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1. Introduction

To defeat an incoming projectile, an active aurmor protection system must be able
to estimate the trajectory of the incoming projectile. Many sensor systems have been
developed using angle of arrival (AoA) information from two separate receivers. As a
rule of thumb the error associated with these systems is a function of range to the tar-
get over the separation of the two receivers. As this ratio becomes large, the estimate
loses its value. On a tank the maximum separation distance between receivers is less
than four meters. An AoA system installed on a tank would begin to lose its effective-
ness at ranges in excess of eight meters. Obviously, eight meters does not allow
enough reaction time for an active protection system to respond.

H. Bruce Wallace of the Ballistic Research Laboratory (BRL) has proposed that
range information also be utilized in order to have a worthwhile target location esti-
mate. There is a large class of potential sensors fitting this description. These can be
classified according to the type of electronic processing they use and the parameters
that are important for that type of processing. The goal here is to find a general model
that allows for various levels of detail in the performance evaluation of this class of
sensor systems.

This paper develops a performance model for a system using AoA and range
information to estimate the location of a target. The ideas used to derive and validate
the performance model are presented, and then a procedure for evaluating specific
sensor systems is discussed.

First the two dimensional case is examined in detail. Then the results of applying
the same ideas to the three dimensional case are presented. Both models were vali-
dated through the use of a simulation. The procedure used to validate the three
dimensional model is presented. The next two sections present some electronic
models from the literature associated with the accuracy of angle of arrival and range
measurements. finally, a method for the evaluation of a particular system is given.

2. XY Covariance Model

In this section a performance model for a system processing one range measure-
ment and one AoA measurement is presented. The me-uremtent .tre from a polar
coordinate system but the system performance is to be in the Cartesian coordinate
system. The focus of the discussion is on how the measurement errors effect target
estimation in the Cartesian plane. The relationship between an xy location and an
AoA range coordinate is straight forward.

x = R cos 0+ (1)

y = R sin 0 +y

when R is the range to the target and 0 is the AoA to the target. Without any loss of
generality, we assume that xo = 0 and y. = 0.

A common approach for relating measurement errors to the xy domain is
through the partial derivatives of the location with respect to the measured quantities
(Reference 1 and 2). In the x direction the changes caused by range measurement are
AR cos 0. Changes caused by increasing the angle move x closer to the origin by the
amicant R sin (AO) sin(0). In order to derive tile model, several assumptions will be
made. Later it will be shown that the assumptions are statistically reasonable.
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Perturbations in x due to measurement errors are described by

x + Ax = (R + AR) cos (0 + AO).

After expanding the cosine term we have:

(R + AR) cos (0 + AO) = R cos 0 cos AO - R sin 0 sin AO +

AR cos 0 cos AO - AR sin 0 siii AO.

Since AO is small we will assume cos A = 1 ; also since AO is small, we assume
sin AO = A#; and finally we assume AO AR = 0. So we now have:

(R + AR) cos (0 + AO) z R cos 0 + AR cos 0- RA sin 0.

Recalling that x = RcosV we have

Ax z AR cos 6 - R AO sin 0.

By a similar argument it can be shown that

Ay A R sin 0 + RA,0 cos 0.

Note that taking partials of both the x and y values in Equation 1 results in the above
set of equations. Thus, the terms we have ignored correspond to higher order differen-
tials. We will assume the measurement errors have the following properties

E (AR) = 0

E (ZG)= 0

2(AR 2) = C R (2)

E (AO') 2

E (AR A) = 0.

Perturbations of x and y, can be expressed in terms of measured quantities as:

Ax = AR cos 0 - AG R sin 0

Ay = AR sin 0 + AO R cos 0

(Ax) 2 = (AR) 2 COS 2 0 + (AG) 2 R2 sin 2 0- 2AR AGR sin0cos0 (3)

(Ay) 2 = (AR) 2 sin 2 0 + (AG) 2 R2 cos 2 0 + 2ARAGRsin0cos6

Ax Ay = AR 2 sin 0 cos 0- A 2 R2 sin0cos 0- ARA8R sin2 6 + AR AO R cos 2 0

Taking the expectations of Equation 3 and combining this with Equations 2, we get the
following expressions for the variance and covariance of the target location.

