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1 Introduction

1.1 TDF: Scenarie of Use

TDF is an intermediate format for distributing software applications. It can be
produced from a very wide range of programming languages. For expository
purposes, the TDF definition is divided into three levels, referred to as Levels 0, 1
and 2.

e Level 0 is suitable for production from ANSI C (and hence any language
that can sensibly be translated into ANSI C).

¢ Level 1 contains more features and ic suitable for a wide range of
languages that do not mandate garbage coliection.

© Level 2 contains the full expressive power of TDF, including provision
for garbage collection.

Section §2 is structured as a definition of Level 0, followed by sections that describe
the additional constructs needed for Levels 1 and 2. There is no implication that
separate translators must be provided for the different Levels. A translator for Level
2 should generate as efficient machine code for TDF programs that contain only
Level O constructs, as a translator that is purpose-built for TDF Level 0. The
separation is for expository purposes only, although it does indicate a possible
upgrade path for TDF software (starting at support for Level 0 and being
incrementally enhanced to support first Level 1 and finally Level 2).

TDF is defined in the form of a data-structure which can be thought of as an abstract
syntax for programs. It contains sufficient informaton to allow efficient machine
code 1o be generated from it for any computer architecture on which the sofiware is
intended to be run. For transmission, TDF is converted into a linear stream of bits.
The encoding of this stream of bits is both space efficient and extensible so as to
allows upwards compatibility for any future enhancements or amendments to the
TDF definition.

TDF can be used for distributing "shrink-wrappzd” software. To do this, software
vendors produce a single version of their product in TDF. The software that produces
the TDF for distribution is called a TDF producer. The largest single component of
the producer is likely to be the program that converts a program written in a
high-level language, such as ANSI C, into TDF. We refer to this as the compiler
component of the producer. Once encoded, the TDF is then shipped to any of a
number of target computers owned by a software purchaser. The software that
converts the encoded TDF into an executable program on a target is referred to as an
installer. The largest single part of the installer will te the program that generates
machine code from arbitrary TDF programs. We refer to this as a TDF translator.
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1.2 TDF: Level of Definitir::

TDF constructs ar. generalisations of the constructs found in different programming
languages. This allows TDF to be the target of compilers for most programming
languages. The set of TDF constructs is designed to satisfy the following
requirements:

¢ All the information that a programming language can represent which
helps a code generator produce efficient code should be representable in
TDF. This means that programs distributed in TDF can bz as efficient as if
they were compiled with the best compiler on any target.

¢ Commonly provided hardware features should be easy to use - for
instance, the single instruction "array and bound check" provided by many
machines.

» As many optimisations as possible should be expressible as TDF to TDF
transformations. This means that these optimisations can be written
portably. They might be universal (i.e. beneficial for all languages and all
target machines), in which case they could be included in a
general-purpose TDF to TDF optimiser; they might be language specific,
in which case they could be included in any of the compiler components
for that language; or they m:ght be specific 1o a class of architectures, in
which case they could be included in translators for that class of target.

To satisfy these requirements TDF has been designed as a wide-spectrum interface,
which at its highest level generalises high-level programnung languages, wh'lst at
its lowest level generalising assembler codes.

1.3 Values within a TDF System

Programming languages have always had the notion of static and dynamic values.
Static values were those known at compile-time whilst dynamic values were
calculated at run-time. The situation in TDF is similar. We will use the term

"static" to describe values known at translate-time and "dynamic"” to describe values
which are calculated at run-time. (Note that in ANSI C the term "static" has a
different meaning.)

1.3.1 Dynamic Values

We will start by considering run-time values. In programming languages, run-time
valuss tend to be classified by a type system. Types are used for three different
purposes in programming languages. Firstly, types help the programmer to model
data in as natural a way as possible by providing a system of convenient
data-structures - records, arrays etc. Secondly, types aliow many structural
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programming errors to be detected at compile-time. Lastly, types provide
information to a compiler which helps it to generate efficient machine-code.

The TDF analogues of types are SHAPEs. They serve only the last of the three
purposes described above - providing the information which translators need in order
to achieve efficient memory rnanagement for any programming language on target
architectures. SHAPES are therefore designed to provide an architecture neutral
abstraction of memory management making no assumptions about the properties of
targets (word length, alignment constraints etc.).

1.3.2 Static Values

Apart from run-time values, there is another set of values in this TDF definition.
These are the pieces of TDF program themselves, which are outp: by compilers,
These TDF values are classified into their own system of catgories which we refer
to as SORTs. SORTs are analogous to the syntactic classes found in high level
programming languages - identifiers, expressions, types etc. For instance, SHAPE is
one of the SORTS. (To say that SHAPE is one of the SORTs means that there are
pieces of TDF program which provide symbolic information about the different
classes of run-time value.)

As well as SHAPE, there are twelve other SORTS.

All pieces of TDF program, whatever SORT they are, are by definition static (ie.
known at translate-time). Values generated by program, whatever SHAPE they are,
are in general dynamic (ie. known only at run-time). However, it may sometimes be
possible to evaluate run-time expressions at translate-time, in which case they are
static after all and may offer opportunities for optimisation.

1.3.3 SORTs and SHAPEs: an Example

The treatment of integers provides a good example of the relation between SORTS
and SHAPEs. Pieces of TDF program which when evaluated at run-time will
generate values are of the SORT EXP. (EXP stands for ‘expression’.) Each EXP can
be characterised by the SHAPE of the value which it will generate. For instance, an
EXP which will generate an integer value is said to have an INTEGER SHAPE.
Values of this SHAPE can describe any run-time integer - eg. a dynamically
calculated index of an array.

Pieces of pr. gram which by contrast stand for integers known at translate-time have
the SORT NAT. (NAT stands for ‘natural number’.) They are not EXPs which have

to be evaluated in order to generate their integer values. Instead, they already are integer

values. A pirce of TDF program of SORT NAT can describe any compile-time
known integer - eg. a statically calculated bound for trimming an array.

1.3.4 SHAPE- and SORT-correctness
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TDF relies on the programming language compiler to determine to what extent the
SHAPE-correctness of programs is enforced. (An example of SHAPE-incorrectness
would be the multiplication of two POINTERs.) Strongly typed languages will
naturally produce SHAPE-correct programs.

Likewise, the SORT-correctness of the TDF produced by a compiler is dependent on
the correctness of the compiler implementation. Neither SORT-correctness nor
SHAPE-correctness need be checked by a TDF translator.

1.4 Identification of Values

TDF provides two different methods of identifying values by "names", one static and
one dynamic. Identifiers which statically identify pieces of TDF program are called
TOKENS. They loosely correspond to ANS] C’s parameterised macros but are a
great deal more powerful. Identifiers in TDF program that dynamically identify
run-time values have the SORT TAG. These identifiers correspond to the names of
variables and procedures in programming languages such as ANSI C.

TDF identifiers, be they TAGs or TOKENS, do nothing more than set up name/value
correspondence. All the syntactic sugar associated with identifiers in programming
languages - the use of mnemonic identifiers, the complexities of overloading and
hiding - is provided solely to aid the human readability of programs. It provides no
information which assists in the production of efficient machine code and hence has
no relevance to TDF. All such syntactic sugar is eliminated by compilers to TDF.

If an occurrence of an identifier (TAG or TOKEN) is local to a program being
distributed in TDF, a static integer (of SORT NAT) is used to represent it. If
however the identifier identifies a value that is not purely local to the program - eg.
it is a TAG standing for a system procedure, or a TOKEN whose definition is part of
a library of commonly used TDF program fragments - then a value of SORT
UNIQUE is used. A value of SORT UNIQUE is a truly unique identifier so that no
unintentional identifier clashes can occur. As with Ethernet addresses, the
uniqueness is ensured by a distributing authority which gives an organisation a seed
for a sequence of unique identifiers. The representation of a value of SORT
UNIQUE is a pair of integers of SORT NAT, the first being the seed and the second
being the sequence number.

TAGs are an obvious generalisation of identifiers in programming languages. But
TOKENS are a concept devised specifically to handle the issues that arise when
software is distributed via an ANDF, as opposed to being compiled and translated on
a single machine.

1.5 TDF: Architecture Neutrality

The achievement of complete architecture neutrality has been the first priority in
designing TDF. The slightest shortfall from this goal would completely undermine
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its usefulness as a software distribution format. This section explains how TDF
allows target-dependent features of programming languages - notably ANSI C - to be
completely factored out of producers and dealt with exclusively in each
architecture’s installer.

This complete separation of concerns means that a producer can be used to produce
TDF for installation on any architecture with no alteration whatsoever.

1.5.1 SHAPEs SIZEs and OFFSETs

The des:gn of SHAPE constructs which provide a totally symbolic description of the
representation of run-time values is a central issue in the design of TDF and so
warrants a detailed explanation in this section.

1.5.1.1 TUPLE
To begin, consider the C structure:
struct! unsigned char c; double f; )
When compiled to TDF, a value of this C-type will probably have TDF SHAPE:
TUPLE(unsigned_char, double)

(TUPLE is TDF’s SHAPE construct describing car.esian products.) unsigned_chai and
double are TOKENS with definitions such as:

unsigned_char = INTEGER(0, 255)
double = FLOAT(2, 56, 0, 8)

A TDF translator will allocate space consistent with the TOKEN definitions -
probably one byte for unsigned_char and eight bytes for double.

The TUPLE SHAPE shown above is a straightforward rewriting of the C type. When
compiling to TDF one cannot afford to throw away the information that the value is
a structure, The reason is that different architectures have different placement and
alignment rules which must be obeyed. Without the knowledge that one was dealing
with a structure, correct and efficient translation to machine code in this case would
be impossible. For example, on 2 machine which had no restiction about accessing
words or floating point numbers at odd byte boundaries one could compactly
represent this structure in 9 bytes; a less liberal one which favoured word addressing
mighi need 3 bytes of padding after the c-field, so requiring 12 bytes in total; and a
really illiberal one might require 16 bytes by insisting that doubles start on 8-byte
boundaries.
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The other SHAPE constructs, besides TUPLE, which require compound information
to describe the symbolic representation are UNION (§1.5.1.2), NOF (§1.5.1.3.1),
SOME (§1.5.1.3.2), SIZE (§1.5.1.4.1) and OFFSET (§1.5.1.4.2). They are described in
the following sections.

1.5.1.2 UNION
The UNION construct describes a representation which can hold one of a set of
given SHAPEs. The TDF UNION is usually understood by a translator as specifying
that the contiguous area of space required for the UNION is the maximum of the
component areas, taking into account, once again, any alignment constraints.
1.5.1.3 Arrays: NOF and SOME
TDF's SHAPE system distinguishes bstween arrays whose number of elements are
known at translate-time and those whose number of elements are not known until
run-time. The statically sized arrays are described by the SHAPE construct NOF,
and the dynamically sized by SOME.
1.5.1.3.1 NOF
The NOF (pronounced ‘en-of’) construct describes the replication of a SHAPE a
translate-time known number of times. As with TUPLE and UNION, alignment
constraints arise in connection with the NOF construct, with padding possibly being
required between consecutive elements,
An example of the use of NOF is given by the C declaration:
unsigned char s[65536)
which would map to the SHAPE:

NOF(unsigned_char, 65536)

1.5.1.3.2 SOME

A SHAPE constructed using SOME describes a run-time known replication of a
given SHAPE. The same issues of alignment and padding arise as with NOF.

For example:
SOME(double)

describes an: array of doubles The number of doubles which the array contains. and
therefore the space requirements for such a value are not known at translate-time.
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In order to allow efficient memory management, there are many places where TDF
requires a SHAPE to be statically determinable - ie. its space requirements must be
calculable at translate-time. For instance, a SHAPE used in a declaration must be
statically determinable. Because of the run-time replication occurring in @ SOME, a
statically determinable SHAPE can contain no SOMEs unless they are hidden
behind a POINTER. (The assumption is that the representation of a POINTER to a
SOME is the same regardless of the number of elements in the SOME.)

The use of SHAPEs constructed by SOME is therefore restricted to constructs which
produce POINTERS and which deliver run-time SIZEs and OFFSETs as described in
the following section.

1.5.1.4 SIZE and OFFSET

We have established the need for retaining detailed information about values’
SHAPE in TDF using TUPLE, UNION, NOF and SOME. Two further SHAPE
constructs - SIZE and OFFSET - complete the picture, providing the calculation of
sizes and offsets required by ANSI C and other languages.

The sizes of values and their offsets within structures or arrays are explicitly
manipulated in ANSI C and also aid the implementation of other high level
languages such as Ada. Sizes and offsets are quintessentially target-dependent and
so TDF treats them in a totally symbolic manner.

1.5.1.4.1 SIZE

The TDF construct shape_size, when applied to a SHAPE, X, delivers at run-time a
value which is the size of X on the host architectare:

shape_size(X)

The SHAPE of the resulting value is SIZE(X). It is important to note that its SHAPE
is not INTEGER, measuring X’s size in (say) bytes. In fact, TDF does not allow
SIZEs to mix with values of other SHAPEs in ways that could compromise its
architecture neutrality. For instance, no constructs are provided to add mixtures of
SIZEs and INTEGERs. The reasoning behind this design decision becomes clear
when we consider thi: generation of space and the creation of a POINTER to it.

The TDF construct generate generates space and creates a POINTER to it. It takes as
its argument a value of SHAPE SIZE(X):

generate(shape_size(X))

Space for a value of SHAPE X is generated and a POINTER to it delivered. The
imporiant point here is that the number of bytes required is not determined explicitly
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by the compiler to TDF and stated as an INTEGER. To allow this would be to
compromise the architecture neutrality of TDF. Instead it is provided at run-time by
shape_size, ensuring that the host architecture’s placement and alignment rules are
respected,

(Although the result of shape_size(X) is in general only available at run-time, it is
determinable at ranslate-time if X contains no SOME constructs unhidden by
POINTERs.)

1.5.1.4.2 OFFSET

Just as SIZEs are motivated by the need to supply a completely architecture neutral
argument to generate and related operators, the SHAPE construct OFFSET is needed
in order to achieve completely architecture neutral pointer arithmetic.

The TDF construct array_element_offser (§2.1.3.7.6), when applied to a SHAPE, X,
delivers a value which is the distance between elements in a array (formed by
SOME . r NOF) of elements of SHAPE X on the host architecture:

array_element_offsei(X)

The SHAPE of the resulting value is OFFSET(X,X), to be understood as the offset
between two adjacent values of SHAPE X. As with shape_size in the previous section,
it is important to note that its SHAPE is not INTEGER. TDF does not allow OFFSETs
to m.ix with values of other SHAPEs. For instance, no constructs are provided to add
mixtures of OFFSETs and INTEGERs.

OFFSETs find application in pointer arithmetic operations. For instance, the
construct add_to_ptr takes as its arguments a POINTER and an OFFSET:

add_to_ptr(p,
array_element_offsei(X)

)

A new POINTER is delivered which points to a space one element removed from

that pointed to by p, assuming p to have been pointing at an array of values of SHAPE
X. The important point here is that the number of bytes’ displacement is not
determined explicitly by the comp ler to TDF and stated as an INTEGER. To allow
this would be 1o compromise the architecture neutrality of TDF. Instead it is

provided at run-time by array_element_offset.

(Although the result of array_element_offset(X) is in general only available at
run-time, it is determinable at translate-time if X contains no SOME constructs
unhidden by POINTERs.)

OFFSETs are also of relevance to TUPLEs. An OFFSET(X,Y) is the OFFSET from
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the start of X 10 the start of Y in a TUPLE (X,Y). The offset of the j-th element from the
start of a TUPLE(S,,S, .. Sj ..) is given by:

tuple_element_offset(TUPLE(S,S; .. §j.1), S;)
and has SHAPE OFFSET(TUPLE(S,,S; .. Sj_, ),Sj). (See §2.1.3.7.7)
Unlike SIZEs, OFFSETs are additive under TUPLEing. Consider, for instance, a
TUPLE(a,b.c). If off] is the OFFSET from the start of the a field to the start of the b
field, and ofi2 is the OFFSET from the start of the b field to the start of the ¢ field, then
offI + off2 is the OFFSET from the start of the a field 1o the start of the ¢ field.

Contrast this with the behaviour of SIZEs:

SI1ZE(a) + does not
SIZE(b) + necessarily SIZE(TUPLE(a,b,c))
S1ZE(c) equal

1.5.1.5 SHAPEs SIZEs and OFFSETs: ANSI C

The ANSI C notion of "size" corresponds to a TDF OFFSET between elements of an
array. ANSI C has no explicit notion corresponding to the TDF concept of SIZE, but
an ANSI C to TDF compiler will use the SHAPE constructs SIZE and OFFSET in
implementing C.

ANSI C deals only in fixed size objects or repetitions of fixed size objects. Hence if
SIZE(Z) occurs in the TDF output of an ANSI C compiler then either Z contains no
SOME constructs or else it is of the form SOME(X) where X contains no SOME
constructs. This means that in TDF derived from ANSI C all SIZEs and OFFSETs
are constant values and can be determined at translate-time, allowing optimisation.

An account of SHAPEs, SIZEs and OFFSETS as they relate to Ada is given in
§2.2.23

1.5.2 Conditional Compilation

TDF has been designed to meet programming languages’ requirements with regard
to conditional compilation. In brief, what is required is the ability to choose, at
translate-time, which of two different program fragments to trauslate.

For the purposes of ANSI C, only two of the TDF SORTSs need be conditionally
translated in this fashion - EXP and YARIETY. These cover evaluable pieces of
program and the determinants of the sizes of integers. Two constructs - exp_cond and

variety_cond - express their conditional compilation. Each supplies one or other of a
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pair of program fragments depending on the value delivered by an expression
intended to be evaluated at translate-time. (See §2.1.5 for further detail.)

Similar constructs providing conditional compilation for all the other SORTs form
part of Level I and are described in §2.2.4.

1.5.3 Tokenisation

A TOKEN identifies a (possibly) parameterised construct whose result can be of any
SORT. The definition of the TOKEN (in procedure or macro terms, its body) can be
supplied at a number of different times in the production or instaliation process:

¢ The TOKEN definition can be supplied by the producer, in which case
that same definition will be distributed to all tergets. A typical such usage
would be to make a commonly occurring piece of TDF into a token
definition in order to compress the amount of TDF distributed. The
substitution of the definition for the token will occur in the installer and
will be performed by macro expansion.

The producer can supply a TOKEN definition in two ways. A TOKEN can
be defined over the whole of a unit of TDF being distributed - called a
TDF capsule (see §1.6 for details). This is done by including its definition
in the list of TOKEN definitions which form part of the capsile.
Alternatively, a TOKEN can be defined over a delimited piece of TDF
program using fokenise (see §2.1.4).

¢ A TOKEN's definition might be supplied by the installer. There are a
number of usages of this:

+ a piece of TDF might be used so frequently that its definition is
supplied by all installerz. This is a similar usage to the one
above but eliminates the need to distribute the even the
TOKEN's definition, which compresses the TDF even more.

» the TDF definition substituted for the TOKEN may be target
specific e.g. the datastructure used by a print procedure. (The
'TOKEN definition for this particular datastructure would need
no perameters.)

o The TOKEN may be recogniszd by the translator and implemented
directly. There are a number of uses for this approach:

+ A TOKEN might be used to represent a construct such as
vector inner product. A producer might supply a portable
definition of this TOKEN. However an installer on a machine
such as a CRAY might choose 10 ignore the portabie definition

10
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and make full use of the CRAY’s parallelism in implementing
the vector inner product.

+ it a new language were invented requiring a new feature to be
added to TDF, it could be defined as a TOKEN which instaliers
implemented according to its definiticn.

o The TOKEN might be bound during linking to an external function that
has been precompiled from a programming language, or directly written in
assembler. The mechanism for doing this is defined as part of the
installation process.

1.6 Structure of a TDF Capsule

The unit of encoded TDF that is distributed is called a TDF "capsule”. A TDF
capsule consists of:

& -

e information to control linking with other TDF capsules and with the host
system.

» information setting iimits on the number of TAGs used in the capsule
and other data which help installers run as efficiently as possible.

o a set of TOCKEN definitions. The order of the definitions is not
significant, since all the TOKENS are visible in all the definitions. Not all
the TOKENS uced in the capsule need be defined here. Those that are not
wili be supplied by the time translation occurs.

¢ a set of TAG introductions. A TAG introduction contains all the
informatinn about th2 run-time value identified by a TAG excepu its actual
definition. A TAG introduction is required for all TAGs that are global 10
the capsule. (TAGs that are local to procedure bodies do not need
introductions.)

All TAG introductions contain the SHAPE of the value being identified
and an indication of whether the TAG is local to the piece of TDF being
distributed or is external - for example, possibly being shared with other
TDF capsules being distributed. If the TAG is external, its definition may
be supplied in this piece of TDF or it may have to be found elsewhere by
the installer. If a TAG is external then a string of characters is provided
which can be used by the installer, typically to link to a pre-compiled
routine or the target. TAG introductions also contain information specific
to the particular kind of TAG declaration (eg. identity declaration,
variable declaration - see §2.1.3.1).

11
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As with TOKEN definitions, the order of TAG introductions is not
significant.

¢ a set of TAG definitions. A TAG definition associates a TAG
introduction with the TDF definition of a piece of program (of SORT EXP)
which when evaluated produces a run-time value.

The order of TAG definitions is not significant.

Optionally one TAG may be identified as the main TAG. This TAG
identifies a piece of program whose evaluation corresponds to the main
body of the program being distributed.

(The contents of a TDF capsule are described in more detail in §4.2.)

1.7 TDF Terminology

1.7.1 Specifying Translator Behaviour

In this document the behaviour of TDF translators is described in a precise manner.
Certain words are used with very specific meanings. These are:

» "undefined”: means that the translator can perform any action, including
refusing to translate the program. It can produce code with any effect,
meaningful or meaningless.

e "shall": when the phrase "P shall be done" (or similar phrases involving
"shall"} is used, every translator must perform P.

 "should": when the phrase "P should be done" (or similar phrase
involving "should") is used, translators are advised to perform P, and
compiler writers may assume it will be done if possible. This usage
usually relates to optimisations which are being advised.

o "will": when the phrase "P will be true” (or similar phrases involving
"will") i« used, the translator may assume that P holds without attempting
to check it. If, in fact, a compiler has produced TDF for which P does not
hold, the effect is undefined.

o "target-defined”: means that there is a definition but this varies from one
target machine to another. Each target translator shall define everything
which is said to be "target-defined".

1.7.2 Describing Program Construction

For transmission, TDF is compactly encoded as described in §4.3. Though optimal
for the purposes of transmission by machine, the encoded form of TDF is not a

12
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convenient medium for describing the structure of TDF program to the human
reader. We therefore »se the following notation for the remainder of this document:

Some SORTSs consist of a fixed number of named alternatives. To indicate a
particular alternative, we simply write its name. For instance, the two alternatives
for BOOL appear as:

TRUE

FALSE

Other SORTS consist simply of integers or & subset of integers which can be written
down in the usual way, eg.:

3
Certain SORTS can consist of a tuple of components (ie. they are Cartesian products
of other SORTS). To write these down we list their components. For instance, a
VARIETY may consist of a pair of NATs:
(0,255)
The SORTs EXP and SHAPE are recursively defined, with a considerably richer set
of primitives and constructs than the other SORTS have. All these primitives and
constructs are set out in §2.1, §2.2 and §2.3.
Primitive EXPs are simply named, as in:
top
The application of an EXP construct is denoted as follows:
goto(2,
top
)

In text, the names of EXP constructs will appear in lower case italics.

The construct goto takes two arguments. In this case, the first, a LABEL, is simply a
NAT. The second is the primitive EXP, top.

