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1 Introduction

1.1 TDF: Scenario of Use

TDF is an intermediate format for distributing software applications. It can be
produced from a very wide range of programming languages. For expository
purposes, the TDF definition is divided into three levels, referred to as Levels 0, 1
and 2.

* Level 0 is suitable for production from ANSI C (and hence any language
that can sensibly be translated into ANSI C).

* Level 1 contains more features and ir ,uitable for a wide range of
languages that do not mandate garbage collection.

Q Level 2 contains the full expressive power of TDF, including provision
for garbage collection.

Section §2 is structured as a definition of Level 0, followed by sections that describe
the additional constructs reeded for Levels I and 2. There is no implication that
separate translators must be provided for the different Levels. A translator for Level
2 should generate as efficient machine code for TDF programs that contain only
Level 0 constructs, as a translator that is purpose-built for TDF Level 0. The
separation is for expository purposes only, although it does indicate a possible
upgrade path for TDF software (starting at support for Level 0 and being
incrementally enhanced to support first Level I and finally Level 2).

TDF is defined in the form of a data-structure which can be thought of as an abstract
syntax for programs. It contains sufficient informaton to allow efficient machine
code to be generated from it for any computer architecture on which the sof, ware is
intended to be run. For transmission, TDF is converted into a linear streaim of bits.
The encoding of this stream of bits is both space efficient and extensible so as to
allow upwards compatibility for any future enhancements or amcndments to the
TDF definition.

TDF can be used for distributing "shrink-wrapped" software. To do this, software
vendors produce a single version of their product in TDF. The software that produces
the TDF for distribution is called a TDF producer. The largest single component of
the producer is likely to be the program that converts a program written in a
high-level language, such as ANSI C, into TDF. We refer to this as the compiler
component of the producer. Once encoded, the TDF is then shipped to any of a
number of target computers owned by a software purchaser. The software that
converts the encoded TDF into an executable program on a target is referred to as an
installer. The largest single part of the installer will be the program that generates
machine code from arbitrary TDF programs. We refer to this as a TDF translator.
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1.2 TDF: Level of Definitir,

TDF constructs a%,. generalisations of the constructs found in different programming
languages. This allows TDF to be the target of compilers for most programming
languages. The set of TDF constructs is designed to satisfy the following
requirements:

* All the information that a programming language can represent which
helps a code generator produce efficient code should be representable in
TDF. This means that programs distributd in TDF can bs as efficient as if
they were compiled with the best compiler on any target.

* Commonly provided hardware features should be easy to use - for
instance, the single instruction "array and bound check" provided by many
machines.

* As many optimisations as possible should be expressible as TDF to TDF
transformations. This means that these optimisations can be written
portably. They might be universal (i.e. beneficial for all languages and all
target machines), in which case they could be included ir, a
general-purpose TDF to TDF optimiser; they might be language specific,
in which case they could be included in any of the compiler components
for that language; or they m:g#t be specific to a class of architectures, in
which case they could be included in translators for that class of target.

To satisfy these requirements TDF has been designed as a wide-spectrum interface,
which at its highest level generalises high-level programinung languages, wh:lst at
its lowest level generalising assembler codes.

1.3 Values within a TDF System

Programming languages have always had the notion of static and dynamic values.
Static values were those known at compile-time whilst dynamic values were
calculated at run-time. The situation in TDF is similar. We will use the term
,.static" to describe values known at translate-time and "dynamic" to describe values
which are calculated at run-time. (Note that in ANSI C the term "static" has a
different meaning.)

1.3.1 Dynamic Values

We will start by considering run-time values. In programming languages, run-time
values tend to be classified by a type system. Types are used for three different
purposes in programming languages. Firstly, types help the programmer to model
data in as natural a way as possible by providing a system of convenient
data-structures - records, arrays etc. Secondly, types allow many structural

2
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programming errors to be detected at compile-time. Lastly, types provide
information to a compiler which helps it to generate efficient machine-code.

The TDF analogues of types are. SHAPEs. They serve only the last of the three
purposes described above -providing the information which translators need in order
to achieve efficient memory management for any programming language on target
architectures. SHAPEs are therefore designed to provide an architecture neutral
abstraction of memory management making no assumptions about the properties of
targets (word length, alignment constraints etc.),

1.3.2 Static Values

Apart from run-time values, there is another set of values in this TDF definition.
These are the pieces of TDF program themselves, which are outv,, by compilers.
These TDF values are classified into their own system of cat.gories which we refer
to as SORTs. SORTs are analogous to the syntactic classes found in high level
programming languages - identifiers, expressions, types etc. For instance, SHAPE is
one of the SORTs, (To say that SHAPE is one of the SORTs means that there are
pieces of TDF program which provide symbolic information about the different
classes of run-time value.)

As well as SHAPE, there are twelve other SORTs.

All pieces of TDF program, whatever SORT they are, are by definition static (ie.
known at translate-time). Values generated by program, whatever SHAPE they are,
are in general dynamic (ie. known only at run-time). However, it may sometimes be
possible to evaluate run-time expressions at translate-time, in which case they are
static after all and may offer opportunities for optimisation.

1.3.3 SORTs and SHAPEs: an Example

The treatment of integers provides a good example of the relation between SORTs
and SHAPEs. Pieces of TDF program which when evaluated at run-time will
generate values are of the SORT EXP. (EXP stands for 'expression'.) Each EXP can
be characterised by the SHAPE of the value which it will generate. For instance, an
EXP which will generate an integer value is said to have an INTEGER SHAPE.
Values of this SHAPE can describe any run-time integer - eg. a dynamically
calculated index of an array.

Pieces of pi,..gram which by contrast stand for integers known at translate-time have
the SORT NAT. (NAT stands for 'natural number'.) They are not EXPs which have
to be evaluated in order to generate their integer values. Instead, they already are integer
values. A pie-ce of TDF program of SORT NAT can describe any compile-time
known integer - eg. a statically calculated bound for trimming an array.

1.3.4 SHAPE- and SORT-correctness

3
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TDF relies on the programming language compiler to determine to what extent the
SHAPE-correctness of programs is enforced. (An example of SHAPE-incorrectness
would be the multiplication of two POINTERs.) Strongly typed languages will
naturally produce SHAPE-correct programs.

Likewise, the SORT-correctness of the TDF produced by a compiler is dependent on
the correctness of the compiler implementation. Neither SORT-correctness nor
SHAPE-correctness need be checked by a TDF translator.

1.4 Identification of Values

TDF provides two different methods of identifying values by "names", one static and
one dynamic. Identifiers which statically identify pieces of TDF program are called
TOKENs. They loosely correspond to ANSI C's parameterised macros but are a
great deal more powerful. Identifiers in TDF program that dynamically identify
run-time values have the SORT TAG. These identifiers correspond to the names or

variables and procedures in programming languages such as ANSI C.

TDF identifiers, be they TAGs or TOKENs, do nothing more than set up name/value
correspondence. All the syntactic sugar associated with identifiers in programming
languages - the use of mnemonic identifiers, the complexities of overloading and
hiding - is provided solely to aid the human readability of programs. It provides no
information which assists in the production of efficient machine code and hence has
no relevance to TDF. All such syntactic sugar is eliminated by compilers to TDF.

If an occurrence of an identifier (TAG or TOKEN) is local to a program being
distributed in TDF, a static integer (of SORT NAT) is used to represent it. If
however the identifier identifies a value that is not purely local to the program - eg.
it is a TAG standing for a system procedure, or a TOKEN whose definition is part of
a library of commonly used TDF program fragments - then a value of SORT
UNIQUE is used. A value of SORT UNIQUE is a truly unique identifier so that no
unintentional identifier clashes can occur. As with Ethernet addresses, the
uniqueness is ensured by a distributing authority which gives an organisation a seed
for a sequence of unique identifiers. The representation of a value of SORT
UNIQUE is a pair of integers of SORT NAT, the first being the seed and the second
being the sequence number.

TAGs are an obvious generalisation of identifiers in programming languages. But
TOKENs are a concept devised specifically to handle the issues that arise when
software is distributed via an ANDF, as opposed to being compiled and translated on
a single machine.

1.5 TDF: Architecture Neutrality

The achievement of complete architecture neutrality has been the first priority in
designing TDF. The slightest shortfall from this goal would completely undermine
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its usefulness as a software distribution format. This section explains how TDF
allows target-dependent features of programming languages - notably ANSI C - to be
completely factored out of producers and dealt with exclusively in each
architecture's installer.

This complete separation of concerns means that a producer can be used to produce
TDF for installation on any architecture with no alteration whatsoever.

Y 1.5.1 SHAPEs SIZEs and OFFSETs

The design of SHAPE constructs which provide a totally symbolic description of the
representation of run-time values is a central issue in the design of TDF and so
warrants a detailed explanation in this section.

1.5.1.1 TUPLE

To begin, consider the C structure:

structfinsigned char c; double f;)

When compiled to TDF, a value of this C-type will probably have TDF SHAPE:

TUPLE(unsigned.char, double)

(TUPLE is TDF's SHAPE construct describing caxesian products.) unsigned cha;" and
double are TOKENs with definitions such as:

unsignedschar = INTEGER(0, 255)
double = FLOAT(2, 56, 0, 8)

A TDF translator will allocate space consistent with the TOKEN definitions -
probably one byte for unsigned-char and eight bytes for double.

The TUPLE SHAPE shown above is a straightforward rewriting of the C type. When
compiling to TDF one cannot afford to throw away the information that the value is
a structure. The reason is that different architectures have different placement and
alignment rules which must be obeyed. Without the knowledge that one was dealing
with a structure, correct and efficient translation to machine code in this case would
be impossible. For example, on a machine which had no rest;iction about accessing
words or floating point numbers at odd byte boundaries one could compactly
represent this structure in 9 bytes; a less liberal one which favoured word addressing
might need 3 bytes of padding after the c-field, so requiring 12 bytes in total; and a
really illiberal one might require 16 bytes by insisting that doubles start on 8-byte
boundaries.

5
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The other SHAPE constructs, besides TUPLE, which require compound information
to describe the symbolic representation are UNION (§ 1.5.1.2), NOF (§ 1.5.1.3.1),
SOME (§1.5.1.3.2), SIZE (§1.5.1.4.1) and OFFSET (§1.5.1.4.2). They are described in
the following sections.

1.5.1.2 UNION

The UNION construct describes a representation which can hold one of a set of
given SHAPEs. The TDF UNION is usually understood by a translator as specifying
that the contiguous area of space required for the UNION is the maximum of the
component areas, taking into account, once again, any alignment constraints.

1.5.1.3 Arrays: NOF and SOME

TDF's SHAPE system distinguishes b:tween arrays whose number of elements are
known at translate-time and those whose number of elements are not known until
run-time. The statically sized arrays are described by the SHAPE construct NOF,
and the dynamically sized by SOME.

1.5.1.3.1 NOF

The NOF (pronounced 'en-of') construct describes the replication of a SHAPE a
translate-time known number of times. As with TUPLE and UNION, alignment
constraints arise in connection with the NOF construct, with padding possibly being
required between consecutive elementi.

An example of the use of NOF is given by the C declaration:

unsigned char s[65536]

which would map to the SHAPE:

NOF(unsigned_char, 65536)

1.5.1.3.2 SOME

A SHAPE constructed using SOME describes a run-time known replication of a
given SHAPE. The same issues of alignment and padding arise as with NOF.

For example:

SOME(double)

describes an array of doubles The number of doubles which the array contains, and
therefore the space requirements for such a value are not known at translate-time.

6
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In order to allow efficient memory management, there are many places where TDF
requires a SHAPE to be statically determinable - ie. its space requirements must be
calculable at translate-time. For instance, a SHAPE used in a declaration must be
statically determinable. Because of the run-time replication occurring in a SOME, a
statically determinable SHAPE can contain no SOMEs unless they are hiddcn
behind a POINTER. (The assumption is that the representation of a POINTER to a
SOME is the same regardless of the number of elements in the SOME.)

The use of SHAPEs constructed by SOME is therefore restricted to constructs which
produce POINTERs and which deliver run-time SIZEs and OFFSETs as described in
the following section.

I.5.1.4 SIZE and OFFSET

We have established the need for retaining detailed information about values'
SHAPE in TDF using TUPLE, UNION, NOF and SOME. Two further SHAPE
constructs - SIZE and OFFSET - complete the picture, providing the calculation of
sizes and offsets required by ANSI C and other languages.

The sizes of values and their offsets within structures or arrays are explicitly
manipulated in ANSI C and also aid the implementation of other high level
languages such as Ada. Sizes and offsets are quintessentially target-dependent and
so TDF treats them in a totally symbolic manner.

1.5.1.4.1 SIZE

The TDF construct shapejize, when applied to a SHAPE, X, delivers at run-time a
value which is the size of X on the host architecture:

shape.size(X)

The SHAPE of the resulting value is SIZE(X). It is important to note that its SHAPE
is not INTEGER, measuring X's size in (say) bytes. In fact, TDF does not allow
SIZEs to mix with values of other SHAPEs in ways that could compromiwe its
architecture neutrality. For instance, no constructs are provided to add mixtures of
SIZEs and INTEGERs. The reasoning behind this design decision becomes clear
when we consider th.; generation of space and the creation of a POINTER to it.

The TDF construct generate generates space and creates a POINTER to it. It takes as

its argument a value of SHAPE SIZE(X):

generate(shapesize(X))

Space for a value of SHAPE X is generated and a POINTER to it delivered. The
important point here is that the number of bytes required is not determined explicitly

7
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by the compiler to TDF and stated as an INTEGER. To allow this would be to
compromise the architecture neutrality of TDF. Instead it is provided at run-time by
shapesize, ensuring that the host architecture's placement and alignment rules are
respected.

(Although the result of shapesize(X) is in general only available at run-time, it is
determinable at translate-time if X contains no SOME constructs unhidden by
POINTERs.)

I.5.1.4.2 OFFSET

Just as SIZEs are motivated by the need to supply a completely architecture neutral
argument to generate and related operators, the SHAPE construct OFFSET is needed
in order to achieve completely architecture neutral pointer arithmetic.

The TDF construct arrayelement offset (§2.1.3.7.6), when applied to a SHAPE, X,
deliver-, a value which is the distance between elements in a array (formed by
SOvlE, r NOF) of elements of SHAPE X on the host architecture:

array elementoffset(X)

The SHAPE of the resulting value is OFFSET(X,X), to be understood as the offset
between two adjacent values of SHAIPE X. As with shape size in the previous section,
it is important to note that its SHAPE is not INTEGER. TDF does not allow OFFSETs
to rr.ix with values of other SHAPEs. For instance, no constructs are provided to add
mixtures of OFFSETs and INTEGERs.

OFFSETs find application in pointer arithmetic operations. For instance, the
construct add.to.ptr takes as its arguments a POINTER and an OFFSET:

add to_ptr(p,
array element offset(X)
)

A new POINTER is delivered which pointu to a space one element removed from
that pointed to by p, assuming p to have been pointing at an array of values of SHAPE
X. The important point here is that the number of bytes' displacement is not
determined explicitly by the comp'ler to TDF and stated as an INTEGER. To allow
this would be to compromise the architecture neutrality of TDF. Instead it is
provided at run-time by arrayelement offset.

(Although the result of arrayelement offset(X) is in general only available at
run-time, it is determinable at translate-time if X containq no SOME constructs
unhidden by POINTERs.)

OFFSETs are also of relevance to TUPLEs. An OFFSET(X,Y) is the OFFSET from
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the start of X to the start of Y in a TUPLE (X,Y). The offset of the j-th element front the
start of a TUPLE(S1,S2 .. Sj ..) is given by:

tupleelementoffset(TUPLE(S1,S2 .. Sj.1), Sj)

and has SHAPE OFFSET(TUPLE(S 1,S2 .. Sj. 1),Sj). (See §2.1.3.7.7.)

Unlike SIZEs, OFFSETs are additive under TUPLEing. Consider, for instance, a
TUPLE(a,b,c). If off] is the OFFSET from the start of the a field to the start of the b
field, and of2 is the OFFSET from the start of the b field to the start of the c field, then
off) + off2 is the OFFSET from the start of the a field to the start of the c field.

Contrast this with the behaviour of SIZEs:

SIZE(a) + does not
SIZE(b) + necessarily SIZE(TUPLE(a,b,c))

SIZE(c) equal

1.5.1.5 SHAPEs SIZEs and OFFSETs: ANSI C

The ANSI C notion of "size" corresponds to a TDF OFFSET between elements of an
array. ANSI C has no explicit notion corresponding to the TDF concept of SIZE, but
an ANSI C to TDF compiler will use the SHAPE constructs SIZE and OFFSET in
implementing C.

ANSI C deals only in fixed size objects or repetitions of fixed size objects. Hence if
SIZE(Z) occurs in the TDF output of an ANSI C compiler then either Z contains no
SOME constructs or else it is of the form SOME(X) where X contains no SOME
constructs. This means that in TDF derivrd from ANSI C all SIZEs and OFFSETs
are constant values and can be determined at translate-time, allowing optimisation.

An account of SHAPEs, SIZEs and OFFSETs as they relate to Ada is given in
§2.2.2.3

1.5.2 Conditional Compilation

TDF has been designed to meet programming languages' requirements with regard
to conditional compilation. In brief, what is required is the ability to choose, at
translate-time, which of two different program fragments to traislate.

For the purposes of ANSI C, only two of the TDF SORTs need be conditionally
translated in this fashion - EXP and VARIETY. These cover vvaiuable pieces of
program and the determinants of the sizes of integers. Two constructs - expcond and
variey_cond - express their conditional compilation. Each supplies one or other of a
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pair of program fragments depending on the value delivered by an expression
intended to be evaluated at translate-time. (See §2.1.5 for further detail.)

Similar constructs providing conditional compilation for all the other SORTs form
part of Level I and are described in §2.2.4.

1.5.3 Tokenisation

A TOKEN identifies a (possibly) parameterised construct whose result can be of any
SORT. The definition of the TOKEN (in procedure or macro terms, its body) can be
supplied at a number of different times in the production or installation process:

9 The TOKEN definition can be supplied by the producer, in which case
that same definition will be distributed to all targets. A typical such usage
would be to make a commonly occurring piece of TDF into a token
definition in order to compress the amount of TDF distributed. The
substitution of the definition for the token will occur in the installer and
will be performed by macro expansion.

The producer can supply a TOKEN definition in two ways. A TOKEN can
be defined over the whole of a unit of TDF being distributed - called a
TDF capsule (see § 1.6 for details). This is done by including its definition
in the list of TOKEN definitions which form part of the capsule.
Alternatively, a TOKEN can be defined over a delimited piec:e of TDF
program using tokenise (see §2.1.4).

* A TOKEN's definition might be supplied by the installer. There are a
number of usages of this:

- a piece of TDF might be used so frequently that its definition is
supplied by all installer.:. This is a similar usage to the one
above but eliminates the need to distribute the even the
TOKEN's definition, which compresses the TDF even more.

• the TDF definition substituted for the TOKEN may be target
specific e.g. the datastructure used by a print procedure. (The
TOKEN definition for this particular datastructure would need
no parameters.)

• The TOKEN may be recognise-d by the translator and implemented
directly. There are a number of uses for this approach:

- A TOKEN might be used to represent a consr'uct such as
vector inner product. A producer might supply a portable
definition of this TOKEN. However an installer on a machine
such as a CPAY might choose to ignore the portable definition
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and make full use of the CRAY's parallelism in implementing
the vector inner product.

- if a new language were invented requiring a new feature to be
added to TDF, it could be defined as a TOKEN which installers
implemented according to its definition.

* The TOKEN might be bound during linking to an external function that
has been precompiled from a programming language, or directly written in
assemblrr. The mechanism for doing this is defined as part of the
installation process.

1.6 Structure of a TDF Capsule

The unit of encoded TDF that is distributed is called a TDF "capsule". A TDF
capsule consists of:

* information to control linking with other TDF capsules and with the host
system.

* information setting limits on the number of TAGs used in the capsule
and other data which help installers run as efficiently as possible.

e a set of TOKEN definitions. The order of the definitions is not
significant, since all the TOKENs are visible in all the definitions. Not all
the TOKENs us.ed in the capsule need be defined here. Those that are not
will be supplied by t0e time translation occurs.

* a set of TAG introduction&. A TAG introduction contains all the
information about the run-time value identified by a TAG except its actual
definition. A TAG introduction is required for all TAGs that are global to
the capsule. (TAGs that are local to procedure bodies do not need
introductions.)

All TAG introductions contain the SHAPE of the value being identified
and an indication of whether the TAG is local to the piece of TDF being
distributed or is external - for example, possibly being shared with other
TDF capsules being distributed. If the TAG is external, its definition may
be supplied in this piece of TDF or it may have to be found elsewhere by
the installer. If a TAG is external then a string of characters is provided
which can be used by the installer, typically to link to a pre-compiled
routine on the target. TAG introductions also contain information specific
to the particular kind of TAG declaration (eg. identity declaration,
variable declaration - see §2.1.3.1).
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As with TOKEN definitions, the order oi TAG introductions is not
significant.

* a set of TAG definitions. A TAG definition associates a TAG
introduction with the TDF definition of a piece of program (of SORT EXP)
which whtn evaluated produces a run-time value.

The order of TAG definitions is not significant.

Optionally one TAG may be identified as the main TAG. This TAG
identifies a piece of program whose evaluation corresponds to the main
body of the program being distributed.

(The contents of a TDF capsule are described in more detail in §4.2.)

1.7 TDF Terminology

1.7.1 Specifying Translator Behaviour

In this document the behaviour of TDF translators is described in a precise manner.
Certain words are used with very specific meanings. These are:

* "undefined": means that the translator can perform any action, including
refusing to translate the program. It can produce code with any effect,
meaningful or meaningless.

9 "shall": when the phrase "P shall be done" (or similar phrases involving
"shall") is used, every translator must perform P.

* "should": when the phrase "P should be done" (or similar phrase
involving "should") is used, translators are advised to perfoim P, and
compiler writers may assume it will be done if possible. This usage
usually relates to optimisations which are being advised.

* "will": when the phrase "P will be true" (or similar phrases involving
"will") it used, the translator may assume that P holds without attempting
to check it. If, in fact, a compiler has produced TDF for which P does not
hold, the effect is undefined.

e "target-defined": means that there is a definition but this varies from one
target machine to another. Each target translator shall define everything
which is said to be "target-defined".

1.7.2 Describing Program Construction

For trnsmission, TDF is compactly encoded as described in §4.3. Though optimal
for the purposes of transmission by machine, the encoded form of TDF is not a
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convenient medium for describing the structure of TDF program to the human
reader. We therefore ,e the following notation for the remainder of this document:

Some SORTs consist of a fixed number of named alternatives. To indicate a
particular alternative, we simply write is name. For instance, the two alternatives
for BOOL appear as:

TRUE

FALSE

Other SORTs consist simply of integers or a subset of integers which can be written
down in the usual way, eg.:

3

Certain SORTs can consist of a tuple of components (ie. they are Cartesian products
of other SORTs). To write these down we list their components. For instance, a
VARIETY may consist of a pair of NATs:

(0,255)

The SORTs EXP and SHAPE are recursively defined, with a considerably richer set
of primitives and constructs than the other SORTs have. All these primitives and
constructs are set out in §2.1, §2.2 and §2.3.

