13.08	ß	None	Z	Clear
2/13-14/85	15.60	9	None	Z	Clear
OW109B					
1/3-4/85	12.47	7.5	None	Z	Slight Turbidity
2/13-14/85	15.45	5.5	None	Z	Turbid
P108A					. .
1/3-4/85	12.62	7	None	2	Clear
2/13-14/85	16.24	7.5	None	Z	Clear
OW108B					
1/3-4/85	7.44	6	None	N	Clear
2/13-14/85	8.55	۲	None	Z	Slight Turbidity
R/COE2/AA9					

TABLE 4 LABOPATORY ANALYSIS (January 1985 Sampling Program)

<(0.1
884.4
884.4
(0.02
(0.01
(0.03
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(.12 0M105B 1/4/85 692 18.2 0.7 <6.0 647 611 20.1
211
211
20.02
0.04
0.05
0.05
0.01
0.2
0.04
0.10
0.2
0.10
0.14
0.14
7.35 .11 P105A 1/4/85 925 106 0.6 12.0 931 700 (0.1
118
(0.02
(0.01
(0.1
(0.05
(0.03
(0.03
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05
(0.05 662 4.7 1.0 .10 0M104B 1/3/85 10.8 606 637 {0.1
223
223
223
223
20.02
20.01
20.0
20.0
0.2
0.03
2.0
0.05
2.0
0.05
2.55
2.55 .09 P104A 1/3/85 825 49.2 0.7 <6.0 712 894 (0.1 166 (0.02 (0.01 (0.1 (0.1 (0.1 (0.1) (0.1) (0.03 (0.03 (0.03) (0.05 (0.005) (0.105) (0.105) (0.105) (0.105) (0.105) (0.105) (0.111) (0.11 .08 0W103B 1/3/85 815 46.5 0.6 10.1 705 816 .07 P103A 1/3/85 355 2.0 0.9 <6.0 269 294 (0.1 242 (0.02 (0.05 (0.1 (0.1 (0.1 (0.14 (0.03 (0.05 (0.05 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.01) (0.05 .05 0W102B 1/3/85 992 44.4 0.3 12.6 749 984 (0.1 222 (0.02 (0.05 (0.05 (0.1) (0.05 (0.03 (0.05 (0.05 (0.05 (0.05 (0.05) (0. .06 P102**A*** 1/3/85 <6.0 31.4 675 493 665 .04 P102A* 1/3/85 672 36.0 0.7 (6.0 493 683 0.8 401 (0.02 (0.01 (0.05 (0.1 0.1 0.1 0.1 0.03 (0.05 (0.05 (0.05 7.10 1740 47.3 0.2 .03 0M101B 1/3/88 12.9 118 1600 .02 P101A 1/3/85 14.3 All samples filtered in the field. 0.4 693 100 266 (0.1 2.2 2.2 (0.02 (0.01 (0.01 (0.01 (0.01 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05) .01 Trip Blank 1/3/85 <6.0 4.4 15 5 ξ Manganese, mg/l Mercury, mg/l Selenium, mg/l Silver, mg/l Zinc, mg/l PH (units) Chemical Uxygen Demand, mg/l Nitrate Nitrogen, mg/l Sulfate, mg/l Sulflde, mg/l Arsenic, mg/l Barium, mg/l Cadmium, mg/l **Total Hardness** Dissolved Solids. mg/l Conductivity. L'hloride. mg/l
Fluoride. mg/l Chromium, mg/l Lab Number: Sample Id.: Sample Date: (CaC03), mg/l Copper, mg/l Iron, mg/l Lead, mg/l umhos/cm

*Duplicate samples

PH and conductivity measured immediately after collection and filtration

R/CUE2/AA9

(Continued) TABLE 4

12.0 1358 1586 1420 30.0 1.2 1.2 1.2 (0.01 (0.01 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05) (0.05 (0.05)(0.05) (0 .16 0M108B 1/4/85 .15 P108A 1/4/85 6.0 1252 1449 1320 38.4 0.1 <0.1 <79 .21 0M109B* 1/4/85 9.8 691.65 756.01 3.44.3.44 7.0.02 7.0.01 7.0.05 7.0.05 7.30 7.30 7.30 .18 0M109B+ 1/4/85 .17 P109A 1/4/85 <0.05 <0.05 7.45 .20 0W111B 1/4/85 6.0 497 883 880 7.1 0.6 91.9 60.1 60.02 60.01 60.05 60.03 60.03 60.03 60.03 <0.005
<0.05
<0.05
8.25</pre> .19 P111A 1/4/85 8.9 1252 452 570 <6.0
</pre>
<6.0
</pre>
<6.0
</pre>
704

704

704

722

20.2

<0.02
</pre>
<0.01
</pre>
<0.03
</pre>
<0.05
</pre>
<0.05
</pre>
<0.05
</pre>
<0.05
</pre>
<0.05
</pre> .14 0M106B 1/4/85 (6.0
337
516
478
18.5
18.5
10.02
(0.02
(0.01
(0.05
(0.01
0.13
(0.03
0.13
(0.005
0.13
0.13 .13 P106A 1/4/85 <0.05 <0.05 8.25 Chemical Oxygen Demand, mg/l Total Hardness (CaCO3), mg/l Chemical Oxygen Demand, Nitrate Nitrogen, mg/l Sulfate, mg/l Sulfide, mg/l Arsenic, mg/l Barium, mg/l Cadmium, mg/l Dissolved Solids, mg/l Conductivity, umhos/cm Lab Number: Sample Identification: Sample Date: Manganese, mg/l Mercury, mg/l Selenium. mg/l Chloride. mg/l Fluoride. mg/l Silver, mg/l Copper, mg/l Iron, mg/l Lead, mg/l Zinc, mg/l pH (units)

All samples filtered in the field. pH and conductivity measured immediately after collection and filtration.

*Duplicate Samples

R/COE2/AA9

TABLE 5

1

.

LABORATORY ANALYSIS (February 1985 Sampling Program)

Lab Number: Sample Id.: Sample Date:	19432 Trip Blank 2/14/85	19433 P101A 2/14/85	19434 0M101B 2/14/85	19435 P102A 2/14/85	19436 0W102B 2/1:045	19437 P103A* 2/14/85	19438 P103A* 2/14/85	19439 0M103B 2/14/85	19440 P104 A 2/14/85	19441 0M104B 2/14/85	19442 P105A* 2/14/85	19443 P105A* 2/14/85
Chemical Oxygen Demand, mg/l	1.5	12.4	14.1	3.6	18.1	4.8	1.5	4.6	7.6	8.0	10.4	10.8
(CaCo3), mg/l	30.0	713	908	454	684	268	268	656	654	518	. 899	646
Vissolved Solids, mg/l	82	1100	1410	652	0101	290	345	865	868	632	068	266
LONGUCTIVITY, Umhos/cm	12	1015	1320	598	962	345	348	852	805	610	930	928
Chloride, mg/l	5,8	103	50.8	35.5	49.2	2.8	3.0	47.0	51.2	7.6	91.8	88.6
Fluoride. mg/l	<0.1	0.52	0.45	0.96	0.55	1.10	0.91	0.46	0.81	0.85	0.47	0.40
Nitrate Nitrocen ma/l			59 0	[0)	1 07		1 0)	[0 >	[0)		1 07	
Sulfate. mg/l	4.0	296	363	213	260	43.0	43.7	183	260	147	187	1.86
Sulfide. mg/l	<0.5	<0.5	<0.5	(0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic, mg/l	<0.001	0.002	<0.01	<0.001	0.002	0.002	0.002	0.001	0.003	<0.001	<0.001	<0.001
Barium, mg/l	(0.1	<0.1	(0.1	(0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	(0.1
Cadmium. mg/l	<0.01	• <0.01	(0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	(0.01	<0.01
Chromium, mg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Copper, mg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	(0.05	<0.05	<0.05
Iron, mg/l	<0.05	2.47	0.06	<0.05	<0.05	<0.05	0.05	0.17	<0.05	<0.05	<0.05	<0.05
Lead, mg/l	(0.1	<0.1	(0.1	<0.1	<0.1	<0.1	<0.1	(0.1	(0.1	(0.1	<0.1	<0.10
Manganese, mg/l	<0.03	0.06	0.17	0.07	0.08	<0.03	<0.03	0.11	0.05	0.06	0.10	0.1
Mercury, mg/l	<0.005	<0.000	5 <0.000	000.000 S	5 < 0.0005	<0.0005	<0.0005	<0.0005	\$ <0.0005	<0.0005	<0.0005	<0.0005
Selenium, mg/l	<0.001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Silver, mg/l	<0.01	<0.01	<0.01	<0.01	(0.01	(0.01	<0.01	<0.01	(0.01	<0.01	(0.01	<0.01
Zinc. mg/l	(0.01	0.02	0.02	<0.01	<0.01 	(0.01	<0.01	<0.01	(0.01	<0.01	0.05	0.05
pH (units)	7.20	7.15	7.05	7.55	7.10	. 7.5	7.75	7.20	7.55	7.70	7.30	7.30
Alkalinity (CaCO3).mg/l	26.7	462	835	240	560	247	256	491	979	386	466	467
) 	1	,	>))			•	•)) 1 .	, , ,	

18

All samples filtered in the field. PH and conductivity measured immediately after the collection and filtration.

*Duplicate samples

R/C0E2/AA9

J

J

,

J

ر

J

J

TABLE 5 (Continued)

6.4 1220 1580 1580 1320 0.46 1.33 494 60.01 60.01 60.01 60.01 60.01 7.05 7.05 19452 0M108B 2/14/85 771 8.8 1260 1760 1410 26.5 0.61 1.15 650.5 (0.05 (0.05 (0.05 (0.01 (0.01 (0.01 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0. 2/14/85 19451 P108A 706 5.2 564 710 685 4.0 4.0 (0.61 (0.01 (0.01 (0.01 (0.01 (0.00) (0.01 (0.00) (0.01 (0.00) 7.15 2/14/85 19450 0M109B 413 19**449** P109**A** 2/14/85 334 967 8 967 8 967 8 347 1 347 8 40.1 40.1 40.01 40.01 40.01 40.00 6.85 6.85 19448 0M111B 2/14/85 690 19447 P111A 2/14/85 174 3.2 572 762 762 762 762 7.42 7.42 7.30 7.30 7.30 19446 0W106B 2/14/85 409 8.0 307 515 515 490 490 40.1 40.1 40.1 40.1 40.0 40.01 40.05 40.01 40.05 40.05 40.01 40.00 40.00 40.00 40.00 40.00 50.000 50.000 50.000 50.00005 50.00005 50.00005 50.00005 50.0005005 50.0005 50005 50005 5 2/14/85 19445 P106A 252 2.3 769 738 738 738 738 738 738 70.1 70.1 7.25 7.25 19444 Om105B 2/14/85 469 All samples filtered in the field Chemical Oxygen Demand, mg/l Total Hardness (CaCo3), mg/l Dissolved Solids, mg/l Conductivity, umhos/cm Lab Number: Sample Identification: Nitrate Nitrogen, mg/l Copper, mg/l Iron, mg/l Lead, mg/l Manganese, mg/l Chloride, mg/l Fluoride, mg/l Mercury, mg/l Selenium, mg/l (CaC03), mg/I Chromium, mg/l Cadmium, mg/l Sulfate, mg/l Sulfide, mg/l Arsenic, mg/l Sample Date: Bartum, mg/l Silver, mg/l Alkalinity pH (units) Zinc, mg/l

ALL semptes titueted in the fight. PH and conductivity measured immediately after collection and filtration.

