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Chapter I    UntrodkiPliflrL 

Microoptics is a branch of optics that has become increasingly important within 

the last decade. The growing use of optical fiber and integrated optics, especially in 

communications, creates a need for lenses that can couple light into and out of the 

various components, such as switches, fibers, and waveguides. Lenses that serve as 

connectors play a vital role in the overall system performance. 

Designers of optical systems that couple light into single-mode systems 

presently have several analytical tools for calculating the coupling efficiency. In the 

past, the primary tools have been the classical formulas for Gaussian beam 

propagation.1-2 Wagner and Tomlinson3 advanced the art by proposing a coupling 

integral which accounts for the aberrations of an optical system. Their method 

emphasizes analytic forms for the wavefront and development of formulas for the 

coupling efficiency in terms of the third-order aberrations. 

In many real-world problems, however, the wavefront is not expressible in an 

analytic form, or the designer may not want to spend the time to express it in analytic 

form. For example, Fig. 1-1 shows a typical problem: connecting two single-mode 

fibers with two radial gradient lenses. The ideal case is shown in (a). The more 

common, practical case involves analyzing the lens in (b). For clarity, the figure shows 

only a tilt and decentration of the receiver lens and fiber assembly. A more rigorous 

analysis would include tilt and decentration of the source and receiver fiber, and tilt, 
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wedge and decentration of the connector lenses. These are just for the y~z plane. 

Similar errors exist in the x direction. 

Even for such simple systems the third order aberrations, and hence the 

methods previously discussed, are inadequate to analyze the system. Therefore, a 

method for assessing these types of problems is needed. The method should be 

efficient and reasonably accurate. It must be able to handle a completely general lens 

system. If it can be linked with a commercial lens design program, the commercial 

code can manage the "overhead" associated with keeping track of the lens. 

Such a method, its implementation, and examples of its use are described in 

Chapter 2. 

1.2.   Analysis of radial gradients made by chemical vapor 

deposition  processes. 

Gradient index optical materials are those in which the refractive index of the 

material varies as a function of position. If the index varies in the proper fashion, the 

material may have useful optical properties. Gradient index (GRIN) materials 

commonly are divided into three classes, depending on the geometry of the gradient in 

the material. The three classes are axial, radial, and spherical gradients. 

Research has shown that gradient index optical elements for imaging systems 

have significant advantages with respect to homogeneous elements.4,5 Gradient index 

elements can enhance the performance of a given system or reduce the number of 

elements required.6,7 Radial gradients are particularly useful for making microoptics. 

since a radial gradient lens with flat end faces will focus light.8  Fabricating small 



homogeneous lenses can be difficult, because the radius of curvature on the lens is 

small. 

Several techniques, such as ion diffusion and sol-gel, already exist for making 

radial gradient lenses. Precise profile control with these techniques can be difficult, 

although some methods exist to extend the range of possible profiles.9«10 Chemical 

vapor deposition, a third technique, is attractive because of the potential for greater 

control of the index profiles. 

Chemical vapor deposition is widely used in the production of optical fiber, but 

little work has been done regarding its use in making imaging components. However, 

one of the disadvantages with the vapor deposition method is that the index profile has 

certain perturbations, primarily a structure that is layered in the radial direction. This 

layered structure has been shown to have a detrimental effect on the bandwidth of 

optical fibers.11 

The effect of the layered structure on the performance of imaging lenses has 

never been investigated. The investigation is different for lenses than fibers, for two 

reasons. In the fiber drawing process the layered structure may be reduced to a 

dimension less than a wavelength. In contrast, in making larger diameter microoptics 

the spatial scale of the index fluctuations is on the order of several wavelengths and 

must be taken into account. 

Another significant difference exists between the imaging with microoptics and 

propagation in optical fibers. In optical fibers the two most important parameters 

affecting how information travels the length of the fiber are attenuation and pulse 

dispersion. The case of imaging, as discussed in this thesis, is significantly different. 

For imaging the goal is for the lens to have the minimum phase distortion of the 

wavefront. Coupling of light into single-mode devices is a special case of imaging. In 
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this case the goal is to match both the magnitude and phase of the output of the lens to 

that of the receiving structure. 

No work utilizing diffraction based methods to study the various types of 

refractive index perturbations in imaging with microoptics has been reported. The 

sm*- size of these perturbations requires that diffraction based methods be used. In 

this thesis, a 2-dimensional beam propagation code is developed and used to study 

perturbations of the refractive index profile which arise from the chemical vapor 

deposition fabrication process. The effect of these refractive index perturbations on 

lens performance in single-mode systems is discussed in Chapter 3. 

1.3.    Index Profile Measurement. 

In any research involving manufacturing gradient index materials, measurement 

of the refractive index profile is a critical issue. The examination of the effects of the 

layered effect necessitated construction of a measurement system with high spatial 

resolution. Interference microscopes have high resolution, but are complex and require 

careful sample preparation. 

In order to measure the lenses fabricated in this thesis, a measuring system 

based on the near-field refracted method was built. Although this method has been 

previously used for measuring optical fibers, its use for larger gradients has not been 

reported. The design and construction of this measurement system is discussed in 

Chapter 5. 

The last major problem addressed in this thesis is the correlation of theoretical 

computations (Chapter 3), index profile measurements (Chapter 5), and the 
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measurement of propagation in the lenses themselves. The apparatus and results for 

this propagation measurement are described in Chapter 6. 



References for Chapter 1. 

lH. Kogelnik and T. Li, "Laser Beams and Resonators," Appl. OpL, 5,1550, (1966). 

2H. Kogelnik, "Coupling and Conversion Coefficients for Optical Modes," Symposium on 
Quasi-Optics, Polytechnic Institute of Brooklyn, June, 1964. 

3R.E. Wagner and WJ. Tomlinson."Coupling efficiency of optics in single-mode fiber 
components," Appl. OpL, 21, 2671 (1982). 

4L.G. Atkinson, S.N. Houde-Walter, D.T.. Moore, D.P. Ryan, and J.M. Stagaman, "Design 
of a gradient-index photographic objective," Appl. OpL 21,993 (1982). 

5WJ. Tomlinson, "Application of GRIN-rod lenses in optical fiber communication 
systems,"Appl Opt. 19,1127 (1980). 

6J.B. Caldwell eL al, "Gradient-Index Binocular Objective Design," Appl. Opt., 21,993, 
(1982). 

7P.O. McLaughlin, JJ. Miceli, D.T. Moore, D.P. Ryan, and J.M. Stagaman ."Design of a 
gradient index binocular objective," Proceeding of 1980 Lens Design Conference, SPIE vol. 237, 369, 
(1980). 

8Physical Optics, R.W. Wood. 3rd Edition, Optical Society of America, 88-91. 

9S.N. Houde-Walter, "Gradient index profile control by ion exchange in glass," Ph.D. thesis, 
University of Rochester, 1983. 

10J.E. Samuels, "Influence of the molten salt bath on ion exchange in glass and the gradient 
index profile," M.S. thesis, University of Rochester, 1989. 

UD. Marcuse, "Calculation of bandwidth from index profiles of optical fibers. 1: Theory ," 
Appl. Opt., 18, 2073 (1979). 



Chapter   II:   Gradient   Index   Optics   in   Single-Mode 

Systems. 

2.0.  Background. 

Interest in optical fiber technology and related fields has exploded in the last 

decade. As the use of this technology becomes increasingly common, a need for a 

wide variety of associated optical components arises. An understanding of the issues 

of design and manufacture is crucial when considering how to use lenses in fiber 

systems. The desire for greater bandwidth has led to the wider use of single-mode 

fiber. As is discussed in this chapter, the normal techniques of lens designers must be 

applied differently when designing lenses for use in single-mode systems. 

First, the basic equations for the ray-tracing in radial gradient materials are 

reviewed. These equations can be applied to develop formulas for the paraxial 

properties of a gradient index rod lens as determined by its construction. Since such 

lenses are commonly used with laser beams, the design methods must consider analysis 

of Gaussian beam propagation in those lenses. 

Second, a review of the methods for calculating coupling efficiency in systems 

with single-mode devices is given. This leads to the bulk of work in this chapter, 

which describes a method allowing combination of a commercial lens design program 

and a Fortran code to enable the quick and accurate analysis of different lenses. The 

method is described and its practical applications are illustrated with design example 

Limitations of the method are also discussed. 



2.1. Fundamentals of Gradient Index Lenses 

2.1.1.   Ray  tracing   in   gradient   index   materials. 

The three common types of gradients are radial, spherical, and axial. For the 

rest of this thesis, the emphasis is on radial gradient lenses. Although spherical, axial, 

and radial gradients have been used in lens designs, radial gradients have been the most 

widely used. 

The radial gradient is commonly represented by expansion of a polynomial in 

the radial coordinate. The most common form is 

/2(r) = N00 + N10r
2+N20r

4 + N30r
6+N40r

,+... (2_1} 

where N^ is the base index, r is the radial coordinate, and A/,0, N20>... represent the 

coefficients of the gradient. If Nx and the higher order terms all are zero, the profile is 

parabolic. 

The paraxial approximation for radial gradients assumes that all coefficients 

except NM and N,0 are zero. The result is a parabolic profile for which the ray paths 

are easy to compute analytically. For parabolic profiles with N10 less than zero, the 

paraxial rays travel in a sinusoidal path.1 The equations for the height y and slope u of 

the paraxial rays in the radial gradient lens are given by 

y{z)=y0co${az)+-2-sin(az) 
'a (2-2) 
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and 

u(z)=-ay0sw(az)+uicos(az) ^ (2-3) 

where y0 is the initial radial coordinate of the ray and u0' is the initial slope of the ray 

after refraction. The parameter a is defined by: 

(2-4) 

In the above expression, An is the total change in index at the edge of the lens and a is 

the radius of the lens. Figure 2-1 shows the ray paths for a long rod lens. The rays 

from an object at infinity enter at the top and bottom of the pupil. The length for the 

rays to complete one full cycle is called the pitch length, L, which is related to a by 

a 

For objects on the front of a lens, an inverted image is formed after a distance of 

one half of the pitch length, and an erect image is formed after a distance equal to the 

pitch length. Such lenses are called a half pitch and full pitch rod, respectively. The 

half pitch lens has a magnification of -1, and the full pitch a magnification of +1. 

Another common length is the quarter pitch rod, which images a distant object to its 

back surface. This is equivalent to focussing a collimated input beam to a beamwaist 

on the back of the lens, and is obviously useful for coupling into fibers. See Fig. 1-1 

for an example of two quarter-pitch lenses used in this manner. 
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Fig. 2-1. In a radial gradient lens, meridional rays travel in a sinusoidal path. 
The distance for the rays to repeat one full cycle is suited the pitch length, L. 

The focal length of a lens of thickness t is illustrated in Fig. 2-2. For a marginal 

ray from an object at infinity, the incoming ray slope will be zero. The output ray slope 

# after refraction is given by Eq. (2-2) to be 

(2-5) <p = -y0ocsm(az) 

The focal length for the lens is given by 

"* , (2-6) 

where *C is the exiting angle of the marginal ray in image space. For small changes in 

index, the index at the point where the ray is exiting the lens is assumed to be the same 

as the index on axis, and 

«0*00* (2-7) 

Combining the above equations, the focal length is given by 
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rfl 

/ k •^5^^ 

>0 
(P 

(**•*** "^s^ 

Fig. 2-2. A diagram showing the calculation of the effective focal length of a 
GRIN rod lens. The entering ray is parallel to the axis and at a height ofy0. 

eß = 
N^asi^az) (2-8) 

It should be noted that other representations for the gradient profile exist. 

Another expression commonly used is 

n2(r) = nll\-(gr)7 + h4(gry + hi(gr)6+h%(gr)t+..] 
(2-9) 

Equating terms of like order in the Eq. (2-1) and (2-9) results in 
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N^^ric ' CO 

M _       ^ 
10 

N.-fl*,-1-4 

^4 lV6 
30        2I    «6        2        g 

^40        2 ^4(3-2M- 
(2-10) 

Another variation on Eq. (2-9) is that g is replaced 

a;, a,, etc. By the second of the above equations 

g = cc = 
-2 /V. 10 

,,-;,    »£. 

(2-11) 

2.1.2.   Aberrations Gradient   Index   lenses. 

The design of gradient index lenses can be evaluated by aberration theory. 

Sands2 developed the first complete third order aberration theory for gradient index 

lenses. Salvage utilized the aberration formulas in designing radial gradient lenses with 

zero Petzval curvature.3 Fantone4 advanced the theory to include fifth order 

aberrations. 

In general, the formulas for a radial gradient lens are more complicated than 

those for an axial gradient. For an axial gradient, the gradient direction is nearly 

parallel to the ray, and hence the gradient does not deviate the ray from its normal path. 
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In contrast, the ray height may change by a large amount when a ray travels the whole 

length of a radial gradient lens. 

The formulas for the aberrations of a radial gradient lens, especially the fifth 

order, are quite long. In an attempt to reduce the amount of computation, several 

authors have developed various models for the aberrations in a GRIN lens. Sakamoto5 

used a polynomial expansion evaluated for a quarter pitch length lens. 

In comparison, numerical ray tracing is a quick and accurate way to evaluate a 

specific lens. The increases in computer speed have made it easier to use ray tracing 

instead of complicated aberration formulas. In addition, ray tracing allows one to 

analyze decentered and tilted systems with the same speed as symmetric systems. 

Due to the complexity of the formulas for radial gradient lenses, real ray tracing 

has been used for nearly all of the analysis presented in this thesis. As will be 

described in a later section, this approach is fast but has limitations in modeling lenses 

made by the chemical vapor deposition process. 

2.2.   Specific Lens Forms. 

2.2.1    Quarter-Pitch    Lens. 

A common configuration foi the use of GRIN lenses in microoptics is a quarter- 

pitch lens. As discussed in the previous section, a quarter pitch lens images an object 

from infinity onto the back surface of the lens. 

This lens is useful for coupling a collimated input beam into a fiber that is 

located at the back face of the lens, creating a new beamwaist at this plane. If the size 
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of the beamwaist on the back of the lens matches the mode of the receiving fiber, then 

both the amplitude (beamwaist size) and phase (planar wavefront) are correctly 

matched. Matching both amplitude and phase are the two conditions necessary for 

efficient coupling. 

The appropriate length for a quarter pitch lens depends on the Af10 term, where 

the length is given by 

I     2V2Nl0 (2-12) 

If the input and output beams are fixed in a given design, the quarter pitch length of the 

lens is also fixed (assuming that the wavelength and base index are not variables). 

The following summarizes the steps necessary for designing a quarter-pitch rod 

to be used for focusing Gaussian beams. The derivation of the equations for Gaussian 

beams in a parabolic index medium is discussed in Appendix B. 

First, it is assumed that the input beam semi-diameter6 com, output beam semi- 

diameter öWI, wavelength X, and base index of refraction A^, are specified. 

In Appendix B it is shown that the the pitch period L is now completely 

determined, and is given by: 

L_27t2N00coiHQ)oul 

A . (2-13) 

The quarter pitch length is given by: 

T     4 2A (2-14) 
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But in order to meet the required pitch length, the strength of the gradient term, Nl0, is 

also fixed. The relation between the pitch length L and the amount of gradient N10 is 

«2*J-^£=2ff oo_ _ o —      '"oo1 

2N10 V  2 An 

where a is the radius of the rod.  Equation (2-13) and (2-15) can be solved for the 

required gradient N10, giving 

10     a1      2>r2/V00<ö>l (2.u 

In some cases of gradient index lens design, the index at the edgt of the lens is 

known, but the index on axis is unknown. This is necessary when using the gradients 

fabricated for this thesis, because the index at the edge was that of pure silica and the 

index at the center may vary, depending on the doping. Under these circumstances, 

NM must be substituted for in Eq. (2-15) by using 

Noo = n<dg<-An . (2-17) 

The two expressions for L in Eq. (2-13) and (2-15) can be combined to give 

2n1mi,(Qout{ntdgt-An)     \{ntd(t - An)a2 

2 An (2-18) 

If the desired pitch length L is given, Eq. (2-18) can be solved for the proper values of 

An or a, given the other. 
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In some lens design applications, a fabrication process produces a lens with a 

known An and radius. For analysis of this lens, one wants to find the Gaussian beam 

parameters for which it is a quarter-pitch lens. If com and X are known, then on is the 

beam semi-diameter at the output waist, located at the back of the quarter-pitch lens, 

and Eq. (2-14) can be rearranged to give 

2z, A 

* ^oo^« . (2-20) 

Note that once the quarter-pitch length is defined, a particular output beam size exists 

for a given input beam. However, this output beam waist may not be the correct size to 

match the field diamter of the receiving fiber, 

f If one stil] warns to use a lens with that overall length, a new gradient term Nl0 

and input beam diameter must be chosen for the lens so that Eq. (2-16) is satisfied for 

I the appropriate output beam. Merely changing the length of the lens is not sufficient, 

since this changes the size of the output beam (the desired effect) but the waist is no 

I longer at the back surface, clearly not the desired effect. If the waist is no longer at the 

, back surface, there is a phase mismatch between the exiting beam and the receiving 

fiber mode, causing a loss in coupling efficiency. 

