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Fluid dynamics of two miscible liquids with diffusion

and gradient stresses

D. D. JOSEPH *

ABsrRAcr. - The density of incompressible fluids zan vary with concentration (p and temperature, but not
with pressure. The velocity field u of such incompressible fluids is not in general solenoidal, divuA0. A
conservation form for the left hand side of the diffusion equation which differs from the usual substantial
derivative of Tp by the addition of (p divu, is implied by requiring that the mass per unit total volume of one
liquid in a material volume is conserved in the absence of diffusion. The possibility that stresses are induced
by gradients of coicentration and density in slow diffusion of incompressible miscible liquids, as in the theory
of Korteweg [19011 is considered. Such stresses could be important in regions of high gradients giving rise to
effects which can mimic surface tension. The small but interesting history of thought about interfacial tension
between miscible liquids is collected here. The presence of a sharp interface in the case of slow diffusion in
risiig bubbles and falling drops has been documented in many experiments and in the experiments reported
here. The shape of such interfaces can scarcely be distinguished from the shapes of bubbles and drops of
immiscible liquids with surface tension. The usual descnption of interface problems for miscible liquids with
classical interface conditions but with zero interfacial tension misses out on slow diffusion on the one hand
and gradient stresses on the other. The usual description of diffusion with di% =0 is also inexact, though it is
a good approximation in some cases.

1. Motivation and problem statement

In Figure I we have presented a sequence of photographs documenting the change in
the shape of a water bubble (p= I gm/cc) as it rises in a container filled with glycerin
(p= 1.2 gm/cc). Since water and glycerin are miscible we must admit that our perceptions
trick us and that our eyes do not resolve the diffusion layer of aqueous glycerol in which
the transition from pure glycerin to pure water must take place. The shape of the water
bubble we see, however, is not so different than what we might expect to see in the case
of a rising bubble or falling drop of one immiscible liquid in another, provided that the
immiscible liquids are otherwise similar, with the same densities and viscosities and a
sma!l, but not zero, interfacial tension.

In Figure 2 we show a sequence of photographs of a molasses and water mixture in
glycerin. The densities are nearly matched, so that the bubble rises slowly.

• Department of Aerospace Engineering and Mechanics. University of Minnesota. Minneapolis.

Minnesota 55455. U.S.A.
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FLUID DYNAMICS OF TWO MISCIBtLE LIQUIDS 567

nt;' A

I--

Fig. I e Fig, It

Hg.-I Water bubbles rising in a column of glyccrin. T[he photogiaphis (a) through (c) were taken at
approximately two-second intervals wvith anl Interval of I to 1-1 2 seconds between (a) and (h) (/) follows
(O after 40 sec. The density ratio is 1.21 and the %iscosity ratio is 69. *fhe waler bubble appears to want to
pull into a sphere even and especially at the instant of injeution The Spherical shape in 6' ) is nearly perfect
However, there is always a rearwvard protrusion followed by an extruded thread of water left behind as% tile
bubble rises. A small "capillar% bu.bble"* is visible onl the water thread in (4 ) and (di) 'I lie sharp spherical
interface at the leading edge and the protruding tail at the trailing edge are persistent. 'I lie drop shairpes
strong]) resemble shatpes of unstable sphieriLil1 drops with nail/ero inter'.icial tensioni wlILhl wvere Lonputcd
by Koh&Leal [1989] (their Figs 7 and 9). by l'oyrikidis [1990] (his I if; 6) and obscrved b% Koh&Leal [1990]
(see Fig. 5 in this report). The computed shapes for ,ero interfacial tension and no dittiun01 always have
intrusions near the trailing edge even wshen a thread IS eCtecd at thle trailing edge. Wec have the Impression
that glycerin has been entrained and possibly diffused in thle bubble shoss n in (c) .ind (I.a% in the thermal
drops studied by Griffiths [1986a4

In Figure 3 wc show at sequence of photographs of a molasses drop falling in glcrinl.

Diffusion is very slox%. Even atfter vigorous mixing. it takes tmo (Ltys Imt the small11
amnount of mnolasses to dissolhe comnpletely in the glyceriti. Is it plossible ito fitnd a pair of

IUROPI AN J0It.R,vi 01 %ti ( ii,%\[( s I I It) v 9) %0 6. 1990
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Fig. 2a

Fig 2/h
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Fig. 2

Fig 2dI
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Fig. 2e

1*1

Fig. 2!

Fig. 2. -A rnvaurc of ioasseq and water in glycerin ri-ses slowly The density is, nearly matched The
essentially "statiL" configurations in (a) through W possibly suggest action of L ipilidry-like forces. Tinmc on
tife clock ;s in seconds: (a) 00.98. (h) 01.14. (c) 01 23,(,h 01.99. (e) 09.01. (f) 15.68.
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Fig. 3 c

Fig.I 3d
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Fig. 3 e

Fig. 3f

Fig. 3. - Molasses drops falling in glycerin. The fall is timed in seconds (a) 21.61, (h) 41.25, (c) 45.86, (d)
54.34, (e) 113.48. (f) 203. Frictional drag on the failing drop creates circulation. The drop eats the thread
in (a), (b), (c). In (d) a kind of spherical cap develops In (e) and (f) a second molasses drop is monitored.
In (e) the tail of the drop is breaking. It may break the reform In (f) a small "capillary bubble" forms on
the molasses thread.

miscible liquids that mix, but mix so slowly that essentially no mixing has taken place

over the time of an experiment, or even a lifetime?