As with EXPs, primitive SHAPES are simply named, as in:
BIT

And the application of a SHAPE construct is denoted as follows:

13
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NOF(BIT,100)

In text, the names of SHAPE constructs will appear in upper case. (The reader may

already have noticed that the names of the SORTs also appear in upper case - as
does the word SORT.)

The construct NOF takes two arguments, a SHAPE and a NAT. In this case, the first
is the primitive SHAPE BIT, and the second is a NAT.

Since the SHAPES: of values produced when EXPs are evaluated are important, we
! generally state the SHAPE when specifying TDF constructs. For instance, an EXP

) which evaluates to produce a value of SHAPE BIT is described as an EXP BIT.
} TAGs are likewise qualified.

The following example, drawn from §2.1.3.2.21 which specifies the construct runcate,
shows how the EXP and SHAPE notations look in practice:

truncate
ov_err:ERROR_TREATMENT,
v:VARIETY,
arg:EXP FLOAT(F)

->EXP INTEGER(v)

b

The construct’s arguments (if any) precede the -> and the result follows it. Each
argument has the form:

name:SORT

The name standing before the colon is for use in any English description which may
accompany the notation,

The example given above indicates that sruncaie takes three arguments. The first
argument, ov_err, has SORT ERROR_TREATMENT. The second, v, has SORT
VARIETY and defines the VARIETY to be used to construct the integer SHAPE in

the result of sruncate (see below). The third argument, arg, is an expression of SORT
EXP, and as mentioned before we append the SHAPE of the EXP, FLOAT(F). arg is the
piece of program which will deliver the floating point number to be truncated.

After the -> comes the SORT of the result of truncate. The result is an EXP
INTEGER(v) - a piece of program which, when evaluated, will deliver a value
whose SHAPE is INTEGER(v), the truncated floating point number.

No account is given here of the dynamic semantics of runcate, only its static semantics

- ie. the SORTs and SHAPE:S of its arguments and result and the relations between
them. However, when each of the EXP and SHAPE primitives and constructs is set

14
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+ out later in this document, an English account of its dynamic semantics
accompanies it.

The format for the description of the construction of 8 SHAPE is similar. For
instance, the SHAPE construct SIZE:

SIZE
sh:SHAPE

-> SHAPE

takes one SHAPE argument, which for the purposes of any accompanying
English text is named sh, and yields a SHAPE result.

Three further conventions are needed in order to express TDF constructs. Some
constructs have a variable number of parameters. For instance, make_tuple (§2.1.3.9.1)
can be used to make up tuples with any number of components (>1). We write this

as:

n
ni=1 Sl

The symbol "T1" is chosen to indicate cartesian product; i ranges from 1 to n; and the §,
are the components. In addition it is necessary sometimes to add qualifying

predicates, which we enclose in curly brackets, as in
n‘=1" S‘ ( n>1 ]
Some constructs have pa,ameters which may be optionally be omitted. To indicate
this we enclose the SORT of the optional parameter in brackets and apply a postf:x
_OPTION, e.g.
(TAG UNTRACED_PROC)_OPTION

meaning either a TAG UNTRACED_PROC or nothing.

2P San iy
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2 Definition

2.1 TDF Level 0

This section defines the SORTs, SHAPEs and EXPs which go together to form TDF
Level 0 - iz. the subset of full TDF which is required in order to implement ANSI C.

2.1.1 Level 0 SORTs
There are thirteen SORTs in TDF;
EXP UNIQUE
SHAPE TAG
NAT LABEL
SIGNED_NAT NTEST
VARIETY ERROR_TREATMENT
FLOATING_VARIETY EXCEPTION_HANDLER
BOOL

Ali form part of TDF Level 0, apart from EXCEPTION_HANDLER, which appears
in Level 1. Each of the Level 0 SORTS is described below:

2.1.1.1 EXP

EXP is short for ‘expression’. This is the main SORT in TDF. It describes a niece of
program that generates and manipulates run-time values. A substantial part of this
document (§2.1.3, §2.2.3 and §2.3.3) is taken up with descriptions of the TDF
constructs that are used to create EXPs. The definitions of many EXPs are
recursive; EXPs are built up from sub-EXPs and values of other SORTs. There are
constructs delivering EXPs that correspond to the declarations, program structure,
procedure calls, assignments, pointer manipulations, arithmetic operations, tests

etc. of programming languages.

The types (in programming language terms) of the run-time values generated and
manipulated by EXPs are described by the SORT SHAPE:

2,1,1.2 SHAPE
SHAPEs _.ve TDF translators symbolic size and representation informatien about
run-time values. Values of the same SHAPE will be represented in the same way

and occupy the same amount of memory at run-time on a given architecture.

The definition of SHAPE: is recursive and is built up from a set of basic SHAPEs

16
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such as BIT and PROC and constructs for compound datastructures such as tuples,
arrays (both statically and dynamically sized), pointers and unions. The constructs
for forming SHAPEs are described in §2.1.2, §2.2.2 and §2.3.2.

2.1L.LANAT
A value of SORT NAT is a static non-negative integer value of unbounded size.
2.1.1.4 SIGNED_NAT

A value of SORT SIGNED_NAT is a static integer value, positive or negative, of
unbounded size.

2.1.1.5 VARIETY

A value of SORT VARIETY describes the different kinds of integer which are
available at run-time. It is either a tuple of two natural numbers of SORT
SIGNED_NAT which describe the lower and upper bound of integers that must be
representable by the integer value at run-time (as discussed in §2.1.2.3.1), or it can
be one of four specially distinguished VARIETYSs.

(SIGNED_NAT, SIGNED_NAT) |
best_signed |

best_unsigned |

unlimited_signed |
unlimited_unsigned

(unlimited_signed and unlimited_unsigned do not appear in Level 0, but form part of
Level 2. They are included here for completeness.)

2.1.1.6 FLOATING_VARIETY

A value of SORT FLOATING_VARIETY describes the kinds of floating point
numbers which are available at run-time. It is a tuple of four values of SORT NAT.

(NAT, NAT, NAT, NAT)
These give details about the base to be used, the number of digits that must be
representable in th- mantissa and the minimum and maximum numbers that must be
representable by the exponent (see §2.1.2.3.2 for further details).
2.1.1.7BOOL

A static value of SORT BOOL is either tru> or false.

17
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true |
false

2.1.1.8 UNIQUE

As discussed in §1.4 UNIQUE is composed of two values of SORT NAT.
(NAT, NAT)

The first NAT identifies the issuer, the second is a sequence number, ensuring
uniqueness among the UNIQUE:s issued by a particular issuer.

2.1.1.9TAG

A value of SORT TAG is an identifier standing for a run-time evaluated expression
of SORT EXP. It is represented by a value of SORT NAT or of SORT UNIQUE (as
described in §2.1.3.1).

NATI
UNIQUE

Each TAG has an associated SHAPE which is defined in the TAG’s introduction (as
described in §4.2).

2.1.1.L10 LABEL

A LABEL identifies a piece of program and serves the role of labels in traditional
languages and hardware architectures, ie. a destination for jumps. A LABEL may

cither be a NAT or a UNIQUE.

NATI
UNIQUE

A NAT is used for LABELs which are private to a TDF capsule, but for LABELs
which are required to be accessible between capsules, UNIQUES are used.

2.1L.LI11 NTEST

A value of SORT NTEST identifies one of a number of arithmetic tests. There are
six NTESTs available.

18
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greater_than |
greater_than_or_equal |
less_than |
less_than_or_equal |
equal |

not_equal

The names are self-explanatory.

2.1.1.12 ERROR_TREATMENT

A value of SORT ERROR_TREATMENT controls program behaviour in the event
that a run-time error occurs. That behaviour can be one of four named possibilities,
or it can be the pssing of control to a LABEL.

impossible |

ignore !
standard_exception |
standard_signal !
LABEL

The significance of the different possible ERROR_TREATMENTS is as follows.
(standard_exception forms part of Level 1 and is described in §2.2.1.2.)

2.1.1.12.1 Impaossible

This argument is used when the error cannot occur. For example, if the divide
operation is dividing by a constant, which is known not to be zero, then the div0_err
ERROR_TREATMENT should be given the value impossible. This permits the
translator 1o avoid creating any code that might have been needed. This argument
should be produced by compiler writers whenever possible, since it permits the least
and fastest code to be produced.

For example, when transiating an arithmetic operation with error treatment impossible on
Vax, if the program at this point has overflow trap flag set or unset, the trap flag
need not be changed.

If the error in question does nevertheless occur, the effect of the operation is
undefined.

2.1.1.12.2 Ignore

This argument is used when the error can occur, but an attempt is to be made to
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carry on. In some operations the effect will be undefined, in otliers a definition is
given.

For example, when translating an arithmetic operation with error treatment ignore on
Vax, if the program at this point has overflow trap set, it will have tc be unset.

2.1,1.12.3 Standard Signal

This argument is used when an error can occur and the desired effect is to call a

signal procedure (see §2.1.3.11) as if from the construct being evaluated. For each
standard exception there is a signal procedure. All the signal procedures which can

be called from an ERROR_TREATMENT shall produce bottom (see §2.1.2.1.1 for an
account of bottomy); that is, they can only be left by a long jump or by raising an
exception.

ANSI C uses this method of handling errors.

Cross-reference: Exceptions: Discussion §2.2.3.2.3, Signals: Discussion §2.1.3.11,
bottom §2.1.2.1.1

2.1.1.12.4 LABEL ERROR_TREATMENT

This argument is used when an error can occur and the desired effect is to transfer
control to a LABEL. The LABEL is part of this argument. The LABEL will expect
the POINTER value described in §2.2.3.2.3.1. This ERROR_TREATMENT can
only be used where the LABEL is available.

Compilers which are processing exception-like constructs, for example in Ada, and

know at compile-time which exception handler will be used, should introduce a
LABEL and use the error_label argument instead of the srandard_exception argument.

Cross-reference: LABEL §2.1.1.10, top §2.1.2.1.2, Exceptions: Discussion §2.2.3.2.3,

Availability of LABELS: Discussion §2.1.3.5.1, Jumping with Values: Discussion
§2.1.3.5.2

2.1.2 Level 0 SHAPEs

2.1.2.1 Level 0 Basic SHAPEs
2.1.2.1.1 BOTTOM
BOTTOM is the SHAPE associated with constructs that do not terminate normally,

such as signal procedures. Such a construct can only be left by a long jump or by
raising an exception.

20
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2.1.2.12TOP

TOP is the SHAPE associated with constructs that return no useful value. For
example when a TDF construct jumps to a LABEL but does not jump with any
value, it jumps with a value of SHAPE TOP.

PO R A I T

2.1.2.13 BIT

BIT is the SHAPE describing values which have only two possible conditions.
2.1.2.1.4 UNTRACED_PROC

UNTRACED_PROC is the SHAPE describing any procedure value in a non-garbage
collecting system, and those procedure values in a garbage collecting system which
reside in the untraced kernel. (§2.3.2.1.1 provides an account of the Level 0 and 1

untraced kemel.) The only ultimate use that can be made of an UNTRACED_PROC
is to apply it to a parameter.

Equality of representation is undefined for UNTRACED_PROCs.

UNTRACED_PROCs are values which may have a limited lifetime. (The concept
of lifetime is introduced in §2.1.3.12.)

Cross-reference: procedures §2.1.3.6

2.1.2.1.5 LABEL_VALUE

LABEL_VALUE is the SHAPE describing values which represent LABELs. A
LABEL_VALUE can be created by make_label_value. It is used to implement
language features which need to manipulate LABELS as values, such as the long
jump of C and PERFORM in COBOL. A LABEL_VALUE is a value with a limited
lifetime.

Equality of representation for LABEL_VALUE:s is not defined.

Cross-reference: make_label_value §2.1.3.5.11, Lifetimes: Discussion §2.1.3.12

2.1.2.2 Least Upper Bound

Every TDF construct producing an EXP specifies the SHAPE of that EXP. The
"EXP’s SHAPE may always be the same or it may depend in some way on the
arguments supplied to the construct. For instance, make_int (§2.1.3.2.2) produces an
EXP of SHAPE INTEGER(V), where the VARIETY of the integer is governed by
the VARIETY which is supplied as one of the construct’s arguments.

Certain constructs produce EXPs which at run-titme deliver a value derived from the

J h R g

A RN R S R Ry e
S

?
!
{
i
B




F—_-———__-———-—-"—“—!

TDF Specification

evaluation of one of a number of argument EXPs, which one being undetermined at
translate-time. In these cases, the SHAPE of the result is deemed to be the Least
Upper Bound or LUB of the SHAPES of all the EXPs which could provide the result.
See the specification of case (§2.1.3.5.4) for an example of this.
The rules governing the calculation of the LUB of SHAPES are as follows:

bottom LUB x = x

top LUB x = top

xLUBx=x

if neither x nor y are bottom or top and xsty, then x LUB y = top
(The names bottom and top are chosen because the SHAPEs form a semi-lattice.)
The LUB of a number of SHAPE: is denoted:

LUB,_" X;

where it is understood that:

LUB_,"X; = X,LUBX,..LUBX,

LUB features in the descriptions of some of the compound SHAPEs which follow.
2.1.2.3 Level 0 Compound SHAPEs

Compound SHAPESs are SHAPESs which are not primitive, in the sense that the
constructs which form them take arguments.

Circular SHAPEs can be constructed using tokenise (see §2.1.4). Eg.
tokenise(list,

SHAPE,
TUPLE(BIT, PART_POINTER(list))

)

However no SHAPEs will be constructed whose memory requirement is infinite,
2.1.2.3.1 Integer SHAPEs

Most of the integer arithmetic operations - plus, minus etc, - are defined to work in the
same way on different kinds of integer. If these operations have more than one
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argument, the arguments have to be of the same kind, and the result is also of this
kind.

The different kinds of integer are called different VARIETYSs. (The SORT
VARIETY was introduced in §2.1.1.5.) These VARIETY: fall into two classes. The
first class comprises VARIETY's which can only express a bounded number of
different integers. These are called limited VARIETYs. Some of the operations on
integers with limited VARIETYs can cause overflow errors. Only the limited
VARIETYs are used by C.

(The other class of VARIETYS, unlimited VARIETYS, appears in TDF Level 2 and
is described in §2.3.2.4. They are used to represent integers of unbounded size.)

Operations which can cause overflow take an ERROR_TREATMENT argument
which specifies how an overflow error is to be treated. These operations are
applicable to limited and unlimited integers alike.

The representions of limited integers are equal if and only if the integers are equa.
Equality is only defined for identical VARIETY'S.

SHAPE;: describing integers are constructed by the SHAPE construct INTEGER,
taking a value of SORT VARIETY as its argument. Thus:

INTEGER(0,255)

is a SHAPE describing an integer value whose VARIETY is (0,255),
specifying that it may lie between 0 anc 255 inclusive, and for which a translator
can accordingly plan space.

Limited VARIETYs in which the least limit is less than zero are known as signed
VARIETYs. Limited VARIETY's with the least limit greater than or equal to zero
are known as unsigned VARIETYs.

In addition to the limited VARIETY's whose bounds are specified, two limited
VARIETYSs are provided which serve the same purpose as ANSI C’s int and
unsigned int. They are named best_signed and best_unsigned. Integers having these
VARIETYs shall have values at least including the range 1-2715 to (2715)-1 and 0 to
(2716)-1 respectively, but otherwise defined to be the most appropriate for the target
machine.

‘When any operation delivering an integer belonging 10 a limited VARIETY
produces a result not lying between the bounds of that VARIETY, an integer
overflow error occurs. Every operation which can produce such a result has an
ERROR_TREATMENT argument which specifies how this error is to be dealt
with.

The LUB of two limited VARIETY' is top unless both the least and greatest requested
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limiting values are the same, or both are the same named VARIETY. Thus no
assumption is made about the size of words in the target.

Cross-reference: maxint §2.1.3.2.16, minint §2.1.3.2.17, Least Upper Bound §2.1.2.2

2.1.2.3.1.1 Recommendations about Integer VARIETYs
Three recommendations are made about the use of integer VARIETYs.

» First reccommendation: when SIGNED_NATS are chosen to define a
limited VARIETY, their values should reflect as precisely as possible
what is needed by the program. This choice should not be influenced by
knowledge of what is available on common machines (except where the
purpose is specifically to take advantage of such knowledge). It is the task
of the TDF translator to make intelligent decisions. Again the use of
integers for indexing provides an example where the translator should be
allowed as free a choice of representation as possible.

e Second recommendation: whenever it is reasonable, the VARIETY's
best_signed or best_unsigned should be used. (Other VARIETY's are likely
to be more expensive in terms of explicit overflow checking.) The
assumption should never be made that the best VARIETYs will be a 32 bit
integers. It is important for translators to be able to make best VARIETY's
occupy less than 32 bits to allow for addre:sing and to allow for garbage
collection techniques.

o Third recommendation: integer VARIETY's should be tokenised in such
a way that useful selective alterations may be made purcly in the target
machine. (See §1.5.3 for an account of tokenisation.) It may be that certain
operations involving integers can usefully be transformed to make best use
of an architecture’s facilities. So that the relevant integer VARIET s can
be selectively substituted, the integer arguments to these operations
should belong to a particular tokenised VARIETY, and other integers to
another VARIETY. (An instance of this is array indexing operations,
where freedom to determine the characteristics of the integers involved on
a particular target permits a choice of memory model to be made by the
installer.)

2.1,2.3.2 Fioating Point SHAPEs
Most of the floating point arithmetic operations, floating_plus, floating_minus etc., are
defined to work in the same way on different kinds of floating point number. If these

operations have more than one argument, the arguments have to be of the same kind,
and the result is also of this kind.
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The different kinds of floating point number are called FLOATING_VARIETYSs.
(FLOATING_VARIETYS were introduced in §2.1.1.6.) SHAPEs describing floating
point values are constructed by the SHAPE construct FLOATING, taking a value of
SORT FLOATING_VARIETY as its argument. Thus:

FLOATING(10,30,0,100)

is the SHAPE of a floating point value of FLOATING_VARIETY
(10,30,0,100). This signifies that its BASE is 10, it has 30 digits in its MANTISSA,
. its MINIMUM_EXPONENT is 0 and its MAXIMUM_EXPONENT is 100!

| . BASE is tire base with respect to which the remaining numbers are given.

i MANTISSA_DIGITS is the reguired number of BASE digits, g, such that any number
with ¢ BASE digits can be rounded into a floating point number of the variety and
back again without any change to the g BASE digits.

MINIMUM_EXPONENT is the required iateger, n, such that BASE raised to the
power -n can be represented as a non-zero floating point number of the variety.

MAXIMUM_EXPONENT is the required integer such that BASE raised to that
power is representable as a floating point number of the variety.

The base given need bear no relation to the base for floating point numbers in any
target architecture. Commonly, as in ANSI C on all known architectures, the
definition may be given in terms of a decimal base, but the implementation may be

binary.

Equality of representation for floating point numbers is defined to be equality of
! . representation in the target machine. It is therefore target-defined.

The use of a FLOATING_VARIETY in TDF expresses the intention that & correct
program will only use the values implied by the requirements. A TDF translator is
required to make available a representation such that, if only values within the
requirements are produced, no overflow error will occur. The effect of using values
outside the requirements is undefined, but an overflow error may be produced.

The LUB of two FLOATING_VARIETYs is top unless each of their defining
parameters is equal.

Any number of FLOATING_VARIETYs may be asked for by a TDF program,
though it is recommended that the number should be severely limited. The space
taken in the TDF for transmission of FLOATING_VARIETYSs should be minimised
by tokenising (§1.5.3) the required FLOATING_VARIETYSs and using the TOKENSs
instead of the full form.
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2.1.2.3.2.1 Recommendations about FLOATING_VARIETYs
Two recommendations are made about the use of FLOATING_VARIETYSs in TDF.

¢ First reccommendation: when parameters are chosen to define a
FLOATING_VARIETY their values should reflect as precisely as
possible what is needed by the program. This choice should not be
influenced by knowledge of what is available on common machines. It is
the task of the TDF translator to make intelligent decisions.

e Second recommendation: FLOATING_VARIETYs should be tokenised
in such a way that useful selective alterations may be made purely in the
target machine. (See §1.5.3 for an account of tokenisation.) It may be that
a certain operations involving floating point values can usefully be
transformed to make best use of an architecture’s facilitics. So that the
relevant floating point VARIETYs can be selectively substituted, the
floating point arguments to these operations should belong to a particular
tokenised FLOATING_VARIETY, and other floating point values to
another FLOATING_VARIETY.

2.1.2.3.3 POINTER SHAPEs
There are five SHAPE constructs collectively known as POINTERs. They are:

UNTRACED_POINTER
WHOLE_POINTER
SHAKY_WHOLE_POINTER
PART_POINTER
SHAKY_PART_POINTER

Only UNTRACED_POINTER forms part of Level 0. All the others are concerned
with garbage collection and are introduced in Level 2 (see §2.3.2.1).

All the POINTER constructs take a SHAPE as an argument. The SHAPE describes
the value to which the POINTER points. This gives TDF translators the freedom to
implement POINTER:s in different ways depending on the SHAPE of the values 10
i which they point.

2.1.2.3.3.1 UNTRACED_POINTER SHAPEs

An ﬁNTRACED_POINTER is a POINTER which points to a space allocated in the
untraced kernel of a computer’s memory - untraced, that is, by any garbage collector.

No TDF constructs can create an UNTRACED_POINTER explicitly. This can only
be done by library routines such as calioc and malioc. Likewise, deallocation.

26




?{t"’%*‘%g

ety

¥

e

o wen

LY 1

TDF Specification

UNTRACED_POINTERS have equal representation if and only if they are identical
- ie. they are copies of a value produced from one particular POINTER allocation.

The lifetime of an UNTRACED_POINTER depends on the manner of its creation.

If it arises from a variable or variable_no_init construct, then its lifetime extends over
the body of that construct. However, if it arises from explicit use of a library routine,
then its lifetime is undefined.

Cross-reference: Garbage Collection: Discussion §2.3.2.1.1, Lifetimes: Discussion
§2.1.3.12, sharing §2.1.3.4.1.1

2.1.2.34 TUPLE SHAPEs

components:I1,_, " (s;:SHAPE)

-> SHAPE

A TUPLE is a canesian product of the SHAPEs components.

None of the components will be top.

Two TUPLEs have equal representations if their components all have equality of
representation defined and if the components are pairwise equal in representation.
This implies that any padding between fields (put there to satisfy alignment rules)
must have standard values.

TDF requires that the fields be represented in memory in the same order as they
occur in the TUPLE. That is, the OFFSET from one field to the next is always
positive. More than that, TDF requires the representation of the first n fields of a
TUPLE to be unaltered by adding an additional field at the end.

Note: the advantage of implementing a hierarchy of properties in this way outweighs
the possible gains of a more compact representation from re-ordering the elements

in the TDF translator.

2.1.2.3.5 ALIGNED_TUPLE SHAPEs
components:T1,," (s;:SHAPE)
-> SHAPE

Like TUPLE, an ALIGNED_TUPLE is a cartesian product of the SHAPEs
components. All the rules which apply to TUPLEs apply to ALIGNED_TUPLE: .

The two SHAPE constructs are distinguished in order to provide for the application
of a procedure to more than one parameter. The TDF construct apply_proc allows only
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one parameter to be supplied to a procedure. In order to mode! programming
languages which permit more than one parameter to be supplied, a TDF producer
gathers the parameters into an ALIGNED_TUPLE and supplies that single value.
Becavse some architectures have different conventions regarding the packing of
procedure parameters and the disposition of ordinary structures, TDF reflects this
distinction between the two ways of parcelling data so that translation to the targets
can be as efficient as possible.

All the operations applicable to TUPLES are applicable to ALIGNED_TUPLES,
except that apply_proc will not be used on a TUPLE parameter. ALIGNED_TUPLEs
are created using make_aligned_tuple (§2.1.3.9.2) rather than make_tuple (§2.1.3.9.1).