I The lenses fabricated for this thesis had a typical An of -0.012 over a 350 

micrometer diameter. The index at the edge is pure silica with an index of refraction at 

\ 632.8 nm of 1.4574, so the index on axis is 1.469 and the pitch length is 8.6 

millimeters. 
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2.3.  Aspects  of  design  in  fiber  systems. 

Many of the best applications for radial gradient index lenses are for use as 

small lenses. Optical fiber systems are just such an area that demand the use of small 

lenses. For this reason, it is necessary to discuss the design criteria used when 

designing gradient index lenses for use in such systems. 

In the past, the lens designer has been concerned typically with the traditional 

measures of lens performance. These include criteria such as field angle, MTF 

(modulation transfer function), rms spot size, weight, cost, and ease of fabrication and 

testing. 

The most significant difference in evaluating the performance of the lens for 

fiber systems is that coupling efficiency replaces the MTF or spot size. Coupling 

efficiency is simply the percentage of power from the source that is transmitted to the 

receiver. In this section, the calculation of coupling efficiency is discussed for single- 

mode systems. The ability to perform this calculation while analyzing a lens in an 

optical design program is a significant improvement for the designer. 

The methods for calculating coupling efficiency are different for multi-mode and 

single-mode systems. Because of the increasing use of single-mode systems, this 

thesis primarily emphasizes single-mode rather than multi-mode systems. The 

modeling methods used for calculating multi-mode coupling efficiency are an 

interesting topic by themselves.7,8 
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2.3.1.   Coupling   efficiency   in   single-mode 

systems. 

The analysis of the coupling between electromagnetic fields has been analyzed 

in detail by Kogelnik.9 For non-normalized fields the relative amount of power 

coupled between two optical fields Ex and E2 is given by r;, where 

»? = 

jdyjdxE^x .y) E2*(x>y) 

2 

\dy]dxEx(. r,y)E/(x,y) jdyjdxE i(x>y)Ez(x*yi 
.    (2-21) 

In most cases, the fields from single-mode devices, whether they are fibers, 

laser diodes, or waveguides can be taken to be Gaussian or nearly Gaussian.10«11>12 

This makes it possible to evaluate the coupling integral for simple geometries and 

develop closed form expressions. 

The equation describing the radial variation of the optical field for the 

fundamental Gaussian beam is 

2  > 

£(r,r) = £0^ 
w0 -r 

w(z)CXPU2(z)j 
exp - 

ikr 
2R(z) (2-22) 

where >v0 is the beam size at the waist, w(z) is the e'] beam semi-diameter in amplitude, 

and Ri'') is the radius of phase curvature of the wavefront.13 In order to achieve the 

maximum coupling from one field to the other, both the size and phase curvatures of 
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the two beams should match. Kogelnik gives specific formulas for the coupling as a 

function of the mode numbers and beam parameters for Hermitian-Gaussian modes. 

Unless stated otherwise, all Gaussian beams in this thesis are of the lowest order mode. 

Equation (2-21) can be used for computing the coupling between Gaussian 

beams that are offset with respect to one another. Marcuse has used this method to 

develop formulas describing the coupling efficiency for simple fiber coupling 

problems. Figure 2-3 shows two fibers butted together. In Fig. 2-3(a), the receiving 

fiber is offset laterally with respect to the source fiber. In Fig. 2-3(b), the receiving 

fiber ia tilted with respect to the source fiber. The last shows the two fibers offset 

longitudinally. For these three cases, it is simple to substitute the appropriate 

expressions for the Gaussian beams into Eq. (2-21) and evaluate the integral. Between 

the fibers, d is the lateral offset between fibers, 6 is the angular tilt, and Az is the axial 

separation. The index of refraction in the space between the fibers is n$, and wl and w2 

are the waist semi-diameters for the source and receiver. Marcuse shows that the 

coupling efficiency in each of the three cases is : 

a) lateral offset: 

n = ywf + wj, 
exp 

' -2d2  N 

w? + w2 
\™\ 2 J (2-23a) 

b) tilt: 

V = 

\2 
( i 

vT, +w2; 
exp 

\-2(nnQwxw2B) 

(2-23b) 
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-L, 
T E3EI 

Az 

Fig. 2*3a,b,c. The three possible types of misalignment for butt-jointed 
fibers are shown. They are a) lateral offset, b) angular offset, and c) 
longitudinal offset. 

c) longitudinal offset: 

4f4Z2 + 4' 
*? = 

4Z' + 2 . H>: +w2 
2\ 

HS 
+ 4Z2^ 

where 

(2-23c) 

Z = 
4z 

«o(yh'iH2 
(2-24) 
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These three equations are useful for giving a quick and accurate estimate of the 

tolerances involved in coupling Gaussian beams. 

In addition, they are also applicable for more complicated optical systems. 

Figure 2-4 illustrates the example of a secondary source created by a lens that is 

assumed to be perfect. If the receiving fiber is decentered or tilted, the system can be 

analyzed as if the receiving fiber were simply coupled to a virtual fiber located at the 

image of the true source fiber. This removes the need for calculating the propagation of 

the source field through the lens. 

Wagner and Tomlinson14 have described a mathematical method for calculating 

single-mode coupling efficiency using the optical transfer function of a system. The 

optical system shown in Figure 2-5 has a source and receiving field with normalized far 

field distributions defined in the entrance and exit pupil of E^(x,y) and E^fxy), and an 

Source 
Fiber 

Virtual 
Fiber 

 j[ 

Receiving 
Fiber 

Fig. 2-4. A diagram showing how a fiber and a lens creates a virtual source 
for which the simple butt-coupling equations for coupling efficiency can be 
used. 
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optical system with aberration function W(x,y). The coupling efficiency is given as 

V = ] ]dxdyEM(x,y)tx?[-ikW(xty)]Er(xty) 
(2-25) 

This integration is performed in the exit pupil of the lens system. The integral is 

essentially an overlap integral between the receiver field and the source field, except that 

the source field is modified by W(xfy) the phase transfer function of the system. Ray 

tracing gives W(x,y), which allows the integral to be evaluated. The term 

exp[-i£W(.x,y)j modifies the phase of the source field depending on the aberrations 

present. In a complicated system, the source, receiver, and the pupil (where W(x,y) is 

defined) may be in different coordinate systems. The methods for doing this and the 

advantages of using a lens design program for this are discussed in Section 2.4. 

The limitation on the method is that the optical system can act only to modify the 

phase of the source, not its amplitude distribution. As is discussed in Chapter 3, 

certain index profiles may cause this condition to be violated, resulting in a decrease in 

accuracy. 



24 

Lens 

Source 
Fiber 

Receiving 
Fiber 

Ettxp[-ikW(x,yj\ 

Fig. 2-5. A general optical system with source field, receiver field, and the 
source field modified by the aberration of the lens. 
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2.4. Use of an optical ray-tracing program for calculating 

single-mode coupling efficiencies. 

The formulas for the single-mode coupling efficiency have been given in section 

2.3.1. Previously, the most commonly used method for analyzing single-mode 

coupling efficiency consisted of propagating Gaussian beams through the system and 

then performing an overlap integral at the receiver plane.151617 Although accurate, 

the formulas were complex. Wagner and Tomlinson18 then showed that the optical 

transfer function of the system could be used to obtain the single-mode coupling 

efficiency, and were able to derive formulas relating the coupling efficiency to the 

amount of third order aberrations. 

However, in many lens design problems the aberrations might not be easily 

obtainable in explicit form. Examples of this are systems with radial gradients or 

systems with tilts and decenters. In addition, higher order aberrations may be 

important for systems operating at a high numerical aperture. In order to solve this 

problem, a method is developed to combine commercial lens design software with code 

to calculate single-mode coupling efficiency. The work in this section shows that this 

technique is efficient and accurate for a variety of problems that would be difficult to 

solve analytically. 
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2.4.1.   Implementation. 

2.4.1 .a.  Utilizing  rav  trace  information. 

The general form of the systems to be analyzed consist of a source, receiver, 

and the optical system between the two. The source and receiver are assumed to have 

Gaussian output fields. The source and receiver may have different size waists, and the 

waists may be different in the x and y directions. It is assumed that the locations of the 

x and y waists are in the same z plane for both the source and receiver. It is important 

to remember that a general optical system may have tilts and decenters. 

The first step is to define the mode parameters for the source and receiver. In 

this thesis, it is assumed that the mode could be described by a Gaussian distribution, 

which is a good approximation for most devices. There are five parameters for each 

system: 

wtÄ Source e'] beam semi-diameter in x direction 

wt> Source eA beam semi-diameter in y direction 

wrx Receiver eA beam semi-diameter in x direction 

w^ Receiver e'] beam semi-diameter in y direction 

Ä. Wavelength of light in free space 

The coupling calculation consists of the following steps: 

1. compute size of the entrance and exit pupils from ray trace data, 

2. find location and size of source field in the entrance pupil, 

3. find location and size of receiver field in the exit pupil, 

4. convert all coordinates to a normalized coordinate system in the exit pupil, 



27 

5. account for dcccntcr of the chief ray from the center of the image plane, 

adjust OPD values accordingly, and 

6. perform numerical integration in the exit pupil. 

Because a lens design program allows shifts to a new coordinate system at any 

surface, a coordinate system for calculating the size and decentering of the fields in the 

pupils must be chosen. The most obvious location is to use the coordinate systems of 

the pupils themselves. Although the coordinate system at the object may not be the 

same as at the entrance pupil plane, the two coordinates can be related by tracing certain 

reference rays. These rays are not necessarily the same as the chief and marginal rays. 

It is assumed that in the physical system the source is centered at the object plane and 

the receiver is centered at the image plane, i.e. the source or receiver is not at a field 

point. 

Figure 2-6 shows a source and the entrance pupil in a tilted system along with 

the angles that are needed for computing the necessary parameters. For simplicity, only 

y tilts are shown. It is convenient to use one quantity that describes the angular radius 

of the entrance pupil as seen from the object. 

Five real rays are traced from the object through the system, two in the 

tangential plane to the edge of the pupil, and two in the sagittal plane to the edge of the 

pupil. The angle between the chief ray traced to the center of the pupil and the z-axis of 

the image plane is 0Oo. The corresponding angles for rays traced to the edge of the 

pupil in the tangential plane are 0o§4y and $0.y. The angles for the rays traced to the edge 

of the pupil in the sagittal plane are0O48 and 0Ox, although not shown in the figure. 
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The four angles are used to obtain one angle that is used for computing the size 

of the beam in the entrance pupil. This angle in object space is called 0Q, and is given 

by 

er If fy>,+> Z G°-y Y G°*x ~ ^°~' 
(2-26) 

Using this angle is more accurate than taking the paraxial marginal ray angle 

from a paraxial ray trace, because a paraxial ray angle does not account for any 

decenters or tilts. The 60 is used to compute the size and locations of the source beam 

in the entrance pupils, as described below. 

Point P is the point in the pupil that lies on the axis of the source, and hence is 

the center of the source field distribution in the pupil. The normalized angular offset of 

the point P in the pupil is computed by normalizing the angle between the chief ray as it 

leaves the object and the optical axis. In Fig. 2-7 this is the angle, 6pyie between OP 

and OC. This angle is equal to the tilt between the optical axis at the object plane and 

the optical axis at the entrance pupil. In this picture, the angle 6pye is shown in theyz 

plane, the angle 6piXe is the corresponding component in the xz plane. 

The normalized offsets of the point P in the pupil are given by 

P,t     tan(*o) (2-27a) 

and 

/>..* = 
*"(<U) 
tan(0o) (2-27b) 
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An advantage of using the angles to compute the normalized offsets is that this method 

does not depend on the object to pupil distance. 

The widths of the beams in the pupils arc computed by a similar method The 

far field half angle of the source beam in the y direction is given by 

k_ 

(2-28) 
ft,   = 
2'"        **% 

The entrance pupil is assumed to be far enough from the beam waist for this relation to 

be valid. (See Appendix B on Gaussian beams for when this assumption is valid.) As 

is shown in the next section, it is useful to convert the beam semi-diameter in any pupil 

into normalized coordinates. The normalized semi-diameter hn is simply obtained by 

dividing the angular semi-diameter of the beam by the angular radius of the entrance 

pupil 0O, so hv is given by 

A 

l»^Ä 
en (2-29) 

A similar expression for the x direction gives 

/z„ = 
itw. 

ft, (2-30) 

For the exit pupil, the same situation exists, except that the image plane and exit 

pupil replace the object plane and entrance pupil. The receiver is considered to be 

radiating back toward the exit pupil. Figure 2-7 shows a tilted receiver and the exit 

pupil, ft, is the effective angular radius of the exit pupil, as seen from the image plane. 
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Like 0O> this angular radius is computed by averaging the angles for four rays traced 

through the edges of the pupil. The location of the receiver beam in the exit pupil can 

be computed to give 

A 

*"-% (2-31a) 
hn = 

and 

/lrv  = 
nw^e, (2-3 lb) 
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2.4. l.b.  Decenter  of receiver from chief rav. 

The previous section discussed only tilts of the source and receiver, which 

resulted in displacements of the fields in the pupil. Another possible source of loss is 

decenter of the receiver. Accounting for this loss is more complicated due to the way 

that lens design programs define the optical path difference (OPD). 

Figure 2-8 shows an optical system with a decentered receiver. The reference 

ray traced from the object fiber directly along the optical axis to the image plane is 

shown. It is assumed that the optical system is perfect, i.e. one that does not introduce 

any aberrations. Lens design programs give OPD data with respect to a reference 

wavefront that is propagated from the given object point through the center of the stop. 

The problem which arises in this case is that if the receiver is not located at the center of 

the image plane, the OPD values are not affected, since the emerging wavefront still has 

no aberrations. For such a decentered receiver, the actual loss is higher than would be 

given by using the OPD values directly. 

The solution is to add tilt artificially to the wavefront to reflect the fact that the 

wavefront is not centered around the receiver. If the reference ray that is used in 

defining OPD is traced through the system, it is decentered from the center of the image 

plane, where the receiver is located The offset of where this ray intersects the image 

plane from the center of the image plane is a vector in the image plane given by 

*-(«.*) (2-32) 

If W(x4.%yt.) is the OPD of the system as defined in the exit pupil, the adjusted OPD is 

given by 
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Reference 
Ray 

Exit Pupil 

Source 
Fiber 

Decentered 
Receiving 
Fiber 

W(y) W*(y) 

Fig. 2-8. Perfect lens with a decentered receiver. As referred to the reference 
ray, there are no aberrations and the OPD W(y) is given as a function of the 
pupil coordinate y by the plot on the left. To reflect the fact that the reference 
ray is not hitting the receiver at the center, tilt must be artificially added to 
W(y). The plot on the right shows the adjusted OPD, W*(y). This example 
is simplified, since only a decenter in the y direction is shown. In general, the 
decenter may occur in both x andy, the wavefront must then be corrected in 
both x and y. 
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(2-33) 

where &i is the angular radius of the exit pupil in image space. 

2.4.1 .c. Transferral to exit pupil and integration. 