R/COE2/AA9

however, because the chemical oxygen demand readings were low, it is reasonable to expect that the BOD values would be extremely The heavy metal concentrations in each well was low low as well. and in most cases, below the detection limits. The iron content piezometer 101A was higher than the other wells in and piezometers during both sampling programs. The concentration of total dissolved solids, chloride, and sulfate are hardness, higher than would be expected for background water quality. This is especially noticeable in P101 and OW101. The concentration of these components might be a result of the landfill; however, it is not possible to conclude that the landfill is the only impact on the area groundwater. Other urban activities in the area might contribute.

Surface Water Chemistry

Surface water data is presented in Table 6. There is no significant difference in parameters upstream and downstream of the landfill. Both samples were high in chloride, perhaps due to runoff of salt from roads.

CONCLUSIONS

The impact of the existing landfill on groundwater and surface water quality is small. The higher than expected concentrations of hardness, total dissolved solids, chloride, and sulfate in some wells which may be due to the landfill, do not warrant remedial action to cleanup the groundwater. Future environmental impacts from the landfill can be minimized by designing and constructing uses for the area that will not result in damage to the landfill cover and expose refuse. Damage to the cover will increase the rate of infiltration and perhaps increase the concentration of dissolved solids in the groundwater.

RECOMMENDATIONS

Based on the results of our evaluations, we recommend the following:

- Abandon the monitoring wells used in this evaluation in accordance with Wisconsin Department of Natural Resources procedures. Abandonment of the wells will eliminate the possibility of contamination by vandals.
- Design and construct training exercises on the landfill areas that will not damage the landfill cover. Implementing this recommendation might require reinforcing the paths, where tanks and heavy equipment are used.

R/COE2/AA1

TABLE 6

LINCOLN CREFK ANALYSIS

	Upstream of Landfill	Downstream of Landfill
Total COD mg/l	7.9	15.6
Total Dissolved	756	844
Solids mr l		
Nitrate Ni_rogen mg/l	2.06	2.37
Arsenic mg/l	<0.001	<0.001
Barium mg/l	<0.2	<0.2
Cadmium mg/l	<0.01	<0.01
Total Chromium mg/1	<0.05	<0.05
Copper mg/l	<0.05	<0.05
Total Iron mg/l	0.05	0.06
Lead mg/l	<0.1	<0.1
Manganese mg/l	<0.03	<0.03
Mercury mg/1	<0.0005	<0.0005
Selenium mg/l	<0.001	<0.001
Silver mg/l	<0.01	<0.01
Zinc mg/l	0.04	0.04
Alkalinity mg/l	226	235
Total Hardness mg/l	360	360
Chloride mg/l	235	• 235
Flouride mg/l	0.24	0.25
Sulfate mg.1	53.9	56.7
Sulfide mg/l	<0.1	<0.1
Conductivity, umhos/cm	875	858
pH, units	8.10	8.05

pH and conductivity were measured in the field immediately upon sample collection.

R/COE2/AB0

REFERENCE

Department of the Army (1984) Finding of No Significant Impact and Environmental Assessment, Expansion and Utiliza' on of the United States Army Reserve Center Complex and Training Area, Milwaukee, Wisconsin.

APPENDIX A

BORING LOGS AND WELL INSTALLATION INFORMATION

$\int \mathcal{L}$	RECO
∇	
GILCS ENGINEERING ASSOCI	JES. INC.

RECORD OF SUBSURFACE EXPLORATION

Boring No. P-101

Consulting Soil and Foundation Engineers

Project: U. S. Army Training Center

Date: ____10-24-84_____

Milwaukee, Wisconsin

GEA Project No.: ___841022_____

Crew Chief: Duane Drewicz

DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	qu	q _p	q,	w	REMARKS
Yellow Brown Silty fine to medium Sand, some coarse Sand, trace Clay- Damp (SP-SM)_								-
	5′ _ - -	1 - SS	31				•	· •
Gray Brown Clayey Silt to Silt, trace fine to coarse Sand-Damp (CL-ML)	10'	2 - 55	9					-
	15' _ - -	3-55	8					-
Gray fine to coarse Sand and Gravel-Wet (GW)	20'	4-SS	16					
	25'	5-SS	14					
	30' _ -	6-SS	14					
- Gray Silty Clay to Clayey Silt- Damp to Moist (ML-CL)	35' <u>-</u>	7-SS	11					
Gray very fine Sandy Silt, trace Clay - moist to wet High Dilatency (SM)	40' 1	8-55	36					
Gray very fine Sandy Silt, trace coarse Sand to fine Gravel-Moist to Wet (SL-SM) Boring Terminated at 46'	45′ -	9-55	32					- - -

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations.

es Engineering Associates, inc.	Boring	No	<u>P-10</u>	1		f	DUNDNIC	n Enan
ject: U.S. Army Training Cente	<u>r</u>				Date: .	10-	24-84	
Milwaukee, Wisconsin	·.			GEA P	roject N	o.:	84102	2
Chief : Duane Drewicz DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	q _u	Чp	c,	w	REMARK
Piezometer Set at 46'								
5' Well Screen	5' _							
	15'						-	
	20' _			-				
	25'							
	30' 							
	35'	•						
	40' _							
	45'							i

ļ

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations.

	Posing No. OW-101					Consulting Soil			
les Engineering Associates, inc.	Boring	NO				fe	OITADNUC	n Enanc	
oject: U.S. Army Reserve Center					Date: _	11-16-	-84		
Milwaukee, Wisconsin	-			GEA P	oiect N	D.:	841022	2	
Crew Chief: Duane Drewicz									
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	qu	Q _p	q,	w	REMARK	
Auger Boring to 20'	-								
Set Well at 20'	5' _ 								
	10'								
	15′ _				-				
			•					i İ	
Boring Terminated at 20'	- 20 -								
	25′								
	30'								
	35′ _								
	40'								

Changes of strate indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations, h_{-5} A-5

iles Engineering Associates. 1810.	Boring	No. <u> </u>	-102			f	ÖUNDATIO	n Enane
oject: U.S. Army Training Center					Date: _	10-30)-84	
Milwaukee, Wisconsin				GEA P	roject N	o.:	84102	2
Crew Chief: Duane Drewicz						 	·····	
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	۹ _u	q _p	Q,	w	REMARK
Yellow Brown fine Sand, trace medium to coarse Sand, trace fine Gravel- Damp (SP)	n - - 5' -	1-55	39			-		
Gray fine to coarse Sand and Gravel - Wet		2-55	25					
(GW)	- 15′ _ -	<u>3-SS</u>	57					
	20'	<u>4-SS</u>	38					
	25' _ 	5-SS	15					
Grav Clavey Silt trace fine to	30'	6-55	13					
coarse Sand, trace fine Gravel- Damp (CL-ML)	3 5' _	7-SS	46					
	40′	8-SS	36					

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations.

	Boring I	No	P-102	2		(COMSUL	ting Soil
es Chaineering ()ssocintes. Inc.					_	R	DUNDATIO	n Chane
oject: Anny Training Lent	er				Date: _	10_3	0-84	
Crew Chief: Duane Drewicz			<u> </u>	GEA Pr	oject N	0.:	8410	22
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	qu	q _p	q	w	REMARK
	-		·- <u>_</u> •					
Piezometer Set at 45'	5) Z
5' Well Screen								
	10'							
	15'							
			•					
	20'							
·								
	25'							
	30′				•			
	35′ _	•						
	40′							
						•		

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations.
es Engineering Associates, inc.	Boring	No	OW-	-102		f	- Dundajio	n Enam
ject: U.S. Army Training Center					Date: _		16-84	~ ~ ~ ~ ~ ~ ~
Milwaukee, Wisconsin				GEA Pr	oject N	o.:	841022	
Crew Chief: Duane Drewicz								
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	9 ₀	q _p	Q,	w	REMAR
Auger Boring to 20'								
Set Well at 20'	5' _							
	-							
	10' _							
	15' _							
								•
Boring Terminated at 20'	-							
	- 25′ _							
	30′ _							
	35′ _	•						
	40′ -							

es Engineering Associates, inc.	Boring	No	۲-10:	3		f	Õundajio	n Enane
meet: U.S, Army Training_Center					Date:	11-	8-84	
Milwaukee, Wisconsin	• •			GFA Pr	oiect N	0 ·	84102	2
Crew Chief: Duane Drewicz								
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	qu	q _p	q,	w	REMARX
Yellow Brown fine Sandy Silt, trac Clay, some medium to coarse Sand- Damp (SM-ML)	e	1-SS	18					
Gray fine to coarse Sand and Grave Damp to Wet (GW)	ן 10' _ -	2-SS	23				-	
		3-55	37					
Gray Silty Clay to Clayey Silt, trace fine to medium Sand-Damp (ML-CL)	20' _ -	4-SS	34					
	25'	<u>5-SS</u>	23					
Gray fine Sand, trace to little Silt-Wet (SM-SW)	30'	6-55	71					
Gray Brown Clayey Silt to Silt, trace to little fine to coarse San trace fine Gravel-Damp (CL-ML)	d 35' 4	7-55	67					
Gray Brown Silty Clayto Clayey Silt-Damp (ML-CL)	40' _	8-55	66					