2.1.2,3.6 UNION SHAPEs

alternatives: I1,_," (s,:SHAPE)
-> SHAPE

A UNION value contains one of the alternatives, s;. A discriminant to determine
which alternative is in use is not a part of the value. If it is needed, such
discrimination is performed elsewhere.

UNIONSs have equal representation if the values present belong to the same SHAPE
and are equal in representation.

2.1.2.3.7 SIZE SHAPEs
sh:SHAPE
-> SHAPE

The SHAPE of run-time values which measure amounts of memory in an

architecture neutral manner. The notions of SIZE and OFFSET are closely related,

but not identical. An OFFSET is a run-time value which measures the displacement
between spaces holding values in an architecture neutral manner. Given a TUPLE
consisting of a pair of values of SHAPEs g and b, the start of the b value is not
necessarily displaced from the start of the pair by the SIZE of a. There may be memory
alignment requirements which mean that there has to be some dead space between

the end of g and the start of b. In general we need to know both SIZE information and
OFFSET information.

In TDF, SIZE values can be converted to integer values which give the minimum
number of bits of space needed to hold something (this information is needed by

Ada). They can also be turned into integer values giving the minimum number of
bytes of space needed to hold something (this information is needed by ANSI C).

In ANSI C the requirements on SIZEs and OFFSETS are not complex. but Ada
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requires compound values which are made up from components which are of
run-time determined SIZE. This, together with the need for the alignment
information to be given symbolically, makes the general concept of SIZE more
advanced than that required by ANSI C alone,

Translators need to know the structure of the SHAPE of which a SIZE is being
computed. If they did not know, it would be necessary to carry this structure around
at run-time, in order to work out the padding needed within tuples. But if the
translator does have this information, it need only carry around at run-time the
number of bytes (or bits) of space needed. The amount of p:..ding can be computed
at translate-time,

However, translators can only carry around general structure information; they
cannot know the actual (computed) SIZEs of arr-ss etc. This general SHAPE
information therefore uses the SOME construct, which gives enough information to
do these calculations.

Note that the role of the SHAPE parameter of SIZE is not at all the same as the role
of the SHAPE parameters in compound SHAPEs. A value whose SHAPE is
SIZE(UNTRACED_PROC), for example, does not contain a UNTRACED_PROC
value, it is merely a measure of the amount of memory occupied by a
UNTRACED_PROC value. This is why the SHAPEs in this position need not be
SOME-free.

SIZE(SH1) LUB SIZE(SH2)

will be top unless SH1 = SE2, in which case it will be SIZE(SH1). (See §2.1.2.2
for an account of LUB - Least Upper Bound.)

A more detailed account is given in the section on SHAPES and SIZEs.

Equality of representation for SIZEs is undefined, however size_est may be used to
compare SIZEs.

Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1, generate §2.3.3.1, size_test
§2.1.3.7.4, SOME §1.5.1.3.2, Level 0 Compound SHAPEs §2.1.2.3, Level 1 SHAPEs
§2.2.2, Level 2 SHAPEs §2.3.2

2.1.2.3.8 OFFSET SHAPEs

a:SHAPE
b:SHAPE

-> SHAPE

The SHAPE of run-time values which measure memory offsets in an architecture
neural manner. As explained in §2.1.2.3.7, given a TUPLE consisting of a pair of
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values of SHAPEs a and b, the start of the b value is not necessarily displaced from
the start of the pair by the SIZE of a. The need to know this displacement leads to the
requirement for OFFSET values.

A value of SHAPE OFFSET(a,b) is a measure of the displacement of a value of
SHAPE b from the start of a TUPLE(a,b). A value of SHAPE OFFSET(a,a) is a
measure of the displacement between successive values in an array containing a's.

Equality of representation for OFFSETs is undefined.
Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1, SIZE SHAPEs §2.1.2.3.7
2.1.2.3.9 NOF SHAPEs

s:SHAPE,
n:NAT

-> SHAPE
An NOF value is an array of n values of SHAPE s. n is known at translate-time.

NOF values have equal representations if they have the same number of
components, if their components have equality of representation defined and if the
components are pairwise equal in representation.

An NOF value differs from a TUPLE of n values of the same SHAPE in that the
selection of a component by a computed index is allowed. (The construct index is
described in §2.2.3.2.17.)

2.1.2.3.10 SOME SHAPEs
s:SHAPE
-> SHAPE

A SOME value is an array of values of SHAPE s. Unlike NOF, the number of elements
in the array is not known at ranslate-time,

This SHAPE is not on the same footing as the other SHAPES. If a value of SHAPE Z
cnntains no value whose SHAPE is SOME, the amount of space needed to hold a
value of SHAPE Z is known at translate-time. Such a SHAPE Z will be cailed
SOME-free. Almost all the SHAPEs used in a TDF tree will be SOME-free,

because translators need to know how much space to allow for a value of the
SHAPE. Only values which are handled through POINTERS can have SHAPEs
which are not SOME-free. Only the SHAPESs involved in calculations of SIZEs and
OFFSETs need not be SOME-free. In the TDF specification every construct which
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uses a SHAPE is defined either to be SOME-free or to be not necessarily
SOME-free.
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2.1.3 Level 0 ©XPs

The EXP constructs required for implementing ANSI C can conveniently be broken
down into ten broad categories:

Declarations and Naming

Integers

Floating Point Values

POINTERs

Program Structure and Flow of Control
Procedures

SIZEs

NOFs

TUPLEs, ALIGNED_TUPLEs and UNIONs
Miscellaneous

These are described in the following sections. (The notation used for describing the
constructs is introduced in §1.7.)

2.1.3.1 Declarations and Naming

2.1.3.1.1 Binding: Discussion
A TAG is represented in TDF by either a NAT or a UNIQUE value.

The following constructs and no others introduce TAGs. Each of them determines
program structure.

conditional §2.1.3.5.5, EXCEPTION_HANDLER §2.2.1.1, identify §2.1.3.1.3,
make_untraced_procedure §2.1.3.6.2, make_traced_procedure §2.3.3.14, repeat
§2.1.3.5.6, labeiled §2.1.3.5.7, variable §2.1.3.1.4, variable_no_init §2.1.3.1.5

During the evaluation of each of these constructs a value, v, is produced which is bound
1 a TAG, 1, during the 2valuation of an EXP. This means that during the evaluation

of the EXP, evaluation of obzain_tag(t)will produce th= value v. Only those TAGs
which have been introduced in this way are available for use in a obtain_tag construct.
Each of the TAGs introduced in a TDF capsule will be represented by a different

value, and so no scope rules are needed. Avoidance of re-use of the same identifier

in separate TDF capsules is achieved by using UNIQUE values for TAGs.

2.1.3.1.2 Register: Discussion

In order 10 pass on the information supplied by the ANSI C register construct, the
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register argument is supplied in the declarations identify §2.1.3.1.3, variable §2.1.3.1.4
and variable_no_init §2.1.3.1.5. This BOOL, if true, signifies that the name is

heavily used in the controlled expression and so access to the value should be as fast
as possible. In the case of variable declarations, it also implies that the variable is

only used in contents and assign operations.

2,1.3.1.3 identify

register: BOOL,
visible: BOOL,
name: TAG X,
def: EXP X,
body: EXPY

S>EXPY

def is evaluated to produce a value, v. Then body is evaluated. During the evaluation, v is

bound to name. This means that inside body an evaluation of obtain_tag(name) will
produce the value v.

The value delivered by identify is that produced by the evaluation of body. Thus the
SHAPE of the value delivered by identify is the same as the SHAPE, Y, of body.

register gives information about the usage of name. If register is true, name will not be
used as a non-Jocal of a procedure. It may also be taken as an indication that name is
heavily used within body, and that allocation to a register, if possible, would be
advantageous.

The TAG given for name will not be re-nsed. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 fora
discussion of this point.

visible specifies whether the value bound with name is to be made available in the
event that an exception occurs during the evaluation of body and the exception is
diagnosed. If visible is true, translators shall arrange for it to be available.

In the case where def is simply obtain_tag(t}, translators should produce no code, since
this usage of identify amounts to a mere renaming of ¢ as name. Similarly, if def is
constructed by a succession of field operations on obtain_tag(1), translators should
produce no code, since this usage amounts to the naming of a part of a value which

has already been named.

Cross-reference: Register: Discussion §2.1.3.1.2, Bindir.g: Discussion §2.1.3.1.1,
Exceptions: Discussion §2.2.3.2.3, obtain_tag §2.1.3.1.6, field §2.1.3.9.3
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2.1.3.1.4 variable

register: BOOL,

visible: BOOL,

name: TAG POINTER(X),
init: EXP X,

body: EXP Y

S>EXPY

iniz is evaluated to produce a value, v. Space is allocated to hold a value whose

SHAPE is X. The space is initialised with v. Then body is evaluated. During the
evaluation, an original POINTER pointing to the allocated space is bound to name. This
means that inside body an evaluation of obtain_tag(name) will produce an original
POINTER pointing to the space. If variable occurs inside an UNTRACED_PROC,
then the POINTER will be an UNTRACED_POINTER. If it occurs inside a
TRACED_PROC, it will be a PART_POINTER.

The value delivered by variable is that produced by the evaluation of body. Thus the
SHAPE of the value delivered by variable is the same as the SHAPE, Y, of body.

register gives information about the usage of name. If register is true, name will not be
used as a non-local of a procedure. It will be used only in assign, contents and part_field
constructs. It may also be taken as an indication that name is heavily used within body,
and that allocation to a register, if possible, would be advantageous.

The TAG used for name will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 fora
discussion of this point.

visible specifies whether the space associated with name is to be made available in the
case that an exception occurs during body and the exception is diagnosed. If visible is
true, translators shall arrange for it to be available.

The POINTER associated with name has a lifetime limited to the execution of body. Any
attempt to use it when body is not being executed is undefined.

The sharing properties of the POINTER are discussed in §2.1.3.4.1.1.

In ANSI C, a use of obrain_tag(name) is equivalent to a use of &. The use of
contents(obtain_tag(name)) is equivalent to the use of the right hand value of a
variable, and the use of assign{obiain_tag(name), x) is equivalent to the use of the left
hand value of a variable.

Cross-reference: Register: Discussion §2.1.3.1.2, Lifetimes: Discussion §2.1.3.12,
Binding: Discussion §2.1.3.1.1, Exceptions: Discussion §2.2.3.2.3, sharing
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§2.1.3.4.1.1, generate §2.3.3.1, whole_to_part §2.3.3.2, add_to_ptr §2.1.3.4.2,
subtract_from_ptr §2.1.3.4.3, index §2.2.3.2.17, part_field §2.1.3.4.4, shake §2.3.3.12,
firm §2.5.3.13, original POINTERs §2.1.3.4.1.3, obtain_tag §2.1.3.1.6

2.1.3.1.5 variable_no_init

register: BOOL,

visible: BOOL,

name: TAG POINTER(sh),

sh: SHAPE, {sh will be SOME-free)
body: EXPY

>EXPY

Space is allocated to hold a value whose SHAPE is sk. The space is not initialised. bod)y
is then evaluated. During the evaluation, an original POINTER pointing to the

allocated space is bound to name. This means that inside body an evaluation of
obtain_tag(name) will produce an original POINTER pointing to the space. If the
contents of the space are examined before a value is assigned into it, the effect is
undefined. If variable_no_init occurs inside an UNTRACED_PROC, then the
POINTER will be an UNTRACED_POINTER. If it occurs inside a

TRACED_PROC, it will be a PART_POINTER.

The value delivered by vuriable_no_init is that produced by the evaluation of body. Thus
the SHAPE of the value delivered by variable_no_init is the same as the SHAPE, Y, of
body.

register gives information about the usage of name. If register is true, name will not be
used as a non-Jocal of a procedure. It will be used only in assign, contenis and part_field
constructs. It may also be taken as an indication that name is heavily used within body,
and that allocation to a register, if possible, would be advantageous.

The TAG used for name will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not hapnen. See §2.1.3.1.1 for a
discussion of this point.

visible specifies whether the space associated with name is to be made available in the
case that an exception occurs during body and the exception is diagnosed. If visible is
true, translators shall arrange for it to be available.

The POINTER associated with name has a lifetime limited to the execution of body. Any
attempt 1o use it when body is not bei.ig executed is undefined.

The sharing properties of the POINTER are discussed in §2.1.3.4.1.1.

In ANSI C, a use of obtain_tag(name) is equivalent to a use of &. The use of
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contents(obtain_tag(name)) is equivalent to the use of the right hand value of a
variable, and the use of assign(obtain_tag(name), x) is equivalent to the use of the left
hand value of a variable.

If sh is a compound SHAPE, such as a TUPLE, then the space to hold it may contain
areas of padding in order to conform to an archiicture’s alignment rules. Though
equality between TUPLEs depends solely on the equality of the components,
installers may very well implement this operation by comparing the whole of the
TUPLE;S, including any padding. Translators therefore need to make sure that such
padding has a standard vaue. This means that some pseudo-initialisation operation
on the space for this variable may be necessary, even for pure ANSI C translators.

Cross-reference: Register: Discussion §2.1.3.1.2, Lifetimes: Discussion §2.1.3.12,
Binding: Discussion §2.1.3.1.1, Exceptions: Discussion §2.2.3.2.3, sharing
§2.1.3.4.1.1, generate §2.3.3.1, whole_to_part §2.3.3.2, add_to_ptr §2.1.3.4.2,
subtract_from_ptr §2.1.3.4.3, index §2.2.3.2.17, pan1_field §2.1.3.4.4, shake §2.3.3.12,
firm §2.3.3.13, obtain_tag §2.1.3.1.6

2.1.3.1.6 obtain_tag
name: TAG X
->EXP X

The value with which the TAG name is bound is delivered. The SHAPE of the result
reflects the SHAPE of the value with which the TAG is bound.

Cross-reference: Binding: Discussion §2.1.3.1.1

2.1,3.2 Integers

2.1.3.2.1 Character Sets: Discussion

TDF, as a representation of program, does not manipulate characters explicitly.
Instead, they are represented by integers. Conventions for mapping characters onto
integers are required.

Characters appear in programs, and need to correspond to the characters which
appear on the printers and displays of target machines. But the hardware of target
machines can use a multiplicity of different collating sequences for characters. In
order to achieve portability of TDF programs it is necessary to choose a standard
representation for characters in the TDF itself. Translation to the collating sequence
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for the hardware devices then should occur only on the point of transmission to those
devices. The standard is separate from the definition of TDF.

Since ANSI C is compatible with ASCI and Ada makes it mandatory, TDF
standardises on ASCII.

Other character sets, such as Japanese, may need to be represented as strings written
in programs. But not all target machines have Japanese printers. To conform with
the need for portability of TDF prog-ams a similar standard represention of
characters in TDF and translation at ths device will be needed, for those programs
and target machines which use Japanese characters. Multi-byte characters will
probably be used. Similar standards are needed for all such character sets. These
will have to be standardised as the need arises.

The customisation of user’s programs to give messages in the user’s own language
can be achieved by tokenising the messages (or the collection of messages) and
making the substitutions during installation of the program.

Cross-reference: tokenisation §1.5.3, TDF: Scenario of Use §1.1

2.1.3.2.2 make_int

v: VARIETY,
value: SIGNED_NAT

-> EXP INTEGER(v)
An integer value is delivered whose value is given by value, and whose VARIETY is

given by v. The integer value value will lie between the bounds of v. This ensures that
value is representable as an integer of VARIETY v.

Cross-reference: integer SHAPEs §2.1.2.3.1, SIGNED_NAT §2.1.1.4
2.1.3.2.3 plus
ov_err:ERROR_TREATMENT,
arglLEXP INTEGER(V),
arg2:EXP INTEGER(V)
->EXP INTEGER(V)
argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.

The sum of a and b is delivered as the result of the construct, which has the same
SHAPE as the construct’s arguments.
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If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov_err.

If ov_err is ignore and the VARIETY, V, is unsigned, the operation is performed
modulo 2bits(V).

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1
2.1.3.2.4 minus

ov_emERROR_TREATMENT,

arg1:EXP INTEGER(V),

arg2:EXP INTEGER(V)

-> EXP INTEGER(V)

argl and arg2 are evalualed to produce integer values, a and b, of the same VARIETY.
The difference of a and b is delivered as the result of the construct, which has the

same SHAPE as the construct’s arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov_err.

If ov_err is ignore and the VARIETY, V, is unsigned, the operation is performed
modulo 27bits(V).

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.
Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1
2,1.3.2.5 mult
ov_ermERROR_TREATMENT,
argl:EXP INTEGER(Y),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V)
argl and arg2 are evaluated to produce integer values, < and b, of the same VARIETY.
The product of a and b is delivered as the result of the corztruct, which has the same

SHAPE as the construct’s arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov_err.
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If ov_err is ignore and the VARIETY, V, is unsigned, the operation is performed
modulo 2Abite( V).

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.
Translators should if possible optimise multiplication by powers of 2 and any
relevant constants.
Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1
2.1.3.2.6 Kinds of Division: Discussion
Two classes of division (D) and rcme;inder (M) coswruct are defined. The two
classes have the same definition if both operand- have the same sign. Neither is
defined if the second argument is zero.
Class 1:
pDlg=n
where p =n*q + (p M1 q)
sign(p M1 q) = sign(q)
0< ipMlgl<ig
Class 2:
pD2q=n
where p=n*q+ (pM2q)
sign(p M2 q) = sign(p)
0< ipM2gi<iqg
2.1.3.2.7 divl
ov_err:ERROR_TREATMENT,
divO_err:ERROR_TREATMENT,
arg1:EXP INTEGER(V),
arg2:EXP INTEGER(V)
-> EXP INTEGER(V)
argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.

a D1 bis delivered as the result of the construct, which has the same SHAPE as the
construct’s arguments.
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If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov_err.

If ov_er-is ignore and the VARIETY is signed, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by div0_err.
If div0_err is ignore its effect is undefined.

Translators should if possible optimise division by constants, especially powers of 2.
Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
Kinds of Division; Discussion(for D1) §2.1.3.2.6

2.1.3.2.8 div2

ov_em:ERROR_TREATMENT,

div0_ermERROR_TREATMENT,

argl:EXP INTEGER(V),

arg2:EXP INTEGER(VY)

-> EXP INTEGER(V)
argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
aD2 bis delivered as the result of the construct, which has the same SHAPE as the

construct’s arguments.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in ihe way specified by ov_err.

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by div0_err.
If div0_err is ignore its effect is undefined.

Transiators should if possible optimise division by constants, especially powers of 2.
This is possible if V is unsigned.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
Kinds of Division: Discussion(for D2) §2.1.3.2.6
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2.1.3.2.9 mod
div0_erm:ERROR_TREATMENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)
-> EXP INTEGER(V)
argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
aM1 b is delivered as the result of the construct, which has the same SHAPE as the
construct’s arguments.

If b is zero a divide-by-zero error is caused and handled in the way specified by div0_err.
If div0_err is ignore its effect is undefined.

Translators should if possible optimise modulus by powers of 2.
Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
Kinds of Division: Discussion(for M1) §2.1.3.2.6
2.1.3.2.10 rem2
div0_err:ERROR_TREATMENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)
-> EXP INTEGER(V)
argl and arg2 are evaluated 10 produce integer values, a and b, of the same VARIETY.
a M2 b is delivered as the result of the construct, which has the same SHAPE as the

construct’s argumenits,

If b is zero 2 divide-by-zero error is caused and handled in the way specified by div0_err.
If div0_err is ignore its effect is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12. integer SHAPEs §2.1.2.3.1,
Kinds of Division: Discussion(for M2) §2.1.3.2.6

2.1.3.2.11 exact_divide

argl:EXP INTEGER(V),
arg2:EXP INTEGER(V)

-> EXP INTEGER(V)

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
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The quotient of a and & is delivered as the result of the construct, which has the same
SHAPE as the construct’s arguments. b will be an exact divisor of a.
Cross-reference: integer SHAPEs §2.1.2.3.1

2.1.3.2.12 negate

ov_em:ERROR_TREATMENT,
arg:EXP INTEGER(V)

-> EXP INTEGER(V)
arg is evaluated to produce an integer value, a. The negation of a is delivered as the
result of the construct, which has the same SHAPE as the construct’s argument.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov_err.

If ov_err is ignore, the effect of overflow is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1
2.1.3.2.13 abs

ov_emERROR_TREATMENT,
arg:EXP INTEGER(V)

-> EXP INTEGER(V)
arg is evaluated to produce an integer value, a. The absolute value of a is delivered as
the result of the construct, which has the same SHAPE as the construct’s argument.

If the result cannot be expressed in VARIETY V, an overflow error is caused and
handled in the way specified by ov_err.

If ov_err is ignore, the effect of overflow is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1
2.1.3.2.14 Number Conversion: Discussion

There is no automatic conversion between integer VARIETYs,
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Conversions between integer VARIETY are carried out by change_var. In every case,
if the same integer is expressible in the destination VARIETY, this integer
expressed in the destination VARIETY is the result.

Certain other conversions are provided which are easy to implement in 2’s
complement machines, and possible in other representations.

When a negative signed integer is converted to an unsigned limited VARIETY

whose maxint is greater than both the modulus of the minint and the maxint of the source
VARIETY, the resulting value is obtained by adding one more than the maxint of the
target VARIETY.

When an integer is converted to an unsigned VARIETY with maxint less than either the
modulus of the minint or the maxint of the source VARIETY, the result is the

remained (M1) on division by the number one greater than the maxint of the target
VARIETY.

All other crnversions are target-defined.

Cross-reference: Kinds of Division: Discussion(for M1) §2.1.3.2.6, change_var
§2.1.3.2.15

2.1.3.2.15 change_var

w:VARIETY,
arg:EXP INTEGER(V)

-> EXP INTEGER(w)

arg is evaluated to produce an integer value, a. If a is expressible in VARIETY w, then
it is delivered as the result of the construct. The result has the SHAPE
INTEGER(w).
Cenain other special target-dependent conversions are defined in §2.1.3.2.14. No
other conversions are defined.

Cross-reference: Number Conversion: Discussion §2.1.3.2.14, integer SHAPEs
§2.1.2.3.1
2.1.3.2.16 maxint

v.VARIETY

-> EXP INTEGER(v)
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An integer value is created and delivered which is the maximum integer expressible
in the VARIETY, v. Note that this is not necessarily the same as the largest integer
given in the VARIETY definition. For example, a translator might well represent
the VARIETY (5,8) in one byte. In this case, then, the value delivered by
maxint((5,8)) would be 255.
The value delivered by maxinz is target-defined.
Cross-reference: integer SHAPEs §2.1.2.3.1
2.1,3.2.17 minint
v:VARIETY

-> EXP INTEGER(v)
An integer value is created and delivered which is the minimum integer expressible
i the VARIETY, v, Note that this is not necessarily the same as the largest integer
given in the VARIETY definition. For example, a translator might well represent
the VARIETY (5,8) in one byte. In this case, then, the value delivered by
maxint((5,8)) would be 0.

The value delivered by minint is warget-defined.

Cross-reference: integer SHAPEs §2.1.2.3.1
2.1.3.2.18 shift_left
ov_err:ERROR_TREATMENT,
arg:EXP INTEGFP(V1),
arg2:EXP INTEGER(V2)
-> EXP INTEGER(V1)

argl and arg2 are evaluated to produce values a and places. The result is equivalent
to:

ifnlaces < 0
shen divl(ov_err, impossible, a, 2°P'%¢s)
else muli(ov_err, a, 2P13ces)

The implementation is expested to optimise cases where the number of shifts is a
constant,

Cross-reference: divl §2.1.3.2.7, mult §2.1.3.2.5
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2.1.3.2.19 shift_right
ov_em:ERROR_TREATMENT,
argl:EXP INTEGER(V1),
arg2:EXP INTEGER(V2)

-> EXP INTEGER(V!)

argl and arg2 are evaluated to produce values a and places. The result is equivalent
to:

if places > 0
then divl(ov_err, impossible, a, 2P}a¢¢s)
else mult(ov_err, a, 2°Places)

The implementatio. is expected to optimise the cases where the number of shifts is
a constant.