EUROPAN JOURNAL OP MI CHANIKS. B'I.LUIDS. VOL 9. N, 6. 1990



FIGURE 5. Photographs of a thermal in ra,
'Hyvis 30' (silhouetted against a bright
background) with Ra=312, V0 =20.5cm3 .
ATo=48.7*C, po/p.=0.024. The initial
Reynolds number is 2.8 x 10- 5 . Photo-
graphs were taken (a) 3 min 30 s and (b) *
26 min 33 s after injection. 'I P7

Fig. 4. - Thermal plume of dyed liquid (Griffiths, [1986 a] © Cambridge University Press) Similar pictures
of thermal plumes which resemble those shown in Figure 2 can be found in Griffiths' [1986b]. He considers,
but rejects, the idea that interfacial tension might play a role in the 22% discrepancy between the observed
rise velocity and the velocity predicted by Stokes' law.

N:,
120s

A I

0" 380s 1335s

Fig. 5. - (After Koh&Let [19901 © American Institute of Physics). Unstable spherical drop of 10.000 ,
Dow silicone oil (p= 101 P. p 0972 gmcm') in Pale 1.000 oil (oxidi/ed castor oil. p= 391 P. p 1.021)
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In Figure 4 we show some photographs of a dyed thermal plume taken by
Griffiths [1986].

The first question is to what extent can these drops, bubbles and plumes be described
as free surface problems with zero interfacial tension, and no diffusion. The second
question is if there are forces due to gradients of density and composition which are
active in producing the shape of the interfaces we observe and if there are such forces,
how they may be modeled. The third question is when and how should diffusion be
entered into the dynamical description.

In Figure 5 we show photographs of Koh & Leal [1990] of an unstable spherical drop
of 10,000 cs Dow silicone oil in Pale 1,000 oil.

2. History

The idea that there are capillary forces at work in the layer between miscible liquids
goes back at least to an 1871 report of J. Bosscha, cited in a paper of Korteweg [1901],
and reproduced here. Korteweg, in a footnote on the second page of his famous paper,
notes that

1. M. J. Bosscha, in particular, has published, in the proceedings of the 30th of
September and the 25th of November 1871 of the Academy of Sciences of Amsterdam
1871/72, 9 3 and 5, some observations on the very slow motion of a solution in water or
in a less concentrated solution; they seem to him to find their most natural explanation
in the existence of appreciable capillary forces in the layer between the two llquids,
miscible in all proportions.

Messieurs J. J. Thomson and H. F. Newall on the contrary attribute to other causes
similar phenomena that they have observed (see pages 430 and 431 of their artic'e "On
the formation of vortex rings by drops falling into liquids and allied phenomena" "Proc.
R. Soc. 39, 1885, p. 417).

Since the question does not seem to us to be resolved, we believe it useful to publish
an appendix to this paper of the French translation of some extracts of the proceedings
cited above and of an unedited letter of M. Bosscha treating the same subject. As the
particular conditions in which the volume of these "Archives" were published have
forbidden us from asking M. Bosscha permission to publish these extracts, we have
communicated them without his knowledge at our own respondibility, hoping as well
that M. Bosscha will excuse this indiscretion.

APPENDIX

Extract of a communication made by M. Bosscha at the Academy of Sciences of Amsterdam,
in the session of 30 September 1871

, A test tube, of which the bottom is stretched into a finnel with a fine opening. is partly
immersed in water which fills a large cylindrical vessel. When the water in the tube reaches

EUROPIAN JOURNAL OF MI.(IANI(S. B LLUil)S. VOL 9 N, 6. 1990



576 D D. JOSEPH

the same height as in the water, one injects a crystal of a soluble substance in the water.
The liquid contained in the tube then becomes specifically heavier than the surrounding
water and begins to flow in a thin thread. This liquid thread exhibits all the details of a jet
of ordinary water, except that the flow is much slower so that one has no need for any
artifice to observe directly all the phenomena which accompany it. Some distance from the
opening, one sees bulges form themselves which more and more take the form of drops, all
of them linked by very thin liquid threads. Soon these threads break and are pulled into
the drops which henceforth fall freely. Because of the great resistance which they meet in
their fall the small drops thus formed flatten, at the center they form themselves into skull
caps. concave on the bottom, which terminate by breaking in their turn, in such a way that
each drop is transformed into a ring which enlarges itself more and more and disperses
itself slowly, as much by the motion of the liquid as by diffusion. It sometimes happens
that a tight ring falls through the already enlarged ring which preceded it ; in these conditions
a liquid film is carried from the interior boundary of the last large ring (ac), which looks
like a known capillary surface, but which contracts itself until at the end the two rings have
formed only one.

7b d

According to the observations of the author, one car do this experiment with any salt.
The experiment works even when one lets flow a less concentrated solution, as long as the
difference in the birefringent powers permits one to distinguish between them. If one makes
use of a tube of which the bottom is pulled into a fine point toward the interior, one can,
by suitably regulating the hydrostatic pressure, make a vertical jet of the liquid from the
cylindrical vessel climb in the tube, under these conditions one can also observe separation
into small drops, but it is sometimes necessary to tap slightly against the glass to produce
the effect.

From a theoretical point of view it seems important to do these experiments with some
liquids which combine themselves with a considerable release of heat. I have been able to
verify that sulphuric acid and water, or a solution of caustic potash in dilute sulphuric acid
tends thus to assume a surface as small as possible, from this it results then that capillary
attractions are of an altogether different nature than chemical attraction. >

Extracts from a letter of M. Bosscha from 22 May, 1901

o The phenomena which I have observed related to the slow flow of one liquid into
another, hoevcr slow the flow. remain nevertheless phenomena of motion, and the states I
have observed ,ire always sttes of motion. It is only b w ly of approximation that one can
think of thems as states of equilibrium.

