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Abstract

The influence diagram is a decision analysis tool. It shows how random variables and decisions

affect (or influence) a value function. The influence diagram can also be used for probabilistic

analysis by ignoring decision variables and the valu' function. In this case, the influence diagram

represents a joint distribution function of the rand-..i variables.

The influence diagram represents a joint distribution function in conditional form, with one

random variable in unconditional form, a second random variable conditioned on the first, a third

conditioned on the first two, and so on. If a random variable is conditioned on another, then

the conditioning order can be reversed with Bayes' rule. In this manner, any random variable

can eventually be expressed in unconditional form, or as being conditioned on any other subset of

random variables.

Under certain conditions, the influence diagram can represent continuous random variables.

When the random variables are continuous and jointly Gaussian, then each random variable is

completely specified by its mean and variance. The influence diagram calculates the conditional

mean and conditional variance of a giver, -a.-dom variable, given a subset of the remaining random

variables The conditional mean and variance are sufficient to completely specify the conditional

density function. The conditioning order of the random variables may be changed (again using

Bayes' rule) so that any random variable can be conditioned on any other subset of random variables

in the diagram.

The discrete-time Kalman filter is a conditional mean estimator of the states of a linear

stochastic process, conditioned on the previous state and current measurements An influence

diagram can represent the states, measurements, and initial conditions of a linear stochastic process.

Under these conditions, the influence diagram is also a conditional mean estimator of the states of
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a linear stochastic process. The influence diagram algorithm becomes an alternative algorithm for

discrete-time filtering.

Two important characteristics of an',- algorithm are its speed and numerical properties. The

speed of the algorithm is determined by the number and type of mathematical operations required

by a digital computer implementing the -1gorithm. The numerical properties of an algorithm

depend upon how it handles the roundoff errors that are inherent in a digital computer. These

roundoff errors cause the computed values to deviate from the true values that would be computed

on a machine with no roundoff errors (infinite wordlength). One measure of numerical properties

is the stability of an algorithm. The errors caused by a stable algorithm are related to rounding

errors in the original values input to the algorithm.

The speed of the Kalman filter is well known. The attmerical properties are known also, but

can be unsatisfactory. The conventional Kalman filter algorithm is not a stable algorithm and has

numerical precision problems under certain conditions. One solution to the numerical problems of

the conventional Kalman filter has been to use factored forms of the covariance matrix as the basis

for computation. These factored forms of the Kalman filter are slower than the conventional form,

but allow better numerical properties. The U-D factored form of the filter offers the best numeric

properties with reasonable speed.

This research focused on the numeric properties and the speed of the influence diagram. It

revealed that the influence diagram algorithm for discrete-time filtering uses a factored form of the

covariance matrix. This factored form is essentially a mirror-image of the factorization used by the

U-D filter.

Previous research showed that the speed of the influence diagram was equivalent to the U-D

filter. However, this research revealed circumstances that allow significant savings in the number

of operations required by the influence diagram. These savings do not make the influence diagram

faster than the Kalman filter, but they do make it faster than other factored forms.

vfi



This research also showed a link between the influence diagram algorithm and matrix op-

erations. These matrix operations are known to be stable and demonstrate the stability of the

influence diagram algorithm. The errors caused by the influence diagram are directly related to the

types of errors caused by the inversion of a unit triangular matrix. These errors are very similar to

the eirors that occur in the U-D filter.

The influence diagram allows a pictorial view of the conditional mean estimator. It can be

used for discrete-time filtering, resulting in excellent numeric properties. Although the influence

diagram is not as fast as the Kalman filter, it appears to offer the best trade of speed for numeric

precision of any known discrete-time filtering algorithm.
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AN ALTERNATIVE ALGORITHM FOR DISCRETE-TIME FILTERING

L Introduction

The influence diagram is a tool for decision analysis [10, 11, 12, 14]. I. is a pictorial description

of conditional relationships between a given set of random variables. If one random variable is

conditioned on another, then the conditioning order can be reversed by using Bayes' rule. The

influence diagram can be used to show changes in the relationships between the random variables

when the conditioning order changes.

Associated with the influence diagram are the conditional and uaiconditional probability dis-

tributions for each of the random variables in the diagram. Taken together, the conditioning

relationships and the associated distributions are sufficient to describe a joint distribution function

for the given set of random variables.

If all the random variables of a set are continuous and jointly Gaussian, then the joint density

function can be fully specified by a mean vector and a covariance matrix. For jointly Gaussian

continuous random variables, the influence diagram can be used as an alternative expression for

the joint density function. Instead of a covariance matrix, the influence diagram specifies the

unconditional and conditional variances of the random variables, and the conditional relationships

between them.

The discrete-time Kalman filter is an optimal estimator for the states of a linear, stochastic

system [7]. It can be derived by assuming that state estimates can be expressed as jointly Gaussian

random variables. Using linear operations and Bayes' rule, the estimate of the state at any time

can be calculated as a vector of conditional means and a conditional covariance matrix, conditioned

on current and previous measurements.
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The linear operations of a linear stochastic system can also be expressed in influence diagram

form. Furthermore, the influence diagram can be used to represent the conditional vector of means

and conditional covariance matrix, conditioned on previous and current measurements, or equiva-

lently, the most recent previous state estimates and the current measurements. Thus, the influence

diagram affords an alternative algorithm for discrete-time filtering.

One limitation of the Kalman filter is that, under certain circumstances, it can have prob-

lems with numeric accuracy due to fixed computer wordlength and roundoff error [2, 7]. There are

various ways of addressing this type of problem. A simple, but perhaps costly way is to increase

the wordlength of the computer. Another way is to use alternative algorithms which have better

numerical properties than Kalman's original equations, with an associated increase in computa-

tional requirements. One alternative algorithm which offers a large benefit in numeric accuracy, at

a moderate increase in computational burden, is the U-D factored form of the Kalman filter [2].

Because of these properties, the U-D filter will be a baseline for comparison in the remainder of

this thesis.

1.1 Summary of Research

The Gaussian influence diagram draws from different fields of expertise [1, 6, 8, 9, 10, 11, 12,

17]. It is a graphical method of showing the conditional means and variances of jointly Gaussian

random variables. It represents the relationship between such variables as the conditioning of one

on another. The algorithm for manipulatin6 the Gaussian influence diagram takes advantage of

the special characteristics of the joint Gaussian distribution.

The theory behind the continuous random variable form of the influence diagram dates from

early work in statistical analysis. Some of the notation for the influence diagram can be traced to

Yule's notation for partial regression coefficients of multiple variables [17]. The influence diagram

depicts the relationships between conditional random variables and those random variables upon

which they are conditioned. Either Mood and Graybill [8:pp. 198-215] or Anderson [l:pp. 5-34]

2



present a thorough summary of the characteristics of conditional Gaussian random variables. Some

of the applicable properties are repeated here for continuity.

If x is a Gaussian random vector that has components x1 ,x2 ,...,xp, and the components

x, through xq are conditioned on the components x9+1 through xp, then the mean of any of the

conditioned variables can be expressed as a linear function of the realizations of the conditioning

variables. This linear relationship can be expressed in terms of a matrix of regression coefficients. If

x6 is a component of the conditioned set of variables, and xj is a component of the conditioning set

of variables, then the i,jth element of this matrix is /ij.q+1,q+2,.. , where the subscript

implies that this scalar is the partial derivative of xi's conditional mean with respect to x,'s value.

The subscript terms after the period are the conditioning variables for the coefficient.

The matrix of regression coefficients is closely related to the covariance matrix. If a Gaussian

random vector is partitioned into two random vectors x and y, then the covariance matrix can be

partitioned as

Pxx PZ)

PYX PYY

The matrix of regression coefficients of x on y is P.yP-'. If m, represents the unconditional

mean vector for x, and my represents the unconditional mean vector for y, then the conditional

mean of x given y is given by the equation (also called the regression function):

=y m + PXPY.(p - m ) (2)

where p is a dummy variable for the realization of the random vector y. Furthermore, the condi-

tional variance of x given y is:

P~ly = PX - PXYZP.PYX (3)

These equations show that, for a given set of conditioning variables, the matrix of regression

3



coefficients and the conditional covariance matrix are fixed. Furthermore, the conditional mean is

a linear function of the realizations of the conditioning random variables [1:pp. 27-30].

In his 1986 doctoral dissertation, Kenley proved that the covariance matrix for a Gaussian

random vector could be expressed in terms of a matrix of regression coefficients and a matrix of

conditional variances [6:pp. 29-31]. Kenley's regression coeffcient matrix is not constructed in the

same way as the matrix PXvJPj'J given above. Instead of using the same conditioning variables (the

random vector y), for all the regression coefficients, Kenley constructed his matrix in the following

way.

Assume one variable is chosen from the random vector. The choice may be arbitrary, but

for the purposes of this explanation, it will be labeled xl. A second variable, perhaps arbitrary

also, is chosen and expressed in conditional form on the first variable. This second variable will be

labeled x2. In order to express this second variable in conditional form, it is sufficient to calculate

the regression coefficient and the conditional variance of x2 given x1. A third variable is

chosen and conditioned on the first two using the regression coefficients/ax, and I%3 2.xt. The

variance of the third variable is also expressed as a conditional variance, conditioned on the first

two random variables. The process continues until all random variables in the vector have been

chosen and conditioned on the previously chosen variables.

The regression coefficients just calculated can be expressed in matrix form as a strictly upper

triangular matrix B. Kenley uses conventional row-column notation for this matrix. Kenley's new

notation is more convenient for influence diagrams because, as will be shown later, there is no

need to keep track of the conditioning variables with subscripts. The influence diagram graphically

depicts all conditioning variables. In addition, the order of the first two numbers in the subscript is

reversed to make the notation compatible with matrix operations. The B matrix can be expressed

4



using either notation as:

0 P21 031 141 " nI 0 b12 b13  b14  ... bin

0 1332.1 142.1 03n2.1 0 b2 3  b24  ... b2 .

0 143.21 ... 
1 .3.21 0 b3 4  ... b3.

B- (4)
0 U : 0 0

0 0

The conditional variances can also be expressed in matrix form. This matrix is diagonal,

ordered as the variables were chosen earlier, xl,x2,x3,.. xn. The conditioning variables for any

conditional variance lie above it on the diagonal. Since x, is first, it is not conditioned on any

other variables and the variance is in unconditional form. The notation for the variance of the ith

random variable is vi, whether the variable is expressed in conditional or unconditional form. The

diagonal matrix D is expressed as:

V1

V2 0

D V3 (5)

0

Vn

The influence diagram was introduced in decision theory for visuializing the "influence" of

random variables on decisions [10, 11]. It graphically depicts the relationships between random

variables, deterministic variables, decisions, and value functions. For this research however, only

random and deterministic variables will be considered. Influence diagrams are relatively new to the

field of decision theory and are not widely used outside of the field. In order to make the rest of this

5



research easier to understand, Chapter 2 is an introduction to influence diagrams as specifically

applied to probabilistic analysis and discrete-time filtering.

Initially, the random variables in influence diagrams were assumed to be discrete random

variables or deterministic variables, each with discrete probability distribution functions [10]. Ken-

ley later derived the mathematics for influence diagrams with continuous random variables. He

specifically applied influence diagrams to the case of jointly Gaussian random variables, although

he also extended the analysis to other continuous random variables [6:pp. 12-34].

Kenley also demonstrated that the influence diagram can be used for discrete-time filtering,

and is equivalent to the discrete-time Kalman filter [6:pp. 52-106]. He showed that, when the

influence diagram is used for discrete-time filtering, it requires about the same number of floating

point operations as the U-D factored form of the Kalman filter [6:pp. 89-106].

The discrete-time Kalman filter is known to have problems with roundoff error and numeric

irstability when implemented on fixed-wordlength computers [2, 4, 5]. Furthermore, the U-D

covariance factorization algorithm has been shown to have better numerical properties than the

conventional Kalman filter algorithm (2, 4]. However, to the author's knowledge, there has been

no research into the numeric properties of the influence diagram. Specifically, there has been no

comparison of the numeric properties of the influence diagram algorithm for discrete-time filtering

to the conventional Kalman filter or to the U-D factored form of the Kalman filter.

This research will investigate properties of the influence diagram algorithm and compare them

to the properties of the U-D filter. Specifically, this research will compare the efficiency and numeric

properties of these two algorithms. The numeric properties of the influence diagram algorithm will

be shown by relating them to matrix operations. The numerical stability, properties, and error

bounds of these matrix operations come from Wilkinson [15, 16].

6



1.2 Thesis Objectives

This thesis is intended to build upon the research of Kenley. It will explore the properties of

the influence diagram, specifically as applied to discrete-time filtering. Additionally, the influence

diagram algorithm will be compared to both the conventional Kalman filter algorithm and the U-D

filter. The results will be a comparison of the advantages and disadvantages of each filter algorithm.

There are two reasons for using the U-D filter for comparison. One reason is the similarity

between the U-D filter and the influence diagram. This similarity will be a topic later in the thesis.

The other reason is that the U-D filter represents a standard in terms of numerical accuracy and

computational loading. Its properties are well researched and documented [2, 3, 4, 5].

This analysis of the influence diagram will begin with an overview of its principles and purpose.

Even though the influence diagram can be used for decision analysis and maximizing (or minimizing)

multivariate value functions, these aspects will not be discussed. Instead, this thesis will address

only the probabilistic applications of the influence diagram. The discussion will be a review of the

work of Schacter, Kenley, and Tatman [10, 11, 6, 12, 14].

The main application of the influence diagram, for the purposes of this research, is an alter-

native algorithm for discrete-time Kalman filtering. For this reason, there will be a brief discussion

of the theory of the Kalman filter, paralleled with an explanation of how the influence diagram

implements the same operations. Again, this explanation will be a review of previous work by

Kenley [6:pp. 52-106].

The main body of this research will follow the review and will focus on three major areas.

The first topic will be a discussion of how the influence diagram can be solved efficiently. It will be

a demonstration of practical methods for implementation. A result of this demonstration will be

a tally of the mathematical operation needed for the complete filter. It will be shown that, under

certain conditions, the operation count can be reduced from previous estimates [6:pp. 89-106].

7



More importantly, the algorithm lends itself to a pipeline architecture which can lead to increased

calculation speed.

The second major topic will be a comparison of the influence diagram with i: ,atrix operations.

The matrix operations add insight into the mathematics involved and are easier to analyze. This

relationship to matrix operations forms the basis for the third major topic, numerical properties.

To this author's knowledge, there has been no previous literature on the numerical poperties

of the influence diagram. Neither has the influence diagram been included in any experimental

comparisons of different Kalman filter algorithms. No such experimental comparisons were made

in this research. Instead, this research explores the theoretical numerical properties, based on the

known numerical properties of the matrix operations.

There are some important results from the theoretical research in this thesis. First, it will be

shown that the influence diagram algorithm, like the U-D factored filter, uses a stable algorithm to

calculate the means and conditional variances of random variables. Second, the numeric properties

of this algorithm can be compared to the properties of the U-D filter. Third will be an insight into

the conditions that do cause numerical problems for the influence diagram.

1.3 Thesis Overvew

This chapter reviewed some of the existing research in influence diagrams and their use as an

algorithm for discrete-time filtering. It also indicated the outline for the rest of this thesis. Chapter 2

will be a tutorial approach to influence diagrams. It will attempt to explain the applications and

operation of the influence diagram, specifically its application to discrete-time filtering. Chapter 3

will demonstrate efficient implementation of the influence diagram, including operation counts.

Chapter 4 will demonstrate the relationship of influence diagram operations to matrix operations.

This will lead in to Chapter 5, which will be a description of the numerical properties. Finally,

Chapter 6 will conclude and make recommendations for future research.
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I. Influence Diagrams

The influence diagram is a recent tool in decision analysis and is not well known beyond

this field. This chapter is a short deqcription of the influence diagram, concentrating on its use

for probabilistic analysis. For a more rigorous description of influence diagrams, refer to Tatman,

Schacter, or Kenley [6, 10, 11, 14].

An influence diagram represents deterministic, random, decision, and value function variables

by using a rode for each variable. For probabilistic analysis, only two types of nodes are necessary.

A single circle node represents a random variable. A double circle node represents a deterministic

variable or, in other words, a variable that can be calculated exactly as a function of other variables.

In general, a random variable can have a discrete probability distribution, a continuous prob

ability density, or a combination of the two. Initially, influence diagrams were only used for random

variables with discrete probability distributions; therefore, this discussion will begin with this case

also.

2.1 Discrete Random Variables

Assume two random variables, x and y, each with discrete probability distributios. The vari-

able x can take on discrete values X1, X2 , Z3, .. . , Xn with probabilities p(x), p(2), p(x3),..., p(xn)

such that 11[x = xi] = p(xi). The probabilities for the random variable y can be similarly defined

as Ply = yj] = p(y,) where the random variable y can take on the discrete values Y1, Y2, YS,..., YM.

For two such random variables, a joint distribution can be defined. This joint distribution

assigns a probability to each discrete pair of values (realizations) of the random variables. The

two random variables can be associated with a random vector where the elements of the vector are

the individual random variables. The joint distribution for these random variables becomes the

probability distribution for the two dimensional random vector. For each pair of discrete values
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xi and yi, the prcbability P[x = xiy = yj] = p(x,, yj) is the probability that x and y take on the

values xi and yj.

A joint distribution function of two variables can also be expressed in terms of the conditional

distribution of one random variable, conditioned on the outcome of the other random variable.

Bayes' rule demonstrates the mathematics associated with this expression. One form of Bayes' rule

is p(xi, yj) = p(zi Jyj)p(yj), where p(xi y;) means the probability that x takes on the value xi, given

that y has taken on the vdlue y,. The joint probability distribution can also be expressed, again

using Bayes' rule, in terms of the conditional distribution of y given a value of x. This is written

as p(x yj) = p(yj zx)p(xi).

The probability p(yj) can be calculated by summing the probabilities of p(Xi, yj) over all pos-

sible values of xi. This distribution is also referred to as the marginal or unconditional probability

distribution of y and can be represented in equation form as:

p(yj) - -p(xi,,y) = -p(xi yj)p(yj ) = P(YjIX) (6)

The marginal probability distribution of x could be computed similarly, except that the summation

would be over all possible values of y.

The influence diagram represents the joint probability distribution using the conditional form

of Beyes' rule. For example, the joint probability distribution for the previously described two

dimensional random vector is shown in the first influence diagram in Figure 1. In this diagram,

:.n arrow points from node y to node x. The arrow implies that y is specified as the marginal

distribution p(yi), and that x is expressed in terms of the conditional distribution p(zilyj). The

second influence diagram in Figure 1 depicts the same joint probability distribution in terms of the

marginal distribution of x and the conditional distribution of y given x.
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If the joint probability distribution is specified as in the first influence diagram in Figure 1,

then it can be converted to the second diagram by reversing the arrow. Mathematically, the correct

distributions can be calculated with Bayes' rule. These operations are

p(x,) = P(X i1j)p(Y ) (7)
Y3

p = (8)

Qx

Figure I. Influence Diagram for the Joint Distribution of p(xi, yj)

The mathematics in Equations (7) and (8) are not shown explicitly, but are implied by

the diagram. This attribute makes the influence diagrams especially attractive for computation

by digital computer. The influence diagram is the pictorial representation of the relationships

between the variables. The digital computer accomplishes the mathematics needed for computing

the underlying distribution functions.

An influence diagram with only two nodes (random variables) is a simplistic case. More

commonly, there will be many random variables. Conditional distributions are associated with

those nodes having an arrow pointing to them from other nodes. A conditional random variable may

be conditioned on any number of the remaining variables in the diagram, with certain restrictions.
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Taken together, all of the random variables in a diagram form a random vector. The conditional

and unroiditional distributions of these random variables represent the joint distribution for the

random vector.

As an example, consider the joint distribution of three random variables with probabilities

expressed in terms of ordered triples, P[x = xi, y = yI z = zi] = p(xi, yj, zk). This joint distribution

can be expressed in terms of the marginal distribution of one variable, the conditional distribution

of a second variable given the first, and the conditional distribution of the third, given the first two.

The overall joint distribution remains unchanged, but it is expressed in a different form. This can

be shown mathematically as p(xi, yj, Zk) = p(xi)p(yj Ixi)p(zklxi, yj) and in influence diagram form

in Figure 2.

Figure 2. Influence Diagram for Three Variables

The following is some terminology relating to the influence diagram. The nodes which have

arrows pointing to another node are cafled the conditional or direct predecessors of that node. A

predecessor node may itself have a predecessor, and that predecessor may have one also. The set

of all predecessors of a node, both direct and indirect, is the set of weak predecessors. Similarly, a

node with a conditional distribution is called a successor node. A list of nodes is called 'ordered' if

none of the weak predecessors of a node follow the node in the list. An influence diagram is defined

to be an ordered list of nodes, corresponding to a unique joint distribution function. If a sequen'.e

of iiodes cannot be ordered, then a cycle is said to exist.

The influence diagram in Figure 2 demonstrates the concept of an ordered list. The nodes

can be ordered as x, y, and z. Node y follows node x in the list, and node y is not a predecessor
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of x. Similarly, node z follows both nodes x and y, and z is not a predecessor of either. The

influence diagram requirement for an ordered list is derived from the conditioning of Bayes' rule.

Conceptually, if one node is conditioned on a predecessor node, then that predecessor node may

not be conditioned on the successor, either directly or indirectly. To do so would imply circular

conditioning.

Transformations can change the appearance of the influence diagram and affect the conditional

distributions underlying the diagram. For the purpose of this thesis, these transformations are

limited to the arc reversal and the elimination of 'barren' or 'nuisance' nodes. These operations

will be explained by example.

2.2 Example of Di--rete Random Variables

Assume three random variables described as follows. Random variables x, y, and z represent

the probability of failure of components x, y, and z in a machine after a given amount of time. It is

known that a failure of either component x or z induces a higher rate of failure in component y. It

is possible to determine if components y and z have failed by direct measurement, but component

x must be removed, a costly procedure. The problem is to calculate the probability of failure of

component x, given the conditions of components y and z. Known probabilities of failure after a

given period of time are listed in Table 1.

The influence diagram in Figure 3 depicts this three-variable example. The random variables

x and z are expressed as marginal densities. They are not conditioned on any other random

variables. The random variable y is conditioned on both x and z. This means that y is conditioned

on the random vector (x,z). This diagram also shows x and z to be independent by the lack

of an arc between them. The influence diagram does not show the actual distributions of the

random variables. It is simply a pictorial method of bookkeeping; the influence diagram shows

the conditioning order of the random variables. Both the influence diagram and the tabular data
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associated with it are needed to express the overall joint distribution.