E (Ax) = 0

E (Ay) =-0
2 2 2 2

E(AX2) = o R COS 2 + 2 R 2 sin 2  (4)
2 2 . 2

E(Ay2) = c R sin2 8  + 62 COS2 0

E (Ax Ay) = .5 (2R sin 2 0-2a R2 sin 2 0)



These equations describe the error matrix for the system in terms of the xy coordinate
svtem. In matrix notation, the covariance matrix of the estimated position would be

(Ax 2y E (Axy )  01 [P ow, ay

(Ax AY) E (AY2 ] CY or2 j
By rotating the coordinates through the angle a defined by

2E (AxAy)
tan2a

E (Ax2) - E (Ay2)

we decouple the system and find the major and minor axis. (This is derived in Appen-
dix A).

From Appendix A we have

MaiOr Axis = E (Ax2) + E (Ay 2) + ((E (Ax2 ) - E (Ay) 2 ) 2 + 4 E (' X A,')

(5)

Minor Axis = E E (Ax2) + E (Ay 2) ((E ( 2) E (Ay)2) 2 + 4 E (Ax Ay) 2) /

The following equalities were used to rewrite Equation 5.

E(Ax) + E(Ay") = aR sin o +0i CR'cos2 0+U Cos 0 + orRsin2 0

= C R (cos 0 + sin ) + C2
6 R2 (cos2 6 + sin2 0)

=C R + 2

E (Ax) E (A) N= 2 Cr2R (COS 2 0 - sin 2 0) + orCeaR 2(sin 20- Cos 20)

= R Cos 2 0 - 0 R2 Cos 2 02 sin 2 2 )

E(AxAy) =.5(CRsin 20-2a R sin 20

Thus the major axis and minor axis are defined by :

2 2 '2 2 2 2 2 2 2 1/2
((C R + RC 8) ± ((-a R + cos R) Cos 2 0 + (C2R-AR) sin 2 0) )

2
1 ( 2R + R2a 2 ) ±(c 2 R - R2C2 ) ))

2

The final simplification of the above equation results in principal components of2 R2o2

r and R . In the case of uncorrelated measurement errors, the axes describing
the covariance structure are directly related to the measurement errors.

For the two dimensional case, performance can be discussed in terms of x and y
or in terms of principal components. Although the ideas are the same in three

3



dimensions the relationships are more complex and it is difficult to give a purely tri-
gonometric explanation.

3. XYZ Covariance Model

In three dimensions a covariance model can be derived from range, azimuth
angle, and elevation measurements. The elevation angle, 0, is measured from the posi-
tive z axis and the azimuth angle, 4,, is measured from the x axis toward the positive y
axis. Note that conventional notation is being used and 0 has a different meaning in
this section than its previous meaning. Using the same simplification arguments as for
the XY Covariance Model the following set of measurement error transformation
equations is obtained.

Ax = AR sin 0 cos 4) + AOR cos 0 cos 4, - A4 R sin 0 sin 4

Ay = AR sin 9 sin € + A9R cos 0 sin 4 + AO R sin 0 cos 4

Az = AR cos 0 - AO Rsin 0

From these equations the covariance model can be found, the quantities of interest
are as follows.

2 2 2 2 2 R2 p.2 2  2
. x = 0. R sin 0 cos'A4 + cos 0 cos + 0 Rsin 0 sin,2 2 • 1 2 1 2 2  02 R 2  2 2

SY. = C"R sin' 0 sin- + c R-cos2 0 sin24) + sin2 R n0 Cos2
2 2 2 02 R 2 si 2 Oo Z = CRCOS 0+ C sin sis4)

2 2 . 2

XY = 0C R sill 0 sin 4 cos 4 + R, cos2 Osincos4-u R, sin 0sin4coso
_2R

= orR sin 0 cos 0 cos 4 0 aR'sin 0 cos 0 cos4)

Yz = ClR sin 0 cos 0 sin -or2 R 2 sin 0 cos 0 sin 0

By finding the eigenvalues and eigenvectors associated with this matrix, the principal
components and orientation can be found.

4. Noncolocated Sensors

The detection elements of a sensor system are not usually located at the same
position. When the target is far away the errors associated with assuming colocation
are negligible. For an active protection system the distance to the target will become
small, hopefully not too small, and problems will result from assuming colocation. In
this section, the effects of separating the range and AoA detectors will be discussed.
The two topics of this section are an estimation technique and a general method for
finding the covariance structure around a target location.