Primitive EXPs are simply named, as in:

top

The application of an EXP construct is denoted as follovs:

goto(2,
top
)

In text, the names of EXP constructs will appear in lower case italics.

The construct goto takes two arguments. In this case, the first, a LABEL, is simply a
NAT. The second is the primitive EXP, top.

As with EXPs, primitive SHAPEs are simply named, as in:

BIT

And the application of a SHAPE construct is denoted as follows:
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NOF(BIT,100)

In text, the names of SHAPE constructs will appear in upper case. (The reader may
already have noticed that the names of the SORTs also appear in upper case - as
does the word SORT.)

The construct NOF takes two arguments, a SHAPE and a NAT. In this case, the first
is the primitive SHAPE BIT, and the second is a NAT.

Since the SHAPEs of values produced when EXPs are evaluated are important, we
generally state the SHAPE when specifying TDF constructs. For instance, an EXP
which evaluates to produce a value of SHAPE BIT is described as an EXP BIT.
TAGs are likewise qualified.

The following example, drawn from §2.1.3.2.21 which specifies the construct truncate,
shows how the EXP and SHAPE notations look in practice:

truncate
ov err:ERRORTREATMENT,
v:VARIETY,

arg:EXP FLOAT(F)

-> EXP INTEGER(v)

The construct's arguments (if any) precede the -> and the result follows it. Each
argument has the form:

name:SORT

The name standing before the colon is for use in any English description which may
accompany the notation.

The example given above indicates that truncate takes three arguments. The first
argument, ov err, has SORT ERROR_TREATMENT. The second, v, has SORT
VARIETY and defines the VARIETY to be used to construct the integer SHAPE in
the result of truncate (see below). The third argument, arg, is an expression of SORT
EXP, and as mentioned before we append the SHAPE of the EXP, FLOAT(F). arg is the
piece of program which will deliver the floating point number to be truncated.

After the -> comes the SORT of the result of truncate. The result is an EXP
INTEGER(v) - a piece of program which, when evaluated, will deliver a value
whose SHAPE is INTEGER(v), the truncated floating point number.

No account is given here of the dynamic semantics of truncate, only its static semantics
- ie. the SORTs and SHAPEs of its arguments and result and the relations between
them. However, when each of the EXP and SHAPE primitives and constructs is set
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out later in this document, an English account of its dynamic semantics
accompanies it.

The format for the description of the construction of a SHAPE is similar. For
instance, the SHAPE construct SIZE:

SIZE
sh:SHAPE

-> SHAPE

takes one SHAPE argument, which for the purposes of any accompanying
English text is named sh, and yields a SHAPE result.

Three further conventions are needed in order to express TDF constrcts. Some
constructs have a variable number of parameters. For instance, makeruple (§2.1.3.9.1)
can be used to make up tuples with any number of components (>1). We write this
as:

i-i=ln SJ

The symbol ,n,, is chosen to indicate cartesian product; i ranges from I to n; and the S,
are the components. In addition it is necessary sometimes to add qualifying
predicates, which we enclose in curly brackets, as in

FIt=n S ( n>1

Some constructs have paameters which may be optionally be omitted. To indicate
this we enclose the SORT of the optional parameter in brackets and apply a postfix
-OPTION, e.g.

(TAG UNTRACED.PROC)OPTION

meaning either a TAG UNTRACEDPROC or nothing.
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2 Definition

2.1 TDF Level 0

This section defines the SORTs, SHAPEs and EXPs which go together to form TDF
Level 0 - ie. the subset of full TDF which is required in order to implement ANSI C.

2.1.1 Level 0 SORTs

There are thirteen SORTs in TDF:

EXP UNIQUE
SHAPE TAG
NAT LABEL
SIGNEDNAT NTEST
VARIETY ERRORTREATMENT
FLOATINGVARIETY EXCEPTIONHANDLER
BOOL

A]' form part of TDF Level 0, apart from EXCEPTIONANDLER, which appears
in Level 1. Each of the Level 0 SORTs is described below:

2.1.1.1 EXP

EXP is short for 'expression'. This is the main SORT in TDF. It describes a piece of
program that generates and manipulates run-time values. A substantial part of this
document (§2.1.3, §2.2.3 and §2.3.3) is taken up with descriptions of the TDF
constructs that are used to create EXPs. The definitions of many EXPs are
recursive; EXPs are built up from sub-EXPs and values of other SORTs. There are
constructs delivering EXPs that correspond to the declarations, program structure,
procedure calls, assignments, pointer manipulations, arithmetic operations, tests
etc. of programming languages.

The types (in programming language terms) of the run-time values generated and

manipulated by EXPs are described by the SORT SHAPE:

2.1.1.2 SHAPE

SHAPEs. :ve TDF translators symbolic size and representation information about
run-time values. Values ul the same SHAPE will be represented in the same way
and occupy the same amount of memory at run-time on a given architecture.

The definition of SHAPEs is recursive and is built up from a set of basic SHAPEs
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such as BIT and PROC and constructs for compound datastructures such as tuples,
arrays (both statically and dynamically sized), pointers and unions. The constructs
for forming SHAPEs are described in §2.1.2, §2.2.2 and §2.3.2.

2.1.1.3 NAT

A value of SORT NAT is a static non-negative integer value of unbounded size.

2.1.1.4 SIGNED-NAT

A value of SORT SIGNEDNAT is a static integer value, positive or negative, of
unbounded size.

2.1.1.5 VARIETY

A value of SORT VARIETY describes the different kinds of integer which are
available at run-time. It is either a tuple of two natural numbers of SORT
SIGNED-NAT which describe the lower and upper bound of integers that must be
representable by the integer value at run-time (as discussed in §2.1.2.3.1), or it can
be one of four specially distinguished VARIETYs.

(SIGNED-NAT, SIGNED-NAT) I
best-signed I
best_unsigned I
unlimited-signed I
unlimitedunsigned

(unlimited signed and unlimited-unsigned do not appear in Level 0, but form part of
Level 2. They are included here for completeness.)

2.1.1.6 FLOATING VARIETY

A value of SORT FLOATINGYARIETY describes the kinds of floating point
numbers which are available at run-time. It is a tuple of four values of SORT NAT.

(NAT, NAT, NAT, NAT)

These give details about the base to be used, the number of digits that must be
representable in th- mantissa and the minimum and maximum numbers that must be
representable by the exponent (see §2.1.2.3.2 for further details).

2.1.1.7 BOOL

A static value of SORT BOOL is either tru: or false.

17
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true I
false

2.1.1.8 UNIQUE

As discussed in § 1.4 UNIQUE is composed of two values of SORT NAT.

(NAT, NAT)

The first NAT identifies the issuer, the second is a sequence number, ensuring
uniqueness among the UNIQUEs issued by a particular issuer.

2.1.1.9 TAG

A value of SORT TAG is an identifier standing for a run-time evaluated expression
of SORT EXP. It is represented by a value of SORT NAT or of SORT UNIQUE (as
described in §2.1.3.1).

NAT I
UNIQUE

Each TAG has an associated SHAPE which is defined in the TAG's introduction (as
described in §4.2),

2.1.1.10 LABEL

A LABEL identifies a piece of program and serves the role of labels in traditional
languages and hardware architectures, ie. a destination for jumps. A LABEL may
either be a NAT or a UNIQUE.

NAT I
UNIQUE

A NAT is used for LABELs which are private to a TDF capsule, but for LABELs
which are required to be accessible between capsules, UNIQUEs are used.

2.1.1.11 NTEST

A value of SORT NTEST identifies one of a number of arithmetir tests. There are
six NTESTs available.

18



TDF Specification

greater_than I
greater_thanorequal I
less_than I
less_thanorequal I
equal I
not-equal

The names are self-explanatory.

2.1.1.12 ERROR-TREATMENT

A value of SORT ERROR_TREATMENT controls program behaviour in the event
that a run-time error occurs. That behaviour can be one of four named possibilities,
or it can be the p:ssing of control to a LABEL.

impossible I
ignore I
standard-exception I
standard-signal I
LABEL

The significance of the different possible ERROR-TREATMENTs is as follows.
(standard exception forms part of Level I and is described in §2.2.1.2.)

2.1.1.12.1 Impossible

This argument is used when the error cannot occur. For example, if the divide
operation is dividing by a constant, which is known not to be zero, then the divOerr
ERRORTREATMENT should be given the value impossible. This permits the
translator to avoid creating any code that might have been needed. This argument
should be produced by compiler writers whenever possible, since it permits the least
and fastest code to be produced.

For example, when translating an arithmetic operation with error treatment impossible on
Vax, if the program at this point has overflow trap flag set or unset, the trap flag
need not be changed.

If the error in question does nevertheless occur, the effect of the operation is
undefined.

2.1.1.12.2 Ignore

This argument is used when the error can occur, but an attempt is to be made to
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carry on. In some operations the effect will be undefined, in others a definition is
given.

For example, when translating an arithmetic operation with error treatment ignore on

Vax, if the program at this point has overflow trap set, it will have to be unset.

2.1.1.12.3 Standard Signal

This argument is used when an error can occur and the desired effect is to call a
signal procedure (see §2.1.3.11) as if from the construct being evaluated. For each
standard exception there is a signal procedure. All the signal procedures which can
be called from an ERROR_TREATMENT shall produce bottom (see §2.1.2.1.1 for an
account of bottom); that is, they can only be left by a long jump or by raising an
exception.

ANSI C uses this method of handling errors.

Cross-reference: Exceptions: Discussion §2.2.3.2.3, Signals: Discussion §2.1.3.11,
bottom §2.1.2.1.1

2.1.1.12.4 LABEL ERROR TREATMENT

This argument is used when an error can occur and the desired effect is to transfer
control to a LABEL. The LABEL is part of this argument. The LABEL will expect
the POINTER value described in §2.2.3.2.3.1. This ERRORTREATMENT can
only be used where the LABEL is available.

Compilers wh.ch are processing exception-like constructs, for example in Ada, and
know at compile-time which exception handler will be used, should introduce a
LABEL and use the error-label argument instead of the standard exception argument.

Cross-reference: LABEL §2.1.1.10, top §2.1.2.1.2, Exceptions: Discussion §2.2.3.2.3,
Availability of LABELs: Discussion §2.1.3.5.1, Jumping with Values: Discussion
§2.1.3.5.2

2.1.2 Level 0 SHAPEs

2.1.2.1 Level 0 Basic SHAPEs

2.1.2.1.1 BOTTOM

BOTTOM is the SHAPE associated with constructs that do not terminate normally,
such as signal procedures. Such a construct can only be left by a long jump or by
raising an exception.
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2.1.2.1.2 TOP

TOP is the SHAPE associated with constructs that return no useful value. For
example when a TDF construct jumps to a LABEL but does not jump with any
value, it jumps with a value of SHAPE TOP.

2.1.2.1.3 BIT

BIT is the SHAPE describing values which have only two possible conditions.

2.1.2.1.4 UNTRACEDPROC

UNTRACEDPROC is the SHAPE describing any procedure value in a non-garbage
collecting system, and those procedure values in a garbage collecting system which
reside in the untraced kernel. (§2.3.2.1.1 provides an account of the Level 0 and I
untraced kernel.) The only ultimate use that can be made of an UNTRACEDPROC
is to apply it to a parameter.

Equality of representation is undefined for UNTRACEDPROCs.

UNTRACEDPROCs are values which may have a limited lifetime. (The concept
of lifetime is introduced in §2.1.3.12.)

Cross-reference: procedures §2.1.3.6

2.1.2.1.5 LABEL-VALUE

LABELVALUE is the SHAPE describing values which represent LABELs. A
LABEL-VALUE can be created by rnke label value. It is used to implement
language features which need to manipulate LABELs as values, such as the long
jump of C and PERFORM in COBOL. A LABEL-VALUE is a value with a limited
lifetime.

Equality of representation for LABELVALUEs is not defined.

Cross-reference: make_labelvalue §2.1.3.5.11, Lifetimes: Discussion §2.1.3.12

2.1.2.2 Least Upper Bound

Every TDF construct producing an EXP specifies the SHAPE of that EXP. The
-EXP's SHAPE may always be the same or it may depend in some way on the
arguments supplied to the construct. For instance, makeint (§2.1.3.2.2) produces an
EXP of SHAPE INTEGER(V), where the VARIETY of the integer is governed by
the VARIETY which is supplied as one of the construct's arguments.

Certain constructs produce EXPs which at run-time deliver a value derived from the
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evaluation of one of a number of argument EXPs, which one being undetermined at
translate-time. In these cases, the SHAPE of the result is deemed to be the Least
Upper Bound or LUB of the SHAPEs of all the EXPs which could provide the result.
See the specification of case (§2.1.3.5.4) for an example of this.

The rules governing the calculation of the LUB of SHAPEs are as follows:

bottom LUB x = x

top LUB x = top

xLUB x=x

if neither x nor y are bottom or top and x*y, then x LUB y = top

(The names bottom and top are chosen because the SHAPEs form a semi-lattice.)

The LUB of a number of SHAPEs is denoted:

LUBH=, n X,

where it is understood that:

LUBi=1 
nX, = X1 LUBX 2 ... LUB X,

LUB features in the descriptions of some of the compound SHAPEs which follow.

2.1.2.3 Level 0 Compound SHAPEs

Compound SHAPEs are SHAPEs which are not primitive, in the sense that the
constructs which form them take arguments.

Circular SHAPEs can be constructed using tokenise (see §2.1.4). Eg.

tokenise(list,
SHAPE,
TUPLE(BIT, PART-POINTER(list))

)

However no SHAPEs will be constructed whose memory requirement is infinite.

2.1.2.3.1 Integer SHAPEs

Most of the integer arithmetic opc"ations - p!us, minus etc. - are defined to work in the
same way on different kinds of integer. If these operations have more than one

22



TDF Specification

argument, the arguments have to be of the same kind, and the result is also of this
kind.

The different kinds of integer are called different VARIETYs. (The SORT
VARIETY was introduced in §2.1.1.5.) These VARIETYs fall into two classes. The
first class comprises VARIETYs which can only express a bounded number of
different integers. These are called limited VARIETYs. Some of the operations on
integers with limited VARIETYs can cause overflow errors. Only the limited
VARIETYs are used by C.

(The other class of VARIETYs, unlimited VARIETYs, appears in TDF Level 2 and
is described in §2.3.2,4. They are used to represent integers of unbounded size.)

Operations which can cause overflow take an ERROR_TREATMENT argument
which specifies how an overflow error is to be treated. These operations are
applicable to limited and unlimited integers alike.

The representions of limited integers are equal if and only if the integers are equal.
Equality is only defined for identical VARIETYs.

SHAPEs describing integers are constructed by the SHAPE construct INTEGER,
taking a value of SORT VARIETY as its argument. Thus:

INTEGER(0,255)

is a SHAPE describing an integer value whose VARIETY is (0,255),
specifying that it may lie between 0 an(' '55 inclusive, and for which a translator
can accordingly plan space.

Limited VARIETYs in which the least limit is less than zero are known as signed

VARIETYs. Limited VARIETYs with the least limit greater than or equal to zero
are known as unsigned VARIETYs.

In addition to the limited VARIETYs whose bounds are specified, two limited
VARIETYs are provided which serve the same purpose as ANSI C's int and
unsigned int. They are named bestsigned and best-unsigned. Integers having these
VARIETYs shall have values at least including the range 1-2^15 to (2A15)-1 and 0 to
(2A16)-l respectively, but otherwise defined to b. the most appropriate for the target
machine.

When any operation delivering an integer belonging to a limited VARIETY
produces a result not lying between the bounds of that VARIETY, an integer
overflow error occurs. Every operation which can produce such a result has an
ERROR-TREATMENT argument which specifies how this error is to be dealt
with.

The LUB of two limited VARIETYs is top unless both the least and greatest requested
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limiting values are the same, or both are the same named VARIETY. Thus no
assumption is made about the size of words in the target.

Cross-reference: maxint §2.1.3.2.16, minim §2.1.3.2.17, Least Upper Bound §2.1.2.2

2.1.2.3.1.1 Recommendations about Integer VARIETYs

Three recommiendations are made about the use of integer VARIETYs.

* First recommendation: when SIGNED_NATs are chosen to define a
limited VARIETY, their values should reflect as precisely as possible
what is needed by the program. This choice should not be influenced by
knowledge of what is available on common machines (except where the
purpose is specifically to take advantage of such knowledge). It is the task
of the TDF translator to make intelligent decisions. Again the use of
integers for indexing provides an example where the translator should be
allowed as free a choice of representation as possible.

9 Second recommendation: whenever it is reasonable, the VARIETYs
best-signed or best-unsigned should be used. (Other VARIETYs are likely
to be more expensive in terms of explicit overflow checking.) The
assumption should never be made that the best VARIETYs will be a 32 bit
integers. It is important for translators to be able to make best VARIETYs
occupy less than 32 bits to allow for addre:.sing and to allow for garbage
collection techniques.

* Third recommendation: integer VARIETYs should be tokenised in such
a way that useful selective alterations may be made purely in the target
machine. (See § 1.5.3 for an account of tokenisation.) It may be that certain
operations involving integers can usefully be transformed to make best use
of an architecture's facilities. So that the relevant integer VARIETYs can
be selectively substituted, the integer arguments to these operations
should belong to a particular tokenised VARIETY, and other integers to
another VARIETY. (An instance of this is array indexing operations,
where freedom to determine the characteristics of the integers involved on
a particular target permits a choice of memory model to be made by the
installer.)

2.1.2.3.2 Floating Point SHAPEs

Most of the floating point arithmetic operations,floatingplus, floating minus etc., are
defined to work in the same way on different kinds of floating point number. If these
operations have more than one argument, the arguments have to be of the same kind,
and the result is also of thic kind.
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The different kinds of floating point number are called FLOATINGVARIETYs.
(FLOATINGVARIETYs were introduced in §2.1.1.6.) SHAPEs describing floating
point values are constructed by the SHAPE construct FLOATING, taking a value of
SORT FLOATINGYARIETY as its argument. Thus:

FLOATING(10,30,0,100)

is the SHAPE of a floating point value of FLOATING-VARIETY
(10,30,0,100). This signifies that its BASE is 10, it has 30 digits in its MAN'ISSA,
its MINIMUM-EXPONENT is 0 and its MAXIMUMEXPONENT is 100!

BASE is tie base with respect to which the remaining numbers are given.

MANTISSADIGITS is the required number of BASE digits, q, such that any number
with q BASE digits can be rounded into a floating point number of the variety and
back again without any change to the q BASE digits.

MINIMUM-EXPONENT is the required integer, n, such that BASE raised to the
power -n can be represented as a non-zero floating point number of the variety.

MAXIMUM-EXPONENT is the required integer such that BASE raised to that
power is representable as a floating point number of the variety.

The base given need bear no relation to the base for floating point numbers in an
target architecture. Commonly, as in ANSI C on all known architectures, the
definition may be given in terms of a decimal base, but the implementation may be
binary.

Equality of representation for floating point numbers is defined to be equality of
representation in the target machine. It is therefore target-defined.

The use of a FLOATINGVARIETY in TDF expresses the intention that a correct
program will only use the values implied by the requirements. A TDF translator is
required to make available a representation such that, if only values within the
requirements are produced, no overflow error will occur. The effect of using values
outside the requirements is undefined, but an overflow error may be produced.

The LUB of two FLOATINGYARIETYs is top unless each of their defining
parameters is equal.

Any number of FLOATINGYARIETYs may be asked for by a TDF program,
though it is recommended that the number should be severely limited. The space
taken in the TDF for transmission of FLOATINGVARIETYs should be minimised
by tokenising (§1.5.3) the required FLOATINGVARIETYs and using the TOKENs
instead of the full form.
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2.1.2.3.2.1 Recommendations about FLOATING VARIETYs

Two recommendations are made about the use of FLOATINGVARIETYs in TDF.

9 First recommendation: when parameters are chosen to define a
FLOATING-VARIETY their values should reflect as precisely as
possible what is needed by the program. This choice should not be
influenced by knowledge of what is available on common machines. It is
the task of the TDF translator to make intelligent decisions.

* Second recommendation: FLOATINGVARIETYs should be tokenised
in such a way that useful selective alterations may be made purely in the
target machine. (See §1.5.3 for an account of tokenisation.) It may be that
a certain operations involving floating point values can usefully be
transformed to meke best use of an architecture's facilitits. So that the
relevant floating point VARLETYs can be selectively substituted, the
floating point arguments to these operations should belong to a particular
tokenised FLOATING_VARIETY, and other floating point values to
another FLOATING-VARIETY.

2.1.2.3.3 POINTER SHAPEs

There are five SHAPE constructs collectively known as POINTERs. They are:

UNTRACEDPOINTER
WHOLEPOINTER
SHAKYWHOLEPOINTER
PART-POINTER
SHAKYPART-OINTER

Only UNTRACEDPOINTER forms part of Level 0. All the others are concerned
with garbage collection and are introduced in Level 2 (see §2.3.2.1).

All the POINTER constructs take a SHAPE as an argument. The SHAPE describes
the value to which the POINTER points. This gives TDF translators the freedom to
implement POINTERs in different ways depending on the SHAPE of the values Lo
which they point.

2.1.2.3.3.1 UNTRACED POINTER SHAPEs

An UNTRACEDPOINTER is a POINTER which points to a space allocated in the
untraced kernel of a computer's memory - untraced, that is, by any garbage collector.

No TDF constructs can create an UNTRACED.POINTER explicitly. This can only
be done by library routines such as calloc and malioc. Likewise, deallocation.
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UNTRACEDPOINTERs have equal representation if and only if they are identical
Je. they are copies of a value produced from one particular POINTER allocation.

The lifetime of an UNTRACED-POINTER depends on the manner of its creation.
If it arises from a variable or variable no init construct, then its lifetime extends over
the body of that construct. However, if it arises from explicit use of a library routine,
then its lifetime is undefined.

Cross-reference: Garbage Collection: Discussion §2.3.2.1.1, Lifetimes: Discussion
§2.1.3.12, sharing §2.1.3.4.1.1

2.1.2.3.4 TUPLE SHAPEs

components: f1 1= In (si:SHAPE)

-> SHAPE

A TUPLE is a cartesian product of the SHAPEs components.

None of the components will be top.

Two TUPLEs have equal representations if their components all have equality of
representation defined and if the components are pairwise equal in representation.
This implies that any padding between fields (put there to satisfy alignment rules)
must have standard values.

TDF requires that the fields be represented in memory in the same order as they
occur in the TUPLE. That is, the OFFSET from one field to the next is always
positive. More than that, TDF requires the representation of the first n fields of a
TUPLE to be unaltered by adding an additional field at the end.

Note: the advantage of implementing a hierarchy of properties in this way outweighs
the possible gains of a more compact representation from re-ordering the elements
in the TDF translator.

2.1.2.3.5 ALIGNED TUPLE SHAPEs

components:,liIn (si:SHAPE)

-> SHAPE

Like TUPLE, an ALIGNED-TUPLE is a cartesian product of the SHAPEs
V+ components. All the rules which apply to TUPLEs apply to ALIGNEDTUPLEs.