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations. A-9

es Engineering ()ssociates. inc.	Borniy ive	J		· <u> </u>	f	OIMONIO	n Ena
ect:U. S. Army Training Cen	iter			Date: _	11-	8-84	<u> </u>
Milwaukee, Wisconsin			GEA P	roject N	o.:	84102	2
Crew Chief: Duane Drewicz	<u> </u>				·	T	r
DESCRIPTION Ground Surface Elevation	Depth 8 Below Surface	iampie No. & N Type	qu	q _р	q ,	w	REMAP
Piezometer set at 45'	5′					ĺ	
5' Well Screen							
)
	15' _						
			•				
	20' _						
	25'						
	30, _						
	35′						
	40'						

ES ENGINEERING ASSOCIATES, INC.	Boring	No	OW-:	103		(fa	Onsul Contatio	ting Soil n Engine
ect: U.S. Army Training Cente	r				Date: _	10-24	-84	
Milwaukee, Wisconsin				GEA Pr	oject No	D.:	8410	22
Crew Chief: Duane Drewicz		·				r	· · · · · · · · · · · · · · · · · · ·	
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	qu	q _p	q,	w	REMARI
	-							
Auger Boring to 20'	-				ł			
	5′ _				}			
Set Well at 20'	-							1
	-							
	10' _							
						ł		
	15' _							
								}
	_							
·	20'							
Boring Terminated at 20'	-							
Ū.								
	25'							
	30']							
							ļ	
	35,							
		-						
	40' _						[
	-							
	· · · · · ·	4		}			}	

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations. $\Delta = 1.1$ A-11

Les Engineering Associates, inc.	Boring	No	P-10	4		f	Onitadinució Olitadinució	ting Joh In Engine	
oject: U.S. Army Training Center					Date: _	11	-2-84		
Milwaukee, Wisconsin	• .			GEA P	oject N	o.:	841022		
Crew Chief: Juane Drewicz		r	·		·	·····	·		
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	qu	q _p	q ,	w	REMARK	
Yellow Brown fine Sandy Silt, trac Clay, trace medium to coarse Sand- Damp to Moist (SM)	e 5' -	<u>1-55</u>	16						
	10'	<u>2-SS</u>	46						
Gray Brown Clayey Silt, some fine Sand, trace medium to coarse Sand, trace fine Gravel-Damp (CL-ML)	15' _ 	<u>3-SS</u>	49						
Gray Clayey Silt to Silt, trace fine to medium Sand-Damp to Moist	20'	<u>4-SS</u>	19						
Gray fine to coarse Sand and Gravel-Wet (GW)	25'	5-SS	26						
Gray Brown Silty Clay to Clayey Silt, trace fine to coarse Sand- Damp (ML-CL)	30, -	6-55	37						
	35'	7-SS	142						
Boring Terminated at 38'-4"	40′	RB							

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations. $\Delta = 1.2$

Project: U.S. Army Training Center Date:11=2-84 Milwaukee, Wisconsin GEA Project No.:841022 Crew Chief: Duane Drewicz DESCRIPTIONBerrier Mole & N qu qu qu qu qu qu v v cround Eurise ElevationBerrier Mole & N qu qu qu qu qu v v Piezometer Set at 38'-4" 5' Well Screen 10' 20' 20' 30' 30' 40' 40'	: Son
Milwaukee, Wisconsin GEA Project No.: 1912001 Crew Chief: Duane Drewicz Sample Milwa Korne Milwa	
Crew Chief: Duane Drewicz DESCRIPTION Ground Surface Elementon Barolin Surface Sample No. B Type N qu qp qa W Piezometer Set at 38'-4" 5' - - - - - - 5' Well Screen 10' - - - - - - - 10' - - - - - - - - 20' - - - - - - - 30' - - - - - - 30' - - - - - - 40' - - - - - -	
DESCRIPTION Ground Surface Elevation Bachelie Surface Sample No. N Qu Qp Qu W P Piezometer Set at 38'-4" 5'	
Piezometer Set at 38'-4" 5' 5' Well Screen 10' 15' 20' 20' 25' 30' 35' 40' 10'	1EMARK
Piezometer Set at 38'-4" 5' 5' Well Screen 10' 10' 20' 20' 25' 30' 35' 35' 40'	
Piezometer Set at 38'-4" 5' Well Screen 10' 15' 20' 26' 30' 35' 40'	
5' Well Screen	
10' - 15' - 20' - 25' - 30' - 35' - 40' -	
15' - 20' - 25' - 30' - 35' - 40' -	
15' 20' 25' 30' 35' 40'	
15' - 20' - 25' - 30' - 35' - 40' -	
. 20' - 25' - 25' - 30' - 35' - 40'	
. 20'	
25' - 30' - 35' - 40' -	
25' - 30' - 35' - 40' -	
25' - 30' - 35' - · 40' -	
30' 35' 40'	
30' - 	
30	
35'	
35'	
40'	
40' -	
40'	
45'	

Ì

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations. A=1.3

LES ENGINEERING ASSOCIATES INC	Boring No	b 0	N-1(04	<u>`</u>	f		
nier: II S Army Training Conto	ar an				Date	10-	24-84	
Milwaukee, Wisconsin				GFA P	oiect N	0:	8410	22
Crew Chief: Duane Drewicz								
DESCRIPTION Ground Surface Elevation	Depth S Below Surface	iample No. & Type	N	qu	q _p	q,	w	REMAR
Auger Boring to 20'	5′ -							2
Set Well at 20'								
					}		1	
	15′ -							
					}		ļ	
	20'			-			 	
Boring Terminated at 20'								
2	25'						{	
	30′ _							
	35' _ •	,						
	40'							
					1			
	45'							1

	Boring	No	P-105			(f		ring Joh n Finang
U.S. Army Training Center					Date ·	11-1	5-84	
Milwaukee, Wisconsin	• •			GEA P		<u>. </u>	84102	2
Crew Chief: Duane Drewicz				GEAT		···		
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	qu	q _p	q,	w	REMARK
Yellow Brown Clayey Silt to Silt - Damp (CL-ML)	-							
	5' _	1-SS	12					-
Gray Brown Clayey Silt-Damp (CL-ML)	- 10' _	2-SS	13					
Gray Brown Clayey Silt to Silt, trace medium to coarse Sand-Damp to Moist (CL-ML)		3-SS	13					
	20' _	4-SS	14					
Gray Brown Silty Clay, trace fine to coarse Sand-Damp (ML-CL)	25′ _ -	5-55	39					
		6- <u>SS</u>	32					
	35' <u>-</u>	<u>7-SS</u>	26					
	40'	8-55	19					
Gray fine to coarse Sand and Gravel-Moist (GW)	45'		•					

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations. $\Delta_{-1.5}$

(\mathbf{L})	RECO
Giles Engineering (I ssociates, inc.

RD OF SUBSURFACE EXPLORATION

Boring No. P-105

Consulting Soil and FOUNDATION ENGINEERS

Project: U.S. Army Training Center

10-29-84 Date: _

Milwaukee, Wisconsin

_____ GEA Project No.: _____841022

Orew Chief: Duane Drewicz

DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	q _u	q _p	q,	w	REMARKS
								-
Piezometer set at 45'	5′		• .				•	-
5' Well Screen								
-	10 [,] _							-
							i	-
-	15' _							
	-			-			-	-
•	20′							-
						-		-
	25′ _ 							
	1							-
	30′ _							
	35′ _ -	•						-
					ļ			
	40′ _ -							-
	-							. 1
	45′ _ _							

Boring (No	-105			(f		n Engre
•				Date:		5-84	
	<u> </u>		GEA Pr	oiect N	<u>. 8</u>	41022	
Depth Below Surface	Sampla No. & Type	N	q _u	q _p	q,	w	REMARK
-							
5′ _							
							[
10' _							
-							
15' _							
-							
-			1				
20'							
				•			
25'							
-							
201							
30							
35′ _	-						
40']							
· · · · · · · · · · · · · · · · · · ·	. 1		1	1			
	Boring I Depth Below Surface 5' - 10' - 15' - 20' - 25' - 30' - 30' - - 40' - -	Boring NoO	Boring No. <u>Ou-105</u>	Boring No. <u>04-105</u> GEA Pr Below Surface 5' - 10' - 10' - 15' - 20' - 25' - 30' - 35' - 40' - - 40' - - - - - - - - - - - - - -	Boring No. <u>Out-105</u>	Boring No. Out-105	Boring No. <u>0W-105</u> CONSUL

Giles Engineering Associates, inc.	UBSUR Boring	No.	2-106		N 	((ting Sole and n Eingengebe
Project: U.S. Army Training Center						10-3	1-84	
Milwaukee, Wisconsin				GEA P			841022	
Crew Chief: Duane Drewicz			······	GEAT	OJBCI IN	U		
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	qu	q _p	q ,	w	REMARKS
- Yellow Mottled Gray Brown Clayey - Silt to Silt-Damp (CL-ML)	-							-
- - -	5′	1-SS	18					-
- Gray Brown Clayey Silt to Silt, some very fine Sand Seams-Damp to Moist (CL-ML)	10'	2-SS	15					
Gray Brown Silty very fine Sand, trace medium to coarse Sand, trace fine Gravel-Damp to Moist (SM)		3-55	17					
Gray Brown very fine Sandy Silt- Damp (SM)	20' _	4-SS	46					
Gray Brown Clayey Silt to Silt- Damp (CL-ML)	25' -	<u>5-SS</u>	57					-
- Gray Brown Silty Clay to Clayey Silt, trace to little fine to coarse Sand, fine Gravel-Damp	30' - 1	<u>6-SS</u>	66					
- (ML-CL) - - -	35′ _ -	- 7-SS	53					1 1 1 1 1
	40' - - -	8-55	34					
- - - Boring Terminated at 46'	- 45′ -	9-\$\$						 -

f.r.