The previous section emphasized how the normalized coordinates of the optical 

fields could be obtained with a lens design program. In this section, those coordinates 

are used in the coupling efficiency calculation. The most general form of the coupling 

equation (2-26) for coupling efficiency did not use normalized coordinates, this general 

form is expressed as: 

1 = J \dxdyEt(x,y)cxp[-ikW(x,y)%(xty) 
(2-34) 

Referring again to Fig. 2-6, the point P(pZA* p-J is the center of the source 

distribution in the entrance pupil. The point 0 is at the source, and C is where the chief 

ray intersects the entrance pupil. The semi-diameters of the field in the x and y 

directions are given by hn and h^. The source field in the entrance pupil can now be 

written as 

E'{x"y')=£jktxp (x<-p*.<f (y«-p,,>) 
hi    -    hi 

(2-35) 
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where x* and y# are the coordinates in the entrance pupil. The coefficients in front 

ensure that the total power is normalized to unity. 

To perform the integration, both the source and receiver fields must be 

transferred to one coordinate system. The most convenient location for this plane is the 

exit pupil, since ray tracing programs provide information about the OPD at that plane. 

To transfer the source field in the entrance pupil to the exit pupil, it is convenient to use 

the fact that the normalized coordinates are the same for the entrance and exit pupil. 

The normalized coordinates in the exit pupil are equal to the normalized 

coordinates in the entrance pupil, and this makes the transfer straightforward. The 

source distribution can now be written in terms of normalized exit pupil coordinates, 

E,(*,„5v)=yf 2        1 
 j-   -     exp 

fc'-/v.)2 fc-iv«)' 
«.« v>.« . (2-36) 

Figure 2-7 shows the size of the receiver field in the exit pupil.   For the 

receiver, the point Q{qxe-, qyx>) is the center of the receiver distribution in the exit 

pupil. By using similar equations as for the case with the source, the field from the 

receiver in the exit pupil can be expressed as 

£'(I-y')=^7CCexp 
(*.-?...)' (Jv-?,..-)J 

K, <.■ (2-37) 

where /L and h  ait the normalized e'' beam widths in the x and y directions of the 

receiver beam in the exit pupil. 
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To complete the calculation, the expressions for the source and receiver 

distribution (Eqs. (2-36) & (2-37)) are put into Eq. (2-25) from Section 2.3.1. The 

final expression is 

*7 = * I-   ■ L    =       JJ «^*, 

exp 

exp 

exp 

fr-R..)2  (y. '-?M)
2 

C          Ä*.« 

ft-O* (&•-**•)* 
Ä«.*'                            hry.,' 

i2nW\x..,y,,j\ 
2 

X          J (2-38) 

This is the final formula that can be used to calculate the coupling efficiency. 

The integration is performed on a square grid in the pupil, by using the OPD values for 

rays traced through points on the grid. The spacing of the grid points determines the 

number of rays that are traced, and hence the length and accuracy of the computation. 

In this work, the grid is commonly described not by the number of rays, but rather by 

the number of fans in the grid. In summary, the following steps are required: 

1. Enter lens into the optical design program. 

2. Create a file defining the rays to be traced. This typically ranges from 7 fans 

(26 rays ) to 25 fans (400 rays). 

3. Trace the rays through the lens. 
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4. Extract W(x,y) from the ray trace data. 

5. Extract tilt and decenter information from tracing real rays. 

6. Compute W*(x,y) using the tilt and decenter information. 

7. Perform numerical integration. 

2.4.2.   Comparison   with   theoretical   results. 

Several factors affect the accuracy of the method as described in the previous 

section. The primary sour*« of error is in the numerical integration, caused by 

sampling the circular pupil on a square grid. 

To check the accuracy, several lenses for which the theoretical coupling 

efficiency are known were evaluated. The simplest case to analyze is defocus, which is 

simply a longitudinal misalignment of the source and receiver. The test lens shown in 

Fig. 2-9 was used as one of the test cases, it consisted of an biconvex glass singlet with 

an asphere on one surface. The aspheric term was added to correct the third-order 

spherical aberrations of the lens. Eq. (2-23c) in Section 2.3.1. gives the theoretical 

coupling efficiency as a function of longitudinal defocus: 

4 

Tl = - T-~l 

f 2> 
4Z2+^- 

w 

4Z2 + w,+w; 

w! 
w2 

+ 4Z2^f 
w (2-39) 
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where 

Z = 
Ai 

In n\ — IVV,H ,rv2 

(2-40) 

The lens was used at a numerical aperture of 0.15, and the source and receiver were 

taken to have a numerical aperture half of this, or 0.075. Assuming a wavelength of 

1.0 micrometers, the size of the source and receiver waist semi-diameter is fixed at 4.24 

micrometers. 

The theoretical loss due to defocus assuming all the light is propagating through 

the system (i.e., the wings of the Gaussian are not truncated) is given by Eq. (2-39) as 

-1.43 dB. For a system with a stop that is twice the semi-diameter of the beam, there is 

an additional loss of only 0.02 dB due to the fact that the edges of the Gaussian beam 

are being clipped. Figure 2-10 shows a graph of the numerically evaluated loss versus 

the number of rays. The number of rays increases as the square of the number of fans. 

Generally, a compromise must be reached between accuracy and the need to complete 

the calculations in a reasonable amount of time. 

In both actual use and in modeling, apertures restrict the amount of light 

traveling through any system. In systems designed for coupling light from one source 

into a receiver, it is obviously to the user's advantage to obstruct the light as little as 

possible. 

In using the coupling code, a critical parameter is the ratio of the beam semi- 

diameter in the pupil to the radius of the exit pupil. In most of the cases discussed in 

this thesis, it was attempted to keep this ratio at 0.5. A higher ratio means that more of 

the Gaussian beam is outside of the stop, and hence contributes no power when the 
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Fig. 2-10. dB loss vs number of rays is plotted for a corrected lens with 
about 1 wave of defocus. The dashed line gives the theoretically expected 
value. 11 fans corresponds to 77 rays, and27fans corresponds to 527 rays. 

integration in the pupil is performed. The amount of power that passes through the 

stop of radius rmax is given by P(r0,rmax) where 

r[Wm*)m i-cxp|-25p». 
'0     J. (2-41) 

T ie 2-1 shows how the ratio of r0 to rmax affects the accuracy of the 

computation. The coupling code has been used to evaluate a lens with no aberrations, 

so that the inaccuracy resulting only from the integration would be evident The second 



column in the table shows theoretical values of the amount of power within the pupil, 

based on the equation above. The columns on the right show the results obtained for 

the perfect lens, for different numbers of fans. Hence, in any row the difference 

between the theoretical values in column 3 and the values in columns 4 through 7 reflect 

the inaccuracy of the method. 

When the numerical aperture of the beam approaches that of the pupil, more 

fans are needed to maintain accuracy. The primary source of the error is caused by the 

sampling of the pupil. The sampling of the circular pupil is done on a square grid, and 

hence the area between the gridpoints and the edge of the pupil is not included. When 

the numerical aperture of the beam increases, there is a greater amount of power in the 

area that is not included in the integration. This means more rays must be traced when 

analyzing systems with large numerical apertures, such as found with laser diodes. 

The method described previously for calculating coupling efficiencies with a 

lens design program is well suited to a wide number of problems. See the following 

sections and Appendix C for more examples. However, there are optical systems for 

which the method cannot be used 
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The optical transfer function in Eq. (2-25), e~ , affects only the phase of the 

wavefront. If the optical system changes the amplitude distribution of the source beam, 

then the method is no longer valid. This can occur if the system has absorbers or any 

other structure which causes significant diffraction. The process of diffraction causes a 

redistribution of power in the source beam, and geometrical ray tracing cannot account 

for this. This limitation and its effect on the accuracy of coupling calculations is 

discussed more fully in Chapter 3. 

2.5.  Examples. 

2.5.0.   Use   in   tolerance   analysis. 

As an example of the usefulness of the described technique, this section 

examines the tolerances of wedge in a radial gradient index rod. Many of the gradient 

index samples produced for this thesis have been polished by blocking between two 

small square glass blocks and polishing by hand. Under these circumstances an error 

may easily be introduced by polishing a surface that is not perpendicular to the optical 

axis of the rod. 

Tolerance analysis is always complicated by the issue of which other parameters 

may compensate for the error in question. Because such issues depend greatly on the 

actual application, it is considered more valuable to give information on which 

manufacturing errors produce a given amount of system degradation. The measure of 

system degradation has been chosen to be the loss in coupling efficiency. 
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The effect of the wedge depends on its magnitude, sign, and location in the 

optical system. If only lenses with on-axis imaging are considered, the wedge has 

three important effects. First, the wedge causes a deviation of the principal ray from the 

ideal on-axis image point. Second, the principal ray is no longer perpendicular to the 

image plane at the point of intersection. Third, the wavefrom exhibits coma and 

astigmatism. 

Of these three effects, the first two are the most important for lenses that are 

used to couple into fibers. The relatively low numerical aperture of such lenses means 

that on-axis coma and astigmatism is small, for example less than 2 micrometers of 

transverse coma. However, a principal ray displacement from the receiving fiber of 

just 10 micrometers would be enough to reduce the coupling efficiency to practically 

zero. 

Because of the great sensitivity to displacement of the principal ray, it is 

assumed that the lenses are used in such a manner that the receiving fiber could be 

translated but not tilted in order to maximize the coupling efficiency. If this is allowed, 

most of the loss is due to the tilt of the wavefront with respect to the axis of the 

receiving fiber. 

The basic starting lens was an eighth pitch rod lens. The value of N10 is -0.041 

mm"2. Higher order terms in the gradient have not been needed to correct spherical 

aberration. The focal length is 3.4 mm. and the numerical aperture in image space 

0.015. The wavelength used is 850 nanometers. To ensure that nearly all of the beam 

is transmitted through the lens, the numerical aperture of the lens is set at twice that of 

the beam. 

Table 2-2 below summarizes the loss for various amounts of wedge. Figure 2- 

1 l(a-d) show lenses with wedge on the back surface, front surface, parallel wedge, and 
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anti-parallel wedge. Only in the case of the lens with anti-parallel wedge (L5) are the 

aberrations great enough to cause a significant portion of the loss. 

Lens Field 
Angle, 
degr. 

Wedge, 
front, 
degr. 

Wedge, 
back, 
degr. 

Coma, 
waves 

Astig, 
waves 

Angle of 
chief 
ray,rads 

Coupling 
loss.dB 

LI 0 0 0 0.0 0.0 0.00 -0.0017 
L2 0 0 3 0.1 0.0 0.026 -0.65 
L3 0 3 0 0.15 0.0 0.014 -0.19 
\A 3 0 0 0.1 0.0 0.028 -0.09 
L5 0 3 3 0.24 0.0 0.011 -0.14 
L6 0 3 -3 0.2 0.0 0.0403 -1.53 

Table 2-2. Six radial gradient lenses with wedge on various surfaces, along 
with the computed coupling efficiency. 

Comparing lens L2 and L3, the table clearly indicates that a given amount of wedge on 

the back of the lens is much worse than the same amount on the front of the lens. In the 

second case, the chief ray is brought closer to the optical axis by the action of the gradi- 

ent when passing through the lens. When the ray intersects the image plane, the angle 

with the image plane is now less than the case where the wedge is on the back surface. 

The worst case is when a wedge exists on both the back and front surfaces in the same 

direction (this corresponds to the lens L6). The wedge on the back then sends the chief 

ray at an even greater angle to the axis of the receiving fiber. 

One effect of using GPJN rods at off-axis conditions, or with axial wedge, is 

the effect of elliptical pupil shape. As explained below, this turns out to not be so 

critical when GRIN rods are used with Gaussian beams for coupling applications. 
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Figure 2-12 shows a GRIN rod used for imaging at a magnification of -1. In 

this lens, the outer diameter of the rod acts as a limiting aperture. By symmetry, it is 

easy to see that the stop is at the midpoint of the rod. This is called the natural stop 

position. The chief ray starts at the edge of the object, and passes through the center of 

the stop. As the distance off-axis increases, the bundle of rays around the chief ray is 

constricted by the upper and lower edge of the rod. However, this constriction occurs 

mostly in the meridional plane. This vignetting causes the entrance pupil to be 

elliptical. This is especially a concern when using GRIN rods for +1 imaging in 

copiers, where they are used at a high field angle and a decrease in illumination with 

field angle is detrimental. 

When GRIN rods are used to transmit Gaussian beams, the rod diameter does 

not usually limit the numerical aperture, and the field angles are small enough so that 

the location of the stop is not critical. Even if the lens has a large amount of wedge, the 

amount of power lost by vignetting is small because the amplitude of the Gaussian 

decreases at the edges. 
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ing   of Laser  Diodes  to  Fibers. 

A useful application for radial gradient lenses is in coupling a laser diode to an 

optical fiber. Because of the higher numerical aperture of the beam from a laser diode, 

(typically 0.4) direct butt-coupling of fibers results in poor coupling efficiency. Before 

discussing the details of designing a coupler for use with laser diodes, it is valuable to 

review the general strategy for designing a coupling lens. 

Designing a lens for a coupling application requires several steps. First, a 

given wavelength and beam waist for the source and receiver are chosen. To achieve 

the maximum coupling, the numerical aperture of the beam from the optical system 

must match the receiver. The numerical aperture of the source is given by the far field 

half angle, 

nnwo , (2-42) 

where n is the index of refraction of the surrounding medium and w0 the beamwaist 

semi-diameter. 

Next, the aperture of the lens must be chosen. This may be determined mostly 

by fabrication limits, but ideally the aperture is large enough to avoid clipping of the 

beam. For most of the lenses examined in this thesis, the entrance pupil radius is fixed 

at twice the e'1 beam semi-diameter. This means that nearly all the power in the 

Gaussian beam passes through the lens. 

The next step is to choose a combination of An and length to give an output 

beam with the numerical aperture that matches the receiving field. 
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The high numerical aperture of the laser diode makes design and fabrication of 

coupling lenses for this application difficult. Various methods have been investigated 

in order to improve the situation. 

One strategy is to alter the end face of the fiber to form a lens-like surface. 

These methods have been employed for both multimode and single-mode fibers. 

Hemispherical ends have been formed on the ends of multimode fibers.1920 

Microlenses have been fabricated on the end of single-mode fibers by chemical 

etching21 and arc melting.22 Coupling losses as low as 2.5-3 dB have been reported. 

A commonly used method is to use relatively large separate lenses to image the 

laser diode onto the fiber. Kawano and Mitomi23 have examined the coupling efficiency 

of laser diodes to multimode fibers using several different separate lens methods. They 

measured maximum coupling efficiencies of -4.0 dB for a spherical lens, -3.2 dB for a 

GRIN rod lens with a curved face, -2.3 dB for a combination of a spherical lens and a 

GRIN rod lens, -2.8 dB for two spherical lenses, and -2.1 dB for a hemispherical 

ended fiber. The lens methods had the better alignment tolerances and reduced the 

effects of back reflections. Kitano24 et. ai. have discussed the design and manufacture 

of a GRIN lens specifically for coupling a single-mode fiber to a laser diode. The lens 

has a diameter of 3 mm., N^ of 1.66, and N}0 of -0.04506. The lens is piano convex 

with a first surface curvature of 3.73 mm. They attain a coupling loss as low as -2.0 

dB. 

2.5.1.a    Lens Designs. 

This section utilizes the method outlined previously in order to design a lens for 

use with typical laser diode used in optical communications.   The laser has a 
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wavelength of 1200 nanometers and far field beam spread of 30 and 25 degrees 

FWHM.25 The term FWHM (full width, half maximum) is the full field angle 

between the 50% power points. The angle is greater in the plane perpendicular to the 

junction of the diode because the emitting aperture of the diode is rectangular. 

In calculating the coupling efficiency, the diameter of the fields in the pupil is 

taken at the e'] amplitude points. If x0 is the beam semi-diameter in amplitude, then the 

power of the beam is given by 

P(x) = P0exp 
'-2£2> 

r2 
V   *o   J (2-43) 

and the relation between the half power point x50% and the eA amplitude point is 

so* =0-58*o . (2-44) 

A common angle used in describing the beam ^s the angle in the far field at which the 

amplitude is eA times the amplitude on axis. This is referred to as the numerical 

aperture of the beam and is given by 

0, =1.70 
fß 

2 V    2    ' . (2-45) 

Using the above equations, the numerical aperture of the laser diode can be 

calculated to be 0.35 and 0.41 in the x and >' directions.26 These correspond to waist 
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sizes of 0.92 and 1.08 micrometers. The receiving fiber is assumed to have a mode 

field diameter of 11 micrometers, and hence a numerical aperture of 0.069. First 

consider a gradient index lens as shown in Fig. 2-13, with flat end faces. Due to third 

order spherical aberration of about 10 waves, the theoretical coupling efficiency is only 

307c. 