Cross-reference: divl §2.1.3.2.7, mult §2.1.3.2.5
2.1.3.2.20 round
ov_emERROR_TREATMENT,
v:VARIETY,
arg:EXP FLOAT(F)

-> EXP INTEGER(v)

arg is evaluated to produce a floating point value, a. If the nearest integer ¢ a is
expressible in VARIETY v, then a value of that integer is created and delivered.

riowever, if that nearest integer cannot be expressed in VARIETY v, an overflow error
is caused and handled in the way specified by ov_err.

If ov_err is ignore and the VARIETY, v, is unsigned, the operation is performed
modulo 2Abits(v).

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
floating point SHAPEs §2.1.2.3.2
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2.1.3.2.21 truncate
ov_em:ERROR_TREATMENT,
v:VARIETY,
arg:EXP FLOAT(F)

-> EXP INTEGER(v)

arg is evaluated to produce a floating point value, a. If the integer part of a is
expressible in VARIETY v, then a value of that integer is created and delivered.

However, if that nearest integer cannot be expressed in VARIETY v, an overflow error
is caused and handled in the way specified by ov_err.

If ov_err is ignore and the VARIETY, v, is unsigned, the operation is performed
modulo 2Abits(v).

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.
Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
floating point SHAPEs §2.1.2.3.2
2.1.3.2.22 bits_to_integer
v:¥ARIETY,
ov_err: ERROR_TREATMENT,
arg:EXP NOF(BIT, N)
-> EXP INTEGER(v)

arg is evaluated to produce an NOF(BIT, N) value, r. This value is converted to an
integer, a, of VARIETY v, which is delivered.

The manner in which a is calculated depends on the VARIETY v. If v is an unsigned
VARIETY, then a is derived as follows:

a = If q € maxint(v)
Then q
Else g - maxint(v)- |

where:
Q=g r*2

In this case a is always non-negative.

However, if v is a signed VARIETY, then a is derived as follows:
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a=(Ifry=1Then-1Else 1)* Ifq< maxint(v)
Then q
Else q - maxint(v)-1

where:
q= EH)N-I 5 * 9l

In this case a may be negative.

If the result cannot be expressed in the required VARIETY, an overflow error is
caused and handled in the way specified by ov_err.

If ov_err is ignore and the VARIETY, v, is unsigned, the operation is performed
modulo 2Abits(v).

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.
Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
NOF §1.5.1.3.1, BIT §2.1.2.1.3
2,1.3.2.23 div_reml

ov_err:ERROR_TREATMENT,

div0_em:ERROR_TREATMENT,

argl:EXP INTEGER(V),

arg2:EXP INTEGER(V)

-> EXP TUPLE(INTEGER(V), INTEGER(V))

argl and arg?2 are evaluated to produce integer values, a and b, of the same VARIETY.
A TUPLE of (a D1 b, a M1 b) is delivered as the result.

If the result cannot be expressed in the VARIETY V, an overflow error is caused and
handled in the manner specified by ov_err. This only occurs for signed VARIETYSs in
the special case of dividing minint by -1.

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by div0_err.
If div0_err is ignore its effect is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
Kinds of Division: Discussion(for D1 and M1) §2.1.3.2.6

47

Tt w




pr——

TDF Specification

r 2.1.3.2.24 div_rem2

ov_erm:ERROR_TREATMENT,
div0_em:ERROR_TRFATMENT,
argl:EXP INTEGER(V),
arg2:EXP INTEGER(Y)

-> EXP TUPLE(INTEGER(V), INTEGER(V))

argl and arg2 are evaluated to produce integer values, a and b, of the same VARIETY.
A TUPLE of (a D2 b, a M2 b) is delivered as the result.

If the result cannot be expressed in the VARIETY V, an overflow error is caused and
handled in the manner specified by ov_err. This only occurs for signed varieties in the
special case of dividing minint by - 1.

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.

If b is zero a divide-by-zero error is caused and handled in the way specified by div0_err.
M divD_err is ignore its effect is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.17 integer SHAPEs §2.1.2.3.1,
Kinds of Division: Discussion(for D2 and M2) §2.1.3.2.6

2.1.3.2.25 integer _test

ntest:NTEST,
bad:LABEL,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

->EXP TOP

argl and arg2 are evaluated to produce integer values, a and b, of the same integer
VARIETY. These values are compared using the test ntesr. If the test succeeds, the
construct delivers a value of SHAPE 1op. If it fails, control passes to the LABEL bad
with a value of SHAPE top. Since the only way in which the construct can deliver a
result is when the test succeeds, the SHAPE of the result of the construct is itself top.

To give an example, if ntest is greater, then if a is greater than b the construct delivers
a value of SHAPE 1op. If a is not greater than b is false, contrcl passes to the LABEL
bad.

Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2, NTEST §2.1.1.11, integer
SHAPEs §2.1.2.3.1
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2.1.3.2.26 bit_integer_test
ntest:NTEST,

argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)

-> EXP BIT

argl and arg?2 are evaluatea to produce integer values, a and b, of the same integer
VARIETY. These values are compared using the test ntest. If the test succeeds, a true
BIT is delivered. Otherwise, a false BIT is delivered.

Cross-reference: NTEST §2.1.1.11, integer SHAPEs §2.1.2.3.1
2.1.3.2.27 integer_to_bits
arg: EXP INTEGER(V)
-> EXP NOF(BIT, n)
argl is evaluated to produce an integer value a. A value r of SHAPE NOF(BIT, n) is
created and delivered, where n shall be the smallest number of bits required to
represent the full (ie. mininr to maxint) range of values in INTEGER(V).
The value r is chosen so that if a is non-negative
as= 2i=0n-l I, * 2
.. and if a is negative
a= Ei=0"'l n* 2i - maxint(V) - 1
On twos-complement machines, translators should not need to generate any code to

implement this operation.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, integer SHAFEs §2.1.2.3.1
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2.1.3.3 Floating Point Values

These operations are defined for all FLOATING_VARIETYS.

It will be desirable to add floating point operations such as sgrt and sine. The
standardisation and introduction of these operations (by tokenising) is deferred.

2.1.3.3.1 make_floating

f: FLOATING_VARIETY,

mantissa: SIGNED_NAT,

base: NAT,

exponent: SIGNED_NAT
-> EXP FLOAT(f)

A floating point value v of FLOATING_VARIETY f is created an¢ delivered. Thz
value is the nearest to

mantissa x (basec*ponent)

v will be representable in the FLOATING_VARIETY .

Cross-reference: floating point SHAPEs §2.1.2.3.2, NAT §2.1.1.3, SIGNED_NAT
§2.1.14

2.1.3.3.2 floating_plus

ov_em:ERROR_TREATMENT,

argl:EXP FLOAT(F),

arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argl and arg2 are evaluated to preduce floating point values, @ and b, of the same
FLOATING_VARIETY. The sum of g and b is delivered as the result of the construct,
which has the same SHAPE as the construct’s argumants.

If the result cannot be expressed in FLOATING_VARIETY F, an overflow error is

caused and handled in the way specified by ov_err. If ov_err is ignore its effect is
undefined.
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Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs
§2.1.2.3.2

2.1.3.3.3 floating_minus

ov_erm:ERROR_TREATMENT,
argl:EXP FLOAT(F),
arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argl and arg?2 are evaluated to produce floating point values, a and b, of the same
FLOATING_VARIETY. The diffcrence of a and b is delivered as the result of the
construct, which has the same SHAPE as the construct's arguments.

If the result cannot be expressed in FLOATING_VARIETY F, an overflow error is
caused and handled in the way specified by ov_err. If ov_err is ignore its effect is
undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs
§2.1.2.3.2

2.1.3.3.4 floating_mult

ov_erm:ERROR_TREATMENT,

argl:EXP FLOAT(F),

arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argl and arg?2 are evaluated to produce floating point values, a and b, of the same
FLOATING_VARIETY. The product of a and b is delivered as the result of the
construct, which has the same SHAPE as the construct’s arguments.

If the result cannot be expressed in FLOATING_VARIETY F, an overflow error is
caused and handled in the way specified by ov_err. If ov_err is ignore its effect is
undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs
§2.1.2.3.2
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2.1.3.3.5 floating_div

ov_em:ERROR_TREATMENT,
divO_err:ERROR_TREATMENT,
argl:EXP FLOAT(F),

arg2:EXP FLOAT(F)

-> EXP FLOAT(F)
argl and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATING_VARIETY. The quotient of g and b is delivered as the result of the
construct, which has the same SHAPE as the construct’s arguments,
If the result cannot be expressed in FLOATING_VARIETY F, an overflow error is
caused and handled in the way specified by ov_err. If ov_err is ignore its effect is
undefined.

If b is zero a divide-by-zero error is produced and handled in the way specified by
div0_err. If d0_err is ignore its effect is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPESs
§2.1.2.3.2

2.1.3.3.6 floating_rem

divO_err:ERROR_TREATMENT,

argl'EXP FLOAT(F),

arg2:EXP FLOAT(F)

-> EXP FLOAT(F)

argl and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATING_VARIETY. a is divided by b and the remainder delivered as the result of
the construct, which has the same SHAPE as the construct’s arguments.
If b is zero a divide-by-zero error is produced and handled in the way specified by

div0_err. Xf div0_err is ignore its effect is undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs
§2.1.2.3.2
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2.1.3.3.7 floating_negate

ov_err:ERROR_TREATMENT,
arg:EXP FLOAT(F)

B e e S Y ey

SP—

-> EXP FLOAT(F)

argl is evaluated to produce a floating point value, a. The negation of @ is delivered as
the result of the construct, which has the same SHAPE as the construct’s argument,

If the result cannot be expressed in the FLOATING_VARIETY F, an overflow error is
caused and handled in the way specified by ov_err. If ov_err is ignore its effect is
undefined.

Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs
§2.1.2.32

2.1.3.3.8 float
ov_err: ERROR_HANDLER,
f.FLOATING_VARIETY,
arg:EXP INTEGER(V)
-> EXP FLOAT(f)

arg is evaluated to produce an integer value, a. An equal floating point value of
FLOATING_VARIETY fis created and delivered. Any rounding necessary is
target-defined.

If the integer value a is not representable in FLOATING_VARIETY f an overflow error
is generated and handled by ov_err. If ov_err is igr.cre the effect is undefined.
Cross-reference: ERROR_TREATMENT §2.1.1.12, floating point SHAPEs

§2.1.2.3.2, integer SHAPEs §2.1.2.5.1
2.1.3.3.9 change_floating_variety

ov_err:ERROR_TREATMENT,

f.FLOATING_VARIETY,

arg:EXP FLOAT(F)

-> EXP FLOAT(f)

arg is evaluated to produce a floating point value, a. A floating point value is created
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and delivered which has FLOATING_VARIETY f and is equal to a. This conversion is
target-defined.

If a cannot be expressed in FLOATING_VARIETY £, an overflow error is caused and
handled in the way specified by ov_err. If ov_err is ignore its effect is undefined.

Cross-reference: floating point SHAPEs §2.1.2.3.2
2.1.3.3.10 floating_test

ntest:NTEST,
bad:LABEL,

argl: EXP FLOAT(F),
2rg2:EXP FLOAT(F)

->EXP TOP

argl and arg? are evaluated to produce floating point values, a and b, of the same
FLOATING_VARIETY. These values are compared using the test ntesz. If the test
succeeds the construct delivers a value of SHAPE 1op. If it fails, control passes to the
LABEL bad with a value of SHAPE top. Since the only way in which the construct
can deliver a result is when the test succeeds, the SHAPE of the result of the
coastruct is itself rop.

To give an example, if nrest is greater, then if a is greater than b the construct delivers
a value of SHAPE 1op. If a is not greater than b is false, control passes to the LABEL
bad.

Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2, NTEST §2.1.1.11, floating point
SHAPESs §2.1.2.3.2

2.1.3.3.11 bit_floating_test

ntest:NTEST,

argl: EXP FLOAT(F),

arg2:EXP FLOAT(F)

->EXP BIT

argl and arg2 are evaluated to produce floating point values, a and b, of the same
FLOATING_VARIETY. These values are compared using the test azest. If the test
succeeds a true BIT is delivered. Otherwise, a false BIT is delivered.

Cross-reference: NTEST §2.1.1.11, floating point SHAPEs §2.1.2.3.2
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2.1.3.4 POINTERs

2.1.3.4.1 POINTERS: Discussion

Before describing the Level 0 constructs which create and manipulate POINTERS,
it is useful to introduce four important concepts - sharing, null POINTERsS, original
POINTERS and proper POINTERS.

2.1.3.4.1.1 Sharing

Sharing is a concept which relates only to POINTERS. If a POINTER, g, points to a
space, a_space, and a POINTER, b, points to a space, b_space,snd a_space and b_space
overlap, then a and b are said to share. In other words, if an assignment operation
(§2.1.3.4.5) to b can change the rusult of using a contents operation (§2.1.3.4.6) on a, or
vice versa, then a and b share.

All of the definitions of operations which produce WHOLE_POINTERs,
PART_POINTERs, SHAKY_POINTERS or variables define the sharing properties
of the POINTERS they create.

Null POINTERS cannot share.

Cross-reference: assign §2.1.3.4.5, contents §2.1.3.4.6, WHOLE_POINTER SHAPEs
§2.3.2.1.2, PART_POINTER SHAPEs §2.3.2.1.4, null POINTERs §2.1.3.4.1.2

2.1.3.4.1.2 Null POINTERs

Null POINTERS are required in order to provide a suitable value to put at the end of
a list and for similar puposes. Any attempt to obtain the contents of a null
POINTER, or to use it as the destination in an assign operation, is defined to
produce a detectable error,

There is just one null WHOLE_POINTER value, the value produced by
make_null_whole_pointer. Null WHOLE_POINTERs will therefore have equal

representations.

By contrast, there are many possible null PART_POINTER values.
make_null_part_pointer will always produce the same null PART_POINTER value.
The following equation illustrates this:

whole_to_part(make_null_whole_pointer)
= make_null_par:_pointer
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However, part_field applied 10 a null POINTER offers the possibility of producing
many different null PART_POINTER values.

If index, add_to_pir or subtract_from_pir are applied to a null POINTER the effect is
undefined.

Cross-reference: add_to_ptr §2.1.3.4.2, assign §2.1.3.4.5, contents §2.1.3.4.6, firm
§2.3.3.13, index §2.2.3.2.17, make_null_part_pointer §2.3.3.4,
make_null_whole_pointer §2.3.3.3, part_field §2.1.3.4.4, shake §2.3.3.12,
subtract_from_ptr §2.1.3.4.3

2.1.3.4.1.3 Original POINTERs

A WHOLE_POINTER (produced by generate) or a PART_POINTER identified in a
variable or variable_no_init declaration are original POINTERS. Original
POINTERs are only equal if they are copies of a value produced by one execution of
generate, or one execution of a variable declaration.

Every POINTER is said to be derived from an original POINTER if and only if it is
either a copy of that POINTER or obtained from it by a succession of the following
operations:-

add_to_ptr §2.1.3.4.2, firm §2.3.3.13, index §2.2.3.2.17, part_field §2.1.3.4.4, shake
§2.3.3.12, subtract_from_ptr §2.1.3.4.3, whole_to_part §2.3.3.2

Every POINTER is derived from just one original POINTER.
2.1.3.4.1.4 Proper POINTERs

A proper POINTER is a POINTER which points to a space equal to or contained
within the space to which its parent original POINTER pointed. Thus every original
POINTER is a proper POINTER. A PART_POINTER may or may not be a proper
POINTER. Both proper and improper POINTERS are legal and defined in TDF, but
an attemnpt to take the contents of an improper POINTER is undefined, as is the
result of an attempt to assign a value to an improper POINTER.

Cross-reference: original POINTERS §2.1.3.4.1.3, contents §2.1.3.4.6, assign
§2.1.345
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2.1.3.4.2 add_to_ptr

ptr: EXP POINTER(X),
off: EXP OFFSET(X,Y)

-> EXP PART_POINTER(Y)
ptr is evaluated to produce a POINTER p and off to produce an OFFSET value 0. A
PART_POINTER is created and delivered which points to space for a value of
SHAPE Y offset ahead by o from the space pointed to by p. If p is null, the result is
undefined.

The result may share with p.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
SHAPEs SIZEs and OFFSETs §1.5.1, sharing §2.1.3.4.1.1, Lifetimes: Discussion
§2.1.3.12

2.1.3.4.3 subtract_from_pir

ptr: EXP POINTER(X),
off: EXP OFFSET(W X)

-> EXP PART_POINTER(W)
ptr is evaluated to produce a POINTER p and off to produce an OFFSET value 0. A
PART_POINTER is created and delivered which points to space for a value of
SHAPE W offset back by o from the space pointed to by p. If p is null, the result is
undefined.
The result may share with p.
Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
SHAPEs SIZEs and OFFSETs §1.5.1, sharing §2.1.3.4.1.1, Lifetimes: Discussion
§2.1.3.12
2.1.3.4.4 part_field

component: NAT,

arg_shape: TUPLEIT,_," S;, ({n21) {1 <= component <=n)
{the §; 1 <= < component are SOME-free)

ptr: EXP UNTRACED_POINTER(X)

-> EXP UNTRACED_POINTER(Y) (¥ =Seomponent)
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ptr is evaluated o produce a POINTER p to a space, sp, containing a TUPLE of
SHAPE arg_shape. A PART_POINTER(Y) pointing to that space within sp which
contains the component-th field of the TUPLE is created and delivered. The result
and p share.

(In Level 2, a WHOLE_POINTER(X) argument may be supplied, in which case the
SHAPE of the result is PART_POINTER(X).)

If p is a null POINTER, then so is the result. However, they need not be egual null
POINTER:S.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
sharir g §2.1.3.4.1.1, Lifetimes: Discussion §2.1.3.12, tuple §1.5.1.1

2.1.3.4.5 assign

err: ERROR_TREATMENT,
ptr: EXP POINTER(X),
val: EXPY

->EXP TOP

ptr and val are evaluated to produce values, p and v. The POINTER, p, will not be
volatile in the sense of ANSI C. The value v is put into the space poinicd toby p. If pisa
null POINTER then a null_pointer error cccurs which is handled as specified by err. If
err is ignore its effect is undefined.

I X is not the same as Y, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada, but may not be in TDF
derived from ANSI C.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Criss-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
ERROR_TREATMENT §2.1.1.12, Lifetimes: Discussion §2.1.3.12, proper
POINTERs §2.1.3.4.1.4

2.1.3.4.6 contents

is_null.ERROR_TREATMENT, .

sh: SHAPE, {sh will be SOME-free)

pointer: EXP POINTER(X)

-> EXP sh
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pointer is evaluated to produce a value p. The POINTER ,, will not be volatile in the
sense of ANSI C. Th- content of the space pointed to by p is delivered as the result. If p
is a null POINTER, then a null_pointer error is caused and handled according to is_null.
if is_null is ignore, the effect is undefined.

If sh is not the same as X, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada, but may not be in TDF
derived from ANSI C.

If the space to which p points does not lie wholly within the space pointeu to by the
original POINTER from which p is derived, the effect is undefined.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
ERROR_TREATMENT §2.1.1.12, proper POINTERs §2.1.3.4.1.4

2.1.3.4.7 assign_to_volatile

err: ERROR_TREATMENT,
pir: EXP POINTER(X),
val: EXPY

->EXP TOP

ptr and val are evaluated to produce values, p and v, The POINTET p, will be volatile
in the sense of ANSI C. The value v is put into the space pointed to by p. If p is a null
POINTER then a null_pointer error occurs which is handled as specified by err. If err is
ignore its etfect is undefined.

If X is not the same as Y, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada, but may not be in TDF
derived from ANSI C.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,

ERROR_TREATMENT §2.1.1.12, Lifetimes: Discussion §2.1.3.12, proper
POINTERSs §2.1.3.4.1.4
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2.1.3.4.8 contents_of_volatile

is_nulLERROR_TREATMENT,

sh: SHAPE, {sh will be SOME-free)
pointer: EXP POINTER(X)
->EXP sh

pointer is evaluated to produce a value p. The POINTER p will be volatile in the sense
of ANSI C. The content of the space pointed to by p is delivered as the result. If pis a
null POINTER, then a null_pointer error is caused and hand'ed according to is_nuil. If
is_null is ignore, the effect is undefined.

If sh is not the same as X, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada, but may not be in TDF
derived from ANSI C.

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
ERROR_TREATMENT §2.1.1.12, proper POINTERS §2.1.3.4.1.4

2,1.3.4.9 move_contents

no_overlap:BOOL,

argl: EXP POINTER(X),

arg2: EXP POINTER(Y),

arg3: EXP SIZE(Z)  {Z need not be SOME-free)

-> EXP TOP

argl, arg2 and arg3 are evaluated to produce valu2s, a, b and ¢. The amount of data
specified by ¢ is moved from the space pointer to by a to that pointed to by b.

no_overlap controls the behaviour in the case that the source and destination spaces
overlap. If it is false, the move wili be pe rformed in such a way that the resulting
state of b is the same as if the spaces had "ot overlapved.

If no_overlap is true, the source and destination spaces will not overlap and
translators can optimise the code which they produce for this construct accordingly.

If X is not the same as Y, the effect is undefined. They will always be the same in
TDF derived from strictly typed languages such as Ada.




T RN S g vy

BERER a2y Cy

TDF Specification

If the space to which b points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Cross-reference: Pointers: Discussion §2.1.3.4.1, SHAPEs SIZEs and OFFSETs
§1.5.1, Lifetimes: Discussion §2.1.3.12, proper POINTERs §2.1.3.4.1.4
2.1.3.4.10 assign_bits
ptr_arg: EXP POINTER(X),
bit_offset: EXP OFFSET(NOF(BIT\N),Y),
nbits: EXP NOF(BIT, N)

-> EXP TOP

pir_arg, bit_yjjser and nbits are evaluated to produce values p, b and n. The NOF value,
n, is assigned into the space pointed to by p starting at the OFFSET ».

If the space to which p points does not lie wholly within the space pointed to by the
original POINTER from which p is derived, the effect is undefined.

Note that there is no requirement that the POINTER’s SHAPE be an NOF(BIT, ..).
Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3

2.1.3.4.11 contents_bits

number:NAT

ptr: EXP POINTER(X),

bit_offset: EXP OFFSET(NOF(BIT,N),Y)

-> EXP NOF(BIT, number)

ptr and bir_offset are evaluated to produce values p and off. The contents of the space

poi' ted to by p, starting at the OFFSET off, are delivered as a value of SHAPE
NOF(BIT,number).

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3
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2.1.3.4.12 pointer _test
test: NTEST,
bad: LABEL,
argl: EXP POINTER(X),
arg2: EXP POINTER(Y)
-> EXP TOP

argl and arg2 are evaluated to produce POINTER values, a and b. These values are
compared using the test specified by rest. If the test succeeds, the construct delivers top.
If the test fails, control passes to the LABEL bad with top. Since the only way in which
pointer_test can deliver a result is when the test succeeds, the SHAPE of the result

of pointer_test is itself rop.