Let (xy,z) be the position of the range sensor.

Let (0,0,0) be the position of the interferometer.

The distance from the interferometer to the target, K, has the following xyz com-
ponents

(K sinO coso, K sin0 sino, K cosO)

4



The sum of the squares in the x, y, and z directions should equal the square of the
measured range. We proceed by finding K in terms of R.

R2 = (KsinO cos4 - x)2+ (KsinO sin - y)2+ (KcosO - z) 2

= K~sin2O cs2O - 2KsinO cos x + x2

+ K 2sin'0 sin - 2KsinO sino y + y2

2 2 2+ K cos 0- 2Kcosb z + z

In this case the coefficient for K2 is one. K is found by using the quadratic formula.
-b -+(b 2 - 4c)'5

K =
2

where r=x 2+v 2+z- R

and b = -2zcosO - 2xsinO cos4 - 2ysinO sino .

The next goal is to find a general method for determining the covariance struc-
ture around a target location. The measurement error structure can be determined a
priori from performance knowledge of the particular sensors. The typical case is
uncorrelated measurements between the sensors; and leads to a diagonal matrix
describing the error structure in the measurement space. The problem is to find a
representation of this error structure in a different reference system. The associated
theory is discussed by Dempster (3). The procedure is to find representations of the
reference basis in terms of the measurement error basis. The matrix P is formed by
concatenating these column vectors. A vector in the reference frame, R, has the
representation PR in the measurement frame. To find the covariance structure in the
reference frame consider any vectors, R1 and R2, from this space. To find the correla-
tion between the two vectors, the inner product is taken; however, the inner product is
defined in the measurement space by the measurement covariance matrix, E. The fol-
lowing equation illustrates the process.

<R 1, R2> = <PR1 , PR 2 >

= (PR 1)'EPR 2

- R 1PtPR2

From this, the covariance in the reference space can be seen to be PREP. Unfor-
tunately, in the typical case it is not possible to find P directly. The matrix Q (=P'I)
can be found by finding the representations of the measurement basis in terms of the
reference basis, and concatenating these as columns. By finding the inverse of Q, the
desired matrix P is found. Notice if Q is ill conditioned, P will include some laige
values. If P is an orthonormal set, then the process is a rotation and pt is unified with
p =Q.

The process will be illustrated for the previously discussed three dimensional
case. The errors associated with each measurement will be described in sequence.
Errors in the azimuth measurement, 4, result in perturbations in the xy plane



perpendicular to the line defined by 4). The normalized vector in this direction is
(-cos4, sin4), 0 ). The vector associated with the elevation measurement, 0, is perpen-
dicular to the ray going through the target and contained in the plane defined by the xy
direction to the target with z unrestricted. Recall that 8 is measured from the positive z
axis toward the xy plane. The normalized vector is ( -cos sin4, -cosO cos4, sin). The
direction of the ran,,e measurement error is along the ray connecting the range sensor
with the target and is ( sirO sinO , sinO cos4), cos8 ). It is straightforward to verify that
these form an orthonormal set. Concatenating these vectors as columns forms the
matrix Q, or in this case pt. The magnitudes of the measurement errors need to be
placed on the diagonal of a matrix. The variance of the error associated with 42is

2 2 2
r2 (RsinO) 2, where R is the distance to the target. The range error's magnitude is R

Finally, the variance associated with errors in measuring 0 is (Ra2 ". It can be verified
that this gives the same result as Section 3 when the matrices P E P are multiplied.
This approach is general in that it can be used for any nondegenerate situation.

The case where the range sensor is not colocated with the interferometers will be
discussed next. The interferometer measurements are the same as discussed above.
The range measurement direction is found by normalizing the ray between the range
sensor and the target. If D is the distance to the target and (xR , YR' ZR) are the
respective x, y, and z distances, then the normalized vector is found by dividing each of
these quantities by D. Note in this case the set of normalized vectors will rarely form
an orthonormal set and thus Q- must be calculated to find P. It is worth noting that as
the target gets closer to the sensors, the projection of the range measurement into the
space defined by the two angle measurements will increase. This increase in collinear-
ity becomes pronounced as the distance to the target approaches the separation dis-
tance of the sensors.