The two SHAPE constructs are distinguished in order to provide for the application
of a procedure to more than one parameter. The TDF construct applyproc allows only

27

S....



TDF Specification

one parameter to be supplied to a procedure. In order to model programming
languages which permit more than one parameter to be supplied, a TDF producer
gathers the parameters into an ALIGNEDTUPLE and supplies that single value.
Becatse some architectures have different conventions regarding the packing of
procedure parameters and the disposition of ordinary structures, TDF reflects this
distinction between the two ways of parcelling data so that translation to the targets
can be as efficient as possible.

All the operations applicable to TUPLEs are applicable to ALIGNEDTUPLEs,
except that applyproc will not be used on a TUPLE parameter. ALIGNED_TUPLEs
are created using make aligned.uple (§2.1.3.9.2) rather than make tuple (§2.1.3.9.1).

2.1.2.3.6 UNION SHAPEs

alternatives: nlIn' (s,:SHAPE)

-> SHAPE

A UNION value contains one of the alternatives, si . A discriminant to determine
which alternative is in use is not a part of the value. If it is needed, such
discrimination is performed elsewhere.

UNIONs have equal representation if the values present belong to the same SHAPE

and are equal in representation.

2.1.2.3.7 SIZE SHAPEs

sh:SHAPE

-> SHAPE

The SHAPE of run-time values which measure amounts of memory in an
architecture neutral manner. The notions of SIZE and OFFSET are closely related,
but not identical. An OFFSET is a run-time value which measures the displacement
between spaces holding values in an architecture neutral manner. Given a TUPLE
consisting of a pair of values of SHAPEs a and b, the start of the b value is not
necessarily displaced from the start of the pair by the SIZE of a. There may be memory
alignment requirements which mean that there has to be some dead space between
the end of a and the start of b. In general we need to know both SIZE information and
OFFSET information.

In TDF, SIZE values can be converted to integer values which give the minimum
number of bits of space needed to hold something (this information is needed by
Ada). They can also be turned into integer values giving the minimum number of
bytes of space needed to hold something (this information is needed by ANSI C).

In ANSI C the requirements on SIZEs and OFFSETs are not complex. But Ada
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requires compound values which are made up from components which are of
run-time determined SIZE. This, together with the need for the alignment
information to be given symbolically, makes the general concept of SIZE more
advanced than that required by ANSI C alone.

Translators need to know the structure of the SHAPE of which a SIZE is being
computed. If they did not know, it would be necessary to carry this structure around
at run-time, in order to work out the padding needed within tuples. But if the
translator does have this information, it need only carry around at run-time the
number of bytes (or bits) of space needed. The amount of p..*ding can be computed
at translate-time.

However, translators can only carry around general structure information; they
cannot know the actual (computed) SIZEs of arrnys etc. This general SHAPE
information therefore uses the SOME construct, which gives enough information to

do these calculations.

Note that the role of the SHAPE parameter of SIZE is not at all the same as the role

of the SHAPE parameters in compound SHAPEs. A value whose SHAPE is
SIZE(UNTRACEDPROC), for example, does not contain a UNTRACEDPROC
value, it is merely a measure of the amount of memory occupied by a
UNTRACEDPROC value. This is why the SHAPEs in this position need not be
SOME-free.

SIZE(SHI) LUB SIZE(SH2)

will be top unless SHI = SH2, in which case it will be SIZE(SHI). (See §2.1.2.2

for an account of LUB - Least Upper Bound.)

A more detailed account is given in the section on SHAPEs and SIZEs.

Equality of representation for SIZEs is undefined, however size test may be used to
compare SIZEs.

Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1, generate §2.3.3.1, size_test
§2.1.3.7.4, SOME §1.5.1.3.2, Level 0 Compound SHAPEs §2.1.2.3, Level I SHAPEs
§2.2.2, Level 2 SHAPEs §2.3.2

2.1.2.3.8 OFFSET SHAPEs

a:SHAPE
b:SHAPE

-> SHAPE

The SHAPE of run-time values which measure memory offsets in an architecture
neutral manner. As explained in §2.1.2.3.7, given a TUPLE consisting of a pair of
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values of SHAPEs a and b, the start of the b value is not necessarily displaced from
the start of the pair by the SIZE of a. The need to know this displacement leads to the
requirement for OFFSET values.

A value of SHAPE OFFSET(a,b) is a measure of the displacement of a value of
SHAPE b from the start of a TUPLE(a,b). A value of SHAPE OFFSET(a,a) is a
measure of the displacement between successive values in an array containing a's.

Equality of representation for OFFSETs is undefined.

Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1, SIZE SHAPEs §2.1.2.3.7

2.1.2.3.9 NOF SHAPEs

s:SHAPE,
n:NAT

-> SHAPE

An NOF value is an array of n values of SHAPE s. n is known at translate-time.

NOF values have equal representations if they have the same number of
components, if their components have equality of representation defined and if the
components are pairwise equal in representation.

An NOF value differs from a TUPLE of n values of the same SHAPE in that the
selection of a component by a computed index is allowed. (The construct index is
described in §2.2.3.2.17.)

2.1.2.3.10 SOME SHAPEs

s:SHAPE

-> SHAPE

A SOME value is an array of values of SHAPE s. Unlike NOF, the number of elements
in the array is not known at translate-time.

This SHAPE is not on the same footing as the other SHAPEs. If a value of SHAPE Z
contains no value whose SHAPE is SOME, the amount of space needed to hold a
value of SHAPE Z is known at translate-time. Such a SHAPE Z will be called
SOME-free. Almost all the SHAPEs used in a TDF tree will be SOME-free,
because translators need to know how much space to allow for a value of the
SHAPE. Only values which are handled through POINTERs can have SHAPEs
which are not SOME-free. Only the SHAPEs involved in calculations of SIZEs and
OFFSETs need not be SOME-free. In the TDF specification every construct which
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uses a SHAPE is defined either to be SOME-free or to be not necessarily
SOME-free.
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2.1.3 Level 0 EXPs

The EXP constructs required for implementing ANSI C can conveniently be broken
down into ten broad categories:

Declarations and Naming
Integers
Floating Point Values
POINTERs
Program Structure and Flow of Control
Procedures
SIZEs
NOFs
TUPLEs, ALIGNEDTUPLEs and UNIONs
Miscellaneous

These are described in the following sections. (The notation used for describing the
constructs is introduced in § 1.7.)

2.1.3.1 Declarations and Naming

2.1.3.1.1 Binding: Discussion

A TAG is represented in TDF by either a NAT or a UNIQUE value.

The following constructs and no others introduce TAGs. Each of them determines
program structure.

conditional §2.1.3.5.5, EXCEPIONHANDLER §2.2.1.1, identify §2.1.3.1.3,
make.untraced-procedure §2.1.3.6.2, make.traced.procedure §2.3.3.14, repeat
§2.1.3.5.6, labelled §2.1.3.5.7, variable §2.1.3.1.4, variable..noinit §2.1.3.1.5

During the evaluation of each of these constructs a value, v, is produced which is bound
to a TAG, i, during the ,valuation of an EXP. This means that during the evaluation
of the EXP, evaluation of obtain-tag(t)will produce the value v. Only those TAGs
which have been introduced in this way are available for use in a obtaintag construct.

Each of the TAGs introduced in a TDF capsule will be represented by a different
value, and so no scope rules are needed. Avoidance of re-use of the same identifier
in separate TDF capsules is achieved by using UNIQUE values for rAGs.

2,.3.1.2 Register: Discussion

In order to pass on the information supplied by the ANSI C register construct, the

32



TDF Specification

register argument is supplied in the declarations identify §2.1.3.1.3, variable §2.1.3.1.4
and variable no init §2.1.3.1.5. This BOOL, if true, signifies that the name is
heavily used in the controlled expression and so access to the value should be as fast
as possible. In the case of variable declarations, it also implies that the variable is
only used in contents and assign operations.

2.1.3.1.3 identify

register: BOOL,
visible: BOOL,
name: TAG X,
def: EXP X,
body: EXP Y

-> EXP Y

def is evaluated to produce a value, v. Then body is evaluated. During the evaluation, v is
bound to name. This means that inside body an evaluation of obtain_tag(name) will
produce the value v.

The value delivered by identify is that produced by the evaluation of body. Thus the
SHAPE of the value delivered by identify is zhe same as the SHAPE, Y, of body.

register gives information about the usage of name. If register is true, name will not be
used as a non-local of a procedure. It may also be taken as an indication that name is
heavily used within body, and that allocation to a register, if possible, would be
advantageous.

The TAG given for name will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

visible specifies whether the value bound with name is to be made available in the
event that an exception occurs during the evaluation of body and the exception is
diagnosed. If visible is true, translators shall arrange for it to be available.

In the case where def is simply obtainjtag(t), translators should produce no code, since
this usage of identify amounts to a mere renaming of t as name. Similarly, if def is
constructed by a succession offield operations on obtaintag(t), translators should
produce no code, since this usage amounts to the naming of a part of a value which
has already been named.

Cross-reference: Register: Discussion §2.1.3.1.2, Bindirg: Discussion §2.1.3.1.1,
Exceptions: Discussion §2.2.3.2.3, obtaintag §2.1.3.1.6, field §2.1.3.9.3
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2.1.3.1.4 variable

register: BOOL,
visible: BOOL,
name: TAG POINTER(X),
init: EXP X,
body: EXP Y

-> EXP Y

init is evaluated to produce a value, v. Space is allocated to hold a value whose
SHAPE is X. The space is initialised with v. Then body is evaluated. During the
evaluation, an original POINTER pointing to the allocated space is bound to name. This
means that inside body an evaluation of obtain tag(name) will produce an original
POINTER pointing to the space. If variable occurs inside an UNTRACED_PROC,
then the POINTER will be an UNTRACEDPOINTER. If it occurs inside a
TRACED_PROC, it will be a PART_POINTER.

The value delivered by variable is that produced by the evaluation of body. Thus the
SHAPE of the value delivered by variable is the same as the SHAPE, Y, of body.

register gives information about the usage of name. If register is true, name will not be
used as a non-local of a procedure. It will be used only in assign, contents and part field
constructs. It may also be taken as an indication that name is heavily used within body,
and that allocation to a register, if possible, would be advantageous.

The TAG used for name will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

visible specifies whether the space associated with name is to be made available in the
case that an exception occurs during body and the exception is diagnosed. If visible is
true, translators shall arrange for it to be available.

The POINTER associated with name has a lifetime limited to the execution of body. Any
attempt to use it when body is not being executed is undefined.

The sharing properties of the POINTER are discussed in §2.1.3.4.1.1.

In ANSI C, a use of obtain-tag(name) is equivalent to a use of &. The use of
contents(obtain-tag(name)) is equivalent to the use of the right hand value of a
variable, and the use of assign(obtain tag(name), x) is equivalent to the use of the left
hand value of a variable.

Crossreference: Register: Discussion §2.1.3.1.2. Lifetimes: Discussion §2.1.3.12,
Binding: Discussion §2.1.3.1.1, Exceptions: Discussion §2.2.3.2.3, sharing
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§2.1.3.4.1. 1, generate §2.3.3.1, whole_to_part §2.3.3.2, add_to_ptr §2.1.3.4.2,
subtract-from..ptr §2.1.3.4.3, index §2.2.3.2.17, part-field §2.1.3.4.4, shake §2.3.3.12,
firm §2.3.3.13, original POINTERs §2.1.3.4.1.3, obtain-tag §2.1.3.1.6

2.1.3.1.5 variable no init

register: BOOL,
visible: BOOL,
name: TAG POINTER(sh),
sh: SHAPE, {sh will be SOME-free)
body: EXP Y

-> EXP Y

Space is allocated to hold a value whose SHAPE is sh. The space is not initialised, body
is then evaluated. During the evaluation, an original POINTER pointing to the
allocated space is bound to name. This means that inside body an evaluation of
obtain-tag(name) will produce an original POINTER pointing to the space. If the
contents of the space are examined before a value is assigned into it, the effect is
undefined. If variable no init occurs inside an UNTRACEDPROC, then the
POINTER will be an UNTRACEDPOINTER. If it occurs inside a
TRACEDPROC, it will be a PARTPOINTER.

The value delivered by va-iable no init is that produced by the evaluation of body. Thus
the SHAPE of the value delivered by variable no init is the same as the SHAPE, Y, of
body.

register gives information about the usage of name. If register is true, name will not be
used as a non-local of a procedure. It will be used only in assign, contents and part_field
constructs. It may also be taken as an indication that name is heavily used within body,
and that allocation to a register, if possible, would be advantageous.

The TAG used for name will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not hapnen. See §2.1.3.1.1 for a
discussion of this point.

visible specifies whether the space associated with name is to be made available in the
case that an exception occurs during body and the exception is diagnosed. If visible is
true, translators shall arrange for it to be available.

The POINTER associated with nam, has a lifetime limited to the execution of body. Any
attempt to use it when body is not beiig executed is undefined.

The sharing properties of the POINTER are discussed in §2.1.3.4.1.1.

In ANSI C, a use of obtain_tag(name) is equivalent to a use of &. The use of
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contents(obtain-tag(name)) is equivalent to the use of the right hand value of a
variable, and the use of assign(obtaintag(name), x) is equivalent to the use of the left
hand value of a variable.

If sh is a compound SHAPE, such as a TUPLE, then the space to hold it may contain
areas of padding in order to conform to an architcture's alignment rules. Though
equality between TUPLEs depends solely on the equality of the components,
installers may very well implement this operation by comparing the whole of the
TUPLEs, including any padding. Translators therefore need to make sure that such
padding has a standard vaue. This means that some pseudo-initialisation operation
on the space for this variable may be necessary, even for pure ANSI C translators.

Cross-reference: Register: Discussion §2.1.3.1.2, Lifetimes: Discussion §2.1.3.12,
Binding: Discussion §2.1.3.1.1, Exceptions: Discussion §2.2.3.2.3, sharing
§2.1.3.4.1.1, generate §2.3.3.1, wholetopart §2.3.3.2, add-to-ptr §2.1.3.4.2,
subtract. from ptr §2.1.3.4.3, index §2.2.3.2.17, part-field §2.1.3.4.4, shake §2.3.3.12,
firm §2.3.3.13, obtaintag §2.1.3.1.6

2.1.3.1.6 obtain-tag

name: TAG X

-> EXP X

The value with which the TAG name is bound is delivered. The SHAPE of the result
reflects the SHAPE of the value with which the TAG is bound.

Cross-reference: Binding: Discussion §2.1.3.1.1

2.1.3.2 Integers

2.1.3.2.1 Character Sets: Discussion

TDF, as a representation of program, does not manipulate characters explicitly.
Instead, they are represented by integers. Conventions for mapping characters onto
integers are required.

Characters appear in programs, and need to correspond to the characters which
appear on the printers and displays of target machines. But the hardware of target
machines can use a multiplicity of different collating sequences for chaacters. In
order to achieve portability of TDF programs it is necessary to choose a standard
representation for characters in the TDF itself. Translation to the collating sequence
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for the hardware devices then should occur only on the point of transmission to those
devices. The standard is separate from the definition of TDF.

Since ANSI C is compatible with ASCII and Ada makes it mandatory, TDF
standardises on ASCII.

Other character sets, such as Japanese, may need to be represented as strings written
in programs. But not all target machines have Japanese printers. To conform with
the need for portability of TDF progams a similar standard represention of
characters in TDF and translation at tl.e device will be needed, for those programs
and target machines which use Japanese characters. Multi-byte characters will
probably be used. Similar standards are needed for all such character sets. These
will have to be standardised as the need arises.

The customisation of user's programs to give messages in the user's own language
can be achieved by tokenising the messages (or the collection of messages) and
making the substitutions during installation of the program.

Cross-reference: tokenisation § 1.5.3, TDF: Scenario of Use § 1.1

2.1.3.2.2 make int

v: VARIETY,
value: SIGNED-NAT

-> EXP INTEGER(v)

An integer value is delivered whose value is given by value, and whose VARIETY is
given by v. The integer value value will lie between the bounds of v. This ensures that
value is representable as an integer of VARIETY v.

Cross-reference: integer SHAPEs §2.1.2.3.1, SIGNEDNAT §2.1.1.4

2.1.3.2.3 plus

ov err:ERRORTREATMENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V)

argi and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
The sum of a and b is delivered as the result of the construct, which has the same
SHAPE as the construct's arguments.
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If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ovrerr.

If ov err is ignore and the VARIETY, V, is unsigned, the operation is performed
modulo 2Abits(V).

If ov err is ignore and the VARIETY is signed, the effect of overflow is undefined.

Cross-reference: ERRORTREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1

2.1.3.2.4 minus

ov err:ERROR_TREATMENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INi EGER(V)

argi and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
The difference of a and b is delivered as the result of the construct, which has the
same SHAPE as the construct's arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov-err.

lfoverr is ignore and the VARIETY, V, is unsigned, the operation is performed
modulo 2Abits(V).

If overr is ignore and the VARIETY is signed, the effect of overflow is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1

2.1.3.2.5 mult

ov_err:ERRORJTREATMENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V)

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
The product of a and b is delivered as the result of the coiastruct, which has the same
SHAPE as the construct's arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by overr.
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If ov err is ignore and the VARIETY, V, is unsigned, the operation is performed
modulo 2AbitsA.V').

If ov err is ignore and the VARIETY is signed, the effect of overflow is undefined.

Translators should if possible optimise multiplication by powers of 2 and any

relevant constants.

Cross-reference: ERROR_TREATMIENT §2.1.1.12, integer SHAPEs §2.1.2.3.1

2.1.3.2.6 Kinds of Division: Discussion

Two classes of division (D) and remainder (M) co-sruct are defined. The two

classes have the same definition if both operand- have ihe same sign. Neither is

defined if the second argument is zero.

Class 1:

pDl q=n

where p = n*q + (p Ml q)
sign(p Ml q) = sign(q)
05 Ip MIq1 <IqI

Class 2:

p D2 q = n

where p = n*q + (p M2 q)
sign(p M2 q) = sign(p)
0:5 IpM2 q < Iql

2.1.3.2.7 divi

ov-err:ERROR-EATMENT,
divOerr:ERROR-REATMBENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V

argi and arg2 are evaluated to produce integer values, a and b, of the same VARIETY,

a DI b is delivered as the result of the construct, which has the same SHAPE as inc

construct's arguments.
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If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by overr.

If ov er,- is ignore and the VARIETY is signed, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by divO.err.
If divO.err is ignore its effect is undefined.

T-anslators should if possible optimise division by constants, especially powers of 2.

Cross-reference: ERRORTREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,

Kinds of Division: Discussion(for DI) §2.1.3.2.6

2.1.3.2.8 div2

ov.err:i.RRORTREATMENT,
divOerr:ERRORfTREATMENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V)

arg] and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
a D2 b is delivered as the result of the construct, which has the same SHAPE as the
construct's arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and

handled in the wzy specified by ovrerr.

If ov err is ignore and the VARIETY is signed, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by divO err.
If divOerr is ignore its effect is undefined.

Translators should if possible optimise division by constants, especially powers of 2.
This is possible if V is unsigned.

Cross-reference: ERRORTREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
Kinds of Division: Discussion(for D2) §2.1.3.2.6
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2.1.3.2.9 mod

divOerr:ERRORTREATMENT,
argl :EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V)

arg] and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
a MI b is delivered as the result of the construct, which has the same SHAPE as the

construct's arguments.

If b is zero a divide-by-zero error is caused and handled in the way specified by divO err.
If divO err is ignore its effect is undefined.

Translators should if possible optimise modulus by powers of 2.

Cross-reference: ERRORTREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,

Kinds of Division: Discussion(for M 1) §2.1.3.2.6

2.1.3.2.10 rem2

divOerr:ERROR_TREATMENT,
argi :EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V)

argI and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
a M2 b is delivered as the result of the construct, which has the same SHAPE as the

construct's arguments.

If b is zero a divide-by-zero error is caused and handled in the way specified by divO err.
If divO.err is ignore its effect is undefined.

Cross-reference: ERROR-TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
Kinds of Division: Discussion(for M2) §2.1.3.2.6

2.1.3.2.11 exact-divide

argi :EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V)

argi and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
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The quotient of a and b is delivered as the result of the construct, which has the same
SHAPE as the construct's arguments. b will be an exact divisor of a.

Cross-reference: integer SHAPEs §2.1.2.3.1

2.1.3.2.12 negate

ov.err:ERRORTREATMENT,
arg:EXP INTEGER(V)

-> EXP INTEGER(V)

arg is evaluated to produce an integer value, a. The negation of a is delivered as the
result of the construct, which has the same SHAPE as the construct's argument.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov err.

If ovrerr is ignore, the effect of overflow is undefined.

Cross-reference: ERRORTREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1

2.1.3.2.13 abs

ov err:ERRORTREATMENT,
arg:EXP INTEGER(V)

-> EXP INTEGER(V)

arg is evaluated to produce an integer valie, a. The absolute value of a is delivered as
the result of the construct, which has the same SHAPE as the construct's argument.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov err.

If overr is ignore, the effect of overflow is undefined.

Cross-reference: ERRORTREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1

2.1.3.2.14 Number Conversion: Discussion

There is no automatic conversion between integer VARIETYs.
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Conversions between integer VARIETYs are carried out by changeyvar. In every case,
if the same integer is expressible in the destination VARIETY, this integer
expressed in the destination VARIETY is the result.

Certain other conversions are provided which are easy to implement in 2's
complement machines, and possible in other representations.

When a negative signed integer is convened to an unsigned limited VARIETY
whose maxint is greater than both the modulus of the minint and the maxint of the source
VARIETY, the resulting value is obtained by adding one more than the maxint of the
target VARIETY.

When an integer is converted to an unsigned VARIETY with maxim less than either the
modulus of the minint or the maxint of the source VARIETY, the result is the
remained (M1) on division by the number one greater than the maxint of the target
VARIETY.

All other crnversions are target-defined.

Cross-reference: Kinds of Division: Discussion(for M 1) §2.1.3.2.6, changevar

§2.1.3.2.15

2.1.3.2.15 change var

w:VARIETY,
arg:EXP INTEGER(V)

-> EXP INTEGER (w)

arg is evaluated to produce an integer value, a. If a is expressible in VARIETY w, then
it is delivered as the result of the construct. The result has the SHAPE
INTEGER(w).

Certain other special target-dependent conversions are defined in §2.1.3.2.14. No
other conversions are defined.

Cross-reference: Number Conversion: Discussion §2.1.3.2.14, integer SHAPEs

§2.1.2.3.1

2.1.3.2.16 mnaxint

v:VARIETY

-> EXP INTEGER(v)
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An integer value is created and delivered which is the maximum integer expressible
in the VARIETY, v. Note that this is not necessarily the same as the largest integer
given in the VARIETY definition. For example, a translator might well represent
the VARIETY (5,8) in one byte. In this case, then, the value delivered by
maxint((5,8)) would be 255.

The value delivered by maxint is target-defined.