I I ROI'I A% JO RNAi i M ( IIANI( S II1 IDIS NOI ). N' 6. 1990
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This is why I have always tried to claim some deep scruples that capillary forces only
produce the clearly defined forms which are taken by the flowing liquid.

But each time that I have repeated the experiment, in other respects very simple, and that
I saw the liquid thread give rise to local bulges, as in an ordinary jet of water, and resolve
themselves then into small drops which finally becomme rings, my conviction became
stronger that capillary action must even play here an important role. What strikes me
especially was to see how of the two consecutive rings the higher, smaller one falls through
the lower, larger one, and carries clearly in its motion a portion of interior rim of the other,
so that between the larger ac and smaller bd a film forms a surface of revolution from it,
of which a meridional can very well be the link of a chain.

I returned to this subject later in a discussion relative to the agglutination of particles
suspended in liquids. When this question became the subject of one of the sessions of the
Academy, I recall that while I was occupying myself with the preceding experiments, I took
note of the remarkable experiments of M. Vogelsang on globulites (microscopic drops
suspended in a mixture of baum of Canada and carbon sulphide; these drops consist of a
supersaturated solution of dissolved sulphur in carbon sulphide).

M. Vogelsang has described (Arch. Nerl., (1), 5, 166, etc.) the motion of these drops in
the liquids, motions such that they approach one another until contact. An attractive action
of these drops at appreciable distance cannot be attributed to molecular attraction of the
drops themselves. In my opinion one is rather forced to search for a motive force in the
liquid. It is thus that I thought to myself that each drop is a center of concentration of
sulphur, depleting sulphur from the liquid environment, so that each drop will be surrounded
by concentric layers in which the percentage of sulphur poor hydrospheres of neighboring
drops come into contact, if there exists in reality a surface tension at the boundary of the
two layers of unequal concentrations, it is necessary that the tendency of this surface of
separation to become a minimum, brings about the fusion of the layers; this will be caused
because some new layers of more packed drops come into contact until at the end the drops
touch themselves.

I have thought that there is here a means to explain in an analogous fashion the tendency
to agglutination that one can observe with small solid particles suspended in a liquid. These
solid particles can more particularly concentrate around themselves certain elements of the
liquid in which they are suspended. )>

The notion that capillary forces are responsible for the phenomena observed by Bosscha
is not shared by Thomson and Newall [18851 who appear to suggest that such phenomena,
which they observed independently and apparently without knowledge of Bosscha's work,
are associated with instabilities of motion, and not with capillarity. It is refreshing to see
the pictures which they draw to represent what they observe, at a time before the taking
of photographs of these things was a common practice. Their sketched pictures are art
in science, emphasizing the scientifically relevant details, suppressing the others.

J. J. Thomson and H. F. Newall, On the formation of vortex rings by drops falling
into liquids, and some allied phenomena, Proc. R. Soc. (London) 39. (1885).

<( If a tube be drawn out into a fine capillary and be filled with sulphuric acid. and held
so that its capillary end is just beneath the surface of a column of water, a fine stream of
acid flows down. and on it marked beadings appear. Each bead gives rise to a vortex ring.
and the rings so formed behave in characteristic manner ( Fig. 9). Here there seems strong

PiIJROPI./,N JOURNAL Of MCiiANi(S. RLUID.S. VOL 9 N- 6. 1990
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evidence oi a tension between the acid and the water, but the appearances are to be explained
by differences of velocity in the stream, brought about by motion in the column of water,
or by vibrations communicated to the capillary tube. If the experiment be made with all
care to avoid vibration, the stream falls unbroken through a column of 8 inches of water:
whilst if a tap be given to the acid tube a break occurs in the stream, in consequence of a
momentary stop in the flow of acid, a small bead is formed, and from it a ring. If no care
is taken to avoid vibration the beads will follow one another very rapidly. It may be objected
that if there existed a surface tension, it would only be when disturbances were communicated
that beading would appear. But in such a case, the resolution into drops would be complete,
and small spherules would be formed between the larger drops. In fact, however, the
connexions between the beadings are fine filaments of acid. so that the bcadings are never
really separated from one another. We have, moreover, convinced ourselves of the correctness
of this explanation, by allowing a stream of cold water with lycopodium powder to flow
from a fine tube into a column of slightly warm water; similar cessations in flow and
formations of beadings may be observed; the rings are not well formed, but this is to be
expected, for the conditions are not nearly so favourable.

Fig. 6. (their figure 9)

oc Royal Society London

In fact the citation does not really tell us what might be the real cause of the capillary-
like phenomena seen in their sketch. A theory in which stresses due to gradients of
concentration and density are allowed, say the Korte eg's theory, could conceivably give
rise both to the capillary phenomena and the deviations from classical capillarity which

SI ROI AN JO) RNAI 01 MI ( IANi( S. It I I III) VOl 9. N- 6. 1990
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are observed. Perhaps it is just this thought which motivated Korteweg to remark that
"... the question does not seem to us to be resolved..,".