YT.		D	-106			(ting Soil
es Engineering Associates, inc.	Boring	No	-100			fa	- Sundatioi	n Enam
iect U.S. Army Training Cent	er				Date:	10-31	-84	*
Milwaukee, Wisconsin	··· ··				oiect N	n · 8	41022	
Crew Chief: Duane Drewicz				GEAT		···		
DESCRIPTION Ground Surface Elevention	Depth Balow Surface	Sample No. & Type	N	qu	q _p	q,	w	REMAR
· · ·	· -							
Piezometer set at 45'	5′							
5' Well Screen	-							
	-							
	15' _							-
					• ·		•	4 4 2 4
•	20' _		i					
			i			-		
	25' _							
	-							
	30′							
					ļ			
	35'	-						
	40' _							
	45' _							

Les Engineering Associates inc	Boring	No	-106			f.			
biect: U.S. Army Training Center					Date:	11-15	5-84		
Milwaukee, Wisconsin	- <u></u>			GFA Pr	oiect N		84102	2	
Crew Chief: Duane Drewicz									
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	9 ₀	qp	q _s	w	REMARI	
	-								
Auger Boring at 20'	5′								
Set Well at 20'									
	10'						er - r	· · ·	
								• • •	
· · · · · · · · · · · · · · · · · · ·	15'							1 1 1 2	
	20'			ļ .			 	, , ,	
Boring Terminated at 20'								1 1 1	
	25'								
	30′ _								
	40' _								
						- -			
	45'								

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations.

es Engineering Associates, inc.	Boring	No	P-107	1		(fi		ring Joh n Engre
niect. U.S. Army Training Center					Date: 1	1-13-8	4	
Milwaukee, Wisconsin	· .			GEA Pr	oiect N		84102	2
Crew Chief: Duane Drewicz		·		GLATI				
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	q,	q _p	q,	w	REMARK
	-							
Auger Boring with SPT to 15'	-							
No samples retained per inspector	5'							-
	10′ _							
	-							
	-							
Boring Terminated at 15'	- 15 -			-			+	
	20'							
	-							
	25'							
	-						ļ	
					i			
	30′ _							
	35' -					1		
	40'					1		
						1		
	_	i i		1				l

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations.

ject: U.S. Army Training Center						•		
					Date: _	11-6	5-84	
Milwaukee, Wisconsin				GEA P	roject N	o.:	84102	2
Crew Chief: Duane Drewicz		T						
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	qu	qp	q ,	w	REMAR
Yellow Brown Silty Clay to Clayey Silt, trace fine to medium Sand (Possible Fill)-Damp (ML-CL)					-			
		1-SS	6					
Yellow Brown Silt, Trace Clay- Damp (ML)	10'	2-55	29					
Yellow Brown very fine Sandy Silt, trace Clay, trace to little medium to coarse Sand, trace fine Gravel- Damp (SM)		3-22	50				-	
Gray Brown very fine Sandy Silt, trace Clay, trace medium to coarse Sand-Damp to Mc•st	20'	4-SS	32			-		
(SM)	25'	<u>5-SS</u>	26					
Gray fine to coarse Sand and Grave Net (GW)	30'	6-SS	52					
(Probable Bedrock) at 32' Limestone	35'	RB						
	40'	/						

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations. Δ_{-22} A-22

_

AA	Boring	NoP	-108					ing Soil
es Chaineering Mssociates, inc.						51	DUNDATIO	n Chane
ject: U.S. Army Training Cente	er				Date: _	11-6	-84	
Milwaukee, Wisconsin		<u> </u>		GEA Pr	oject N	o.:	841023	2
DESCRIPTION	Depth Below	Semple No. &	N	q,,	q _p	q,	w	REMARK
Ground Surface Elevation	Surrece	Туре						
4	-							
Piezometer set at 42'								•
5' Well Screen	5' _							
	10'							
	-							
	-							
	1,5′ _							
	-							
	20' _							
	25'							
	30'							
	-							
	35 _							
								1
	40'							
								· · · · · · · · · · · · · · · · · · · ·
	45' 🗖							

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations. A-23

.-

ILES ENGINEERING ASSOCIATES, INC.	Boring	No	<u>0W-10</u>	8		(f		nin 7 Soni n Enan	
piect: U.S. Army Training Center					Date: _	11-7-84			
Milwaukee, Wisconsin				GEA P	oject N	o.:	8410	22	
Crew Chief: Duane Drewicz		<u></u>	,				· 		
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	q _u	9 _P	q,	w	REMAR	
	-								
Auger Boring to 20'	-	ł							
Set Well at 20'	5'		{						
		1							
		1	1						
	10′ _			ł					
	15' _				}				
	-	-				1			
		1	}						
Poring Torminated at 201	20				1				
	-]							
	25'								
-	20 -								
	-	1		·		ļ			
	30' _					Į			
	-	ĺ				ł			
	-	1							
	35'								
	-								
	-				ł				
	40'								
	-	}							
	45' _								
	-		ł			}			

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations. A-24

AA .		N	P-109			(Onsu	TING SOIL
les Engineering Associates, inc.	Boring	NO				. fa	OIRDNUC	n Enane
pject: U.S. Army Training Center					Date: 1	0-19-8	4, 10-	23-84
Milwaukee, Wisconsin	·-			GEA P	roject N	o.: <u>'8</u>	41022	
Crew Chief: Duane Drewicz	T				- 		······································	
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	qu	q _p	q ,	w	REMARK
Gray Mottled Yellow Brown Silt, trace fine to coarse Sand, trace fine Gravel-Damp		1.55	20					
(ML)		1-35	50					
	10' _	2-55	26					
Yellow Brown Silt, fine to coarse Sand and Gravel-Wet (ML)	15' _	<u>3-SS</u>	69				-	
Gray Brown Silty Clay, some fine to coarse Sand, → ne Gravel-Damp (ML-CL)	20'	4-SS	83					
Gray Brown very fine Sandy Silt, trace to little medium to coarse (SM Sand, trace fine Gravel-Damp to Mois robable Bedrock (Limestone)	25'	5-SS RB	110/4	.5"				
oring Terminated at 27'	30′							
	-							
	35' _							
	40′							
	-							
	45' _		}					}

٢,

Changer of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations.

(A)	Boring	No. ^f	-10	19		(TING SOIL
es Engineering Mssociates. inc.	Doning					la la	<u>Ö</u> UNDATIO	n Ename
ject: U.S. Army Training Center					Date: _	11-1	3-84	
Milwaukee, Wisconsin				GEA Pr	oject N	o.:	84102	2
Crew Chief: Duane Drewicz	<u> </u>			·····	· · · · ·		,	,
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Semple No. & Type	N	۹u	q _p	q,	w	REMARK
Auger Boring to 24'								
Set Casing Rock Roller Bit to 36'								
Set Well at 36'	-					ļ		
	10' _							
	-							
				}				
	15 -							
				ļ				
	20'			1				
	25′ _							
	-							
	30′ _							
	25'							
Boring Terminated at 36'						ĺ		
	40′					ĺ		
	45'							

iles Engineering Assocines, inc.	Boring	No	<u>0W-10</u>	9		Consulting Soil Foundation Engine					
oject: U.S. Army Training Center					Date: _	10	-19-84				
<u>Milwaukee, Wisconsin</u>				GEA Pr	oject No	o.:	84102	<u>></u>			
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	qu	q _p	q,	31	REMARKS			
· · · · · · · · · · · · · · · · · · ·	-										
Boring 109 Re-augered to 27' Boring backfilled to 20' with Bentonite Pellets	5′										
Well set at 20'	-										
	10' -			ĺ			-				
	-										
	15' _						2				
	-			2							
	-										
	20			1							
	-										
	25' _										
	30, _										
	-										
	35′ _										
	40'							l			
								ł			
	45' _			ļ							

les Engineering Mssociates, inc.	boring			. <u></u>		f	ÖUNDATIO	n Enank
oject: <u>U.S. Army Training Center</u>					Date: _	10-	16-84	
Milwaukee, Wisconsin	GEA Pro				roject N	o,:	8410	22
Crew Chief: Duane Drewicz		γ	·			<u> </u>	T	r
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	qu	9 _P	q,	w	REMARK
Yellow Brown Silty Clay, trace to little fine to medium Sand, (Possible Fill)-Damp	-						-	
(ML-CL)	5′ _ -	1-SS	16					
Yellow Brown very fine Sandy Silt, trace fine Gravel-Damp to Moist (SM-ML)	10′	2-55	18					
Gray Brown very fine Sandy Silt, trace medium to coarse Sand, trace fine Gravel-Damp (SM)	- 15' -	<u>3-SS</u>	66					
Gray Brown Silty Cluy, some fine Sand Seams-Damp (ML-CL)	20'	4-SS	41	•			-	
Gray Brown Clayey Silt to Silt-Damp (CL-ML)	25′ _ -	<u>5-SS</u>	11					
Gray Brown Silty Clay to Clayey Silt, some fine to coarse Sand, fine Gravel- Moist to Wet	30′ _ -	6-55	184					
(mL ~ UL)	- 35' _	7-55	111/5	5				
Boring Terminated at 38'-6"	40′ _			-				

Milwaukee, Wisconsin		- <u></u>		 GEA Pr	Date: _	<u>10-1</u>	<u>6-84</u> 841022	
Crew Chief: Duane Drewicz		······						
DESCRIPTION Ground Surface Elevation	Depth Below Surface	Sample No. & Type	N	qu	q _p	q,	w	REMARI
						7		
Piezometer set at 38'-6"	5′							
5' Well Screen								
	10'							
	15'							
	20′							
	25′							
	30′ _							
	35 _							
			·					

,

2

Boring	No0	W-11	1	<u> </u>	f	ōundajio	n Enank
			•	Date: _	10-2	19-84	
<u>``</u>			GEA Pr	oject No	o.:	8410	22
·						.	• •
Depth Below Surface	Sample No. & Type	N	qu	q _p	q _s	w	REMARK
-							
5' _							
-							
10'							
-							
-							
20'							
25′ _							
30′ _							
35′ _					I		
40′ _							
					•		
							ļ
	Boring I Depth Below Surface 5' 10' 10' 20' 25' 30' 40' 40'	Boring No0	Boring NoOW=11	Boring NoOW=111 	Boring No.	Boring No.	Boring No. OW+111 Curporto Date: 10-19-84 GEA Project No.: 84102 Beeth Sample N qu qp qs w 5' No. 8 N qu qp qs w 10' -

1

Pin

Changes of strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between boring locations.

GLES ENG SSOCINES, INC.