To improve this lens, the N^ coefficient can be changed in order to reduce the 

spherical aberration. The optimum A'2o is about 0.0016 mm"4. This corrects all of the 

third order spherical aberration, and results in a lens with no theoretical coupling loss. 

Another possible method to reduce the spherical aberration is to vary the 

curvature of the lens surfaces. This technique may be used if there is insufficient 

control over the A'2o term. Fig. 2-14 shows the total third order spherical aberration for 

the lens shown in Figure 2-13 as the curvature of the back surface is varied, while 

nolding the front surface flat.   In this case, the A'10 was adjusted to maintain the 

required reduction ratio of 5.5 for the whole system. The right axis shows the 

theoretical coupling loss calculated by the method outlined in section 2.4. 

There are three reasons why the coupling loss does not fall to zero when the 

spherical aberration is zero. The first is that a portion of the Gaussian beam from the 

source is clipped by the stop. Equation (2-41) gives the relative amount of power 

P(r0.rMax) in a Gaussian beam of semi-diameter r0that makes it through an aperture of 

radius r ,. For this lens. rJrm.t =1.21. The other two sources of loss are the 

astigmatism of the source27 and the inaccuracy in the integration. These three sources 

of error are given in Table 2-3. The clipping of the Gaussian and the astigmatism of the 

source would be present for any method of analysis. The error caused by the 

integration is from dividing the pupil into rectangular sections, this underestimates the 

area of the pupil. This error has been given for different number of fans in Table 2-1. 
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Fig. 2-14. Spherical aberration and coupling efficiency versus the curvature 
of the rear surface for a GRIN lens. The spherical aberration is shown by the 
solid line, the axis is on the left. The coupling efficiency is shown by the 
dashed line, the axis is on the right. The lens is operating at a reduction of 
5.5. The zero crossing of the spherical aberration coincides with the 
calculated minimum in loss. Even with zero spherical aberration, there is loss 
due to a finite aperture in the lens, inacurracy in the integration, and 
astigmatism in the source. 
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Calculated by 
coupling code: 

-0.63 dB 

Sources of Power Loss: Sum: 

Clipping of Astigmatism of   Error in inte- 
Gaussian. source. gration. 
-0.47 dB -0.03 dB -O.ldB -0.60 dB 

Table 2-3. Table showing sources of discrepancy for the graph shown in 
Fig. 2-14. The first column shows the numerically calculated result, the next 
three columns give source and magnitude of causes for the calculated loss to 
increase from zero. 

Varying the front surface curvature of the lens is of no advantage, since the 

marginal ray height is small at the front surface. The total spherical aberration falls to 

zero for a back curvature of -0.093 mm'1. This is an example of how GRIN rods can 

give superior designs compared to homogeneous optics. For the homogeneous case, 

an obvious strategy would have been to bend the first surface toward the object to make 

that surface closer to the aplanatic condition.28 

This particular lens design has a numerical aperture in object space of 0.46. In 

this design, full correction of the third order spherical aberration was possible without 

use of extreme curvatures on the surfaces. However, this may not be true for other 

designs, especially for those designs with a limited An. 

2.6.    Summary. 

An accurate and efficient method for combining the use of coupling integrals 

and lens design programs has been described. This method combines the advantages 

of using a lens design program with the ability to analyze single-mode optical systems. 

The method is efficient, especially for systems operating at low numerical aperture. 
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For systems that operate at a high numerical aperture, such as laser diodes, a 

larger number of rays must be traced in order to maintain reasonable accuracy. This 

method is especially useful for radial gradient lenses, since the aberration formulas can 

be very complicated. Design examples have shown the accuracy and usefulness of the 

method. 
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Chapter 111:    Analysis of lenses with refractive Index 

perturbations. 

3.1.    Introduction. 

In the design and manufacture of any optical system, one must be able to model 

accurately the performance of the system. Chapter 2 discussed using optical design 

programs for analyzing single-mode coupling efficiency. That method is based on geo- 

metrical ray tracing to obtain the optical path difference of the system, which is then 

used in a coupling integral that relates the source field, the receiver field, and the 

aberrations of the system. In order for geometrical ray tracing to be accurate, it is 

commonly stated that the refractive index profile must vary only slightly over distances 

comparable to a wavelength.1,2 

Because this thesis investigates the use of lenses made by the chemical vapor 

deposition method, it is also necessary to use analytical methods that analyze refractive 

index profiles where spatial variations occur over distances that are comparable to a 

wavelength. 

The theory of the chosen method, the beam propagation method (BPM), is 

reviewed and then used to ar.alyze a variety of gradient index profiles. The index 

profiles include anomalies that are likely to occur for gradients manufactured by the 

chemical vapor deposition process. In addition, use of the accurate beam propagation 

method allows examination of why and where geometrical ray-tracing methods are 

sometimes insufficient. This topic is discussed in Section 3.3. 
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3.2.     Methods  of  Analysis. 

Many methods exist for analyzing the propagation of light. Although all of the 

methods are derived from Maxwell's equations, these methods vary in their complexity 

and suitability for various problems. 

The geometrical method used in Chapter 2 had one significant limitation. The 

optical system was described by an optical transfer function, so the source field could 

only change in phase, not amplitude, as it propagated from the entrance pupil to the exit 

pupil. This implied two restrictions: it was not possible to account for diffractive 

effects between the pupils, and the amplitude distribution at the exit pupil had to be the 

same as at the entrance pupil. 

Gradient index lenses may violate these restrictions in two ways. For some 

lenses, the index profile may have variations of sufficiently high spatial frequency to 

cause diffraction. Secondly, long gradient index lenses may cause the amplitude 

distribution of the output to be different than the input distribution. This is especially 

true for lenses with a central index depression. A central depression acts locally like a 

negative lens, causing the power to spread away from the center. A Gaussian beam 

input then develops a central dip in its amplitude after traveling in a lens with such an 

index depression. 

All of these limitations point to the need for diffraction based solutions to the 

problem. Unfortunately, many physical optics calculations, even for symmetric 

geometries, can be solved exactly only for simple situations. 
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In approximate order of complexity, the most common methods for analyzing 

the propagation of light are: 

Maxwell's equations, using finite differences or finite element methods.3'4 

• Beam propagation method. 

• WKB method. 

• Geometrical ray tracing. 

The use of Maxwell's equations may be complicated and time-consuming. The 

WKB method assumes that the gradient is small over the distance comparable to a 

wavelength.5 It has been commonly used to predict the modes in optical fibers and 

waveguides. This can be an efficient method if one wants to propagate over long 

distances, such as kilometers of fiber. Marcuse6 used the WKB method to analyze the 

effect of index perturbations on fiber bandwidth. 

Newhouse and Keck7 investigated the theoretical effect of these perturbations 

on gradient index imaging lenses using ray-tracing. Since the perturbations that they 

studied were fairly small spatially, the results may be inaccurate. Amitay8 et al. 

investigated perturbations on long fiber tapers. Emkey and Jack9 discussed analysis of 

the use of graded-index fibers as lenses. However, they did not discuss aberrations or 

effects of non-ideal gradients. 

Because of its accuracy over geometrical methods and its relative ease of 

implementation, the beam propagation method has been chosen to analyze index 

profiles which could not be analyzed with geometrical methods. The next section 

discusses in greater detail how the method works and its advantages. 
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3.2.1.     Theoretical  Background  of  Beam 

Propagation   Method. 

The method chosen for analyzing the perturbations of the index profile is the 

method of beam propagation (BPM). As discussed below, this method has many 

advantages over the other methods briefly described above. The beam propagation 

method (BPM) was originally developed by Feit and Fleck10 for solving problems in 

atmospheric propagation, but is very well suited for a general class of gradient index 

problems.11 It appears to have been independently developed for use in problems 

involving acoustic wave propagation in inhomogeneous media.12 The BPM method 

has been used for problems ranging from atmospheric propagation1^ to optical com- 

ponent design14,15, and nonlinear couplers.16 

Figure 3-1 gives a schematic diagram of how the method is applied. Starting 

with the scalar wave equation, the propagation of a field ®(x,y,z) is governed by 

d2G>    d20    d20 

dx2 + ay2 * dz2 
2©* 

A solution to this equation is given by 

0(x.J.z) = exp[±/ß2] 0(x,y,Q) 

where the operator Q is given by 

and k0 = —. 
c 

If the index n(x,y) is given by 

n{xty)*no + An(x,y) 

(3-1) 

(3-2) 

(3-3) 

(3-4) 
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Input    _      . 
Plane    E(x'>') 

Az 

Output 
Plane E' (x'.y1) 

An(x,y;z) 

Fig. 3-7. A schematic diagram of the beam propagation method. The beam is 
propagating from left to right, in steps of Az. The index profile at each plane 

is represented by An(x,y,z). 

then Q can be expressed as 

Q = Mo 
1   ( d1     d 2 \     ( A    "^ An 

+ 
klnlydx2    ay2 1 +— 

or approximately as 

Q = k0n 0"0 1 + — + 
V Ho J    2^ v*2V, 

(3-5) 

(3-6) 

The approximation in going from Eq. (3-5) to Eq. (3-6) is valid if two conditions hold: 
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The first of these implies that 

k2_+k2«k2 

(3-7) 

(3-8) 

or the waves are close to the axis and the second implies that only small changes in 

index are allowed. 

The operator Q in Eq. (3-6) can be broken into the sum of two operators, Q} 

and Q2. These two operators are given by 

ß = *o"o 
( 

«0. (3-9a) 

which accounts for refraction, and 

r -\2 

& = 2k^n0 

12   > 

.2+-TT dx1   ay (3-9b) 

which accounts for propagation. The expression for the output field at a distance z can 

then be determined by using Eq. (3-6) and (3-9) in Eq. (3-2), so the field at a distance z 

is given by 

0(xO\i)«exp[fc(a+ßa)] 4>{x,y,0) 

The field <J>can be represented as a Fourier sum, where 

(3-10) 

S   . N   . .AZLX J 
2 2 (3-11) 

The product A'Ax is the length along one side over which the sum is computed. The 

expression for the operator Q, in Eq. (3-9a) transforms the right hand side of Eq. (3- 

11), after a distance Az, to 
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Am„(x,ytz = Az)=cxp 
iAz(kl + *,')" 

2* 
*„(z = 0) 

(3-12) 

27vn 
where ka = —- . The next step is to account for the refraction, which is given by the 

NAx 

operator Q, in Eq. (3-9a). For this step the field after the refraction is given by 

0>'(x,y\z) = exp JZ^Q/IO 'I+^ 
V «0 /_ 

0(*,y,O) 
(3-13) 

A significant advantage of this method is that it can handle arbitrary index profiles. 

Furthermore, the relation between A^z) and C(x,y,z) in Eq. (3-11) can be computed 

by means of the FFT algorithm.17 To implement this method on a computer, the field 

is stored as a two dimensional array of complex values. The index profile is also stored 

as a two-dimensional array of complex values, where a non-zero imaginary component 

allows for a medium to have absorption or gain. 

Because the method is numerical, it is important to consider the conditions 

under which it is accurate. The accuracy of the method has been shown for several 

cases, for example Fresnel diffraction from apertures18 and step discontinuities.19. 

The accuracy of the method is determined by several parameters, among them the size 

of the array and the step size.20 The next section discusses the tradeoffs in choosing 

the parameters and how the parameters relate to the computation time. 

3.2.2.      Comparison   with   analytical   solutions. 

Evaluating the accuracy of any numerical method can be a challenging problem. 

In order to evaluate the accuracy of the beam propagation method (BPM) it must be 
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used in problems for which the theoretical solution is known. Two such problems are 

the propagation of Gaussian beams in free space and in a parabolic index medium. 

Appendix B discusses in more detail the equations used to derive the theoretically 

expected values for Gaussian beams in a quadratic index media. 

The two most important parameters that affect the computation time are the step 

size A: and the number of points in the array, given by the product NJV . For beams 

propagating in free space with no index variation (An=0) the problem reduces to a 

series of propagations without any refractions. In this case, choosing different step 

sizes has no effect on the accuracy of the final answer. 

The analytical solution of a Gaussian beam in a parabolic index medium was 

used to check the accuracy of the BPM code. There are several possible quantities for 

measunng the error between the theoretical wavefront and the computed wavefront. 

Since the difference between the theoretical field and the computed field should be 

small, the rms optical path difference (OPD) was chosen as a measure of the error 

because it is a familiar quantity for evaluating lenses with low aberrations. The rms 

OPD is computed by sampling over the grid of points, from on-axis out to a radius of 

1.5 times the e'] semi-diameter in amplitude. This radius contains 989b of the power in 

the Gaussian beam. 

Several researchers have discussed the restraints on step size and index change 

that are necessary to insure accurate results. Thylen21 gives a set of four equations 

relating the following parameters: 
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P 

On 

Highest spatial frequency of the optical field, 

Highest spatial frequency of the index, 

Magnitude of the index perturbation, 

Step size in direction of propagation. 

It is shown that the constraints on the parameters are given by: 

§1\2.(£\4 .f o 8n\lY.fn§n)(p±s) 
n)    k2 + - 

n Ak 
+ 2—1-    +  2— 

8n\ . Ss^ 
<.     8—  +4 

n /     ^   ,(3-14a) 

'f!i <*y¥ 
Az   < -T-    (P + *) 

v. on > 

-i 

(3-14b) 

(3-14c) 

and 

Az   < 
6k 

(p + sf (3-14d) 

The lens shown in Fig. 3-2 was typical of those used to check the accuracy of 

the code. It had the following parameters: 

a 256.0 microns 

^00 1.5 

#10 -3.05E-7 micrometers*2 

length 2.0 micrometers 

Ax, Ay 2.0 micrometers 
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N„N, 128 

This lens has a quarter pitch length of 2.46 mm. 

In the table below, the pans of Eq. (3-14a) through (3-14d) are shown for the 

above lens. In this case the most stringent requirement clearly is from Eq. (3-14c), 

where z is required to be much less than 300 microns. 

Equation Required: 

3-14a 0.2 « 1 

3-14b Az « 3,000 um. 

3-14c Az « 300 ^lm. 

3-14d Az « 50,000 |im 

256 Mm 

Fig. 3-2. A radial gradient lens used for checking accuracy of the beam 
propagation code. The index of refraction is given by n(r)-l 5 + 35E-7 r2. 
The dimension of the array used was 128 x 128. 
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In the use of the BPM method for this thesis, the parameters were initially 

chosen to satisfy the above constraints. The step size was then reduced until there was 

no change in the computed output field. At this point, it was assumed the computation 

had the smallest possible error. 

Figure 3-3 shows the rms OPD between the wavefront computed by BPM and 

the theoretical wavefront as the step size is varied. Below approximately 10 

micrometers, decreasing the step size has very little effect on the accuracy. 

V. 
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4     5 
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Fig. 3-3.   RMS OPD error vs step size, for the lens pictured in Fig. 3-2. 
The array size for this lens was 128 x 128. 
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3.3.     Comparison of  BPM with  geometrical  ray 

In discussing the effects of these profile deformations on imaging quality, it is 

useful to try to examine the difference in accuracies for geometrical (ray-tracing) 

methods and beam propagation methods. The advantage of knowing when ray-tracing 

is permissible is that a large body of work has been done on modeling optical systems 

based on geometrical optics. Included in this is the ability to optimize a design with 

respect to many variables. For people interested not just in analysis but design and 

manufacture, this is a critical difference. It is of great value to know more about when 

ray-tracing can be used and when more time-consuming diffraction based methods 

must be used. 

Although this analysis can be carried out for a wide variety of index profiles, 

only sinusoidal profiles were used for these examples. These are simple to describe 

and any other perturbation could be described as a sum of sinusoids by Fourier 

decomposition. 