Unless X and Y are the same and a and b are derived from the same original
POINTER, the effect is implementation defined.
Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2, NTEST §2.1.1.11, SHAPEs
SIZEs and OFFSETs §1.5.1
2.1.3.4.13 bit_pointer_test
test: NTEST,
argl: EXP POINTER(X),
arg2:EXP POINTER(Y)

->EXP BIT
argl and arg?2 are evaluated to produce POINTER valuzs, @ and b. These values are
compared using the test specified by test. If the test succeeds, a true BIT is delivered.
Otherwise, a false BIT is delivered.
Unless X and Y are the same and a and b are derived from the same original
POINTER, the effect is implementation defined.
Cross-reference: NTEST §2.1.1.11, SHAPEs SIZEs and OFFSETs §1.5.1
2.1.3.4.14 subtract_pointers

argl: EXP POINTER(X),
arg2: EXP POINTER(Y)

-> EXP OFFSET(Y,X)
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argl and arg? are evaluated to produce POINTER values, g and b. If @ and b are
derived from the same original POINTER, then the OFFSET of a from b is delivered as

the result.

If a and b are not derived from the same original POINTER, the effect is undefired.

Cross-reference: Pointers: Discussion §2.1.3.4.1, original POINTERs §2.1.3.4.1.3,
SHAPEs SIZEs and OFFSETs §1.5.1

2.1.3.4.15 ptr_is_null

not_null:LABEL,
arg: EXP POINTER(X)

-> EXP TOP
arg is evaluated to produce a POINTER value, v. If v is found to be a null POINTER,
the construct delivers a value of SHAPE 1op. If it is not a null POINTER, control
passes 1o the LABEL not_null with top.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
LABEL §2.1.1.19

2.1.3.4.16 ptr_not_null

is_nul.LABEL,
arg: EXP POINTER(X)

-> EXP TOP
arg is evaluated to produce a POINTER value, v. If v is found not to be a null
POINTER the construct delivers a value of SHAPE 1op. If it is a null POINTER,
contro] passes to the LABEL is_null with top.
Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
LABEL §2.1.1.10

2.1.3.8 Program Structure and Flow of Control

2.1.3.5.1 Availability of LABELS: Discussion

Only those LABELs which are available can be used in constructs which can cause
control to go to a LABEL. These constructs are:-

assign §2.1.2.4.5, bits_to_inieger §2.1.3.2.22, case §2.1.3.5.4,
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change_floating_variety §2.1.3.3.9, contents §2.1.3.4.6, div1 §2.1.3.2.7, div2
§2.1.3.2.8, equal_contents §2.2.3.2.1, firm §2.3.3.13, floating_div §2.1.3.3.5,
floating_minus §2.1.3.3.3, floating_mult §2.1.3.3.4, floating_negate §2.1.3.3.7,
floating_plus §2.1.3.3.2, floating_rem §2.1.3.3.6, floating_test §2.1.3.3.10, floor
§2.3.3.9, goto §2.1.3.5.8, integer_test §2.1.3.2.25, minus §2.1.3.2.4, mod §2.1.3.2.9,
div_rem] §2.1.3.2.23, div_rem2 §2.1.3.2.24, mult §2.1.3.2.5, negate §2.1.3.2.12,
not_equal_contents §2.2.3.2.2, plus §2.1.3.2.3, ptr_not_null §2.1.3.4.16, rem2
§2.1.3.2.10, round §2.1.3.2.20, shift_left §2.1.3.2.18, shift_right §2.1.3.2.19,
pointer_test §2.1.3.4.12, test_eq §2.1.3.10.2, test_nr g §2.1.3.10.4, truncate §2.1.3.2.21

Labels are made available in components of certain control structure constructs.
They are available only in the places specified in the descriptions of these
constructs. These constructs are:-

conditional §2.1.3.5.5, repeat §2.1.3.5.6, labelled §2.1.3.5.7

The LABELSs which are available at the point of a make_untraced_procedure or
make_traced_procedure construct are also available in the body of the procedure. The
use, inside the body of a procedure, of LABELSs introduced outside it, will limit the
lifetime of the procedure. (The concept of lifetime is introduced in §2.1.3.12.)

conditional, repear and labelled may comain procedures which use the LABELSs as
non-locals (for caveats on this, see §2.1.3.6). In these cases, a change of control fiow
using goto, for example, would almost certainly have to be translated to change
more than just the program counter - for instance, the stack-frame current at the
introduction of the LABEL might have to be reset.

The other construct in which a LABEL can be used is make_label_value (§2.1.3.5.11).
This gives a LABEL_VALUE which can subsequently be used as the parameter of jump
(§2.1.3.5.9) 1o cause control to go to the LABEL - this is used to implement the C

long jump, for example. For it to be meaningful, the construct which made the

LABEL available must still be being evaluated at the evaluation of the jump (see
lifetimes §2.1.3.12).

Since a LABEL_VALUE can potentially be used at any procedure level, its
representation must include information defining the scope of the LABEL - at the
very least, the stack-frame of the introduction of the LABEL. At a jump to the
LABEL_VALUE, this scope must still be being evaluated so that it can be
re-instated. A translator writer may want to ensure that this is so by doing a dynamic
test before the jump.

Cross-reference: Lifetimes: Discussion §2.1.3.12, make_untraced_procedure
§2.1.3.6.2, make_traced_procedure §2.3.3.14
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2.1.3.5.2 Jumping with Values: Discussion

R s e N

In TDF, when control passes from a goto or other construct to a LABEL, a value may
be ‘ransferred as well, and be bound to a TAG introduced at the same place as the
LABEL. This value will often be top, which means that nothing is being transferred,
but sometimes a useful value is involved.

This style of jumping is perfectly natural in computers, although as a matter of fact
few programming Janguages permit values to be transferred in this way. TDF

provides the facility for two reasons: firstly to allow for its introduction in future
systems and languages; and secondly to provide for optimisation of looping
constructs. For example, the while, for etc. constructs of most programming languages
have to achieve their effects by side-effecting variables declared elsewhere. There
may be cases where this approich can be optimised to jumping with a value in TDF.

In an ANSI C program, goto will usually be with top, and it may well be worthwhile
tokenising operations to perform such jumps.

In ANSI C programs, long jumps occur with values; the C long jump is implemented
in TDF using LABEL_VALUEs.

2.1.3.5.3 sequence

statements: T1_,"EXPY;, (n>0}
result: EXP X

->EXP X

The EXPs in siatements are evaluated in order. Then result is evaluated. The value
delivered by sequence is the value produced by resulr. Thus the SHAPE of the value
delivered by sequence is the same as the SHAPE of the value produced by result.

2.1.3.5.4 case

control: EXP INTEGER(VY),
branches:
Il i=1“(loweri:SIGNED__NAT, upper;: SIGNED_NAT, branch;:LABEL)
{n>0)}

-> EXP TOP

: control is evaluated to produce an integer value, c. Then c is tested to see whether it
lies inclusively between each of the lower; and upper;, in order. If and when one of
these tests succeeds, control immediately passes to the LABEL branch; with a value of

: SHAPE top. If ¢ lies between none of the pairs of SIGNED_NATS, the construct

a delivers rop. Since this is the only way in which case can deliver a result, the SHAPE

; of the result of case is itself fop.
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The sets of SIGNED_NATS will be disjoint.

Designers of translators should consider when this operation is best implemented by
means of a switch jump and when by means of a succession of tests. In particular,
the special case where there is only one branch should be optimised - it may be
possible to use a compare against bounds instruction; as well as the case of one
branch where the SIGNED_NATS: are equal - which could be implemented as a
simple comparison.

Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2
2.1.3.5.5 conditional

sh: SHAPE,

tk: (TAG sh)_OPTION,
first: EXP X,

alt_label: LABEL,

alt: EXPY

->EXP(XLUBY)

first is evaluated. If first produces a result, £, this value is delivered as the result of the
whole construct and alr is not evaluated. However, if a goto(alt_lab,exp} is encountered
during the evaluation of first, then evaluation of first will stop, alt will be evaluated and
its result, a, delivered as the result of the whole construct.

Depending on the run-time behaviour of firsz, the result of the construct may be
provided by first or by alr. The SHAPE of the result, which is determined at
translate-time, is therefore the LUB of the SHAPES of first and alr.

During the evaluation of alt the value, e, produced by exp is bound to k. This means
that inside alr an evaluation of obrain_rag(tk) will produce the value e, with SHAPE sh.
The presence of a TAG tk is optional. If a TAG is not supplied, then no binding

occurs, and the value, e, is "invisible" inside alr.

The TAG used for tk will not be re-used. No rules for the effect of the hidirg of one
tag by another, equal TAG are given; this will not happen. See §2.1.3.1.1 fora
discussion of this point.

If alt_lab is not used in first, translators should suppress the translation of alt, since it
could never be evaluated.

Note that alr_lab is not available in alt. In consequence this operation cannot be used
to provide a loop.
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Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
goto §2.1.3.5.8, Exceptions: Discussion §2.2.3.2.3, Binding: Discussion §2.1.3.1.1,
Jumping with Values: Discussion §2.1.3.5.2

2.1.3.5.6 repeat

tk: (TAG X)_OPTION,
start: EXP X,
repeat_label: LABEL,
body: EXPY

->EXPY

start is evaluated to produce a value st of SHAPE X. Then body is evaluated. During
this evaluation of body, st is bound to k. This means that inside body an evaluation of
obtain_tag(tk)will produce the value s,

If body produces a result, b, this is delivered as the result of the whole construct.
However, if a goto(repeat_label,exp) is encountered during the evaluation of body, then
the evaluation of body stops. body is then evaluated afresh.

During this new evaluation, the value, e, produced by exp is bound to k. If a TAG is not
supplied, then no binding occurs, and the value, e, is "invisible" inside body.

The looping behaviour may be repeated indefinitely,

The TAG used for tk will not be re-used. No rules for the effect of the hiding of one
TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
goto §2.1.3.5.8, Exceptions: Discussion §2.2.3.2.3, Binding: Discussion §2.1.3.1.1,
Jumping with Values: Discussion §2.1.3.5.2

2.1.3.5.7 labelled

starter: EXP X,
branches: T1,_," (sh;: SHAPE,
branch_label;; LABEL, {n>0)
tk;: (TAG sh;)_OPTION, .
branch;: EXP B;
)
->EXP (X LUB Y LUB,_|" B,
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starter is evalaated. If its evaluation runs to completion producing a value, sz, then st is
delivered as the result of the whole construct. However, if a goto(branch_label  exp) is
encountered during the evaluation of starter, then the evaluation of starter stops.
branchy, is then evaluated. The result of exp, e, from the goto is bound to 1k, (if
supplied) during this new evaluation. This means that inside body an evaluation of
obtain_tag(tkg,) will produce the value e with SHAPE shy,. If the evaluation of
branchy, runs to completion, then the value which it produces, by, is delivered as the
result of the whole construct.

However, if a goto(branch_label, ,exp) is encountered during the evaluation of branch,,
then the evaluation of branch,, stops. branchy, is then evaluated. (n may equal m.) As
before, the value produced by exp is bound with tk,, (if supplied) during the evaluation
of branch,,.

Such jumping may continue indefinitely, but if any of the branches’ evaluations runs
to completion producing a value, v, then that value is delivered as the result of the
whole construct.

Depending on their run-time behaviour, the result of the construct may be provided
by starter or one of the branches. The SHAPE of the result, which is determined at
compile-time, is therefore the LUB of the SHAPES of starter and all the branches.

The TAGs used for tk; will not be re-used. No rules for the effect of the hiding of one
TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 for a
discussion of this point.

Translators should suppress the translation of any branch,, which can never be

evaluated by virtue of the fact that no chain of gotos links it with starter.

Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
goto §2.1.3.5.8, Binding: Discussion §2.1.3.1.1, Jumping with Values: Discussion
§2.1.35.2

2.1.3.5.8 goto

dest: LABEL,
with:EXP X

->EXP BOTTOM
with is evaluated to produce a value w. Control then passes to the LABEL desr with the
value w. This operation will only be used where the LABEL dest is available. dest will
expect a value of SHAPE X.

Since the construct can never terminate normally, the SHAPE of its result is bottom.
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Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
: Jumping with Values: Discussion §2.1.3.5.2

2.1.3.5.9 jump

lab_val: EXP LABEL_VALUE,
with:EXP X

-> EXP BOTTOM
with: is evaluated to produce a value w. Control then passes to the LABEL represented
by lab_val with the value w. This operation will always be evaluated within the
lifetime of the LABEL_VALUE. lab_val will have been made from a LABEL which
expects a value of SHAPE X.
Since the construct can never terminate normally, the SHAPE of its result is bottom.
Cross-reference: LABEL §2.1.1.10, Availability of Labels: Discussion §2.1.3.5.1,
Lifetimes: Discussion §2.1.3.12, make_label_value §2.1.3.5.11
2.1.3.5.10 return
with:EXP X

-> EXP BOTTOM

with is evaluated to produce a value w. The evaluation of the immediately enclosing
procedure ceases and the value w is delivered as the procedure’s result.

Since the construct can never terminate normally, the SHAPE of its result is botror.

An example of the application of ‘return’ is 115 use to mode! the return construct of
ANSIC.

Cross-reference: TRACED_PROC §2.3.2.2, UNTRACED_PRQC §2.1.2.14,
procedures §2.1.3.6

2.1.3.5.11 make_label_value
lab: LABEL
-> EXP LABEL_VALUE

A value v is created and d:livered which represents the LABEL lab. Iv’s lifetime
extends over the construct which introduces lab.
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In conjunction with jump, this construct serves to implement the long jump of ANSI
C.

Cross-reference: Availability of Labels: Discussion §2.1.3.5.1, Lifetimes:
Discussion §2.1.3.12, LABEL §2.1.1.10, jump §2.1.3.5.9
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2.1.3.6 Procedures

2.1.3.6.1 Procedures: Discussion

The treatment of procedures varies considerably from language to language. All

have one thing in common - a procedure call is a means of applying the same piece

of program to different pieces of data. The TDF make_untraced_procedure and
make_traced. procedure constructs (§2.1.3.6.2, §2.3.3.14) allow one to specify a TAG
as the formal parameter and to state its SHAPE; the scope of that TAG is the body

of the procedure. If the source language procedure had several parameters, the

formal TAG would identify an ALIGNED_TUPLE of the parameters. (See §2.1.2.3.5
for an account of ALIGNED_TUPLE.)

Where languages differ is in treating procedures as data-objects in their own right.
Ada, for example, does not allow procedures to be data-objects at all; the only thing
that one can do with an Ada procedure is to call it. Pascal allows one procedure to
be a parameter of another, but does not allow assignment of procedure values or the
delivery of a procedure as the result of another. C allows both of these but restricts
the declaration of procedures to a global level In languages like ML er Lisp, the use
of procedures as first-class data objects is of the essence and provides a very
effective means of data encapsulation.

These differences are reflected in the way in which the non-local nccess from within
a procedure is compiled. Pascal and Ada were both designed to be implemented on a
stack with the accessibls non-local stack-frames being transmitted to the procedure
at its call in some kind of a display. To access a Pascal non-local, one simply digs it
out from one of the stack frames in the display. The target representation of a Pascal
procedurz as a data-object is simply the address of its code together with the means
to construct its display - usually just the stack-frame in which the procedure was
declared. In C the situation is simpler since any non-local of a procedure is global.

In these three languages, the TDF representation of a non-local value is likely
simply to be a TAG used within the procedure body, declared outside it; the
translator is fres to translate non-local access by display manipulation. In a
language like Mi. which allows procedures as first-class data-objects, this
straightforward approach is likely to be inadequate - it might preclude the re-use of
stack-frames, for example. Hence, an ML procedure is likely to be compiled as a
closure, represented in TDF as a TUPLE of a POINTER to a set of non-local values
and a TDF procedure with no non-local TAGs. A ML procedure call would be
translated into TDF as a call of this procedure with the POINTER to the non-locals
as an extra parameter. Other intermediate positions are possible; these depend on
other choices taken by the compiler, beasing in mind the likely non-local usage in
the language.

The use of a non-local TAG in a procedure represents a promise by the compiler thai
the procedure wili not be used outside the evaluation of the body of the declaration
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which introduce d the TAG (see §2.1.3.12). This applies equally to non-local
LABELs - if the procedure body uses a LABEL then the procedure will not be
called outside the evaluation of the EXP which inroduced the LABEL.

In Pasca), for example, this promise is always valid by reason of the structure of the
language. In C, it can be made for non-local values but not for non-local labels
introduced by long jump. For other languages, like Algol68, such a promise is not in
general valid but may be sustainable in particular cases by analysis of the procedure
involved. If a compiler cannot make the promise for non-local values of a procedure,
then it can and should produce closures according to the ML model described above.

The situation is slightly different for non-local labels and long jumps. To implement
long jumps out of a procedure which might violate the lifetime rules, the compiler
should create LABEL_VALUEs (using make_label_value §2.1.3.5.11) to be used as a
parameter to the jump operation (§2.1.3.5.9) in the code of the procedure. (A
LABEL_VALUE represents a LABEL as a run-time value.) The LABEL_VALUE
could be passed into a procedure as a (global) TAG in C, while in other languages it
might be part of the non-locals of a closure. A translator writer concerned to detect
whether a jump is to a LABEL which no longer exists can insert a dynamic test to

see whether it does (see §2.1.3.5.1).

2.1.3.6.2 make_untraced_procedure

param_shape: SHAPE, {param_shape will be SOME-free)
param: TAG UNTRACED_POINTER(param_shape),
body: EXP X

-> EXP UNTRACED_PROC

Evaluation of make_untraced_procedure delivers an UNTRACED_PROC. When this
procedure is applied to a parameter using apply_proc, space is allocated to hold a value
of SHAPE param_shape. The value produced by the parameter, which will be of the
correct SHAPE, is used to initialise it. body is evaluated. During the evaluation, param is
bound to an original UNTRACED_POINTER pointing to the space. This means that
evaluation of obtain_tag(param) will produce that POINTER. The value produced by

body is delivered as the result of the apply_proc construct.

The TAG used for param will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 fora
discussion of this point.

TAGs other than param which are used in body but not declared within it are called
non-local TAGs. If and when the procedure is applied and its body evalvated, these
TAGs obey the same bindings that obtained when the procedure was constructed.

The lifetime of the procedure value is the intersection of the evaluations of the
bodies of all the declarations of its non-local TAGs.
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If a programming language permits more than ose parameter, the compiler to TDF

will use r.ake_untraced_procedure to construct a TDF procedure whose param_shape is
ALIGNED_TUPLE (..) (sec §2.1.2.3.5). The eleinents will usually be identified
($2.1.3.1.3).

Cross-reference: UNTRACED_PROC §2.1.2.1.4, Lifetimes: Discussion §2.1.3.12,
Binding: Discussion §2.1.3.1.1, Exceptions: Discussio. §2.2.3.2.3, apply_proc
§2.1.3.6.6, ALIGNED_TUPLE SHAPEs §2.1.2.3.5, identify §2.1.3.1.3
2.1.3.6.3 make_null_untraced_procedure

-> EXP UNTRACED_PROC
A null UNTRACED_PROC is created and delivered. If this PROC is applied, the

effect is undefined. The null UNTRACED_PROC m:y be tested for using proc_is_null
or proc_not null.

Cross-reference: UNTRACED_FOC §2.1.2.1.4, apply_proc §2.1.3.6.6, proc_is_null
§2.1.3.6.4, proc_not_null §2.1.3.6.5
2.1.3.6.4 proc_is_nun

not_null:LABEL.
procedure: EXP PROC

-> EXP TOP
procedure is evaluated to produce a TRACED or UNTRACED_PROC value, p. If p is
found to be a2 null PROC the construct delivers a value of SHAPE jop. If it is not a null
PROC, controi passes to the LABEL not_null with top.
2,1.3.6.5 proc_not_null

is_null:LLABEL,
procedure: EXP PROC

-> EXP TOP
procedure is evaluated to produce a TRACED or UNTRACED_PROC value, p. If p is

found not to be a null PROC, the construct delivers a value of SHAPE 1op. If is not a
null PROC. control passes to the LAREL is_null with top.
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2,1.3.6.6 apply_proc
result_shape: SHAPE, {result_shape will be SOME-free)
proc: EXP PROC,
arg: EXP X
-> EXP result_shape
proc and arg are evaiuated to produce values p and a. The value p will either be an
UNTRACED_PROC or a TRACED_PROC. It is applied to a. The result of this

application is delivered as the result of the apply_proc construct. It will have SHAPE
result_shape.

Cross-reference: TRACED_PROC §2.3.2.2, UNTRACED_PROC §2.1.2.1.4

2.1.3.6.7 obtain_current_proc

->EXP PROC
The procedure currently executing is delivered. It may be TRACED or
UNTRACED. When the result of obtain_current_pro: is supplied as the procedure
argument to apply_proc, translators should perform a tail-recursion optimisation if
this is legitimate.

obtain_current_proc will not be used in contexts where no procedure is running - eg.
the outermost level of a TDF capsule.

Cross-reference: TRACED_PROC §2.3.2.2, UNTRACED_PROC §2.1.2.1.4,
apply_proc §2.1.3.6.6, Structure of a TDF Capsule §1.6

2.1.3.7 SIZEs and OFFSETs

2.1.3.7.1 shape_size
sh: SHAPE {sh will be SOME-free)
-> EXP SIZE(sh)
A SIZE value is created and delivered which is the size of the SHAPE sh. The SHAPE sh

will be neither bottom nor top and will not contain SOME, unless hidden behind a
POINTER. The value delivered by shape_size is known at wanslaie time.
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Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1
2.1.3.7.2 tuple_size

v: VARIETY,
pants: I1;_," (part;: EXP SIZE(SH;); (n21}

-> EXP TUPLE (TUPLE(TL,,™! OFFSET(TUPLE(T1;,, (SH,),SH;,)),

SIZE(TUPLE IT;_," SH))
)

{SH; need not be SOME-free)

All parts are evaluated to produce SIZE values. A TUPLE f/ with n-I fields is created.
Its fields are the OFFSETsS of each of the last n-1 fields of a TUPLE which has
components of the sizes given by parts from the beginning of the TUPLE (in the given
order). A SIZE value 2 is created which gives the SIZE of a TUPLE which has »
components of the sizes given by parts (in the given order). Finally a TUPLE of fI and
S is created and delivered.

The OFFSET of the first field of a TUPLE is by definition nought, and so there is no
need for tuple_size to compute it.

If n>2 and the same operation is performed for a TUPLE consisting of the first n-/
fields, the n-2 OFFSETs resulting shall be the same as the first n-2 OFFSETs of the
original calculation. This implies that adding an extra field at the end shall not
affect the positions of the earlier fields.

Given a POINTER to a TUPLE, pr, a POINTER to its i-th field can be obtained by
adding the OFFSET of the i-th field, got from tuple_size, 1o pt using add_to_prr.
Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1, add_to_ptr §2.1.3.4.2
2.1.3.7.3 array_size

size: EXP SIZE(X), {X need not be SOME-free)
number; EXP INTEGER(V)

-> EXP SIZE(SOME(X))
size and number are evaluated to produce values s and n. A SIZE value is created and

delivered which is the size of the space occupied by an array consisting of n copies of a
value of size s.
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Cross-reference: SHAPEs SIZEs and OFFSETSs §1.5.1
2.1.3.7.4 size_test
ntest: NTEST,
bad: LABEL,
argl: EXP SIZE(X), {X need not be SOME-free)
arg2: EXP SIZE(Y) {Y need not be SOME-free)
->EXP TOP
argl and arg2 are evaluated to produce size values, a and b. These values are

compared using the test nresr. If the test succeeds, the construct delivers a value of
SHAPE 10p. If it fails, control passes to the LABEL bad with a value of SHAPE 10p.