GENERAL NOTES

SAMPLE IDENTIFICATION

All sample classifications are reviewed by a solls engineer in accordance with the Unified Soil Classification System (ASTM D-2487)

SOIL PROPERTY SYMBOLS

- Dd: Dry density, pcf
- LL: Liquid limit
- PL: Plastic limit
- W : Moisture content
- N : Penetration resistance per foot or fraction thereof of standard 2 inch 0.D., 1 3/8 inch 1.D., split spoon sampler driven with a 140 pound weight free-falling 30 inches, in accordance with Standard Penetration Test Specifications (ASTM D-1586)
- q_D: Penetrometer value, tsf
- 95: Vane-shear strength, tsf
- 9u: Unconfined compressive strength, tsf
- Apparent ground water level at the time noted after completion

SOIL STRENGTH CHARACTERISTICS

Comparative Consistency	Blows Per Foot	Unconfined Compressive Strength (tsf)
Very Soft	0 - 2	0 - 0.25
Soft	2 - 4	0.25 - 0.50
Medium •	4 - 8	0.50 - 1.00
Stiff	8 - 15	1.00 - 2.00
Very Stiff	1 · 30	2.00 - 4.00
Hard	3u r	4.00+
Medium • Stiff Very Stiff Hard	4 - 8 8 - 15 1 - 30 3_7	0.50 - 1.00 1.00 - 2.00 2.00 - 4.00 4.00+

COHESIVE SOILS

NON-COHESIVE (GRANULAR) SOILS

Relative Density	Blows Per Foot
Very Loose	0 - 4
Loose	4 - 10
Firm	10 - 30
Dense	30 - 50
Very Dense	50+

DRILLING AND SAMPLING SYMBOLS

- SS: Split-Spoon
- ST: Shelby Tube 3" 0.D. (except where noted otherwise)
- AU: Auger Sample
- DB: Diamond Bit
- CB: Carbide Bit
- WS: Washed Sample
- RB: Rock-Roller Bit

APPENDIX B

WELL DEVELOPMENT LOGS

Don	ohu	e Pro	iect No.		We	II Dev	elopm	ent	Site _	P10	
ngineers	& Archite	cts Me	hod of D	evelop	ment	Pum	ped [] Ba	iled 🗌	Blown	
E	quipment .	Ai	rlift	N2	Lift_			1n. E	Beiler	Length	Ft. Material
Pu	ump	Marn	sfacturer	<u>ز</u> ءد	<u>د</u> `	·.				Diameter	
D	escription (of site (we	ather, temp	, soil ca	nditi	ons)					
-											
/ the E	ntered on c	omputer_		Signat	ure _					D	ne <u>11115 64</u>
Well No Time	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	рН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
1.16 9.55	47.6	13,13	6.5	48.96	750	250	clear	N	9.0	moderate.	sovall enouted out
2:30		13.15	6.50			 			ļ	•,	ļ
ulub.											
11 11 45	48.90	13.18	5	~	7.04	1250	~	11	9 6	Mura cate	·
					1.05	1040	~	<u> ~</u>	10,3.	Clemen	
11/12	48.92	12.15	– D	47.27					<u> </u>	Turbia	+ - -
1/2 2.15	48.92	13,20	6.5						1		
10.42	48.93	13.23	7 0	48 43	7.02	912	~	N	1100	Start 1 h cl	an Took Sampl
11/20	92.93	13.23	8.5	61:15					ļ	J 11	Somt we de rocking
								ļ			
11/21 11:35	40.92	13 23									Set up Tico un
			5+2							5.77	12:15 build was
			3								12:40
			5								1:20
			5 . 5								2. A-Pick inf
\leq			5		707	875	٨	1	9 '	moderite	Punged der miter
									 		Contractoria
									<u> </u>		Cample .
									 		by still at
											Channa !
11/21		13.55	.7							r. poir	
103	49.7:	· : 68	5	48 ;					ļ	11 1 101 10	}
	11.09									- ciral	
111	45 43		6						I	11/20: late	

Don	ohu	e Pro	iect No		We	li Deve	lopm	ent	Site	OL	JIDI + NO CAP
Engineers	& Archite	cis Met	hod of De	velop	nent	Pump	bed [] Bei	led [Blown	
E	quipment .	Air	litz	N2	Lift _			In. 8	ailer	Length	FL. Material
P	ump	Manu	facturer			*: 				Diameter	
D	escription	of site (we	ither, temp,	, soil co	nditic	ons)					
-											
E	ntered on c	xomputer_		Signati	ure					De	10 11R184
Vell Nu Time	Depth to Bottom	Depth to Water	Volume Removed	Depth After	рН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
1/12/11/2	20.19	7.13	3	20.31		10	Ar.	5	9'2	Extrem	
12 11 30	20.34	13.92	4.5	21.53	1.84	1150 1150	clear	N	10 %	Ext. Turs	Took SAMple
1.9 2:45	24.42	13.92	4.5						ļ	strature + cle	·
			45		 			ļ			
			4.5		669	970	N	IN_	9.5°C	bet. clower !	Took Sample
			4.5						┨─────		
			9 .5					<u> </u>	┣		
			4.5			an F		<u> </u>	0.000	Clem	- aks. la
		12 60	<u> </u>	2, 42	6.71	780	~	<u> ~</u>	<u> 7,5 C</u>		7.510 54- 112
		13. 18		21.75					<u>}</u>		/
	······································	4		\sim							//
								 	<u> </u>		
									1		
11/20	21.46	13.98									
						! 	 		<u> </u>		
						ļ					
					 	ļ					
			·		┣						
		<u> </u>			 	 		 	<u> </u>		
		 							 		
											·····
		td						├ ──		<u> </u>	
								-	-		

Don	ohu	e Pro	ject No.		We	II Dev	elopm	ent	Site _	Pioz	, 	
		CIS Me		evelop		rum		1 69				=
E	quipment .	A#	rlift	N2	Lift _	 -		In. 8	ailer	Length	Ft, Material	-
P	ump	Mam	facturer	izck	FUN	<u>e</u>				Diemeter		
O	escription (of site (we	ether, temp	, soil co	nditio	ns)	. /					-
-						1-12	former	5 5 7	imate	;	cilate'	-
F		moute		Signati	110					D	ate 11/15/24	
Vell Ng	Death to	Denth In	Volume	Death		Cont	C	Odor		Tushidit		1/
Time	Bottom	Water	Removed (gal.)	After	рн	cond,	Color	Y/N	Temp.		Comments	Ţ
10:30	46.98	12,1-	6	Audaly	6.65	265	Groen	N	8.50	moderate	amound of slurry	
2:5		27.15	3.5	47.42						11		
\geq		1		ļ								
1/10 12:20	47.43	120	3.5 0								H. 0: 33 45 45.4	
											gus purp	
11:00	47. 43	12.30	5									4
192:35		27.85	2.5	47.14				i				יב
11:00	47.43	12.44	<u>5</u> (2)	47.43	7.47	540	5	N	13.5		Took Sample	1
1/2006		25.00	9							Clearing	sheat a, to rochage	
								 		* 	Quicken	
1/21		12.39									Satup ISCO 11.30	2
			1,5								12.20 - pump	
						1				·	ere in mostly	J
121 11:5			6.0)	Un has Pr D.	
1. 1.		27.90	3.0							11		
\frown			3									
\nearrow												
130	47.43	12.12	5							Mudly Gt First then	Ga: Pimp	
\sim										Moderate		
\sim												
129 11:35	47.43	12.12	5.5							Clearing		<u> </u> /
10.5		26.48	_35							ر "		10
\leq			_			<u>``</u>						1
130 12 21	41.13	12.12	6		1.៕	1,10	N	N	1. 6	Clining	Tork anyle	
1.130-1.12		22.33	4							Clearing		1:
		_								<u> </u>		
\square												1

B-3

ł

Don	ohu	e Pro	ject No.		We	ll Dev	elopm	ent	Site	PIOI	page 2
Engineers	8 Archite	cts Me	thod of D	relop	nent	Pum	ped [] Bai		Blown	
E	quipment .	Ai	rlift	N2	Lift_			in, 8	iailer	Length	Ft, Material
P	ump	Man	ufacturer	<u>_</u>		<u> </u>				Diameter	
C	Description (of site (we	ather, temp	, soil co	nditi	ons)					·····
-											
£	ntered on c	omputer_	Volume	_ Signati	ure		r	<u> </u>	<u>r</u>	D	ne
Time	Depth to Bottom	Depth to Water	Removed (gal.)	Depth After	ρН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
11 29		13.03	le							Maderak	
\geq											
11 30 10:34	48.92	13,03	7	48.92			 	 		Maderate a	J D D D D D D D D D D D D D D D D D D D
11,30 1:57		13.03	-7			┣	┨───			Olaring	2ª time Mode
		-							<u>}</u>		
						<u> </u>		 			<u></u>
						<u> </u>	<u> </u>	<u> </u>			
		-									
\geq											
\sim							 	ĺ			
											1
\leq											
										<u> </u>	

1

B-4

Don Engineers	ohu & Archite	Pro	ject No	evelopr	We	Dev Pum	elopm 	ent Bai	Site _	Blown	00/02
	quipment -	Aiı	rlift	N2	Lift "			1n, 8	leiler	Length	Ft, Material
P	ump	Mam	ifacturer		.,					Diameter	
D	escription	of site (we	ether, temp	, soil co	nditi	ons)					
-			·								Schwet
E	ntered on (computer_		Signati	ure					0	ate A 16184
Well Nu Time	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	рН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
1/10/20	21.14	12.49	14		7.15	1000	Ν	N	9°L	Turkid but (Frecharges Quickly
\leq		ļ	15	21.52	6.91	1010	2	7	10.5	cloning to	
\leq		<u> </u>			ļ					tuy clem	· · · · · ·
$\langle -$		ļ		 	L	<u> </u>	ļ	 			
	21.46	12.30	5-	21.46			 		ļ		4
	ļ		·		<u> </u>						
11/2 0		 		ļ		 					
11:00	21.46	12.32									
											<u> </u>
	<u> </u>	h									<u> </u>
											<u>_</u>
	<u> </u>	İİ									
											<u> </u>
											<u> </u>
	·										+
		<u>├</u> ┦								- <u></u>	<u> </u>
											<u> </u>
											<u> </u>
											1
\sim											<u>]</u>
\square											
\leq											
\square											
	,		1				. 1			-	

1

ζ,

ł

Don	ohu	e Pro	iect No		We	li Deve	lopm	ent	~ Site	P103	
Engineers	& Archite	cts Met	hod of De	evelopn	nent	Pump	bed [Bai	led [Blown	
E	quipment .	Air	tift	N2 I	.ift _			_, In. B	ailer	Length	Ft. Material
P	ump	Manu	ifacturer							Diemeter	
C		of site (we	nther, temp	, soil coi	nditic)					
-											
F	ntered on c	omouter		Signati						De	Stat 11: 14184
Vell No	Depth to	Depth to	Volume Removed	Depth	ρH	Cond.	Color	Odor	Temp.	Turbidity	Comments
2.0.2	43.58	13 32	5	Muck	Q.10	780	N	N	9.50	Extran	
15	45.5	14.45	5	96.85	ور ا	Som	,,)+	<u> </u>		Extain	
1-1-0	46.2	19.84	5		11	11			8.52	Turbid but c	eacing (D
1/16		27.74	2	46.83		en ja	- Ma				
11 2:15		11.25	5	96.62		No ?	ar pin			Cotting Clores	41.2 :
1:00		27.23	2.5							Tursid Aquin	
123 8:05	46.10	12.98	5	96.41	7.69	348	N	N	9,52	Turs- Clearing	Tork -angle
			(\sum							
		(27:2 4	2.2				ļ			
12'30		27.51	3	7						Turbid MAN	
				[
9.10	46.85	12.25	5	46.85		No	مەد	1.0		Turb. L	
1:40		25 00	Wait								
3,25		2,70	3.5			1/2	20-	-2/2		1 comporte	60: 4-1
107	41.95		55	14.5.			5	:1:			$\int \int da$
10.57	כם.שד	01 72	2,5	90.		10	<u></u>	1		<u></u>	
\$ 31	ł	d'.10	<u> </u>								
101 8.18	410.85	11.24	5	4685						Clearing	
122 12:27		26,55	3								
2						à					
130	46.45	11.78	5	46.85	13	385	N	N	110	Clearing	Took imple
100000	 	35.82	3							11	
۷,		<u> </u>									
۷,					L		L				
$ \leq$					ļ	 			ļ		
<											
							L	L			
			י [−] זיי די.	4 + - + - + - 	· / /·	· ۲۰ ۳ هر <u></u> زر ممد	11 M	(. .		(F) PH MILL

.