Table 1. Initial Distributions for Discrete Influence Diagram Example
P(z = 0) = 0.25 P(z = I) = 0.75

P(x = 0) = 0.6 P(x =-1) = 0.4

P(y = Oz = O'x = O) = 0.5 P(y =1z=O,x=O)=0.5
P(y=OIz=O,x=1)=0.25 P(y= 11z=0,x=1)=0.75
P(y = Olz = 1,x= 0) = 0.2 P(y = 11z = 1,x= 0) = 0.8
P(y = Oz -= 1,x = 1) = 0.1 P(y = l1z = 1,x= 1) = 0.9

Figure 3. Influence Diagram for Discrete Random Variable Example

The influence diagram arrows in Figure 3 follow the direction of causality. In general, the

arrov s do not imply causality. In this case however, the causal factors of the process model deter-

mine the initial probabilistic relationships. After some mathematical calculations, the probabilistic

relationships will be expressed in a different form, and the arrows in the influence diagram will not

have any relationship to causality.

The desired distribution is the probability that comp,..ient x has failed, given the conditions

of components y and z. This distribution is given in Table 2 and the influence diagram in Figure 4.

The probability distribution of y given z is calculated by taking the summation of y given x and

z over all values of x. The probability of x given y and z is calculated by using Bayes' rule. The

specific equations are:

p(yjIzk) = P(yj1Izkxi)p((Xlzk) (9)
X,

p(Xilyj, zk) = p(yj 'Xi, zk)p(zI zk) (10)
p(yj 1zk)
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But because x and z are independent, p(xilzk) = p(xi). The resultant transformation is an example

of arc reversal. The result is the probability of the component x having failed, given the condition

of the two observed components. The underlying joint distribution is unchanged.

Table 2. Conditional Distribution of x
P(z = 0) = 0.25 P(z = 1) = 0.75

P(y = Olz = 0) = 0.4 P(y = 11z = 0) = 0.6
P(y = Olz = 1) = 0.16 P(y = 11z = 1) = 0.84

P(x = Ojz = O'y = O) = 0.75 P(x =11z = O,y = 0) = 0.25
P(x = Olz = O,y = 1) = 0.5 P(x = lz = O,y = 1) = 0.5
P(x = Olz = 1,y = O) = 0.75 P(x= lz = l,y= 0) = 0.25

P(x = Olz = 1,y = 1) = 0.571429 P(x = liz = 1,y = 1) = 0.428571

Figure 4. Influence Diagram for Conditional Distribution of x

An important characteristic of arc reversal is that the both nodes involved in the reversal

inherit each others direct predecessors. This is a function of Bayes' rule as seen from this example.

In this case, node x inherits the predecessors of node y, namely node z. Similarly, if another node

had been a predecessor of node x, then it would have become a predecessor of node y after the

reversal. This can be seen in the above equations by placing another conditioning variable on x.

This additional conditioning variable would have also shown up as a conditioning variable of y in

Equation (9).

There is one more point to be nade about the resulting diagram in Figure 4. It is not now

possible to reverse the arrow from node z to node x. This would result in a cycle in the influence

diagram, and the diagram could no longer be ordered. In general, two nodes can be reversed only if

they can be placed next to each other in an ordered sequence of nodes. If node z were to be moved
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to the end of the ordered sequence, then it must be done without causing a cycle. For the example

in Figure 4, nodes y and x would be reversed, resulting in the original diagram in Figure 3. Next,

node x and z would be reversed. Since these random variables are independent, no mathematical

operations are required for their reversal. Finally, nodes y and z could be reversed to form the

diagram in Figure 5 and the distribution in Table 3.

Table 3. Conditional Distribution f z
P(x = 0) = 0.6 P(x = 1) = 0.4

P(y = O{x = o) = 0.275 P(y = IIx = 0) = 0.725
P(y = Oix = 1) = 0.1375 P(y = lix = 1) = 0.8625

P(z = Ox = 0,y = 0) = 0.454545 P(z = lIx = 0,y = 0) = 0.545454
P(z = Oix = O,y = 1) = 0.172414 P(z = lix = 0,y = 1) = 0.827586
P(z = Oix = l,y = 0) = 0.454545 P(z = lIx = 1,y = 0) = 0.545454
P(z = Ox = 1,y = 1) = 0.217391 P(z = lIx = 1,y = 1) = 0.782609

Figure 5. Influence Diagram for Discrete Random Variable Example

A slight change in this second example illustrates another of the transformations, the elimi-

nation of barren nodes. Assume this time that the components z and y cannot be tested directly. A

decision to replace component y is based solely on the condition of component x. The desired dis-

tribution is the probability of y given x. The condition of component z is iirelevant to the decision

because it cannot be observed.,

The desired distribution is already present in the top part of Table 3. The influence diagram

is shown in Figure 6. In this case, node z was barren, meaning that it was not a predecessor of

the desired nodes. The probabilistic information in node z was already incorporated into node

y by taking the summation as in p(y,) = , p(y ilzk)p(zk). Node z is no longer needed and
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Figure 6. Discrete Distribution Influence Diagram with Node Removed

can be removed. However, the remaining influence diagram does not represent the original joint

distribution. It represents the joint distribution of the subset of the original random variables,

corresponding to the visible nodes.

To summarize in simple terms, making a node less conditional involves taking the summation

of that random variable's conditional distribution over one of its direct predecessors. In the process,

the original successor node inherits all conditional predecessors of the original predecessor. On the

other hand, making a node more conditional requires an application of Bayes' rule. Specifically, it

needs the summation just calculated as the denominator term for Bayes' rule. The new successor

will inherit all conditional predecessors of the original successor. If the new successor node is

barren, and if it has no meaning in desired result, then it can be removed. Jr this case, Bayes' rule

is not needed because the new distribution of the successor node will be discarded when the node

is removed.

A deterministic variable is one that is a function of only the outcome of other variables.

The functional relationship between one variable and another is depicted as the conditioning of

a deterministic variable upon those variables of which it is a function. For this reason, in the

influence diagram, the deterministic variable is usually shown as a conditional variable. If the

conditioning variables for a deterministic variable are random, then the deterministic variable can

be expressed as a random variable in unconditional form. The distribution can be calculated by

taking summations as before.
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2.3 Continuous Random Variables

The influence diagram can be extended to the case of continuous random variables. If the

random variables are Gaussian, and all joint densities of the variables are Gaussian, then the

variables are called jointly Gaussian. Gaussian random vectors are easy to represent because the

entire probability density function can be specified with only a vector of the means and a covariance

matrix. It is also known that any linear combination of jointly Gaussian random variables is

Gaussian. Furthermore, any subset of jointly Gaussian variables is jointly Gaussian itself.

The Gaussian influence diagram is patterned after the discrete influence diagram described

earlier. It consists of a set of jointly Gaussian random variables. Each node represents one of

the random variables and the entire influence diagram represents the joint density function of a

Gaussian random vector. The rules for exchanging nodes and for node removal are the same as for

the discrete form of the influence diagram. Again, the influence diagram represents the conditioning

relationships while the actual probability density functions are computed separately.

Another example will show the simple two-variable case. Assume two jointly Gaussian random

variables x and y make up a random vector. As stated before, the joint density function of the

random variables can be specified by a two-dimensional vector of means and a two-by-two covariance

matrix. The influence diagram expresses the joint density as the mean and variance of one variable,

along with the conditional mean and conditional variance of the second, given the first. This

conditional density is Gaussian because any conditional density ofjointly Gaussian random variables

is Gaussian also. Either representation is sufficient to specify the overall joint density function.

The two Gaussi~n random variables are x and y. The mean vector and covariance matrix are:

YX
m = [(1)
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P = X (12)

where ju and jay are the unconditional means of>" and y respectively. Also, the notation E,, implies

the covariance of the variables x and y and is equal to Eyx. Finally, ., represents the covariance

of variable x with itself, or just the variance of x.

The conditional mean of x given y becomes uIy = p. + " (p - p), where p is a dummy

variable representing the possible realizations of the variable y. The quantity in parenthesis is the

difference of the predicted (mean) value of the random variable and its realization. This term will

be called the residual. The conditional variance of x given y is E"Iy = E.' - FyV [7:pp. 110-111].

The coefficient -" = 6, has special significance. It is called the regression coefficient of x

on y. It represents a linear change in the conditional mean of x, given the realization of y. The

notation P.,, comes from Yule [17]. The order of the subscripts is significant for the regression

coefficient so #,,y 0 6y.,.

The notation in the remainder of this thesis will follow the convention of Kenley rather than

Yule. Kenley uses the notation by, instead of 6.,y. Also, Kenley does not explicitly write any

other conditioning variables in the coefficient as Yule does. Instead, other conditioning variables

are implied by the influence diagram [6].

The regression coefficient is related to, but is not the same as the correlation coefficient.

The correlation coefficient is given by = The regression coefficient can be

calculated from the correlation coefficient by the relationship by = r -

Either random variable could have been chosea to be represented in unconditional form.

If the order of conditioning were reversed, then the conditional mean of y given x would be

A& = m + - Pz), where is now the dummy variable representing the possible realiza-

tions of the variable x. The conditional variance of y given x is El, = Eyy The term
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-. = b. is called the regression coefficient of y on x. It too is related to the correlation coefficient

r,1 this time by the relationship by = r .

The influence diagram represents the joint density function as the marginal density of one

variable and the conditional density of the other. Assume an influence diagram and its underlying

density as shown in Figure 7. In this case, the random variable y is given in unconditional form, and

the random variable x is expressed in conditional form. Only five values are needed to represent the

joint distribution: the unconditional means of the two random variables, the unconditional variance

of y, the conditional variance of x, and the regression coefficient of x on y. In this figure, vi is the

variance of the ith node, whether it is in conditional or unconditional form. Because of the simple

method for describing the joint density, these values are shown directly on the influence diagram

rather than in a separate table. The means and variances are associated with the appropriate node,

while the regression coefficients are associated with the arrow between the nodes.

('a, VY) (,V.)

Figure 7. Influence Diagram for Continuous Gaussian Random Variables

As with the discrete form of the influence diagram, it is possible to reverse the arrow between

the two nodes. This is equivalent to changing the order of conditioning using Bayes' rule. The

mathematics for the Gaussian form of the influence diagram are different however.

If the unconditional density of x is desired, then only the unconditional variance of x must

be computed (the unconditional mean already exists). The original calculations for the conditional

variance can be used to give Ely = EX- - b y. This equation can be rearranged

to give

= l + b2.j2Y (13)
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The second part of the reversal of these two nodes is the calculation of the conditional density

of y. The only values that need to be calculated are the conditional variance and the regression

22
coefficient of y on x. The conditional variance of y given x was already shown to be Eyl, = VV

This equation can be simplified as follows:

]2~yyz

S ( E - E )

=Yv Eyyr' y (14)
EXX

Similarly, the regression coefficient of y on x is calculated by

6 = y__ = (15)

The result is that the joint density function is expressed as an unconditional density of x and a

conditional density of y. This is shown in the influence diagram in Figure 8.

Figure 8. Continuous Gaussian Influence Diagram after Reversal

As in the discrete form of the influence diagram, the two-variable case is simplistic. The

calculations become slightly more complicated as the number of variables increases. If there are

n random variables in the Gaussian random vector, then one is chosen, perhaps arbitrarily, to

be represented in unconditional form. A second random variable is conditioned on the first. as in
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the previous example. The third random variable is represented as being conditioned on the first

two. There will be two regression coefficients associated with this third variable, one from the

first variable and one from the second. The process continues with the fourth variable conditioned

on the previous three and having three regression coefficients, etc. Eventually, the nth random

variable will be represented as a conditional density, conditioned on the previous n - 1 variables,

with a regression coefficient associated with each. The result can be written in the form of an

n-dimensional influence diagram. Using simplified notation where f, implies f(, the diagram

shown in Figure 9 can be expressed mathematically as:

f1,,=2,Z3...X. - fx~fX2 jXifXX1,,X2 ... fX~lx,,X2 ,X3 .. X.-I (16)

Figure 9. Influence Diagram for N Jointly Gaussian Random Variables

Assume two variables are represented by two nodes in an influence diagram. If the nodes can

be placed next to each other in some ordered sequence, then the conditioning order can be reversed.

Call the first variable xi and the second xi where it is assumed that xi is a conditional predecessor

of xj. Furthermore, assume that XK is a set containing the union of all direct predecessor nodes

of both xi and xi, except for i itself. Also assume that xk is an arbitrary element of XK. Nodes xi

and xj have variance vi and v, respectively. The term bi, is the regression coefficient of j on i; the

terms bk, and bkj are the regression coefficients of xi and xj on xk.
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In the multivariable case, the equations for calculating the new variances and regression co-

efficients are similar to those in the preceding paragraphs for the two-variable case. Additionally,

both nodes will inherit each others direct predecessors, and the regression coefficients from prede-

cessor nodes must be adjusted to reflect the new conditioning order. The equations for calculating

the new variances and regression coefficients are as follows, where the prime symbols represent a

new %:alue.

For node j, no longer conditioned on node i, the new variance and regression coefficients from

predecessors are:

= (17)

b'kj = bkj + bkibij (18)

For node i, conditioned on node j, the new variance and regression ,oefficients are:

viviV. = - (19)

b vib (20)
V),

b -i bk+bkJb, (21)

2.4 Example of the Gaussian Influence Diagram

The following example does not use actual statistics and does not represent any actual rela-

tionships. It is purely fictional to demonstrate the use of the influence diagram.

Suppose that an analysis of statistics from a group of professional basketball players reveals

a relationship between the height of the player, the percentage of playing time in a game, and the

number of points per game. These three statistics are assumed to be jointly Gaussian with a mean
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vector and covariance matrix:

h 82

m= p = 20

l t 75

IEhh Ehp Eht 9 2 4

P= ph Epp 2,p = 2 9 15

Eth E tp Et 4 15 49

In this example, the subscript h refers to the height in inches. The average (mean) height is

82 inches, with a standard deviation of 3 inches. The subscript p is the number of points scored per

game. The average number of points is 20, with a standard deviation of 3 points. The subscript

t is the playing time expressed as a percentage of total game time. The average is 75% with a

standard deviation of 7%.

These three variables can be expressed in an influence diagram as shown in Figure 10. The

node labeled H refers to the player's height, the node labeled P is the average number points per

game, and the node labeled T is the playing time as a percentage. The operations for calculating

the influence diagram from a covariance matrix will be discussed briefly in the next section. The

most notable feature of this diagram is the relationship between the three variables.

0.077922

H 0.2222 P 1.6494 73-T

(82,9) (20,8.5556) (75,23.948)

Figure 10. Example of Continuous Gaussian Influence Diagram

The regression coefficient for the number points against the height is approximately 0.22222.

This means that each increase in heignt of one inch changes the conditional mean by 0.22222 points
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per game. Similarly, an increase of one inch in height changes the conditional mean of the playing

time by 0.077922%. An increase of 1 point per game implies an increase in percentage of playing

time of 1.6494%. If both the height and the number of points are given, the change in the mean

playing time is the sum of the changes caused by the measured height and number of points scored.

The effect can be thought of as propagating the residual to all subsequent nodes.

The conditional mean and variance, as specified in this diagram, can be used to infer the

average playing time if a player's height is given or if the a player's points per game are given.

The total effect of the regression coefficients from the first node to the last one is computed by

summing the effects from both paths, both direct and indirect through the second node. The direct

effect is the regression coefficient on the path from the first to, the third. The indirect effect is

the product of the coefficients on the path from the first to the second, and from the second to

the third. The change in the mean of the last node due to the realization of the first node is

(0.22222)(1.6494) + (0.077922) = 0.44445.

As an example, assume an 84-inch player scores 16 points in a game. The conditional mean of

the number of points, given the player's height is 20 + 0.22222(84- 82) = 20.4444. 'The conditional

mean of the time played, given both the height and the number of points is calculated by first

finding the effect due to the player's height, then finding the effect due to the number of points

scored. The effect due to the height measurement is 75 + [0.44445(84 - 82)] = 75.8889%. At this

time, the height node is no longer needed on the influence diagram. The effects of the measurement

have been propagated to all subsequent nodes. In the influence diagram, the realization and removal

of a random variable is called "instantiation." Instantiated nodes must be at the beginning of the

ordered sequence of nodes so that all remaining nodes can be affected by the realization of the

random variable.

The second calculation uses the new conditional mean for the number of points scored to

calculate the average playing time. The calculations for the average playing time now becomes
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75.8889 + [1.6494(16 - 20.44444)] = 68.558%. Again, the node corresponding to the realized ran-

dom variables can be instantiated. It was at the beginning of the ordered sequence because its

predecessor was removed by instantiation. After the second node is instantiated, only the last node

remains. The result is the conditional mean estimate of the playing time for this player of 68.558%

with a (conditional) standard deviation of 4.8937%. Even though this node has no predecessors,

it retains the conditional mean and variance based on instantiated variables. For the remainder of

this thesis, a node with no predecessors will be said to be in "unconditional form" even though it

may represent a conditional distribution.

The influence diagram can also be rearranged as described in the previous section. In this

case, it will be rearranged so that the player's height is last. This takes place in two separate

node reversal operations. First, the nodes labeled H and P are reversed to yield the first influence

diagram in Figure 11. The calculation involved in calculating the new conditional and unconditional

variances are:

vp= 8.5556 + (0.22222)2(9)

=9

= (9)(8.5556)9

= 8.5556

= (9)(0.22222)
9

= 0.22222
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Second, the nodes labeled H and T are reversed to yield the influence diagram in Figure 12.

Both nodes have node P as a predecessor so the calculations are:

Vt = 23.948+ (1.6494)2(8.5556)

= 47.224

bpi = 0.077922 + (0.22222)(1.6494)

= 0.44445

_ (8.5556)(23.948)47.224

= 4.3387

(8.5556)(1.6494)47.224

= 0.29882

bph = 0.22222 - (0.44445)(0.29882)

= 0.089409

Again, the conditional mean and variance can be calculated, based on realizations of either or

both of the first two random variables in the diagram. In another example, assume a player scores

24 points in a game and plays 95% of the game. The conditional mean of the playing time, given

the number of points scored is 75 + 0.44445(24 - 20) = 76.7778%. The conditional mean of the

0.077922

0.)O 2220 1.6494
(20,9) (82,8.5556) (75,23.948)

Figure 11. First Reversal of Gaussian Influence Diagram Example
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0.089409

0O.4444 3 }0.2988t
(20,9) (75,47.224) (82,4.3387)

Figure 12. Second Reversal of Gaussian Influence Diagram Example

player's height, given both the number of points scored and the actual playing time is calculated

in two steps. First, the total change due to the change in number of points is computed. The total

coefficient from the first to the last node is 0.089409 + (0.44445)(0.29882) = 0.22222. The new

average height, due to the realization of the number of points is 82 + 0.22222(24 - 20) = 82.8889.

The first node is then instantiated, leaving only the last two nodes. Next, the change due to the

playing time is computed. This is 82.8889+ (0.29882)(95- 76.7778) = 88.334. The second node is

now instantiated, leaving only the last node. The conditional mean estimate of the player's height

is 88.334 inches with a (conditional) standard deviation of 3.0830 inches.

2.5 Matrix Representation of the Influence Diagram

The influence diagram is a convenient tool for calculating the conditional mean and var:ance

of an element of a Gaussian random vector. It is a visual depiction of the equations for the Gaussian

conditional mean vector and covariance matrix:

PXly = PXX - PXYP1PYX (22)

mly -= mx + P"YP~Y (P - my) (23)

where p is a dummy vector for the realization c(, components of the y, Pl is the conditional

variance of x given y, and rnl is the conditional mean of x given y [7:pp. 110-111].
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In the first of these two equations, the conditional variance of a node in the influence diagram is

fixed for a given set of conditioning variables. The influence diagram allows convenient recalculation

of the conditional variance when the conditioning variables change.

In the second of these two equations, the conditional mean is seen to be a linear function of

the residuals of the conditioning variables. This linear relationship is maintained in the influence

diagram by the regression coefficients.

The covariance matrix can be used to calculate both the matrix of regression coefficients and

the conditional variances for all random variables in the vector. The calculations are closely related

to the Cholesky decomposition of the covariance matrix. For example, let P be a positive definite,

symmetric covariance matrix. A factorization of P exists in the form P = UTSSU where U is a

unit upper triangular matrix and S is a diagonal matrix so that ST = S. The matrix (SU)TSU

is identical to the Cholesky decomposition of the covariance matrix. The matrix SS = D is also a

diagonal matrix so the the covariance matrix can be represented as UTDU.

Let I be the identity matri;x, and Bi be a strictly upper triangular matrix that is all zeros

except for the jth column above the diagonal. The elements of the Bj matrix are the regression

coefficients bli, b2 , . j-, j where the subscripts indicate the predecessor and the successor node.

The subscripts also correspond to the conventional row-column notation for matrix elements. The

matrix U, is a unit upper triangular matrix defined as (I - Bj), and t1.e matrix B is defined as

B1 + B2 + B3 +. .. + B, (where the convention leads to B1 = 0 and U1 = I). Kenley and Schacter

showed [12:pp. 547-548]:

U = UU 2U 3 ... Un (24)

and

U = (I- B) -1  (25)

The D and the U matrices can be computed by taking the Cholesky decomposition of the covariance
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matrix, then factoring the U 1 , U2 , U3 ,. . ., U, matrices from the U matrix. A more efficient method

is given in Kenley and Schacter [12:549].

For the example in the previous section, the matrices turn out to be:

9 2 4

P= 2 9 15

4 15 49

0 0.22222 0

B2 = 0 0 0

o o 0

0 0 0.077922

B3 = 0 0 1.6494

00 0

1 0.22222 0 1 0 0.077922 1 0.22222 0.44445

U U 2 U3  0 1 0 0 1 1.6494 = 0 1 1.6494

0 0 1 0 0 1 0 0 1

9 0 0

D= 0 8.5556 0

0 0 23.948

From this example, each term of the diagonal matrix D is seen to be the conditional variance

of the random variable, conditioned on those variables on the diagonal above it. The terms above

the diagonal in the Bj and U, matrices are just the regression coefficients. The bij coefficient

indicates the direct linear change in the jth conditional mean due to a change in the mean of the
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ith variable. The terms of the U matrix represent the total effect of all regression coefficients,

both direct and indirect. In this example, the U13 term is 0.44445. This is the value previously

calculated as the effect of the measured height on the conditional mean of playing time.

2.6 The Influence Dzagram for Discrete-Time Filtering

Kenley proved in his doctoral dissertation that the influence diagram could be used for

discrete-time filtering. The first of the following subsections will be a discussion of discrete-time

Kalman filtering taken from Maybeck [7:pp. 133-220] and discrete-time filtering taken from Ken-

ley [6:pp. 52-106]. It is intended to present Kenley's theories in parallel with more widely known

Kalman filtering algorithms. The second of the following subsections will be a numerical example

showing the operation of the influence diagram.