Cross-reference: LABEL §2.1.1.10, NTEST §2.1.1.11, TOP §2.1.2.1.2, SHAPEs
SI1ZEs and OFFSETs §1.5.1

2.1.3.7.5 bit_size_test
ntest: NTEST,
argl: EXP SIZE(X), (X need not be SOME-free)
arg2: EXP SIZE(Y) (Y need not be SOME-free)
->EXPBIT
argl and arg2 are evaluated to produce size values, a and b. These values are
compared using the test ntest. If the test succeeds, a rrue BIT is delivered. Otherwise, a
false BIT is delivered.
Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1
2.1.3.7.6 array_element_offset
sh: SHAPE {sh need not be SOME-free)
->EXP OFFSET(sh,sh)
The OFFSET between two adjacent elements in an array (ie. an NOF or 2 SOME) of
values of SHAPE sh is calculated and delivered.

Cross-reference: SHAPEs SIZEs and OFFST.Ts §1.5.1, assign_bits §2.1.3.4.10,
contents_bits §2.1.3.4.11

76




_

Ty

Ay

e

TDF Specification

2.1.3.7.7 tuple_element_offset

tuple_sh: SHAPE (sh need not be SOME-free)
sh: SHAPE (sh need not be SOME-free)

-> EXP OFFSET(tuple_sh,sh)
The OFFSET of the second element in a value of SHAPE TUPLE(tuple_sh,sh) is
calculated and delivered.
Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1
2.1.3.7.8 size_in_bytes

v:VARIETY,
arg: EXP SIZE(X) (X need not be SOME-free)

-> EXP INTEGER(v)
arg is evaluated to produce a value, g, of SHAPE SIZE(X). The size, a, measured in
bytes, is delivered as an integer of VARIETY v. This target-dependent construct is
explicitly required by ANSI C.

Cross-reference: SHAPEs SIZEs and OFFSETs
2.1.3.8 NOFs and SOMEs

2.1.3.8.1 make_nof
pants: I1_,"EXPP (n>0)
-> EXP NOF(P, N)

The parts are evaluated. An NOF is created and delivered which is composed from
the values produced, in the same order as they occur in paris.

Cross-reference: NOF §1.5.1.3.1
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2.1.3.8.2 trim_nof

first: NAT,

number: NAT,

arg:EXP NOF(S, N)

->EXP NOF(S, N)

arg is evaluated to produce an NOF value, a. A new NOF value consisting of number
components from a, starting at first is created and delivered as the result of trim_nof.
Both first and first+number-1 will lie becween 1 and N.

Cross-reference: NOF §1.5.1.3.1

2.1.3.8.3 concat_nof

argl:EXP NOF(S, M),
arg2:EXP NOF(S, N)

-> EXP NOF(S, M+N)
argl and arg2 are evaluatec to produce values a and b which are NOFs derived from
the same SHAPE, S. A new value is created and delivered with SHAPE

NOF(S,M+N). Its first M componenis are copies of the components of g and the last N
components are copies of the components of b.

Cross-reference: NOF §1.5.1.3.1
2.1.3.84 and

argl: EXP S,
arg2: EXP S

->EXPS (S =NOF(BITN) ! INTEGER(V)!BIT}
argl and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.

They may be NOF(BIT,N), INTEGER(V) or BIT. They are evaluated to produce
values a and b. The bit-wise intersection of a and b is delivered as the resutt,

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, Integer SHAPEs §2.1.2.3.1
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argl: EXP S,
arg2: EXP S

->EXPS (S=NOF(ITN)IINTEGER(V)!BIT)
argl and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.
They may be NOF(BIT,N), INTEGER(V) or BIT. They are evaluated to proauce
values a and b. The bit-wise union of a and b is delivered as the result.
Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, Integer SHAPEs §2.1.2.3.1

2.1.3.8.6 xor

argl: EXP S,
arg2: EXP §

->EXPS (S =NOF(BITN)IINTEGER(V)BIT)
argl and arg2 have the same SHAPE and that SHAPE is the SHAPE of the result.
They may be NOF(BIT,N), INTEGER(V) or BIT. They are evaluated to produce
values a and b. The bit-wise exclusive or of a and b is delivered as the result.
Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, Integer SHAPEs §2.1.2.3.1
2.1.3.8.7 not
arg: EXP S,

->EXPS (S =NOF@®BITN) ! INTEGER(V)|BIT)
arg has the same SHAPE as the resuit. It may be NOF(BIT,N), INTEGER(V) or
BIT. It is evaluated to produce a value a. The bit-wise negation of a is delivered as the
result.
Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2,1.3, Integer SHAPEs §2.1.2.3.1
2.1.3.8.8 n_copies

exp: EXP X,
number: EXP INTEGER(X)

->EXP SOME(X)
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exp ard number are evaluated to produce values e and n. A SOME value is created and
delivered which contains n copies of the value e.

Cross-reference: SOME §1.5.1.3.2
2.1.3.9 TUPLEs, ALIGNED_TUPLEs and UNIONs

2.1.3.9.1 make_tuple

parts: ni,I" EXP P!
-> EXP TUPLE (H.___I" Pl)
The parts are evaluated. A TUPLE is created and delivered which is composed from
the values produced, in the same order as they occur in paris.
Cross-reference: TUPLE SHAPEs §2.1.2.3.4, SHAPEs SIZEs and OFFSETs §1.5.1

2.1.3.9.2 make_aligned_tuple
pants: T1._,"EXP P,
-> EXP ALIGNED_TUPLE (T1,_," P))

The parts are evaluated. An ALIGNED_TUPLE is created and delivered which is
composed from the values produced, in the same order as they occur in parts.
Cross-reference: ALIGNED_TUPLE SHAPEs §2.1.2.3.5, SHAPEs SIZEs and
OFFSETs §1.5.1

2.1.3.9.3 field

component: NAT,
wple: EXP TUPLE (IT,_," P) (n2 1} {1 < component < n}

->EXPP component

tuple is evaluated to produce a TUPLE value, . The component-th field of ¢ is delivered
as the result of the field construct. The SHAPE of the result is the SHAPE of the
component-th element of tuple.
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(This construct may also take an ALIGNED_TUPLE argument.)

Cross-reference: TUPLE SHAPEs §2.1.2.3.4, ALIGNED_TUPLE SHAPEs
§2.1.2.3.5

2.1.3.9.4 pad

union_shape: UNIONT1,_," X., (n>0}

arg: EXPY (3k. X =Y}
-> EXP UNION (IT,_," X,)

arg is evaluated to produce a value, a. A value of SHAPE union_shape is created from a
and delivered. (This may require the addition of padding.) arg's SHAPE, Y, will be one
of the X;.

Cross-reference: UNION §1.5.1.2
2.1.3.9.5 unpad

alt: SHAPE, {alt will be SOME-free)
union: EXP UNION (TIT_,"P;) {n>1)} {3k Py=alt}

-> EXP al
union is evaluated to produce a value u. The SHAPE oi u will be UNION(..) and one of
its components will be alr. The value of u is then delivered, but now with SHAPE al. If
u in fact has some other SHAPE, the effect is undefined.

Most translators will not generate any code for this operation. It changes the SHAPE
of the expression.
Cross-reference: UNION §1.5.1.2
2.1.3.10 Miscellaneous
2.i.3.10.1 make_top
->EXP TOP

A value of SHAPE 1op 1s created. This vaiue can be represenied by no bits and so nio
action need be taken to create it.
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A value of SHAPE 1op is needed for formal purposes in cases where an EXP must be
supplied, but where it is not desired 1o give any value. An ANSI C procedure taking
a void argument, and an ANSI C union having a void field are examples of this need.
Cross-reference: TOP §2.1.2.1.2, apply_proc §2.1.3.6.6, UNION §1.5.1.2
2.1.3.10.2 test_eq
unequal: LABEL
argl: EXP X,
arg2: EXP X,

-> EXP TOP
argl and arg2 are evaluated to produce values of the same SHAPE, X. The
representations of these values are cumpared. If they are found to be equal the
construct delivers a value of SHAPE top. If they are found to be unequal, control
passes to the LABEL unequal with a value of SHAPE 1op.

Translators should, if possible, optimise this construct in cases where either

argument is constant. In particular, comparison with the constants true or false may be
common and tokenising these is likely to prove useful.

Cross-reference: LABEL §2.1.1.10, TOP §2.1.2.1.2, tokenisation §1.5.3

2.1.3.10.3 bit_test_eq

argl: EXP X,
arg2: EXP X,

->EXP BIT
argl and arg2 are evaluated to produce values of the same SHAPE, X. The
representations of these values are compared. If they are found to be equal, a true BIT is
delivered. Otherwise, a false BIT is delivered.
2.1.3.10.4 test_neq
equal: LABEL
argl: EXP X,
arg2: EXP X,
-> EXP TOP

argl and arg2 are evaluated to produce values of the same SHAPE, X. The
representations of these values are compared. If they are found to be unequal the
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construct delivers a value of SHAPE 1op. If they are found to be equal control passes to
the LABEL equal with a value of SHAPE top.

Translators should, if possible, optimise this construct in cases where either

argument is constant. In particular, comparison with the constants true or false may be
common and tokenising these is likely to prove useful,

Cross-reference: LABEL §2.1.1.13, TOP §2.1.2.1.2, tokenisation §1.5.3

2.1.3.10.5 bit_test_neq

argl: EXP X,
arg2: EXP X,

-> EXP BIT
argl and arg? are evaluated to produce values of the same SHAPE, X. The
representations of these values are compared. If they are found to be unequal, a true BIT
is delivered. Otherwise, a false BIT is delivered.
2.1.3.10.6 clear_shape
sh:SHAPE
-> EXP sh
An empty EXP of SHAPE sh is created and delivered.
2.1.3.10.7 exp_evaluated
const: EXP X
->EXPX
const will be an EXP formed from any combination of the operations listed below,
and no other operations. This ensures that it can be comp!letely evaluated at
translate-time, leaving no further evaluation necessary at run-time.
make_int §2.1.3.2.2, maxint §2.1.3.2.16, minint §2.1.3.2.17, make_floating §2.1.3.3.1,
true §2.2.3.2.10, false §2.2.3.2.11, shape_size §2.1.3.7.1, make_tuple §2.1.3.9.1,
make_nof §2.1.3.8.1, pad §2.1.3.9.4, empty_diagnostics §2.2.3.2.6, make_unique_val
§2.3.3.8, make_null_whole_pointer §2.3.3.3, make_null_part_poinier §2.3.3.4,
integer_to_bits §2.1.3.2.27, whole_to_part §2.3.3.2, pack §2.3.3.11

also the following with SOME-free SHAPE parameters:
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size_in_bytes §2.1.3.7.8, size_in_bits §2.2.3.2.9, shape_size §2.1.3.7.1,
array_element_offset §2.1.3.7.6, array_siz¢ §2.1.3.7.3, union_size §2.2.3.2.16

also make_untraced_procedure(§2.1.3.6.2) and make_traced_procedure(§2.3.3.14)
with a procedure of unbounded lifetime (§2.1.3.12).

exp_evaluated is used to indicate that a constant expression which a program
requires to be evaluated repeatedly because, say, it lies in a loop, can safely be
optimised to being evaluated only once at the outset.

2.1.3.11 Signals: Discussion

ANSI C requires error handling (eg. of overflow) to be done by signals, rather than by
exceptions. TDF assumes that a signal handling procedure is supplied for each
POSIX process and that procedures can be assigned into places defined by this
procedure 10 handle the signals. The p-ycedure to do this assignment will be
identified in TDF by means of an agreed TAG. (See §2.1.1.12.3 for an account of
how the relevant signal is raised by an operation which fails.)

In TDF the signals are identified by unique values, whereas in C they are said to be
identified by integers (ANSI C 4.7). In a POSIX implementation the uniques must be
translated into the appropriate integers.

Otherwise, the rules obeyed by the signal procedures are those specified by ANSI C.

Since clock and asynchronous signals are handled by POSIX, the routines for setting
the signal procedures to handle them are also supplied by POSIX.

Cross-reference: Exceptions: Discussion §2.2.3.2.3, Standard Signal §2.1.1.12.3
2.1.3.12 Lifetimes: Discussion

This is a convenient point at which to introduce the concept of lifetime and discuss
its importance to writers of TDF translators.

A danger in C and other languages is the use of a pointer to a space which is no
longer alive, in the sense that the space pointed to is on a stack and has been re-used
for some other purpose. Such mistakes can be very hard to find. Like C, TDF permits
this mistake to be made and says that the effect is undefined.

TDF defines rules about the lifetimes of values and LABELSs, which may be
assumed to hold by writers of translators from TDF to machine code. These rules
permit (but do not 12quire) a conventional stack implementation of variables in

TDF. TDF derived from a language such as ML will obey these rules, since they are
enforced by an ML compiler. TDF produced from other sources such as a C compiler

84




k3

BN

R g

o e e T e,

Nk 4 s

TDF Specification

may not obey them, usually because the program being compiled is wrong but the
compiler was not able to detect the mistake.

Lifetime is a property of a value or LABEL. A lifetime is defined to be either
unbounded or to extend over the time during which a certain EXP is being evaluated.
Thus lifetimes form a partial ordering by simple nesting.

¢ The lifeime of any scalar value is unbounded.

o The lifetime of any POINTER whose original POINTER (§2.1.3.4.1.3)
was created by generate is unbounded.

o The lifetime of any POINTER created by a library routine is undefined.

¢ The lifetime of any POINTER whose original POINTER was created by
variable or variable_no_init extends only over those constructs.

¢ The lifetime of a compound value is the intersection of the lifetimes of
its component values. This means that it is equal to the lifetime of the
shortest-living component.

o The lifetime of a prucedure value is the intersection of the bodies of the
declarations of its non-local TAGs and the EXPs in which the non-local
LABELs which it uses are available.

¢ The lifetime of a LABEL extends over the evaluation of the labelled,
cunditional or repeat which introduces the LABEL.

The basic condition for a stack implementation to be correct is that no access be
made to a value outside of its lifetime.

This may be assumed to hold by TDF translator writers. It is a dynamic condition
which is impracticable (and usually undesirable) to check at run-time. Static rules
can be formulated which are sufficient to ensure that the only values accessible at
any one time have lifetimes which form a total ordering, allowing a stack
implementation of nested declarations. These rules are:

o In any assignment, the lifetime of the right-h2ad side is greater than or
equal to the left-hand side.

o In any procedure, the lifetime of its result value is greater than or equal
to the lifetime of the procedure.

In total generality, however, the application of these rules is difficult (if not
impossible). Languages like Ada and Pascal avoid the problem by disallowing both
the assignment (and delivery as results) of procedures or local pointers. In C, ieaving
aside long-jumps, the lifetime of all procedures is unbounded (their only non-locals
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are global) and so there is no difficulty about assigning or delivering procedures.
However C's & operator allows one to assign and deliver local pointers. This means
that although blatant errors can be detected relatively easily at translate time,
mis-use via parameters of procedures cannot. Usually the first intimation of the error
is a collapse of the run-time system when some crucial stack-pointer is overwritten
because the space to which it points is being re-used.

In some languages (eg ML, Lisp) every value must have an unbounded lifetime. This
has two consequences for the TDF to which they compile:

1. The only possible use of a TAG declared by a variable declaration is in
contents, as the rvalue of an assign, or some related limited use. If another
use were required, the TAG would have to be bound to the result of a
generate (possibly operated on by whole_to_part) using an identify
declaration. This is equivalent to a variable declaration except that space
is taken from heap space rather than from a stack frame; the value bound
to the TAG has an unbounded lifetime.

2. Only global TAGs are used s non-locals of procedures; often no TAGs
would be used as non-locals. An ML procedure, for instance, would
probably be represcnted as a closure formed from a global POINTER, its
non-jocal values and a TDF procedure (with no non-local TAGs) which
needs this POINTER as an extra parameter over and above the parameters
specified in the ML. This treats the ML procedure rather like a partial
application of a global procedure which has the non-locals as parameters.

1. and 2. together mean that the non-locals have an unbounded lifetime.

This method of "unbounding” values does not extend to LABEL_VALUE:S - they can
never have an unbounded lifetime. This is of little consequence to languages which
need not use them (like ML or Ada) or which do need to use them but neverin a
manner which could violate the lifetime rules (like COBOL or Pascal). Some
languages (like Algol68 or C) do allow "long jumps" out of procedures to "dead"
LABELS (ones whose stack_frames have been exited from). If one wished to protect
against this, a run-time check would be necessary (see §2.1.3.5.1).

In a garbage collecting TDF implementation, a POINTER produced by generate
continues to be usable as long as it is accessible. A mistake similar to that

described above can be made by de-allocating and subsequently using such a
POINTER. However, the TDF concept of lifetime does not have any bearing on this
mistake.
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2.1.4 tokenise and TOKEN Application

As explained in §1.6, tokenise is a program construct which serves to identify
(possibly parameterised) pieces of TDF program. It is analogous to identify (see
§2.1.3.1.3), but whereas identify identifies values at run-time, tokenise identifies pieces
of program at translate-time.

It has the form:

k: SORT,

token: TOKEN,

pars: IT,,," (1, TOKEN, k;:SORT),
def: k,

body: EXP X

> EXPX

When the tokenise construct is translated, only body is translated to machine code.
However, within body any occurrence of token is taken to stand for the program
fragment def, which will be of SORT k. The TOKEN may be parameterised. If it is,

the SORT: of the parameters which it expects are desc-ibed by the £; in pars. Within the
program fragment def, the parameters are bound with the TOKENS ;. (The TOKENS #;
will not themselves be parameterised.) The TOKENS ¢, will be used only within def. The
TOKEN 1oken will be used only within body with one exception: roken may occur
within def in order to form the definition of a circular SHAPE. The TOKENs used in

all the parameters will be disjoint from the ¢; and from all the TOKENS used in def.
There will be no reuse of TOKENS and no scoping rule for TOKENS is defined.

(TOKEN is not counted as one of the SORTs of TDF, since a TOKEN indicates a
substitution to produce a SORT, rather than a SORT itself.)

Cross-reference: Structure of a TDF Capsule §1.6, TDF: Scenario of Use §1.1
In order to obtain the program fragment for which a TOKEN stands, TDF constructs
applv_exp_token, apply_shape_token etc. are provided - one for each different SORT.

They all have the same form. Using apply_exp_token as an example:

token: TOKEN,
pars: niﬂ" (kl:SORT)

>EXPX
apply_exp_token takes two arguments: first a TOKEN which will stand for an EXP

X; and second, and a number of program fragments, pars, which may be of any SORT,
but which will conform to token’s parameter requirements set out when it was
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defined. The EXP for which foken stands is the result and can then be translated just
like any other EXP. This process is analogous to the application of the C
Preprocessor.

2.1.5 Constructs for Conditional Compilation
As explained in §1.5.2, two TDF constructs allow the conditional translation of

program fragments depending on the value delivered by an EXP evaluated at
translate-time. These are exp_cond and variety_cond.

2,15.1 exp_cond

control: EXP INTEGER(V),
expl: EXP X,
exp2: EXP X

>EXPX
At translate-time, control is evaluated to produce a value, c. If ¢ is non-zero, then the
program fragment exp/ is selected for translation. If ¢ is zero, then the program
fragment exp2 is selected.
2.1.5.2 variety_cond
control: EXP INTEGER(V),
vl: VARIETY,
v2: VARIETY
-> VARIETY
At translate-time, control is evaluated to produce a value, ¢. If ¢ is non-zero, then the

program fragment v is selected for wranslation. If ¢ is zero, then the program fragment
V2 is selected.
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22 TDF Level 1

This section defines the extra SORTs, SHAPEs and EXPs which together with the
Level 0 constructs form TDF Level 1 - je. the subset of full TDF which is required in
order to implement ANSI C, Ada and other languages which do not require garbage
collection. Level 1 goes beyond Level 0 in areas such as provision for parallel
processes and diagnosis of exceptions.

2.2.1 Level 1 SORTs

There are thirteen SORTs in TDF, twelve of which form part of Level 0. The
thirteenth - EXCEPTION_HANDLER - appears in Level 1.

2.2.1.1 EXCEPTION_HANDLER

A value of SORT EXCEPTION_HANDLER contains a collection of EXPs which
may be evaluated in the event of an exception being encountered. Its form is
complex:

(special_handlers: T1;_," (exception_unique;: UNIQUE,
pt,: (TAG UNTRACED_POINTER(W;))_OPTION,
dt;: (TAG DIAG)_OPTION,
body,: EXP X;
)

default_handler: (def_et: (TAG EXCEPTION_VALUE)_OPTION,

def_dt: (TAG DIAG)_OPTION,

def_body: (EXP Y)_OPTION

)
)

Each EXCEPTION_HANDLER has an associated SHAPE, the SHAPE of the value
which it will produce if brought into play by the construct handle_exception. This
SHAPE is the LUB of the SHAPE:s of all the values which it might produce:

LUB,.,"X,LUB Y

The use of EXCEPTION_HANDLERSs is explained in the account of
handle_exception (§2.2.3.2.7).

One ERROR_TREATMENT not available in Level 0 becomes available in Level
1. Itis standard_exception.

2.2.i,2 Standard Exception
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This ERROR_ TREATMENT is used when an error can occur and the desired effect
is to produce an exception (see §2.2.3.2.3).

2.2.2 Level 1 SHAPEs
Level 1 contains two SHAPES not found in Level 0. These are:

THREAD
DIAG

They are both described below:

2.2.2.1 THREAD

Implementations of programming languages’ process models in terms of TDF's
lightweight processes require administrative information to be held as part of their
process data. The TDF SHAPE of this information is THREAD.

In a stack-based implementation a THREAD is likely to be just a stack. In a
heap-based implementation it is likely to be a chain of workspaces.

2.2.2.2 DIAG

The SHAPE describing the parcel of information which is made available when a
program fails. (DIAG stands for ‘diagnostics’.)

Users cannot create DIAG values, except for the empty DIAG with which to start a
failure. Only the system (ic. code produced by the translator) can create other DIAG
values. However, the user can operate on DIAG values in order to determine what
went wrong. In order to avoid reverse engineering, diagnostic information is given in
terms of UNIQUE values, and the connection between these UNIQUE values and
the structure and identifiers of the original program is made separately.

Cross-reference: Exceptions: Discussion §2.2.3.2.3, empty_diagnostics §2.2.3.2.6
As well as introducing two new SHAPEs, THREAD and DIAG, Level 1 specifies
that translators should implement VARIETY's and FLOATING_VARIETYs

sufficisrt to accommodate the requirements of Ada.

This is a convenient point at which to give an account of the way in which SIZEs
and OFFSETs relate to Ada,
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2.2.2.3 SHAPEs SIZEs and OFFSETs: Ada

Space-efficient implementation of Ada requires dynamic (run-time) variability of
sizes, even within tuples. An Ada record, for example, may contain fields whose
space requirements depend on the discriminants of the record.

Consider the Ada record given by:
type rec(d:integer) is
record first:string(1..d);
second:string(1..d);
end record;

TDF's SIZE construct provides the means for handling its potentially varying space
requirement. A space-saving mapping of this record to a TDF SHAPE could be:

WHOLE_POINTER

(TUPLE
(best_signed, -- the discriminant d
x, -- an offset to field second

SIZE(SOME(byte)), -- size of field first
SIZE(SOME(byte)), -- size of field second
SOME(byte),  -- field first
SOME(byie) -- field second
)
)

where x and byre are both tokenised SHAPES. byte would probably be defined as:
byte = INTEGER(O, 255)
and x would be recursively defined as:
x = OFFSET (TUPLE(best_signed,

X,
. SIZE(SOME(byte)),
; SIZE(SOME(byte)),
SOME(byte)
h
SOME(byte)
)

The value of the second element in the TDF TUPLE is dynamically computed using

the construct tuple_element_offset (§2.1.3.7.7). To access the string field second in the
Ada record one would use add_to_ptr on the original POINTER to the TUPLE and the
OFFSET value to obtain a POINTER to the field second. (Accessing the swing field first
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is simpler because its OFFSET from the start of the TUPLE can be calculated at
translate-time.)