Cross-reference: integer SHAPEs §2.1.2.3.1

2.1.3.2.17 minint

v:VARIETY

-> EXP INTEGER(v)

An integer value is created and delivered which is the minimum integer expressible
io: the VARIETY, v. Note that this is not necessarily the same as the largest integer
given in the VARIETY definition. For example, a translator might well represent
the VARIETY (5,8) in one byte. In this case, then, the value delivered by
maxint((5,8)) would be 0.

The value delivered by minint is target-defined.

Cross-reference: integer SHAPEs §2.1.2.3.1

2.13.2.18 shift-left

overr:ERRORTREATMENT,
argl:EXP INTEGr P.(VI),
arg2:EXP INTEGER(V2)

-> EXP INTEGER(VI)

argi and arg2 are evaluated to produce values a and places. The result is equivalent
to:

if ,places < 0

then divi(ov err, impossible, a, 2"P1ces)

else mult(ov err, a, 2Places)

The implementation is expected to optimise cases where the number of shifts is a
constant.

Cross-reference: divl §2.1.3.2.7, mult §2.1.3.2.5
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2.1.3.2.19 shift ight

ov-.err:ERRORTREATMNT,
argl:EXP INTEGER(V I),
arg2:EXP INTEGER(V2)

*EXP INTEGER(V I)

argi and arg2 are evaluated to produce values a and places. The result is equivalent
to:

if places > 0
then dili(ov _err, impossible, a, 2P1ces)
else mult(ov-err, a, 2,P1ac)

The implementatioAi is expected to optimise the cases where the number of shifts is
a constant.

Cross-reference: divl1 §2.1.3.2.7, mult §2.1.3.2.5

2.1.3.2.20 round

ov~err:ERROR-TREATMENT,
v:VARIETY,
arg:EXP FLOAT(F)

-> EXP INTEGER(v)

arg is evaluated to produce a floating point value, a. If the nearest integer -' a is
expressible in VARIETY v. then a value of that integer is created and delivered.

i lowever, if that nearest integer cannot be expressed in VARIETY v, an overflow error
is caused and handled in the way specified by ov err.

If ov err is ignore and the VARIETY, v, is unsigned, the operation is performed
modulo 2Abits(v).

If ov-err is ignore and the VARIETY is signed, the effect of overflow is undefined.

Cross-reference: ERROR..TRBATMENT §2.1.1.12, integer SHAPEs §2.1.2.3. 1,
floating point SHAPEs §2.1.2.3.2
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2.1.3.2.21 truncate

overr:ERRORTREATMENT,
v:VARIETY,
arg:EXP FLOAT(F)

-> EXP INTEGER(v)

arg is evaluated to produce a floating point value, a. If the integer part of a is
expressible in VARIETY v, then a value of that integer is created and delivered.

However, if that nearest integer cannot be expressed in VARIETY v, an overflow error
is caused and handled in the way specified by ov err.

If ov err is ignore and the VARIETY, v, is unsigned, the operation is performed
modulo 2Abits(v).

If orverr is ignore and the VARIETY is signed, the effect of overflow is undefined.

Cross-reference: ERRORTREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,

floating point SHAPEs §2.1.2.3.2

2.1.3.2.22 bits to integer

,:VARIETY,
overr: ERRORTREATMENT,
arg:EXP NOF(BIT, N)

-> EXP INTEGER(v)

arg is evaluated to produce an NOF(BIT, N) value, r. This value is convened to an
integer, a, of VARIETY v, which is delivered.

The manner in which a is calculated depends on the VARIETY v. If v is an unsigned
VARIETY, then a is derived as follows:

a = If q: maxint(v)
Then q
Else q - maxint(v) - I

where:
q = Z, 0 N ri * 2i

In this case a is always non-negative.

However, if v is a signed VARIETY, then a is derived as follows:
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a = (IfrN = 1 Then -I Else 1) * Ifq maxint(v)
Then q
Else q - maxint(v) - I

where:
q - Z N-I ri * 2i

In this case a may be negative.

If the result cannot be expressed in the required VARIETY, an overflow error is
caused and handled in the way specified by ov err.

If ov err is ignore and the VARIETY, v, is unsigned, the operation is performed
modulo 2Abits(v).

If ov-err is ignore and the VARIETY is signed, the effect of overflow is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3. 1,

NOF §1.5.1.3.1, BIT §2.1.2.1.3

2.1.3.2.23 divreml

ov err:ERRORTREATMENT,
divO_err:ERRORJREATMENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP TUPLE(INTEGER(V), INTEGER(V))

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
A TUPLE of (a DI b, a Ml b) is delivered as the result.

If the result cannot be expressed in the VARIETY V, an overflow error is caused and
handled in the manner specified by ov err. This only occurs for signed VARIETYs in
the special case of dividing minint by -1.

If overr is ignore and the VARIETY is signed, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by divOerr.
If divO err is ignore its effect is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
Kinds of Division: Discussion(for D l and M 1) §2.1.3.2.6
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2.1.3.2.24 div.reni2

ov err:ERROR-TREATMENT,
div0_err:ERRRTRFATMENT,
argl :EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP TUPLE(INTEGER(V), INTEGER(V))

argi and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
A TUPLE of (a D2 b, a M2 b) is delivered as the result.

If the result cannot be expressed in the VARIETY V, an overflow error is caused and
handled in the manner specified by ov err. This only occurs for signed varieties in the
special case of dividing minint by -1.

If ov err is ignore and the VARIETY is signed, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by divOerr.
If divO.err is ignore its effect is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.1?2 integer SHAPEs §2.1.2.3.1,

Kinds of Division: Discussion(for D2 and M2) §2.1.3.2.6

2.1.3.2.25 integer test

ntest:NTEST,
bad:LABEL,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP TOP

argl and arg2 are evaluated to produce integer values, a and b, of the same integer
VARIETY. These values are compared using the test ntest. If the test succeeds, the
construct delivers a value of SHAPE top. If it fails, control passes to the LABEL bad
with a value of SHAPE top. Since the only way in which the construct can deliver a
result is when the test succeeds, the SHAPE of the result of the construct is itself top.

To give an example, if ntest is greater, then if a is greater than b the construct delivers
a value of SHAPE top. If a is not greater than b is false, control passes to the LABEL
bad.

Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2, NTEST §2.1.1.11, integer
SHAPEs §2.1.2.3.1
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2.1.3.2.26 bitzintegertest

ntest:NTEST,
arg: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP BIT

argl and arg2 are evaluatea to produce integer values, a and b, of the same integer
VARIETY. These values are compared using the test ntest. If the test succeeds, a true
BIT is delivered. Otherwise, a false BIT is delivered.

Cross-reference: NTEST §2.1.1.11, integer SI-APEs §2.1.2.3.1

2.1.3.2.27 integerto.bits

arg: EXP INTEGER(V)

-> EXP NOF(BIT, n)

argi is evaluated to produce an integer value a. A value r of SHAPE NOF(BIT, n) is
created and delivered, where n shall be the smallest number of bits required to
represent the full (ie. minint to maxint) range of values in INTEGER(V).

The value r is chosen so that if a is non-negative

a = Zi_01' r, * 2i

and if a is negative

a = ji__0n'l ri * 2
i - maxint(V) - 1

On twos-complemcnt machines, translators should not need to generate any code to
implement this operation.

Cross-reference: NOF § 1.5.1.3.1, BIT §2.1.2.1.3, integer SHAPEs §2.1.2.3.1
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2.1.3.3 Floating Point Values

These operations are defined for all FLOATINGVARIETYs.

It will be desirable to add floating point operations such as sqrt and sine. The
standardisation and introduction of these operations (by tokenising) is deferred.

2.1.3.3.1 make.floating

f: FLOATINGVARIETY,
mantissa: SIGNEDNAT,
base: NAT,
exponent: SIGNEDNAT

-> EXP FLOAT(f)

A floating point value v of FLOATING-VARiETYf is created and delivered. Thc
value is the nearest to

mantissa x (baseeXp nent)

v will be representable in the FLOATINGVARIETYf.

Cross-reference: floating point SHAPEs §2.1.2.3.2, NAT §2.1.1.3, SIGNEDNAT

§2.1.1.4

2.1.3.3.2 floatingplus

overr:ERRORTREATMENT,
argl:EXP FLOAT(F),
arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATINGVARIETY. The sum of a and b is delivered as the result of the construct,
which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATINGVARIETY F, an overflow error is
caused and handled in the way specified by overr. If overr is ignore its effect is
undefined.
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Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs

§2.1.2.3.2

2.1.3.3.3 floatingminus

ov.err:ERROR_'I"REATMENT,
argl :EXP FLOAT(F),
arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATING_VARIETY. The difference of a and b is delivered as the result of the
construct, which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATINGVARIETY F, an overflow error is
caused and handled in the way specified by overr. If overr is ignore its effect is
undefined.

Cross-reference: ERROR.TREATMENT §2.1.1.12, floating point SHAPEs

§2.1.2.3.2

2.1.3.3.4 floatingmult

overr:ERROR_TREATMENT,
arg l:EXP FLOAT(F),
arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATINGYARIETY. The product of a and b is delivered as the result of the
construct, which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATINGVARfETY F, an overflow error is
caused and handled in the way specified by overr. If overr is ignore its effect is
undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs
§2.1.2.3.2
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2.1.3.3.5 floating div

ov_err:ERRORTREATMENT,
divOerr:ERRORTREATMENT,
argl:EXP FLOAT(F),
arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATINGVARIETY. The quotient of a and b is delivered as the result of the
construct, which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATING_VARIETY F, an overflow error is
caused and handled in the way specified by ov err. If ov err is ignore its effect is
undefined.

If b is zero a divide-by-zero error is produced and handled in the way specified by
divO err. If d',,O err is ignore its effect is undefined.

Cross-reference: ERRORTREATMENT §2.1.1.12, floating point SHAPEs

§2.1.2.3.2

2.1.3.3.6 floatingrem

div0_err:ERRORTREATMENT,
argl:EXP FLOAT(F),
arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATINGVARIETY. a is divided by b and the remainder delivered as the result of
the construct, which has the same SHAPE as the construct's arguments.

If b is zero a divide-by-zero error is produced and handled in the way specified by
divO-err. If divO.err is ignore its effect is undefined.

Cross-reference: ERROR.TREATMENT §2.1.1.12, floating point SHAPEs
§2.1.2.3.2
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2.1.3.3.7 floating, negate

ov_err:ERRORTREATMENT,

arg:EXP FLOAT(F)

-> _XP FLOAT(F)

argi is evaluated to produce a floating point value, a. The negation of a is delivered as
the result of the construct, which has the same SHAPE as the construct's argument.

If the result cannot be expressed in the FLOATINGVARIETY F, an overflow error is
caused and handled in the way specified by ov err. If ov err is ignore its effect it
undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs

§2.1.2.3.2

2.1.3.3.8 float

overr: ERROR-HANDLER,
f:FLOATINGVARIETY,
arg:EXP INTEGER(V)

-> EXP FLOAT(f)

arg is evaluated to produce an integer value, a. An equal floating point value of
FLOATINGVARETYf is created and delivered. Any rounding necessary is
target-defined.

If the integer value a is not representable in FLOATING-VARIETY f an overflow error
is generated and handled by ov err. If ov err is igr.cre the effect is undefined.

Cross-reference: ERRORTREATMENT §2.1.1.12, floating point SHAPEs

§2.1.2.3.2, integer SHAPEs §2.1.2.3.1

2.1.3.3.9 changefloating, variety

ov err:ERRORTREATMENT,
f:FLOATINGVARIETY,
arg:EXP FLOAT(F)

.> EXP FLOAT(f)

ar g is evaluated to produce a floating point value, a. A floating point value is created
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and delivered which has FLOATINGVARIETYf and is equal to a. This conversion is
target-defined.

If a cannot be expressed in FLOATINGVARIETYf, an overflow error is caused and
handled in the way specified by ov err. If ov err is ignore its effect is undefined.

Cross-reference: floating point SHAPEs §2.1.2.3.2

2.1.3.3.10 floatingtest

ntest:NTEST,
bad:LABEL,
argl: EXP FLOAT(F),
arg2:EXP FLOAT(F)

-> EXP TOP

argi and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATING-VARIETY. These values are compared using the test ntest. If the test
succeeds the construct delivers a value of SHAPE top. If it fails, control passes to the
LABEL bad with a value of SHAPE top. Since the only way in which the construct
can deliver a result is when the test succeeds, the SHAPE of the result of the
construct is itself top.

To give an example, if nrest is greater, then if a is greater than b the construct delivers
a value of SHAPE top. If a is not greater than b is false, control passes to the LABEL
bad.

Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2, NTEST §2.1.1.11, floating point
SHAPEs §2.1.2.3.2

2.1.3.3.11 bit floating test

ntest:NTEST,
argI: EXP FLOAT(F),
arg2:EXP FLOAT(F)

-> EXP BIT

argl and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATING-VARIETY. These values are compared using the test nrest. If the test
succeeds a true BIT is delivered. Otherwise, a false BIT is delivered.

Cross-reference: NTEST §2.1.1.11, floating point SHAPEs §2.1.2.3.2
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2.1.3.4 POINTERs

2.1.3.4.1 POINTERs: Discussion

Before describing the Level 0 constructs which create and manipulate POINTERS,
it is useful to introduce four important concepts - sharing, null POINTERs, original
POINTERs and proper POINTERs.

2.1.3.4.1.1 Sharing

Sharing is a concept which relates only to POINTERs. If a POINTER, a, points to a
space, a space, and a POINTER, b, points to a space, bspace,and ajpace and bspace
overlap, then a and b are said to share. In other words, if an assignment operation
(§2.1.3.4.5) to b can change the r.;sult of using a contents operation (§2.1.3.4.6) on a, or
vice versa, then a and b share.

All of the definitions of operations which produce WHOLEPOINTERs,
PARTPOINTERs, SHAKY-POINTERs or variables define the sharing properties
of the POINTERs they create.

Null POINTERs cannot share.

Cross-reference: assign §2.1,3.4.5, contents §2.1.3.4.6, WHOLEPOINTER SHAPEs

§2.3.2.1.2, PARTPOINTER SHAPEs §2.3.2.1.4, null POINTERs §2.1.3.4.1.2

2.1.3.4.1.2 Null POINTERs

Null POINTERs are required in order to provide a suitable value to put at the end of
a list and for similar puposes. Any attempt to obtain the contents of a null
POINTER, or to use it as the destination in an assign operation, is defined to
produce a detectable error.

There is just one null WHOLEOINTER value, the value produced by
make null whole_pointer. Null WHOLEPOINTERs will therefore have equal
representations.

By contrast, there are many possible null PARTPOINTER values.
make_nullpartpointer will always produce the same null PARTPOINTER value.
The following equation illustrates this:

whle.to~par(makenullwhole_pointer)
make nullpartpointer
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However, part field applied to a null POINTER offers the possibility of producing
many different null PART_POINTER values.

If index, add to.ptr or subtract fromrptr are applied to a null POINTER the effect is
undefined.

Cross-reference: add_to.ptr §2.1.3.4.2, assign §2.1.3.4.5, contents §2.1.3.4.6, firm
§2.3.3.13, index §2.2.3.2.17, makenull-partpointer §2.3.3.4,
make-null-whole-pointer §2.3.3.3, part-field §2.1.3.4.4, shake §2.3.3.12,
subtractfrom_pt" §2.1.3.4.3

2.1.3.4.1.3 Original POINTERs

A WHOLE-POINTER (produced by generate) or a PARTPOINTER identified in a
variable or variable no init declaration are original POINTERs. Original
POINTERs are only equal if they are copies of a value produced by one execution of
generate, or one execution of a variable declaration.

Every POINTER is said to be derived from an original POINTER if and only if it is
either a copy of that POINTER or obtained from it by a succession of the following
operations:-

add_to_ptr §2.1.3.4.2, firm §2.3.3.13, index §2.2.3.2.17, partfield §2.1.3.4.4, shake
§2.3.3.12, subtractJrom ptr §2.1.3.4.3, whole-to_part §2.3.3.2

Every POINTER is derived from just one original POINTER.

2.1.3.4.1.4 Proper POINTERs

A proper POINTER is a POINTER which points to a space equal to or contained
within the space to which its parent original POINTER pointed. Thus every original
POINTER is a proper POINTER. A PARTPOINTER may or may not be a proper
POINTER. Both proper and improper POINTERs are legal and defined in TDF, but
an attempt to take the contents of an improper POINTER is undefined, as is the
result of an attempt to assign a value to an improper POINTER.

Cross-reference: original POINTERs §2.1.3.4.1.3, contents §2.1.3.4.6, assign
§2.1.3.4.5
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2.1.3.4.2 addjoptr

ptr: EXP POINTER(X),

off: EXP OFFSET(X,Y)

-EXP PART..YOINTER(Y)

prr is evaluated to produce a POINTER p and off to produce an OFFSET value o. A
PARTPOINRER is created and delivered which points to space for a value of
SHAPE Y offset ahead by o from the space pointed to by p. If p is null, the result is
undefined,

The result may share with p.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
SHAPEs SIZEs and OFFSETs §1.5.1, sharing §2.1.3.4.1.1, Lifetimes: Discussion
§2.1.3.12

2.1.3.4.3 subtractfrorptr

ptr: EXP POINTER(X),
off: EXP OFFSET(WX)

-> EXP PARTOINTER(W)

pir is evaluated to produce a POINTER p and off to produce an OFFSET value o. A
PART-POINTER is created and delivered which points to space for a value of
SHAPE W offset back by o from the space pointed to byp. If p is null, the result is
undefined.

The result may share with p.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
SHAPEs SIZEs and OFFSETs §1.5.1, sharing §2.1.3.4.1.1, Lifetimes: Discussion
§2.1.3. 12

2.1.3.4.4 partfield

component: NAT,
arg-shape: TUPLE p1,1in S,,  (n > 1 (1 <= component <= n)

(the Si 1 <= i < component are SOME-free)
ptr: EXP UNTRACED-.POINTER(X)

->a' EXP UNTRACEDPOINITER(Y) l

-> EXP UNTRACEDPOiNTER(Y) {Y1' =component)
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pir is evaluated to produce a POINTER p to a space, sp, containing a TUPLE of
SHAPE argjhape. A PARTPOINTER(Y) pointing to that space within sp which
contains the component-th field of the TUPLE is created and delivered. The result
and p share.

(In Level 2, a WHOLE-POINTER(X) argument may be supplied, in which case the
SHAPE of the result is PARTPOINTER(X).)

If p is a null POINTER, then so is the result. However, they need not be equal null
POINTERs.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,

sharir g §2.1.3.4.1.1, Lifetimes: Discussion §2.1.3.12, tuple §1.5.1.1

2.1.3.4.5 assign

err: ERROR_TREATMENT,
pt': EXP POINTER(X),
val: EXP Y

-> EXP TOP

ptr and val are evaluated to produce values, p and v. The POINTER, p, will not be
volatile in the sense of ANSI C. The value v is put into the space pointcd to by p. If p is a
null POINTER then a null.pointer error occurs which is handle as specified by err. If
err is ignore its effect is undefined.

If X is not the same as Y, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada, but may not be in TDF
derived from ANSI C.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Oss-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
ERRORITREATMENT §2.1.1.12, Lifetimes: Discussion §2.1.3.12, proper
POINTERs §2.1.3.4.1.4

2.1.3.4.6 contents

is-null:ERRORTREATMENT,
sh: SHAPE, (sh will be SOME-free)
pointer: EXP POINTER(X)

-> EXP sh

58



TDF Specification

pointer is evaluated to produce a value p. The POINTER , will not be volatile in the
sense of ANSI C. Th- content of the space pointed to by p is delivered as the result. If p
i; a null POINTER, then a nuljpointer error is caused and handled according to is null.
if is null is ignore, the effect is undefined.

If sh is not the same as X, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada, but may not be in TDF
derived from ANSI C.

If the space to which p points does not lie wholy within the space pointe.. to by the
original POINTER from which p is derived, the effect is undefined.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,

ERRORREATMENT §2.1.1.12, proper POINTERs §2.1.3.4.1.4

2.1.3.4.7 assign to volatile

err: ERROR_TREATMENT,
ptr: EXP POINTER(X),
val: EXP Y

-> EXP TOP

ptr and val are evaluated to produce values, p and v. The POINTEr p, will be volatile
in the sense of ANSI C. The value v is put into the space pointed to by p. If p is a null
POINTER then a null_pointer error occurs which is handled as specified by err. If err is
ignore its effect is undefined.

If X is not the same as Y, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada, but may not be in TDF
derived from ANSI C.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
ERRORTREATMENT §2.1.1.12, Lifetimes: Discussion §2.1.3.12, proper
POINTERs §2.1.3.4.1.4
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2.13.4.8 contents of volatile

is-null:ERROR_TREATMENT,
sh: SHAPE, (sh will be SOME-free)
pointer: EXP POINTER(X)

-> EXP sh

pointer is evaluated to produce a value p. The POINTER p will be volatile in the sense
of ANSI C. The content of the space pointed to by p is delivered as the result. Ifp is a
null POINTER, then a null pointer error is caused and hand!ed according to is-null. If
is-null is ignore, the effect is undefined.

If sh is not the same as X, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada, but may not be in TDF
derived from ANSI C.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,

ERROR-TREATMENT §2.1.1.12, proper POINTERs §2.1.3.4.1.4

2.1.3.4.9 move-contents

no._overlap:BOOL,
argl: EXP POINTER(X),
arg2: EXP POINTER(Y),
arg3: EXP SIZE(Z) {Z need not be SOME-free)

-> EXP TOP

argi, arg2 and arg3 are evaluated to produce vahl,,,, a, b and c. The amount of data
specified by c is moved from the space pointe?. to by a to that pointed to by b.

no overlap controls the behaviour in the case that thu source and destination spaces
overlap. If it is false, the move will be pt rforned in such a way that the resulting
state of b is the same as if the spaces had not overlapoed.

If no overlap is true, the source and destination spaces will not overlap and
translators can optimise the code which they produce for this construct accordingly.

If X is not the same as Y, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada.
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If the space to which b points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Cross-reference: Pointers: Discussion §2.1.3.4.1, SHAPEs SIZEs and OFFSETs

§1.5.1, Lifetimes: Discussion §2.1.3.12, proper POINTERs §2.1.3.4.1.4

2.1.3.4.10 assign-bits

ptr-arg: EXP POINTER(X),
bit-offset: EXP OFFSET(NOF(BIT,N),Y),
nbits: EXP NOF(BIT, N)

-> EXP TOP

ptrarg, bigufqe: and nbits are evaluated to produce values p, b and n. The NOF value,
n, is assigned into the space pointed to by p starting at the OFFSET b.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Note that there is no requirement that the POINTER's SHAPE be an NOF(BIT, ..).

Cross-reference: NOF § 1.5.1.3. 1, BIT §2.1.2.1.3

2.1.3.4.11 contents bits

number:NAT
ptr: EXP POINTER(X),
bitoffset: EXP OFFSET(NOF(BIT,N),Y)

-> EXP NOF(BIT, number)

ptr and bi _offset are evaluated to produce values p and off. The contents of the space
poi, ted to by p, starting at the OFFSET off, are delivered as a value of SHAPE
NOF(BIT,number).