The Kalman filter is a conditional mean estimator of the states of a linear system, under the

assumption of linear measurements and Gaussian disturbances. Under these assumptions, it is an

optimal estimator.

The Gaussian influence diagram permits the calculation of the conditional density of Gaussian

random variables in a jointly Gaussian random vector. If these variables represent the states of a

linear system, then it too is a conditional mean estimator for the states. Under these assumptions,

it will yield the same state estimates and variances as the Kalman filter.

Assume a linear system of the form:

x(t') = '4(t,,ti-1)x(t,-,) + Gd(ti-1)wd(ti-i) (26)

where x(ti) and x(t,_ 1) are n-dimensional state vectors at times ti and ti- respectively. C(ti, t4 1)

is the state transition matrix which describes the propagation of the states from time t,_1 to time

ti. The term Wd(i-1) represents the process noise and is assumed to be a discrete-time zero-mean

31



white Gaussian noise sequence with covariance kernel

E{Wd(i)wT(tJ)} - { Qd(ti), ti - I, (27)

0, ti 5 tj

The matrix Gd(ti-1) represents a linear operation which describes how the discrete-time noise

enters the system at time ti-1. The vectors x(ti-1) and Wd(ti-1) are assumed to be independent.

Now assume that the state vector at time ti- 1 is a Gaussian random vector. The conditional

mean of this vector, based on a priori information and measurements up to time ti-I is defined to

be:

R(t+1) =- E{x(t,-1 )Z(ti- 1)} (28)

where:

z(tj)

z(t 2)

z(til) =(29)

Z(ti- 1)

In this equation, the measurement vector available at time t, is called z(t,), and Z(ti 1 ) is the

history of measurements through time ti-1. At to, the state estimate is defined to be:

E(to) - E{x(to)} (30)

The conditional covariance of the state estimate at time ti-I is defined by:

P(t+_1) - Ef [x(ti_) - i(t+1)] [x(ti-1) - (t+_3)]T IZ(ti-)) (31)
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and the unconditional covariance of the estimate at time to is

P(to) - E{[x(to) - (to)] [x(to) - R(t0)]T }  (32)

Because the state estimate at time ti-I is a Gaussian random vector, its density can be fully
described by the conditional mean R(ttU) and the covariance matrix P(t- 1).

The state estimate at time ti-I can also be described in influence diagram form. The n-

dimensional random vector is depicted as n random variable nodes. The means of the nodes

are the respective conditional means of the vector x(i-,). The regression coefficients and the

conditional variances of the individual nodes are equivalent to the covariance matrix P(t+I). Such

an n-dimensional influence diagram is shown in Figure 13. In this influence diagram, the first node

is in unconditional form, but it represents the conditional mean and variance, conditioned on prior

measurements. The prior measurements do not need to be shown because they represent random

variables that have been realized and instantiated. The remaining nodes represent the conditional

mean and variance, based on the instantiated nodes. The realizations of the instantiated nodes

do not affect the conditionr variances, but they do affect the conditional means. In this way, the

conditional mean vector R(t,+ 1) becomes a sufficient statistic for the measurement history Z(ti-1 ).

(,V) M(2,V2)(p3,V3) (24,N4)(pv)

Figure 13. Influence Diagram for N Jointly Gaussian Random Variables

The linear model in Equation (26) describes the propagation of the states from time ti-1 to

time t,. The estimate at time t, is also Gaussian with a conditional density function of the states
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at time ti, given the measurements through time ti-1 defined by the conditional mean

i(t-) = E{x(t,)jZ(t,._i)} (33)

and the conditional covariance matrix

P(tC) E{ [x(ti) - k(t7)] [x(ti) - :(t.)]T IZ(tslu} (34)

The conditional mean and covariance at time ti can be calculated by the Kalman filter propagation

equations:

R(t,-) = (I't_j)R(t+) (35)

P(t-') = g (t,i_l)Pg+_)4 T (ti', _ 1) +-Gd(i -I)Qd(ti- 1)GT (ti- 1) (36)

The influence diagram can depict the linear model of Equation (26). As shown earlier, the

conditional density of the state estimate at time ti-I corresponds to an influence diagram with n

nodes. The conditional means of the nodes are *(t_ ) while the conditional covariance P(t+L)

is factored into the conditional variances of the respective nodes and the regression coefficients

between them.

The r-dimensional, discrete-time, zero mean random noise vector wd(ti-1) is depicted as r

nodes in influence diagram form. In Figure 14, the nodes of wd(t,_1) have no arrows drawn between

them, implying that the covariance matrix Qd(ti-1) is diagonal. The mean of all nodes of wd(ti-1)

is zero.

The vector x(t,) i- depicted by a set of n independent deterministic nodes. This is because

it is a deterministic function of two independent Gaussiaij randoji vectors, x(i,- 1) and Wd(t,-1).

The linear relationship between x(t,) and x(t,-I) is represented by the regression coefficients on the

arrows from the nodes of x(t,_.) to the nodes of x(t,). From Equation (26), this linear relationship
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is the matrix (t,,ti). Consequently, the regression coefficients on the arrows between the two

vectors are the elements of the state transition matrix. The coefficient on the arrow between the

kth node of x(ti..) and the jth node of x(ti) corresponds to the (j,k) element of (

In this example, Qd(ti-i) is assumed to be diagonal and the linear operation corresponding

to Gd(t-1) is depicted by arrows from the nodes of wd(ti-1) to x(ti). The coefficient on the arrow

from the kth node of Wd(ti-1) to thejth node of x(ti) is the (j,k) element of Gd(t,- i). The influence

diagram in Figure 14 shows the vectors and matrices as just described.

x(t _l) X( i)

2 2

Figure 14. Influence Diagram Depictiti i) = (ti,, i1)x(4.- i) + Gdt(,i)wd1i-.)

As will be shown in Chapter 3, the matrix product Gd(t,_ I)Wd(t_1) could have been factored

such that Gd(i,-I) is the identity matrix and Qd(4.-1) is an n-dimensional matrix which is not

diagonal. In such a case, Wd(4i-) will be depicted as n nodes with arcs between them corresponding

to the influence diagram factorization of the non-diagonal matrix Qd(4i-1). The identity matrix

Gd(t,-I) will be depicted as n arrows. Each node of Wd(t,-I) will have only one arrow leading
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from it to a single corresponding node of xd(ti). The regression coefficients on these arrows will be

unity.

The entire influence diagram in Figure 14 can be thought of as 2n+r jointly Gaussian random

variables making up a Gaussian random vector. It represents the joint distribution of x(ti_ I), x(ti),

and Wd(ti_ i). Because Wd( t i-1) is assumed to be independent of previous states and measurements,

the density function fwd(t )Ix(t,_1),Z(t ,) simplifies to fw,(t,). The joint distribution of x(ti-1),

x(ti), and Wd(ti-1) can then be written in conditional form as:

=/ x(, ,_,)l z(, ._,)  !w,(,._,)/t,,)) -,,_ &.w,(,-_) .,,._) (37)

The desired density function is fx(t,)IZ(t_,)' The nodes which represent this density function

are those in the center column in Figure 14, labeled x(ti). Using the the influence diagram to

calculate this density function, the objective is to reverse the arcs in the diagram until the desired

nodes are in unconditional form, i.e., at the beginning of the ordered sequence of nodes. This

operation is equivalent to calculating

fx(,_)IZ(,,) fwd(,,_l) fx(t,)x(t ,_),w(,t1 ),Z(, 1 ) (38)fx(t)lZ(t,_) (38)-,, ,, _,l~ ,,Z , _

Equation (38) can be verified by multiplying both sides by the denominator of the right side. The

result is Equation (37).

The nodes of wd(t,i) and x(t,-1 ) will be moved to the end of the ordered sequence of nodes

where they can be removed as "nuisance" variables. An efficient way of removing these nodes is to

first make the nodes of wd(ti- 1) conditioned upon the nodes of x(ti). This process starts with the

most conditional nodc of wd(t,-) and reverses arrows until it is conditioned on the entire vector

x(ti) as well. When this node is at the end of the ordered sequence (at the end of x(ti)) it can be

removed. The process continues by reversing and removing the most conditional of the remaining
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nodes of wd(4.-1), one at a time. This results in a diagram with only x(ti- 1) and x(I) as the first

diagram in Figure 15.

Now the nodes of x(ti. 1) can be conditioned upon the nodes of x(ti) in the same manner,

starting with the most conditional node. Alternatively, the least conditional (top) node of x(ti) can

be made less conditional by reversing arrows with the nodes in x(t,- 1 ) until it is in unconditional

form. Then the second node of x(ti) can be moved until it is conditioned only on the first. The

process repeats until the last node of x(ti) is moved up. As each node of x(ti- 1) successively

becomes a "nuisance" variable, it is removed. Both methods are equally efficient and result in the

second diagram of Figure 15.

This remaining vector of nodes represents the desired density function fx(t,)Z(c,_)' The

conditional mean of this vector is :R(i') while the regression coefficients and conditional variances

of the nodes represent a factored form of P(t7). The influence diagram algorithm renders the same

conditional mean estimate and conditional covariance matrix as the Kalman filter propagation

Equations (35) and (36).

The second part of the Kalman filter assumes a linear measurement model with additive

discrete-time Gaussian disturbances. The model is represented in the form:

z(t,) = H(ti)x(t,) + v(t,) (39)

or, as will be used later:

z(t ) = H(ti)x(tt) + Iv(ti) (40)

where I is the identity matrix of appropriate dimension. The measurement vector, z(t) is a linear

combination of the states plus a discrete-time Gaussian noise vector. The term H(t,) is the matrix

which describes the linear combination of states. The term v(t,) is the zero-mean, discrete-time,
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Il I I II,

Influence diagram after w(i-.) removed

(,)1

2 2

3 3

4 4

% '' I

Influence diagram after x(ti- 1) removed

Figure 15. Results of Removing the Vectors w(ti- ) and x(i 2_ 1)
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Gaussian noise with covariance kernel:

E{v(ti)vT(t 1 )} = { ) '= (41)

The new conditional density function of the states, given all prior measurements through

time ti and a priori knowledge, is a Gaussian random vector. Because it is Gaussian, only the

conditional mean and covariance matrix are needed to define the density function. The conditional

mean of the state vector, conditioned on the measurements through time it, is R(t+ ) where:

) = E{x(ti)IZ(ti)} (42)

and the new covariance matrix of the state estimate at time ti, conditioned on measurements

through time ti, is defined by:

P(t t ) -= E{ [x(ti) - R(t&)] [x(ti) - R(tt)] T iZ(ti)} (43)

The Kalman filter calculaLes the updated conditional density function by first calculating a

Kalman gain matrix K(t,), then using it to calculate both the conditional mean arid covariance.

The conditional mean is the estimate of the state vector. The applicable equations are:

K(ti) = P(t " )HT (ti) [H(ti)P(ti")H (i) + R(ti)] (44)

.(t ) = i(t-) + K(ti) [zi - H(ti)R(t')] (45)

P(t + ) = P( 7) - K(ti)H(ti)P(t.) (46)
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Figure 16 shows how the influence diagram can depict the linear measurement model. The

p-dimensional measurement vector z(ti) is a deterministic function of the n-dimensional random

vector x(t,) and the p-dimensional random vector v(t.). In this influence diagram, assume that the

n-vector of nodes x(ti) is the same as the n-vector of nodes in Figure 13. As such, it represents the

conditional density given in Equation (38). The vector v(td) is a zero mean, discrete-time, Gaussian

noise. The covariance matrix R(ti) is represented in factored form by the variances of the nodes of

v(t1 ). The lack of arcs between the nodes of v(ti) implies that R(t1 ) is a diagonal matrix.

The measurement matrix H(ti) is represented by the arrows from the nodes of x(t1 ) to z(ti).

The regression coefficients on these arrows are the elements of H(ti). They represent the linear

combination of states that makes up the measurement vector. The identity matrix in Equation (40)

is represented by the arrows from the nodes of v(ti) to the nodes of z(ti). The regression coefficients

on these arrows from are all equal to one, corresponding to the ones in the identity matrix.

The desired density function is the vector x(ti) conditioned on the vector z(ti) (as well as on

Z(ti_ )). In the influence diagram, this means that the nodes of z(t) will be first in the ordered

sequence, followed by the nodes of x(ti). The nodes of v(ti) are not needed and can be removed as

nuisance variables. The required operations can take place in two steps.

The first step is to remove the nodes of v(ti). The arrows between v(ti) and z(i) are reversed

until each of the nodes of v(ti) are conditioned on z(ti) and removed as nuisance variables. If R(ti)

is diagonal as shown in Figure 16, then each deterministic node of z(ti) takes on the variance of the

associated node of v(tl). This operation is shown in the first influence diagram in in Figure 17.

If R(ti) is not diagonal, then there are two options. One option is a transformation of variables

from z(ti) to z*(t), yielding a new H*(ti) and Rf*(ti) such that R*(ti) is diagonal [7:pp. 375-377].

The other option is to factor R(ti) into influence diagram form and remove the nodes one at a time.

With the second option, the nodes of z(ti) will have arrows between them after v(ti) is removed,

just as the nodes of x(t) had arrows between them in the top influence diagram in Figure 15.
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Figure 16. Measurement Update Model for z(t,) H(t,)x(t1 ) + v(t1)
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The second step in the process is to reverse the arrows between the new z(ti) and x(ti)., The

distribution. of the vector x(t1 ) is now conditioned on the vector z(ti). These operations are shown

in the second influence diagram in Figure 17.

The linear operation depicted by the arrows from z(ti) to x(ti) in Figure 17 represent the

Kalman gain matrix. However, the influence diagram in Figure 17 does not use the notation K(ti).

This is because the regression coefficients on the arrows from z(ti) to x(ti) are not identical to the

elements of the Kalman gain matrix. On the other hand, the total effect of all regression coefficients

from node i of z(ti) to node j of x(ti) must be the (j,i) element in the Kalman gain matrix. This

total effect includes the direct effects of the regression coefficients between the two vectors, as well

as the effects between components within each vector. This relationship will be demonstrated in

the numeric example of the following subsection.

The final calculation is to instantiate the nodes of z(t,) by realizing the random variables in

order, and removing the nodes. With each realization, the difference between the mean and the

realized value of the random variable (the residual) is propagated, via the regression coefficients,

to all subsequent nodes. The remaining vector x(ti) is now conditioned on the measurements z(ti)

and Z(ti- 1), or simply Z(ti)

Similar to the prior example, the entire influence diagram in Figure 16 can be thought of as

2p + n jointly Gaussian random variables making up a Gaussian random vector. It represents the

joint distribution of x(ti), z(t,), and v(ti). Since v(t,) is independent of previous measurements

and state estimates, fv(1,)Ix(t,),Z(t,_) = fv(t,). The joint distribution of x(ti), z(ti), and v(ii) can

then be written in conditional form as:

&(',),z(t,),v(t,)Jz(t._')= fv(,,) fx )Iz(t, 1 ) fZ(tJ)xC')v(i,)'zci,,) (47)
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The desired density function is fx(t,)IZ(t,_)zCt,) = fx(t,)lZ(1,)* This density function is repre-

sented by the arrangement of nodes in the second influence diagram of Figure 17. In this diagram,

the nodes of x(ti) are conditioned upon the nodes of z(t,). Because the nodes of x(ti) were already

conditioned on Z(ti. 1 ), the resultant density function is conditioned on all measurements through

time ti, represented as Z(ti).

The objective of the influence diagram manipulations is to reverse arcs as necessary to achieve

the desired form of the influence diagram. This operation is done in two steps. First, the top

diagram in Figure 17 is the joint density of x(t,) and z(ti) expressed in influence diagram form as

the marginal density of one vector and the conditi, . I density of the second vector, given the first.

The influence diagram operations represent the equations:

fx~t,),z(t,)v~t,)lzct,-,) (48)fxct),zt,)l~tO = fvct,)lz~t Ox(t')

= fv(t) fx(t,)lZ(t,-) .fz(t,)lx(t,),v(t)Z(t,_0 (49)

fv(t,)jz(t,),x(t,)

This equation can be verified by multiplying both sides by the denominator.

The top dia ,  Ti of Figure 17 is further changed to the bottom diagram by rearranging the

joint density of x(t,) and z(ti) into a conditional form with x(t,) conditioned on z(t,). The influence

diagram operations represent the equations:

/ Jx(t,),z(t,)Jz(t,,_) (50)fx~t)iZ t,_)z~ ,) fz(t)lZ (t-.)

gJx(t,)l2Z(t,_,) fz(t,)lX(1,)Z(t,_,)( 1

At this time, the regression coefficients and conditional variances of x(ti) represent the con-

ditional covariance matrix of fx(t,)1Z(t,)" However, the influence diagram represents the conditional

mean in equation form as a function of the realization of the components of z(t,). To complete the
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operation, the components of z(ti) are realized one at a time, in order, and the appropriate nodes

are instantiated. When all nodes of z(ti) are removed, then the remaining nodes of x(t1 ) represent

the co,;,"litional density Jx(t)lZ(t) in numerical form.

Because the remaining density is Gaussian, it can be represented as the conditional mean

vector and the conditional covariance matrix. Kenley showed that the conditional mean vector of

x(ti) calculated by the influence diagram is identical to the Kalman filter estimate of the states,

x(tt). Furthermore, the conditional covariance matrix represented by the influence diagram is

equivalent to P(t+).

The influence diagram representation of the discrete-time system models of Equations (26)

and (40) over one time interval can be depicted as one large influence diagram. Such an influe'-ce

diagram is shown in Figure 18.

Normally, a single time interval is one of many, perhaps infinite, intervals. The influence

diagram can depict multiple time intervals, but it is messy. One simplification assumes each node

represents an entire random vector. This simplification allows depiction of a series of time intervals

in a more orderly manner. Figure 19 depicts the first three time intervals of a linear system as

given in Equations (26) and (40) in vector influence diagram form. Each node depicts an influence

diagram for an entire random vector. Arrows between nodes represents a matrix linear operation

between two vectors.

One practical problem with implementing the influence diagram over many intervals is that

when a measurement is made, the residual will be propagated to all successor nodes. In reality,

there may be many successors. Using the influence diagram to propagate the new conditional

means to all successors may not be practical. Kenley's original work did not address the infinite

successor problem, but there is a simple solution, as will be shown later.

2.6.1 Numerical Ezample of the Discreie-Time Kalman Filter. Assume a model of a one-

dimensional target. tracking problem. In this problem, the target's position is the integral of the
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Wd(ti) Wd(t2) WdQt3)

Gd(ti) GdQt2) GdQt3)

Figure 19. Vector Form of Discrete-Time System Model Over Several Time Intervals
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velocity, and the velocity is the integral of the acceleration. The acceleration is modeled as a

continuous-time Gaussian white noise w(t) through a first order lag filter. The equations of motion

in state variable form are:

il~t) = x2(t) (52)

x2(t) = x 3(t) (53)

i3(t = 1-X3 (i) + w(t) (54)

where T is the time constant of the first order lag filter. In matrix form, these equations are:

k(t) = F(t)x(t) + G()w(i) (55)

10 0 1 0 Zt 0

i2t 0 0 1 X2 (t) + 0 W(t) (56)

i 3(t) 0 0 - X(t) 1

The white, Gaussian noise model is zero mean with an autocorrelation kernel of:

E [w(t)w(t + T)] = Q6(r) (57)

In this example, let Q = 2/T. This yields an autocorrelation kernel for x3 (t) of:

E [x3(t)x 3 (t + r)] = e-17I/T (58)
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The state transition matrix can be computed, for a constant time interval of r, as:

1 r T 2(r/T - 1 + e- t/T)

S(t+ r,t) = L-{[sI -F]-'} 0 1 T(l - e-T/T) (59)

0 0 e- 7 / T

where L-l{} indicates the inverse Laplace transform. Assume T = 2 and r = 1 so that the sample

time is less than the time constant of the first order lag filter. The simplified the state transition

matrix, to four significant digits, is:

1 1 0.4261

(t + 1,t) = 0 1 0.7870 (60)

0 0 0.6065

The discrete-time equivalent noise Wd is zero mean, and has covariance kernel

Efwd(ti)w T(tj)) = Qd(ti) = fo' 'I(1,s)GQGT OT (1,s)ds ti tj, (61)

where G and Q are time invariant. The result of the integration is a time-invariant, discrete-time

equivalent covariance matrix Qd calculated to four significant digits as:

3.063 -2.336 -0.5677

Qd = -2.336 1.904 0.4160 (62)

-0.5677 0.4160 0.1080

The matrix Gd is assumed to be the identity matrix. Alternatively, the matrix product GdQdG T

could take on the value assigned to Qd and an arbitrary Gd could be factored from the product (for

instance, let Gd be the U-factor and Qd be the D-factor of GdQdGd, as in the U-D filter [7:396]).
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The initial position, velocity, and acceleration are known, with an initial covariance matrix

as:

1

x(io) 1 (63)

1

1 0 0

P(to) = 0 1 0 (64)

0 0 1

Measurement are taken at the end of the time interval r according to the model:

z(t,) = H(t,)x(t,) + v(ti) (65)

z (t,) = [ 1 0 0]xi)nt)(6Zt()i= (66)

where v(ti) is a discrete-time, zero mean, Gaussian noise with covariance kernel:

1 tit,

E{v(ti)v(tj)} = { (67)

0 tj/tj

The Kalman filter equations for the state estimate and covariance matrix at time t, before

the measurements are made, are calculated by Equations (35) and (36). These equations yield:

1 1 0.4261 1

( = 0 1 0.7870 1 (68)

0 0 0.6065 1
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2.426

*1.) = 1787 (69)

0.6065

T

1 1 0.4261 1 0 0 1 1 0.4261

P(ti) 0 1 0.7870 0 1 0 0 1 0.7870

0 0 0.6065 0 0 1 0 0 0.6065

3.063 -2.336 -0.5677

+ -2.336 1.904 0.4160 (70)

-0.5677 0.4160 0.1080

5.244 -1.001 -0.3092

P(tij) -1.001 3.523 0.8933 (71)

-0.3092 0.8933 0.4760

The Kalman filter equations given in Equations (44) through (46) are the state estimate and

covariance matrix at time tj, after the measurements. Assume the measurement of the position,

according to Equation (39), results in an observation of 2.000. Then the Kalman filter equations

result in:

5.244 -1.001 -0.3092 1

HP(tijflT+R = I 1 00 -1.001 3.523 0.8933 0 + [1] (72)

-0.3092 0.8933 0.4760 0

= 6.244 (73)
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5.244 -1.001 -0.3092

K(ti) = -1.001 3.523 0.8933 [1 0 0](1/6.244) (74)

-0.3092 0.8933 0.4760

0.8399

K(t1 ) = -0.1603 (75)

-0.04952

2.426 0.8399 2.426

+ = 1.787 + -0.1603 (2.000- 1 0 0] 1.787 ) (76)

0.6065 -0.04952 0 6065

2.068

-(') 1.855 (77)

0.6276

5.244 -1.001 -0.3092

P(t+) = -1.001 3.523 0.8933

-0.3092 0.8933 0.4760

0.8399 5.244 -1.001 -0.3092

-0.1603 [1 00 -1.001 3.523 0.8933 (78)

-0.04952 -0.3092 0.8933 0.4760

0.8399 -0.1603 -0.04952

P(t+) - -0.1603 3.363 0.8437 (79)

-0.04952 0.8437 0.4607
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2.6.2 Numerical Example of Discrete-Time Influence Diagram Filter. The influence dia-

gram can be used to calculate the conditional probability densities for the state estimates at time

tj, as was done by the Kalman filter equations in the previous subsection. The following series

of figures are the influence diagram operations for this numerical example. Figure 20 depicts the

entire model for the propagation of the states from time to to time ti as well for the measurement

model at time ti. The labels on the nodes correspond to the nomenclature in the model equations

(26) and (40).