3. Dynamic and instantaneous interfacial tension

Freudlich [1926] in his treatise on colloid and capillary chemistry in discussing the
methods of measuring interfacial tension between immiscible liquids and the theory of
the phenomenon, notes that

(( .., there is little new to be said .... We have only to remember here we are in the end
always dealing with solutions. For the one liquid will always be soluble in the other to some
degree, however small. Hence the dynanic tension of liquids, when first brought into contact,
is to be distinguished from the stalk' tension, when the two liquids are mutually saturated.
Not only do liquids which are not miscible in all proportions have a mutual surface tension;
even two completely miscible liquids, before they have united to form one phase, exhibit a
dynamic interfacial tension. For we get by careful overlaying of any two liquids a definite
meniscus, a jet of one liquid may be generated in another, and so on The tension decreases
rapidly during the process of solution. and becomes zero as soon as the two liquids have
mixed completely. >

Freudlich [1926] cites the measurements of the dynamic tension by Quinke [1902] of
ethyl alcohol in contact with aqueous salt solutions (sulphates of zinc, copper, etc). These
two liquids are miscible in all proportions. Quinke used the method of drop weight to
make his measurements. In these liquids the drop, as it emerges, does not pass into
streaks, but keeps at first its shape. He found values between 0 8 and 3 dyneicm.

Smith, Van den Ven & Mason [1981] have rep'rted a maximum value of I dyneicm
for the force corresponding to a "transient interr.cial tension" between a 2,000 cs and a
I cs silicone oil. According to the authors, these are two mutually soluble liquids whose
interdiffusion is sufficiently slow to enable this measurement to be made. They note that

( In principle there exists between an) two separated fluid phases which have a chemical
potential difference, an instantaneous interfactai tension which may or may not persist with
time. We are unaware of reports in the literature of measurements of interfacial tension
between two miscible liquids. )>

It is clear that in the case of two liquids miscible in all proportions we are ,lot dealing
w;th an equilibrium situation, there is no equilibrium tension. Rather, e are looking at
stress effects due to differences in density and composition and possibly ecen temperature
which influence the positions occupied by interdiffusing fluids. One could imagine that
when the gradients of composition arc large. as in the boundary layer bctwcen two
regions of different composition sudde. y put into contact, that these stresses give rise

to an effect which might be called "transient interfacial tension."

Smith, et al used the Wilhelmy plate method to ineasuic the tension as a function of
time, which decreases with time because of diffusion. A solid ,,ample expeiences a

tIUJROPLAN JOURNAL Oi Mi( iiANIS B I I.Ii)S \ OI 9) '6. 1990
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capillary force P due to the deformed interface which is given by

(1) P=2(1+d) S*cos0

where 1 is the length of the plate, d its thickness, S* is interfacial tension and 0 the
apparent contact angle. Their experimental result is summarized in their Figure 1, repro-
duced below in Figure 7.

I ' ' (a)

FIG 1. (a) Typical decay of capillary
force on a Wilhelmy plate for two
mutually miscible silicone oils (schematic
details of experiment are shown in the
inset); (b) Logarithm of Fvs time, for 3 a

various experimental runs. The extrapo- AAA

lated force at zero time yields in all cases,
F0 = 1.0 mN/m. -2

2 -

I 2 3 ' i

Fig. 7. - (after Smith et aL.)

© Academic Press Inc.

They note that a theoretical description of the capillary force per unit length
F=P/2(I+d) is possible only if the variation of S* and 0 with time are known. They
measure F(1) in their figure 1, but S* (t) and 0(t) are unknown.

Smith, Van den Ven & Mason [1981] present an expression for the chemical potential
based on expressions for the free energy in a nonuniform system given by van der Waals
[1983], Cahn & Hilliard [1954] writing

(2) S* c T x c

where S* is the interfacial tension, p is the local composition and x, is the "interfacial
region." The composition is assumed to satisfy a diffusion equation P,=-D~p x with

I tJROPI.AN JOURNAL. OF ME( IIANIKS. II IIUIDS. VOL. 9. N- 6, 1990
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diffusion constant D. If at t=0+, (p=qp+ for x>0 and (p- for x<0 and thereafter (p is
continuous at x = 0, then

p (x, t)=[p+ -p_] f (71), f(71) = erfc r9, il= x/2 /Dt

and S* is proportional to

712 2.c 2 [p p _
2 fno 1)dj

(3) q) 0-exp(-2 cxp(-2
f 'XX E dx T ,Dt jePq0 1)dl

At small times the breadth of the diffusion layer scales with /Dt. Then the gradient
theory (2) leads to a square root singularity for the dynamic tension. A finite tension as
t -+ 0 then implies 0 -+ n/2. Figure 7 (b) shows that F decays exponentially and does not
follow the t - 112 decay that would be required by F=S*cos0 if 0 were constant. It is
noteworthy that though the slopes in Figure 7(b) vary between 0.6 to 1.4, the extrapol-
ation to zero time does not vary and leads reproducibly to a force of ,- I dyn/cm. They
conclude that "... present experiments do indeed confirm that an instantaneous interfacial
tension exists between mutually miscible liquids."

The measurements of Quinke [1902] using the drop weight method and those of Smith
et al appear to be the only ones so far reported. Smith et al remarked that the Willielmy
technique appears to be the most sensitive and that other surface tension measuring
techniques such as the pendant drop method were found to be unsuitable due to the
small magnitude and transient nature of the force involved. I looked at pendant drops
of some pairs of miscible liquids. They give rise at early times to shapes similar to, but
not the same as, pendant drops of immiscible liquids; compare Figures 8 and 9.