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3
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2.13.4.12 pointer test

test: NTEST,
bad: LABEL,
argl: EXP POINTER(X),
arg2: EXP POINTER(Y)

-> EXP TOP

argl and arg2 are evaluated to produce POINTER values, a and b. These values are
compared using the test specified by test. If the test succeeds, the construct delivers top.
If the test fails, control passes to the LABEL bad with top. Since the only way in which
pointer test can deliver a rezult is when the test succeeds, the SHAPE of the result
of pointer-test is itself top.

Unless X and Y are the same and a and b are derived from the same original
POINTER, the effect is implementation defined.

Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2, NTEST §2.1.1.11, SHAPEs

SIZEs and OFFSETs §1.5.1

2.13.4.13 bit pointer test

test: NTEST,
argl: EXP POINTER(X),
arg2:EXP POINTER(Y)

-> EXP BIT

argi and arg2 are evaluated to produce POINTER values, a and b. These values are
compared using the test specified by rest. If the test succeeds, a true BIT is delivered.
Otherwise, a false BIT is delivered.

Unless X and Y are the same and a and b are derived from the same original
POINTER, the effect is implementation defined.

Cross-reference: NTEST §2.1.1.11, SHAPEs SIZEs and OFFSETs § 1.5.1

2.1.3.4.14 subtract.pointerm

argl: EXP POINTER(X),
arg2: EXP POINTER(Y)

-> EXP OFFSET(Y,X)
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argl and arg2 are evaluated to produce POINTER values, a and b. If a and b are
derived from the same original POINTER, then the OFFSET of a from b is delivered as
the result.

If a and b are not derived from the same original POINTER, the effect is undefired.

Cross-reference: Pointers: Discussion §2.1.3.4.1, original POINTERs §2.1.3.4.1.3,
SHAPEs SIZEs and OFFSETs § 1.5.1

2.1.3.4.15 ptrjis.null

notjnull:LABEL,

arg: EXP POINTER(X)

-> EXP TOP

arg is evaluated to produce a POINTER value, v. If v is found to be a null POINTER,
the construct delivers a value of SHAPE top. If it is not a null POINTER, control
passes to the LABEL notnull with top.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,

LABEL §2.1.1.10

2.1.3.4.16 ptr not null

is null:LABEL,
arg: EXP POINTER(X)

-> EXP TOP

arg is evaluated to produce a POINTER value, v. If v is found not to be a null
POINTER the construct delivers a value of SHAPE top. If it is a null POINTER,
control passes to the LABEL is-null with top.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
LABEL §2.1.1.10

2.1.3.5 Program Structure and Flow of Control

2.1.3.5.1 Availability of LABELs: Discussion

Only those LABELs which are available can be used in constructs which can cause
control to go to a LABEL. These constructs are:-

assign §2.1.3.4.5, bits_ojrteger §2.1.3.2.22, case §2.1.3.5.4,

63

i/



TDF Specification

change-floating-variety §2.1.3.3.9, contents §2.1.3.4.6, divi §2.1.3.2.7, div2
§2.1.3.2.8, equal-contents §2.2.3.2.1, firm §2.3.3.13, floating.div §2.1.3.3.5,
floatingminus §2.1.3.3.3, floatingmult §2.1.3.3.4, floating-negate §2.1.3.3.7,
floating_plus §2.1.3.3.2, floating.rem §2.1.3.3.6, floating-test §2.1.3.3.10, floor
§2.3.3.9, goto §2.1.3.5.8, integer_test §2.1.3.2.25, minus §2.1.3.2.4, mod §2.1.3.2.9,
div_reml §2.1.3.2.23, divrem2 §2.1.3.2.24, mult §2.1.3.2.5, negate §2.1.3.2.12,
not.equacontents §2.2.3.2.2, plus §2.1.3.2.3, ptr.not null §2.1.3.4.16, rem2
§2.1.3.2.10, round §2.1.3.2.20, shift-left §2.1.3.2.18, shift-light §2.1.3.2.19,
pointer_test §2.1.3.4.12, testeq §2.1.3.10.2, testn : §2.1.3.10.4, truncate §2.1.3.2.21

Labels are made available in components of certain control structure constructs.
They are available only in the places specified in the descriptions of these
constructs. These constructs are:-

conditional §2.1.3.5.5, repeat §2.1.3.5.6, labelled §2.1.3.5.7

The LABELs which are available at the point of a make untracedprocedure or
maketracedprocedure construct are also available in the body of the procedure. The
use, inside the body of a procedure, of LABELs introduced outside it, will limit the
lifetime of the procedure. (The concept of lifetime is introduced in §2.1.3.12.)

conditional, repeat and labelled may contain procedures which use the LABELs as
non-locals (for caveats on this, see §2.1.3.6). In these cases, a change of control flow
using goto, for example, would almost certainly have to be translated to change
more than just the program counter - for instance, the stack-frame current at the
introduction of the LABEL might have to be reset.

The other construct in which a LABEL can be used is make label '.alue (§2.1.3.5.11).
This gives a LABEL_VALUE which can subsequently be used as the parameter of jump
(§2.1.3.5.9) to cause control to go to the LABEL - this is used to implement the C
long jump, for example. For it to be meaningful, the construct which made the
LABEL available must still be being evaluated at the evaluation of the jump (see
lifetimes §2.1.3.12).

Since a LABELYALUE can potentially be used at any procedure level, its
representation must include information defining the scope of the LABEL - at the
very least, the stack-frame of the introduction of the LABEL. At a jump to the
LABEL._VALUE, this scope must still be being evaluated so that it can be
re-instated. A translator writer may want to ensure that this is so by doing a dynamic
test before the jump.

Cross-reference: Lifetimes: Discussion §2.1.3.12, make.untraced-procedure
§2.1.3.6.2, make-traced-procedure §2.3.3.14
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2.1.3.5.2 Jumping with Values: Discussion

In TDF, when control passes from a goto or other construct to a LABEL, a value may
be ransferred as well, and be bound to a TAG introduced at the same place as the
LABEL. This value will often be top, which means that nothing is being transferred,
but sometimes a useful value is involved.

This style of jumping is perfectly natural in computers, although as a matter of fact
few programming languages permit values to be transferred in this way. TDF
provides the facility for two reasons: firstly to allow for its introduction in future
systems and languages; and secondly to provide for optimisaion of looping
constructs. For example, the while ,for etc. constructs of most programming languages
have to achieve their effects by side-effecting variables declared elsewhere. There
may be cases where this approv'ch can be optimised to jumping with a value in TDF.

In an ANSI C program, goto will usually be with top, and it may well be worthwhile
tokenising operations to perform such jumps.

In ANSI C programs, long jumps occur with values; the C long jump is implemented
in TDF using LABEL..VALUEs.

2.1.3.5.3 sequence

statements: fl =1n EXP Yi, (n > O)
result: EXP X

-> EXP X

The EXPs in statements are evaluated in order. Then result is evaluated. The value
delivered by sequence is the value produced by result. Thus the SHAPE of the value
delivered by sequence is the same as the SHAPE of the value produced by result.

2.1.3.5.4 case

control: EXP INTEGER(V),
branches:

li=1n(loweri:SIGNED-NAT, upperi: SIGNEDNAT, branchi:LABEL)

-> EXP TOP

control is evaluated to produce an integer value, c. Then c is tested to see whether it
lies inclusively between each of the lower i and upperi, in order. f and when one of
these tests succeeds, control immediately passes to the LABEL branchi with a value of
SHAPE top. If c lies between none of the pairs of SIGNEDNATs, the construct
delivers top. Since this is the only way in which case can deliver a result, the SHAPE
of the result of case is itself top.

65rev



TDF Specification

The sets of SIGNED_NATs will be disjoint.

Designers of translators should consider when this operation is best implemented by
means of a switch jump and when by means of a succession of tests. In particular,
the special case where there is only one branch should be optimised - it may be
possible to use a compare against bounds instruction; as well as the case of one
branch where the SIGNEDNATs are equal -which could be implemented as a
simple comparison.

Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2

2.1.3.5.5 conditional

sh: SHAPE,
tk: (TAG sh)_OPTION,
first: EXP X,
aitlabel: LABEL,
alt: EXP Y

->EXP (X LUB Y)

first is evaluated. If first produces a result, f, this value is delivered as the result of the
whole construct and alt is not evaluated. However, if a goto(alt lab,exp) is encountered
during the evaluation of first, then evaluation of first will stop, alt will be evaluated and
its result, a, delivered as the result of the whole construct.

Depending on the run-time behaviour of first, the result of the construct may be
provided by first or by alt. The SHAPE of the result, which is determined at
translate-time, is therefore the LUB of the SHAPES of first and alt.

During the evaluation of alt the value, e, produced by exp is bound to tk. This means
that inside alt an evaluation of obtain tag(tk) will produce the value e, with SHAPE sh.
The presence of a TAG tk is optional. If a TAG is not supplied, then no binding
occurs, and the value, e, is "invisible" inside alt.

The TAG used for ik will not be re-used. No rules for the effect of the hiding of one
tag by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

If alt-lab is not used in first, translators should suppress the translation of alt, since it
could never be evaluated.

Note that alt lab is not available in alt. In consequence this operation cannot be used
to provide P loop.
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Cross-reference: LABEL §2. 1. 1. 10, Availability of Labels: Discussion §2.1.3.5. 1,
goto §21.3.5.8, Exceptions: Discussion §2.2.3.2.3, Binding: Discussion §2.1.3.1.1,
Jumping with Values: Discussion §2.1.3.5.2

2.1.3.5.6 repeat

tk: (TAG X)_OPTION,
start: EXP X,
repeat-label: LABEL,
body: EXP Y

-> EXP Y

start is evaluated to produce a value st of SHAPE X. Then body is evaluated. During
this evaluation of body, st is bound to tk. This means that inside body an evaluation of
obtain-tag(tk)will produce the value st.

If body produces a result, b, this is delivered as the result of the whole constuct.
However, if a goto(repeat label,exp) is encountered during the evaluation of body, then
the evaluation of body stops. body is then evaluated afresh.

During this new evaluation, the value, e, produced by exp is bound to ik. If a TAG is not
supplied, then no binding occurs, and the value, e, is "invisible" inside body.

The looping behaviour may be repeated indefinitely.

The TAG used for tk will not be re-used. No rules for the effect of the hiding of one
TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
goto §2.1.3.5.8, Exceptions: Discussion §2.2.3.2.3, Binding: Discussion §2.1.3.1.1,
Jumping with Values: Discussion §2.1.3.5.2

2.1.3.5.7 labelled

starter: EXP X,
branches: n.I'n (shi: SHAPE,

branchjabel: LABEL, [n > 0)
tki: (TAG shi)_OPTION,
branchi: EXP Bi)

-> EXP (X LUB Y LUBi=1n Bi)
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starter is evaluated. If its evaluation runs to completion producing a value, st, then st is
delivered as the result of the whole construct. However, if a goto(branch labelm,exp) is
encountered during the evaluation of starter, then the evaluation of starter stops.
branchm is then evaluated. The result of exp, e, from the goto is bound to tkm (if
supplied) during this new evaluation. This means that inside body an evaluation of
obtain tag(tkm) will produce the value e with SHAPE shm. If the evaluation of
branchm runs to completion, then the value which it produces, bm, is delivered as the
result of the whole construct.

However, if a goto(branch labeln,exp) is encountered during the evaluation of branchm ,
then the evaluation of branch, stops. branchn is then evaluated. (n may equal m.) As
before, the value produced by exp is bound with kn (if supplied) during the evaluation
of branch.

Such jumping may continue indefinitely, but if any of the branches' evaluations runs
to completion producing a value, v, then that value is delivered as the result of the
whole construct.

Depending on their run-time behaviour, the result of the construct may be provided
by starter or one of the branches. The SHAPE of the result, which is determined at
compile-time, is therefore the LUB of the SHAPES of starter and all the branches.

The TAGs used for tk i will not be re-used. No rules for the effect of the hiding of one
TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

Translators should suppress the translation of any branch,, which can never be
evaluated by virtue of the fact that no chain of gotos links it with starter.

Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
goto §2.1.3.5.8, Binding: Discussion §2.1.3. 1. 1, Jumping with Values: Discussion
§2.1.3.5.2

2.1.3.5.8 goto

dest: LABEL,
with:EXP X

-> EXP BOTTOM

with is evaluated to produce a value w. Control then passes to the LABEL dest with the
value w. This operation will only be used where the LABEL dest is available. dest will
expect a value of SHAPE X.

Since the construct can never terminate normally, the SHAPE of its result is bottom.
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Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
Jumping with Values: Discussion §2.1.3.5.2

2.1.3.5.9 jump

labval: EXP LABELVALUE,
with:EXP X

-> EXP BOTTOM

wit: is evaluated to produce a value w. Control then passes to the LABEL represented
by lab val with the value w. This operation will always be evaluated within the
lifetime of the LABEL,_VALUE. lab val will have been made from a LABEL which
expects a value of SHAPE X.

Since the construct can never terminate normally, the SHAPE of its result is bottom.

Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
Lifetimes: Discussion §2.1.3.12, makelabel_value §2.1.3.5.11

2.1.3.5.10 return

with:EXP X

-> EXP BOTTOM

with is evaluated to produce a value w. The evaluation of the immediately enclosing
procedure ceases and the value w is delivered as the procedure's result.

Since the construct can never terminate normally, the SHAPE of its result is bottom.

An example of the application of 'return' is iis use to model the return construct of
ANSI C.

Cross-reference: TRACEDPROC §2.3.2.2, UNTRACED_PROC §2.1.2.1.4,
procedures §2.1.3.6

2.1.3.5.11 make label value

lab: LABEL

-> EXP LABEL.VALUE

A value Iv is created and d-livered which represents the LABEL lab. lv's lifetime
extends over the construct -hich introduces lab.
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In conjunction with jump, this construct serves to implement the long jump of ANSI
C.

Cross-reference: Availability of Labels: Discussion §2.1.3.5.1, Lifetimes:
Discussion §2.1.3.12, LABEL §2.1.1.10, jump §2.1.3.5.9
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2.1.3.6 Procedures

2.1.3.6.1 Procedures: Discussion

The treatment of procedures varies considerably from language to language. Al!
have one thing in common - a procedure call is a means of applying the same piece
of program to different pieces of data. The TDF make untraced procedure and
make traced procedure constructs (§2.1.3.6.2, §2.3.3.14) allow one to specify a TAG
as the formal parameter and to state its SHAPE; the scope of that TAG is the body
of the procedure. If the source language procedure had several parameters, the
formal TAG would identify an ALIGNEDTUPLE of the parameters. (See §2.1.2.3.5
for an account of ALIGNEDTUPLE.)

Where languages differ is in treating procedures as data-objects in their own right.
Ada, for example, does not allow procedures to be data-objects at all; the only thing
that one can do with an Ada procedure is to call it. Pascal allows one procedure to
be a parameter of another, but does not allow assignment of procedure values or the
delivery of a procedure as the result of another. C allows both of these but restricts
the declaration of procedures to a global level In languages like ML cr Lisp, the use
of procedures as first-class data objects is of t[e essence and provides a very
effective means of data encapsulation.

These differences are reflected in the way in which the non-local nccess from within
a procedure is compiled. Pascal and Ada were both designed to be imvlemented on a
stack with the accessibl! non-local stack-frames being transmitted to the procedure
at its call in some kind of a display. To access a Pascal non-local, one simply digs it
out from one of the stack frames in the display. The target representation of a Pascal
procedure as a data-object is simply the address of its code together with the means
to construct its display - usually just the stack-frame in which the procedure was
declared. In C the situation is simpler since any non-local of a procedure is global.

In these three languages, the TDF representation of a non-local value is likely
simply to be a TAG used within the procedure body, declared outside it; the
translator is free to translate non-local access by display manipulation. In a
language like ML which allows procedures as frst-class data -objects, this
straightforward approach is likely to be inadequate - it might preclude the re-use of
stack-frames, for example. Hence, an ML procedure is likely to be compiled as a
closure, represented in TDF as a TUPLE of a POINTER to a set of non-local values
and a TDF prccedure with no non-local TAGs. A ML procedure call would be
translated into TDF as a call of this procedure with the POINTER to the non-locals
as an extra parameter. Other intermediate positions are possible; these depend on
other choices taken by the compiler, bearing in mind the likely non-local usage in
the language.

The use of a non-local TAG in a procedure represents a promise by the compiler that
the procedure will not be used outside the evaluation of the body of the declaration
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which introduceJ the TAG (see §2.1.3.12). This applies equally to non-local
LABELs - if the procedure body uses a LABEL then the procedure will not be
called outside the evaluation of the EXP which introduced the LABEL.

In Pascal, for example, this promise is always valid by reason of the structure of the
language. In C, it can be made for non-local values but not for non-local labels
introduced by long jump. For other languages, like Algol68, such a promise is not in
general valid but may be sustainable in particular cases by analysis of the procedure
involved. If a compiler cannot make the promise for non-local values of a procedure,
then it can and should produce closures according to the ML model described above.

The situation is slightly different for non-local labels and long jumps. To implement
long jumps out of a procedure which might violate the lifetime rules, the compiler
should create LABELVALUEs (using make label value §2.1.3.5.11) to be used as a
parameter to the jump operation (§2.1.3.5.9) in the code of the procedure. (A
LABELVALUE represents a LABEL as a run-time value.) The LABELVALUE
could be passed into a procedure as a (global) TAG in C, while in other languages it
might be part of the non-locals of a closure. A translator writer concerned to detect
whether a jump is to a LABEL which no longer exists can insert a dynamic test to
see whether it does (see §2.1.3.5.1).

2.1.3.6.2 make untraced procedure

paramshape: SHAPE, {param-shape will be SOME-free)
param: TAG UNTRACEDPOINTER(paramshape),
body: EXP X

-> EXP UNTRACED PROC

Evaluation of make untraced.procedure delivers an UNTRACEDPROC. When this
procedure is applied to a parameter using apply_proc, space is allocated to hold a value
of SHAPE paramshape. The value produced by the parameter, which will be of the
correct SHAPE, is used to initialise it. body is evaluated. During the evaluation, param is
bound to an original UNTRACEDPOINTER pointing to the space. This means that
evaluation of obtain tag(param) will produce that POINTER. The value produced by
body is delivered as the result of the apply.proc construct.

The TAG used for param will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

TAGs other than param which are used in body but not declared within it are called
non-local TAGs. If and when the procedure is applied and its body evaluated, these
TAGs obey the same bindings that obtained when the procedure was constructed.

The lifetime of the procedure value is the intersection of the evaluations of the
bodies of all the declarations of its non-local TAGs.
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If a programming languaage permits more than ojie parameter, the compiler to TDF
will use nrake-untraced Jprocedure to construct a TDF procedure whose parainjhape is
ALIGNED-.TUPLE (..) (see §2.1.2.3.5). Ihe elements will usually be identified
(§2.1.3.1.3).

Cross-reference: UNTRACED-.PROC §2. 1 .121.4, Lifetimes: Diktussion §2.1.3.12,
Binding: Discussion §2.1.3. 1. 1, Exceptions: Discussioa §2.2.3.2.3, apply..proc
§2.1.3.6.6, ALIGNEDTUPLE SHAPEs §2.1.2.3.5, identify §2.1.3.1.3

2.1.3.6.3 mna3ce null untracedjprozedure

-> EXP UNTRACEDPROC

A null UNTRACEDLPROC is created and delivcred. If this PRC)C is applied, the
effect is undefined. The null UNTRACED-.PRQC M~y be tested for using proc-is-null
or proc not null.

Cross-reference: UNTRACEDF'OC §2.1.2.1.4, apply..proc 2. 1.3.6.6, proc-is-.ndll

§2.1.3.6.4, proc-.notjnull §2.1.3.6.5

2.1.3.6.4 proc isfnl*i

not-tiull:LABEL.
procedure: EXP PROC

-> EXP TOP

procedure is evaluated to produce a TRACED or UNTRACED.Y1POC value, p. If p is
found to be a null PROC the construct delivers a value of SHAPE iop. If it is not a null
PROC, control passes to the LABEL noi null with top.

2.1.3.6,5 proc not null

is..null:L.ABEL,
procedure: EXP PROC

-> EXP TOP

procedure is evaluated to produce a TRACED or UNTRACED-.PROC value, p, If p is
found not to be n null PROC, the construct delivers a value of SHAPE top. If is not a
null PROC. control passes to the LAB~EL is. null with top.
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2.1.3.6.6 applyproc

result-shape: SHAPE, (resultshape will be SOME-free)
proc: EXP PROC,
arg: EXP X

-> EXP result_shape

proc and arg are evaluated to produce values p and a. The value p will either be an
UNTRACEDPROC or a TRACED.PROC. It is applied to a. The result of this
application is delivered as the result of the apply.proc construct. It will have SHAPE
resultshape.

Cross-reference: TRACEDPROC §2.3.2.2, UNTRACEDPROC §2.1.2.1.4

2.1.3.6.7 obtain currentproc

-> EXP PROC

The procedure currently executing is delivered. It may be TRACED or
UNTRACED. When the result of obtain currentrpror is supplied as the procedure
argument to applyproc, translators should perform a tail-recursion optimisation if
this is legitimate.

obtain curre_proc will not be used in contexts where no procedure is running - eg.
the outermost level of a TDF capsule.

Cross-reference: TRACEDPROC §2.3.2.2, UNTRACEDPROC §2.1.2.1.4,
apply-proc §2.1.3.6.6, Structure of a TDF Capsule § 1.6

2.13.7 SIZEs and OFFSETs

2.13.7.1 shapesize

sh: SHAPE (sh will be SOME-free)

-> EXP SIZE(sh)

A SIZE value is created and delivered which is the size of the SHAPE sh. The SH'XPE sh
will be neither bottom nor top and will not contain SOME, unless hidden behind a
POI NTER. The value delivered by shape.size is known at translaie timc.
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Cross-reference: SHAPEs SIZEs and OFFSETs § 1.5. I

2.1.3.7.2 tuple size

v: VARIETY,

pans: rInl1=n (partt: EXP SIZE(SHi,) n 1)

-> EXP TUPLE (TUPLE(fIi 1=' OFFSET(TUPLE(nj=Ii(SH)),SHj+I)),
SIZE(TUPLE nIlin SHi)

)

(SHi need not be SOME-free)

All parts are evaluated to produce SIZE values. A TUPLEfJ with n-1 fields is created.
Its fields are the OFFSETs of each of the last n-1 fields of a TUPLE which has
components of the sizes given by parts from the beginning of the TUPLE (in the given
order). A SIZE value J2 is created which gives the SIZE of a TUPLE which has n
components of the sizes given by parts (in the given order). Finally a TUPLE off] and
J2 is created and delivered.

The OFFSET of the first field of a TUPLE is by definition nought, and so there is no
need for tuple size to compute it.

If n>2 and the same operation is performed for a TJPLE consisting of the first n-1
fields, the n-2 OFFSETs resulting shall be the same as the first n-2 OFFSETs of the
original calculation. This implies that adding an extra field at the end shall not
affect the positions of the earlier fields.