This implementation means that the space occupied by an instance of the record is a
function of the discriminant value.

The TDF TUPLE implementing the Ada record rec has to be hidden behind a
POINTER whenever it is used in a SOME-free position, ¢.g. when a value of this
SHAPE is declared. The advantage of the TDF representation is that it uses the
minimum amount of space whilst still allowing simple operations on the flat
representation of the TUPLE to determine properties such as equality between
records of this SHAPE.

By contrast, many current commercial Ada compilers cannot handle a record such
as rec because they adopt a strategy of reserving the maximum amount of space for
the fields first and second that the discriminant might allow. Unfortunately in this
case the discriminant can be up to maxint, which will mean that there is insufficient
memory in the machine!

Notice that TDF does not provide special SHAPES for datastructures which require
complex implicit descriptors. All complex structures, such as the Ada record just
described or multi-dimensional arrays, are implemented using the very general

facilities offered by TDF’s SHAPEs. In the example of the Ada record rec, the first
three fields of the TUPLE constitute the descriptor.

2.2.3 Level 1 EXPs

The new constructs added in Level 1 can conveniently be divided into two
categories:

Lightweight Processes
Constructs to Support Ada

(Ada is highlighted here because it is the richest of the languages that can compile
to TDF Level 1.) The two categories are described in the following sections. (The
notation used for describing the constructs is introduced in §1.7.)

2.2.3.1 Lightweight Processes

2.2.3.1.1 Lightweight Processes: Discussion

For the purposes of ANSI C, TDF runs in POSIX processes. However, POSIX
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processes are costly in terms of space and speed of process swapping and process
creation and are not a good basis for the implementation of Ada processes. TDF is
therefore planned to provide for the creation of lightweight processes within a
POSIX process.

Many of the facilities used by prograraming languages have seitled down over the
years, so that a set of operations of reasona’le size covers their requirements fairly
closely. But this is not the case for processes and so TDF's process mechanism is
defined at a low level, so that the very different proczss mechanisms of existing
languages can be accommodated. This implies that much of the implementation of
Ada processes has to be supplied as an explicit implementation in TDF.

POSIX handles clock and asynchronous signals and supplies the routines for setting
the signal procedures for dealing with them. These will be identified in TDF by
agreed TAGs.

For multiple processors using a common memory, finding an architecture neutral
description of processes is awkward because the mechanisms used by the hardware

10 implement locking are not uniform. The operations described below, test_and_ser and
test_and_clear, can be implemented on many machines though they are not

necessarily the most efficient operations for every machine. This area is developing

at the moment and it has been judged best to re1ain these operations for the

meantime but leave the area open for later re-consideration.

Multiple processors runaing only POSIX processes de not present any problem since
the interactions are very limited and POSIX can be assumed to handle them
satisfactorily.

Cross-reference: test_and_clear §2.2.3.1.6, test_and_set §2.2.3.1.5, discard_thread
§2.2.3.1.4, exchange_thread §2.2.3.1.3, create_thread §2.2.3.1.2

2.2.3.1.2 create_thread
proc: EXF PRCC
-> EXP THREAD
proc is evaluated to produce a procedure p, which may be TRACED or UNTRACED.
The procedure p will expect a THREAD parameter and deliver a TOP result. A new
THREAD 1 is created from p. If and when t is started (by exchange_thrend) it will
behave as if it were evaluating the procedure p, with p's parameter being supplied by

the exchange_thread operation. The procedure will be one which, if applied using
apply_proc, would never complete.
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Cross-reference: THREAD §2.2.2.1, exchange_thread §2.2.3.1.3, Lightweight
Frocesses: Discussion §2.2.3.1.1

2.2.3.1.3 exchange_thread

thread: EXP THREAD

->EXP THREAD
thread is evaluated to produce a THREAD value, 1. The execution of the current
process whose THREAD is c is stopped and the execution of the process represented
by ¢ resumes or begins.
If the reason that ¢ was not executing was that it had halted with an exchange_thread
operation, then the current THREAD c is delivered as the result of that exchange_thread
operation in t,
If 1 had just been created by creare_thread, the THREAD of the newly stopped process
is supplied as if it were the parameter of the procedure from which ¢ was created.
Cross-reference: THREAD §2.2.2.1, create_thread §2.2.3.1.2, Lightweight
Processes: Discussion §2.2.3.1.1
2.2.3.14 discard_thread

thread: EXP THREAD

-> EXP TOP

thread is evaluated to produce a THREAD value, 1. The THREAD 1 is discarded. This
operation should require no work on a ga-bage collected system which implements

processes with the heap.

Cross-reference: THREAD §2.2.2.1, create_thread §2.2.3.1.2, Lightweight
Processes: Discussion §2.2.3.1.1

2.2.3.1.5 test_and_set

lab: LABEL
ptr: EXP POINTER(INTEGER (best_signed))

->EXP TOP
prr is evaluated to produce a POINTER, p. An integer of SHAPE

INTEGER(BEST_SIGNED) will lie in the space pointed to by the p. Its value will be
either 0 or 1. It is tested. If it is 1, control passes to the LABEL lab. If it is 0, control
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does not pass elsewhere and a value of SHAPE 1op is delivered. Tui any case the value 1
is written into the space pointed to by p.

This operation is interlocked against operations by other processors accessing the
same space.

Cross-reference: THREAD §2.2.2.1, Lightweight Processes: Discussion §2.2.3.1.1
2.2.3.1.6 test_and_clear

lab: LABEL
ptr: EXP POINTER(INTEGER (best_signed))

->EXP TOP

ptr is evaluated to produce a POINTER, p. An integer of SHAPE
INTEGER(BEST_SIGNED) will lie in the space pointed to by the p. Its value will be
either O cr 1. Itis tested. If it is 1, control passes to the LABEL lab. If it is 0, control
does not pass elsewhere and a value of SHAPE 10p is delivered. In any case the value 0
is written into the space pointed to by p.

This operation is interlocked against operations by other processors accessing the
same spacz.

Cross-reference: THREAD §2.2.2.1, Lightweight Processes: Discussion §2.2.3.1.1

2.2.3.2 Constructs to Support Ada

2.2.3.2.1 equal_contents argl, arg? and arg3 are evaluated to

unequal: LABEL,

argl: EXP POINTER(A),

arg2: EXP POINTER(B),

arg3: EXP SIZE(X) (X need not be SOME-free)

->EXP TOP

produce values, a, b and c. a and b will be POINTERS. ¢ will be a SIZE. The amount
of data specified by ¢ located in the spaces pointed to by a and b is compared for
equality of representation. If they are equal the construct delivers top. If they are
unequal control passess to the LABEL unequal with top.

Cross-reference: Pointers: Discussion §2.1.3.4.1, SHAPEs S1ZEs and OFFSETs
§1.5.1, LABEL §2.1.1.10

95

PP AMILI S BTN S 40 <

o

P T
PR WSO

2

P




‘IDF Specification

2.2.3.2.2 not_equal_contents argl,arg2 and urg3 are evaluated

equal: LABEL,

argl: EXP POINTER(A),

arg2: EXP POINTER(B),

argd: EXP SIZE(X)  {X need not be SOME-free)

-> EXP TOP

to produce values, a, b and c. a and b will be POINTERS. ¢ will be a size. The amount
of data specified by ¢ located in the spaces pointed to by a and b is compared for
equality of representation. If they are unequa!' the construct delivers zop. If they are
equal control passes to the LABEL equal with top.

Cross-reference: Pointers: Discussion §2.1.3.4.1, SHAPEs SIZEs and OFFSETs
§1.5.1, LABEL §2.1.1.10

2.2.3.2.3 Exceptions: Discussion

TDF exceptions are used to implement Ada and ML exceptions, among other
constructs. Since TDF can be used to write operating systems, the TDF model of
exceptions is able to handle diagnostics as data.

2.2.3.2.3.1 EXCEPTION_VALUEs

EXCEPTION_VALUE is a convenient term for describing the parcel of information
arising from the occurrence of an exception. An EXCEPTION_VALUE consists of a
pair of values, the first of which is also a pair.

EXCEPTION_VALUE = (EXCEPTION_IDENTIFIER, DIAG)
EXCEPTION_IDENTIFIER = (EXCEPTION_UNIQUE, UNTRACED_POINTER(X))

An EXCEPTION_UNIQUE is a UNIQUE value, used to characterise a class of
exceptions. The following six are pre-defined:

2.2.3.2.3.1.1 overflow
2.2.5.2.3.1.2 divide_by zero
2.2.3.2.3.1.3 store_full
2.2.3.2.3.1.4 null_pointer
2.2.3.2.3.1.5 bound_check
2.2.3.2.3.1.6 absent_shaky
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but these may be added to, either statically by agreement between groups of
users, or dynamically during the running of a program.

The POINTER serves to give extra information to an EXCEPTION_HANDLER.
i‘or example, IEEE floating point defines certain floating point numbers which give
more information about a failed operation. Different classes of exception will
usually require different kinds of extra information. In order that
EXCEPTION_VALUE:S can be represented in a uniform way, all these kinds of
extra information are reduced to one shape, UNTRACED_PCINTER, which will
point to space holding the information.

The DIAG value serves to give information about the state of the procedures which
were active between the point at which the exception originated and the point at
which it is being handled. This information, in combinr.aon with information
derived from the original program, will allow the values being used within these
procedures to be examined according to the conventions of the originating program.
Various methods exist of controlling the amount of information which is accessible,
in order to discourage reverse engineering, while still permitting programs to be
diagnosed (see Diagnostics §2.2.3.2.3.3). See also §2.1.3.1.4 for a discussion of the
visible qualifier.

An EXCEPTION_VALUE can originate from an ERROR_TREATMENT or from
the fail or fail_no_diag constructs.

If it originates from an ERROR_TREATMENT, the UNIQUE is determined by the
operation which caused the error and the POINTER value by the details of the error,
in a way specified in the operation. In this case the DIAGNOSTICS starts as empty.

If it originates from fail or fail_no_diag, the EXCEPTION_IDENTIFIER and the
DIAG are explicitly supplied as arguments. In particular, the diagnostics may be
empty_diagnostics or may be a diagnostic value which already exists. By this means,
exceptions may be tested to see if a handler wishes to deal with them.

Cross-reference: diagnostics §2.2.3.2.3.3, EXCEPTION_HANDLER §2.2.1.1,
empty_diagnostics §2.2.3.2.6, fail §2.2.3.2.4, fail_no_diag §2.2.3.2.5,
ERROR_TREATMENT §2.1.1.12

2.2,3.2.3.2 Propagation of Exceptions

All constructs except for handle_exception treat exceptions in the same way. When an
exception occurs, a search is made for the closest dynamically enclosing
handle_exception construct. This may be found in the current procedure, or in the
procedure from which the current one was called, or in the procedure which called
that one and so on right back to the main procedure in the current process. As each
procedure level is exited, information about that procedure is added to the diagnostic
chain, modifying the EXCEPTION_VALUE. Once an enclosing handle_exception is
found which has as argument an EXCEPTION_HANDLER capable of handling the
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exception, the EXCEPTION_VALUE's POINTER and DIAG components are bound
to TAGs specified by the EXCEPTION_BANDLER and the
EXCEPTION_HANDLER takes control.

If it is desired to prevent part of this chain from being visible in diagnostic
information, a handle_exception construct can be inserted which re-fails using
fail_no_diag. The consequence will be that any subsequent diagnosis of an exception
will not be able to obtain any diagnostic information from the procedure in which
the handle_exception has been put. This can be useful, for instance, if a procedure
which requires concealment calls a user procedure which requires diagnostics. An
example might be a differential equation solver.

The propagation of exceptions has been described as if it were performed by an
interpreter, but there is no implication that this is how it should be done. Any
equivalent scheme - for instance, one which detects what exceptions are being
tested and jumps directly to the correct place - can be implemented.
Cross-reference: exception_handler §2.2.1.1, faii_no_diag §2.2.3.2.5
2.2.3.2.3.3 Diagnostics

Diagnostic information, where it is provided, is associated with the activation of a
procedure. It consists of two parts, one compulsory, the other optional.

The compulsory part is a sequence of UNIQUEs corresponding to the diagnose_point
constracts which were encountered on the scan back to the handle_exception construct.

The optional part is a set of pairs of TAGs and values corresponding to the identify,
variable and v~riable_no_init constructs which are active in the procedure. At least
those TAGs + nich are declared to be visible shall appear in the set, together with as
many others as are available.

If only the compulsory diagnostics are available, a sequence of UNIQUE values
partially identifying the location of the error can be sent back to the distributor.
Cross-reference: identify §2.1.3.1.3, variable §2.1.3.1.4, handle_exception §2.2.3.2.7

2.2.3.2.4 fail

exception_id: EXP EXZCEPTION_IDENTIFIER,
diag: EXP DIAG

-> EXP BOTTOM

exception_id is evaluated to produce an EXCEPTION_IDENTIFIER, ¢ and diag to
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produce a DIAG, d. An exception is created using e and d. Since this construct does not
terminate normally, the SHAPE of its result is BOTTOM.

Cross-reference: Exceptions: Discussion §2.2.3.2.3
2.2.3.2.5 fail_no_diag
exception_id: EXP EXCEPTION_IDENTIFIER
-> EXP BOTTOM
exception_id is evaluated to produce an EXCEPTION_IDENTIFIER, e. An exception is
created using e and an empty diagnostic chain. Since this construct 2.es not
terminate normally, the SHAPE of its result is BOTTOM.

Cross-reference: Exceptions: Discussion §2.2.3.2.3

2.2.3.2.6 empty_diagnostics

->EXP DIAG

An empty diagnostic chain is created and delivered.

Cross-reference: Exceptions: Discussion
2.2.3.2.7 handle_exception

body: EXP X,
handler: EXCEPTION_HANDLER Y

->EXP(XLUBY)

body is evaluated. If its evaluation completes successfully, its result is delivered as
the result of handle_exception, with SHAPE (X LUB Y).

If the evaluation of body does not complete successfully, but instead produces an
EXCEPTION_V.\LUE, then handler comes into play. (The reader may wish to refer
to §2.2.1.1 at this point.) The UNIQUE, u, from the EXCEPTION_VALUE is tested
against each of the exception_unique; contained in handler. If and when a match is
found between u and one of the exception_unique;, then the POINTER, p, and the
DIAG, d, from the EXCEPTION_VALUE are bound with the TAGs p; and dt; (if
present). body; from the EXCEPTION_HANDLER is then evaluated and its result
delivered with SHAPE (XIUB Y).

If, however, no match is found for u, but the EXCEPTION_HANDLER s optional
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default_handler is present, the following actions are performed. The
EXCEPTION_VALUE and the DIAG, d, are bound with the TAGs def_er and def _dt.
Then def_body is evaluated and its result delivered with SHAPE (X LUB Y).

If the EXCEPTION_HANDLER 's optional default_handler is not present, then the

EXCEPTION_VALUE is simply passed on to the next enclosing handle_exception
construct (if any) to see if it can handle the exception.

Cross-reference: Least Upper Bound §2.1.2.2, Exceptions: Discussion §2.2.3.2.3,
EXCEPTION_HANDLER §2.2.1.1, EXCEPTION_VALUES §2.2.3.2.3.1
2.2,3.2.8 select_from_nof

arg: EXP NOF(X, N),
index: EXP INTEGER(V)

>EXPX
arg is evaluated to produce an NOT(X, N) value, a. index is evaluated to produce an
INTEGER(V) value, i, which will lie between 0 and N-1 inclusive. The i-th component
of a is delivered.
Cross-reference: NOF §1.5.1.3.1
2.2.3.2.9 size_in_bits

v: VARIETY,
arg: EXP SIZE(X) (X need not be SOME-free)

-> EXP INTEGER(v)

arg is evaluated to produce a SIZE value, s. An integer value of VARIETY v is created
and delivered which is the number of bits occupied by a value of the size s.

Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1

2.2.3.2.10 true

-> EXP BIT
A true BIT value is created and delivered.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3
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2.2.3.2.11 false

-> EXP BIT
A false BIT value is created and delivered.
Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3
2.2.3.2.12 test_eq_bit

argl: EXP X,
arg2: EXP X

-> EXP NOF(BIT, 1)
argl and arg2 are evaluated to produce a and b, values of the same SHAPE. The
representations of @ and b are compared. An NOF(BIT,1) value is created and
delivered which contains true if they are equal and false if they are not.
Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3
2.2.3.2.13 integer_test_bit
ntest: NTEST,
argl: EXP INTEGER(V),
arg2: EXP INTEGER(V)
-> EXP NOF(BIT, 1)
argl and arg2 are evaluated to produce a and b, integers of the same VARIETY.
These integers are compared using the test ntesz. An NOF(BIT, 1) value is created and
delivered. It contains true if the test succeeds and is produced false if it does not.
For example, if ntest is greater, then if a is greater than b the construct yields true.

Otherwise it yields false.

Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, NTEST §2.1.1.11
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2.2.3.2.14 floating_test_bit

ntest: NTEST,
argl: EXP FLOAT(F),
arg2: EXP FLOAT(F)

-> EXP NOF(BIT, 1)
argl and arg2 are evaluated to produce a and b, floating point numbers of the same
FLOATING_VARIETY. a and b are compared using the test ntest. An NOF(BIT,1)
value is created and delivered. It contains frue if the test succeeds and false if it does not.
For example, if ntest is greater, then if g is greater than b the construct yields true.
Otherwise it yields false.
Cross-reference: NOF §1.5.1.3.1, BIT §2.1.2.1.3, NTEST §2.1.1.11
2.2.3.2.15 equal_contents_test_bit
argl: EXP POINTER(Y),
arg2: EXP POINTER(Y),
arg3: EXP SIZE(X) (X need not be SOME-free )

-> EXP NOF(BIT, 1)
argl, arg2 and arg3 are evaluated to produce values, a, b and c. a and b will be
POINTERSs. ¢ will be a SIZE. The amount of data specified by c located in the spaces
pointed 10 by a and b is compared for equality of representation. An NOF(BIT,1)

value is created and delivered. It contains rrue if the representations were found to be
equal and false if they were not.

Cross-reference: Pointers: Discussion §2.1.3.4.1, SHAPEs SI1ZEs and OFFSETs
§1.5.1, NOF §1.5.1.3.1,BIT §2.1.2.1.3
2.2.3.2.16 union_size

alts: T1,, " (part;: EXP SIZE(SH;)) (SH, need not be SOME-free)

-> EXP SIZE(UNION (TI,_," SH,))

alts -are evaluated to produce SIZE values. A new SIZE value is created and
delivered which is the size that a UNION composed of values of these SIZEs would
have.

Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1
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2.2.3.2.17 index

ptr: EXP UNTRACED(X),
offset: EXP OFFSET(X,X),
low: EXP INTEGER(V),
high: EXP INTEGER(V),
index: EXP INTEGER(V)

-> EXP UNTRACED_POINTER(X)

ptr, offset, low, high and index are evaluated to produce values p, off, lo, hi and i
respectively. i is checked to see whether it lies between lo and Ai inclusive. If it does
not, a bound_check exception is produced. But if it does, then off is scaled by i and the
value delivered as the result of the construct is the sum of the resulting OFFSET and
the POINTER value p.

If p delivers a null POINTER, the effect is undefined.
The result will share with p.

This operation is provided to take advantage of machines which have specific
instructions for indexing. It is equivalent to a combination of add_to_ptr, mult and
integer_test. Where this combination occurs directly the index operation should always
be used in preference.

Note that in Level 2 a WHOLE_POINTER(X) argument can be provided, in which
case the SHAPE of the result is PART_POINTER(X).

Cross-reference: Pointers: Discussion §2.1.3.4.1, add_to_ptr §2.1.3.4.2, Exceptions:
Discussion §2.2.3.2.3, Lifetimes: Discussion §2.1.3.12, null POINTERs §2.1.3.4.1.2,
mult §2.1.3.2.5, integer_test §2.1.3.2.25

2.2.4 Level 1 Constructs for Conditional Compilation

For the purposes of ANSI C, the only conditional compilation constructs required are
exp_cond and variety_cond. Level 1 includes similar constructs covering all the

other SORTSs:

2.2.5 shape_cond

2.2.6 nat_cond

2,27 signed_nat_cond
2.2.8 floating_variety_cond
2.2.9 bool_cond

2.2.10 unique_cond
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2.2.11 tag_cond

2.2.12 label_cond

2.2.13 ntest_cond

2.2.14 error_treatment_cond
2.2.15 exception_handier_cond

They all have the form:
control: EXP INTEGER(V),
s1: SORT,
s2: SORT
«>SORT

and behave in a similar manner to exp_cond and variety_cond.

Cross-reference: Conditional Compilation §1.5.2, Constructs for Conditional

.

Compil. tion §2.1.5
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2.3 TDF Level 2

This section defines the SORTs, SHAPEs and EXPs which go together to form TDF

Level 2 - ie. full TDF. Level 2 goes beyond Level 1 in offering POINTER operations
which interact with a garbage collector, means for creating UNIQUE values, support
for unanticipated procedure application and a number of other miscellaneous

features.

2.3.1 Level 2 SORTs

All thirteen TDF SORTS are included in TDF Leveis 0 and 1. Level 2 therefore
contains no more SORTs than the thirteen available introduced in Level 1:

EXP UNIQUE
SHAPE TAG
NAT LABEL
SIGNED_NAT NTEST
VARIZTY ERROR_TREATMENT
FLOATING_VARIETY EXCEPTION_HANDLER
BOOL
2.3.2 Level 2 SHAPEs

All the SHAPES of the previous sections shall be implemented, plus the following.

2,3.2.1 POINTER SHAPEs Concerned with Garbage Collection
There are five SHAPE constructs collectively known as POINTERSs. They are:

UNTRACED_POINTER
WHOLE_POINTER
SHAKY_WHOLE_POINTER
PART_POINTER
SHAKY_PART_POINTER

UNTRACED_POINTER forms part of Level 0 and was introduced in §2.1.2.3.3. All
the others are concerned with garbage collection and hence form part of Level 2.
2.3.2.1.1 Garbage Collection: Discussion

As mentioned in §1.1 there is a difference in the memery management for TDF

programs between levels 0 and 1, and level 2. Level 2 differs by supporting
automatic garbage collection.
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Although it encompasses a garbage collected memory, Level 2 also supports the
Level 0 notion of an untraced kemel which a garbage collector ignores. POINTERs
and PRUCs in the untraced kernel are of SHAPEs UNTRACED_POINTER and
those constructed from UNTRACED_PROC. (These SHAPEs are referred to as
untraced because the garbage collector - if present - does not trace an
UNTRACED_PROC’s workspace or the contents of an UNTRACED_POINTER.)

Levels 0 and 1 are totally implemented in the untraced kernel. However, in Level 2
TDF issues of communication between the traced world and the untraced kernel
arise. No value of a traced SHAPE can be accessed in the untraced kernel. In other
words, there can be no POINTERS pointing from the traced world to the untraced
kernel.

2.3.2.1.2 WHOLE_POINTER SHAPEs

A WHOLE_POINTER is a pointer which points to the whole of an aliocated space.
The value delivered by generate has SHAPE WHOLE_POINTER(..).

WHOLE_POINTERS have equal representation if and only if they are identical - ie.
they are copies of a value produced from one particular evaluation of generate.

In garbage collected systems it may be desirable to represent WHOLE and
PART_POINTERS differently. Typically in a garbage collected system, a
WHOLE_POINTER will occupy less space than a PART_POINTER. This is why
the TDF SHAPE system distinguishes them.