ł

:

. . 1

.

Don	ohu	e Pro	ject No		We	II Deve	lopm	Bnt 	Site _	26103	-
Engineers	& Archite	cts Met	hod of De	evelopr	nent	Pum	bed [Bai	iled 🗌	Blown	
E	quipment .	Air	lift	N2 1	Lift_			_ In, 8	leiler	Length	Ft. Material
P	ump	Manu	facturer							Diameter	
D	escription	of site (wer	ither, temp	, soil co	nditic	ons)					
- E	ntered on c			Signati	ure		- <u></u>			De	stort 10 11 1141 2.1
Well No Time	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	pН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
11/19 3:00	21.50	12.10	2	22.45	h.45	530	N	~	12 2	extan.	4.
11.5 8:30	22.45	12.10	2		ı	1. 511	de			Extrem.	
$\langle \rangle$	· · ·	ļ	ļ		ļ	1 7 1 F					ļ
1 14 8 35	22.47	12.21	5+2	 	7.35	780F	N	N	2200!	- Weathy	Slort . 4 to rocha
\leq	ļ	↓	ļ	<u> </u>	 	ļ	ļ	· · · ·	N°C!		Ar we pump -7
1:50		12.13	10	 	730	830F	~	~	H°C		ļ
\leq	ļ			ļ	<u> </u>	<u> </u>	ļ			a kana l	
\leq			10	22.43	7.2	eru F		~	11-6	4 your clear	
<				1	}	┨───					
11		╉╼╍╍╍┥		┢	}						
		12.20		<u> </u>	 	}					
\leq	<u> </u>	┠───┤		 	<u> </u>		┝				
	<u> </u>	∲		<u> </u>	┟──	<u> </u>	<u> </u>				
	<u> </u>	╉───┥				 					
	 	f		<u>}</u>	<u> </u>	<u>† </u>	<u>†</u>		<u> </u>		
>		<u>}</u>		<u> </u>		<u> </u>			†		
>	<u> </u>	ţ		<u>† – – – – – – – – – – – – – – – – – – –</u>	<u> </u>	<u> </u>			<u>†</u>		
\geq	1	t		<u> </u>		1			1		
\geq											
\geq											
\geq											
\leq							т {		ļ		
\leq									ļ		
\leq		ļ							ļ		
\leq			L	 		<u> </u>			 		
\leq				L	 		L				
\leq											

	s & Archite	ers Met	ject No		Wei nent	II Deve Pump	blopm	ent Bai	Site led	<u>P 104</u>] Blown	juk: h
	Equipment .	Ai	dift	N2	Lift_			. In. B	ailer	Length	Ft. Material
	Pump	Manu	ifacturer							Diameter	
	Description	uf site (we	sther, temp	, soil co	nditic	ons)					······
							/				
	Entered on a	omputer_		Signati	ure _		71 - 7 10	<u>د د</u>		Da	11/14/84
II No Tirr	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	нα	Cond.	Color	Odor Y/N	Temp	Turbidity	Comments
12:4	. 37.4	18.05	3	38.25	8.45	430	N	\sim	nic	Extinue T	H. 20.8 June 20.8 /
\leq		22.6	<u>۱ = ۹</u>						 		ר = יכ
\leq		 	<u> </u>	38.33	├						
5	21.21	10.01	11								· · · · · · · · · · · · · · · · · · ·
<u></u>	30 72. 16	11.88	4.5			<u> </u>	<u> </u>		<u> </u>		
169.4	5 38.23	18.24	5	<u> </u>	†	110	SANN	k	9'c	Clemen	7 (2
19:0	A .	18.30	6	34.33	1	NO	SAL	12		clang + Her	+ ⁻
191:15		18.30	5		7.03	775	N	N	12 0	under of pin	Took Sample
]						ļ		ļ	•	
8.3	0 38.31	18.45	5	38.34						Stillery Turk	d
0		<u> </u>	• ?		<u> </u>				 		•/ >• = ==
		18.47	5						<u> </u>	ST. 11 LOUY TUIS	E. E.Value
	+						 				teen some +.11
/	1										
21 9:5	330.32	18,47	5		7.07	870	N	N	9° C	drawing for	took sample-
\leq							-	.,		top - Yushik near Loton	
	138.31	17.92	5	3831	 					Claring but	
	74 74	10.00		20.20						Near Botton	
24 19 19 19 19 19 19 19 19 19 19 19 19 19	158.52	14.06	5	56.50						Clearing	<u></u>
	¥	18.05	-2							Maseria	
12 9	2 28 7/2	17.98	5	48:2						Clears them	
		19.58	5							Gets mildi Alei atta	Miderate 2 ×
/	1										

.

B-8

,

Dor	nohu	e Pro	ject No	<u></u>	We	II Dev	elopm	ent	Site	DUSINA	Inn
ngineer	s & Archite	cts Met	hod of De	evelopr	nent	Pum	ped L	Bai		Blown	
	Equipment .	Air	dift	N2	Lift _			_ in, B	eiler	Length	Ft. Material
	Pump	Manu	facturer		·					Diameter	····
	Description e	of site (we	ether, temp	, soil co	nditic	ons)		<u> </u>			
	Entered on a	omputer	<u> </u>	Sionati				F. n.i	۲.	D	ston + 1114184
eli No Tim	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	рН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
100	22.65	10.48	2.5	23.1	7.50	630	N	N	122	Extrim.	
\geq	1										
15 12:3	0 23.05	11.40	25						[4.5 =
\leq	1								L		.5
10 9.4	5 23.23	12.39	4		` <u>`</u>	pla	 		19°C	· cloaking	4.5 = 3
9:9	.0	11.53	2	23,22	<u> </u>		12			cleaning	
1.15		15,90	1.5						ļ.,	Tar: d	
2.3	0 23.21	14.72	15	23.62	7.16	578	~	<u>~</u>	96	dening_	Tooksa-pil -
				k	•			 			<u> </u>
1.50	2325	16-12	No 7	in ough	H ₂	<u>p +0</u>	911	purp	Sax.		· <u> </u>
2									ļ	0/00 000	
95	\$ 23.22	13.82	6		N		-21	e		Clearina	
	1 2 22	1157	2	9223				le.		Aleccion	
			- d		- 4					<u>Olerna</u>	_
2 1.89	\$ 27.23	11.45	2.5	23.23		1	14	vic		Clarge	
101	5	1622	1.5							<u> </u>	
\geq						í í					
32 97	3 23.23	13.88		2322	7.34	104	N	N	126	Glearing	JOOK Sem, 12
1:01	·	14.93	1								
\leq											ļ
\leq	J										
	+										
											<u> </u>
>											
>	d d										<u> </u>
	+										

Pr pr ...

B~9

Don	ohu				We	II Dev	lopm	ent	Site	PISS	
Engineers	& Archite	ects Met	hod of D	evelopr	nent	Pum	ped [] Bai		Blown	
E	quipment .	Aiı	1ift	N2	Lift_			In. 8	leiler	Length	Ft. Material _
P	ump	Manu	ifacturer							Diemeter	
D	escription	of site (we	ther, temp	, soil co	nditic	ons)					
											Sourt
E	ntered on c	omputer_	Volume	_ Signati 1	ure	<u>,</u>	<u> </u>	<u></u>	<u></u>	D	no <u>11115124.</u>
Time	Depth to Bottom	Depth to Water	Removed (gal.)	Depth After	рН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
11.5 9:00	45.78	7.33	22.5		7,05	540	1. stt	N	9°C	Turkiel	Good coch
\leq									ļ	Clever up	22.552
		↓		ļ			<u> </u>	<u> </u>		Quick	
10:00		7.60	36		6.30	1010	Clear	N	9°C	Cleaner	-tooksamph C
		<u> </u>	13.5			 			╂───		= 72
10:30			27	·	1. 200	1070	chan		9.0	Extication	dats d
			45		0.65	1010		1~	<u> </u>	clim!!	= 72 =
10.50		7.97	52	45.88			 	 	†		<u> </u>
	····-										
11/3	45.86	7.54									
\geq							ļ	L			
120				 				Ļ	ļ		
10:14	45.86	7.63					├	 			<u> </u>
									<u> </u>		
											+
					 			<u> </u>			<u></u>
		<u> </u>			 				<u> </u>		
\geq											
\leq											
								ļ			<u></u>
		<u> </u>									<u> </u>
		<u> </u>									<u>+</u>
		<u> </u>						ļ			╂────
					}	 					1
\sim		+	<u> </u>		┣──~						4