5. Model Validation Effort

Both the xy and the xyz models were compared with simulation data to verify
their performance. Using a Gaussian random number generator, errors for range and
azimuth or for range, azimuth, and elevation were generated. These errors were
added to the true values and then the estimated position was calculated from the cor-
rupted values. Using ten thousand such points, the covariance of the target position, S,
was calculated and then compared to the covariance predicted by the model, E. The
code designed to perform the simulation is included as Appendix B.

As a first test, the determinants were compared to see if they were in agreement.
A test based on the asymptotic distribution of the sample covariance was used for this.
The assumption under the null hypothesis is that

vn(det(S)

det(E)
is distributed as N(0,2p)

where
p is the dimension of the matrix
n is the degrees of freedom.
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In this case, a nonrejection of the null hypothesis indicates that global error associated
with each covariance structure is similar; however, an acceptance of the model based
upon a determinant test is not conclusive. These tests have no sensitivity to the orien-
tation of the covariance structure, and will not detect certain differences in the magni-
tude of the major components of the matrix. For example, a diagonal matrix with
components (1 ,1) has the same determinant as the diagonal matrix with components
(.1, 10) or the matrix with row one elements (5, 3) and row two elements (3, 2).

The statistical properties of a covariance structure are described by the Wishart
distribution. Dempster(3) discusses the related theory. The use of this distribution in
the three dimensional case leads to six independent tests, each one checking a
separate component of the covariance matrix. Note that the off-diagonal terms are
based on estimates of the diagonal terms and thus have more uncertainty associated
with them. The procedure used was as follows:

1. Calculate the error structure from the model.
2. Calculate the error structure from the simulated data.
3. Find the normalizing transformation based on the model.
4. Apply the normalizing transformation to the result of step 2.
5. Test the resulting matrix to see if it is statistically equivalent to the
identity matrix (see Dempster(3)).

In each of the cases investigated the model and the simulated data produced covari-
ance structures that were statistically the same.

6. AoA Errors

The two models included in this section are based entirely on thermal noise and
should be used as the best case situations for AoA errors. When additional sources of
error are modeled it is usually correct to take their root mean square with the error
due to thermal noise. Dr. Alexander in (2) gives the following two equations for relat-
ing electronic parameters to c0, the angle measurement error.

For pulsed AoA processing the thermal noise, cth, of a phase interferometer is
given by

(360/2r)C
Oth =di 2 7r f d cos 8 4 (S/N)WT G

For an amplitude monopulse the thermal noise is
25.408B

trth =Crh (S/N fNTG) 1/2

where,
0 is the angle form boresight to the target.
c is the propagation velocity (M/S).
f is the RF carrier (Hz).
d is the spacing between the receiving antennas.
0B is the antenna half power beam width (deg).

7



S/NING is the integrator output of signal to noise ratio.

7. Range Errors
Errors in range depend on the ability to measure the time of arrival of a given

pulse. The range error is or = C/2 at where crt is the time error. The time error is
dependent on pulse type, the following are suggested by Skolnik(4):
For a rectangular pulse

1/2

t- f -/] where r is the pulse width
4#3E/NJ # is the bandwidth

E is the received signal energy

No is the noise per unit bandwidth.

For a trapezoidal pulse
-2 1/2

T2" + 3T, T2

= 6 E/N0  T1 is the time duration of the pulse
T2 is the rise and fall time of the top of the pulse.

For a triangular pulse

2 T 2
at vf1 (2 E/No) 1/2.

1.384t
2

For a Gaussian pulse of the form s (t) = exp (-
2

1.18
r 3(2 E/No) 1/ 2

sin (ir 13 r)
If the pulse has the form

7r 3r
then

a 3 (2 E/NO) 1/ 2

For Continuous Wave, the error is
C

O"R  1/4 ?r A f (2 E/No) /

where A f is the difference between the two frequencies.
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The specific electronic model will vary depending on the method used to extract
information from the signal. The models included above only represent some of the
common techniques. The important thing is that they relate specific electronic or
geometric parameters to the measurement errors associated with either range or
angle of arrival.