4. Generalized incompressibility and Korteweg's theory

It can be argued that the measurement of interfacial tension between miscible liquids
is not a viable proposition since there is no such thing as an equilibrium interfacial

tension between miscible liquids. The concepts of a dynamical and instantaneous interfa-

cial tension are certainly more useful but they are not fundamental. What is fundamental
is the study of the way in which differences of density, composition, and temperature
enter into the stress tensor in a fluid mixture. The parameters we shall need to measure
are ultimately to be defined by a theory giving the precise nature of general forces that
give rise to capillary like phenomena in particular situations. Korteweg's theory, discussed

below, is perhaps an example of how such a theory might look. Certainly, the expression

(2) is far too special to be useful in a fundamental treatment.

4.1. COMPRESSIBLE FLUIDS

Korteweg was motivated on the one hand by the work of van der Waals [18941 who

i ... has shown by theoretical considerations of great importance that it is very probabe
that the hypothesis that the discontinuity at the surface of liquid and its vapor is only

,IJROP|AN JOURNAl, OF MIC|IANI(S. R I IUII)S. VOL 9. ,-- 6. 1990
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FLUID DYNAMICS OF TWO MISCIBLE LIQUIDS 583

apparent and that there is a layer of transition, very thin to be sure, but of a thickness
much larger in ordinary conditions than the radius of the sphere of action of the molecules,
and which can even gro~v indefinitely as one approaches the critical temperature. D

For this problem, Korteweg proposed a continuum approach with a compressible fluid
model with a stress T of the usual Navier-Stokes type plus a part T2) depending on
density derivatives alone:

(4) T !=-p 8ij / + Lu + __50U,

and

(5) T')=(cV 2p+ PVp.Vp)8ii+5- p +- 02 p_
ax, cj a ax

where p and the coefficients (x, P, 5, y, pi and X are functions say of the density p and
temperature 0.

Korteweg showed how his theory reduced to the classical thiory of capillarity. He
looked at the layer between two smooth surfaces of equal and different density and he
calculated the difference in the normal stresses. He found that this difference is propor-
tional to the mean curvature, but only in a certain special sense. For example, the
equations of motion using (4) and (5) are satisfied when the velocity is zero and body
forces, density and pressure depend only on the radius in spherical coordinates. He finds
that the jump of T,, =e, T. e, across the layer r=r, and r=r 2 is

(,)2= {12 P br 2 +p{r 2-5+(dydp) p 2 dr
r fl r

where br is the iadial component of the body force, b0=b,=O and p'=dp/dr. According
to Truesdell [1965].

( If we suopose that the shell is a layer of transition between two homogeneous fluids, so
that p'=O when rgr, and when r _r2, the sccord term on the right-hand side vanishes. To
obtain results appropriate to a thin shell of transition, we calculate the limit as r, -+ r, and
r2 -- ro. The first :ntcgral on the right side vanishes. Under suitable assumptions of smooth-
ness, the remaining integral yields a term proportional to 2S*/ro (where S* is the surface
tension) as expected from the classical theory of capillarity. >

Actually, to get the classical theory we need to assume a lack of smoothness, that is,

(7) (- + f- ) P' 2 --+ 5 (r - r0)

where 8(r-r,) iL Dirac's delta function. One defect of this derivation t f capillarity is
that the equations motion, even at equilibrium will not allow the .,,mpaL. support
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required to put p' = 0; this is a very small defect. Another problem is that we evidently

need to say that p' goes to a singularity which looks like the square root of a Dirac
measure. I don't know of any plysical principle which would lead to such a strong
result. A third defect is that the relation of the density gradient theory to the usual
molecular interpretation of surface tension, based on the action of cohesive forces at a
surface, which are in equilibrium in the bulk, do not seem to have been worked out.
Certainly this theory could not apply to the surface tension which exists between density
matched immiscible liquids, nor was it meant to do so.

There are a number of interesting papers on Korteweg-type theories for compressible
fluids (see, for example, Dunn [1986]). Tese theories rely strongly on thermodynamic
arguments for compressible fluids which . iidently do not apply to the incompressible
fluids under discussion here.

4.2. GENERALIZED INCOMPRESSIBLE FLUIDS

On the other hand, Korteweg also thought that his theory might apply to the processes
of slow diffusion of miscible incompressible liquids such as were already described in the
previously cited account of the experiments of J. Bosscha. He says that

( Let us suppose... that one must deal with two liquids miscible in all proportions, or
indeed, a solution with variable concentration. In this case it cannot be a question of
equilibrium, correctly speaking, before the concentralion has by diffusion become equal
everywhere. Moreover, in considering diffusion as a very slow process, one can deal with
provisional equilibrium, where Eqs. {our (4) and (5) with u=0 and p replaced by pD are
satisfied momentarily. In such equilibria, all possible distributions of concentration, satisfying
these 'quations, could rigorously occur, since the distribution at a given moment depends
on tl.- initial distribution and the laws of diffusion. ))

Provisional equilibrium of drops and bubbles require at least that the density of the
mixture be independent of the concentration. Otherwise the density will vary and buoy-
ancy will produce motion.

We did several bubble injection experiments like those described in Figure I but with
two fluids of matched density. In one case, we added just enough sugar to water to
match the density of glycerin. The density-matched sugar solution has a much higher
viscosity than glycerin. When injected into the giycerin, the sugar solution sometimes
appears to pull into a sphere; more often after a short time it splits into two segments:
one rises and one falls. These two segments then !ake a more pronounced spherical
shape. Perhaps this suggests that the spherical shape is more easily obtained by a drop
and bubble ir, motion than by capillary forces at the surface. Glycerin injected into a
sugar solution did not pull into a sphere but maintained the thread-like shape it had in
the capillary tube. Evidence for capillary type phenomena here was that capillary-like
bulges developed on the thread before it lost its identity to diffusion.