B-10

'ngineers	& Archite	C Pro	ject No hod of De	velop	nent	Pump	ed 🕅	 Bai	Site	Blown		
E	quipment .	Air		N2	Lift			_1n. 8	leiler	Length	Ft. Material	
Pu	ımp	Manu	facturer							Diameter		
D	ncription	of site (we	ther, temp	, soil co	nditic	ons)						
								·		·····		
The El	Entered on computer_			Signature						Date 16 / 84		
Well Ny Time	Depth to Bottom	Depth to Water	Removed (gal.)	Depth After	pН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments	
11/16	21.71	9.04	4		7.12	795F	1	N	12'0	Extremely Tarb		
10:04	22.50	9.03	40.*	ļ	6.91	740 ^F	N	N	12 02	Turbed But chan	ws Touk Somple	
11/19 2:15		9.01	5 **		 				<u> </u>		Richard ing Fast	
\leq			5**		6.84	750 F	N	~	nic		Touk Sample	
11 vo			10						0%	stuting tuc	en i	
10:13	25.02	9.10	20	23.02		730	~		7.36	AGAN Start ant	Turbig	
					F			 	<u> </u>	Stratuc to cl	ent to	
		Hual	evel hack		F. /	A	4.3	and		Vary crea		
		i. Vera	her L			//		<u> </u>				
		121.9				<u> </u>						
	•			[<u> </u>				
										·		
\geq								ļ	ļ			
								ļ				
\leq	· · · · · · · · · · · · · · · · · · ·							ļ	ļ			
\leq									ļ			
		 		 					 			
		 		<u> </u>					<u>}</u>			
		<u> </u>			ļ							
		<u> </u>		<u> </u>	 				<u> </u>			
		<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>			
		<u> </u>			<u> </u>	<u> </u>			<u> </u>			
	· - · · · · · · · · · · · · · · · · · ·				<u> </u>		 	+	<u> </u>			
								<u> </u>	<u>†</u>			
					 				1			
		.	17	tern the	~	<15m	e hr	2.6.1	25			
Don	ohu	e Proj	ect No.		Wel	l Dev		ent	Site _	P106	CEMENT Crack. Bass + Well	
--------------------------	--------------------	-------------------	-----------------------------	----------------	------	-------	-----------	-----------------	--------	-----------------------------	------------------------------	
E SL Bat Pr probed	G Archite	CTS Meti	hod of D	N2 I				_ 1981 In. B	eiler	Length Diameter DL& {	•Ft. Motorial	
- E	ntered on c	:omputer _		Signatu						D	5++++.(no_11/15/6/	
Vell Nu Time	Depth to Bottom	Depth to Water	Vulume Remove: Igal.1	Depth After	рH	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments	
2.100 3:00	41.73	9.35	5.5	Muck	7.85	235	Brun	N	8°C	mod - citreme	thick starry on	
10:50	37.00	Yorger E	xtrans.	Aluck	7	ndt	MUC	4 H.	e			
11-99:4	46.45	18.03	4.5	46.45						Extran. Turb		
19 2:00		43.10!	MAIT				ļ	 				
9:10	46.45	35.62	1:5	i	7.53	968	<u>↓~</u>	~	9.2	1r	Took (Yampla Sampl	
1:30	to 15	44.03	Wait !								1	
11/21 11:00	46.45	36.60	1	 	·					Extreme		
		12.20								`		
. 3.6		<u>45.10</u>		<u> </u>			┟╌╌╴					
12 13	46.45	12. Ids	5	41.						Turp. S		
172	111.45	2197	1				 			T Lil	<u></u>	
	40.72	1621		<u> </u>			<u> </u>			1.4.0.0	<u>}</u>	
130		38.34			1:3	64B	TAN	N	11°C	11	Tout Sample	
							 					
\geq												
						,						
\geq												
							1	ļ	ļ			

B-12

Don	ohu & Archite	e Pro	ject No hod of De	evelopr	We	ll Devi Pumj	ped [ent Bai	Site	ر در ن Blown []	06
E Interne P Restore Pope Departure The Component	quipment - ump	Aii Manu of site (we)	rlift Ifecturer ether, temp	N2 , soil co	Lift	ons)		1n. 8	leiler	Length Diameter	Ft. Material
E	ntered on c	omputer_		Signati						De	11 1161 84
ell No Time	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	ρН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
10:15	19.13	7.86	4	20.10/	1uc	۶Y			9.5%	Mad	O sample Next find
129.15	20,61	7.45	9+								
\leq		1	5 (10:4	Δ							
\leq			5 (12:00	Ķ	7.36	740	deur	N	9°C	Turbid Stantin	Took Sample
\leq		18.75	6 (2:00	20.70			 			to clan	
\leq		 		[9°C	clana_	
\leq			(24)	 	7.26	750	N	N	<u>9'c</u>	Slightly Cland	Took Sample
to				 			 		 		
19:54	20.93	8.05					 		<u> </u>		
		·							<u> </u>		
$ \leq $									<u> </u>		
>									<u> </u>		
>									<u> </u>		
>											
\geq											
									1		<u></u>
~									<u> </u>		
\geq											
/											
\geq											
\geq											
					1						

B-13

f

Equipment Airlift N2 Lift In. Baller Length Ft. Material Pump Manufacturer Diameter Diameter Diameter Description of site (weather, temp, soil conditions)		s & Archite	e Pro	ject No	evelopr	Wa	II Dev	elopm ped [ent] Ba	Site _	P108 Blown	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Equipment . Pump Description (Air	lift Ifacturer ather, temp		Lift			In. 8	Bailer	Length	Ft. Material
Well No Depth to Depth to Region 200 After PH Cond. Color Odor $\frac{1}{1000}$. Turbidity Comments 1:15 44.84 1/4.46 Z-54		Intered on c	omputer_		Signati	ure					Da	te _// //3 /
9:13 14:84 14:46 Zapi 12:14 Hwiezel often 9:15 15:16 Zapi 12:28 14:16 16:5 16:14 9:15 15:18 Zapi 12:28 14:16 14:16 14:16 9:15 15:18 Zapi 17:38 79:5440 None None None P°C Okar 16:14 9:15 15:38 Zapi 17:38 79:5440 16:14 16:14 9:15 15:38 Zapi 18:78 16:14 16:14 16:14 7:15 15:38 Zapi 18:78 16:14 16:14 16:14 7:15 15:18 12:01 18:78 54:90 16:17 16:17 15:00 15:00 15:00 16:1280 9° c 1 1 7:15 15:00 15:00 15:00 15:00 10:00 1 <th>Well No Time</th> <th>Depth to Bottom</th> <th>Depth to Water</th> <th>Volume Removed (gal.)</th> <th>Depth After</th> <th>pН</th> <th>Cond.</th> <th>Color</th> <th>Odor Y/N</th> <th>a Temp.</th> <th>Turbidíty</th> <th>Comments</th>	Well No Time	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	pН	Cond.	Color	Odor Y/N	a Temp.	Turbidíty	Comments
13 15:16 2-pl. 1228 -ph 16 -tHe 135 15:18 2-pl. 17.38 795 440 None None P°C Okar the semple 9:35 15:18 2-pl. 17.38 795 440 None None P°C Okar the semple 9:45 15:18 2-pl. 17.38 795 440 None None P°C Okar the semple 9:45 15:18 12-pl. 18:78 5 19:54 10-riticus 16:5 15:18 12-pl. 18:78 5 19:07 10-riticus 16:5 15:58 7-pl. 0 15:02 8:5°c. 1/2ry olcar Took somple 2:00 15:15 10-pl. 6:51:30 ² 8:5°c. 1/2ry olcar Took somple 7:15 15:66 10-pl. 6:51:280 9°c. " " ' 15:77 - - - - - - - 12:80 - - - - - - - 12:80 - - - - - - - 12:97	P138 3:45	44.84	14.46	251			· Lan	14.12	Ł			Hulosol after 250
15 15:10 2-gel. 128												18.5 recording fill
$\overline{Y_{155}}$ 15.18 2 y-l 17.38 795 440° None None 9° C. Okar 76 keys $\overline{795}$ 15.38 2 cul 785 15.38 2 cul 785 7015 15.18 12 cul 1878 5877 79000° 79000° 7105 15.58 7 gal $Clear$ $Clear$ 70000° 79000° 7105 15.21 90° 85.7° Clear 760 somplex 7000° 7105 15.15 21 gal 6651300° 85.7° Clear 760 somplex 7.15 15.26° 10° clear 700° clear 700° clear 700° clear 7.15° 15.26° 10° clear 10° clear 10° clear 10° clear 7.10° 15.27° 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10° clear 10°	1.5		75,18=	2 get	THE							upto 16 inter 9 m
$\frac{935}{745}$ 15.18 2 gel. 17.38 795 440 None None 9° C $0/exr The k sample 745 15.30 2 gel. 17.38 795 440 None None 9^{\circ} C 0/exr The k sample 745 15.16 12 gel. 17.38 795 51/ykll/y 51/ykll/y 51/ykll/y 700 + 500 + 700 +$			-									
745 15.30 2 cel. 557 cm from 7 cm 1015 15.18 12 pel 870 587 cm from 7 cm 1105 15.50 7 pel 0 leer 0 leer 2.00 15.15 2.1 pel 665 liso $85^\circ \text{ clary olear}$ $700 \text{ k sompleting from 7 \text{ cm} 2.00 15.15 2.1 \text{ pel} 665 \text{ liso} 85^\circ \text{ clary olear} 700 k sompleting from 700 \text{ k sompleting fro$	9:35	5	15.18	2 pl	17.38	7.95	490	None	None	°℃	Clear	Tak semple
10:15 15.18 12 gel 18:70 5hykliji Chul, Set i Current i C	9.45		15.38	2 al.								/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1011	5	15,18	12 gal	18.78						skyhtly Charles	Set up pump for Contradeus runnin
$\frac{2.00}{4.15} \frac{15 \cdot 15}{2.1 \text{ yr}} \frac{6.65 \cdot 130^{\circ}}{6.65 \cdot 1280} \frac{8.5^{\circ} \text{c}}{77 \text{ y}} \frac{16ar}{6ar} \frac{160 \text{ k}}{10 \text{ yr}} \frac{16}{6.65 \cdot 1280} \frac{7^{\circ} \text{ c}}{7^{\circ} \text{ c}} \frac{1}{10} 1$	11.05	·	15.50	Tool							Clear	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.00	1	15.15	21 gal		6.65	1300			85%	very clear	Took smal.
	4.15	1	15.66	10 gal		6.65	1280			9° c	11 1	(1)
		1								·	•	//
				3								
	1/200	·~~ ,	15.94									
	\sim										······	
		+										······
		1										
												
		i							{			
		<u> </u>										
	1	<u> </u>				-+		ł				······································
	1	<u> </u>				-+						
	6	∲ {										
	< >	┥───┤						ł				
	<	╉────┤	{									
	\leftarrow	┥───┤										
		<u> </u>										
				[
					-					-		

.