Wd(tO)

x(t0) x !i G d(l)

Figure 20. One Cycle of Example Discrete-Time Filter

Figure 21 is the same diagram with the nodes numbered one through eleven. This permits

simpler labels on subsequent influence diagram. The second diagram also assumes that the initial

state estimates (the unconditional mean of the vector x(t0)), have been propagated to all successor
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nodes by the regression coefficients. This is equivalent to assuming the a priori information is a

realization of the random vector x(to), but the nodes of the random vector remain on the diagram

and are not instantiated.

(0,0.1218)

(0,3.063) 7 8 9 (0,0.0004764)

b14 = 1
(1, 1) 4(2. = 1

b25 = 1
b34 = 0.4261
b35 = 0.7870
b36 = 0.6065
b74 = 1
b78 = -0.7628

(1, 1) 3 6 (0.60 0) b7 9 = -0.2921
b85 = 1

11 (2.426, 0) b89 = -0.1400
b96 = 1
b4,1 I -

bl0,= 1

Figure 21. Example of Discrete-Time Filter with Nodes Relabeled

Each node has a mean and variance associated with it, given in the form (Pg, vi). The

regression coefficients are written on the right side of the diagram, rather than directly on the lines,

for legibility. All values on the influence diagram come from the following matrix equations.

1 1 0.4261

(ti,to)= 0 1 0.7870 (80)

0 0 0.6065
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3.063 -2.336 -0.5677

Qd(to) - -2.336 1.904 0.4160 (81)

-0.5677 0.4160 0.1080

1 0 0 1 0 0

Qd(tO) - -0.7628 1 0 -0.2922 1 0

0 0 1 -0.1400 0 1

3.063 0 0 1 -0.7628 0 1 0 -0.2922

0 0.1218 0 0 1 0 0 1 -0.1400 (82)

0 0 0.0004764 0 0 1 0 0 1

1 0 0

Gd(to) 0 1 0 (83)

001

100

P(to)= 0 1 0 (84)

001

1

i(to) = I (85)

1

H(ti) 1 0 0] (86)

v(ti) = 1 (87)
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Each diagram starting with Figure 22 depicts a single operation of arc reversal, node removal,

or measurement update. These subsequent diagrams also show the variance on the left side of the

diagram for legibility. The means are not shown until they change during the update. At the

top of each of these diagrams, there is a short description of the changes between the current and

the previous diagram. The equations for calculating the changes in the variances and regression

coefficients are repeated here in Equations (88) through (92)., The actual calculations are not shown,

but the predecessor node (node i), the successor node (node j), and the common predecessors of

both (the set of nodes K) are identified on each diagram. Finally, the changed values are emphasized

in each diagram.

, (88)
v v- + b? vi (8

b'kj= bk, + bkibj (89)

V= .." (90)
V.

1. EL.J (91)

bki = bki + bkjbji (92)

As stated earlier, the total effect of the regression coefficients from the measurement node

to the state estimates is identical to the Kalman gain matrix. Furthermore, the variance of the

measurement node, just prior to the measurement in Figure 38 is identical to the value calculated

for HP(t )HT + R in the Kalman filter. The means of the nodes are identical to the vector

*(t + ) . The covariance matrix represented by the variances and regression coefficients in Figure 36

is the same as the covariance matrix calculated with the Kalman filter in the previous subsection
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as P(ti"). This can be verified by multiplying the matrices as:

1 0 0 1 00

P(ti) = -0.1908 1 0 -0.01118 1 0

0 0 1 0.2504 0 1L J L

5.244 0 0 1 -0.1908 0 1 0 -0.01118

0 3.332 0 0 1 0 0 1 0.2504 (93)

0 0 0.24886 0 0 1 0 0 1
- - L

5.244 -1.001 -0.3092

P(t) -1.001 3.523 0.8933 (94)

-0.3092 0.8933 0.4760

Similarly, the covariance matrix in Figure 39 can be verified by multiplying:

1 0 0 1 0 0

P(t ) -0.1908 1 0 -0.01118 1 0

0 0 1 0.2504 0 1

0.8399 0 0 1 -0.1908 0 1 0 -0.01118

0 3.332 0 0 1 0 0 1 0.2504 (95)

0 0 0.24886 0 0 1 0 0 1

0.8399 -0.1603 -0.04952

P(ts) -0.1603 3.363 0.8437 (96)

-0.04952 0.8437 0.4607

2.6.3 Chapter Summary. This chapter was a tutorial approach to influence diagrams for

probabilistic and deterministic variables. It was intended to summarize the work of numerous
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authors. It began with the first type of influence diagram created, the Aiscrete variable type. The

basic workings of the diagram were shown and explained using an example. The next type of

influence diagram used Gaussian random variables. The ma hematics of this type of diagram were

explained using another example. The final result was an explanation and demonstration of the

Gaussian influence diagram for discrete-tin'e filtering. There was also a demonstration of some of

the similarities between the the Kalman filter and the influence diagram.

The purpose of the explanations in this chapter was to prepare the reader for more detailed

discussion of the influence diagram in subsequent chapters. The implementation of the discrete-time

filter was due to Kenley [6], but the next chapter will demonstrate some changes in implementation

that will make the discrete-time filter algorithm more efficient.

Reduce node 9.. i={9}, j={6), K={3,7,8}

Vl,

V2= 1
V3 =1
V4 = 0
V5 = 0

7v 6 = 0.0004764
= 3.063

V8 = 0.1218
VIO = 1

V1 0

b14
4b24 = 1

b25 = 1
b34 0.4261

2 5 b3 5 = 0.7870
b36 = 0.6065
674 =1

b 7 6 = -0.2921
b78 = -0.7628
b85 = 1

b 8 6 = -0.1400

b4,11 = 1
bloll - I

101

Figure 22. Example of Discrete-Time Filter with Node 9 Removed
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Reverse node 8 to node 5. i={18}, j={f5}, K f{2,3,7}

V2=1
V3 1
V4 =0

v. 0.1218

7 8V6 =0.0004764
V7 =3.063

v8 0
ViO) = 1

VI= 0

b4=1I
1 4 624 = 1

b25 = 1
b8= -1

2 5 b34 = 0.4261
b35 = 0.7870
b36 = 0.6065

3 6 b38 = -0.7870
b58 = 1
b74 = 1
b7 5 = -0.7628
676 = -0.292 1
b78 = 0

b6= -01400
10 b4,11 =1

b11

Figure 23. Example of Discrete-Time Filter with Arc Between Nodes 8 and 5 Reversed
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Remove node 8. i=18}, j={6}, K=12,3,5,7}

V3=1
V14 = 0
v5 = 0.1218
v6 = 0.0004764

7 V7 = 3.063
ViO0= 1

V1= 0

b4= 1
1i4b2 =1I

b25 =1
b6= 0.1400

2b34 = 0.42612 5 b35 = 0.7870
b3 6 = 0.7167

3 6 b5 6 = -0.1400
3 6 b74 =1I

b5= -0.7628cm b76 = -0.2921
b41 1

=l,1 1

10

Figure 24. Example of Discrete-Time Filter with Node 8 Removed
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Reverse node 7 to node 4. i={7}, j={4), K={1,2,3}

V1 =1
v21

V2 = 1
V3 1
v4 = 3.063
V5 0.1218
v( 0.0004764

7 v 7 =0

i4 = 1

4 b17= -1
b24= 1
b25 =1
b26 = 0.1400
b27 = -1
b34 = 0.4261

3 6b 35 = 0.7870
b3 6 = 0.7167
b 3 7 = -0.4261

b47 = 1
b56 = -0.1400
b75 = -0.7628
b76 = -0.2921

10b4,11 = 1
b1o,11 = 1

Figure 25. Example of Discrete-Time Filter with Arc Between Nodes 7 and 4 Reversed
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Reverse node 7 to node 5. i={7}, j={5), K={1,2,3,4}

Vl--

V2 -- 1
V=
V4 = 3.063
v5 = 0.1218
v6 = 0.0004764

7 V7 = 0
Vl0 = 1
Vi11 = 0

b14=I

b1 5 = 0.7628
4 b1 7 = -1

b24 =
b2 5 = 1.7628
b26 = 0.1400
b27 = -1
b34 = 0.4261
b3 5 = 1.112
336 = 0.7167
b37 = -0.4261
b4 5 = -0.7628
b47= 1
b 5 7 = 0
b56 = -0.1400

10 b76 = -0.2921
b4,11 = 1

0,11 - 1

Figure 26. Example of Discrete-Time Filter with Arc Between Nodes 7 and 5 Reversed
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Remove node 7. i f{7), j=f{6}, K={1,2,3,4,5)

V2 1
V3 1

4 V4 =3.063
v= 0.1218
V= 0.0004764

2 Via = 1

b14 = 1
bi5 = 0.7628

3 616 0.2921
b24 =1
b25 = 1.762802 = 0.4322

b4= 0.426 1
b35 = 1.112

10 b6= 0.8412
b5= -0.7628
b6= -0.2921

b56 = -0.1400

Figure 27. Example of Discrete-Time Filter with Node 7 Removed
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Reverse node 3 to node 4. i={3}, j={4), K={1,2}

Vl,
1V 4 12v=l1

v3 = 0.9440
v4 = 3.244
v5 = 0.1218
V6 = 0.0004764
Vio = 1

3 6 VII = 0

b13= -0.1313
b= 1
b15 = 0.7628
b16 = 0.2921
b2 3 - -0.1313

b = 1
b 2 5 = 1.7628

b26 = 0.4322
b35 = 1.112
b36 = 0.8412
b43 = 0.1313
b45 = -0.7628
b46 = -0.2921
b56 = -0.1400

b4,11

b10,11 = 1

Figure 28. Example of Discrete-Time Filter with Arc Between Nodes 3 and 4 Reversed
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Reverse node 3 to node 5. i={3}, j={5}, K={1,2,4}

V, =1
1 4V 2 =1

v3 = 0.0892
V4= 3.244
v.= 1.289
v6 = 0.0004764
ViO = 1

3 6 Vj1 = 0
b13= -0.6336
h= 1
b1 5 = 0.6167
b16 = 0.2921
b23 = -1.448
b= 1
b2 5 = 1.6167
b26 = 0.4322
b35 = 1.112
b36 = 0.8412
b43 = 0.6336
b4 5 = -0.6167
b46 = -0.2921

b 5 3 = 0.8143
b56 = -0.1400

b4,11 = 1
i0,11 "= 1

Figure 29. Example of Discrete-Time Filter vith Arc Between Nodes 3 and 5 Reversed
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Remove node 3. i={3), j={6), K={1,2,4,5}

VI = 1
4V2"-I

V4 = 3.244
v5 = 1.289

2 v6 = 0.06360
VIO = 1
VII 0

6 b14 = 1
b15 = 0.6167

b 1 6 = -0.2408
b24 =
b2 5 = 1.6167
b26 = -0.7858
b4S = -0.6167

10 b4 6 = 0.2408
b56 = 0.5450

b4,11 = 1

blo,11 = 1

Figure 30. Example of Discrete-Time Filter with Node 3 Removed

Reverse node 2 to node 4. i={2}, j={4}, K={1}

~Vl1

4 v2 = 0.7644
v4 = 4.244
v5 = 1.289
v6 = 0.06360
ViO = 1
Vil = 0

6 b1 2 =-0.2356

b15 = 0.6167
b16 = -0.2408
b25 = 1.6167

b26 = -0.7858
b42 = 0.2356

10 b45 = -0.6167
b46 = 0.2408
b56 = 0.5450

b4,11 = 1
blo,11

Figure 31. Example of Discrete-Time Filter with Arc Between Nodes 2 and 4 Reversed
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Reverse node 2 to node 5. i={2}, j={5}, K={1,4}

Vl'-I

4 v2 = 0.2998
V= 4.244
v 5 = 3.287

2 5 = 0.06360
Vl0 = 1
VII = 0

6 b = -0.3243
b1 1

b 1 5 = 0.2358
b16 = -0.2408
b26 = -0.7858

b42 = 0.3243
b 4 5 = -0.2358

10 b4 6 = 0.2408
b5 2 = 0.3760

b56 = 0.5450
b4,11 -

l. 1= 1

Figure 32. Example of Discrete-Time Filter with Arc Between Nodes 2 and 5 Reversed

Remove node 2. i={2}, j={6}, K={1,4,5}

4 v4 = 4.244
V5 = 3.287
v6 = 0.2487

5 Vio =
Vil = 0

b14 = 1
6 b15 = 0.2358

b 1 6 = 0.01400
b45 = -0.2358b4 6 = -0.01400
b 5 6 = 0.2496

b4,= 1
10 b10,11

Figure 33. Example of Discrete-Time Filter with Node 2 Removed
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Reverse node 1 to node 4. i={1}, j={4}, K={}

vi = 0.8093
4v4 = 5.244

V5 = 3.287
V6 = 0.2487

5 Vo = 1
VI= 0

b15 = 0.2358
6b6 = 0.01400

b4 1 = 0.1987
b45 = -0.2358
b46 = -0.01400
b56 = 0.2496

b4,11 = 1

10 bo,1 = 1

Figure 34. Example of Discrete-Time Filter with Arc Between Nodes 1 and 4 Reversed

Reverse node I to node 5. i={1}, j={5), K={4}

v1 = 0.7984
V4 5.244
v5  3.332
V6 = 0.2487

VII = 0
b16 = 0.01400

6 b41= 0.2016
b4 5 = -0.1908
b46 = -0.01400
b5 1 = 0.05728
656 = 0.2496
b4,11 - 1

10 bo,l = 1

Figure 35. Example of Discrete-Time Filter with Arc Between Nodes 1 and 5 Reversed
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Remove node 1. i={1}, j={6}, K={4,5)

4V4 = 5.244
V5 = 3.332
v6 = 0.2489

VlI = 0
b45 = -0.1908

6 b 4 6 = -0.01118
b5 6 = 0.2504
b4,11 = 1

bl0,= 1

10

Figure 36. Example of Discrete-Time Filter with Node 1 Removed

Remove node 10. i={10}, j={11}, K={4}

4 v4 = 5.244
V5 = 3.332
V6 = 0.2489

5Vl= 1

b45 = -0.1908
6 b46 = -0.01118

b56 = 0.2504

b4,11 = I

Figure 37. Example of Discrete-Time Filter with Node 10 Removed
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Reverse node 4 to node 11. i={4}, j={11}, K={)

4 v4  0.8399
v5 = 3.332
v6 = 0.2489

5 = 6.244
b45 = -0.1908

b4 11 = 0.8399
6 46 = -0.01118

b56 = 0.2504

Figure 38. Example of Discrete-Time Filter with Arc Between Nodes 4 and 11 Reversed

Instantiate node 11. Realization is 2.000.
Propagate the residual (-0.4261).

4 (2.068,0.8399)

5 (1.855,3.332)
b45 = -0.1908
b46 = -0.01118

6 (0.6276,0.2489) b56 = 0.2504

Figure 39. Example of Discrete-Time Filter with Node 11 Instantiated and Means Updated
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II. Implementing the. Influence Diagram

The previous chapter explained Kenley's implementation of the influence diagram. This

chapter picks up on Kenley's original work and demonstrates three improvements to the original

algorithm. One improvement is a solution to the infinite successor problem, mentioned in the

previous chapter. This problem occurs because the influence diagram uses the terms of the U

matrix to calculate the changes to the conditional means of successor nodes. When there are a

large number of successors, U is very large and it becomes impractical to propagate the changes of

the means.

A secord improvement is a more efficient method of realizing a vector of measurements. In

the previous chapter, the algorithm for updating the conditional means was a form of scalar update.

When a node in unconditional form was realized, the residual was propagated to all successor nodes

via the regression coefficients. After the realization, the original node was no longer needed and

was instantiated (removed). After the first node was removed, the second node in the vector was

in unconditional form, and it too could be realized and removed. The process continued, and the

measurement nodes were removed one at a time, until all measurements were accomplished.

The Lhird improvement is a demonstration Lhat, under certain circumstances, the influence

diagram can be more efficient than Kenley showed originally [6:pp. 89--106]. The conditions for

this reduced operation count will be shown. Also, Kenley stated, but did not show, that the

influence diagram can be used in a parallel processing architecture. This thesis will examine the

implementation of the influence diagram in a parallel processing environment, and compare the

improvement in processing time.

Before discussing these improvements, it will be useful to define two terms which will be used

!Fiter in this thesis, the "path product" and the "path coefficient." These terms both represent

scalar functions of the regression coefficients.
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A path product will be defined as the product of the regression coefficients on a given path

from a predecessor node to a successor node. A path coefficient will be defined as the sum of the

path products on all possible paths from a predecessor node to a successor node. An example will

demonstrate the use of these terms.

Consider an influence diagram of five nodes, numbered sequentially 1 through 5. The path

products from node 1 to node 5 are:

b15  (97)

b14b4s (98)

b13(b35 + b34b45) (99)

b12[b2b + b24b45 + b23(b35 + b34b45 )] (100)

The sum of these path products results in the path coefficient, which will be denoted by the term

U15.

In more general terms, let um,n be the path coefficient from a node m to a successor node n,

and let bm,n be the regression coefficient on the arrow from a node m to its direct successor node

n. Another expression for ul,r is:

U1,r :- bl,r + bi,r-I(Ur-.i,r) + bl,r-2(U,-2,r) . bl,2(U2,r) (101)

As was shown in Chapter 2, the linear change in the conditional mean of a successor node, con-

ditioned on the realization of a predecessor, is equal to the path coefficient from the first to the

second.

Let a positive definite, symmetric covariance matrlx be factored into a unit lower triangular

matrix, a Glagonal matrix, and a unit upper triangular matrix equal to the transpose of the unit

lower triangular mitrix (a unit triangular matrix is defined to have ones on the main diagonal).
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Such a factorization is expressed as UTDU (or equivalently LDLT where U - LT) and is unique

[13:pp. 133-143]. Using the first notation, the U matrix can be factored as a product of unit

upper triangular as U = U1 U2 U 3 . .. Un, where n is the dimension of U. Each matrix Uj is an

identity matrix, plus nonzero terms only in the jth column above the diagonal. As discussed in

Chapter 2, Kenley and Schacter showed that such a factorization was equivalent to an influence

diagram representation of the covariance matrix [12:pp. 547-548]. The regression coefficients are

the nonzero term3 above the diagonal in the Uj matrix. Using the newly defined terminology, the

path coefficients are the uij terms above the diagonal in the U matrix.

As an example, consider a 4-dimensional covariance matrix factored as described above. The

matrix D is

v1 0 0 0

0 V2 0 0
D 0 V(102)

0 0 V3 0

0 0 0 V4

where v1 , v2 , V3, vI # 0. The matrix U is expressed as

1 0 0 0 1 b12 G 0 1 0 b13 0 1 0 0 b14

0 1 0 0 0 1 0 0 0 1 b23 0 0 1 0 b24v = (103)

0 0 1 0 0 G 1 0 0 0 1 0 0 0 1 b34

0 0, 0 1 0 0 0 1 0 0 0 1 0 0 0 1

or in terms of the path coefficients:

1 U12 U13 U 1 4

0 1 U23 U24
U =(104)

0 0 1 U34

0 0 0 1
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The expression for the path coefficient, in terms of the regression coefficients as in Equation (101),

can be verified by matrix multiplication. In the case of u14 , u24, and U3 4 for example, the multipli-

cation yields:

U34 = b34  (105)

U24 = b24 + b23b34  (106)

U14 = b14 + b13b34 + b12(b24 + b23b34 ) (107)

3.1 The Recursive Algorithm

The influence diagram algorithm has a problem when implementing the discrete-time filter

over many, possibly infinitely many, time intervals. It makes the assumption that when a measure-

ment is made, the residual will be propagated to all successors. In a recursive discrete-time filter

with possibly an infinite number of successors, propagating the mean is not possible.

One implementation scheme avoids the infinite successor problem. Assume a vector of nodes

labeled x(t1 ) conditions another vector z(ti) and the influence diagram contains no other nodes.

Such an influence diagram was shown in Figure 17. Also assume that the vector x(ti) represents

the state estimate at time ti, before incorporating the measurements at time ti. The vector z(ti)

represents the measurement vector at the same time. As shown in the second diagram in Figure 17,

the nodes of z(ti) are moved to the beginning of the ordered sequence, and the random variables

associated with those node are realized. The change in mean is propagated to all nodes of x(t1 ), and

the nodes of z(ti) are removed. At this time, x(ti) is conditioned on z(ti), the actual measurements.

If x(ti) were followed by other vectors representing x(ti+i), x(ti+2 ), and so on, then the influence

diagram requires that the residuals be propagated to these vectors as well. The operation is

equivalent to calculating the conditional means of x(ti+i), x(fi+2), X(ti+3),. .. , x(ti+,), conditioned

on the measurements at time ti. This prediction information is not normally desired.
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Assume now that the residuals are not propagated to subsequent vectors. Then x(ti) would

have the correct conditional mean, but subsequent vectors would not. The state estimate at any

time ti will only be calculated when it is needed, normally at time ti. The equation for doing this

is the Kalman filter update equation:

= (108)

The measurement estimates z(ti+l), z(ti+2), z(ti+3),..., z(ti-l-) are also successors of x(ti)

because they are successors of x(ti+l), x(ti+2), x(ti+3),..., x(ti+n). The means could be propagated

from x(ti) to form the measurement estimates at these times, conditioned on the measurement at

time ti. This information is again not normally needed and such calculations are useless. The only

estimate usually needed is the estimate (prediction) of the measurements at time ti, conditioned

on measurements through time ti- 1. This can be calculated similar to the Kalman filter equation

as

=(t) H(ti)c(ti7) (109)

To summarize this implementation method, the influence diagrem should be used to calculate

the conditional mean of the states at time ti, based on the measurements at time ti. However, when

there are many successors, representing later time intervals, the influence diagram should not be

osed to calculate the conditional means for all of them. Instead, the conditional means for later

states and measurements should be calculated only when needed using Equations (108) and (109)

above.