Given a POINTER to a TUPLE, pt, a POINTER to its i-th field can be obtained by
adding the OFFSET of the i-th field, got from tuplesize, to pt using add to.ptr.

Cross-reference: SHAPEs SIZEs and OFFSETs § 1.5.1, add.to ptr §2.1.3.4.2

2.1.3.7.3 arraysize

size: EXP SIZE(X), IX need not be SOME-free)
number: EXP .NTEGER(V)

-> EXP SIZE(SOME(X))

size and number are evaluated to produce values s and n. A SIZE value is created and
delivered which is the size of the space occupied by an array consisting of n copies of a
value of size s.
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Cross-reference: SHAPEs SIZEs and OFFSETs § 1.5.1

2.1.3.7.4 size test

ntest: NTEST,
bad: LABEL,
argl: EXP SIZE(X), (X need not be SOME-free)
arg2: EXP SIZE(Y) (Y need not be SOME-free)

-> EXP TOP

argl and arg2 are evaluated to produce size values, a and b. These values are
compared using the test ntest. If the test succeeds, the construct delivers a value of
SHAPE top. If it fails, control passes to the LABEL bad with a value of SHAPE top.

Cross-reference: LABEL §2.1.1.10, NTEST §2.1.1.11, TOP §2.1.2.1.2, SHAPEs

SIZEs and OFFSETs § 1.5.1

2.1.3.7.5 bit.size test

ntest: NTEST,
argl: EXP SIZE(X), (X need not be SOME-free)
arg2: EXP SIZE(Y) (Y need not be SOME-free)

-> EXP BIT

argi and arg2 are evaluated to produce size values, a and b. These values are
compared using the test ntest. If the test succeeds, a true BIT is delivered. Otherwise, a
false BIT is delivered.

Cross-reference: SHAPEs SIZEs and OFFSETs § 1.5.1

2.1.3.7.6 array element offset

sh: SHAPE (sh need not be SOME-free)

-> EXP OFFSET(shsh)

The OFFSET between two adjacent elements in an array (ie. an NOF or a SOME) of
values of SHAPE sh is calculated and delivered.

Ctoo-m,.,e SHAPE. SIZEs OFF er Ts F .4., oo;n..bis §.21. A 10,

contentsbits §2.1.3.4.11
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2.1.3.7.7 tuple element offset

tuplesh: SHAPE (sh need not be SOME-free)
sh: SHAPE (sh need not be SOME-free)

-> EXP OFFSET(tupleshsh)

The OFFSET of the second element in a value of SHAPE TUPLE(tuplesh,sh) is
calculated and delivered.

Cross-reference: SHAPEs SIZEs and OFFSETs § 1.5.1

2.1.3.7.8 size in-bytes

v:VARIETY,
arg: EXP SIZE(X) {X need not be SOME-free)

-> EXP INTEGER(v)

arg is evaluated to produce a value, a, of SHAPE SIZE(X). The size, a, measured in
bytes, is delivered as an integer of VARIETY v. This target-dependent construct is
explicitly required by ANSI C.

Cross-reference: SHAPEs SIZEs and OFFSETs

2.1.3.8 NOFs and SOMEs

2.1.3.8.1 make nof

parts: l=1 n EXP P (n>0)

-> EXP NOF(P, N)

The parts are evaluated. An NOF is created and delivered which is composed from
the values produced, in the same order as they occur in parts.

Cross-reference: NOF § 1.5.1.3.1
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2.1.3.8.2 trim no!

first: NAT,
number: NAT,
arg:EXP NOF(S, N)

-> EXP NOF(S, N)

arg is evaluated to produce an NOF value, a. A new NOF value consisting of number
components from a, starting atfirst is created and delivered as the result of trim nof.
Both first and first+number-1 will lie be(ween I and N.

Cross-reference: NOF §1.5.1.3.1

2.1.3.8.3 concat nof

argl:EXP NOF(S, M),
arg2:EXP NOF(S, N)

-> EXP NOF(S, M+N)

argi and arg2 are evaluated to produce values a and b which are NOFs derived from
the same SHAPE, S. A new value is created and delivered with SHAPE
NOF(S,M+N). Its first M components are copies of the components of a and the last N
components are copies of the components of b.

Cross-reference: NOF §1.5.1.3.1

2.1.3.8.4 and

argl: EXP S,
arg2: EXP S

-> EXP S (S = NOF(BIT,N) I INTEGER(V) I BIT)

argi and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.
They may be NOF(BIT,N), INTEGER(V) or BIT. They are evaluated to produce
values a and b. The bit-wise intersection of a and b is delivered as the result.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, Integer SHAPEs §2.1.2.3.1
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2.1.3.8.5 or

argl: EXP S,
arg2: EXP S

-> EXP S (S = NOF(BIT,N) I INTEGER(V) I BIT)

argi and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.
T ,,y may be NOF(BITN), INTEGER(V) or BIT. They are evaluated to proalice
values a and b. The bit-wise union of a and b is delivered as the result.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, Integer SHAPEs §2.1.2.3.1

2. 1.3.8.6 xor

argl: EXP S,
arg2: EXP S

-> EXP S (S = NOF(BIT,N) I INTEGER(V) I BIT)

argi and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.
They may be NOF(BIT,N), INTEGER(V) or BIT. They are evaluated to produce
values a and b. Th: bit-wise exclusive or of a and b is delivered as the result.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, Integer SHAPEs §2.1.2.3.1

2.1.3.8.7 not

arg: EXP S,

-> EXP S (S = NOF(BIT,N) I INTEGER(V) I BIT)

arg has the same SHAPE as the result. It may be NOF(BIT,N), INTEGER(V) or
BIT. It is evaluated to produce a value a. The bit-wise negation of a is delivered as the
result.

Cross-reference: NOF § 1.5.1.3.1, BIT §2.1.2.1.3, Integer SHAPEs §2.1.2.3.1

2.1.3.8.8 n copies

exp: EXP X,
number: EXP INTEGER(X)

-> EXP SOME(X)
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exp ard number are evaluated to produce values e and n. A SOME value is created and
delivered which contains n copies of the value e.

Cross-reference: SOME § 1.5.1.3.2

2.1.3.9 TUPLEs, ALIGNED TUPLEs and UNIONs

2.1.3.9.1 make.tuple

parts: ril n EXPPi

-> EXP TUPLE (n,=, n Pi)

The parts are evaluated. A TUPLE is created and delivered which is composed from
the values produced, in the same order as they occur in parts.

Cross-reference: TUPLE SHAPEs §2.1.2.3.4, SHAPEs SIZEs and OFFSETs § 1.5.1

2.1.3.9.2 make.alignedtuple

parts: l=1
n EXP Pi

-> EXP ALIGNED_TUPLE (rlIn Pn)

The parts are evaluated. An ALIGNEDTUPLE is created and delivered which is
composed from the values produced, in the same order as they occur in parts.

Cross-reference: ALIGNEDTUPLE SHAPEs §2.1.2.3.5, SHAPEs SIZEs and
OFFSETs § 1.5.1

2.1.3.9.3 field

component: NAT,

tuple: EXP TUPLE (fl n. P1) (n > 1) ( 1 :5 component :< n)

-> EXP Pcomponent

tuple is evaluated to produce a TUPLE value, t. The component-th field of t is delivered
as the result of thefield construct. The SHAPE of the result is the SHAPE of the
component-th element of tuple.
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(This construct may also take an ALIGNEDTUPLE argument.)

Cross-reference: TUPLE SHAPEs §2.1.2.3.4, ALIGNEDJUPLE SHAPEs
§2.1.2.3.5

2.1.3.9.4 pad

union-shape: UNION f'li.l Xi, (n > 0)
arg: EXP Y (3k. Xk = Y)

-> EXP UNION (r=ln Xi)

arg is evaluated to produce a value, a. A value of SHAPE union_shape is created from a
and delivered. (This may require the addition of padding.) arg's SHAPE, Y, will be one
of the Xi.

Cross-reference: UNION §1.5.1.2

2.1.3.9.5 unpad

alt: SHAPE, (alt will be SOME-free)
union: EXP UNION (fl.=,l Pi) {n > 1) (3k. Pk= alt)

-> EXP a),

union is evaluated to produce a value u. The SHAPE of u will be UNION(..) and one of
its components will be air. The value of u is then delivered, but now with SHAPE alt. If
u in fact has some other SHAPE, the effect is undefined.

Most translators will not generate any code for this operation. It changes the SHAPE
of the expression.

Cross-reference: UNION § 1.5.1.2

2.13.10 Miscellaneous

2.1.3.10.1 make top

-> EXP TOP

A value of SHAPE top is created. This value can be represented by no bits and so no
action need be taken to create it.
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A value of SHAPE top is needed for formal purposes in cases where an EXP must be
supplied, but where it is not desired to give any value. An ANSI C procedure taking
a void argument, and an ANSI C union having a void field are examples of this need.

Cross-reference: TOP §2.1.2.1.2, apply.proc §2.1.3.6.6, UNION § 1.5.1.2

2.1.3.10.2 test.eq

unequal: LABEL
argl: EXP X,
arg2: EXP X,

-> EXP TOP

argi and arg2 are evaluated to produce values of the same SHAPE, X. The
representations of these values are cumpared. If they are found to be equal the
construct delivers a value of SHAPE top. If they are found to be unequal, control
passes to the LABEL unequal with a value of SHAPE top.

Translators should, if possible, optimise this construct in cases where either
argument is constant. In particular, comparison with the constants true or false may be
common and tokenising these is likely to prove useful.

Cross-reference: LABEL §2.1. 1. 10, TOP §2.1.2.1.2, tokenisation § 1.5.3

2.1.3.10.3 bit test eq

argI: EXP X,
arg2: EXP X,

-> EXP BIT

argl and arg2 are evaluated to produce values of the same SHAPE, X. The
representations of these values are compared. If they are found to be equal, a true BIT is
delivered. Otherwise, a false BIT is delivered.

2.1.3.10.4 test-neq

equal: LABEL
arg I: EXP X,
arg2: EXP X,

-> EXP TOP

argi and arg2 are evaluated to produce values of the same SHAPE, X. The
representations of these values are compared. If they are found to be unequal the
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construct delivers a value of SHAPE top. If they are found to be equal control passes to
the LABEL equal with a value of SHAPE top.

Translators should, if possible, optimise this construct in cases where either
argument is constant. In particular, comparison with the constants true or false may be
common and tokenising these is likely to prove useful.

Cross-reference: LABEL §2.1.1. iC, TOP §2.1.2.1.2, tokenisation §1.5.3

2.1.3.10.5 bitjestjneq

argl: EXP X,
arg2: EXP X,

-> EXP BIT

argl and arg? are evaluated to produce values of the same SHAPE, X. The
representations of these values are compared. If they are found to be unequal, a true BIT
is delivered. Otherwise, a false BIT is delivered.

2.1.3.10.6 clear shape

sh:SHAPE

-> EXP sh

An empty EXP of SHAPE sh is created and delivered.

2.1.3.10.7 expevaluated

const: EXP X

-> EXP X

const will be an EXP formed from any combination of the operations listed below,
and no other operations. This ensures that it can be completely evaluated at
translate-time, leaving no further evaluation necessary at run-time.

make_int §2.1.3.2.2, maxint §2.1.3.2.16, minint §2.1.3.2.17, makejfloating §2.1.3.3.1,
true §2.2.3.2.10, false §2.2.3.2.11, shapesize §2.1.3.7.1, make_tuple §2.1.3.9.1,
makenof §2.1.3.8.1, pad §2.1.3.9.4, empty-diagnostics §2.2.3.2.6, make_unique_val
§2.3.3.8, make_null_wholepointer §2.3.3.3, make-null-partpointer §2.3.3.4,
integertobits §2.1.3.2.27, whole-to.part §2.3.3.2, pack §2.3.3.11

also the following with SOME-free SHAPE parameters:
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sizeinbytes §2.1.3.7.8, sizeinbits §2.2.3.2.9, shapesize §2.1.3.7.1,
arrayelement.offset §2.1.3.7.6, arraysize §2.1.3.7.3, unionsize §2.2.3.2.16

also make.untraced-procedure(§2.1.3.6.2) and make-traced-procedure(§2.3.3.14)
with a procedure of unbounded lifetime (§2.1.3.12).

exp.evaluated is used to indicate that a constant expression which a program
requires to be evaluated repeatedly because, say, it lies in a loop, can safely be
optirnised to being evaluated only once at the outset.

2.1.3.11 Signals: Discussion

ANSI C requires error handling (eg. of overflow) to be done by signals, rather than by
exceptions. TDF assumes that a signal handling procedure is supplied for each
POSIX process and that procedures can be assigned into places defined by this
procedure to handle the signals. The p:.xcedure to do this assignment will be
identified in TDF by means of an agreed TAG. (See §2.1.1.12.3 for an account of
how the relevant signal is raised by an operation which fails.)

In TDF the signals are identified by unique values, whereas in C they are said to be
identified by integers (ANSI C 4.7). In a POSIX implementation the uniques must be
translated into the appropriate integers.

Otherwise, the rules obeyed by the signal procedures are those specified by ANSI C.

Since clock and asynchronous signals are handled by POSIX, the routines for setting
the signal procedures to handle them are also supplied by POSIX.

Cross-reference: Exceptions: Discussion §2.2.3.2.3, Standard Signal §2.1.1.12.3

2.1.3.12 Lifetimes: Discussion

This is a convenient point at which to introduce the concept of lifetime and discuss
its importance to writers of TDF translators.

A danger in C and other languages is the use of a pointer to a space which is no
longer alive, in the sense that the space pointed to is on a stack and has been re-used
for some other purpose. Such mistakes can be very hard to find. Like C, TDF permits
this mistake to be made and says that the effect is undefined.

TDF defines rules about the lifetimes of values and LABELs, which may be
assumed to hold by writers of translators from TDF to machine code. These rules
permit (but do not izquire) a conventional stack implementation of variables in
TDF. TDF derived from a language such as ML will obey these rules, since they are
enforced by an ML compilcr. TDF produced from other sources such ab i C compiler
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may not obey them, usually because the program being compiled is wrong but the
compiler was not able to detect the mistake.

Lifetime is a property of a value or LABEL. A lifetime is defined to be either
unbounded or to extend over the time during which a certain EXP is being evaluated.
Thus lifetimes form a partial ordering by simple nesting.

* The lifetime of any scalar value is unbounded.

e The lifetime of any POINTER whose original POINTER (§2.1.3.4.1.3)
was created by generate is unbounded.

* The lifetime of any POINTER created by a library routine is undefined.

• The lifetime of any POINTER whose original POINTER was created by
variable or variable no init extends only over those constructs.

* The lifetime of a compound value is the intersection of the lifetimes of
its component values. This means that it is equal to the lifetime of the
shortest-living component.

* The lifetime of a procedure value is the intersection of the bodies of the
declarations of its non-local TAGs and the EXPs in which the non-local
LABELs which it uses are available.

* The lifetime of a LABEL extends over the evaluation of the labelled,
conditional or repeat which introduces the LABEL.

The basic condition for a stack implementation to be correct is that no access be
made to a value outside of its lifetime.

This may be assumed to hold by TDF translator writers. It is a dynamic condition
which is impracticable (and usually undesirable) to check at run-time. Static rules
can be formulated which are sufficient to ensure that the only values aiccessible at
any one time have lifetimes which form a total ordering, allowing a stack
implementation of nested declarations. These rules are:

* In any assignment, the lifetime of the right-htad side is greater than or
equal to the left-hand side.

* In any procedure, the lifetime of its result value is greater than or equal
to the lifetime of the procedure.

In total generality, however, the application of these rules is difficult (if not
impossible). Languages like Ada and Pascal avoid the problem by disallowing both
the assignment (and delivery as results) of procedurcs or local pointers. in C, leaving
aside long-jumps, the lifetime of all procedures is unbounded (their only non-locals
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are global) and so there is no difficulty about assigning or delivering procedures.
However C's & operator allows one to assign and deliver local pointers. This means
that although blatant errors can be detected relatively easily at translate time,
mis-use via parameters of procedures cannot. Usually the first intimation of the error
is a collapse of the run-time system when some crucial stack-pointer is overwritten
because the space to which it points is being re-used.

In some languages (eg ML, Lisp) every value must have an unbounded lifetime. This
has two consequences for the TDF to which they compile:

1. The only possible use of a TAG declared by a variable declaration is in
contents, as the rvalue of an assign, or some related limited use. If another
use were required, the TAG would have to be bound to the result of a
generate (possibly operated on by wholeto.part) using an identify
declaration. This is equivalent to a variable declaration except that space
is taken from heap space rather than from a stack frame; the value bound
to the TAG has an unbounded lifetime.

2. Only global TAGs are use4 .s non-locals of procedures; often no TAGs
would be used as non-locals. An ML procedure, for instance, would
probably be represented as a closure formed from a global POINTER, its
non-local values and a TDF procedure (with no non-local TAGs) which
needs this POINTER as an extra parameter over and above the parameters
specified in the ML. This treats the ML procedure rather like a partial
application of a global procedure which has the non-locals as parameters.

1. and 2. together mean that the non-locals have an unbounded lifetime.

This method of "unbounding" values does not extend to LABEL.VALUEs - they can
never have an unbounded lifetime. This is of little consequence to languages which
need not use them (like ML or Ada) or which do need to use them but never in a
manner which could violate the lifetime rules (like COBOL or Pascal). Some
languages (like Algol68 or C) do allow "long jumps" out of procedures to "dead"
LABELs (ones whose stackjframes have been exited from). If one wished to protect
against this, a run-time check would be necessary (see §2.1.3.5.1).

In a gabage collecting TDF implementation, a POINTER produced by generate
continues to be usable as long as it is accessible. A mistake similar to that
described above can be made by de-allocating and subsequently using such a
POINTER. However, the TDF concept of lifetime does not have any bearing on this
mistake.
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2.1.4 tokenise and TOKEN Application

As explained in § 1.6, tokenise is a program construct which serves to identify
(possibly parameterised) pieces of TDF program. It is analogous to identify (see
§2.1.3.1.3), but whereas identify identifies values at run-time, tokenise identifies pieces
of program at translate-time.

It has the form:

k: SORT,
token: TOKEN,
pars: 1111 n (t1:TOKEN, k,:SORT),
def: k,
body: EXP X

-> EXP X

When the tokenise construct is translated, only body is translated to machine code.
However, within body any occurrence of token is taken to stand for the program
fragment def, which will be of SORT k. The TOKEN may be parameterised. If it is,
the SORTs of the parameters which it expects are desc-ibed by the ki in pars. Within the
program fragment def, the parameters are bound with the TOKENs ti . (The TOKENs ti
will not themselves be parameterised.) The TOKENs ti will be used only within def. The
TOKEN token will be used only within body with one exception: token may occur
within def in order to form the definition of a circular SHAPE. The TOKENs used in
all the parameters will be disjoint from the ti and from all the TOKENs used in def.
There will be no reuse of TOKENs and no scoping rule for TOKENs is defined.

(TOKEN is not counted as one of the SORTs of TDF, since a TOKEN indicates a
substitution to produce a SORT, rather than a SORT itself.)

Cross-reference: Structure of a TDF Capsule § 1.6, TDF: Scenario of Use §1.1

In order to obtain the program fragment for which a TOKEN stands, TDF constructs
apply_exptoken, apply shape token etc. are provided - one for each different SORT.
They all have the same form. Using applyexptoken as an example:

token: TOKEN,
pars: i.I n (ki:SORT)

->EXP X

applyexptoken takes two arguments: first a TOKEN which will stand for an EXP
X; and second, and a number of program fragments, pars, which may be of any SORT,
but which will conform to token's parameter requirements set out when it was
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defined. The EXP for which token stands is the result and can then be translated just
like any other EXP. This process is analogous to the application of the C
preprocessor.

2.1.5 Constructs for Conditional Compilation

As explained in § 1.5.2, two TDF constructs allow the conditional translation of
program fragments depending on the value delivered by an EXP evaluated at
translate-time. These are expcond and variery_cond.

2.1..1 exp cond

control: EXP INTEGER(V),
expI: EXP X,
exp2: EXP X

-> EXP X

At translate-time, control is evaluated to produce a value, c. If c is non-zero, then the
program fragment expl is selected for translation. If c is zero, then the program
fragment exp2 is selected.

2.1.5.2 variety cond

control: EXP INTEGER(V),
v I: VARIETY,
v2: VARIETY

-> VARIETY

At translate-time, control is evaluated to produce a value, c. If c is non-zero, then the
program fragment vi is selected for translation. If c is zero, then the program fragment
v2 is selected.
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2.2 TDF Level )

This section defines the extra SORTs, SHAPEs and EXPs which together with the
Level 0 constructs fonn TDF Level I - ie. the subset of full TDF which is required in
order to implement ANSI C, Ada and other languages which do not require garbage
collection. Level 1 goes beyond Level 0 in areas such as provision for parallel
processes and diagnosis of exceptions.

2.2.1 Level 1 SORTs

There are thirteen SORTs in TDF, twelve of which form part of Level 0. The
thirteenth - EXCEPTION-HANDLER - appears in Level 1.

2.2.1.1 EXCEPTION HANDLER

A value of SORT EXCEPTIONHANDLER contains a collection of EXPs which
may be evaluated in the event of an exception being encountered. Its form is
complex:

(special_handlers: I'i. n (exception-uniquei: UNIQUE,
pti: (TAG UNTRACEDPOINTER(Wi))_OPTION,
dti: (TAG DIAG)_OPTION,
body,: EXP X i

defaulthandler: (defet: (TAG EXCEPTION_VALUE)_OPTION,
def.dt: (TAG DIAG)_OPTION,
deLbody: (EXP Y)_OPTION
)

)

Each EXCEPTIONANDLER has an associated SHAPE, tha SHAPE of the value
which it will produce if brought into play by the construct handle-exception. This
SHAPE is the LUB of the SHAPEs of all the values which it might produce:

LUBi=.1nXJ LUB Y

The use of EXCEPTIONHANDLERs is explained in the account of
handle_exception (§2.2.3.2.7).

One ERROR_TREATMENT not available in Level 0 becomes available in Level
1. It is standardexception.

2.2.1,2 Standard Exception
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This ERROR TREATMENT is used when an error can occur and the desired effect
is to produce an exception (see §2.2.3.2.3).

2.2.2 Level I SHAPEs

Level I contains two SHAPEs not found in Level 0. These are:

THREAD
DIAG

They are both described below:

2.2.2.1 THREAD

Implementations of programming languages' process models in terms of TDF's
lightweight processes require administrative information to be held as part of their
process data. The TDF SHAPE of this information is THREAD.

In a stack-based implementation a THREAD is likely to be just a stack. In a
heap-based implementation it is likely to be a chain of workspaces.

2.2.2.2 DIAG

The SHAPE describing the parcel of information which is made available when a
program fails. (DIAG stands for 'diagnostics'.)