Cross-refer ace: generzte §2.3.3.1, whole_to_part §2.3.3.2, Tokenisation §1.5.3
2.3.2.1.8 SHAKY_WHOLE_POINTER SHAPEs

A SHAKY_WHOLE_POINTER is a POINTER which points to the whole of an
allocated space. Unlike a WHOLE_POINTER, which can cleared by a garbage
collection only when all copies of it have been discarded, it can be a cleared by a
garbage collection if all the other extant POINTERS to its space are also SHAKY.
SHAKY POINTERSs (including SHAKY_PART_POINTERs) do not have the power to
preserve the piece of memiory to which they point during a garbage collection. If &
SHAKY POINTER points to a piece of memory all or part of which is also pointed

to by a non-SHAKY POINTER, however, that picce of memory will be preserved
during a garbage collection and the SHAKY POINTER will not be cleared.

A SHAKY_WHOLE_POINTER(X) can be created by applying shake to a
WHOLE_POINTER(X).

SHAKY_WHOLE_POINTERS have equal representation if and only if they are

identical - ie. they are copies of a value produced from one particular evaluation of
generate.
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The only operation (apart from data transfer) defined on SHAKY POINTERS is firm,
Applied to a SHAKY POINTER which has not been cleared by a garbage coliection,
firm delivers the original POINTER from which the SHAKY POINTER was made.
However, if the SHAKY POINTER has been cleared by a garbage collection, an
absent_shaky error is produced.

Cross-reference: Garbage Collection: Discussion §2.3.2.1.1, WHOLE_POINTER
SHAPES §2.3.2.1.2, shake §2.3.3.12, generate §2.3.3.1, absent_shaky §2.2.3.2.3.1.6

2,3.2.1.4 PART_POINTER SHAT s

A PART_POINTER is a pointer which does not necessarily point to the whole of an
allocated space. Such a POINTER is created either by applying whole_to_part toa
WHOLE_POINTER, or in the course of the constructs, variable and variable_no_init
when evaluated as part of a TRACED_PROC, when a PART_POINTER is created
and bound tc a TAG.

Equality of representation for PART_POINTERS is defined if and only if both
POINTERS are proper POINTERS (see §2.1.3.4.1.4). If both POINTERsS are derived
from different original POINTERS, then the representations are unequal. If both are
derived from the same original POINTER, then they are equal if and only if
subtract_pointers would give a zero SIZE.

PART_POINTERS denived from variable declarations have a limited lifetime.

Cross-reference: whole_to_part §2.3.3.2, WHOLE_POINTER SHAPEs §2.3.2.1.2,
v~-iable §2.1.3.1.4, variable_no_init §2.1.3.1.5, proper FOINTERs §2.1.3.4.1.4,
o..ginal POINTERs §2.1.3.4.1.3, Lifetimes: Discussion §2.1.3.12, subtract_pointers
§..13.4.14

2.3.2.1.5 SHAKY_PART_POINTER SHAPEs

A SHAKY_PART_POINTER is a POINTER which does not necessarily point to
the whole of an allocated space. Unlike a PART_POINTER, however, it can be
cleared by a garbage collection. A SHAKY_PART_POINTER(X) can be created by
applying shake to a8 PART_POINTER(X).

Equality of representation for SHAKY_PART_POINTERS is defined if and only if
both POINTERs are proper POINTERSs (see §2.1.3.4.1.4). If both POINTERS are
derives from different original POINTERS, ihen the representations are unequal. If
both are derived from the same original POINTER, then they are equal if and only if
subiract_pointers would give a zero size.

As with SHAKY_WHOLE_POINTERsS, the only operation (apart from data tansfer)
which can be applied to a SHAKY_PART_POINTER is firm.
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Cross-reference: Garbage Collection: Discussion §2.3.2.1.1, PART_POINTER
SHAPES §2.3.2.1.4, shake §2.3.3.12, subtract_pointers §2.1.3.4.14, firn §2.3.3.13

2.3.2.2 TRACED_PROC

The SHAPE describing procedure values in a garbage collecting system which
reside on the garbage collected heap. The only ultimate use that can be made of a
TRACED_PROC is to apply it to a parameter.

Equality of representation is undefined for TRACED_PROCs.

Cross-reference: Garbage Collection: Discussion §2.3.2.1.1, Lifetimes: Discussion
§2.1.3.12, Procedures §2.1.3.6

2.3.2.3 the SHAPE UNIQUE_VAL

The SHAPE describing values which are different from every other value of the
same SHAPE previously generated on the current machine, and from every
UNIQUE_VAL generated on any other machine.

UNIQUE_VAL values are created by the TDF construct make_a_new_unique_value.

UNIQUE_VAL values are equal if and only if they are identical - ie. they are copies
of a value produced from the same evaluation of make_a_new_unique_value.

Cross-reference: make_a_new_unique_value §2.3.3.7
2.3.2.4 unlimited integer VARIETYSs

Two VARIETYS, used to represent integers of unbounded size, do not occur in
Levels 0 or 1. The operations on such unbounded integers cannot cause overflow
errors. The unlimited VARIETYs are:

SIGNED_UNLIMITED
UNSIGNED_UNLIMITED

SIGNED_UNLIMINED is a representation of any integer, without bound.
UNSIGNED_UNLIMITED is a representation of any non-negative integer, without
upper bound. Such integers can only be used freely in full (garbage collecting) TDF
systems.

In the case of unlimited integers the impossible error handler will be chosen for the
overflow error handler in arithmetic operations.

Equality of representation is undefined for unlimited integers. However the
integer_test operations can be used for unlimited integers.
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The LUB of a limited and an unlimited VARIETY is top.

2.3.3 Level 2 EXPs

All the EXPs of the previous sections shall be implemented, plus the following.

2.3.3.1 generate
arg: EXP SIZE(X) {X need not be SOME-free}
-> EXP WHOLE_POINTER(X)

arg is evaluated to produce a SIZE(X) value. Space is generated to hold a value of
this SIZE and a WHOLE_POINTER(X) which points to this space is delivered as

the result. The space is not initialised. If no memory is available, a signal store_full is
produced.

The result shares with no other POINTER existing at the completion of the

operation. It can never share with a POINTER produced by variable or variable_no_init,
nor with any POINTER produced from such a POINTER by add_to_prr,
subtract_from_ptr, index or part_field or by any combination of these operations. The
result is an original POINTER.

The resuit has an unbounded lifetime.

If X is a compound SHAPE, such as a TUPLE, then the space to hold it may contain
areas of padding in order to conform to an architecture’s alignment rules. This
causes no difficulty if the whole TUPLE is subsequently assigned to. But if the
individual fields are separately assigned to, then it is possible that no values may be
put into the padding areas. But equality of TUPLE: is defined to be equality of the
components, and is very likely to be implemented by comparison of all the TUPLE,
including the padding. Translators therefore need to make sure that such padding has
a standard vaue. Thus some clearing operation on the space gencrated may be
necessary.

An initialised generate operation, pack (§2.3.3.11), is available.

Cross-reference: Pointers: Discussion §2.1.3.4.1, add_to_ptr §2.1.3.4.2, Signals:
Discussion §2.1.3.11, index §2.2.3.2.17, Lifetimes: Discussion §2.1.3.12, original
POINTERs §2.1.3.4.1.3, pant_field §2.1.3.4.4, sharing §2.1.3.4.1.1, SHAPEs SIZEs
and OFFSETs §1.5.1, subtract_from_ptr §2.1.3.4.3, variable §2.1.3.1.4,
variable_no_init §2.1.3.1.5, pack §2.3.3.11, null POINTERS §2.1.3.4.1.2, store_full
$2.2.3.23.1.3
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2.3.3.2 whole_to_part
arg: EXP WHOLE_POINTER(X)
-> EXP PART_POINTER(X)
arg is evaluated to produce 8 WHOLE_POINTER p. A PART_POINTER pointing to
the same space as p is created and delivered. If p is null, the result will be a null

PART_POINTER.

The result will share with p. It has an unbounded lifetime.,

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERS §2.1.3.4.1.2,
sharing §2.1.3.4.1.1, Lifetimes: Discussion §2.1.3.12, generate §2.3.3.1

2.3.3.3 make_null_whole_pointer
sh: SHAPE
-> EXP WHOLE_POINTER(:™)

A null WHOLE_POINTER(sh) is delivered. Its lifetime is unbounded.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2
2.3.3.4 make_null_part_pointer
sh: SHAPE

->EXP PART_POINTER(sh)
A null PART_POINTER(sh) is created and delivered. Its lifetime is unbounded.
Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2
2.3.3.5 replace_field

component: NAT,
tuple: EXP TUPLE (T1,_,,™ P;, {n21] (1 <=component <=n)
replace_by: EXP Pcomponenl

>EXPTUPLETL_. P,

tuple is evaluated to produce a tuple value ¢ and replace_by to produce a value 7. The
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value r wili have the same SHAPE as the component-th element of 1. A new tuple is
created and delivered which is the same as ¢ except that its component-th field is r.

Cross-reference: TUPLE §1.5.1.1, Lifetimes: Discussion §2.1.3.12, SHAPEs SIZEs
and OFFSETs §1.5.1
2,3.3.6 size_of_contents

sh: SHAPE, {sh need not be SOME-free)
arg: EXP POINTER(X)

-> EXP SIZE(X)

arg is evaluated to produce a POINTER, which is either 8 WHOLE_POINTER, p, or is
equal to the result of applying whole_to_part 10 a WHOLE_POINTER, p. If p was

produced by generate, then the result is the SIZE parameter with which it was generated.

If p was produced by pack, the result is the SIZE of the data which was packed.

Cross-reference: SHAPEs SIZEs and OFFSETs §1.5.1, WHOLE_POINTER
SHAPEs §2.3.2.1.2, generate §2.3.3.1, pack §2.3.3.11

2.3.3.7 make_a_new_unique_value

->EXP UNIQUE_VAL
A new UNIQUE_VAL value, different from any existing value on this or any other
machine, is created and delivered. This operation is only permitted if the computer
on which the program is running has the right to issue UNIQUE_VAL values.
Otherwise, the effect is undefined.
Cross-reference: the SHAPE UNIQUE_VAL §2.3.2.3
2.3.3.8 make_unique_val
u:UNIQUE

-> EXP UNIQUE_VAL

A UNIQUE_VAL equal to the UNIQUE u is created and delivered.

Cross-reference: UNIXQUE §2.1.1.8, the SHAPE UNIQUE_VAL §2.3.2.3
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2.3.3.9 fioor
ov_emr: ERROR_TREATMENT,
v: VARIETY,
arg: EXP FLOAT(F)
-> EXP INTEGER(v)

arg is evaluated to produce a value, a. An integer value is created and delivered which
is the largest integer not greater than a; the fractional part is discarded.

If the result cannot be expressed in VARIETY v, an overflow error is caased and
handled in the way specified by ov_err,

If ov_err is ignore and the VARIETY v is unsigned, the operation is performed
modulo 27bits(v).

If ov_err is ignore and the VARIETY is signed, the effect of overflow is undefined.
Cross-reference: ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
floating point SHAPEs §2.1.2.3.2
2.3.3.10 ceiling

ov_err: ERROR_TREATMENT,

v: VARIETY,

arg: EXP FLOAT(F)

-> EXP INTEGER(v)

arg is evaluated to produce a value, a. An integer value is created and delivered which
is the smallest integer greater than or equal to a.

If the result cannot be expressed in VARIETY v, an overflow error is caused and
handled in the way specified by ov_err.

If ov_err is ignore and the VARIETY v is unsigned, the operation is performed
modulo 2Abits(v).

If ov_err is ignore and the VARIFTY is signed, the effect of overflow is undefined.

Cross-reference; ERROR_TREATMENT §2.1.1.12, integer SHAPEs §2.1.2.3.1,
floating point SHAPEs §2.1.2.3.2
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2.3.3.11 pack
arg: EXP X {X must be SOME-free)
-> EXP WHOLE _POINTER(X)

arg is evaluated to produce a value, a. Eaough space is generated to hold a and a is
copied into it. A WHOLE_POINTER pointing to the space is created and delivered
as the result.

The lifetime of the result is unbounded.

The result shares with no other POINTER existing at the completion of the

operation. It can never share with a POINTER produced by variable or variable_no_init,
nor with any POINTER produced from such a POINTER by add_to_ptr,
subtract_from_ptr, index or part_field or by any combination of these operations. The
result is an original POINTER.

This operation is similar to generate except that it permits an initial value to be

supplied.

Cross-reference: Pointers: Discussion §2.1.3.4.1, add_to_ptr §2.1.3.4.2, Signals:
Discussion §2.1.3.11, index §2.2.3.2.17, Lifetimes: Discussion §2.1.3.12, original
POINTERs §2.1.3.4.1.3, part_field §2.1.3.4.4, sharing §2.1.3.4.1.1, subtract_from_ptr
§2.1.3.4.3, variable §2.1.3.1.4, variable_no_init §2.1.3.1.5, generate §2.3.3.1,
store_full §2.2.3.2 3.1.3, null POINTERs §2.1.3.4.1.2

2.3.3.12 shake
ptr: EXP POINTER(X)
-> EXP SHAKY_POINTER(X)

pir is evaluated to produce a POINTER value p. A shaky POINTER pointing to the
same space as p is created and delivered. If p is a WHOLE_POINTER, the result is a
shaky WHOLE_POINTER. If the p is a PART_POINTER, the result is a shaky
PART_POINTER. p will not be a null POINTER.

The result wil} share with p.

Cross-reference: Pointers: Discussion §2.1.3.4.1, null POINTERs §2.1.3.4.1.2,
sharing §2.1.3.4.1.1, Lifetimes: Discussion §2.1.2 12
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absent: ERROR_TREATMENT,
sh_ptr: EXP SHAKY POINTER(X)

->EXP POINTER(X)

sh_ptr will deliver a shaky POINTER value sp. If this shaky POINTER has not been
cleared, a POINTER pointing to the same space is created ang delivered as the

result. If sp is a SHAKY_WHOLE_POINTER the result is a WHOLE_POINTER. If sp
is a SHAKY_PART_POINTER, the result is a PART._POINTER. If sp is null, then the
result is a null POINTER. If sp has been cleared, an absent_shaky error is produced
and handled as specified by absent.

If absent is ignore its effect is undefined.

If sp is present, it will share with the result.

Cross-reference: Pointers: Discussion §2.1.3 4.1, null POINTERs §2.1.3.4.1.2,
- ERROR_TREATMENT §2.1.1.12, sharing £2.1.3.4.1.1, Lifetimes: Discussion

§2.1.3.12

2.3.3.14 make_traced_procedure

param_shape: SHAPE, {param_shape will be SOME-free)
param: TAG PART_POINTER (param_shape),
body: EXP X

->EXP TRACED_PROC

Evaluation of make_traced_procedure delivers an TRACED_PROC. When this
procedure is applied to a parameter using apply_proc, space is allocated to hold a value
of SHAPE param_shape. The value produced by the parameter, which will be of the
correct SHAPE, is used to initialise it. body is evaluated. During the evaluation, param is
bound to an original PART_POINTER pointing to the space. This means that
evaluation of obtain_tag(param) will produce that POINTER. The value produced by
body is delivered as the result of the apply_proc construct.

Y

The TAG used for param will not be re-used. No rules for the effect of the hiding of
one TAG by another, equal TAG are given; this will not happen. See §2.1.3.1.1 fora
discussion of this point.

TAGs other than param which are used in body but not declared within it are called

non-local TAGs. If and when the procedure is applied and its body evaluated, these
TAGs obey the same bindings that obtained when the procedure was constructed.
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The lifetime of the procedure value is the intersection of the evaluations of the
bodies of all the declarations of its non-local TAGs.

If a programming language permits more than one parameter, the compiler to TDF
will use make_traced_procedure to construct a TDF procedure whose param_shape is
ALIGNED_TUPLE (..) (see §2.1.2.3.5). The elements will usually be identified
(§2.1.3.1.3).

Cross-reference: TRACED_PROC §2.3.2.2, Lifetimes: Discussion §2.1.3.12,
Binding: Discussion §2.1.3.1.1, Exceptions: Discussion §2.2.3.2.3, apply_proc
§2.1.3.6.6, ALIGNED_TUPLE SHAPEs §2.1.2.3.5, identify §2.1.3.1.3

2.3.3.15 make_null_traced_procedure
-> EXP TRACED_PROC
A null TRACED_PROC is created and delivered. If this PROC is applied, the

effect is undefined. The null TRACED_PROC may be tested for using proc_is_null or
proc_not_null.

Cross-reference: TRACED_PROC §2.3.2.2, apply_proc §2.1.3.6.6, proc_is_null
§2.1.3.6.4, proc_not_null §2.1.3.6.5
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3 TDF: Optimisations

One of the requirements which TDF has been designed to satisfy is that it should
contain enough information for all the normal optimisations to be performed in the
target machine. TDF satisfies this requirement,

If optimisations are done before transmission, the resources of a presumably more
powerful computer are available. The compiler has to be trusted to perform these
optimisations correctly.

If the optimisations are done after transmission, the effects of the modifications
made during installation on the target can be allowed for. The translator has to be
trusted to perform these optimisations correctly.

Since compilers and translators are to be usable in any combination, it will be
necessary to make a public decision about which optimisations are expected if the
expected efficiencies are to be achieved.

Regardless of this decision, some TDF optimisations should be performed by every
translator to which they are relevant. Every TDF wranslator should produce the best
code it can for these cases. These optimications are listed here. They are not
concerned with such matters as register allocation, pipeline control or removing
redundant jumps, which should also be performed if relevant.

All compiler writers may assume that these optimisations will be performed if they
are relevant. This information is important to compiler writers in considering their
TDF producing strategy.

3.1 Evaluation of Constants and Conditional Compilation

For every operation, if the expression arguments are explicit constants and the result
can be expressed as an explicit constant, then it should be so expressed. The result
should then be available as an explicit constant for similar consideration by any
enclosing operation. If the arguments deliver constant results but the evaluation has
side-effects, and if the result can be expressed as an explicit constant with
side-effects, this should be done. Again, the result should be available for enclosing
operations.

Every operation whose EXP arguments are explicit constants, which has an
ERROR_HANDLER argument which is a LABEL, and whose effect is completely
defined by its arguments should be processed as follows. If control certainly passes
to the LABEL, the operation should be replaced by a suitable goto operation together
with any necessary side-effects. Since this has a bottom resuit, no further operations
after this goto need be wanslated. If control certainly does not pass to the LABEL,
the operation should be replaced by one with an impossible error handler. In this case
the LABEL is not used by the operation.

116




S p e s e o TG A A s

TDF Specification

In any case where a bottom is produced, no subsequent unreachable code should be
produced.

In a conditional, repeat or labelled construct, any labelled expression which is
unreachable because its LABEL is not used should not be translated. This may well
be because of a combination of the rules above.

In a case construct, if the controlling integer is an explicit constant, only the
selected branch should be translated.

These rules have a bearing on conditional translation. This needs to be done in the
translator, because it may be the installation process on the target which makes
expressions constant or unreachable.

Cross-reference: ERROR_TREATMENT §2.1.1.12, bottom §2.1.2.1.1, labelled
§2.1.3.5.7, conditional §2.1.3.5.5, repeat §2.1.3.5.6, case §2.1.3.5.4

3.2 Operations with Some Constant Arguments

Operations, only some of whose arguments are explicit constants, can also be
optimised. For example, test_eq with one argument a constant (especially if it is zero)
may be optimisable. These optimisations are expected.

3.3 Increment etc.
Expressions involving assign and binary or unary operators, of forms
a := (contents a) binop b
a := b binop {contents a)
a:=bbinopc
a := unop (contents a)
a:=binop b
should be examined with a view to making best use of three-address instruction,
add-to-store, increment etc. whatever the form of a, b and c. The choice has been made
that it is better for such formations to appear ‘longhand’ in TDF, rather than be
catered for by special operations (such as the ++ of C), because the cases are

.somewhat dependent on the nature of the target machine.

Cross-reference: assign §2.1.3.4.5, contents §2.1.3.4.6
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3.4 Contents of Variables

Addresses of variabies should only be manipulated where these addresses are
themselves the required data. In common machines contents(var) should involve only an
operand access to the variable, not the loading of the address on the stack.

3.5 Tail Recursion and Last Call

Translators should recognise a use of apply_proc which is the last operation in a
procedure, even if this is inside such constructs as conditional. The use of
obtain_current_procedurewill make it possible to recognise tail recursion in this
situation, and so compilers should use it whenever possible. Translators should
cptimise tail recursion and are encouraged to optimise last call. Care is needed to
avoid these optimisations if a LABEL_VALUE is created in the procedure.

Cross-reference; LABEL_VALUE, obtain_current_procedure, apply..proc
3.6 Field Selection

When possible, a combination of field selections from a tuple or field selections
from a POINTER to a TUPLE, as in a.b.c, should be combined. Often it will be
possible to make such an access into a single displacement-from-register operand.
No code is usually necessary for a pant_field selection from a variable.

Cross-reference: field §2.1.3.9.3, part_field §2.1.3.4.4
3.7 NTEST, and, test_eq elc.

The complex of optimisations involved in tests of relations, and the and, or and not of
such tests should be optimised in the usual way. Note that a test for true has the form
of test_eq on a 1-bit value against the constant true.

Cross-reference: test_eq §2.1.3.10.2, test_neq §2.1.3.10.4, true §2.2.3.2.10, false
§2.2.3.2.11, and §2.1.3.8.4, or §2.1.3.8.5, not §2.1.3.8.7, NTEST §2.1.1.11
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change_floating_variety 2.1.3.3.9

change_var 2.1.3.2.15

Character Sets: Discussion 2.1.3.2.1

clear_shape 2.1.3.10.6

Conditional Compilation 1.5.2

Evaluation of Constants and Conditional Compilation 3.1
Level 1 Constructs for Conditional Compilation 2.2.4
Constructs for Conditional Compilation 2.1.5
concat_nof 2.1.3.8.4

conditional 2.1.3.5.5

Evaluation of Constants and Conditional Compilation 3.1
Conditional Compilation 1.5.2

Level 1 Constructs for Conditional Compilation 2.2.4
Constructs for Conditional Compilation 2.1.5

Evaluation of Constants and Conditional Compilation 3.1
Describing Program Construction 1.7.2

contents 2.1.3.4.6

Contents of Variables 3.4

contents_bits 2.1.3.4.11

contents_of_volatile 2.1.3.4.8

Program Structure and Flow of Control 2.1.35

Number Conversion: Discussion 2.1.3.2.14
create_thread 2.2.3.1.2

D

Declarations and Naming 2.1.3.1
Definition 2

TDF: Level of Definition 1.2
DIAG 2222

Diagnostics 2.2.3.2.3.3
discard_thread 2.2.3.14

divl 2.1.3.2.7

divz 2.1.3.2.8

div_reml 2.1.3.2.23

div_rem2 2.1.3.2.24

divide_by _zero 2.2.3.2.3.1.2
Kinds of Division: Discussion 2.1.3.2.6
Dynamic Values 1.3.1

E

empty_diagnostics 2.2.3.2.6
equal_contents 2.2.3.2.1
equal_contents_test_bit 2.2.3.2.15
ERROR_TREATMENT 2.1.1.12

LABEL ERROR_TREATMENT 2.1.1.12.4
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Standard Exception 2.2.1.2

L EXCEPTION_HANDLER 22.1.1
{ exception_handler_cond 2.2.15

i EXCEPTION_VALUEs 22323.1
Propagaticn of Exceptions 2.2.3.2.3.2
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FLOATING_VARIETY 21.1.6
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Recommendations about FLOATING_VARIETYs 2.1.2.3.2.1
floor 2.3.3.9
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make_int 2.1.3.2.2
make_label_value 2.1.3.5.11
make_nof 2.1.3.8.1
make_null_part_pointer 2.3.34
make_null_traced_procedure 2.3.3.15
make_null_untraced_procedure 2.1.3.6.3
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