Kenley's original work did not discuss deterministic inputs to the model. An equation that

can represent deterministic inputs to the system is given by

x(ti) = 1(t2 , ti-1 )X(ti- 1) + Gd(t.-1)Wd(ti..1) + Bd(ti-1)ud(ti-1) (110)
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where Ud(ti-1) is the deterministic input and Bd(ti-1) is the matrix that describes how the input

affects the system states [7:220].

In the influence diagram, a deterministic input Ud(ti-1) can be modeled as a deterministic

vector which is a predecessor of the x(ti) vector. The arrows connecting ud(ti- 1) to x(ti) are the

Bd(t,-1) matrix. The mean of this deterministic vector is assumed to be the zero vector so that the

actual inputs can modeled as a change of mean to the deterministic nodes, and then propagated.

Using strict influence diagram rules, these changes of mean must be propagated to all subsequent

nodes. Using the same logic as earlier though, propagating the conditional mean to later times is

not useful. Instead, the matrix equation for the conditional mean at time ti, including deterministic

inputs at time ti-1 is

R(tq,) = kl(tj, ti-O)(t+_l) + Bd(i,-1)Ud(ti-1) (111)

3.2 Vector Measurement Update

When there is more than one random variable to be realized (measurement), then there are

two methods for incorporating the measurements. In one case, the nodes are moved upwards and

removed immediately as they become unconditional. In the other case, all nodes are moved upwards

until the entire vector of measurements is unconditional (the nodes of the vector are conditioned

only on other nodes in the vector), then all the measurements are incorporated and the measurement

nodes removed.

There are advantages to each update method. If a node of the measurement vector is re-

moved, then the arrows to subsequent nodes of the vector are not needed. As other nodes of the

measurement vector are made unconditional, there are fewer predecessors and fewer calculations

required. On the other hand, the change in mean at any node is the product of the change in mean

of the predecessor (measurement node) time the path coefficient between the two. Thus, propagat-

ing the mean requires calculating the path coefficients from each node in the measurement vector
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b14

Figure 40. Measurement at Two Nodes Propagated to Two Successor Nodes

to each successor node. This process is equivalent to recalculating the matrix of path coefficients

U = U 1U 2U3 ... Un for every measurement made. For an n-dimensional matrix, recalculating U

requires 1/6(n3 - 3n 2 + 2n) additions and multiplies.

There is a much more efficient method of updating the means which is of the order n2. It is

equivalent to a vector update and it requires the entire measurement vector in unconditional form.

It does not explicitly calculate the path coefficients, but calculates the change of mean directly. It

will be demonstrated by example.

Assume four nodes of a vector z in an influence diagram as shown in Figure 40. The first

two nodes will be updated by a measurement. The second two are conditioned on the first two.

The means will be propagated as the measurements are made. Also assume pi is the mean of the

ith node before the update, and (i is the measured value for i=1,2. If a single prime indicates

the updated mean after only l is propagated, then let rl be the calculated residual and use the

conventional method:

= 4+ - (112)

= P2 + U 12r, (113)

P3  = /13 + (bl3 + b12 b23)(Cl - Pl) (114)

= /3 + u13r, (115)
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P4  = J4 + [b12(b24 + b23 b34) + b13 b34 + b14](C1 - mu) (116)

= p4 + u14rl (117)

Let a double prime represent the mean after the second update, that is the measurement (2.

Similarly, r2 is the residual ((2 - p'). This residual uses u2, the updated mean of node two. But

the updated mean is just the mean of node 2 conditioned on node 1 having a mean of (I. Call the

term r' the conditional residual. It is this conditional residual which is propagated as follows:

P3= p3+ b23((2-p2) (118)

= + 3 U23r 2  (119)

P4 = '4 + (b24 + b23 b34)(( 2 - U2) (120)

= P + U24r (121)

After simplifying the expressions for p" and pa in terms of the unprimed variables, the

following equations result:

313 = b13(1 - pi) + b23((2 - 02 ) + P 3  (122)

P/4 = (b14 + b13b34)((l - jul) + (b24 + b23 63 4)((2 "- P2) + P4 (123)

An alternative form for p" can be calculated be assuming node 3 had a measurement as

well. Let this new measurement be (3 and calculate using the mean of node 3 conditioned on both

previous measurements. The result appears as:

IN = b14((1 - 41) + b24((2 - J12) + b34((3 - P3) + JU, (124)

By letting the assumed (3 be the previously calculated p3", the previous expression for p" results.
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The insight is that the new mean of node 3 (propagated from previous nodes) can be treated as a

measurement at node 3, and the resulting residual propagated to the next node. The same effect

can be extended to node 4. The new mean of node 4, calculated by propagating the change of

mean from its predecessors, can be treated as a measurement at node 4, and the resulting residual

propagated to the next node. The argument extends by induction to any number cf nodes. For a

change of mean that is not the true realization of the random variable, such as for nodes 3 and 4,

the variance is not set to zero.

To find a useful algorithm, use the term (i to refer to the new mean of node i after all updates,

including possible updates to node i itself. Use the term ri to be the residual (Ci - pi) where pi is

the mean before any updates. The first p nodes are the actual measurements, and they represent

p realizations of random variables. For each of these nodes, the residual is calculated:

fori=ltop ri=(Cj-pi) (125)

The change of mean (the residual) and the mear itself (the assumed measurement) for node p + 1

is calculated by:

rp+1 = bi,p+IrI + b2 ,p+lr2 + b3 ,p+lr 3 +,.. .,bp,p+lrp (126)

Cp+l = rp+1 + pp+l (127)

The residual for node p+l is propagated to node p+2 just as if it were the result of a measurement.

The equation for this propagation and the resulting mean is:

rp+2 = (bl,p+2r + b2,p+2r2 + b3,p+2r3+, ... ,bp,p+ 2rp) +

(bp+l,p+2rp+l) (128)

Cp+2 = rp+ 2 +pp+2 (129)
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The process continues with each new residual treated as a measurement to be propagated to

the next node. The term in parenthesis on the second line of Equation (128) is the residual froim

the assumed measurement created by propagating to the p+l node. The calculations for the last,

or n+p node, are:

rp+n -" (bi,p+nri + b2,p+nr 2 + b3 ,p+nr3 , . . ., bp,p+nrp) +

(bp+ip+nrp+l + bp+2,p+frp+2,.. . bp+n-l,p+nrp + n - 1) (130)

(p+n rp+n + Pp+n (131)

These calculations can be simplified to a series of matrix operations. If there are p nodes to

be measured, with a mean propagated to n successor nodes, then the residuals for the successor

nodes p + 1 to p + n is given by:

rl

r2

rp+I b1,p+l b2 ,p+i "" bp.p+l 0 0 ... 0

rp
rp+2 bi,p+2  b2,p+2 bp,p+2 bp+l,p+ 2  0 ... 0

. rp+n J bi,p+n b2 ,p+n bp,p+n bp+l,p+n bp+2,p+n bp+n-l,p+n rp+ 2
rp+ 2

rp+n-1

(132)

The matrix operation shown above implies that the update uses a single matrix. The true

operation is the sum of a series of vector inner products. The matrix is the transpose of the p + 1

through p+n columns of the B matrix. The first p elements of the rightmost residual column vector

are partitioned as the residuals from the measurement vector. The result of each inner product

operation is augmented to the residual column vector as a new residual and used in the next inner
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Figure 41. Example of Continuous Gaussian Influence Diagram

product calculation. The total number of operations required for these calculations is 1 n2 -n+pn

adds and multiplies. The effect is comparable to performing a vector update instead of sequential

scalar updates. An example will demonstrate the algorithm.

In the example given in Chapter 2, the conditional mean of the playing time in a basketball

game was expressed in influence diagram form, conditioned on the player's height and the number

of points scored. The diagram is repeated here in Figure 41. The conditional mean of the playing

time was calculated as the update of the two scalar measurements of height and points scored per

game. First, the residual of the measured height was propagated to subsequent nodes and the

height node was instantiated. Then the residual of the realized number of points per game was

propagated to the remaining node. The conditional mean of playing time, given an 84 inch player

was 75.8889%. If an 84 inch player scored only 16 points per game, then the conditional mean of

the playing time, conditioned on both measurements, was 68.558%.

Both of these conditional means could be calculated by the vector update algorithm. For the

first example, the average playing time will be calculated based on only the player's height. The

equations are:

bl 2rl = r 2 r2 + J2 = (2 (133)

b131'1 + b237'2 = r3  r3 + P3 = (,3 (134)
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or in numerical terms:

0.2222(84- 82) = 0.4444 0.4444 + 20 = 20.4444 (135)

0.077922(84 - 82) + 1.6494(0.4444) = 0.8889 0.8889 + 75 = 75.8889 (136)

The conditional mean for both the number of points scored and the percentage of playing time are

the same as calculated earlier. These equations use the residual r2 . This is not a true residual

because there is no measurement of the points per game. This number is treated as a residual only

to make the algorithm work.

As a second example, assume the measured height and the number of points scored will be

used as a measurement vector, where the dimension of the vector is p=2. The update equations

are now:

bl 3r1 + b 23 r 2 = r3 r 3 + -P 3 (137)

or in numerical terms:

0.077922(84 - 82) + 1.6494(16 - 20) = -6.4417 -6.4417 + 75 = 68.558 (138)

Again, the vector update equations yield the same results as the earlier example. The average

points per game, conditioned on the player's height, was not calculated. There was no need to

calculate it because it was part of the measurement vector and it would take on the measured value

no matter what its conditional mean was.

3.3 Efficient Implementation Form

Kenley demonstrated that the influence diagram was competitive with the U-D filter in terms

of the number of required mathematical operations [6:pp. 52-106]. He used a form of the influence
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diagram as was shown in Figure 18. In that diagram, the nodes of Wd(4-1) have no arrows

between them, implying they are independent. This is equivalent to assuming the matrix product

Gd(ti1)Qd(ti_1)G(t._) has been factored such that Qd(t-1) is a diagonal matrix.

The example in Chapter 2 of this thesis used an influence diagram implementation of the

discrete-time filter with different assumptions about the factorization of Gd(4._1)Qd(t- )Gd"(t,_1).

In Figure 21, wd(t -1) was expressed as an influence diagram factorization of the matrix product

Gd(ti_ 1)Qd(ti- I)GT(ti._) and Gd(t-1) was assumed to be the identity matrix. The general case

of discrete-time filter, assuming Gd(t4-1) = I is shown in Figure 42. The influence diagrams in

Figure 18 and Figure 42 are different representations of the same discrete-time model. When

Wd(ti-1) is removed, both diagrams reduce to the same influence diagram shown in Figure 43.

Because of the identity matrix transformation, and the fact that, x(ti) is a deterministic

function of wd(ti-1 I), the removal of wd(t4-1) results in a simple form. The conditional variances of

the nodes of x(ti) in Figure 43 are the same as the conditional variances of the nodes of wd(ti-1) in

Figure 42. Furthermore, the regression coefficients between the nodes of x(ti) in Figure 43 are the

same as the regression coefficients between the nodes of Wd(t4-1) in Figure 42. A demonstration of

this can be seen by comparing the appropriate numbers for the example in Chapter 2, Figure 21

and Figure 27. In those figures, the variances and regression coefficients of wd(ti-1) of Figure 21

appear to transfer directly to the nodes of x(ti) in Figure 27.

A further comparison of these example diagrams reveals that the regression coefficients cor-

responding to the matrix P(t',ti1.) in Figure 21 are not the same as the comparable regression

coefficients in Figure 27. The new regression coefficients are no longer the elemcnts of the state

transition matrix §(t,,ti- 1), but have been modified because of the influer.e diagram operations

between Figure 21 and Figure 27. These new regression coefficients can be thought of as being the
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Figure 42. Alternative Representation of One Propagation/Update Cycle of the Influence Dia-
gram Discrete Time Filter
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elements of a new matrix. Call this equivalent matrix ,lq. The elements of P can be calculated as

I q = (I- Bq)(7T(t,ti ) (139)

where Bq is the influence diagram B matrix corresponding to the influence diagram factorization of

Gd(ti-1)Qd(ti-1)GT(ti-_), and I is the identity matrix of appropriate dimension. In the previous

example, the -9q can be calculated as:

0 --0.7628 -0.2921 1 1 0.4261

= {I 0 0 -0.1400 0 1 0.7870 (140)

0 0 0 0 0 0.6065

1 1 0.4261

= 0.7628 1.7628 1.112 (141)

0.2921 0.4322 0.8412

These are seen to be the same as the regression coefficients in Figure 27.

One way to understand these changes in the regression coefficients corresponding to the

• (ti, t,- 1) matrix is as follows. The total effect of all regression coefficients from a node of x(ti- 1)

to a node of x(ti) is equivalent to the appropriate element of the 1(t,ti-j) matrix. This total

effect is the change in the conditional mean of x(ti), given a realization of the predecessor nodes in

x(ti-1). This total effect does not change when the nodes of x(ti) are conditioned on one another.

As the regression coefficients are added between the nodes of x(ti), the coefficients from x(ti-1)

must be changed to compensate.

The previous analysis demonstrates a significant reduction in computations when the matrix

product Gd(ti.l)Qd(t,_.)G T(t_) is given in influence diagram form. Under these circumstances,

all influence diagram operations needed to remove Wd(ti-1) are unnecessary. Instead, an influence
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diagram as was shown in Figure 43 can be drawn immediately, with the regression coefficients

from x(ti-1) modified as in Equation (139). In the example of Chapter 2, this would have been

equivalent to skipping from Figure 21 to Figure 27 without needing to go through the intermediate

equations. The author is not aware of any such operations savings with other forms of the Kalman

filter when Gd(ti-l)Qd(ti-l)Gd(t i-l) is available in a factored form.

3.4 Operations Count

An important characteristic of the influence diagram algorithm is the number of floating point

operations required for implementation on a digital computer. Kenley calculated the number of

operations necessary for updating the variances, and compared them with the operations counts for

other filter implementations [6:pp. 89-106]. In that comparison, he assumed a filter of the form in

Figure 18. He demonstrated that the U-D filter and the influence diagram require a similar number

of operations.

Kenley's original operations count only addressed the computations required for the update

of the variances, not the state estimates. If the influence diagram state estimates are updated using

the vector update method from the previous section, then the influence diagram remains equivalent

to the U-D filter in terms of computational efficiency.

The influence diagram has a significant advantage when Gd(t- 1)Qd(ti-1)GdT (ti- 1) is avail-

able in influence diagram form. However, as was shown in Chapter 2, the influence diagram

form of the matrix product Gd(ti-l)Qd(ti.l)GT(ti_-) is the same as a factorization of the form

UT ... uTuTUTDUU 2U3 ... U, where n is the dimension of the matrix product. It will be

shown later, in Chapter 4, that such a factorization is very similar to the UDUT factorization used

in the U-D form of the Kalman filter. Because of this similarity, it will be assumed that a covariance

matrix can be expressed in influence diagram form just as efficiently as it can be expressed in U-D

factored form.
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Table 4 compares the conventional Kalman filter, the U-D filter, and the influence diagram.

The Kalman filter implementation assumes Gd(t-I1)Qd(ti-1)GT(ti-1) is available as a single ma-

trix. The U-D filter form assumes that Gd(ti-1)Qd(ti-l)G(t4-.) is in U-D factored form such

that Gd is equal to the upper triangular U factor and Qd is equal to the diagonal D factor. The
influence diagram implementation assumes Gd(ti_1)Qd(t_1)GT(t'_1) is expressed in influence di-

agram form as in Figure 42. The only operations needed to transform the influence diagaram from

a form as in Figure 42 to a form as in Figure 43 are given in Equation (139).

The number of operations required for the influence diagram implementation is calculated in

Appendix A. The number of operations for the Kalman filter and the U-D filter are reproduced from

Maybeck [7:403] using the same assumptions about Gd(ti_1)Qd(t,_l)GT(,_l) as in the previous

paragraph. For a specific example, Table 5 represents the execution time for a typical discrete-

time filtering problem with a 10-dimensional state vector and a 2-dimensional measurement vector.

The execution times come from Maybeck [7:404]. These tables show that the influence diagram

significantly exceeds the U-D filter in speed.

Under certain conditions, the matrices Gd(ti-1)Qd(ti-1)GT(t,-1) and l(ti,ti- 1) may be

constant from one time interval to the next. Under these conditions, all terms on the right side

of Equation (139) are unchanged from one time interval to the next and there is no need to

recompute -iq. The operations count for the influence diagram will require n(n- 1) fewer additions

and multiplications if Equation (139) is unnecessary. Using the assumptions of Table 5, this equates

to (2.7 + 4.1)45 or 306 fewer microseconds per cycle.

3.4.1 Pipeline Processing. Kenley mentions that the influence diagram lends itself to parallel

processing because reversing the conditioning on two nodes results in changes that are isolated

within the diagram. A specific example shown in Figure 44 demonstrates the potential for parallel

pioccasing.
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Table 4. Operations for One Time Propagation and One Measurement Update
Filter Adds Multiplies Divides
Conventional i3n' + 3n'p+ (3n' + 3n 2 (p + 1)+ m
Kalman 5np - n) 3np)
U-D (5n + n(3p + 2)+ -(5n + n2 (3p + 11)+ n(p+ 1) - I

n(3p + 1)) n(p- 6))
Influence 2n' + n2 (p - 0.5)+ 2n3 + n'(p + 3.5)+ n(n + p - 1)
Diagram n(p2 + p - 0.5) n(p 2 + 5p - 1.5)

Assumptions: Gd(til)Qd(t-_1)G'(ti.1) is available as a single matrix,
for the Kalman filter, in U-D factored form for the U-D filter,
or in influence diagram forn for the influence diagram.
State and dynamics driving noise dimension = n
Measurement dimension = p

Table 5. Operation Time for One Tliter Recursion
Filter Adds Multiplies Divid,; Time (msec)

Conventional 1845 2040 2 13.35
Kalman
U-D 2935 3330 29 21.77
Influence 2205 2675 110 17.65
Diagram

Assumptions: Gd(4i-l)Qd(ti-l)GT(tijl) known as in previous table.
State and dynamics driving noise dimension = 10
Measurement dimension = 2

The execution time per cycle assumes each operation requires:
2.7 psec per addition
4.1 psec per multiplication

6.6 psec per division
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Figure 44. Pipeline Implementation of the Removal of Three Nodes
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Assume the first three nodes are to be moved to the right and eliminated from the diagram.

The third node is removed first because it is the most conditional. The arc between it and the

succeeding node is reversed resulting in the second influence diagram in Figure 44. The next

operation could be either moving node 3 further to the right, or move node 2 to the right. The

predecessor values modified in one (.peration are distinct from those modified in the other operation.

As a result, both operations could be done simultaneously in separate processors. This simultaneous

reversal ip shown in the third diagram in Figure 44. The next node can be moved to the right at the

same time as the first two move further rightwards as in the fourth diagram. The process continues

until all three nodes are removed.

Assume that there is a single processor dedicated to the task of calculating all necessary

equations for each of the n nodes being moved rightwards. This is only one possible way of applying

parallel processing to the influence diagram algorithm, but it does serve as a basis for comparison.

In this example, there would be three processors, one assigned to each of the first three nodes.

Between the first and second influence diagrams, a single processor would reverse nodes 3 and 4.

Between the second and third diagrams, one processor would be used to exchange nodes 3 and 5,

while another would be used to exchange 2 and 4. Moving from the third to the fourth diagram

requires all three processors; one processor removes node 3, another reverses nodes 2 and 5, while

the third reverses nodes I and 4. Moving to the fifth diagram requires only two processors, one to

remove node 2 and another to reverse nodes 1 and 5. Finally, only a single processor is needed to

remove node 1 and r, .ult in the last influence diagram.

Under these a..umptions, the cormputation time for each cycle is reduced greatly. As an

example, assume the same operations counts as in Table 4 and Table 5. In this case, also assume

that there are n separate processors, each dedicated to the task of moving one node rightwards as

in Figure 44. The computation time for such a configuration is given in Table 6. As in Table 5,

the time can be reduced by another 306 microseconds if there is no need to recompute 4Iq. The
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Table 6. Operations Counts and Times for Influence Diagram, Pipelint Architecture
Adds Multiplies Divides Time (msec)

9n 2 +n(6p-19)+ 9n 2+6n(p-1)+ 3n+p-3
p2 -4p+ 11 p2 + 1

837 965 29 6.41
Assumpt.ions: Gd(ti-1)Qd(ti-)GT(ti_.) is known beforehand,

in either matrix or influence diagram factored form.
State and dynamics driving noise dimension = 10
Measurement dimension = 2

The execution time per cycle assumes each operation
requires the following execution times:

addition=2.7 psec
mutiplication = 4.1 psec
division=6.6 psec

operations counts in Table 6 are developed in Appendix B. The reason that the time is not reduced

by a factor of n in Table 6 is because there is idle time for each processor as it waits for the previous

processors to accomplish their tasks sufficiently to begin operation itself. Idle time can be reduced

by doing other operations (such as calculating Equation (139)).

3.5 Chapter Summary

This chapter demonstrated three different methods of improving the implementation of the

influence diagram for discrete-time filtering. These improvements make the influence diagram

more efficient than the U-D factored form of the Kalman filter under the conditions given. For

the special case where Equation (139) does not need to be calculated for each time interval, the

influence diagram is even faster. This chapter concluded with a demonstration of the influence

diagram implemented in parallel processing form. In this case, the influence diagram was shown to

be very fast indeed.
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IV. Equivalent Operations

The influence diagram's relationships to matrix operations, as previously shown by Kenley,

were described in Chapter 2 of this thesis. These matrix operations will be a key to numerical

analysis later in Chapter 5, so this chapter is dedicated to a detailed analysis of the influence

diagram operations. The intent is to relate the influence diagram operations to well understood

arithmetic and matrix operations. The analysis will occur in three parts. The first part will be

a demonstration of the equivalence of matrix products and node reversal operations. The second

part will be a demonstration of a matrix equivalent to the discrete-time filter shown in Chapter

2. The third part will be a direct comparison of the influence diagram and the U-D algorithm for

discrete-time filtering.