Users cannot create DIAG values, except for the empty DIAG with which to start a
failure. Only the system (ic. code produced by the translator) can create other DIAG
values. However, the user can operate on DIAG values in order to determine what
went wrong. In order to avoid reverse engineering, diagnostic information is given in
terms of UNIQUE values, and the connection between these UNIQUE values and
the structure and identifiers of the original program is made separately.

Cross-reference: Exceptions: Discussion §2.2.3.2.3, empty_diagnostics §2.2.3.2.6

As well as introducing two new SHAPEs, THREAD and DIAG, Level 1 specifies
that translators should implement VARIETYs and FLOATINGVARIETYs
sufficienrt to accommodate the requirements of Ada.

This -,s a convenient point at which to give an account of the way in which SIZEs
and OFFSETs relate to Ada.
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2.2.2.3 SHAPEs SIZEs and OFFSETs: Ada

Space-efficient implementation of Ada requires dynamic (run-time) variability of
sizes, even within tuples. An Ada record, for example, may contain fields whose
space requirements depend on the discriminants of the record.

Consider the Ada record given by:

type rec(d:integer) is
record first:string(l..d);

second:string(l..d);
end record;

TDF's SIZE construct provides the means for handling its potentially varying space
requirement. A space-saving mapping of this record to a TDF SHAPE could be:

WHOLE POINTER
(TUPLE

(bestsigned, -. the discriminant d
x, -- an offset to field second
SIZE(SOME(byte)), .- size of field first
SIZE(SOME(byte)), .- size offield second
SOME(byte), --field first
SOME(byte) --field second

)
)

where x and byte are both tokenised SHAPEs. byte would probably be defined as:

byte = INTEGER(0, 255)

and x would be recursively defined as:

x = OFFSET(TUPLE(bestsigned,
X,
SIZE(SOME(byte)),
SIZE(SOME(byte)),
SOME(byte)

),SOME(byte)

5"

The value of the second element in the TDF TUPLE is dynamically computed using
the construct tupleelement offset (§2.1.3.7.7). To access the string field second in the
Ada record one would use add toptr on the original POINTER to the TUPLE and the

F: OFFSET value to obtain a POINTER to the field second. (Accessing the string field first
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is simpler because its OFFSET from tile start of the TUPLE can be calculated at
translate-time.)

This implementation means that the space occupied by an instance of the record is a
function of the discriminant value.

The TDF TUPLE implementing the Ada record rec has to be hidden behind a
POINTER whenever it is used in a SOME-free position, e.g. when a value of this
SHAPE is declared. The advantage of the TDF representation is that it uses the
minimum amount of space whilst still allowing simple operations on the flat
representation of the T.JPLE to determine properties such as equality between
records of this SHAPE.

By contrast, many current commercial Ada compilers cannot handle a record such
as rec because they adopt a strategy of reserving the maximum amount of space for
the fields first and second that the discriminant might allow. Unfortunately in this
case the discriminant can be up to maxint, which will mean that there is insufficient
memory in the machine!

Notice that TDF does not provide special SHAPEs for datastructures which require
complex implicit descriptors. All complex structures, such as the Ada record just
described or multi-dimensional arrays, are implemented using the very general
facilities offered by TDF's SHAPEs. In the example of the Ada record rec, the first

three fields of the TUPLE constitute the descriptor.

2.2.3 Level 1 EXPs

The new constructs added in Level 1 can conveniently be divided into two
categories:

Lightweight Processes
Constructs to Support Ada

(Ada is highlighted here because it is the richest of the languages that can compile
to TDF Level 1.) The two categories are described in the following sections. (The
notation used for describing the constructs is introduced in § 1.7.)

2.2.3.1 Lightweight Processes

2.2.3.1.1 Lightweight Processes: Discuscion

For the purposes of ANSI C, TDF runs in POSIX processes. However, POSIX
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processes are costly in terms of space and speed of process swapping and process
creation and are not a good basis for the implementation of Ada processes. TDF is
therefore planned to provide for the creation of lightweight processes within a
POSIX process.

Many of the facilities used by prograraring languages have settled down over the
years, so that a set of operations of reasonable size covers their requirements fairly
closely. But this is not the case for processes and so TDF's process mechanism is
defined at a low level, so that the very different proc ass mechanisms of existing
languages can be accommodated. This implies that much of the implementation of
Ada processes has to be supplied as an explicit implementation in TDF.

POSDC handles clock iid asynchronous signals and supplies the routines for setting
the signal procedures for dealing with them. These will be identified in TDF by
agreed TAGs.

For multiple processors using a common memory, finding an architecture neutral
description of processes is awkward because the mechanisms used by the hardware
to implement locking are not uniform. The operations described below, test-andset and
test and clear, can be implemented on many machines though they are not
necessarily the most efficient operations for every machine. This area is developing
at the moment and it has been judged best to retain these operations for the
meantime but leave the area open for later re-consideration.

Multiple processors running only POSIX processes dri not present any problem since
the interactions are very lirited and POSIX can be assumed to handle them
satisfactorily.

Cross-reference: test_and_clear §2.2.3.1.6, test.andset §2.2.3.1.5, discardthread

§2,2.3.1.4, exchange-jhread §2.2.3.1.3, create-thread §2.2.31.2

2.2.3.1.2 create-thread

prm'c: EXI- PROC

.> EXP THREAD

proc is evaluated to produce a procedure p, which may be TRACED or UNTRACED.
The procedure p will expect a THREAD parameter and deliver a TOP result. A new
THREAD t is created from p. If and when I is started (by exchangethread) it will
behave as if it were evaluating the procedure p, with p's parameter being supplied by
the exchangethread operation. The procedure will be one which, if applied using
apply.proc, would never complete.
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Cross-reference: THREAD §2.2.2.1, exchange-thread §2.2.3.1.3, Lightweight
Frocesses: Discussion §2.2.3.1.1

2.2.3.1.3 exchangethread

thread: EXP THREAD

-> EXP THREAD

thread is evaluated to produce a THREAD value, t. The execution of the current
process whose THREAD is c is stopped and the execution of the process represented
by t resumes or begins.

If the reason that t was not executing was that it had halted with an exchange_thread
operation, then the current THREAD c is delivered as the result of that exchange_thread

operation in t.

If t had just been created by create-thread, the THREAD of the newly stopped process
is supplied as if it were the parameter of the procedure from which t was created.

Cross-reference: THREAD §2.2.2.1, create-thread §2.2.3.1.2, Lightweight

Processes: Discussion §2.2.3.1.1

2.2.3.1.4 discard-thread

thread: EXP THREAD

-> EXP TOP

thread i evaluated to produce a THREAD value, t. The THREAD t is discarded. This
operation should require no work on a ga-bage collected system which implements
processes with the heap.

Cross-reference: THREAD §2.2.2.1, create-thread §2.2.3.1.2, Lightweight
Processes: Discussion §2.2.3.1.1

2.2.3.1.5 test and set

lab: LABEL
ptr: EXP POINTER(INTEGER(best-signed))

->EXP TOP

ptr is evaluated to produce a POINTER, p. An integer of SHAPE
INTEGER(BESTSIGNED) will lie in the space pointed to by the p. Its value will be
either 0 or 1. It is tested. If it is 1, control passes to the LABEL lab. If it is 0, control
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does not pass elsewhere and a value of SHAPE top is delivered. Iu any case the value 1
is written into the space pointed to by p.

This operation is interlocked against operations by other processors accessing the
same space.

Cross-reference: THREAD §2.2.2.1, Lightweight Processes: Discussion §2.2.3.1.1

2.23.1.6 test and clear

lab: LABEL
ptr: EXP POINTER(INTEGER(bestsigned))

-> EXP TOP

pir is evaluated to produce a POINTER, p. An integer of SHAPE
INTEGER(BESTSIGNED) will lie in the space pointed to by the p. Its value will be
either 0 or 1. It is tested. If it is 1, control passes to the LABEL lab. If it is 0, control
does not pass elsewhere and a value of SHAPE top is delivered. In any case the value 0
is written into the space pointed to by p.

This operation is interlocked against operations by other processors accessing the
same space.

Cross-reference: THREAD §2.2.2.1, Lightweight Processes: Discussion §2.2.3.1.1

2.2.3.2 Constructs to Support Ada

2.2.3.2.1 equal contents argi, arg2 and arg3 are evaluated to

unequal: LABEL,
argl: EXP POINTER(A),
arg2: EXP POINTER(B),
arg3: EXP SIZE(X) (X need not be SOME-free)

-> EXP TOP

produce values, a, b and c. a and b will be POINTERs. c will be a SIZE. The amount
of data specified by c located in the spaces pointed to by a and b is compared for
equality of representation. If they are equal the construct delivers top. If they are
unequal control passess to the LABEL unequal with top.

Cross-reference: Pointers: Discussion §2.1.3.4.1, SHAPEs SIZEs and OFFSETs
§1.5.1, LABEL §2.1.1.10
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2.2.3.2.2 not equal contents arg 7, arg2 and arg 3 are evaluated

equal: LABEL,
argl: EXP POINTER(A),
arg2: EXP POINTER(B),
arg3: EXP SIZE(X) {X need not be SOME-free)

-> EXP TOP

to produce values, a, b and c. a and b will be POINTERs. c will be a size. The amount
of data specified by c located in the spaces pointed to by a and b is compared for
equality of representation. If they are unequal the construct delivers top. If they are
equal control passes to the LABEL equal with top.

Cross-reference: Pointers: Discussion §2.1.3.4.1, SHAPEs SIZEs and OFFSETs

§1.5.1, LABEL §2.1.1.10

2.2.3.2.3 Exceptions: Discussion

TDF exceptions are used to implement Ada and ML exceptions, among other
constructs. Since TDF can be used to write operating systems, the TDF model of
exceptions is able to handle diagnostics as data.

2.2.3.2.3.1 EXCEPTIONVALUEs

EXCEPTION-VALUE is a convenient term for describing the parcel of information
arising from the occurrence of an exception. An EXCEPTION-VALUE consists of a
pair of values, the first of which is also a pair.

EXCEPTION-VALUE = (EXCEPTION-IDENTIFIER, DIAG)

EXCEPTION-IDENTIFIER = (EXCEPTION-UNIQUE, UNTRACEDPOINTER(X))

An EXCEPTION-UNIQUE is a UNIQUE value, used to characterise a class of
exceptions. The following six are pre-defined:

2.2.3.2.3.1.1 overflow
2.2.3.2.3.1.2 divide by.zero
2.2.3.23.1.3 store-full
2.2.3.2.3.1.4 null pointer
2.2.3.2.3.1.5 bound check
2.2.3.2.3.1.6 absent-shaky
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but these may be added to, either statically by agreement between groups of
users, or dynamically during the running of a program.

The POINTER serves to give extra information to an EXCEPTION_HANDLER.
Aor example, IEEE floating point defines certain floating point numbers which give
more information about a failed operation. Different classes of exception will
usually require different kinds of extra information. In order that
EXCEPTIONVALUEs can be represented in a uniform way, all these kinds of
extra information are reduced to one shape, UNTRACEDPCINTER, which will
point to space holding the information.

The DIAG value serves to give information about the state of the procedures which
were active between the point at which the exception originated and the point at
which it is being handled. This information, in combinr,aon with information
derived from the original program, will allow the values being used within these
procedures to be examined according to the conventions of the originating program.
Various methods exist of controlling the amount of information which is accessible,
in order to discourage reverse engineering, while still permitting programs to be
diagnosed (see Diagnostics §2.2.3.2.3.3). See also §2.1.3.1.4 for a discussion of the
visible qualifier.

An EXCEPTIONVALUE can originate from an ERROR_TREATMENT or from
the fail or fail nodiag constructs.

If it originates from an ERROR_TREATMENT, the UNIQUE is determined by the
operation which caused the error and the POINTER value by the details of the error,
in a way specified in the operation. In this case the DIAGNOSTICS starts as empty.

If it originates from fail orfail nodiag, the EXCEPTIONJIDENTIFIER and the
DIAG are explicitly supplied as arguments. In particular, the diagnostics may be
emptydiagnostics or may be a diagnostic value which already exists. By this means,
exceptions may be tested to see if a handler wishes to deal with them.

Cross-reference: diagnostics §2.2.3.2.3.3, EXCEPTION-HANDLER §2.2. 1. 1,
empty-diagnostics §2.2.3.2.6, fail §2.2.3.2.4, failnodiag §2.2.3.2.5,
ERRORJREATMENT §2.1.1.12

2.2.3.2.3.2 Propagation of Exceptions

All constructs except for handle-exception treat exceptions in the same way. When an
exception occurs, a search is made for the closest dynamically enclosing
handle exception construct. This may be found in the current procedure, or in the
procedure from which the current one was called, or in the procedure which called
that one and so on right back to the main procedure in the current process. As each
procedure level is exited, information about that procedure is added to the diagnostic
chain, modifying the EXCEPTION-VALUE. Once an enclosing handle-exception is
found which has as argument an EXCEPTIONANDLER capable of handling the
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cxcepticn, the EXCEPTION_VALUE's POINTER and DIAG components are bound
to TAGs specified by the EXCEPTION-HANDLER and the
EXCEPTIONHANDLER takes control.

If it is desired to prevent pan of this chain from being visible in diagnostic
information, a handle-exception construct can be inserted which re-fails using
fail.nodiag. The consequence will be that any subsequent diagnosis of an exception
will not be able to obtain any diagnostic information from the procedure in which
the handle-exception has been put. This can be useful, for instance, if a procedure
which requires concealment calls a user procedure which requires diagnostics. An
example might be a differential equation solver.

The propagation of exceptions has beep described as if it were performed by an
interpreter, but there is no implication that this is how it should be done. Any
equivalent scheme - for instance, one which detects what exceptions are being
tested and jumps directly to the correct place - can be implemented.

Cross-reference: exception-handler §2.2.1.1, faiLnodiag §2.2.3.2.5

2.2.3.2.3.3 Diagnostics

Diagnostic information, where it is provided, is associated with the activation of a
procedure. It consists of two parts, one compulsory, the other optional.

The compulsory pan is a sequence of UNIQUEs corresponding to the diagnose.point
constructs which were encountered on the scan back to the handle exception construct.

The optional part is a set of pairs of TAGs and values corresponding to the identify,
variable and vriablejnoinit constructs which are active in the procedure. At least
those TAGs .nich are declared to be visible shall appear in the set, together with as
many others as are available.

If only the compulsory diagnostics are available, a sequence of UNIQUE values
partially identifying the location of the error can be sent back to the distribitor.

Cross-reference: identify §2.1.3.1.3, variable §2.1.3.1.4, handle-exception §2.2.3.2.7

2.2.3.2.4 fail

exceptionid: EXP ET.CEPTIONIDENTIFIER,
diag: EXP DIAG

-> EXP BOTOM

exception id is evaluated to produce an EXCEPTIONIDENTIFIER, e and diag to
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produce a DIAG, d. An exception is created using e and d. Since this construct does not
terminate normally, the SHAPE of its result is BOTTOM.

Cross-reference: Exceptions: Discussion §2.2.3.2.3

2.2.3.2.S fall no diag

exceptionid: EXP EXCEPTIONIDENTIFIER

->EXP BOTTOM

exception id is evaluated to produce an EXCEPTIONDENTIFIER, e. An exception is
created using e and an empty diagnostic chain. Since this construct '..es not
terminate normally, the SHAPE of its result is BOTTOM.

Cross-reference: Exceptions: Discussion §2.2.3.2.3

2.2.3.2.6 emptydiagnostics

-> EXP DIAG

An empty diagnostic chain is created and delivered.

Cross-reference: Exceptions: Discussion

2.2.3.2.7 handle-exception

body: EXP X,
handler: EXCEPTION-HANDLER Y

-> EXP (X LUB Y)

body is evaluated. If its evaluation completes successfully, its result is delivered as
the result of handle exception, with SHAPE (X LUB Y).

If the evaluation of body does not complete successfully, but instead produces an
EXCEPTIONV,\LUE, then handler comes into play. (The reader may wish to refer
to §2.2.1.1 at this point.) The UNIQUE, u, from the EXCEPTION-VALUE is tested
against each of the exceptionuniquei contained in handler. If and when a match is
found between u and one of the exception uniquei , then the POINTER, p, and the
DIAG, d, from the EXCEPTIONVALUE are bound with the fAGs pti and dti (if
present). bodyi from the EXCEPTION_HANDLER is then evaluated and its result
delivered with SHAPE (X I UB Y).

7, If, however, no match is found for u, but the EXCEPTION-HANDLER's optional
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default handler is prtsent, the following actions are performed. The
EXCEPTIONYALUE and the DIAG, d, are bound with the TAGs def e and dlef it.
Then def body is evaluated and its result delivered with SHAPE (X LUB Y).

If the EXCEPTIONHANDLER's optional default handler is not present, then the
EXCEPTIONYALUE is simply passed on to the next enclosing handle exception
construct (if any) to see if it can handle the exception.

Cross-reference: Least Upper Bound §2.1.2.2, Exceptions: Discussion §2.2.3.2.3,

EXCEPTION-HANDLER §2.2.1.1, EXCEPTION_VALUEs §2.2.3.2.3.1

2.2.3.2.8 select.from.nof

arg: EXP NOF(X, N),
index: EXP INTEGER(V)

-> EXP X

arg is evaluated to produce an NO:(X, N) value, a. index is evaluated to produce an
INTEGER(V) value, i, which will lie between 0 and N-1 inclusive. The i-th component
of a is delivered.

Cross-reference: NOF § 1.5.1.3.1

2.2.3.2.9 size in bits

v: VARIETY,
arg: EXP SIZE(X) (X need not be SOME-free)

-> EXP INTEGER(v)

arg is evaluated to produce a SIZE value, s. An integer value of VARIETY v is created
and delivered which is the number of bits occupied by a value of the size s.

Cross-reference: SHAPEs SIZEs and OFFSETs § 1.5.1

2.23.2.10 true

-> EXP BIT

A true BIT value is created and delivered.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3
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2.2.3.2.11 false

-> EXP BIT

A false BIT value is created and delivered.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3

2.23.2.12 test.eq bit

argl: EXP X,
arg2: EXP X

*> EXP NOF(BIT, 1)

argi and arg2 are evaluated to produce a and b, values of the same SHAPE. The
representations of a and b are compared. An NOF(BIT, I) value is created and
delivered which contains true if they are equal and false if they are not.

Cross-reference: NOF § 1.5.1.3.1, BIT §2.1.2.1.3

2.2.3.2.13 integer test bit

ntest: NTEST,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP NOF(BIT, 1)

argi and arg2 are evaluated to produce a and b, integers of the same VARIETY.
These integers are compared using the test ntest. An NOF(BIT,1) value is created and
delivered. It contains true if the test succeeds and is produced false if it does not.

For example, if ntest is greater, then if a is greater than b the construct yields true.
Otherwise it yields false.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, NTEST §2.1.1.11

10
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2.2.3.2.14 floating test bit

ntest: NTEST,
argI: EXP FLOAT(F),
arg2: EXP FLOAT(F)

-> EXP NOF(BIT, 1)

argi and arg2 are evaluated to produce a and b, floating point numbers of the same
FLOATINGVARIETY. a and b are compared using the test ntest. An NOF(BIT,1)
value is created and delivered. It contains true if the test succeeds and false if it does not.

For example, if ntest is greater, then ifa is greater than b the construct yields true.
Otherwise it yields false.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, NTEST §2.1.1.11

2.2.3.2.15 equal contents test bit

argl: EXP POINTER(Y),
arg2: EXP POINTER(Y),
arg3: EXP SIZE(X) (X need not be SOME-free)

-> EXP NOF(BIT, 1)

argi, arg2 and arg3 are evaluated to produce values, a, b and c. a and b will be
POINTERs. c will be a SIZE. The amount of data specified by c located in the spaces
pointed to by a and b is compared for equality of representation. An NOF(BIT,1)
value is created and delivered. It contains true if the representations were found to be
equal and false if they were not.

Cross-reference: Pointers: Discussion §2.1.3.4.1, SHAPEs SIZEs and OFFSETs

§1.5.1, NOF §1.5.1.3.1, BIT §2.1.2.1.3

2.2.3.2.16 union size

alts: iln (parti: EXP SIZE(SHi)) (SH, need not be SOME-free)

-> EXP SIZE(UNION (ni=ln SH))

als are evaluated to produce SIZE values. A new SIZE value is created and
delivered which is the size that a UNION composed of values of these SIZEs would
have.

Cross-reference: SHAPEs SIZEs and OFFSETs § 1.5.1
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2.2.3.2.17 index

ptr: EXP UNTRACED(X),
offset: EXP OFFSET(X,X),
low: EXP INTEGER(V),
high: EXP INTEGER(V),
index: EXP INTEGER(V)

-> EXP UNTRACEDPOINTER(X)

ptr, offset, low, high and index are evaluated to produce values p, off, lo, hi and i
respectively. i is checked to see whether it lies between lo and hi inclusive. If it does
not, a bound check exception is produced. But if it does, then off is scaled by i and the
value delivered as the result of the construct is the sum of the resulting OFFSET and
the POINTER value p.

If p delivers a null POINTER, the effect is undefined.

The result will share with p.

This operation is provided to take advantage of machines which have specific
instructions for indexing. It is equivalent to a combination of add to.ptr, mult and
integertest. Where this combination occurs directly the index operation should always
be used in preference.

Note that in Level 2 a WHOLE_POINTER(X) argument can be provided, in which
case the SHAPE of the result is PART_POINTER(X).

Cross-reference: Pointers: Discussion §2.1.3.4.1, add.toptr §2.1.3.4.2, Exceptions:
Discussion §2.2.3.2.3, Lifetimes: Discussion §2.1.3.12, null POINTERs §2.1.3.4.1.2,
mult §2.1.3.2.5, integertest §2.1.3.2.25

2.2.4 Level 1 Constructs for Conditional Compilation

For the purposes of ANSI C, the only conditional compilation constructs required are
expcond and variety_cond. Level 1 includes similar constructs covering all the
other SORTs:

2.2.5 shape cond
2.2.6 nat cond
2.2.7 signed nat cond
2.2.8 floating_variety cond
2.2.9 bool cond
2.2.10 unique cond
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2.2.11 tagcond
2.2.12 labelcond
2.2.13 ntest cond
2.2.14 error treatmentcond
2.2.15 exceptionhandlercond

They all have the form:

control: EXP INTEGER(V),
s: SORT,
s2: SORT

-> SORT

and behave in a similar manner to exp cond and variery cond.

Cross-rmference: Conditional Compilation § 1.5.2, Constructs for Conditional

Compil, tion §2.1.5
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2.3 TDF Level 2

This section defines the SORTs, SHAPEs and EXPs which go together to form TDF
Level 2 - ie. full TDF. Level 2 goes beyond Level 1 in offering POINTER operations
which interact with a garbage collector, means for creating UNIQUE values, support
for unanticipated procedure application and a number of other miscellaneous
features.

2.3.1 Level 2 SORTs

All thirteen TDF SORTs are included in TDF Levels 0 and 1. Level 2 therefore
contains no more SORTs than the thirteen available introduced in Level 1:

EXP UNIQUE
SHAPE TAG
NAT LABEL
SIGNEDNAT NTEST
VARIrVTY ERROR-TREATMENT
FLOATING-VARIETY EXCEPTIONHANDLER
BOOL

2.3.2 Level 2 SHAPEs

All the SHAPEs of the previous sections shall be implemented, plus the following.