8. Analysis Method

In usin& hese models to analyze the performance of a system, the following steps
must be taken.

1. Choose a AoA error model and assign values to the parameters.
2. Choose a range error model and assign values to the parameters.

3. Use the range and AoA errors as input to the xyz location model.

By following this procedure at a number of different points a system's perfor-
mance can be presented as a function of target location.

9. Conclusion
This application is typical of the error analysis approach used in many engineer-

ing studies. In this case, the extra step of checking the statistical validity of the model
was included. The dominant feature of this approach to system analysis is to start with
the measurement errors and follow them as they propagate through the system and
degrade the ideal system performance.

The models presented herein can be used to evaluate the performance of many
range - angle sensor systems. The performance can be based on specific electronic
parameters such as frequency, pulse shape, or on more general specifications such as
three degree angle with five percent range errors. This work could be continued by
designing a software package that includes the selection of the possible options.

This model may be used to simulate a stream of observations or to provide infor-
mation about the error associated with an observation. The performance of filtering
techniques is enhanced by knowledge of error associated with given observations. In
evaluating candidate systems for an active armor protection system this model, covers
systems processing range and AoA information.

9
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APPENDIX A

We wish to find the angle a of rotation in the coordinate system to decouple the

system.

Ax' = Ax cos a + Ay sin a

Ay' = -Ax sin a + Ay cos a

In terms of the new coordinate system we have

E (Ax') = 0

E (Ay') =0

E(Ax' .) = E (&x2) cos2 a + 2 E (Ax) (A) sin a cos a- T (Ay 2sin2 a

=E (Ax2) + E (Ay E) - E (Ax' ) sin2a - E (Ay) COS 2 a

+ 2 E (Ax Ay) sin a cos a.

Recall that
1

sin a cos a = - sin 2 a
2

1- cos2a
sin' a -

2
2 1 + cos2a

Cos a =a
2

Then

E(Ax 2) = (E (Ax2) + E (Ay2)) + -(E (Ax2)- E (Ay2)) cos 2 a
2 2

+ E (Ax Ay) sin 2 a.

Similarly it can be shown that
2 11

E(Ay') = 1 (E(Ax2) + E(Ay2)).(E(Ax2)-E(Ay2))cos 2 a
2 2

- E (Ax Ay) sin 2 a

and

E (Ax -Ay) -E (Ax' ) sin a cos a + E (Ax Ay) (cos2 a -sin2 a)

+ E (Ay2 ) sin a cos a

-- E (Ay2) - E (Ax2)] sin 2 a + E (Ax Ay) cos 2 a.

2

The covariance term will be zero if

15



2 E (Ax Ay)
tan2 a=

E (AxE)- E (Ay 2 )

Note that for this angle
2E (AXAy)

sin 2 a =

(4 E (A Ay) 2 + (E (Ax)_ E (Ay2))2) 1/ 2

E (Ax2) - E (Ay')cos 2 a =

(4 E (Ax Ay) 2 + (E (Ax2 ) E(Ay2))2)l/2

Using these relations it can be shown that the major and minor axis are defined by
112 (E (,X2) + E 2  ((E (Ax2). E(Ay'))2 + 4 E (Ax Ay)2/2) .

16
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APPENDIX B

#include <math.h>
#include "ranvar.h"
#include "stat.h"

main()
I
float range,r,r sd,r var,r sq;
float thetathjtheta-sd,theta-var;
float psi~p,psi -sd,i-var;
float xy,z,x sum,v sum,z sum,x var,y_var,z-var;
float xsq,ysq~zsq,xy,xz,yz;
float r-sim,th_sim,psi-sim;
float sith, cost h,sinpscospsi,sin2tcos2pscos2thsi2psi;
float co-y_xy,cov-xz,covjyz:
float x2_-mod,y2_mod,z2_mod,xy-modxz-mod,yz_mod;
float data-det,model det,minus,plus,z_test,prob;

int i,nMseed;

/* initialize the variables for this run
range = 50;
r sd=.05*range; /* five percent range ~
r-var =r-sd * rsd;
r sq=range *range;