We were never completely successful in matching the density and it may be impossible
to do so. The problem is that the volume of a mixture of two constituents need not be
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the same as the sum of the volumes of the two constituents before mixing. For example,
small changes of the total volume VT of a mixture of glycerin and water at 20C, with a
maximum change of 1.1% for a mixture of 60% glycerin by weight, are observed and
reported by Segur [1953] in the data shown in figure 10. Suppose that before mixing the
volume of water is given by V,=m p where m, is the mass and V, the volume of
water and similarly, for glycerin VG--n-G/p,. After mixing, the density of the mixture is

in w + m G dcf Vw V

VT VT V VT

Now, if we ignore the small volume change, then

(8) VTVW +VG

and

(8)2 p = (pp.+ (I - () P(;.

where (P=VIVT. Equations (8), and (8)2 define a simple mixture, linear in the water
fraction. This is a good approximation of the actual mixture density with errors of less
than I% over the entire range of concentration 0 (p I. The fact that simple mixtures
arise only as an approximation means that the mixture of liquids with the same density
will not retain this, density after mixing, because of the volume change. Therefore, the
density in a diffusion layer may vary from point to point, even though the density on
either side of the layer is the same.

There are other measures of composition and concentration. The mass fraction say of
liquid A in liquid B, = mAlm where m =mA + mB, is a second measure and the mole
fraction = nhn, n = nA + 1r, where nA is the number of moles of A, is a third measure.

The relation between these three different volume measures is nonlinear. For example,

i nA - PA VA P- A(P
mA + mB PA VA + Pb V B  PA (P + P) (1 - (P)

and

nA MA MA

nAMA+nB)MB3  MA +MB(--)

where MA and MB denote the masses of one mole of constituents A, B respectively.

To allow for the possibility that composition gradients and density gradients can both
induce stress, we may generalize Korteweg's formula, writing

,(r ) _ p V 4p + 6 ( 1 ,+ y L Pp +p +2 q {1 2 ') P' L f

-++ax ax, axi a, j P'Xj a~cj 0xi Da ) a"(x , axxj ax,.

This is an isotropic expression, invariant to a change in the sign of the axis of reference.
In fact, it is the most general second order tensor composition of the first and second
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WEIGHT PER CENT OF GLYCEROL

FzuRi 7-4. Contraction of glycerol and water when mixed

TABLE 7-12. VOLUMETRIC CoNTUArCoN oF GLYCEROL AND WATER WREN
MIXED AT 20°C

Calc. from op. gr. Data of Bosart and Snoddy

Puts or % by Wt Pats by Vol %by Vol Sp. Or.joNC Vol of100 % Coatrn
0(StButo Soa. at tim1,Vol

Glye. Water Glyc. Water GLyc. Water mAd SMddy 30C

100 0 79.278 0.0 100.00 [ 0 1.26362 79.278 0.000
90 10 71.350 10.018 87.69 12.31 1.23755 80.948 0.516
60 20 63.423 20.035 75.0q 24.01 1.21090 82.730 0.872
75 25 59.459 25.044 70.kt 29.64 1.19720 83.676 0.979
70 30 55.495 30.053 64.87 ,5.13 1.18355 84.641 1.059
65 35 51.531 35.062 59.51 .49 1.1680 85.636 1.105
62 38 49.453 38.067 56.36 43.64 1.16155 86.245 1.118
60 40 47.567 40.071 54.28 45.72 1.15605 86.655 1.122
59 41 46.774 41.073 53.24 46.76 1.15325 86.865 1.118
58 42 45.981 42.074 52.22 47.78 1.15050 87.073 1.115
56 44 44.396 44078 50.18 49.82 1.14500 87.491 1.111
54 46 42.810 46.082 48.16 51.84 1.13945 87.917 1.097
52 48 41.225 48.085 46.16 53.84 1.13395 88.344 1.082
50 50 39.639 50.089 44.18 5.82 1.12845 88.774 1.063
40 60 31.711 60.106 34.54 65.46 1.10135 90.959 0.934
30 70 23.783 70.124 25.33 74.67 1.07470 93.214 0.738
20 80 15.856 80.142 16.52 83.48 1.0480 95.516 0.502
10 90 7.929 90.160 8.08 91.92 1.02395 97.834 0.250
0 100 0.0 100.177 0.00 100.00 1.00000 100.177 0.000

Calculations: Density of water at 200C - 0.99823.
Density of 100% glycerol at 200C - 1.26138.
Volume of liquid - Wt/Density - Wt + Density of water

Sp. gr. of liquid.

Fig. 10. -(After Segur [19531 © Glycerol. Reinhold). Volume contraction of glycerin and water The graph
of figure 7.4 and the 6th column of table 7.12 show that the simple mixturc Eq. (8) holds to within an

accuracy of about one percent.
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gradients of p and go. We allow 8,, 82, 71, 72, v to depend on p, (g and the temperature
0.

It is necessary to emphasize and to explain what we mean when we say that we are
here operating in the frame of incompressible fluids. We do not mean that the density is
a constant. In fact we like to assume that there is an equation of state

(10) p- =p (go, 0)

so that the density depends on composition and temperature, which may vary with
position and time. By an incompressible fluid we lean that the density cannot be changed
by pressure; the pressure does not have an equation of state. The pressure is determined
by the motion; in a system of equations with n- I unknowns, it is the n-th unknown.