4.1 Equivalence to Matrzz Operations

The most important operation in influence diagram manipulation is node reversal. It is

equivalent to changing the conditioning order of a pair of random variables while maintaining the

joint distribution of the two. For the case of Gaussian random variables, only the conditional and

unconditional variances and means are needed to describe the continuous density functions. The

Gaussian influence diagram calculates conditional variances directly, and calculates the conditional

means as linear functions of the realizations of conditioning variables.

Gaussian influence diagram operations can be considered in terms of two different operations.

One operation is the process of moving a node upwards, towards the beginning of an ordered

sequence. It is equivalent to expressing a random variable as being conditioned on fewer random

variables than it is currently. The other operation is moving a node downwards, toward the end

of the ordered sequence It is equivalent to expressing a random variable as being conditioned on

more random variables than it is currently.
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Before discussing these two types of operations, there is one notable characteristik ,Of the

influence diagram worth observing. If node i is a conditional predecessor of node j, and b.,w.

are conditioned on a set of nodes K, then Kenley demonstrates the conditional covariance between

them, conditioned on K, is equal to ujjvi, where vi is the conditional variance of node i [12:534]. For

a given set of conditioning variables, in this case K, the conditional covariance matrix is invariant.

This mens that vi and uijvi, the conditional variance an I covariance, are unchanged as well.

Recall that uij is the path coefficient as defined in Chapter 3 and represented in Equation (101).

The author presents the following theorem and corollary, without further proof, that will be useful

in later calculations.

Theorem 1 If the conditional predecessors of a node are unchanged, then the path coefficient from

that node to a given successor node is constant for all possible orderings of successor nodes.

Corollary 1 For a given set of conditioning variables, the path coefficient from a given node to a

successor node is equivalent to the regression coefficient from the first to the second when the two

nodes are placed consecutively in an ordered sequence.

4.1.1 Exchanging a Node with a Predecessor. Consider now a single node in an influence

diagram, exchanged with its predecessor to make it less conditional. This continues until the node

is at the beginning of the ordered sequence, in unconditional form. If the node was originally the rth

node in the sequence, then r - 1 reversals are generally needed to move the node to the beginning.

By necessity, the variance of the node, expressed in unconditional form, must equal the rth term

on the diagonal of the covariance matrix that corresponds to the original influence diagram. In

matrix form, the rth diagonal term in the covariance matrix can be calculated by UTDU as

Err = vr + (ur-1,r)2 Vr-1 + (U-..2,r) 2 Vr-2+,..., (U2, ) 2 V2 + (Ui,r) 2 VI (142)
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Since all terms in Equation (142) are positive, the result must be positive. Furthermore, the

unconditional variance must always be great. - than the value of the conditional variance vr.

The influence diagram calculations to expces, t node in unconditional form must be equivalent

to the expression in Equation (142). To verify th.t the influence diagram operations yield the same

value, consider the general case of four nodes in a-i influence diagram, numbered sequentially,

corresponding to the U and D matrices as given in Equations (102) and (104). For the matrix

operations, E44 is calculated by:

= v + 2 2 2(13
E" '44 =-- V4 + V3 U3 4 + V2 U2 4 + VIU14 (143)

- V4 + v3 b24 + v2 (b24 + b23 b34)
2

+vj(b 14 + bj3 b3 4 + b12 (b24 + b23 b3 4)]2  (144)

Now assume that node 4 is being moved upwards to the unconditional position in the influence

diagram. The equations for this influence diagram operation were given in Chapter 2. These

equations result in new values for the variance and predecessor coefficients after one exchange as:

V4  = V4 + v3bM (145)

b24 = b24 + b23b34  (146)

bi4 = b14 -+ bl3 b34  (147)

It is worth noticing that the equations for the regression coefficient b'4 is equal to the value of

U2 4 calculated earlier. This is a demonstration of Corollary 1 that the path coefficient u24 is equal

to the regression coefficient b4 when node 4 immediately follows node 2 in the ordered sequence.

Also, the coefficient b14 is equal to the first two terms of the previously calculated u14 term and

b24 is equal to the terms in parenthesis in Equation (107).
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Another exchange upward results in

= + v2(b') (148)

b4 14 + b12b124  (149)

so that the new b" term is the same as the calculated u14. The last exchange moves the 4th node

to the top and the resulting variance is

/t It+ V, (bt)
V4  = + V (b)14  (150)

= V4 + v3b34 + v2(b24 + b23b34)2

+v11[b. 4 + bl3b3 4 + b12(b24 + b23b34 )] 2  (151)

When v4 is eventually moved to the upper left of the matrix and put into unconditional form,

its variance will equal the fourth diagonal term in the covariance matrix, that is the E44 term.

The expression for this variance, as calculated by the influence diagram algorithm, is identical to

the expression given in Equation (144), computed by straightforward matrix multiplication of the

original UTDU. The conclusion to be drawn is that the influence diagram algorithm for moving a

node upwards is identical to calculating the diagonal terms of the P matrix by multiplying UTDU.

The factored form of the matrix also demonstrates the concept of "nuisance" variables. In

the above example, if the values for nodes 1, 2, and 3, are not needed after they are conditioned on

node 4, then there is no need to save them. In the influence diagram, this means that the nuisance

nodes can be put at the end of an ordered sequence, and removed.

In the matrix operation, the new (primed) values would replace the old ones after every

exchange. The rows and columns for the "nuisance" variables would not be needed. As an example,
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if the D and U matrices are as before:

V1 0 0 0

0 V2 0 0D = (152)

0 0 V3 0

0 0 0 V4

1 0 0 0 1 b12 0 0 1 0 b13 0 1 0 0 b14

0 1 0 0 0 1 0 0 0 1 b23 0 0 1 0 b24
U= (153)

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 b34

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

or in terms of the path coefficients:

1 U 1 2 U13 U1 4

0 1 U23 U2 4U = (154)

0 0 1 U34

0 0 0 1

then, after the first exchange, only the first three rows and columns need be stored. In this case,

U' and D' become:

V1 0 0

D'= 0 v2  0 (155)

0 0 v,

1 0 0 1 b12 0 1 0 b'4

U= 0 ! 0 0 1 0 0 1 b24 (156)

00 J 0 0 1 0 0 1
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The fourth row and column of the matrices do not affect the unconditional variance of the third

term in the matrix. These extra rows and columns can be removed. After another exchange, the

matrices are two dimensional. After the last exchange, D.. = v4 , and U.. = 1. This demonstrates

that the matrix equivalent of removing a "nuisance" variable is the removal of the last row and

column of the U and D matrices, or equivalently, the covariance matrix P. The "nuisance" variable

corresponds to the last row and column, just as a "nuisance" variable in the influence diagram must

be moved to the end of the ordered sequence before it is removed.

4.1.2 Exchanging a Node with a Successor. For every node that moves up, another moves

down. The operation of moving a node downwards makes it "more" conditional in the sense that it

is conditioned on more variables. As it becomes more conditional, the conditional variance becomes

smaller. In the last example, these variables were discarded as "nuisance" variables. Sometimes

though the conditional variance is the desired value. Such was the case for the discrete-time filter

in which the conditional variance of the vector x(ti), conditioned on the measurement vector z(ti),

was the value being calculated.

There are two useful ways of remonstrating the effect of making a variable more conditional.

One is to move a node from an unconditional position to a conditional position where it has several

predecessors. Another way is to move several nodes down one step as would happen when another

node is moved upwards past them to become unconditional. Both processes will be demonstrated.

If four nodes represent an influence diagram, and tUe nodes are numbered sequentially in the

ordered sequence, then node 1 can be conditioned on all other nodes by exchanging it one at a

time with its successors. At each exchange, the new variance is recalculated in terms of the original

conditional variances. The process is shown in Figure 45.
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b14

1Original Diagram

b12 b23  b34

b24

2After one reversal

621 b13  b34

b24

2After two reversals
b/3  b3l 614

21 '1 4' 1 After three reversals

b/2 bf34  64l

Figure 45. Conditioning a Node on All Other Nodes
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The calculations for the variance of vi as it moves downward are:

V V2 + b?2v1  (157)

= VIV 2  (158)

Vb12V (159)

Moving node 1 down further requires an exchange of nodes 1 and 3. The equations for this next

exchange are:

V3= v3+b13v/ (160)

b - b23 + b21 b13  (161)

VI = 1V3 (162)
b13v

b31 = V(163)

b -21 b21-b 3bl (164)

Finally, node 1 is exchanged with node 4 so that all nodes are conditioned on node 1. The

resulting equations are:

4 v + (165)

b24 = b24 +b lb 14  (166)

b14 = b34 + b31 b14  (167)

V = V'V4 (168)
V4

= b14v1. (169)

b"' =b' b' -b4 (170)

b'31 = b31 - b34b 4i (171)
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If the resulting equation for v" is solved in terms of the original variables, the result is:

III VlV2V3V 4V1 vv 2v 4  (172)

or, if vi 0 0 for i=1,2,3,4, then v"' can be expressed as:

1 1 b 2 + b 13 + b1 (173)
V1  V1 V2 V3 V4

The matrix for the inverse covariance in factored form is (UTDU)- 1 or U-1D-IU - T where

-T implies the inverse of the transpose. For the example given, the matrix operations are:

1 -b 12  -b 13  -b14 1/v1  0 0 0 1 0 0 0

0 1 -b 2 3  -b 2 4  0 1/v 2  0 0 -12 1 0 0 (174)
0 0 1 -b34 0 0 1/v 3  0 -b, 3  -b23 1 0

0 0 0 1 0 0 0 l/v 4  -b 14 -b 24 -b 34  1

By multiplying these matrices, it can be shown that the first diagonal term of the resulting matrix is

equal to the inverse of the the previously calculated value for v". This process can be generalized to

show the conditional variance of a previously unconditional variable. If node 1 is to be conditioned

on all other nodes, and if no nodes are deterministic (conditional variance equais zero), then the

final conditional variance of v, has the form

__ 1
± + . +b121 + 2- + 12••.-3

V) V2 V3 V 4  V

Instead of v1 , assume the jth node is conditioned on all other nodes. Also assume node j is

already conditioned on nodes 1 through j - 1, .o it must be further conditioned on nodes j + 1

through n. If none of the nodes j through n are deterministic, then the conditional variance of v,
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is given by either

1±.+ 12 (175)
! + . + + g±_ ...b _V, V j!! Vj+2 Vj +3 V

or

1 _ 1 b~ b2  b2  b(71_1+ ,+__! ,+___ +_ + +..-(176)

Vj Vj+1 Vj+2 j+3 Vn

The form given in Equation (176) would be the expression for the conditional variance in the

discrete-time filter if, for example, the jth node of the j dimensional vector x(ti) were to be condi-

tioned on the (n-j) dimensional vector z(t,).

The form given in Equation (176) is important because it is thejth diagonal term of the inverse

covariance matrix. This demonstrates that the conditional variance of a random variable, when

conditioned on all other random variables in the vector, is equal to the inverse of the diagonal term

of the inverse covariance matrix. It also demonstrates the relationship between the conditioning

of a random variable as calculated by the influence diagram, and the factored form of the inverse

covariance matrix.

The second of the two processes is a different look at the same kind of operation. Assume

now that node 4 is to be put in unconditional form The remaining nodes will be conditioned on

node 4. The variances of these other nodes can be expressed in terms of the original variables.

V3 = V4 (177)
V4 +3b4V3

= 3V (178)
V4+ U3 4V3

v4 + b24 v3

- V2 V4 + 3 (180)

V4 + U34V3 + U 4 V2
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V4 + b34v3 + (b24 + b23b34)2v2
v4 + b304v3 + (b24 + b23b34)2v2 + [b14 + b13b3 4 + b12(b2 4 + b23b34)]V1 (

= vV+ U303-+ U24V2 (182)
V4 + 4 V3 + 2 4 V2 + UL 2 V1

The conditional variances represented by v', v', and v3 could occur in a discrete-time filter

when the three dimensional vector x(ti) is conditioned on the scalar measurement z(ti) represented

by node 4. These conditional variances are calculated by division, not subtraction. They are

expressed in terms of a fraction of the original variances. The numeric properties of this form will

be discussed in Chapter 5.

4.1.3 Matrix Representation of Node Reversal. The operation of exchanging nodes in a

covariance matrix P can itself be expressed in matrix form. The author offers this demonstration

of a matrix equivalent of the influence diagram operation of node reversal. Assume the inverse

factored matrix is P-1 = U-lD-U-T and let U - 1 = V = (I - B). The factored form of

the covariance matrix is V-TDV - 1. The exchange of rows and columns can be accomplished by

multiplying the covariance matrix, both before and after, by a transposition matrix of the form:

1 0

R = (183)
0 1

01
1 0

where R = R - 1.

The new covariance matrix is RPR. In this case, R exchanges the ith and jth row and column,

where j is the last row of the matrix, and i is the second to the last row. In general, it is possible

to exchange any ith and jth row and column, as long as i and j differ by one. The new matrix, in

factored form, is RV-DV-lR or (RV)-TD(RV)-I. Unfortunately, the parenthetical expression

RV is no longer a triangular matrix. It can be made triangular again by post-multiplying with a
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matrix X such that (RVX)-T(XTDX)(RVX) - l, There is an X matrix that retriangulrizes the

RVX term, and maintains a diagonal middle term. One such value of X and X- 1 that satisfies

these conditions is:

I 0

x =-(184)

0 T br-

I 0

X- 1 = (185)

o(vi1+b,,V. (V,+b ,u')

1 -bjy

After the m..trix operations are carried out, the result is (RVX)-T(XTDX)(RVX) - 1 ""

VI-TD'V'-1 where D' is diagonal and V' is upper triangular. This constitutes a rcordering of the

variables while still in factored form. By necessity, it must be equivalent to the factorization of the

permuted matrix RPR. The expressions for V' and D' are:

1 -b 12  -b 13  ... -(bj + b1ibiy) - {bli - (b1j +

1 -b 23  -(b 2y + b2sbii) - {b2i - (b2j +

1 *.. -(b 3 , + b3ibii) - {b3i - (b3i + b3 b ( 6  (1 6
VI' (186)

00

0
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V1

V2 0

V3DV (187)

"...

0 vj v3, +b v

The important details of these matrices are the operations in the ith and jth columns. These are

seen to be identical to the influence diagiam operations necessary for reversing the ith and jth

node.

4.1.4 Comparison with Kalman Filtering. The influence diagram is equivalent to a factored

form of the covariance matrix. One cycle of the influence diagram for the discrete-time filter can

be represented in two useful forms, as was shown in Figures (18) and (42). Each of these diagrams

represents a singular covariance matrix P, or its factored form UTDU. When the matrices are

correctly defined, the matrix operations in the previous section can be used to perform the influence

diagram opcrations. This section will present the matrices necessary for the influence diagram

representation of the discrete-time filter.

Assume that the discrete time filter is represented by the influence diagram in Figure 18.

Let the vector x(t: -1) be represented in influence diagram form as a diagonal matrix D. and

a strictly upper triangular matrix B. such that the covariances matrix for x(t,- 1) is given by

(I - B,)-TD,(I - B) - '. The vector wd(ti-1) has a covariance represented by a diagonal matrix

Qd(ti-1) and a linear input matrix Gd(ti- 1). The vector v(ti) has a covariance of matrix R(ti)

which is assumed to be diagonal. The case of R(t,) not being diagonal will be discussed later. With
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these variables defined, the diagonal matrix for the entire discrete-time filter influence diagram is

D. 0 0 0 0

1 0 Qd(ti-1) 0 0 0

Ddiagram = 0 0 0 0 0 (188)

0 0 0 R(ti) 0

0 0 0 0 0

The dimension of the square matrix represented by the 0 term in the middle of the diagonal is

the same as the dimension of D,. It corresponds to the deterministic function represented by

x(ti). The dimension of the square matrix represented by the last 0 is the number of terms in dhe

measurement vector. It corresponds to the deterministic function represented by z(ti).

The B matrix for the influence diagram can be constructed similarly. Using the linear relations

from the influence diagram, the matrix is

Bx 0 IT(ti,t,_,) 0 0

0 0 G(t,_ ) 0 0

Bdiagram = 0 0 0 0 HT(,) (189)

0 0 0 0 I

0 0 0 0 0

The dimension of each row and column is the same as the corresponding rows and columns of

Equation (188).

These matrices, combined with the matrix operations from the previous section, can be used

to calculate the influence diagram operations using matrix software tools. These matrix operations

will accomplish the following steps. First, eliminate the second group of rows and columns from

both matrices by moving them to the end. This is equivalent to eliminating the vector wd(t,-1).
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Then remove the first group of rows and columns in the same way, equivalent to removing the

vector x(ti-1). Remove the rows and columns corresponding to R(ti), leaving only the rows and

columns for x(ti) and z(ti). Now reverse the two so that the rows and columns for z(ti) precede

those of x(ti). Finally, use the resulting B matrix to update the states with the measurements,

and discard the first columns that correspond to z(ti). The diagonal and strictly upper triangular

matrix that remain are the influence diagram equivalent for the covariance matrix associated with

x(ti), after incorporating the measurements at time ti. These remaining matrices can be inserted

back into the matrices of Equations (188) and (189) as D. and B,, and the process starts over for

the next time interval.

For the case of Gd(ti..)Qd(ti-.)GT(t,_l) being represented in influence diagram form as in

Figure 42, there are some minor changes to the matrices of Equations (188) and (189). Instead of

Qd(ts-I), the appropriate diagonal term of Ddiagram is the diagonal matrix from the factored form

of Gd(t-l)Qd(ti-)G'(ti-j). The 0 in the second diagonal place of Bdiagram is replaced with the

B matrix from the factored form of Gd(ti_1)Qd(ti )G1(ti 1 ). The G T(t._.) term of Bdiagram

becomes the identity matrix. The description of the matrix operations remains unchanged.

If R(ti) is not diagonal, then it can be factored in influence diagram form. The diagonal

terms of the factorized matrix, called D, would replace the diagonal terms of R(ti). The zero

matrix in the second to the last diagonal position of Bdiayram would be replaced by B,, the upper

triangular matrix terms from the factorization of R(ti).

The descriptions in the preceding paragraphs for removing columns and rows are identical

to the operations described in Chapter 2 for implementing the influence diagram. The matrices

such as in Equations (188) and (189) demonstrate the correct setup for each set of operations.

Equations (185) and (187) are the matrix operations needed to accomplish the correct reversal.

and reductions.
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4.1.5 Comparison with U-D Filtering. The U-D factored form of the Kalman filter is a

st ible, efficient, method of calculating the means and covariances. The name refers to the factored

form of the covariance matrix, which is in the form of a unit upper triangular, diagonal, and a

transposed unit upper triangular matrix, or UDUT. If the covariance matrix is nonsingular, then

the factorization is unique. If D is itself factored into two identical matrices, then these matrices

take the form of a diagonal square root matrix S1/2 . Because it is diagonal, the transpose of S, / 2

is equal to itself. The factorization (USI/ 2 )(S1/2UT) is also unique and is equivalent to an upper

triangular Cholesky decomposition. The conventional Cholesky decomposition takes the form of

P = LLr', where the calculated matrix is lower triangular [13:pp. 133-143].

The influence diagram also uses a factored form of the covariance matrix, but uses UTDU 1

where the subscripts refer to a different U and D matrix for the influence diagram. It is apparent

1/2that this can also be factcred into lower triangular and upper triangular matrices by using S/ as

the square root of DI and S,/2 is its own transpose. This factorization, (S 1lU1)T(S /2Uj) is the

Cholesky decomposition of the covariance matrix [12:pp. 547-548].

Both the lower triangular Cholesky and the upper triangular Cholesky decompositions are

unique, as are the UDUT and UTDIUt factorizations. The author offers the following theorem as

a comparison between the influence diagram and the U-D factored forms of the covariance matrix.

Theorem 2 If P refers to a positive definite symmetric matrx with U-D factors of UDUT , and

P* refers the matriz P with all rows and columns in reverse order, then P" = U*D*U*T where

D* = Di and U* = UT.
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Proof. Let R be a square matrix of same order as U and D of the form:

0 0 ... 0 1

0 0 ... 1 0

( 1 ... 0 0

L10...00

Then P = RPR and R is its own inverse because RR I.

P" = R(UDU T)R (190)

P" = R[U(RR)D(RR)U T ]R (191)

P* = (RUR)(RDR)(RUT R) (192)

The factorization is unique, therefore

RUR = U*= (193)

RDR = D" = Di (194)

In other words, P is the covariance matrix for a state vector, and P" is the covariance matrix

for the state vector in reverse order. The U-D factored form of P will have the same U and D

matrices as the influence diagram form of P*, but in reverse order.

After the covariance matrix is factored, the U-D algorithm does not normally allow the

exchange of variable order. On the other hand, the influence diagram algorithm depends on the

exchange of two consecutive variables while the matrix is in factored form. The new influence

diagram corresponds to a factorization of a new covariance matrix that has a row and column pair
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reversed. For a given covariance matrix, this reversal of a pair of rows and columns is equivalent

to exchanging the corresponding random variables in the original vector.

Another insight comes from this analysis. For a given positive definite symmetric matrix,

there are only two triangular-diagonal factorizations. One factorization is UD 1UT and the other

is LD2LT where U is unit upper triangular, L is unit lower triangular, and both D, and D2 are

diagonal. The U-D filter uses the first factorization and the influence diagram uses the second.

The distinction between the two implementations is the influence diagram factorization starts at

the top left of the covariance matrix and proceeds downwards, while the U-D factorization starts

at the lower right and works upwards.

The influence diagram and the U-D filter have similar forms, and they have the same values

if one of them represents the covariance of a reversed order vector. But, the influence diagram

is further factored into U1 = UIU 2U3 ... U, The further factorization does not require more

storage but does add insight into the meaning of the variables. This form stores the regression

coefficients bij and uses them to calculate the path coefficients uij instead of storing the path

coefficients directly.

4.2 Chapter Summary

This chapter demonstrated several similarities between influence diagram calculations and

matrix operations. The calculations associated with making a node less conditional are identical

to the calculation of the diagonal terms of the matrix product UTDU. The calculations associated

with making a node more conditional are identical to the calculation of the inverse of the diagonal

terms of the matrix product U-ID- U-T. When two nodes in an influence diagram are exchanged,

there is a simple way of expressing, in matrix form, the combined operations of making one node

less conditional and one node more conditional. It was shown that the influence diagram operations

are equivalent to retriangularizing a matrix using another matrix X as given in Equation (184).
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This chapter also demonstrated a method for representing one complete cycle of a Kalman

filter in matrix form for influence diagram operations. This would be useful for implementing the

influence diagram algorithm on a computer without dedicated influence diagram software. Finally,

this chapter demonstrated the similarities between the U-D filter and the influence diagram. It was

proven that the influence diagram and U-D factorizations are equivalent in the same sense that the

lower triangular Cholesky and the upper triangular Oholesky decompositions are equivalent. In

this sense, they can be considered "mirror image" factorizations of the covariance matrix.
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V. Numericol Properties

5.1 Matrix Operations

Because the influence diagram is based on matrix operations, the stability and numerical

properties of the algorithm can be shown using matrix operations. The basis for such analysis are

the matrix operations U = (I -- B)- 1 and the factorization of the covarience matrix into the U

and D matrices such that P(ti) = UTDU. The terms of the U matrix can be computed by the

matrix inversion (I - B) - 1 and were given in Equation (101) as:

ul,r = bl,r + bi,r-(Ur.-,r) + bl,r-2(Ur-2,r) +..., bl,2(U2,r) (195)

The terms of the U matrix are the main source of error in the influence diagram. If ju,jj <

Ibij, then the uij term is calculated by subtracting terms of nearly equal size. This means there

will be a loss of significant digits.