The simplest profile to examine is where n(r) is described by 

n(r) = Noo + on cos 
(3-15) 

where r = -yx2 +y2 , A^ is the base index, and Sn and Lp are the the magnitude and 

period of the sinusoidal perturbation, respectively. The N10 term is absent in the above 

equation. This allows investigation of the ripple in the profile to be completely separate 

from the paraxial properties of the system. Before analyzing a lens with this profile, it 

is necessary to understand how the OPD is calculated for any optical system. 
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There are several possible methods for calculating the OPD of an optical 

system. The simplest method is to keep a sum of the optical path length for a ray as it 

passes from surface to surface. For general systems, this may be inaccurate, since 

•there may exist certain surfaces with thicknesses that are orders of magnitude greater 

than other surfaces. Another method is to integrate the ray displacements at the image 

plane. A third approach is to construct dummy surfaces to reduce the possibility of 

having to add small and large numbers (corresponding to small and large thicknesses, 

respectively). Figure 3-4 gives a schematic of this second method for calculating the 

OPD. 

First, the location of the entrance and exit pupils must be determined. This is 

done by tracing a ray through the center of the stop. The path of this ray in object space 

is projected to find the point E of its intersection with the optical axis. This point de- 

fines the location of the entrance pupil plane. 

Similarly, the path of the ray is projected in image space to find the point E' of 

its intersection with the optical axis. This point in turn defines the plane of the exit 

pupil. 

The size of the pupils are determined by tracing rays from the foot of the object 

to the edge of the stop. The location of intersection for these rays and the entrance 

pupil plane defines the outer edge of the entrance pupil. 

Once the location and size of the pupils is known, a ray can be traced to obtain 

the optical path difference. A dummy surface Sj is located at the entrance pupil plane, 

and the surface has a radius of curvature equal to the distance to the object. Another 

dummy surface S2 is located at the exit pupil plane, this surface has a radius of 

curvature equal the the distance to the image plane. 
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To find the OPD of a ray, first a reference ray is traced through the center of the 

stop. The ray of interest is then traced through the system. The OPD is computed by 

subtracting the optical path length of the two rays between the two dummy surfaces. 

For the lens in this figure, the OPD is given by the difference in the optical path length 

of the two rays between Sj and S2, and is then 

OPD = OPL{V?2)-OPL{E£2) < (3.16) 

This method is more accurate than keeping track of the total optical path length from the 

object to the image, since the long path lengths from the object to the surface Sj cancel 

out. However, the problem with using this method of calculating the OPD is that the 

results can be inconsistent because the location and size of the pupils may be 

indeterminate. 

For all gradients, paraxial properties are determined by tracing real rays close to 

the axis, and then scaling the results of that ray trace. These rays traced close to the 

axis are sometimes called "real paraxial rays", although the name is misleading. The 

size and location of the pupils are determined by the results of the ray trace. Since the 

given index profile in Eq. (3-15) is oscillatory near the axis, the paraxial data cannot be 

used to determ:r.c the location of the pupils. The OPD is defined in the exit pupil, so 

the value of OPD is not reliable if the pupils are poorly defined. 

The lens design program used to study this problem was Code v^22 , although 

the problem is similar for other programs. Because of the problems with using the 

OPD as supplied by Code v^, the OPD was computed by the following method. The 

optical path length of a ray between any two surfaces is available from CodeV^. This 

data is used instead of the OPD data that CodeV^ normally supplies. The OPD for a 

ray is set equal to the difference in optical path length between the ray and a ray traced 

along the axis of the lens, between the front and back surface of the lens. This works 
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only because the front and back surface of the lens were flat, and the lens is only one 

two surfaces! In a more general system one would artificially have to create surfaces 

like Sj and S2 in Fig. 3-4 and keep track of the path lengths for all the rays in between. 

Another advantage is that this OPD can be compared directly with the output of the 

BPM method. 

The first profile considered is that illustrated in Eq. (3-15), which is simple 

enough to analyze the problems of geometrical ray tracing in lenses with sinusoidal 

refractive index profiles. To help in understanding the effect this index profile has, 

Figure 3-5 shows the refractive index profile and the paths of several rays through a 

small section of such a lens. The vertical and horizontal scales are not equal for this 

figure. 

Each peak in the index of refraction represents a small positive lens, localized 

around that peak. Rays that start out near a high point in the index (such as A) are 

focused towards that point. Rays that start near a point where the index is depressed 

(such as B) diverge from that point. 

The distance that the rays travel before crossing can be calculated approximately 

by looking at just one period of the sinusoidal index profile. A half period of the 

profile is roughly equivalent to a parabolic profile with a diameter of L^/2 and a An of 

6n . The quarter pitch length of a radial gradient lens is given in Eq. (2-19). In order 

to avoid confusion, the quarter pitch length that refers to a small segment of the profile 

is z_. The expression for zp is 

n '00 

L. 

V 
2'=2|    25*, (3-17) 
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Refractive 
Index 
Profile: 

Ray 
Paths 

Fig. 3-5. A diagram showing the ray paths for a lens with a radial 
sinusoidal index profile. The diagram on the left shows the refractive 
indcx('horizontal coordinate) versus the radius (vertical coordinate). 
The diagram on the right shows the ray paths through the corresponding 
region of the lens. The rays focus towards the region of higher refractive 
index (A), and diverge from the regions of lower refractive index (B). 
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The parameter z gives a good estimate of the location where the rays cross. However, 

each section of the profile does not give perfect imaging so there will be spherical 

aberration. 

Using this formula, the 2p for the lens with a Lp of 40 micrometer period is 1.4 

millimeters. It is useful to look at the OPD of rays traced through this lens as a function 

of thickness. As the thickness increases the OPD plots show the effects of the bending 

of rays witluii the lens. 

Fig. 3-6 shows the OPD for 0.7, 1.0, 1.4, and 1.8 millimeters, calculated by 

geometrical ray tracing. For a short lens length, 0.7 millimeters, the resulting OPD is 

simply a sinusoid. As expected, the OPD plots for the two longer distances show 

extreme aberrations. 

To gauge the accuracy of the geometrical method, the effect of a sinusoidal 

npple on the rms wavefront has been computed both by ray tracing and the beam 

propagation method. The rms wavefront gives a measure of the amount of modulation 

that is introduced into the wavefront. Fig. 3-7 shows the rms wavefront computed by 

the two different methods for the lens. The chart shows that the geometrical method 

underestimates the amount of modulation introduced to the phase of the wavefront by 

about 307c. As the length of lens increases, the effect of the ripple increases. This 

gTaph is not continued for a propagation distance greater than 900 micrometers because 

by that point the amplitude distribution of the input has changed significantly. If the 

distance z is kept at a small fraction of the parameter zp, then the error is still relatively 

small. 

In summary, geometrical methods have been shown to be unsuitable for 

analyzing lenses with certain index profiles.  Even if the spatial frequencies of the 
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profiles remain low, results for ray tracing are still not accurate, unless the lens length 

is relatively short. 
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Fig. 3-6. A plot showing optical path length for four different lengths of a 
lens, the lens has a quarter pitch length of IA mm. As the length of the lens 
nears and then surpasses the quarter pitch length, the OPD deviates further 
from a pure sinusoid. 
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Propagation distance, micrometers. 

1000 

Fig. 3-7. A comparison of the effect of a sinusoidal ripple on the rms 
wavefront, calculated via BPM and geometrical ray tracing. For this lens, the 
parameter ip was 1400 micrometers. Geometrical ray tracing underestimates 
the effect of the refractive index ripple on the wavefront. 
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3.4.    BPM Analysis of non-ideal refractive index profiles. 

3.4.1.       Modeling   non-ideal   refractive   index   pro- 

files. 

In the history of gradient index optics, much effort has been expended on the 

design of systems with gradients.23 Recently, the ability to fabricate gradients has 

advanced far enough so that manufacturing issues have become a concern.24 

Historically, it has been a well-known fact in the optical fiber industry that production 

of fibers with the optimum index profile is difficult.25 Because of this, there have been 

many investigations of the effect of index profile distortions on the characteristics of the 

resulting fiber.2627-28 Most of these have investigated the bandwidth and impulse 

response of muhimode fibers with non-ideal profiles. For an optical fiber, the 

interaction lengths range from tens to thousands of meters. 

The profile inhomogeneiry as a function of the azimuthal orientation and axial 

distance was measured by Oates and Young.29 They found a variation in the a 

parameter-0 of ±0.15 for muhimode fibers of 62.5 micrometer diameter. However, 

they did not predict how this might affect the performance of the fibers, nor did they 

discuss manufacturing methods that might have caused the variation. 

The following sections discuss the use of the beam propagation method in 

analyzing perturbations of the refractive index profile. The perturbations that are 

examined are those that are actually encountered in the manufacturing process. 
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3.4.2.      Oscillation   in   profile. 

The first non-ideal index profile investigated is one used to model the effects of 

fabricating a radial gradient lens by the modified chemical vapor deposition meLhod, 

which was used for this thesis. In that process, discrete layers are formed consecu- 

tively on the inside of a tube. The index of each layer is slightly higher than the layer 

before it, in the correct pattern to form a parabolic index profile. The hollow tube is 

collapsed to form the solid rod, with a radial gradient in the inside of the tube. Because 

the desired index of each new layer is different than the layer before it, the inside vapor 

deposition method leads directly to a layer structure of the collapsed rod (commonly 

called a preform). The simplest way to represent this is with a sinusoid in the index 

profile, as in 

n(r)^Nw + S\0r2 + 6npcos{      -, exp 
p j 

v   H-2 

V     P (3-18) 

Note that the sinusoidal term uses r2 instead of r. This is because each layer has 

an equal area during the deposition. When collapsed, the equal areas mean that the 

radial coordinate of each layer varies as r2, not r. The term A gives the scale of the 

refractive index oscillation. A cosine term is used to avoid a cusp in the refractive index 

at the origin. 

The last factor in Eq. (3-18) is a weight that is applied to the ripple term. The 

magnitude of the ripple may decrease as one goes toward the edge of the sample. This 

may be due to the fact that during fabrication the outer layers are at a high temperature 

for a longer period of time and some diffusion of the dopant may occur to smooth the 

profile.  The parameter w   determines the width of this Gaussian weighting.  As an 
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example, Fig. 3-8 shows an index of refraction profile with a 5% per cent modulation, 

and an overall An of -0.02. 

At the edge of the lens, the index profile given by Eq. (3-18) may have spatial 

frequencies too high to be resolved by the chosen array size. The pio'ulem is assumed 

to be negligible for two reasons. First, the Gaussian weighting in Eq. (3-18) causes 

the magnitude of the ripple to drop off, and secondly if the input beam is itself a 

Gaussian distribution, then its amplitude drops off at the edges. 

1.475 

1.450 
0.0 

Normalized Radius 

Fig. 3-8.   A graph showing a sinusoidal ripple of the index pro/He as 
described by Eq. (3-18). 
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The beam propagation method can be used to determine more accurately the 

effect of these refractive index perturbations on a Gaussian beam input. Figure 3-9 

gives a qualitative idea of the effects of the sinusoidal ripple. It shows the the 

amplitude of a Gaussian beam along a radius, from the center of the lens outwards. 

Although these figures show the magnitude of the optical field, a more relevant 

measure of the effect on the lens is the change in coupling efficiency. The relative 

efficiency is calculated by computing an overlap integral of two wavefronts, one 
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Fig. 3-9. The effect of a sinusoidal ripple on the index of refraction profile is 
shown. The field is plotted along a radial line extending from the center of the 
lens. The magnitude of the ripple in refractive index is given as a percentage 
of the total change in index. For this lens, the total change in index is 0.021 
and the length of propagation is 0.4 micrometers. 
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propagated through the lens with no index perturbation, and the other propagated 

through the lens with the index profile of interest. In this way, only the difference in 

the wavefroms caused by the index perturbation results in a change in the coupling effi- 

ciency. 

Figures 3-10 through 3-13 represent the results of using BPM on a series of 

lenses, with a sinusoidal ripple as described by Eq. (3-18). The scale length Ap is set 

at 15, 20, 30, and 40 micrometers in Figs. 3-10, 3-11,3-12, and 3-13 respectively. 

The parameter wp is kept at twice the value of Ap .  Within each figure, two pitch 

lengths are examined, the pitch length in (a) is one half of the pitch length in (b). The 

vertical coordinate is the relative coupling efficiency, the horizontal coordinate is the 

length of 

propagation as a percentage of the quarter pitch distance. Within each graph, different 

magnitudes of the index modulation are examined. 

The graphs show that if the magnitude of the ripple is kept small (less than 

0.0001 in index) then the lens performance is still good ev«*n at the quarter pitch length. 

As the length of propagation approaches the quarter pitch length, the decrease in 

efficiency tends to level off, this is because the beam is now more localized around the 

axis. This is in contrast to the case of a centra] index depression discussed in the next 

section, where the loss increases greatly as the length of propagation approaches a 

quarter pitch length. For a given index modulation, a smaller Ap improves the relative 

coupling efficiency. The cases of large Ap (Figs. 3-12 and 3-13) are more sensitive to 

an increase in the quarter pitch length than for smaller^ (Figs. 3-10 and 3-11). 
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Fig. 3-10(a-d)   Coupling efficiency for a group of lenses that vary in 
magnitude of ripple and length. The pitch length of (a) is one half that of(b). 

The term Ap increases for Fig. 3-10 through 3-13. 
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Fig. 3-12(a-b)   Coupling efficiency for a group of lenses that vary in 
magnitude of ripple and length. The pitch length of (a) is one half that of(b). 
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3.4.3.      Central   depression   in   profile. 

During the collapse of the hollow tube in the chemical vapor deposition process, 

the high temperatures needed may cause some of the dopant to volatilize from the inner 

diameter. This causes a depression in the center of the index of redaction profile. (See 

Chapter 4 for more information on fabrication.) Figure 3-14 shows an index profile 

where the index of refraction has a depression near the central axis. The depression is 

modeled by a Gaussian distribution, with a characteristic depth and width. The 

equation used in this thesis is 

n(r) = A'oo + Ni0r
2 + Snd exp —r 

wä j (3-19) 

where 6nd is the depth of the depression and wd is the e'1 width of the depression. 

The depression acts as a negative lens, causing light that is close to the axis to 

diverge from the axis. If the lens is being used as a quarter pitch coupler, this is a 

severely detrimental effect. For a Gaussian beam input, most of the power is 

concentrated in the center of the beam, exactly where the depression has the worst 

effect. 

Newhouse et al. investigated the effect of index depressions near the axis of a 

lens.31 For the lens they investigated with a diameter of 0.74 mm, they found 

significant loss of image quality for index depressions whose width were less than 5% 

of the lens radius. However, they used only geometrical ray tracing, which is less 

accurate. 
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Fig. 3-14. A graph showing a refractive index profile with a central index 
depression, as described by Eq. 3-13. 

Again, the beam propagation method can be used to analyze the effect of the 

refractive index perturbation. The propagation of the field in a lens with a depression 

width of 10 micrometers is shown in Fig. 3-15. The figure shows the intensity of the 

field along a radius, from the center of the lens outward. Three different values of Snd 

are shown. The total length of propagation was 5.0 mm, and Ni0 is -3.06E-8 

micrometers'2. As can be seen even a relatively small index depression has a significant 

effect for this length of lens. 

The depression causes power to spread from the center, creating a field with a 

"hole" in it. Obviously, this decreases the coupling efficiency if an attempt is made to 

couple this to a siügle-mode Gaussian field. 
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Fig. 3-15. A plot of the intensity of the optical field after propagation 
through 5.0 millimeters of lens. The field is plotted along a radial line 
extending from the center of the lens. Three different values for the index 
depression are shown. 

Figure 3-16 shows the effect of varying the width of the central index 

depression on the coupling efficiency of a lens. The base lens had a quarter pitch 

length of 6.08 millimeters. The vertical axis is the coupling efficiency of the output 

field relative to a completely unperturbed beam. The horizontal axis is the amount of 

the central index depression, as a percentage of the total An. For this lens the total 

change in index was -0.007. 

The input beam size is fixed, and as the depression width increases the coupling 

efficiency gets worse. This is because the power spreads further from the center of the 
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Gaussian mode. The three lens lengths are 4.2 millimeters, 4.8 millimeters, and 5.4 

millimeters. 

As the length approaches the quarter pitch length of the lens, the coupling 

efficiency decreases greatly. Again, this is because the longer interaction length allows 

the depression to channel more power out of the center of the Gaussian mode. 
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Fig. 3-13(c). 

Fig. 3-16 a-c) show the relative coupling efficiency as a function of the 
amount of index depression. The index depression is given as a percentage of 
the total change in refractive index, which was 0.007for this lens. There are 
3 different lens lengths, 3-16(a) is 4.2 mm., 3-16(b) is 4.8 mm., and 3-16(c) 
is 5.2 mm. 