Don Engineers	ohu & Archite	ects Met	ject No hod of De	velopr	We	II Deve Pumj	bed	ent Bai	Site _	00 108 Blown []	,
E P D	quipment _ ump escription (Air Manu of site (wea	lift ifacturer ither, temp,		Lift			(n, 8	ailer	Length Diameter	Ft. Material
E	ntered on c	omputer_		Signati						De	to 11/13/84
Well No Time	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	рH	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
3130	22.88	8.05	3901	21.5			· ·				39All UNT
9:30		7.85	3 s.l.	22,88	6.85	1420	None	None	9°C	milky brun	tuck sample
10.30		8.30	3 gel	both-						first - then clour	
11:20		8.45	3 gal.	a						11 11	
1.55		8.30	3 gal.	.1		 			ļ	•1	!
2:30		11,28	Z.Sgal		ļ'	 					
4.15		10.88	2.5	<i>"</i>	6 65	1360	None	N	9.5	clearing up	Tock sample
11/15		- 60	E al							Clear	
1.12		1.70	2 ml		K IC	17/2	، بونيل مدحان	N	900	44	Test Sample
1.10									/		<u> </u>
			27)								
1											
9:42	23.45	835									
\leq											
\leq		 						ļ			<u> </u>
\leq											
\leq											
	<u> </u>		}	ļ							
<								ļ			·
>						 			<u> </u>		
>	<u> </u>										
\sim	 	<u> </u>			<u>├</u> ───	 					
\sim	t								 		
<u> </u>	ł	+									

₿-15

ł

	8 Archite	e Proj cts Met	ect No.	veloon	nent	Pum		¹] Bai	Site	<u>+ 109</u> Blown	
E	quipment	Air	lift	N2				in. B	ailer	Length	Ft. Matorial
P	ump	Manu	facturer			• .				Diameter	2 PJC
D		of site (we	ther temp	soil co	nditic						
-											
E	ntered on c	omouter		Signati					-	D	5 dand no 11 /15/84
Vell Nu Time	Depth to Bottom	Depth to Water	Volume Removed (gal.)	Depth After	рН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
11.20	39.15	14.76	4	Man	7.90	430	clar	N	8.5°C	fxbrem	Tosk Suple .
10:20	39.14	14.95	4 0								
12:05	39.14	15.10	4	39.4						Fittere.	
239:30	39.14	15.41	4.5							Turbid	l
1.20	ļ	16.44	3.59							Starting to	dan
											
10.45		15.43									used Isco Pump
11:45	·		2.5								Primp sucting
>	ł					7.00		01	Q° 0	· · ·	mostly ar
12.55	f				7.4	700	<u>N</u>	NY .	7_0	cleat	Tico
3:15			25							Trailed	has Prime
\rightarrow											
127 12 18	39.14	14.83	4.5							Clearing	Care Rump
\geq											
1100 10:43	39.14	14.98	4.5	39.14						Clear.	
134	·	15.80	4								
50;01 20;01	39.14	14.87	4,5	39.14	7.10	800	Μ	N	10°C	(locring	Toux Sample
الاز سعليا		15.19	4,5							(lewing	
										······································	
\sim											
\geq											
		+									

Don	ohu	e Pro	ject No.		We	II Deve	elopm	ent	Site _	ON 10	9
Engineers	& Archite	ects Met	hod of De	evelopr	nent	Pum	ped L	Bai			
E	quipment .	Aii	lift	N2	Lift _		• <u>-</u>	_ In, B	ailer	Length	Ft. Material
P	ump	Manu	ifacturer							Diameter	
۵	escription (of site (we	ather, temp	, soil co	nditic	ons)					-
-					<u> </u>						
E	ntered on c	omputer_		Signat	ure					D	ne <u>11 13 84</u>
Well No Time	Depth to Bottom	Depth to Water	Volume Removed	Depth After	рН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
W10911:05	22.42	14.40	00		7.05	1005	N.	N	11.50	Extractor	15 w/Bailer
\geq											3 w/purp -c.l.
11:43	22.49		18	22.49	6.95	6,60	N	N	13.0°C	Clearer st.11	ofter 18 ppl denty
\leq		L					L	. 		shight my.	
1:20	22.4/	14.28 or	.3 2 ->	22.4	7.05	570	N	N	12 0	closer ""	W/Pump 2goll
									ļ		
3:18	22.46	14.20	2	22.45		-45	ok Sa	<i>ار م</i>		Chenera by	W/FIP 29allons
							 	4		for	
7.30					6.85	530	N	~	6.0		
					1		/			•	
	22.46	15.87			r 10 a		1-5	<u></u>	ra, w	the ke still	SOFT NICE+
											· · · · · · · · · · · · · · · · · · ·
				L						<u> </u>	
											//
\sim											
\leq											
\leq											

?

B-17

.

	Archite	e Pro	ject No hod of De	evelopr	We nent	Pum	elopm ped	ent Bai	Site _	9_111 Blown 🗌					
ی ا ا	Equipment _ Pump Description o	An Manu of site (we	lift Ifacturer ather, temp	N2 , soil co	N2 Lift In. Beiler Length Ft. Material Diameter Diameter Dil conditions)										
	Entered on c	omputer _		_ Signati	ure					Da	te_11/13/84				
Well No Time	Depth to Bottom	Depth to Water	Removed (gal.)	Depth After	pН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments				
9:20	39.73	12.79			1.93	500	Nonc	w	1152	very turkit	Cond sta: 1300				
\leq			L	ļ		ļ	 		ļ	<u> </u>	measured conduction				
\leq	م ر . 40	. 	ļ		ļ	ļ	ļ	 	·		filterid som ple				
\leq		[ļ	ļ	ļ	 	ļ	 	Í	0.45 milt				
\leq					ļ	ļ	<u> </u>		ļ		dyather 7.0gal				
\leq					ļ	ļ	<u> </u>		ļ		clow recovery				
\leq								L	ļ		0				
2111 12:20	40.70	13.18				ļ	Í	[ļ		remove 3 more gal ans				
<u><u><u>v</u></u></u>	37.5-	<u> </u>			7.25	560	Nora	No	9.5	Var Turbiel	STill Unythorid				
\leq						ļ					+ to kont 3 goil to dry				
2:20	42.7	12.91													
	40.7-					.,		<u> </u>		10 - Tarad	+ Trailons=				
										· · ·					
1/14/2 30	42.70	12.42	+ 5 50/1	ire k.	23.	76 1.3	12241			Tailiel					
\geq		L			ļ į		ļ		ļ						
	43.70	1.5	- Call	4.7.71	7.05	560	19.91	11	9.5	CAPPERA	+ 2 411 - 10 ->				
\leq											+ 2				
1.4	41.70	12.2	9	40.7		115	Ł.	h		. CALCA	-6				
/											- :				
10	41.70	12.30	_ ۲	40.7	6.85	550	N	2	9	clean	+7 =10				
\geq															
12:20	42.70	12.80	4												
\geq]	7													
\geq															
11/20		13.04													
		1													
~	1					1			T						

B-18

ı

Dor	nohu	e Pro	ject No.		We	I Deve	lopm	ent	Site	000 111	
	s & Archite	ects Met	hod of De	evelopn	nent	Pump	bed	Bai			
	Equipment .	Air	lift	N2 I	Lift	-		_1n. B	ailer	Length	Ft. Material
	Pump	Manu	facturer							Diameter	
	Description (of site (we	thei, temp	, soil co	nditic	ons)					·····
	Entered on c	omputer_		_ Signati	ure					D	no <u>11/13/24</u>
Tim	Depth to Bottom	Depth to Water	Removed	Depth After	ρН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
JWIII 7.20	20,75	5.36		1	6.95	1180	None	N	12%	Turbid	din alter 4.0.
2	1										and moderal
\leq		[recovery
<	.	 		ļ							conduit on clean
00.11				<u> </u>							sargle.
1:01	<u>- 21. T</u>	7.8			6 70	1000	Nom	~	//.5	KigTubid	+2 Jall =6
											+ (Gallus
2:2	22.23	8.13									
2:30	22.52-					1155				Externe 1	+ 4 Sallons
	1										
()19 9:3	22.52	1.62	3	22.52		N	··· " <			CRARER CLAR	+ I Gai W/PU-p= 6 -
\leq						{					+ 25.2
	1 62.22			12	6 85	1080	NONZ	~	10.2		+ 3
145	22.52	4.00	2	2						Tinglan Tar bui	+1 = 6
											` ک
4.00	2252	7.20	3	- 1						cleares and	+3
111.										5769-7	
1.0	0 27.52	02 ٢	3	- 15						<u> </u>	+ 1 = 6
11		24								Tralid	+ 2
13.00	1	122			ما ن	1010		N	12-	inclid	• >
1/11/12:2	022.50	2.35	2.5	.1						Still Upoy	
/										Tu-Lid Mater	
120 11	122.50	8.82	3	40						Ta-Sid bad sland	16 Chevering
7:3	7	8.72	3 *							can hear Hes	coming in .
					T						

D	OON gineers	ohu 8 Archite	e Proj cts Meti	ect No	velopn	Wei	li Dev Pumj		Bai	Site _	<u>しいい</u> Blown ロ	par, 2
	Ec		Air	fift .	N2 1	.itt _			. In. B	ailer	Length	Ft. Material
	Pu		Manu	facturer							Diemeter	
			Inite (
	-											
	E-	tered on a			Signati						De	• / /
Vell	Time	Depth to Bottom	Depth to Water	Volume Removed	Depth After	рН	Cond.	Color	Odor Y/N	Temp.	Turbidity	Comments
T	21 10:30	- <u></u>	8.95	3							Very	Alot of Lour
1/2	1.55		9.10	3							11	
1/2	1:50		10.60	3-							charing a liter.	
4										ļ		Lack Rules
	2 2 37		8.83	2.5							Turbid - Jery	Lors I.K. Some one
<	\leq								13	KS	imple -	11-1-2
			0.70	2							T I O I	
11	100		8 24	95							11 (Action Source
-			0.01	- d. 2							X .	
	9.51		8.15	2							- learing 5	+ geds muldy
_	مرزيات		4.12	3							Nour T30	dum
_			-								 	
<											·	<u> </u>
~									ļ			
<										<u> </u>		<u> </u>
										+		
	\rightarrow							<u> </u>				
2												
2										ļ		
_								 	ļ	 		
~										<u> </u>	<u> </u>	
_					ļ					<u> </u>	 	
<					<u>}</u>					<u> </u>		
1		<u></u>			<u> </u>			<u> </u>		<u> </u>		
_			·	<u> </u>	├ ───	}			 	+	+	······