One set of circumstances that may cause a cancellation of significant digits is when a s .:cessor

node is nearly independent of a .redecessor. If there are interceding nodes between the two, then the

regression coefficient from the predecessor to the successor may be much larger in magnitude than

the path coefficient. If the successor is made lesb conditional, and moved ahead of the interceding

nodes then, by Corollary 1, the regression coefficient will become the small arc coefficient. The

calculation will the require subtraction of two numbers of nearly equal size and may have large

relative error. Numerically, consider a regression coefficient b13 to be approximately equal to the

negative of the path product b12b23 . The path coefficient is calculated as u1 3 = b13 + bl 2 b23 . The

path coefficient u 13 will be much smaller in magnitude than the original value for b13 , and may

have large relative error. Some general rules for decreasing the likelihood of this type of error will

be discussed later in this chapter. However, the author knows of no consistent method for solving

this problem.

112



If P is an unconditional covariance matrix, then the diagonal terms of the matrix product

UTDU are the unconditional variances of the random variables. They can be computed using

either the matrix product or the influence diagram algorithm. The equation for calculating the

unconditional variances was given in Equation (142) and is repeated here:

Err = Vr + (Ur-i,r) 2 Vr-i + (Ur-2,r )2 Vr-2+, .. ., (U2,r) 2 V2 + (Ui,r) 2 V1 (196)

This equation shows the unconditional variance of the rth term in the matrix can be calculated

using the variances and path coefficients for less conditional terms, i.e. terms with subscripts less

than r.

In this equation, the calculated variance is the sum of positive products. There will be a

high numerical accuracy in computing this sum because there can be no cancellation of significant

digits, as occurs with the small difference of large numbers. Instead, the only source of numerical

difficulties occurs in the calculation of the u,j terms. However, cancellation of significant digits

in one of the uij terms may not affect the overall relative error in calculating the unconditiona!

variance unless the other terms being added together are relatively small as well.

The variance of a variable, conditioned on all other variables, was shown to be the inverse

of the diagonal terms of the inverse covariance matrix P-1. If any of the conditioning variables is

deterministic, i.e. has a variance of zero, then the variance of the conditioned variable is zero also.

If none of the conditioning variables is deterministic, then the variance of a variable, conditioned

on all other variables in the vector was given in Equation (176) as:

__ _ V_ b b2  b2  2

1 1 + - + ",j+_ +. ... (197)
V i V j+1 V+2 Vj+3 Vn

The implication of this form is that calculating the conditional variance is done with high

relative accuracy. There are no errors due to cancellation of significant digits as existed in the
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calculation of unconditional variances. One possible source of problem is when one of the successor

variances is very small. The inverse will be very large and will dominate the other addends in the

sum. If the corresponding numerator b11 value is also small, and was calculated with high relative

error because of a cancellation of significant digits, then this relative error will be passed on to the

calculation of the variance.

5.1.1 Stabihty of Calculations. Both increasing and decreasing the conditioning of a node

are numerically stable operations. In this sense, numeric stability is defined as the property that

the computed result of the algorithm is the same as the the exactly computed solution of a problem

that has its values slightly perturbed from the true values [15].

In order to show stability, assume the the symbol fl( represents the floating point equivalent

of the operation in the parenthesis. Wilkinson [15] shows that fl(AB)=AB+E where A and B

are matrices compatible for multiplication and E is an error matrix. Similarly fl(VD-lVT) =

VD-1VT + E. If we define the matrix E to be

E = (VD-1E +Ed V T + ED-lVT)
-11V TT - + T -1E

+(VEaV ET + EVElVT + EJD 1 EV) + (Ev~El Ev) (198)

then

fl(VD-1VT) = VD- 1 V T +E (199)

= (V + Ev)(D-' + E-)(V + E) (200)

where Ev and Ed, are error matrices associated with the rounding errors in V and D-1 respectively.

The "I" in the subscript of Ed, refers to the first of two error matrices associated with the diagonal

matrix D. The error matrix Edi is a diagonal matrix with elements of the same magnitude as

potential rounding errors in D. This is because the error in computing the inverse of the diagonal
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terms is on the same order as the original rounding errors in the terms themselves [15]. The elements

of the error matrix E, are of the same relative magnitude as the potential rounding errors in the

elements of V [16:232].

If V is equal to I - B, then the matrix product VD-1VT is the inverse of the covariance

matrix as shown in Chapter 3. By Equation (200), it can be seen that all error matrices have

elements on the same order of magnitude as the rounding errors in the initial values of B and D.

Recall that the diagonal terms of the inverse covariance matrix are the inverse of the variances,

conditioned on all other variables, as calculated by the influence diagram. It can then be concluded

that the errors in the influence diagram algorithm for calculating the conditional covariance terms

are of the same relative magnitude as the rounding errors in the original variances and regression

coefficients.

Now assume that P = UTDU is the covariance matrix of an unconditional vector. The

algorithm for calculating the unconditional variances, represented by the diagonal terms of P, is

equivalent to the influence diagram operation of making a node unconditional. Using logic similar

to before, and using UTDU = V-TDV-:

fl(UTDU) = UT DU + E (201)

where

E - (UTDE, + uTEd2 U + ETDU) + (UTEd2EU + ETd 2U + E'DE,) + (E.'EE2Eu) (202)

and therefore

fl(UTDU) = UTDU + E (203)

= (U + Eu)T(D + Ed2)(U + Eu) (204)
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The error matrix Ed2 is associated with rounding errors in D. It is diagonal and has elements

of the same order of magnitude as the rounding error in the elements of D. Similarly, E. is the

error associated with the matrix U. However, the elements of E. are not necessarily of the same

magnitude as the rounding errors in the original values of D and B. Instead, V = (I - B) used the

original regression coefficients and U was calculated as the inverse of V. It can be shown however

that if V- 1 = U, then

(V 1) = (V + E) 1  (205)

= (U + EI) (206)

so the errors can still be related to rounding errors in the original values (15]. There is an upper

bound on the error, E,, associated with computing the inverse of a matrix V. However, as will

be shown in the next section, this upper bound is the product of Ev, the error matrix associated

with the original matrix V, and a positive scalar greater than unity [15:105]. The result is that the

errors in calculating the inverse of a matrix are almost invariably larger than the rounding errors

in the original matrix.

Using these demonstrations, the algorithms for calculating the conditional and the uncondi-

tional variances are seen to be stable. Both are equivalent to a simple matrix multiply algorithm.

Such an algorithm is numerically stable, and will be relatively accurate as long as no severe cancel-

lation of significant digits occurs [15]. Because these matrix multiplications are in quadratic form,

only positive values are added and no cancellations can occur.

The relative accuracy of the algorithm for calculating conditional variances will be better than

the algorithm for computing unconditional variances. This is because the algorithm for calculating

the conditional variances has errors of the same magnitude as the rounding errors in the original

values of variances and regression coefficients. The algorithm for calculating unconditional variances

has potentially larger errors, equivalent to the errors associated with matrix inversion.
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5.2 Error Analysis

The errors in calculating the variance can be compared with other operations that have known

error bounds. In the first case above, the variance decreased as the node became more conditional.,

The process was equivalent to forming the inverse covariance matrix.

It has already been shown that, if D is factored into the diagonal square roots D = STS and

P = (UTST)(SU), then the UTDU factorization is equivalent to the lower triangular Cholesky

decomposition of the covariance matrix P. Similarly, the factorization VD-IVT - p- 1 is the

upper triangular Cholesky factorization of the inverse covariance matrix. The factorization of the

inverse is more important now because it yields the values of the regression coefficients directly.

Wilkinson shows the Cholesky factorization is the most accurate known factorization for a

symmetric, positive definite matrix [16:244]. If the matrices L and LT represent the Cholesky

decomposition matrices of the matrix P-', then the error bounds can be given as

LLT = P-1+F

where F is an error matrix. Under the assumption that inner products are accumulated in double

precision and then rounded to single precision, Wilkinson gives error bounds for the elements of

the F matrix as

1,,l .12' (r > s)

IfrsI _ ItlorlI 2 - (r < s) (207)

rr (r = s)

where t is the number of significant binary digits used by the computer [16:232].

When the influence diagram is used to calculate the equivalent of VD-1VT = P-1, there

will be additional (small) errors due to the middle term. Also, there are no inner products to store

in double precision as can be done with the matrix product. Instead, the variances in the influence
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diagram are calculated for each node exchange and stored in single precision. Because of these

differences, the possible errors are larger than given by Wilkinson. One unrestrictive error bound

replaces t by t/2. It is the equivalent of assuming that t digits represent double precision and

t/2 digits represent single precision. These assumptions are very pessimistic and will overestimate

the error bound. Nevertheless, by simply substituting t for t/2, and using the influence diagram

notation, the error bounds become

VD-VT = P- + F (208)

Ilbijlvil 
2- 1/ 2 (i > 5

, l< Ib /v 2-t/2 (i<j) (209)

1v2 /2 (i = j)I

The error bounds for the factored form UTDU are not as small. The matrix U is formed by

the equivalent of taking the inverse U = V - 1 = (I - B) - 1 . The errors ir, the V matrix are of the

same magnitude as the rounding errors due to floating point arithmetic. Using the notation and

values a shown by Wilkinson, the errors in the matrix U = V- 1 can be bounded as follows. Let

1111 represent any consistent matrix norm except the 2-norm. Also, if t is the number of significant

binary digits in the computer, then let t1 = t - 0.08406, where ti accounts for higher order error

terms. Then, for an n-dimensioned triangular matrix V[15:105]:

IIV-1 - U11 < n2- "IIIIIV I II (210)
IIV-Ij - 1 - n2-hIlVll JIV-111

This error bound is usually very pessimistic also. The product of the terms IVII IIV-'II is

also called the condition number of the matrix with respect to inversion. Wilkinson shows that it

is possible for triangular matrices to have very large condition numbers, yet have very small errors
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in calculating the inverse. In general, the inverse of a triangular matrix has an error such that:

llX - < f(n)2-'lIV-'Il (211)

where f(n) is a simple function of the dimension n [15:106].

Strictly cpeaking, the maximum possible error in computing the inverse is given in Equation

(210). However, it is more likely that the errors will be much smaller, as given in Equation (211).

In spite of these error bounds, it is still possible for some elements of the inverse of a diagonal

matrix to have a high relative error. This is the case in which severe cancellation takes place

during the inversion. Cancellation of significant digits in the inverse of the V matrix is the same

as the cancellation of significant digits which occurs when a path coefficient U is relatively small

in magnitude compared to the regression coefficients used to calculate it.

5.3 Numeric Examples

The following examples show advantages of the influence diagram and some of the problems

with numeric deterioration in both the U-D factored form of the Kalman filter, and in the influence

diagram. The first example is an application of the influence diagram to a scalar form of the

Kalman filter update. The second example is the influence diagram solution of a problem proposed

by Bierman [3:97]. It demonstrates some of the conditions for error in the influence diagram. This

example also demonstrates one of the features of the influence diagram; it shows how a change in

the order of operations in the influence diagram may avoid the numeric error. The third example

shows how numeric errors can occur in the U-D filter.

5.3.1 Scalar Update Example. The first example is a demonstration that the influence dia-

gram is equivalent to the Kalman filter for the case of scalar variables. To make the demonstration

simpler, let x and z be two zero-mean, jointly Gaussian random variables. The terms i- and i-

119



are defined as in the Kalman filter example of Chapter 2, and i- = 2- = 0. These vectors have

variances P- and R respectively. The minus superscript indicates that these variables are the es-

timates prior to the measurement updat.. The Kalman filter calculates the conditional mean and

variance of x given ( as the realization of z. The update equations for these scalar variables yields

K = P-H (212)
P-H 2 +R

P+ = P--KHP- (213)

i+ = i- +K [(- Hi-]

= I<( (214)

The influence diagram for the same conditions, and the operations for the update are shown

in Figure 46. It is a pair of nodes labeled x and z with variances P+ and R respectively. The arrow

goes from x to z and has a regression coefficient of H. The variance R is seen to be the conditional

variance of z given x. The reversal of this arrow by Bayes' rule yields the unconditional variance of

z, the regression coefficient of x on z called K, and the conditional variance of x given z called P+.

A = P-H 2 + R (215)

p+ = P-R = P-R(26
A P-H2 + R (216)

P-H P-H
K = A P-H 2 +R (21)

The scalar update of the state estimate is

-+ = F+K[4-2]

K /(4 (218)
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(0,P-) (0,A)

H K

(0, R) (0, P+)
Before Update After Update

Figure 46. Scalar Update of x by z

It is apparent that these algorithms both yield the same Kalman gain K, conditional mean

i+, and conditional variance P+. The Kalman gain is the coefficient on the arrow z to x. It can

be shown that the value for P+ is the same by using the Kalman filter form and converting it as:

P+ = P- -KHP- (219)

+ P ( P-H R)H P - (220)p+ = p-pH2 + R

p+ = (P-H)2 + P-R- (P-H)2  (221)
P-H2+ R

P+ = P-R (222)P-H 2 + R

In the matrix form of the Kalman filter, the simplifications given above are not permitted. In

the scalar form however, the conditional variance is calculated using division, not subtraction. This

form is numerically superior as R goes to zero. The influence diagram calculates the conditional

variance of a random variable using the numerically superior scalar operation. It calculates the

conditional variance of a random vector as the conditional variances of a series of scalar random

variables, each using the numerically superior scalar equation.
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5.3.2 Bierman's Example. Bierman proposed a problem that was known to cause numeric

deterioration in the Kalman filter. Assume the initial estimates of x, and x2 are zero and that

P = CF2 I where or = 1/c is large. Assume also that c is small enough that, due to rounding, I+c 0 1

but 1 + c2 = 1. There are two observations for updating the mean and variance. The model for the

observations is:
[z][1 c][zi]v;]=X + (223)

Z2 X 2 V2

where t = I. Bierman presented the results for the conventional Kalman filter using scalar updates,

the U-D factorization method, the Potter covariance square root method, and the stabilized Kalman

filter. The exact and rounded values of the U-D factorization method will be included here for

comparison.

Figure 47 shows the influence diagram implementation of this example. The labels on the

diagram are the rounded values, with the exact values shown in a table on the diagram itself. In

Figure 47, the exact values and the rounded values are the same.

The objective of the influence diagram operations will be to move the z1 , z2 vector to the

beginning of the ordered seqlence. One way is to move z, to the beginning, then move z2 next

to it. Using this process, the first operation will be to reverse the arrow from X2 to z1. Figure 48

shows the results of this reversal, where again, the rounded values are the same as the exact. There

is a potential problem in this diagram because the path coefficient from x1 to X2 is still zero, but

it is computed with regression coefficients that have large relative differences in magnitude. There

are no errors in rounding yet, but they are imminent.

The second operation will be to reverse the arrow from x, to zI so that zi will be unconditional

as shown in Figure 49. The rounding errors have caused cancellation of all significant digits in the

path coefficient from zi to X2. It is now incorrectly calculated as 1/2e+ (1)(-1/2f) = 0. The true

value should be 1/2c + (+ ' )(-1/2c), a small number calculated by the difference of two large
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~2 Zj t
2  /2  1

QUANTITY EXACT VALUE

X1 1/c,
X2 1c
z1
Z2 1

bzl~z20
b.Tj~zj1
bxl~z21
bx2,zl

bx2,z1
bzl,z2  0

Figure 47. Influence Diagram Formulation of Bierman's Example
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1/2

X1 1 /2 2 2

QUANTITY EXACT VALUE

4 2

22

xl,x2 -1/2c
Vi
xl,zl 1

bxl,z2  I
bzl 1x2  1/2c

bx2,z21
bzl~z20

Figure 48. Influence Diagram After Exchanging Nodes X2 and z1
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Z11 1
1 

2  Z'

QUANTITY EXACT VALUE

S2/(2C 2 + 1)
X2 1/2 2

Z4 2+1/c2

Z2 1

xb'I,x2 -1/2c
bZ1, l 1/(2C2 + 1)
bxl,1 2  I
bzl,z2 1/2c
42,x2 1

bzl,z2 0

Figure 49. Influence Diagram After Exchanging Nodes zx and z,

numbers. This error will be carried forward to all further operations and will eventually cause the

Kalman gain to be calculated in error.

The third operation will be to reverse the arrow from X2 to z2 , while the final operation will

be to reverse the arrow from xj to z2. These operations are shown in Figure F'5 and Figure 51

respectively.

The path coefficients from the vector z to the vector x are equivalent to a Kalman gain

matrix. The exact values of these path coefficients are essentially the same as the Kalman gains

computed by Bierman, with the exception of uzl,z2. The influence diagram incorrectly calculates

this number as zero. These values are shown in Table 7.

This example shows the types of rounding errors that can occur in the influence diagram.

Specifically, the error occurred because of cancellation of all significant digits in the computation
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1/2c -1

1/C2  2 1 1/c1/2c' 1

QUANTITY EXACT VALUE

1l 2/(2C2 + 1)
2 1/(2f2 + 1)
1' 2+1/c2

2 1 + 1/2E2

blx2 -(c + 1)/(2c2 + 1)

bzl,zl 1/(2C2 + 1)
l1 I- 1/2e

b' e/(2W2 + 1)
b', 1/(2c2 + 1)

62l,22 1/2c

Figure 50. Influence Diagram After Exchanging Nodes X2 and z2
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1+c 1

1/02  (1 - 2c)/C2  1/(1 - 2c) 1

QUANTITY EXACT VALUE

xi (2C 2 + 1)/(1 - 2c+4 2 +2 4 )

X2 1/(2C2 +1)

S2 + 1/2

z2 (1 - 2c + 4 + 2  + 2c4)

xlx2 -(e + 1)/(2 2 + 1)
(l,2 - c + 1)/(1 - 2e + 4c2 + 2c4)

bz2,x1 (2W2  c)/(1 - 2c + 4C2 + 2C4)
bzl,x2 c/(2c 2 + 1)

bz2,x2 1/(2C2 + 1)

bzl,2( + 1)/(2C2 + 1)

Figure 51. Influence Diagram After Exchanging Nodes xj and z2
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Table 7. Comparison of Computed Path Coefficients (Kalman Gains)
Quantity Exact Value U-D Influence Diagram
UZ1,X1 1/(1 + 2 2 ) 1 1
uzl,,=2 c/(1 + 2 C2)  C 0

Uz2, 1 (2f2 - C)/(1 - 2c + 4C2 + 2C4 ) -C -f
u.2,x2 (I - c)/(1 - 2c + 4J" +4 W )  (I - c)/(l - 2c) s t 1 + c + f

of one of the regression coefficients. It also shows that an update using z, may be inaccurate, but

an update at z 2 may be large enough to cause the relative error in X2 to be small.

There are actually two equations in the influence diagram algorithm that can cause cancella-

tion of significant digits. One is the equation b' = bkj + bkibij, used for calculating the regression

coefficient from predecessor nodes to the node being made less conditional. The other equation

is bki = bki - bkibij, used for calculating the regression coefficient from predecessor nodes to the

node being made more conditional. Errors caused by the first equation were shown in the previous

example. The second equation can result in large relative error as well, but its overall effect will

be less. This is because the new regression coefficient, no matter how inaccurate, is only one of

at least two (probably more) regression coefficients leading to that node as it becomes co.iditioned

on more of the other nodes. The effect of these other predecessor coefficients tend to reduce the

relative effect of the coefficient in error.

Although this example demonstrates rounding errors in the influence diagram, it also shows

the capability of the influence diagram to avoid such problems. If the order of node reversal

is changed, then the problem of canceling significant digits during arrow reversal is minimized.

However, to the author's knowledge, there are no guidelines as to the "best" order for an influence

diagram for avoiding numeric difficulties.

The original order of the nodes xl, X2, and zj is shown in Figure 52 along with an -r.,zeinative

ordering If the second ordering is used, the problem encountcrcd in the previous example does

not occur. Instead of proceeding through the entire example again, Figure 53 shows the results

after exchanging to the point that node z"' is unconditional. Again, the diagram uses rounded
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1

X2 Zi

C 2  1/C 2  1

Figure 52. Two Different Orderings of the First Three Nodes in Bierman's Example

values but the exact values are included for comparison. The rounded value of the path coefficient

from zj' to x' is exactly the same as the U-D filter. The rest of the calculations for making z2

unconditional are not shown here because the error in the earlier calculation was the cause of the

problems at the end. There are no more significant rounding errors in the rest of the problem.

The important conclusion is that, if significant cancellation of significant digits occurs, it may be

possible to reorder the sequence of node reversals and improve the numeric results.

1

QUANTITY EXACT VALUE

I 1/(C2 + 1)
1/(C2 +2C4)

4i (1 + 2e2 )/e2

bzl,x2 c/(1 + 2C2 )
b'l2,xl -C/(1 + C2 )
bzlzl 1/(C2 + 1)

Figure 53. Improved Numerical Characteristics with Different Node Order in Bierman's Example
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It may also be possible to choose an order for the vector x during problem setup that is

optimum for numeric results. Although possible, this is not yet a satisfactory approach either.

The numeric properties of the influence diagram are not well understood. Except for this research

paper, there is little insight into what circumstances yield poor numeric results. This is one of the

key reasons that further research is needed on the numeric properties of the influence diagram. The

need for more research is reflected in the recommendations at the end of this pape.

5.3.3 Potental Errors in the U-D Filter. The U-D factored form of the filter can also have

cancellation of significant digits to the point where all remaining significant digits are in error. One

set of circumstances that causes such cancellation of digits is when the off-diagonal terms of the

U matrix are reduced by a measurement update. The algorithm for computing the off-diagonal

terms of the U matrix requires subtraction just as the influence diagram algorithm for recomputing

regression coefficients from predecessor nodes.