3.4.4.      Error   in   profile   shape 

For the best possible imaging, the profile of the lens should be specified for 

both the parabolic and higher order terms. Fluctuations of the profile from the ideal 

may occur due to the rr._;.ufacturing process. Since these have a nu^h lower spaiial 

frequency, they are not investigated using the beam propagation method. 
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3.4.5.       Experimental   Profiles 

The previous sections have described how the beam propagation method can be 

used to analyze certain classes of profiles. In addition, the method has been used on 

profiles of lenses made by the MCVD process. These are discussed in more detail in 

Chapter 6. In fabricated ler ;es, both the central index depression and sinusoidal ripple 

may occur simultaneously. Equations (3-18) and (3-19) can be combined to give 

f-r^ 

KWl / 

+Ö/I exp 
»•;, 

cos 
Inr- 

(3-20) 

These lenses were measured by use of the refracted near-field method described 

in Chapter 5. For these profiles, the most severe problem was the existence of a deep 

central index depression. 

As an example using a measured profile with an index depression, Fig. 3-17 

shows the index profile from sample 91. The amount of index depression was 

estimated at -0.0U5 with a width of 40 micrometers. Fig. 3-18 shows the results of 

using a refractive index profile with this amount of depression in the BPM code, 

assuming an input beam with a semi-diameter of 100 micrometers. After propagating 

500 micrometers, the field has a significant depression in its central portion. After 

propagating only !000 micrometers, the field is severely degraded due to the central 

index depression. The use of the BPM method for analyzing fabricated profiles is 

discussed further in Chapter 6. 
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Fig, 3-18 Intensity of field calculated by BPM propagating through a lens 
with the measured index profile shown in Fig. 3-17. 

3.5.    Summary. 

A comparison of geometrical and beam propagation methods has been carried 

out. Although geometrical ray tracing is faster and can be more easily used with optical 

design programs, it is shown to be inaccurate even for profiles where the index pertur- 

bations are spread over many wavelengths. If the lens length is kept relatively short, 

geometrical ray-tracing could be used as a quick approximation of the phase error. For 

the examples shown here, geometrical ray tracing underestimates the computed cou- 
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pling efficiency of a lens with index perturbations. Ray-tracing gives a less accurate 

picture for a given magnitude of ripple as either the length of the lens increases or the 

spatial period of the ripple decreases. 

A full two-dimensional beam propagation code has been written in order to 

examine the effects of refractive index perturbations on the coupling efficiency of lenses 

fabricated b\ the chemical vapor deposition method. Analysis shows that the effect of 

the central index depression is severely detrimental to lens performance, especially for 

lenses near the quarter-pitch length. Even index depressions as small as 10% of the 

total change in index may cause a great loss in coupling efficiency, especially if the 

index depression is wide or the lens length is long. 

Small sinusoidal perturbations also affect the performance, although in this case 

whether the lens is close to the quarter pitch length is not as critical as the magnitude of 

the modulation. Modulations as small as 0.0001 result in a signifanct loss of coupling 

efficieny. For the case of sinusoidal modulations, the overall length of the lens is more 

critical than whether the lens is near the quarter pitch length. 

The code has also been used in to analyze fabricated lenses with measured index 

profile, this is investigated further in Chapter 6. The calculations in this chapter 

suggest that the index modulation must be quite small in order to maintain good 

imaging. Unfortunately, process limitations resulted in index modulations typically on 

the order of 0.0008. 



101 

References for Chapter 3. 

*M. Born and E. Wolf, "Principles of Optics,", Pergamon Press, 109, (1980). 

2D. Marcuse, Principle of Optical K   -i Measurements, Academic Press, 20-26 (1981). 

3T.A. Lenahan, "Calculation of modes in an optical fiber using the finite element method and 
EISPACK", BSTJ, 62, 2663, (1983). 

4C. Neubauer, R. Marz, and M. Schienle, J. Lightwave Technol.. 8, 1932 (1990). 

5D. Marcuse, Principle of Optical Fiber Measurements, Academic Press, 20-26 (1981). 

6D. Marcuse, "Calculation of bandwidth from index profiles of optical fibers. 1: Theory ", 
Appl. Opt.. 18, 2073 (1979). 

7M.A. Newhouse and D.B. Keck,"Effect of axial perturbation of GRIN lens performance", 
Appl. Opt., 21, 990, (1982). 

8N. Amitay and H.M. Presby, "Optical Fiber Up-Tapers with Index Perturbations - 
Performance Analysis", J. Lightwave Technol.. 7, 1055 (1989). 

%1. Emkey and C.A. Jack, "Analysis and Evaluation of Graded-Index Fiber-Lenses", J. 
Lightwave Technol., LT-5, 1156, (1987). 

10J.A. Fleck, J.R. Morris, and M.D. Fcit,"Time-dependent propagation of high energy laser 
beams through the atmosphere."Appl. Phys., 10, 129,(1976). 

1* J. Van Roey, J. van der Donk, and P.E. Lagasse, "Beam-propagation method:analysis and 
assessment," J. Opt. Soc. Am., 71. 803 (1981) 

^L.E. Estes and G. Fain, "Numerical Technique for computing the wide angle acoustic field 
in an ocean with range dependent velocity profiles," J. Acoust. Soc. Am. 12. 38, (1977). 

13J.A. Fleck, J.R. Morris, and M.D. Feit,"Time-dependent propagation of high energy laser 
beams through the atmosphere," Appl. Phys., 10, 129 (1976). 

14K.T. Koai and P-L Lin. "Modeling of Ti:LiNb03 waveguide Devices: Pan II - S-shaped 
Channel Waveguide Bends, J. Lightwave Technol., 7,1016 (1989). 

15Z. Weissman, E. Marom. and A.A. Hardy, "Novel passive multibranch power splitters for 
integrated optics," Appl. Opt.. 29, 4426 (1990). 

16 L. Thylen, E.M. Wright, G.I. Stegeman, CT. Seaton, J.V. Moloney, "Beam-propagation 
method analysis of a nonlinear direcüonal coupler," Opt. Letters, 739 (1986). 

17A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, 88, Prentice-Hall, 1975. 



102 

18J.A. Fleck, J.R. Morris, and M.D. Feit.Time-dependent propagation of high energy laser 
beams through the atmosphere,"Appl. Phys., 10, 129 (1976). 

19 R. Gomaa, "Beam Propagation Method Applied to a Step discontinuity in Dielectric Planar 
Waveguides," IEEE Trans. • MTT, 36, 791 (1988). 

20J. V. Wright, "The design of optical components using beam propagation techniques", SPIE 
630, 110 (1986). 

21 L. Thvlen,"The beam propagation method: an analysis of its applicability," Opt. and 
Quant. Elect.,15,433, (1983). 

"Optical Resarch Associates, Pasadena, CA. 

23L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, and J. M. Stagaman, 
"Design of a Gradient-Index Photographic Objective," Appl. Opt. 21 (1982) 993. 

24D.S. Kindred, "Development of New Gradient Index Glasses for Optical Imaging Systems," 
Ph.D. Thesis. University of Rochester, 1990. 

^personal communication, Don Keck, Coming Glass Works. 

26 D. Marcuse, "Calculation of bandwidth from index profiles of optical fibers. 1: Theory ", 
Appl. Opt., 18, 2073 (1979). 

27 D. Marcuse and H.M. Presby, "Effects of profile deformations on fiber bandwidth", Appl. 
Opt., 18, 3758 (1979;. 

28 D. Marcuse, "Multimode delay compensation in fibers with profile distortions", Appl. 
Opt.. 18.4003 (1979). 

29C.W. Oates and M. Young, "Profile Inhomogeneity in Multi-Mode Graded Index Fibers," J. 
Lightwave Technol., 7, 530 (1989). 

30 a is a parameter used to describe the shape of the refractive index profile. The relevant 
equation is 

1-lif* n(r) = nt 

where a is the radius of the fiber, nj is the index at the center of the fiber, and A is the normalized 
index difference between the index at the center and at the edge of the fiber. A is given by 

i 



103 

A - ^ 1 *% a 5 I ^ 
2n,2 n, 

For examples, see reierence 2. 

31M.A. Neuhouse and D.B. Keck, "Effect of axial perturbation of GRIN lens performance' 
Appl. Opt., 21, 990. (1982). 



Chapter    IV:    Fabrication    of    Radial    Gradients    by 

Chemical   Vapor   Deposition. 

4.1.    Introduction. 

This chapter reviews the variety of chemical vapor deposition methods available 

for manufacturing gradient index materials. A more detailed explanation of the modi- 

fied chemical vapor deposition technique (MCVD) follows, with emphasis on those 

pans of the process that affect the index profile of the final lens. Finally, a description 

of the MCVD facility that has been built in order to fabricate samples is given. 

4.2.    Review of Chemical Vapor Deposition Methods. 

Some previously used techniques for manufacturing index gradients in glass 

include ion diffusion, chemical vapor deposition, and the sol-gel method. Variations of 

the chemical vapor deposition process have been used for production of optical fiber 

since the early 1970s.1-2 All of the vapor deposition techniques have three pans: 

a.) Transport of reactants - the reactants are carried from their source to the area 

where they are to be deposited, usually by an oxygen stream. 

b.) Reaction - the reactants combine to form glassy materials which deposit on 

the substrate. 

104 
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c.) Sintering - the products of the reaction may not be in the desired final glassy 

state, and may need additional heat treatment in order to be sintered into clear glass. 

The original form of most reactants is liquid, for example silicon tetrachloride, 

germanium tetrachloride, and phosphorus oxy-trichloride. These liquids have a rela- 

tively high vapor pressure at room temperature. 

For the production of optical fibers, several variations of chemical vapor depo- 

sition have evolved. The outside vapor deposition process (OVD) starts with a seed 

(bait) rod of silica rotating in an optical lathe.3,4 The reactants are carried by oxygen 

gas into the central part of a oxy-hydrogen torch. The torch, which is traversing along 

the rod, then deposits the glass material (commonly called soot) onto the bait rod. The 

bait rod is pulled out of the center, and the remaining portion is sintered and collapsed 

into a solid tube for pulling into fiber. 

The vapor phase axial process5 (VAD) is similar to OVD, except that the burn- 

ers deposit the soot on the end of a rod. Figure 4-1 gives a simplified picture of the 

process. The bubblers hold the liquid dopant, the vapor from the dopants is carried 

into the torch. The torch deposits and then sinters the glass on the end of the rotating 

preform. This method has an advantage in that continuous production of preform is 

possible, at least theoretically. In practice, the shape of the gradient index profile de- 

pends critically on the design of the burners. This method is less useful if one is inter- 

ested in being able to produce many different profiles. 

The inside (or modified) vapor deposition process (MCVD), is a widely used 

method because it is relatively easy to implement.6 Figure 4-2 gives a schematic of this 

method A hollow quartz tube is held in an optical lathe. The headstock and tailstock 

of the lathe grip the tube, and both rotate at the same speed. The reactants are shown in 

bubblers. As in the other vapor deposition processes, the vapor of the reactants is 



106 

ii 

tffcl 
AS 

'5 'S S3  S3 

go C 

c 

oc 

I 

SI   ^ 

5* a* 

"S3 

53 
<-: «— 
C 
ss i 

-s: i5 

c  t; 

S3 .3  S 

*!%*£ 
v: «ü 

5i 
5^ s-s-s 3 £.* 



107 



108 

carried to the quartz tube by flowing oxygen through the bubblers. The outside of the 

tube is heated with a hydrogen torch. The heat from the torch causes the reactants to 

form glass panicles about 0.1 to 1.0 micrometers in diameter inside the tube. These 

particles then deposit on the walls of the tube. The torch further heats the soot in order 

to sinter it into clear glass. 

This method has been chosen for this thesis for several reasons. The MCVD 

process is much easier to implement on a small scale, since the control of the reactants 

is simpler. More importantly, the underlying chemistry and process control have been 

studied in greater detail.7-8-9 The MCVD process produces a gradient material with a 

cladding (from the original quartz tube) and this increases the handling diameter of the 

resulting microlenses. The larger diameter makes handling the lenses easier. Both the 

OYD and VAD methods require more care in construction of the chemical delivery sys- 

tem, and the design of the torches is often proprietary. 

4.3. The MCVD Process Chemistry. 

A basic understanding of the MCVD process is necessary for determining how 

to control the gradient index profiles of the fabricated samples. A carrier gas, typically 

oxygen, is bubbled through two or more liquid dopants which have a high vapor pres- 

sure. Mass flow controllers (MFC's) control the amount of oxygen flowing through 

the bubblers, and hence the amount of dopant liberated as vapor. The dopants are car- 

ried through the tube to the high temperature reaction region, where a gas-phase reac- 

tion takes place. 

, 
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The details of the reaction, deposition, and consolidation of material are all de- 

pendent on the heating process and the chemicals used. Two commonly used starting 

liquids are silicon tetrachloride, SiCl4, and germanium tetrachloride, GeCl4. These 

form silica (SiCh) and germania (Ge02) when reacted with oxygen. The germania 

serves as modifier, raising the index of the silica. The reactions to form silica and ger- 

maiL i are 

SiCl, +02  -> Si02 + 2C12 (4.1} 

and 

GeCl4+02  -> Ge02 + 2C12 /4.2) 

The reaction starts for temperatures above 1300° C, but to react all of the SiCU 

the temperature must reach 1500° C. In order to reach this temperature in the middle of 

the tube, the outs'de must be heated to approximately 1900° C. 

The reaction results in glassy particles that are roughly 0.1 micrometers in di- 

ameter. At this point, the panicles of soot ^e driven by thermophoresis along the 

gradient of decreasing temperature.10 Thermophoresis is the name for the process 

whereby the pai tides move from the region of higher temperature to a region of lower 

temperature because any particle expenences stronger collisions from neighboring gas 

molecules on the hot side than on the cold side. Downstream of the reaction point, the 

walls are much cooler than the center of the tube, so the panicles deposit on the walls. 

The temperature distribution over the interior of the tube depends not only on the torch 

and tube parameters, but also the flow rate and thermal conductivity of the gas flowing 

in the tube. 

As the torch tnverses the tube, the heat of the torch fuses the soot panicles to 

form a consolidated glass layer. The torch makes repeated passes along the tube, and a 

new layer is deposited with each pass. The r • nposition, and hence the index of re- 
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fraction of each layer can be controlled by varying the amount of oxygen flowing 

through the MFC's. In this way a controlled index of refraction gradient can be fabri- 

cated. An important aspect of this method is that traversing the torch means that layers 

are deposiTed seque. *;ally, so that the dopant flows are changed in discrete steps. 

Because the dopants tend to diffuse very little in later processing, a layered structure in 

the index profile results. 

In addition, more subtle effects can also lead to gradients within each layer. An 

example investigated by Walker et al. i: that of Ge02 deposition in making Ge02-Si02 

fibers.11-12 Because of the proximity of the torch, particles formed near the tube wall 

see a higher temperature than those formed near the tube center. At the high tempera- 

tures needed for this reaction, the equilibrium can shift back tc favor more GeCl4. For 

this reason, the resctants at the middle of the zone have a lower Ge02 concent ^tion 

than those at the edge. The reactants in the middle are deposited further downstream 

that those at the edge, so this layer has a lower concentration of Ge02 at points closer to 

the center of the tube. Unfortunately, this is directly opposite from the design of the 

overall gradient, which should have a higher concentration of dopant (Ge02) towards 

the center of the sample. 

The ideal mode of operation is for the process to be deposition limited. This 

means that there is sufficient heat and oxygen to complete the reaction of the dopants, 

but that all of the material may not be driven to the wall.13 In this case, the deposition 

efficient is determined primarily by the downstream equilibrium tube temperature. 

1 nis temperature depends mainly on the torch traverse velocity, ambient temperature, 

and tube thickness, and hence can be controlled by fixing those parameters. 

An important step in the process of making gradient index material by the 

MCVD method remains after the deposition is completed. The tube, wi\i the gradient 
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layers built up inside, must be collapsed in order to form a solid rod. Because the pre- 

form is predominantly silica, it requires a very high temperature in order to collapse it. 

The high heat causes the dopant on the inside surface of the tube to evaporate. A lower 

concentration of dopant at the middle of the collapsed rod leads to a depression in the 

refractive index profile. As is discussed elsewhere in this thesis, the central depression 

of the refractive index profile affects the imaging properties of the lenses. 