The equation of state (10) implies that even though the fluid is incompressible to
squeezing, the velocity field is not divergence free. Indeed

dp dO +Pq- d = p divu.

d idt d d

where

d : 0 +p _ 9 p

dt at 00 ' p

We have in general seven unknowns (u, p, p, 0, go) and seven equations counted as
follows: Equations (10) and (11) are two equations. The conservation of momentum
gives three more equations

(12) P0tt= -Vp+2div(p D[u])+Vkdivu+divT(')+ pg.
dt

where [I and ?, depend on 0 and go and divT12
) is a composition of derivatives of p and

(p. Two more equations can be found in diffusion equations for 0 and (P:

(13)-A = div (KVO) + D,
dt

where K is the thermal diffusivity and D is proportional to the dissipation function
(T + T)) ui, j and

(14) d- = div (DVgp),dt

where D is a diffusion coefficient.

Yih [1965] has given an interesting discussion of the effects of diffusivities on gravita-
tional instability in our frame of incompressibility in which div u $0 is allowed. [I changed
Yih's notation (C, T) for solute density and temperature, to (7, 0)]. He was interested in
dilute solutions, say salt water, and worked with 7,=mnAVT, where mA is the mass of
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solute, a small fraction of the total mass, and M = m - mA is the mass of the solvent
and VT the volume of the mixture. Of course, there were no Korteweg-like terms in his
analysis. Without giving any derivation he writes that

dO
(15) - + 0 div u = div (KVO) + D(

dt

but neglects 4), and

(16) + y div u = div (c'Vy).dt

He writes two forms for the continuity Eq. (11) and

(17) d - + p divu =div ('V,)dt

this last form again without derivation. He argues, I think incorrectly, that if (11) is
adopted div u is not the volume expansion, and he proceeds to work with (17), eventually
putting div u = 0 as an approximation.

Eq. (11) is certainly a correct statement which follows rigorously from the transport
theorem and the statement that the total mass in a material volume Q across which no
mass passes is conserved. The same argument, which requires that we differentiate the
Jacobian of the transformation of volumes, shows that div u is the volume expansion. If
we now state, for example, that y is also conserved if there is no flux of solute across
the boundary of K2, then

(18) d q= - ,.nds
dt fn fe

where qY is the flux of y and if we let it be given by Fick's law q= -K'Vy, then (16)
follows by the usual arguments. The total mass of solute plus solvent is conserved in 0,
but solute and solvent diffuse in and out of K2.

I can make sense of (17) if I imagine that u is the solvent velocity and 0) a "material"
volume of solvent in which the total mass is not conserved. Since I wish to use the
u(x, t) which I may actually measure, I will not use (17).

The Eq. (15) for 0 also follows from a conservation argument in which we suppose,
without justification, that the temperature is conserved in the absence of heat conduction
and frictional heating:

(19) .d J od= qf d- q0 .nds

where q0 = -KVO. This statement of conservation is not a physical principle and it seems
to be in conflict with the balance of energy. The energy equadon for incompressible
mixtures in which the pressure is a dynamical variable has not yet been worked out.
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We may work with the volume fraction T= VA/VT which is related to y =mA/V = PA (P-
We have useful simplifications under isothermal conditions in which we may suppose
P = P ((P) = PA T + PB (I - p) to a good approximation, with constant values for PA and
PB.

Then equation (16) reduces to

(20) dLp + (p div u = div (D VWp)dt

replacing (14). And

(2 1 ) T 0 ) 8 x & X , j " 0 2 qp_, , a xx

(22) 8 1 P2+2 +2vp,+y 1 pp, and 7'= 1 P +y 2.

The governing equations are

q, + pdivu=0,(24) d dut

(24) tt =p - Vp + 2 div (g D [u]) + VX div u + divT(2)+ pg

with T(2) given by (21), and (20) governs diffusion. If we suppose that p is a known
function of (p, say a simple mixture (8), then (23), (24) and (20) are five equations for u,
(PI p.

Another diffusion equation for the volume fraction F-- I - ( = VWJV T follows from the
same argument dc/dt + edivu = div (D'V), relating D and D'. Of course, generally D'#: D,
glycerin does not diffuse into water at the same rate that water diffuses into glycerin.

5. Motionless solutions and steady solutions

Motionless solutions with u = 0 can persist only when curl (du/dt)= 0. We can form an
expression for this by taking the curl of (12). This leads to the vorticity equations for
the incompressible Korteweg equation. If, for simplicity, 8, 7, and v in (9) are
assumed to be constants, then

(25) VPAdu _ p curl du _ 2 curl (p D [u]) + g A Vp
d di

+ 81 VP A V (V2 p) + 62 V(p A V (V2 P) + v [Vp A V (V2 P) + V(p A V (V2 p)] =0.

In general motionless solutions require g A Vp = 0 SO that Vp is parallel to gravity or is
zero due to density matching. In the first case p= p(z, t) and if p= p(pD) is a function (P
alone, then (p= p(z, t) is determined by the diffusion equation. We can imagine that
p((p) is given by (8). Then Vp= pTVqp where P =PA-PB. Given this simple mixture
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equation, the reader can return to (25) with p = p (z, t) and find a nonlinear equation
for p (z, t) in a static stratification.

if we imagine that density matching is possible, that p(p) = N=TPA + (l - q) PB, with

PA = PB, then motionless solutions exist only if

(26) VWP A V (V 2' ) = 0.

This works for vertical stratification p= p (z, t) and for radial stratification in spherical
polar coordinates.