2.3.2.1 POINTER SHAPEs Concerned with Garbage Collection

There are five SHAPE constructs collectively known as POINTERs. They are:

UNTRACED_POINTER
WHOLE-POINTER
SHAKYWHOLEOINTER
PARTYPOINTER
SHAKYPART_POINTER

UNTRACEDOINTER forms part of Level 0 and was introduced in §2.1.2.3.3. All
the others are concerned with garbage collection and hence form part of Level 2.

.2.3.2.1.1 Garbage Collection: Discussion

As mentioned in § 1.1 there is a difference in the memory management for TDF
programs between levels 0 and 1, and level 2. Level 2 differs by supporting
automatic garbage collection.
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Although it encompasses a garbage collected memory, Level 2 also supports the
Level 0 notion of an untraced kernel which a garbage collector ignores. POINTERS
and PRUCs in the untraced kernel are of SHAPEs UNTRACED_POINTER and
those constructed from UNTRACED_PROC. (These SHAPEs are referred to as
untraced because the garbage collector - if present - does not trace an
UNTRACEDPROC's workspace or the contents of an UNTRACEDPOINTER.)

Levels 0 and 1 are totally implemented in the untraced kernel. However, in Level 2
TDF issues of communication between the traced world and the untraced kernel
arise. No value of a traced SHAPE can be accessed in the untraced kernel. In other
words, there can be no POINTERs ponting from the traced world to the untraced
kernel.

2.3.2.1.2 WHOLE-POINTER SHAPEs

A WHOLEPOINTER is a pointer which points to the whole of an allocated space.
The value delivered by generate has SHAPE WHOLE.POINTER(..).

WHOLE,_POINTERs have equal representation if and only if they are identical - ie.
they are copies of a value produced from one particular evaluation of generate.

In garbage collected systems it may be desirable to represent WHOLE and
PART_POINTERS differently. Typically in a garbage collected system, a
WHOLEPOINTER will occupy less space than a PARTPOINTER. This is why
the TDF SHAPE system distinguishes them.

Cross-rfer ice: genera:e §2.3.3.1, whole_topart §2.3.3.2, Tokenisation § 1.5.3

2.3.2.1.j SHAKY WHOLEPOINTER SHAPEs

A SHAKYWHOLEPOINTER is a POINTER which points to the whole of an
allocated space. Unlike a WHOLE.POINTER, which can cleared by a garbage
collection only when all copies of it have been discarded, it can be a cleared by a
garbage collection if all the other extant POINTERs to its space are also SHAKY.
SHAKY POINTERs (including SHAKYPARTOINTERs) do not have the power to
preserve the piece of rremory to which they point during a garbage collection. If a
SHAKY POINTER points to a piece of memory all or part of which is also pointed
to by a non-SHAKY POINTER, however, that piece of memory will be preserved
during a garbage collection and the SHAKY POINTER will not be cleared.

A SHAKYWHOLE_POINTER(X) can be created by applying shake to a
WHOLEPOINTER(X).

SHAKYWHOLEPOINTERs have equal representation if and only if they are
identical - ie. they are copies of a value produced from one particular evaluation of
generate.
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The only operation (apart from data transfer) defined on SHAKY POINTERs is firm.
Applied to a SHAKY POINTER which has not been cleared by a garbage collection,
firm delivers the original POINTER from which the SHAKY POINTER was made.
However, if the SHAKY POINTER has been cleared by a garbage collection, an
absent-shaky error is produced.

Cross-reference: Garbage Collection: Discussion §2.3.2.1.1, WHOLEPOINTER
SHAPEs §2.3.2.1.2, shake §2.3.3.12, generate §2.3.3.1, absent_shaky §2.2.3.2.3.1.6

2.31.1.4 PART-POINTER SHAr ts

A PART-POINTER is a pointer which does not necessarily point to the whole of an
allocated space. Such a POINTER is created either by applying whole_to.part to a
WHOLEPOINTER, or in the course of the constructs, variable and variable no init
when evaluated as part of a TRACEDPROC, when a PART_POINTER is created
and bound to a TAG.

Equality of representation for PART_POINTERs is defined if and only if both
POINTERs are proper POINTERs (see §2.1.3.4.1.4). If both POINTERs are derived
from different original POINTERs, then the representations are unequal. If both are
derived from the same original POINTER, then they are equal if and only if
subtract.pointers would give a zero SIZE.

PART_POINTERs derived from variable declarations have a limited lifetime.

Cross-reference: wholetopart §2.3.3.2, WHOLEPOINTER SHAPEs §2.3.2.1.2,
v--iable §2.1.3.1.4, variableno-init §2.1.3.1.5, proper POINTERs §2.1.3.4.1.4,
o..gmnal POINTERs §2.1.3.4.1.3, Lifetimes: Discussion §2.1.3.12, subtract-pointers
§.. 1.3.4.14

2.3.2.1.5 SHAKY PART POINTER SHAPEs

A SHAKY_PART_POINTER is a POINTER which does not necessarily point to
the whole of an allocated space. Unlike a PART-POINTER, however, it can Ie
cleared by a garbage collection. A SHAKYPARTPOINTER(X) can be created by
applying shake to a PARTPOINTER(X).

Equality of representation for SHAKY-PARTPOINTERs is defined if and only if
both POINTERs are proper POINTERs (see §2.1.3.4.1.4). If both POINTERs are
derive, from different original POINTERs, then the representations are unequal. If
both are derived from the same original POINTER, then they are equal if and only if
subractpointers would give a zero size.

As with SHAKY-WHOLEPOINTERs, the only operation (apart from data Lunsfer)
which can be applied to a SHAKY_PARTPOINTER isfirm.
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Cross-reference: Garbage Collection: Discussioki §2.3.2.1.1, PARTPOINTER

SHAPEs §2.3.2.1.4, shake §2.3.3.12, subtract.pointers §2.1.3.4.14, firm §2.3.3.13

2.3.2.2 TRACED PROC

The SHAPE describing procedure values in a garbage collecting system which
reside on the garbage collected heap. The only ultimate use that can be made of a
TRACEDPROC is to apply it to a parameter.

Equality of representation is undefined for TRACED-PROCs.

Cross-reference: Garbage Collection: Discussion §2.3.2.1.1, Lifetimes: Discussion
§2.1.3.12, Procedures §2,1.3.6

2.3.2.3 the SHAPE UNIQUE VAL

The SHAPE describing values which are different from every other value of the
same SHAPE previously generated on the current machine, and from every
UNIQUE.VAL generated on any other machine.

UNIQUE,_VAL values are created by the TDF construct make a new uniquevalue.

UNIQUE._VAL values are equal if and only if they are identical - ie. they are copies
of a value produced from the same evaluation of make a new unique value.

Cross-reference: make_a.new.unique.yalue §2.3.3.7

2.3.2.4 unlimited integer VARIETYs

Two VARIETYs, used to represent integers of unbounded size, do not occur in
Levels 0 or 1. The operations on such unbounded integers cannot cause overflow
errors. The unlimited VARIETYs are:

SIGNED-UNLIMITED
UNSIGNEDUNLIMITED

SIGNEDUNLIMITED is a representation of any integer, without bound.
UNSIGNEDUNLIMITED is a representation of any non-negative integer, without
upper bound. Such integers can only be used freely in full (garbage collecting) TDF
systems.

In the case of unlimited integers the impossible error handler will be chosen for the
overlow error handler in arithmetic operations.

Equality of representation is undefined for unlimited integers. However the
integer-test operations can be used for unlimited integers.
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The LUB of a limited and an unlimited VARIETY is top.

2.3.3 Level 2 EXPs

All the EXPs of the previous sections shall be implemented, plus the following.

2.3.3.1 generate

arg: EXP SIZE(X) {X need not be SOME-free)

-> EXP WHOLEPOINTER(X)

arg is evaluated to produce a SIZE(X) value. Space is generated to hold a value of
this SIZE and a WHOLEPONTER(X) which points to this space is delivered as
the result. The space is not initialised. If no memory is available, a signal store lull is
produced.

The result shares with no other POINTER existing at the completion of the
operation. It can never share with a POINTER produced by variable or variable.noinit,
nor with any POINTER produced from such a POINTER by add to_ptr,
subtract from..ptr, index or part field or by any combination of these operations. The
result is an original POINTER.

The result has an unbounded lifetime.

If X is a compound SHAPE, such as a TUPLE, then the space to hold it may contain
areas of padding in order to conform to an architecture's alignment rules. This
causes no difficulty if the whole TUPLE is subsequently assigned to. But if the
individual fields are separately assigned to, then it is possible that no values may be
put into the padding areas. But equality of TUPLEs is defined to be equality of the
components, and is very likely to be implemented by comparison of all the TUPLE,
including the padding. Translators therefore need to make sure that such padding has
a standard vaue. Thus some clearing operation on the space generated may be
necessary.

An initialised generate operation, pack (§2.3.3.11), is available.

Cross-reference: Pointers: Discussion §2.1.3.4.1, add-to.ptr §2.1.3.4.2, Signals:
Discussion §2.1.3.11, index §2.2.3.2.17, Lifetimes: Discussion §2.1.3.12, original
POINTERs §2.1.3.4.1.3, partfield §2.1.3.4.4, sharing §2.1.3.4.1.1, SHAPEs SIZEs
and OFFSETs § 1.5.1, subtractfromptr §2.1.3.4.3, variable §2.1.3.1.4,
variable_nojnit §2.1.3.1.5, pack §2.3.3.11, null POINTERs j2.1.3.4.1.2, storefull
§2.2.3.2.3.1.3
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2.3.3.2 whole to part

arg: EXP WHOLE-POINTER(X)

-> EXP PARTPOINTER(X)

arg is evaluated to produce a WHOLE-POINTER p. A PART-POINTER pointing to
the same space asp is created and delivered. If p is null, the result will be a null
PARTPOINTER.

The result will share with p. It has an unbounded lifetime.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,

sharing §2.1.3.4.1.1, Lifetimes: Discussion §2.1.3.12, generate §2.3.3.1

2.3.3.3 makenull wholepointer

sh: SHAPE

-> EXP WHOLE_POINTER(;")

A null WHOLEOINTER(sh) is delivered. Its lifetime is unbounded.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2

2.3.3.4 make-nuil partpointer

sh: SHAPE

-> EXP PARTPOINTER(sh)

A null PARTPOINTER(sh) is created and delivered. Its lifetime is unbounded.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2

2.3.3.5 replace.field

component: NAT,
tuple: EXP TUPLE (fnln) Pi, {n > 1) (1 <= component <= n)
replacejby: EXP Pcomponent

> EXP TUPLE ri=in p,

tuple is evaluated to produce a tuple value t and replaceby to produce a value r. The
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value r will have the same SHAPE as the component-th element of t. A new tuple is
created and delivered which is the same as I except that its component-th field is r.

Cross-reference: TUPLE §1.5.1.1, Lifetimes: Discussion §2.1.3.12, SHAPEs SIZEs

and OFFSETs § 1.5.1

2.3.3.6 size-of contents

sh: SHAPE, {sh need not be SOME-free)
arg: EXP POINTER(X)

-> EXP SIZE(X)

arg is evaluated to produce a POINTER, which is either a WHOLEPOINTER, p, or is
equal to the result of applying wholeto.part to a WHOLE_POINTER, p. If p was
produced by generate, then the result is the SIZE parameter with which it was generated.
If p was produced by pack, the result is the SIZE of the data which was packed.

Cross-reference: SHAPEs SIZEs and OFFSETs § 1.5.1, WHOLE-POINTER
SHAPEs §2.3.2.1.2, generate §2.3.3.1, pack §2.3.3.11

2.3.3.7 makeanew unique-value

-> EXP UNIQUEVAL

A new UNIQUE-VAL value, different from any existing value on this or any other
machine, is created and delivered. This operation is only permitted if the computer
on which the program is running has the right to issue UNIQUEVAL values.
Otherwise, the effect is undefined.

Cross-reference: the SHAPE UNIQUE.VAL §2.3.2.3

2.3.3.8 make.unique-val

u:UNIQUE

-> EXP UNIQUE_VAL

A UNIQUE-VAL equal to the UNIQUE u is created and delivered.

Cross-reference: UNIQUE §2.1.1.8, the SHAPE UNIQUE-VAL §2.3.2.3
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2.3.3.9 floor

overr: ERRORTREATMENT,
v: VARIETY,
arg: EXP FLOAT(F)

-> EXP INTEGER(v)

arg is ealuated to produce a value, a. An integer value is created and delivered which
is the largest integer not greater than a; the fractional pan is discarded.

If the result cannot be expressed in VARIETY v, an overflow error is caused and
handled in the way specified by overr.

If ov err is ignore and the VARIETY v is unsigned, the operation is performed
modulo 2Abits(v).

If ov err is ignore and the VARIETY is signed, the effect of overflow is undefined.

Cross-reference: ERRORTREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,

floating point SHAPEs §2.1.2.3.2

2.3.3.10 ceiling

ov err: ERROR_TREATMENT,
v: VARIETY,
arg: EXP FLOAT(F)

-> EXP INTEGER(v)

arg is evaluated to produce a value, a. An integer value is created and delivered which
is the smallest integer greater than or equal to a.

If the result cannot be expressed in VARIETY v, an overflow error is caused and
handled in the way specified by overr.

If ov err is ignore and the VARIETY v is unsigned, the operation is performed
modulo 2Abits(v).

If ov err is ignore and the VARIFTY is signed, the effect of overflow is undefined.

Cross-reference: ERROR-TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3. 1,
floating point SHAPEs §2.1.2.3.2
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2.3.3.11 pack

arg: EXP X IX must be SOME-free)

-> EXP WHOLEPOINTER(X)

arg is evaluated to produce a value, a. Eaough space is generated to hold a and a is
copied into it. A WHOLEPOINTER pointing to the space is created and delivered
as the result.

The lifetime of the result is unbounded.

The result shares with no other POINTER existing at the completion of the
operat;on. It can never share with a POINTER produced by variable or variable no init,
nor with any POINTER produced from such a POINTER by add lo.ptr,
subtract ]ror..jptr, index orpartfield or by any combination of these operations. The
result is an original POINTER.

This operation is similar to generate except that it permits an initial value to be
supplied.

Cross-reference: Pointers: Discussion §2.1.3.4.1, add-toptr §2.1.3.4.2, Signals:
Discussion §2.1.3.11, index §2.2.3.2.17, Lifetimes: Discussion §2.1.3.12, original
POINTERs §2.1.3.4.1.3, partfield §2.1.3.4. 4, sharing §2.1.3.4.1. 1, subtractjfromptr
§2.1.3.4.3, variable §2.1.3.1.4, variableno.jnit §2.1.3.1.5, generate §2.3.3.1,
store-full §2.2.3.2 3.1.3, null POINTERs §2.1.3.4.1.2

2.3.3.12 shake

ptr: EXP POINTER(X)

-> EXP SHAKYPOINTER(X)

ptr is evaluated to produce a POINTER value p. A shaky POINTER pointing to the
same space as p is created and delivered. If p is a WHOLEPOINTER, the result is a
shaky WHOLEPOINTER. If the p is a PART.OINTER, the result is a shaky
PARTPOINTER. p will not be a null POINTER.

The result will share with p.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
sharing §2.1.3.4.1.1, Lifetimes: Discussion §2.1.3 12
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2.3.3.13 firm

absent: ERRORTREATMENT,
sh.ptr: EXP SHAKY POINTER(X)

.> EXP POINTER(X)

sh.ptr will deliver a shaky POINTER value sp. If this shaky POINTER has not been
cleared, a POINTER pointing to the same space is created and delivered as the
result. If sp is a SHAKYWHOLEPOINTER the result is a WHOLEPOINTER. If sp
is a SHAKYPARTOINTER, the result is a PARTPOINTER. If sp is null, then the
result is a null POINTER. If sp has been cleared, an absent-shaky error is produced
and handled as specified by absent.

If absent is ignore its effect is undefined.

If sp is present, it will share with the result.

Cross-reference: Pointers: Discussion §2.1.3 4.1, null POINTERs §2.1.3.4.1.2,
ERROR-TREATMENT §2.1.1.12, sharing §2.1.3.4.1.1, Lifetimes: Discussion
§2.1.3.12

2.3.3.14 make tracedprocedure

paramshape: SHAPE, (param-shape will be SOME-free)
param: TAG PART_POINTER(param-shape),
body: EXP X

-> EXP TRACEDPROC

Evaluation of make traced procedure delivers an TRACEDPROC. When this
procedure is applied to a parameter using apply_proc, space is allocated to hold a value
of SHAPE param shape. The value produced by the parameter, which will be of the
correct SHAPE, is used to initialise it. body is evaluated. During the evaluation, param is
bound to an original PART-POINTER pointing to the space. This means that
evaluation of obtain tag(param) will produce that POINTER. The value produced by
body is delivered as the result of the apply_proc construct.

The TAG used for param will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

TAGs other than param which are used in body but not declared within it are called
non-local TAGs. If and when the procedure is applied and its body evaluated, these
TAGs obey the same bindings that obtained when the procedure was constructed.
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The lifetime of the procedure value is the intersection of the evaluations of the
bodies of all the dec.arations of its non-local TAGs.

If a programming language permits more than one parameter, the compiler to TDF
will use make traced procedure to construct a TDF procedure whose param shape is
ALIGNEDTUPLE (..) (see §2.1.2.3.5). The elements will usually be identified
(§2.1.3.1.3).

Cross-reference: TRACEDPROC §2.3.2.2, Lifetimes: Discussion §2.1.3.12,
Binding: Discussion §2.1.3.1.1, Exceptions: Discussion §2.2.3.2.3, apply-proc
§2.1.3.6.6, ALIGNED-TUPLE SHAPEs §2.1.2.3.5, identify §2.1.3.1.3

2.3.3.15 make null tracedprocedure

-> EXP TRACEDPROC

A null TRACED_PROC is created and delivered. If this PROC is applied, the
effect is undefined. The null TRACEDPROC may be tested for using proc is null or
proc-not.null.

Cross-reference: TRACEDPROC §2.3.2.2, apply.proc §2.1.3.6.6, proc.is.null
§2.1.3.6.4, proc.not.null §2.1.3.6.5
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3 TDF: Optimisations

One of the requirements which TDF has been designed to satisfy is that it should
contain enough information for all the normal optimisations to be performed in the
target machine. TDF satisfies this requirement.

If optimisations are done before transmission, the resources of a presumably more
powerful computer are available. The compiler has to be trusted to perform these
optimisations correctly.

If the optimisations are done after transmission, the effects of the modifications
made during installation on the target can be allowed for. The translator has to be
trusted to perform these optimisations correctly.

Since compilers and translators are to be usable in any combination, it will be
necessary to make a public decision about which optimisations are expected if the
expected efficiencies are to be achieved.

Regardless of this decision, some TDF optimisations should be performed by every
translator to which they are relevant. Every TDF translator should produce the best
code it can for these cases. These optininations are listed here. They are not
concerned with such matters as register allocation, pipeline control or removing
redundant jumps, which should also be performed if relevant.

All compiler writers may assume that these optimisations will be performed if they
are relevant. This information is important to compiler writers in considering their
TDF producing strategy.

3.1 Evaluation of Constants and Conditional Compilation

For every operation, if the expression arguments are explicit constants and the result
can be expressed as an explicit constant, then it should be so expressed. The result
should then be available as an explicit constant for similar consideration by any
enclosing operation. If the arguments deliver constant results but the evaluation has
side-effects, and if the result can be expressed as an explicit constant with
side-effects, this should be done. Again, the result should be available for enclosing
operations.

Every operation whose EXP arguments are explicit constants, which has an
ERRORHANDLER argument which is a LABEL, and whose effect is completely
defined by its arguments should be processed as follows. If control certainly passes
to the LABEL, the operation should be replaced by a suitable goto operition together
with any necessary side-effects. Since this has a bottom result, no further operations
after this goto need be translated. If control ce.tainly does not pass to the LABEL,
the operation should be replaced by one with an impossible error handler. In this case
the LABEL is not used by the operation.
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In any case where a bottom is produced, no subsequent unreachable code should be
produced.

In a conditional, repeat or labelled construct, any labelled expression which is
unreachable because its U.BEL is not used should not be translated. This may well
be because of a combination of the rules above.

In a case construct, if the controlling integer is an explicit constant, only the
selected branch should be translated.

These rules have a bearing on conditional translation. This needs to be done in the
translator, because it may be the installation process on the target which makes
expressions constant or unreachable.

Cross-reference: ERRORTREATMENT §2.1.1.12, bottom §2.1.2. 1. 1, labelled
§2.1.3.5.7, conditional §2.1.3.5.5, repeat §2.1.3.5.6, case §2.1.3.5.4

3.2 Operations with Some Constant Arguments

Operations, only some of whose arguments are explicit constants, can also be
optimised. For example, test eq with one argument a constant (especially if it is zero)
may be optimisable. These optimisations are expected.

3.3 Increment etc.

Expressions involving assign and binary or unary operators, of forms

a (contents a) binop b

a b binop (contents a)

a:= b binop c

a := unop (contents a)

a := binop b

should be examined with a view to making best use of three-address instruction,
add-to-store, increment etc. whatever the form of a, b and c. The choice has been made
that it is better for such formations to appear 'longhand' in TDF, rather than be
catered for by special operations (such as the ++ of C), because the cases are
somewhat dependent on the nature of the target machine.

Cross-reference: assign §2.1.3.4.5, contents §2.1.3.4.6
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3.4 Contents of Variables

Addresses of variables should only be manipulated where these addresses are
themselves the required data. In common machines contents(var) should involve only an
operand access to the variable, not the loading of the address on the stack.

3.5 Tail Recursion and Last Call

Translators should recognise a use of applyproc which is the last operation in a
procedure, even if this is inside such constructs as conditional. The use of
obtain currentprocedurewill make it possible to recognise tail reursion in this
situation, and so compilers should use it whenever possible. Translators should
optimise tail recursion and are encouraged to optimise last call. Care is needed to
avoid these optimisations if a LABEL-VALUE is created in the procedure.

Cross-reference; LABEL-VALUE, obtain-current-procedure, apply.proc

3.6 Field Selection

When possible, a combination of field selections from a tuple or field selections
from a POINTER to a TUPLE, as in a.b.c, should be combined. Often it will be
possible to make such an access into a single displacement-from-register operand.

No code is usually necessary for a part-field selection from a variable.

Cross-reference: field §2.1.3.9.3, partffield §2.1.3.4.4

3.7 NTEST, and, testeq etc.

The complex of optimisations involved in tests of relations, and the and, or and not of
such tests should be optimised in the usual way. Note that a test for true has the form
of testeq on a 1-bit value against the constant true.

Cross-reference: test.eq §2.1.3.10.2, test_neq §2.1.3.10.4, true §2.2.3.2.10, false
§2.2.3.2.11, and §2.1.3.8.4, or §2.1.3.8.5, not §2.1.3.8.7, NTEST §2.1.1.11
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