For example, modify Bierman's example in the previous subsection so that the measurement

model is

X + V(224)

Z2 1 0 X2 V2

This measurement matrix creates the circumstances described earlier for cancellation of significant

digits in the U-D filter. The scalar update with the first row of H results in the (1,2) term of the

U matrix to be -1/2c, a very large term. It is normal for the off-diagonal terms of the U matrix

to be nonzero, but in this example, the situation was created purposefully.

When the update is made using the second row of H, the off-diagonal term of U decreases. In

this case, the subtraction results in the cancellation of all significant digits, and the new U1 2 term

is incorrectly calculated as zero. The calculations just described for thc U-D filter are as follows.
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Let the initial conditions be:

r2 o 1 0
D : U = (225)

0 0-2 0 1

For the first scalar update, use H = [c 1].

f -" UTHT, f, = C, f2 1

V= 1/f, V2 11C 2

ao= R= I

for k=1
a, = ao + fjvj = 2

D 1 = D-lao/a1 = 1/2C2

bi = 1/c

for k=2, j=1
a2 = a, + f2V2 = 2 + 1/ 2  1/f 2

D+ = D- ai/a 2 = 2

b2= v2- 1/C
2

P2 = -f2/aj = -1/2
Uj+ = UT + bIp2 = -1/2c
bi = bI + U1 v2 = 1/C

Repeat for the next scalar update, use H = [1 0].

f - UT HT, fl = 1, f2 = -1/2c
v= 1/2C2 , v2 = -1/c
ao= R = 1

for k=1
al = ao + fiv, = 1 + 1/2c2 ; 1/2c2

D+ = D-ao/a, = 1
bi = 1/22

for k=2, j=l
a2 = a, + f2v 2 = 1/2c2 + 1/2C2 = 1/C2
D+ = D-a/a2 =

b2 = V2 = -1/C

P2 = -f2/al = c
U+ = U + bp2 = -1/2c+ 1/2= 0
bI = bI + UT2 v2 = 1/2c2 + 1/2C2 = 1/C2
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In this example, the U+ term is incorrectly calculated as zero. The cancellation of significant

digits is exactly the same kind of error demonstrated in the previous example using the influence

diagram. Since both the influence diagram and the U-D filter implementations are factored forms

of the covariance matrix, it is reasonable to expect the errors to be similar.

5.3.4 Numeric Analysis Generalizations. Some generalizations can be made about some of

the situations that cause numeric problems in both the U-D filter and the influence diagram. These

generalizations are based on simple examples such as demonstrated earlier, and on a very limited

number of experiments, using commercially available computer software. For both algorithms,

these generalizations do not cover all of the possible conditions for numeric errors.

In an influence diagram, if only one state variable is affected by a measurement (H has only

one nonzero element in a row), then the best numeric results occur when that state variable is the

first one. Changing the unconditional variance of the first node in the ordered sequence is sufficient

to account for the decreased variance due to the update. No other calculations are necessary, and

there is less likelihood of numerical errors.

In matrix terms, let H be a row vector with the first element nonzero, and all other elements

zero. Let this H matrix represent the measurement model for a Kalman filter update. The UTDU

factorization of the covariance matrix and the updated version of that covariance matrix will differ

in only the first term of the diagonal matrix. There will be no change in the U matrix and there

will be low relative error in computing the updated covariance. Therefore, a good way to avoid

cancellation of significant digits during update is to order the variables in the state estimate such

that the updated variables are first.

By analogy, the U-D filter has the opposite problem. When the first variable is updated, as

was done in the modified version of Bierman's example, the U matrix terms were significantly in

error. If the ordering of the updated variables were reversed such that H = [0 1], then no change

would have occurred to the U matrix. To minimize cancellation of significant digits during update
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in the U-D factored form of the filter, the variables in the state estimate should be ordered such

that the updated variables are last.

5.4 Chapter Conclusions

This chapter used the arithmetic properties of the influence diagram and their relationship

with matrix operations to analyze the numeric properties of the influence diagram implementation

of the discrete-time filter. It was shown that the influence diagram computes the conditional

covariance of a random vector as a series of scalar operations. This resulted in better numeric

properties than the Kalman filter conditional covariance matrix equation. It was also shown that

the influence diagram uses a stable algorithm to reverse the node order and calculate conditional

variances.

It is difficult to put a strict bound on the errors that might be caused by the influence diagram

algorithm. Even though the factored forms of the matrices may have bounded errors, there is no

guarantee that all elements of the matrix will have a bounded relative error. However, because of

the triangular form of the matrices, the errors will usually be small.

Finally, examples were purposefully constructed that showed the worst case errors that might

occur in both the U-D filter and the influence diagram discrete-time filter. It was shown that the

conditions for error in both filter implementations are similar. Even though experimental evidence

is limited, the initial indications are that the U-D filter and the influence diagram have almost

identical error properties.
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V. Summary

6.1 Conclusions

The purpose of this research was to evaluate the influence diagram as an alternative method

for the discrete-time filter. Kenley's doctoral dissertation [6] laid the groundwork by proving

the influence diagram could be used for jointly Gaussian random variables. He also proved the

basic matrix relationships and demonstrated the influence diagram for discrete-time filtering. This

research built on Kenley's original work. Some of the more important results from this thesis are

summarized here.

The influence diagram implements a factored form of the Kalman filter just as does the U-

D filter. These two implementations are essentially mirror images. One is related to the lower

triangular version of the Cholesky decomposition, and the other is related to the upper triangular

version. Because of this similarity, it could be expected that the efficiency and numerical properties

of the two algorithms are very similar.

The influence diagram implementation was shown to have some advantages over the U-D

filter. Specifically, it can be more efficient in terms of computational loading. It also lends itself to

parallel processing architectures with a resulting reduction in processing time.

Based on theory and limited experimentation, the influence diagram probably has numeric

properties equivalent to those of the U-D filter. It appears that there are conditions under which

either one may be better than the other, but it is unlikely that either is inherently better or worse

than the other. The one advantage of the influence diagram is that almost any numeric error can

be traced to one equation.

Perhaps the most important advantage is intangible. The influence diagram is a graphic

tool that gives the user tremendous insight into the meaning of the numerical operations. The

calculations arm much easier to understand than the comparable calculations for the U-D filter.
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This is because the numeric values have physical meaning as conditional variances and regression

coefficients.

6.2 Other Ipplications

This research only described the characteristics of the influence diagram when applied to

discret.-time filtering. There are potential uses in fault detection and hypothesis testing, in areas

where the inverse covariance (information) matrix is better suited, in optimal smoothing, optimal

control, and parameter estimation. Furthermore, the discrete probability version of the influence

diagram can be used for probabilistic analysis of Markov processes.

6.2.1 Fault Detection/Hypothes:s Testing. Assume that measurements are in the form of

scalar updates as discussed earlier in this thesis. As each node of z(ti) is moved to the beginning

of the ordered sequence, the remaining nodes of z(ti) are conditioned on it. As seen previously,

the variance of a conditioned node is smaller than the unconditional variance of the same node.

It is this smaller variance which is useful for failure detection. This method is the similar to the

Kalman filter approach which uses H(ti)P(tj)H T (t,) + R(ti) as the predicted variance matrix of

the variables of z(t,) [7:230]. The influence diagram incorporates each scalar update to make the

variance smaller on succeeding measurements.

This property has potential use in hypothesis testing and fault detection. It would be best to

incorporate the first measurements from sensors that are reliable, or that are measuring parameters

which are not part of the hypothesis. The later measurements would come from sensors that are

more likely to fail, or that are measuring parameters that are part of a hypothesis. In both cases,

the tighter bounds of the conditional variance gives later measurements more discriminating power.

6.2.2 Inverse Covariance. The influence diagram is based on determining the conditional

mean and variance of Gaussian random variables. It was shown earlier that this conditional variance
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has a direct correspondence to the inverse covariance matrix. Instead of using the conditional

variance to describe each variable, the "information level", taken to be the inverse of the variance,

could be used (7:pp. 238-241]. The influence diagram algorithm would be modified to use the

inverse of the variance. The most conditional node in the influence diagram (the last one) would

be considered as having the most information from predecessors. The information level of this last

node would be identical to the corresponding diagonal term of the inverse covariance matrix.

One application of such an approach is optimal smoothing. The influence diagram could be

used to determine the optimal estimate based on all previous measurements. The inverse covariance

form could be used to incorporate information from later measurements. For the influence diagram,

this becomes nothing more than reversing all arrows from later measurements to point to the desired

estimate. The desired state estimate then becomes conditioned on the later measurements. The

combination of the two becomes the optimal estimate of the states based on all measurements, both

previous and later.

6.2.3 Optimal Control. The influence diagram came from the field of decision analysis. The

Gaussian influence diagram also allowed decisions based on linear, quadratic cost functions of

appropriate variables. This aspect of the influence diagram was described in detail in Kenley's

original work, but has not been addressed in this thesis. It is obvious that decisions based on linear

system models and quadratic costs on jointly Gaussian random variables is equivalent to LQG

control. It remains to be seen whether the influence diagram offers efficient implementation of such

control inputs.

Another approach to optimal control relies on the dual nature of the optimal full-state feed-

back controller and the Kalman filter. Because the influence diagram implements a factored form of

the Kalman filter, it could also be used to implement a factored form of an LQG optimal controller.
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6.2.4 Parameter Estimation. Throughout this thesis, the coefficients on the arrows between

nodes have been called regression coefficients. In the Kalman filter, it is assumed that these

coefficients are known elements of either the state transition matrix or the measurement matrix.

As such, these regression coefficients are not random variables.

In practice, it may be true that one or more of these coefficients is unknown or uncertain.

Under linear system model assumptions, using known inputs and measured outputs, the value

of such unknown or uncertain parameters may be estimated. If such analysis uses conventional

least squares techniques, then determining thc ,arameters is identical to determining regression

coefficients. Such insights would be useful in system identification.

6.2.5 Dtscrete Probability Applcations. In the Gaussian random variable influence diagram,

it was the Markov nature of the random variable that permitted a complete description of the

density function at a given time, based on the density function at a previous time. The same

is true of a Markov process with discrete probability distributions. If the nodes of the discrete-

time filter described in this thesis are replaced with discrete-time, discrete-probability-distribution

random variables, then they become the description of a Markov process. Observations of such a

process can be probabilistic as well. Although the mathematics are not as easy as for the simple

Gaussian case, such an approach would be a Bayesian method of estimating the states of a Markov

process, based on uncertain observations.

6.8 Recommendations

There are several areas left unexplored in this research. Probably the most useful research

would be a definitive study of the conditions for best and worst numeric performance. Such a study

would probably require both implementations running on one computer. The computer should also

be capable of varying the number of significant bits used internally for storage and calculations.
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Another useful study would be an attempt to decrease the numeric errors of the influence

diagram. The type of errors that occur in the influence diagram are similar to the type of errors

that occur in the U-D filter. However, as shown earlier, the order of the operations may affect the

accuracy of the influence diagram operations. An example of a way to minimize errors is to identify

them as they ocf-ur. In a digital computer, this could be done by monitoring the two equations

responsible for cancellation of significant digits. If either of them results in a significant decrease

in value (e.g. Ib'il _ Ibkj/1000I), then the current calculations would be halted, and the algorithm

would proceed using a different order for further reversals. Such a computer program would also

need to identify those situations where the regression coefficient is unavoidably small, or where it

may be intentionally zero.

It may be useful to analyze the matrix operations for the influence diagram in more detail. It

may be that rows and columns of the factored covariance matrix may be reordered more efficiently

than the "two at a time" method of the influence diagram. If that were that case, then whole

blocks of rows could be reordered. Such an operation would be much more efficient than the

current method.

As mentioned earlier, there is a relationship between decision and control theory. The in-

fluence diagram can be used to make decisions, based on jointly Gaussian random variables and

linear system models. These conditions are also the the assumptions needed for LQG control. The

two methods should be equivalent. Even though this seems reasonable, this equivalence I as not

yet been proven. It would be very useful to compare the influence diagram and LQG control.

Such a comparison would need to prove the relationship of the two methods, and to evaluate their

efficiency and numerical properties.
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Appendix A. Appendix A: Opi, rations Count

This appendix is an explanation of the method used to calculate the number of operations

required to implement the influence diagram algorithm for discrete time filtering. Assume an

influence diagram of the form of Figure 42 in Chapter 3. The new regression coefficients between

x(ti-1) and x(ti) must be modified using

4 q = (I- Bq)T(ti,ti,) (226)

where B is the influence diagram B matrix corresponding to fe influence uiagram factorization

of Gd(ti-l)Qd(ti-)G (t_-1) and I is the identity matrix of appropriate dimension. The term

(I - B,) requires no operations because the diagonal terms of Bq are zero.

Because the matrix (I - B9)T is a lower triangular unit matrix, only the nonzero additions

and the non-unity multiplications need to be counted. For n-dimensional matrices, the number of

multiplications and additions is:

n 2 n(n 2 ) (227)
r=.0

After computing the new regression coefficients of §,, the influence diagram of Figure 43 can be

drawn.

Now determine the number of operations needed to remove a node. Assume a node in the

middle of an ordered sequence is to be moved to the end of the ordered sequence and removed. If i

is the predecessor node and j is the successor node, then the equation for calculating the variance

of the new predecessor after reversal is:

V = = vj + b. V i  (228)

This equation requires 3 multiplications and 1 addition.
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Assume that both nodes have the set of predecessors K, where the elements of K are des-

ignated k. The regression coefficients from each node k to the new predecessor are calculated

using:

ki = bkj + bkibj (229)

This equation requires 1 multiplication and 1 addition.

For the new successor, the equation for calculating the new variance is modified slightly to

increase the efficiency. The new successor's variance is calculated using:

Vra~to = -- (230)

= vjV,.Au 0  (231)

The new regression coefficient between the two nodes is calculated by:

bii = bijVratio (232)

These equations require 1 division and 2 multiplications.

For the same set of predecessors K, the equation for modifying the regression coefficients to

the new successor is:

bi = bk, - bl (233)

This equation requires 1 multiplication and 1 addition.

When a node is moved to the end of an ordered sequence and removed, then it must be

reversed with each successor node in the sequence. After the last reversal, the subject node becomes
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a nuisance node and is removed from the diagram. There is no need to calculate its new conditional

variance or the values of the regression coefficients for it. This implies that, during the last reversal,

only Equation (228) and Equation (229) must be calculated.

Assume now that the node to be removed has n successors and m pred essors. Removal of

the node requires n-1 reversals using Equations (228) through (233), and one removal using only

Equation (228) and Equation (229).

In order to make the calculations simpler, calculate the number of operations due to Equation

(229) and Equation(233) later. The number of operations to to remove one node by making n-1

reversals and one removal, using the remaining equations, is:

multiplications: 5n - 2

additions: n

divisions: n - 1

Now calculate the number of operations due to Equation (233). The node being removed and

the node with which it is exchanged both have the same number of predecessors. At first, there are

m predecessors, then m + 1, m + 2, and so on until the last exchange Las m + n -- 1 predecessors.

Therefore, the number of times Equation (233) will be used is

n-1 n(n- 1) (234)
(m+ r) = mn+ 2

r=O

There is one multiplication and one addition due to Equation (233) each time it is used. Equation

(229) is used m + n - 1 times less than Equation (233) because the regression coefficients are not

calculated after the last reversal. Together, the two equations require 2(mn+n(n-1)/2)-(m+n-1)

multiplications and additions to remove one node.
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Now assume that there are n nodes to be removed, as in Figure 43. Instead of m predecessors,

the first node removed will begin with n - 1 predecessors. The second node will begin with n - 2

predecessors. The last node will h'ive no predecessors. The number of operations to remove n

nodes then becomes:

0

multiplications: (5n - 2)n + .. =n-1 2(mn + n(n - 1)/2) - (m + n - 1)

additions: n2 + Ern=n-1 2(mn + n(n - 1)/2) - (m + n - 1)

divisions: (n - 1)n

The result of these operations is the second influence diagram in Figure 43.

The next operation is to condition the nodes of x(ti) on the nodes of z(ti). This was depicted

in Figures 16 and 17. No operations are required to move directly from Figure 16 to the first

diagram of Figure 17 because R(ti) is assumed to be diagonal. The variances of the nodes of z(t,)

in Figure 17 are identical to the variances of the nodes of v(ti) in Figure 16, which were also the

diagonal terms of the R(ti) matrix.

If there are p nodes in the measurement, then they must be moved so that they are at the

beginning of the ordered sequence. These operations are depicted in Figure 17. Again, calculate

the number of operations due to Equation (228), Equation (231), and Equation (232) first, and

calculate the operations due to predecessor nodes later. Each node of z(ti) must be moved past

the n nodes of x(ti). This time, no nuisance nodes will be removed. Moving one node requires:

multiplications: 5n

additions: n

divisions: n

Now calculate the operations due to Equation (229) and Equation (233). When the first node

of z(t,) is moved to unconditional position, then number of applications of each of these equations
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is:
0

E m (235)
m=n- 1

The second node of z(ti) starts off with one more predecessor than the first node. The number of

operations required to move it up n positions is:

Z M+1 (236)
M-n-I

Each node of z(ti) is moved up n positions similarly. Because there are p of them, then the total

number of applications of Equations (229) and (233) are:

p-i 0

Z( + mq) (237)
q-O m=n-I

This double sum adds to np(n + p - 2)/2 applications of both Equation (229) and Equation (233).

The total number of operations to move a vector of p nodes to the beginning of the ordered sequence

is:

multiplications: np(n + p - 2) + 5np

additions: np(n + p - 2) + np

divisions: np

The means are Dropagated as described in Chapter 3. The vector update algorithm uses p

additions to calculate the initial p residuals. The number of additions or multiplications to calculate

the sum of the series of inner products and the new conditional means is:

P i- 1 (238)
j=1

This sum reduces to n(n + 2p - 1)/2 as given in Chapter 3.
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The Kalman filter update equation given in Equation (108) and the measurement prediction

of Equation (109) require a total of n(n +p) multiplications and (n - 1)(n +p) additions. The total

number of operations needed to update the conditional means is the sum of all these operations

counts. They are tabulated as:

multiplications: 2 + n-+)
additions +nn~n2pp)

additions: n(n+2p-+) (n - 1)(n + p) + p

The total number of operations is the sum of all appropriate equations. These sums are:

multiplications: 2n3 + n2(p - 0.5) + n(p 2 + p - 0.5)

additioits: 2n 3 + n2 (p + 3.5) + n(p 2 + 5p - 1.5)

divisions: n(n + p - 1)
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Appendix B. Appendix B: Operations Count, Parallel Processing

This appendix is an explanation of the method used to calculate the number of operations

required to implement the influence diagram algorithm for discrete time filtering, assuming parallel

processing. Assume that n nodes will be moved past another group of n nodes and removed. Such

was the case shown in Figure 44 in which n = 3. The equations are the same as those given in

Appendix A.

Begin with the assumption that there is a single processor dedicated to the task of calculating

all necessary equations for each of the n nodes being moved rightwards. For example, in Figure

44, there would be three processors, one assigned to each of the first three nodes. Between the

first and second influence diagrams, a single processor would reverse nodes 3 and 4. Between the

second and third diagrams, one processor would be used to exchange nodes 3 and 5, while another

would be used to exchange 2 and 4. Moving from the third to the fourth diagram requires all three

processors; one processor removes node 3, another reverses nodes 2 and 5, while the third reverses

nodes 1 and 4. Moving to the fifth diagram requires only two processors, one to remove node 2 and

another to reverse nodes 1 and 5. Finally, only a single processor is needed to remove node 1 and

result in the last influence diagram.

During each time interval, one processor will take longer than the other processors to com-

plete all of its calculations. The processor needing the most time will be the one with the most

operations to complete. In the example of Figure 44, the processor assigned to node 3 will have

more calculations during the first two time intervals because it has more predecessor regression

coefficients. During the next time interval, node 2's processor has the most calculations because

node 3 is being removed and its processor has less equations. Similarly, node l's processor has the

most calculations during the next time interval. During the last time interval, only one processor

is operating.
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The number of operations required to update the conditional means and to calculate q =

(I - Bq)T§(t,t,-.) were given in Appendix A. Because of this, in the following computations,

only the operations needed to manipulate the influence diagram will be counted. Also, the only

operations counted at each time interval will be those of the processor taking the longest time.

As before, in Appendix A, calculate the number of operation due to Equations (228), (231),

and (232) first. Calculate the number of operations due to Equations (229) and (233) later. At each

time interval except the last, there is at least one processor reversing a pair of nodes. Equations

(228), (231), and (232) require 5 multipJications, 1 additions, and 1 division as a minimum in

each time interval. There are (n - 1) + (n - 1) such reversals as a vector of n nodes is removed.

Additionally, the last time interval only removes one node and requires require 3 multiplications

and 1 addition.

The next step is to calculate the number of predecessors for the node with the most operations.

In every case, the node with the most operations is the node being reversed (not removed) that is

furthest to the right. During the first n - 1 successive time intervals, this node has n - 1, n, n +

1,...,2n - 3 predecessors. During the next n - 1 successive time intervals, this node has 2n -

4, 2n- 5,.. ., n - 1, n -2 predecessors. The number of predecessors is given by:

n-I n-1

- + q) + n - 3 + q) = 3n2 - n + 5 (239)
q=1 q=1

There are 2 multiplications and 2 additions associated with each predecessor. When the last node

is removed, it only requires 1 multiplication and addition for each of n - 1 predecessors.

For the removal of n nodes, the number of operations required is equivalent to the sum of

operations required by the longest time interval. This is the same as adding all operations discussed
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above. These numbers are:

multiplications: 6n2 - 5n + 2

additions: 6n 2 - 13n + 8

divisions: 2n - 2

When two vectors are being reversed, and neither is being removed, the calculations are

similar. This time, reverse an n-dimensioned vector on the left of the diagram with a p-dimensioned

vector on the right. This is the operation occurring when x(i,) is conditioned on z(ti). The node

requiring the most operations is the node being reversed that is furthest to the right. It is not

in the same position as in Lhe previous calculations because there are no nodes being removed.

During the first p-1 time intervals there are n-1,n, n+1,...,p+n-3 predecessors for this node.

During the next n time intervals, there are p+n - 2,p+ n - 3, . .. ,p,p- 1 predecessors. There are

2 multiplications and 2 additions for each predecessor operation. The number of multiplications or

additions due to predecessors is:

p-1 n
(E>n-2+q)+(E'p-2+-q) =n 2 +n(4p-5)+p 2 -5p+4 (240)

q=1 q=1

The total number of operations must include operations needed to update the conditional

means, and to calculate 1q = (I - Bq)T 4(ti, ti- 1). These were given before in Appendix A. The

total of all operations becomes:

multiplications: 9n 2 + 6n(p - 1) + p2 + 1

additions: 9n 2 - n(6p - 19) + p2 - 4p + 11

divisions: 3n + p - 3
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