&hta = MP/4;
theta -sd=5*2*M P1/360; /*five degree error elevation */
theta var=theta-sdstheta-sd;
psi = MP/4;
psi sd=5*2*M P1/360; /* five degree error azimuth */
psi var =psi_sd psi-sd;

n = 10000; /* number of replications/
seed =23719; /* random number seed *

xsq =0;
ysq=O0;
zsq =0;
X-sumn=O0;
yjsum =0;
Z-surn=O0;
XY = 0;
xz= 0;
yz = 0;

for (i=0;i<n;i+ +)

19



/rv gauss is a gaussian random number generator
the first two sections find the measured value
and calculate the position

cnf is the cumulative normal distribution function
and is accurate to six decimal places

th = theta+theta -sd rvgauss(seed);
r =range + r sd~rv._gauss(seed);
p =psi + psi 8drvgauss(seed);

z =r~cos(th);

x =r~sin(th)*cos(p);
y =r'sin(th)*sin(p);

x sum+ =X;
y-sumn+ = Y;
Z sum += z;

xsq+ =x~x;
ysq+ =y~y;
zsq+ =z~z;
xy+ =xy;
xz+ =x*8
yz+ =y~z;
) /* end of replication ioop 8

x=x-sum/n;
y=y_sum/n;
z = zsum/n;

/* the following values are the covariance elements based on
the simulations data

8/a=xqxx-u)(-)

x-var=(xsq-xxy_sum)/(n-1);
y-var = (ysq-yyz-sum)/(n- 1);

coyvy= (xy-xysum)/(n- 1);
coy-xz =(xz-x z-sum)/(n- 1);
covjrz = (yz-yz-sum)/(n- 1);

/* the next section uses the model to find the predicted covariance
structure

sinth = sin(theta);
sin2th =sinthsinth;
costh = cos(theta);

20



cos2th =costhcosth;
sinpsi = sin(psi);
sin2psi = sinpsi *sinpsi:
cospsi = cos(psi);
cos2psi = cospsi cospsi;

x2_-mod = r var'sin2thcos2psi;
x2_-mod+ = theta var r_sqcos2tht cos2psi;
x2_mod+ =psi-var *r_c.qwsin2th t si;n2psi;

y2_mod =r varsin2th t sini2psi +theta-var*r-sqcos2th*sin2psi;
y2_mod+ =psi_varr_sq'sin2thcos2psi;

z2 mod=r-varcos2th+theta-Var t r-sqsi-n2th:

xv-mod =r -var sin2th tc()ps1 sinps~ + theta var r sqcos2th 'cospsisinpsi;,
xy-mod- =psi-var*r_sq'sinO-th t cospsit sin psi;

xz -mod = r vart sinth t c'-sth tcospsi-theta vart r sq'sinth'costh tcospsi;
yz-mod = r-varsinth~costht siripsi-.theta v ,ar'r sq t sintht costht sinp,,i;

/*perform determinate test

plus = x-var y-vart z-var;
plus + = coy xycovjyzcov xz*2;
minus = coy -xz tcov -xzt y var;
minfus + = coy-xy~covxytz-Nar;
minus + = covyzcovjiz t x-var;
data det = plus-minus;

plus =x2 modty2,modt z2 mod;
plus + = 2'xy_mnodt xz_mod *yz mod;
minus = xy_modxy -modt z2 m iod;
minus + = y2_mod*xz modt xz mod;
minus + = x2_mod'yzjmod tyz_mod;
model-det =plus-minus;

z-test = sqrt(n-1) * (data-det/model-det - 1);
z_test /= sqrt(2*3);
prob = cnf(z_test);

printf('O);
printf("* * * * * * * * -----------------
printf(" Range : %f theta : %f psi : %f 'range, thetapsi);
printf('Od(range) = %f sd(theta) = %f sd(psi) = %f,r -sdthetasdpsi-sd);
printf('Oimulated Var(X) = %f model value was %f,x -varx2_mod);
printf("Oimulated Var(Y) = %f model value was %f',y_var,y2_mod);
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printf('Oimulated Var(Z) = %f model value was %f ',z -var,z2_-mod);
printf("Oimulated Cov(XY) = %f model value was %f cov xy,xyjmod);
printf("Oimulated Cov(XZ) = %f model value was %f',cov-xzxz-mod);
pnintf('Oinulated Cov(YZ) = %f model value was %f',covzyzjmod);
printf("O value of %f with probability of %f',z-testprob);
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