4.3.1.    Basic   glass   properlies. 

Several researchers have investigated the properties of silica based glasses. For 

this thesis the two modifiers used were TiCl4 and GeCl4, which produce Ti02 and 

Ge02. Both of these are capable of producing sufficient index of refraction changes 

and the liquid chlorides have reasonably high vapor pressures. Vor each modifier, it is 

necessary to know the amount of modifier needed to produce a desired index change. 

Table 4-1 shows nD. the index of refraction at 587 nm., and a, the coefficient of ther- 

mal expansion. They are shown as a function of the doping in mole percent.15 

Knowledge of the coefficient of thermal expansion is necessary for obtaining an 

estimate of the thermal stresses in the glass. For large changes in index of refraction, 

the different thermal coefficients for the inside of preform and the outside can lead to 

cracking of the glass when it cools. For the samples fabricated in this thesis, the 

changes in index of refraction were typically 0.005 to 0.02, and thermal stresses were 

not found to be a problem. More information on the material properties of the glasses 

is given in Appendix D. 
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mol % S1O2 mol %Ti02 "D cr*10-7/°C. 

100.0 0.0 1.458 5.516 

98.0 2.0 1.467 2.8 
96.0 4.0 1.471 1.8 
94.0 6.0 1.485 -1.9 
92.0 8.0 1.493 -2.6 

(a) 

mol 9c S1O2 mol °/c Ge02 "D cr*10-7/°C. 

100.0 b.b 1.458 5.5 
$ä.ö 2.0 1.461 1.1 
96.0 4.0 1.464 9.6 
94.0 6.0 1.466 12.0 
$2.0 $.0 1.471 - 
90.0 10.0 1.472 16.3 
86.0 14.0 1.477 20.5 
80.0 20.0 1.486 26.0 

(b) 

Table 4.1(a-b). The refractive index at 587 nanometers and the thermal coef- 
ficient of expansion are shown for silica, doped with titania (a) or germania 
(b).a is given at 25 °C. 

4.3.2.   Calculation   of   Dopant   Flows. 

The reactions governing the deposition of T1O2, Ge02 and Si02 are 

TiCl4+02-»Ti02 + 2Cl2 , 

GeCl4 + 02 -> Ge02 + 2C12, (4-2a,b) 
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SiCl4+02->Si02 + 2C}2 (4_3) 

For all of these reactions, one mole of oxide is produced for one mole of start- 

ing liquid. Each liquid dopant generates a particular vapor pressure at a given tempera- 

ture. This vapor pressure can be calculated17 according to the formula 

^.+4 /» = cxp.«0    T 

(4-4) 

i 

where P is the pressure in mm. Hg, T is the temperature in degrees Kelvin, and K0 and 

Ki are constants. Using data for the vapor pressures, the appropriate constants can be 

computed using data for the vapor pressures to obtain the figures shown in Table 4-2. 

Therefore, if the number of moles of dopant is known, the gas law can be used to 

calculate the volume of vapor of the dopant. At a temperature of 303 Kelvin the vapor 

pressures of GeCU and SiCU are 110.2 and 289.5 mm. Kg, respectively. For any 

desired molar ratio, the gas law equations can be used to calculate the ratio of the gas 

volumes needed. 

Compound *'o *, 

SiCU 17.63 -3625 
T1C14 lS.28 -4699 
GeCl4 17.58 -3901 

Table 4-2. Constants used in computing vapor pressures for the liquids used 
in the chemical vapor deposition process. 
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4.4.  MCVD Apparatus. 

A facility for fabricating gradient index lenses by the MCVD process has been 

constructed. A diagram and photograph of the apparatus is shown in Fig. 4-3 and 4-4. 

The modified optical lathe and the bubblers are placed in a fume hood. To 

enable consistent and safe operation, the fabrication process must be remotely 

controlled by computer. Three MFC's (mass flow controllers) are used to control the 

oxygen flow. Two control the flow throurh the SiCU and dopant bubblers, the third is 

used to control the flow of auxiliary oxygen. Extra oxygen is needed to ensure the 

complete utilization of the reactants. and can be used to vary the overall flow rate, 

which affects the deposition efficiency. This can be useful in reducing clogging of the 

end tube. 

The silica tubes used for this thesis were TO-8 tubes manufactured by Heraeus 

Amersil, with a 12.0 millimeter diameter and 1.0 millimeter wall thickness. The 

straightness of the original tube is critical for control of the process. Any initial eccen- 

tricity in the tube is quickly increased after repeated high-temperature passes during the 

deposition process. The tube is held in the headstock end by a Jacobs chuck and in the 

tailstock end by 6 screws that run radially through a steel support tube. The procedure 

of aligning the tube to the axis of the lathe is discussed in Appendix D, which gives a 

detailed procedure of the fabrication process. 

The gases enter the inside of the quartz tube at the headstock end of the optical 

lathe. An O-ring seal holds the quartz tube at the rotary joint. The rotating member of 

the joint rotates in a Teflon seal in the stationary body of the joint. The joint can be 

moved in the plane perpendicular to the axis of the optical lathe in order to allow align- 

ment with the silica tube, and is made of 316 stainless steel to reduce corrosion. 
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The waste gases exit through the tailstock and enter a PVC exhaust tube that is 

twice the diameter of the last section of silica tube. A small fan at the end of the tube 

keeps the gases within the PVC tube and helps prevent clogging of the exhaust tube. 

The firecarriage on the optical lathe was modified so that it could be driven 

along the length of the lathe bed (24") by a stepper motor. A two-burner torch and an 

optical pyrometer are mounted on the firecarriage. The pyrometer is aligned so that it is 

focussed on the rotating tube. The torch itself is mounted on a translation stage which 

is mounted on the firecarriage. This allows fine alignment of the hottest part of the 

torch with the optical axis of the pyrometer. Limit switches at both ends of the lathe 

bed are used by the computer to control the total length of traverse by the firecarriage. 

An IBM-AT computer is used to control the fabrication process. A digital 

driver board translates RS-232 signals from the computer to a motor driver board, 

which moves the stepper motor on the firecarriage. The computer controls the mass 

flow controller settings by means of a D/A convener. In operation, the computer sets 

the MFC's for the first pass and then starts the motor moving to make repeated tra- 

verses. After each pass, the computer adjusts the MFC settings. The traverse rate 

during deposition is 30 cm/min. The flow rates are typically 20 cc/min for both the 

GeCU and S1CI4 oxygen stream. The total number of passes was usually 15 to 20. 

Tube shrinkage and misalignment limits the maximum number of passes possible. 

After the deposition is completed, the firecarriage is slowed down to approxi- 

mately 2 cm/min for the collapse of the tube, which takes 5 passes. The collapsed tube 

(commonly referred to as a preform) is taken out of the lathe and the end sections are 

cut off. The remaining section is put back on the lathe for pulling down to smaller di- 

ameters. 
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4.5. Reduction of rod diameter. 

After collapse, the outside diameter of the rod is typically seven millimeters, and 

the gradient portion is 3 mm. in diameter. In order to produce smaller lenses, it is nec- 

essary to reduce the diameter of the gradient. The optical lathe was modified to allow 

drawing of the rods, similar to the process used for making optical fibers.18 

The tailstock of the optical lathe normally moves along the bed of the lathe by 

means of a rack and pinion gear. The hand crank was replaced by a stepper motor in 

order to allow the tailstock to be driven at a steady speed. The firecarriage holds a 

burner that heats the rotating rod. As the burner heats the rod to the softening point, 

translating the tailstock pulls out the rod to a smaller diameter. 

Optical fibers are usually drawn in a vertical configuration, where the seed rod 

is fed past a stationary flame and the fiber is pulled out of the bottom. This offers an 

advantage in that a much greater reduction ratio can be achieved, since the thin glass rod 

does not have to supported from its ends. However, construction of such an apparatus 

would have required a large amount of vertical space. 

The fundamental principle governing this process is the conservation of mass 

law. In Figure 4-5, the hot zone is represented by the dashed box. For the steady 

state, conservation of mass can be applied to the hot zone. The velocities of the hot 

zone (the firecarriage) and the pulled rod (the tailstock) are v, and v2, respectively. 

They are both taken to be positive, although they are in opposite directions. The diame- 

ters of the starting rod and the pulled rod are Dx and D2, respectively. Since the mass 

and hence volume of material is conserved, 

v. —- = (v, + v.) —«- 
'4 2     ''   4 , (4-5) 
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or the reduction ratio e is given by: 

D 

A 
2- = £ = 

\'v2 + (4-6) 

These relations are accurate over the long term, but they are no guarantee 

against the short term fluctuations that may occur. Mechanical problems associated with 

the smoothness of the stepping motors and vibrations from the optical lathe are both 

causes of diameter variations. In practice, the motors were run slowly enough so that 

speed variations were not the limiting factor. Without any diameter control, it was 

possible to produce pulled rods with a diameter variation of roughly 3% over a distance 

of 2-5 cm. 

Starting rod 

~K 

D 

V / 

Pulled rod 

D 

Heat zone 

Fig. 4-5. Illustration of drawing process. The rod is pulled from the right, 
the torch is mounted on the firecarriage which is traversing to the left. During 
the process, the rod is rotating at about 17 rpm. 
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The main limitation on controlling the diameter was that the length of the lathe 

bed was barely long enough to reach the steady state conditions. The fluctuations 

tended to be greatest when the process of pulling was just starting, so that usually only 

the last third of each pulled rod was of sufficient quality to be useful. In practice re- 

duction ratios of about 0.4 were the minimum possible. Most of the lenses made had 

an outside diameter of roughly 1.1 mm. (including the cladding), and the gradient 

region was 0.4 mm. in diameter. After pulling, the rod is cut into sections for 

polishing and measurement. 

4.6.   Summary. 

The various types of chemical vapor deposition processes used for making 

gradient index materials have been reviewed. The details of the MCVD process used 

for this thesis have been described. In addition, it is important to realize that certain 

aspects of the manufacturing process cause the final index profile to depart from desired 

profile. The effect of these perturbations of the refractive index profile on the perfor- 

mance of imaging components are discussed elsewhere in this thesis. 
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Chapter   V:     Measurement   of  Index   Profiles 

5.0  Introduction. 

The ability to measure index profiles accurately is necessary in order to 

investigate the effect of non-ideal index profiles. A wide variety of methods exist for 

measuring gradient index materials, i'his chapter reviews the basics methods 

considered and discusses advantages and disadvantages of each method. 

Primarily because of its high spatial resolution, a measurement system based on 

the refracted near-field method was constructed to measure the index profiles. A 

detailed discussion of the theoretical basis of this method is given. In addition, the ac- 

curacy of the method is discussed, especially the effects of measuring the larger 

samples used for this thesis. 

Lastly, the experimental apparatus used to measure the samples is described. 

5.1  Methods of Measurement. 

Because of the similarity between optical fibers and the fabricated lenses, 

methods commonly used for fibers were among those considered for measuring the 

fabricated lenses. Eickhoff and Weidel1 developed reflection refractometry. one of the 

earliest methods. In this metnod, a laser beam is focussed onto the end of the sample 

and the reflected power is measured as the spot is scanned across the nee of the 
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sample. Although simple in concept, the technique is not very sensitive because of the 

small dynamic range of the signal. In addition, contamination of the surface can easily 

affect the measurement, since any layers would only have to be a few hundred 

angsm/^.s thick to greatly change the *»fbcrion coefficient 

One of the most commonly used techniques for measuring any gradient index 

mater J is two beam interferometry. In this i^ethod, a thin polished cross section of a 

sample is placed in an interfere meter (typic?ily either a Mach-Zender or Twyman-Green 

interferonvter). The section is cut so tVia* the gradier: direction is orthogonal to uie 

direction of hyr.. propagation. Figure 5-1 shows an example of a Mach-Zender 

interferometer. Small samples require greater magnification from the imaging optics. 

Very small samples require an interference microscope, with a great increase in 

complexity. With any interferometer, a tradeoff exists between thickness of the sample 

and the accuracy with which the phase can be measured. As the thickness of the slab 

increases, the number of fringes increases. Assuming the detector is small enough to 

resolve the fringes, this increases the resolution in index. Unfortunate!/, thick samples 

bend the rays significantly inside the sample. The bending of the rays means the 

emerging wavefront is curved. 

Figure 5-2 shows the planar wavefront passing through the sample and the 

resulting curved wavefront. The amount of curvature is dependent on the difference in 

OPD between the on-axis .ays and outermost ray. As the overall change in index 

increases, the amount of curvature increases, meaning a greater depth of field is needed 

to resolve the fringes. An added complication is that rays traversing the Sonple exit at a 

smauer distance from the axis than they entered, since they are following a curved path 

in the material. The radii of the interference fringes must be scaled so that they match 

the radius of the object.2 A further disadvantage is that the preparation of thin slices is 
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Fig. 5-J.A schematic of a Mach-Zender interferometer. 

difficult. It is unknown exactly how much stress may be introduced into a thin sample 

by polishing. 

Transverse interference microscopy requires little sample preparation but an 

interference microscope is still required. Recovery of the profile from the interference 
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Fig. 5-2. A planar wavefront incident on a radial gradient will produce a 
curved wavefront. 

pattern is time consuming, and the accuracy is less than that of the slab method. In 

addition, this method is less accurate at resolving index fluctuations close to the center 

of the sample because of the mathematical transformation needed. 

The focusing method uses a broad collimated beam of light to transversely 

illuminate the rod.3,4 Rays entering the rod are bent toward the axis, and the index 

profile can be extracted from measuring the power distribution at a plane just after the 

sample. This method has good accuracy and can be scaled for different size samples. 

Like other transverse methods, the focussing method is less accurate at resolving the 

index close to the center. In addition, like most methods that rely on transformations of 

data, this method is subject to systematic errors. 

X-ray emission analysis (microprobe) is another method that has been used to 

measure gradient index profiles. Since the microprobe actually measures 

concentrations, the index as a function of concentration must be known. For the work 

presented here, low levels of modifiers were sufficient to create the desired index pro- 

files. The index can then be assumed to be a linear function of the modifier, but the 
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microprobe is less accurate at measuring the low levels. Because of electron 

backscaM<*"ri£ in the material, spatial resolution is limited to 3 or 4 micrometers.: 

Although this is very good compared to most interferometers, it is still greater than 

some other optical methods. 

5.2 The Refracted Near-Field Method 

5.2.1      Theoretical   Background 

Tht primary objectives in the measurement of the gradient index lenses for this 

thesis were high resolution in both index and space. Because of these two criteria, a 

measurement system based on the refracted near-field technique was built. This 

method has previously been used to measure the index profiles of optical fibers,6«7'8 

and has been used in this thesis to successfully measure larger samples. 

The refracted near-field method has two limitations. One is that the gradient 

must be purely radial, i.e. no variation is allowed in the axial direction. The second is 

that it is most easily used if the sample has a region where the absolute index is known. 

This is easily done for samples made by the modified chemical vapor deposition 

process, since the original starting tube is silica for which the index is known. 

Figure 5-3 illustrates a schematic representation of the method. Light is 

focussed with a high numerical aperture microscope objective into a small spot on the 

polished end of the rod. The axis of symmetry of the gradient is in the same direction 

as the optical axis of the microscope objective (along the z axis). The rod is placed in 

index matching oil, with an opaque circular stop behind the rod. A lens behind the stop 
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Fig. 5-3. A simplified schematic of the refracted near field method. The laser 
beam is focussed by the microscope objectinve onto the end face of the 
sample, which is polished Light refracted out the side of the rod is focussed 
onto the detector. 

collects rays that enter the rod end and are refracted out of the side of the rod. As the 

spot is scanned across the end face of the rod, the amount of light refracted out of the 

edge of the rod and reaching the detector varies, depending on the refractive index at the 

location of the spot. 

White9 has used the basic methods of geometrical optics to derive the exact 

relationship between the index profile n(r) and the power that reaches the detector. Fig. 

5-4 shows the angles and refractive indices used for the following analysis. All angles 

are taken to be positive. Starting with Snell's law at the front face of the rod, 

«,l7sin0o = *(r)sin0, ^ (5.1} 

where n(r) is the refractive index of the sample where the ray intersects the end face. 