Steady solutions of (20), (21), (23) and (24) can be expected whenever the boundary
data is steady and suitable. For exemple, we could find the steady solution for plane
Couette flow between parallel plates when the bottom plate is stationary and constant qP
is prescribed there, and the top plate moves parallel tc itself with constant speed and Y
;s another constant there. The stability problem for a motionless solution with p (T)
greater below (Korteweg-Benard problem) has some interesting features. A general
elementary mathematical formulation of the aforementioned problems can be found in
the forthcoming paper by Galdi, Joseph, Preziosi & Rionero [1991].

6. Filing drops, rising bubbles and plumes

A basic and basically unsolved problem of fluid dynamics is to determine the evolution
of rising bubbles and falling drops of one miscible liquid in another. This problem is
unsteady as long as diffusion operates. An important question is whether it is necessary
to introduce a stress depending on gradients of concentration, temperature and density
in our equations to get results which agree with experiments like those shown in Figures
1, 2, 3, 4, 6, 7.

One method for doing such problems is to imagine that diffusion is so slow that it
can be neglected. Then the prol-em is treated as a free interface problem, using the usual
jump conditions at the interface, except that the interfacial tension is put to zero. This is
the method followed by Kojima, et al. [1984], Koh & Leal [1989] and Pozrikidis [1990].
However, if the interface was really that sharp, the gradients of composition, density
and temperature might be expected to induce strong capillary-like stress effects across
the interface. One question is whether it is necessary to introduce such gradient stresses
to explain the shape of drops, bubbles and plumes shown here and elsewhere. Another
question, already framed, is how and when to take into account the effects of diffusion.

One can argue about all this using the water bubble in glycerin shown in Figure I as
an example. We dont't know what the streamline pattern around the water bubble might
be. but perhaps it is like the Hadamard-Rybczynski bubble with a tail.

As the bubble rises, its leading edge is pushed into fresh glycerin. This, together with
the circulation inside the bubble which brings fresh water up to the leading edge, generates
the sharpest gradients there with weaker gradients at the trailing edge. Whether or not
the Korteweg terms are actually important in sustaining the spherical shape we see at
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Fig. I I a

Fig IlIb
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Fig. tic

Fig. I Id

Fig. I I -(After Kojima. Hinch&Acrivos. [19841 @ American Institute of Physics) Falling drops of aqucous
corn syrup of density 1.329 g/cm' and viscosity 3.9. Poise into aqueous corn syrup of density 1.264 gscm3
and viscosity 0.51 Poise. (a) A depression forms at the rear stagnation point, (b') a vortex ring forms, (c) thc
ring is unstable. (( (after Joseph, Renardy. llaumann&Mohr 11991]). An unstable vortex ring of silicone oil
falling in safflower oil. The interfacial tension is 1.68 dyn~cm.
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the leading edge of the water bubble through the whole 48 seconds of its rise is something
I would like to know.

Kojima et a!. [1984] presented data for falling drops of miscible liquids, see
Figure I I(a), (b) and (c), and they carried out an analysis of the problem at vanishing
Reynolds numbers. They say that

... Under the assumptions of zero interfacial tension and creeping flow, the theory
provides a qualitative description for the initial stages of the drop evolution ... but is unable
to account for the observed drop expansion during latter stages of deformation ... On the
other hand, if small inertial effects are retained in the analysis, the theory predicts that a
slender open fluid torus possessing an arbitrary cross-sectional geometry will expand without
change of shape to first order in Reynolds number. Quantitative comparisons of theoretically
predicted rates of expansion with experimental measurements suggest the possible existence
of a small, time-dependent interfacial tension across the drop interface. >)

The reader may compare the unstable miscible vortex ring shown in Figure I I (c) with
the unstable immiscible vortex ring shown in Figure 11 (d).

The argument just given could conceivably be applied to thermal plumes; as a plume
rises its leading edge pushes always into a freshly cold part of the liquid. The circulations
in the plume could act to bring hot liquid to the leading edge giving rise to sharp
gradients of temperature and density there. Thermals, like buoyant miscible bubbles,
take on shapes which may be influenced by stresses associated with thermally induced
density gradients (see Figs. 4, 12 and 13).

:ig. 12. - Thcrmial plunics in water (Sparrow. Iliur&Goldicin 119701)
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..

Fig. 13. (After Kojima. Hme&Aenvos.1984).
Cold drop initially- 7C falls into the same liquid initially at 21°C

A thermal drop (Fig. 13) was created by Kojima, Hinch and Acrivos [1984].

<, ... by using the same fluid for the drop as for the bulk medium but at a sufficiently low
temperature such that the density difference was large enough for the drop to fall in the
continuum under the force of gravity. Under these conditions, the effect of the interfacial
tension should be negligible, since the authors are unaware of reports in the literature which
suggests that a time dependent interfacial tension exists between two identical fluids having
different temperature. >>

A comparison of thermal plumes and drops shows a similar structure. The plume
shown in Figure 4 has a less diffuse structure.

Thermally induced density gradients will be sharper in relatively viscous drops and
plumes which are poor head conductors and have large coefficients dpldo of thermal
expansion. I do not know of any reason to reject the possible action of thermally induced
gradient stresses in some of these fluids.
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Note added in proof. - An interesting calculation similar to the one by Smith et al. [1981], has come to my
attention (T. Davis, A theory of tension at a miscible displacement front, in Numerical Simulation and Oil
Recovery, M. WHEELER Ed., I.M.A., 2, Springer-Verlag, 1988). Davis calculates the magnitude and rate of
reduction of the tension by diffusive mixing of the zone of contact of miscible liquids He suggests that
instabilities in miscible frontal displacement may be similar to those in ultralow tension immiscible frontal
displacement, with the added caveat that in the miscible process the tension decreases continuously with time
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