Because the index does not vary in the z direction, the component of the wave vector in 
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Fig. 5-4. Diagram showing various angles used in discussion of refracted 
near-field measurement. Light is incident from the left, the cell is filled with 
index matching oil. 

the z direction, kz, is conserved along any index boundary. This is true in the sample 

or at the boundary of the sample and the oil. By conservation of kz, 

n(r)cos(0,) = noil cos 03 # (5_2) 

These two equations are combined to give an important relation between $Q and 03, 

sin 60 = — V[*V)-/£, + /£, sin2 03] 
*0ii (5-3) 

Equation (5-3) gives the output angle for a given input angle for the cell. The 

procedure is to find the amount of power hitting the detector as n(r) changes.  It is 



130 

assumed that the spot on the end of the rod is a Lambertian source. The differential 

amount of power in a small solid angle is given by 

dP = (70 cos 0') sin 0' dd' d<p (54) 

or the total amount of power is given by 

P(r)= f* d<p [''" 7ocos0'sin0'd0' Jo h„ < (5.5) 

The angle 03min is determined by the size of the stop, and 0$mtiX is implicitly 

determined by the numerical aperture of the light leaving the microscope objective. 

This integral can easily be evaluated to give 

P(r) = nl0[sin76imtx- sin2 $3ain] {$e) 

Instead of using the output angles, the input angles can be used to give 

7W = ;r/o[sin20Om„-sin20o^] ^ (5?) 

where 0Onur, can be found by applying Eq. (5-3) relating the input and output angles. 

Using this equation results in an expression for OQ^ 

sin2 0o^= "2(r)r^wi^ 
noa . (5-8) 

This equation is useful because the expression for total power received by the detector 

can be put into terms that depend on fixed constants and the index of refraction at the 

gradient. Combining Eq. (5-7) and (5-8) gives 

Pir) mnh s-20      -sin20 n (r)~W«" 5**'     V0max       Sln    ^3 min 2 
*„7 .     (5-9) 

All of the terms on the right hand side of Eq. (5-9) are fixed constants, although not 

necessarily easily measurable. The above equation can be used for two cases. The first 

is at a general radius r, where 
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~7tLn2(r) 
P(r) =^/0[l + sin2ö0m„-sin2ö3min] + -^4 

n* .    (5-10a) 

The second is at the radius rc of the cladding, where 

n*» .    (5-10b) 

Physically, P(rcj is the power collected by the detector when the light is focused on the 

edge of the rod, where the index being measured is the index of the cladding. 

Subtracting the two above equations and solving for the index in terms of the power 

gives 

™r«' .   (5-11) 

The equation above shows the relationship between the square of the local index of 

refraction and the power measured. Unfortunately, the expression in the brackets can 

be difficult to measure because of the uncertainty in the location and size of the stop. 

For small changes in index, n2(r) can be written as 

n2{r)=n*+2nQAn(r) ^ (5.12) 

The two equations above can be combined to give 

Mr)«^W«)-tf+[l + ^^ 
2no I PW     J       .(5-13) 

which shows that the local index is linearly proportional to the power collected. 

Equation (5-13) represents an explicit formula for the index of refraction as a 

function of the measured power and some parameters of the system. However, the 

angles in Eq. (5-13) would be difficult to measure.  The equations given up to this 
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point are useful for designing a measurement system and analyzing tolerances, but are 

not necessary for the actual measurement. 

It is desirable to manipulate the above equations into a form that will make them 

useful for carrying out a measurement. Equation (5-13) shows that An is linear with 

respect to the power at the detector. Since An is zero when the spot is at the cladding 

and equal to the difference between the cladding and the index oil when the spot is at 

the index oil, a linear interpolation between the two values can be used, 

-H,,-..)M        (5w 

This equation highlights a significant advantage of this method: knowledge of 

the index of the oil and the pure silica cladding allows an easier method of calibrating 

than measuring the angles in Eq. (5-13). For this reason it is convenient to choose the 

index of the oil to be greater than that of silica by approximately the An. As is 

discussed further in the section on the experimental apparatus, the temperature of the 

index oil must be measured since its refractive index has a relatively high thermal 

coefficient. 

In the configuration used to measure samples for this thesis, the stop diameter 

was roughly 75% that of the beam emerging from the back of the cell. The light 

reaching the detector varied between 3 microwatts (at the index oil) and 9 microwatts (at 

the cladding). As the stop diameter increases, the sensitivity increases because any 

change in index causes a greater relative change in power. However, the noise also 

increases because any laser noise now translates to a greater noise in index of 

refraction. In addition, increasing the relative stop diameter will decrease the spatial 

resolution. 
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Figure 5-5 shows output from a typical scan. The vertical coordinate is the 

power detected, and the horizontal is distance across the sample. The outer edges 

represent the index oil. The flat area at the top is the cladding, and the gradient is in the 

center. 
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Fig. 5-5. A typical scan of a radial gradient using the refreacted near-field 
method. The power levels at the externe edges correspond to the index oil, 
the gradient is in the center, and the cladding to each side of the gradient. 

The diameter D of the spot on the end face is determined by the numerical 

aperture of the microscope objective, where 

1.22 X 

NA . (5-17) 
Z) = 
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Several optical fibers with a diameter of 125 micrometers were cleaved and scanned. 

This was used to check the minimum resolvable feature size of the measurement 

system, by scanning over a sharp edge. The cleaved surface of a fiber provided a 

sharper edge than the polished surface of a rod. Several samples were used due to 

possible variations in the quality of the cleave. Figure 5-6 shows a scan across the 

edge of a cleaved fiber, with a spot size between the 25% and 75% power points of 

about 1 micrometer. The theoretical diameter between the 25% and 75% points for an 

unobscured spot is approximately 0.8 micrometers. 

0 2 3 4 5 

Scan distance, microns 

Fig. 5-6.   A scan of the edge of a fiber, showing spatial resolution of 
approximately 1 micrometer. 
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5.3.  Experimental  Apparatus. 

5.3.1.   Optical   System 

A measurement system based on the refracted near-field (RNF) method was 

constructed and used for measuring the gradient index samples. This section describes 

the necessary apparatus. 

After polishing one face of the sample, the sample was mounted in the cell, 

shown in Fig. 5-7. The cell consists of an aluminum body with O-ring glands 

machined on the front and back. A 0.125" thick clear polycarbonate plate is mounted 

on the back of the cell to allow the light to exit The back plate has a small hole through 

which the sample is inserted. The front plate is a 0.032" thick aluminum sheet with a 

hole at the center. A microscope cover slip is mounted over the hole with adhesive. 

This allows easy replacement if the cover slip becomes dirty or scratched. The front 

and back plates are held in place by screws running through the body, and O-ring 

material provides a seal between the plates and the body. 

Figure 5-8 is a schematic diagram of the rest of the complete measurement 

system. The light source is a 5 milliwatt He-Ne laser. The beam is passed through a 

quarter-wave plate to produce a circularly polarized beam. This makes the reflection 

coefficient vary less over the incident angle when the beam is focused onto the cell. An 

optical chopper is used to modulate the beam and allow use of a lock-in amplifier for 

detecting the optical signal. After the chopper, a portion of the beam is split off and 

sent to a reference detector. The reference detector monitors the average D.C. level 

output of the laser. If the laser power drifts due to temperature variations in the room, 

the reference signal can be used to create a ratio measurement. 
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A microscope objective with a 16 millimeter focal length and a pinhole are used 

to spatially filter the beam. A 0.4 numerical aperture microscope objective focuses the 

beam onto the cell which contains the sample. The sample cell is mounted on a stage 

which provides 3-axis positioning. The sample cell can be scanned across the input 

beam by a stepper motor, with a minimum step size of 0.12 micrometers. 

The light passes out the edge of the rod and through the back of the cell. The 

stop is located behind the cell and is an aluminum disk supported by three thin wires. 

The wires are supported by a frame that can translate in the x-y plane. This allows the 

stop to be accurately centered with respect to the optical axis. 

After the stop, the light exiting the cell is collected by a Fresnel lens. The 

Fresnel lens has several advantages over the more common glass elements. The 

Fresnel lens used is actually two Fresnel lenses. Each lens is corrected for one infinite 

conjugate and the two lenses are joined back to back. Each lens is F/0.5 at infinite 

conjugates, the speed of the combined lens is F/0.5 at 1:1 conjugates. The Fresnel lens 

offers a large aperture combined with a small center thickness, allowing more room for 

equipment in front of and behind the lens. 

The light collected by the Fresnel lens is focussed on a 1 cm2 silicon 

photodiode. A red pass filter is placed in front of the photodiode to help remove stray 

light. 

A pre-amplifier is used between the signal photodiode and the lock-in amplifier. 

The reference and signal photodiodes run on 9 volt batteries in order to reduce crosstalk 

and line noise interference with the motor driver board. Appendix F contains a 

schematic of the photodiode circuit. 

An IBM PC computer was used to control the measurement system and collect 

data. The computer transmits timing pulses to a digital control card which in turn runs 
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the stepper motor to move the sample stage. After each step, the signals from both de- 

tectors are collected by the computer. The signal from the lock-in is obtained through a 

RS-232 connection with the amplifier. The signal from the reference detector is passed 

through a 1 Hz lowpass filter before being sent to a D/A converter in the IBM. Use of 

the 1 Hz filter helps reduce the time needed for the D/A to measure the reference signal. 

A lower corner frequency is not used so that a dither remains on the signal, reducing 

quantization error in the D/A conversion. 

5.3.2.   Operation   and   Calibration. 

This section gives an overview of how the measurements were performed, 

including an explanation of how the calibration is accomplished. Appendix E gives 

more details on the measurement procedures. Eq. (5-14) shows the linear interpolation 

used to determine the change in index. The index of the homogeneous silica was taken 

to be 1.457210 at 0.6328 micrometers. The index oils used for most of the scans had an 

index of 1.4859 at a wavelength of 0.6328 micrometers and a temperature of 25 °C. 

The temperature of the oil was measured by a thermistor thermometer. The 

thermometer had a resolution of ±0.01 CC and an accuracy of ±0.02°C. The index 

variation of typical refractive index matching oils is much worse than that of glass, for 

the oil used the temperature coefficient12 of the refractive index at D line was 

^. = -0.000407 [°C-1] 
at . (5-18) 

The temperature of the oil usually drifted less than ±0.04°C during the time needed for a 

scan. 
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The size of the spot can be minimized by driving the translation stage in a loop 

that repeatedly scans back and forth across the edge of the sample. While the spot is 

being scanned across the edge of the sample, the focus is adjusted to produce the 

sharpest transition of the received signal. 

5.3.3.   Accuracy   of   the   Measurement   System. 

The refracted near-field system has several possible sources of error. Some 

affect absolute accuracy, which is concerned with the absolute measure of the change in 

refractive index. Others affect resolution, or the ability to detect small changes in 

index. For this thesis, effort was concentrated on obtaining good resolution rather than 

overall accuracy. 

The primary limitation on absolute accuracy is uncertainty in the measurement 

of the refractive index oil. The index of the oil is supplied with a tolerance of ±0.0002 

and has a thermal coefficient of -0.000407 °C~1. A Pulfrich refractometer was used to 

more accurately measure the index of the oil. The accuracy of the Pulfrich 

measurement was ±0.0001. The Pulfrich refractometer operates with Hg and He 

lamps, and therefore it was necessary to measure at the d and e lines.13 

Proper alignment of the system is necessary to achieve optimum performance, 

both in terms of accuracy and spatial resolution. Longitudinal defocus affects the size 

of the spot on the sample and hence the spatial resolution. Another critical part of 

alignment is assuring that the stop is properly aligned with respect to the optical axis of 

the sample. If it is not, the resulting sample scan will be "tilted" since more light gets 

past the stop from one side of the sample than the other.  This can be adjusted by 
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measuring the light level on each side of the sample, and adjusting the stop toward that 

side which has more power. 

In practice, the cell and index oil must be kept absolutely clean. Any foreign 

material that is deposited on the face of the sample dramatically affects the scan. 

The system was tested for accuracy by scanning a calibrated fiber from the 

National Bureau of Standards. This fiber had a graded index core with a numerical 

aperture of 0.02 and hence its refractive index profile was similar those measured for 

this thesis.14  Overall accuracy of the system was found to be within 16% in An. 

Although this is less than the typical accuracy for two beam interferometry, it compares 

reasonably well with the results from a recent round robin of nine national testing 

laboratories, where the standard deviation was a 13% error in An.15 

Other errors may be caused by using the system in a manner such that results in 

the amount of light getting past the stop no longer being linearly dependent (or nearly 

so) on the local index of refraction. 

All previous references to the refracted near-field method discuss its use for 

measuring optical fibers, with a typical outer diameter of 125 micrometers. Because 

this method has not previously been used to measure larger diameter sample, the effects 

of the diameter of the sample on the accuracy of the measurement were considered. 

Figure 5-10(a) shows a simple schematic of how the stop effectively functions 

as a k2 filter (kz is the component of the wavevector along the optical axis). Rays of 

high kz are blocked by the stop, while those of low kz make it past. Any aspect of the 

measurement which affects this filter function will change the measurement. Measuring 

fibers which are very small compared to the length of the rod or the diameter of the stop 
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Fig. 5-10(a-b). (a) shows how the stop effectively functions as a kt filter. 
Rays of high kt are cut off by the stop, b) shows the effect of having a larger 
diameter sample rod. Ray A passes the stop, but ray B with the same value of 
kz does not. 

cause no problems. Figure 5-10(b) shows the situation for a larger sample with two 

rays of the same k2 value, but the one launched closer to the axis does not make it by 

the stop. 

Figure 5-11 shows the two bundles of rays th ^et past the stop for a large 

diameter rod, measured both on and off of the central axis. As the diameter of the 

sample becomes vanishingly small compared to the length of the rod, both these 

bundles will carry the same amount of light past the stop. As the focussed spot moves 

from on-axis, where both bundles would carry an equal amount of power, to the off- 

axis case, then the power in bundle 1 increases, and that in bundle 2 decreases 

(assuming the measurement point is moving in the upward direction). The important 

consideration is how much variation exists in the total amount of power that gets past 

the stop. 
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Radial gradient 
sample 

(a) (o) 

Fig. 5-77. In (a) the spot centered on the end face of the rod has equal power 
in the top and bottom sections that pass the stop. In (b), the spot is at one 
edge of the rod and the total amount of power reaching the detector may be 
different than (a), even if the index is identical. 

The effect of the finite rod size was computed for a source with varying 

directivity. The source is modeled by a radiance function of 

L{6) = Lycos'" 6 

The amount of power contained in a solid angle defined by sinBdd dip is 

(5-19) 

dP = L0 cos" 6 sin 6 dO dtp (5-20) 

where the solid angle is the angle before the end face of the rod.  The total power 

reaching the detector when the spot is a radius r on the end face is given by 

2* •a"*«« 

P(r) = jd<p'   jdO'Lo cos* 0' sin 6' 

(5-21) 

The value of 62 is fixed at the maximum numerical aperture of the objective. The value 

on the lower limit 61 varies as a function of r and <P, and was found by iteratively 
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tracing rays to find the input angles for the ray that hits the edge of the stop. The 

percent error was then defined as 

f>(r = 0.5rm„)-/>(r = 0) 
%error = —^ ssi 1 L 

P^°) (5-22) 

Results for calculating the percent error are shown in Fig. 5-12, which shows the 

relative error in the accuracy of the RNF measurement for rods ranging from 0.5 to 2.0 

mm in diameter. The factor 0.5 is used since the gradient usually did not extend out to 

the full radius of the rod. This graph is for the case of a 0.40 numerical aperture 

objective, an oil of index 1.488, and a stop diameter of 40 mm.. The power lost due to 

reflections at the interfaces is also computed. Previous work has mentioned reflection 

loss as a possible source of error, but no theoretical calculations were given.16 The 

directivity of the source is also varied, although this has little effect. The rods 

fabricated and measured for this work were about 1.5 millimeters in diameter, although 

the gradient portion was typically one third of the outer diameter. 

The curvature of a surface due to polishing (figure error) is another source of 

error that could occur with measuring larger polished samples. If a local surface 

curvature causes a local angle a, where a is the angle between the local surface and the 

y axis, Eq. (5-3) becomes 

sin0o ==—[ ]n2(r)^no
2
(, + ne

2
4/sin2ö3 + 

-2rt2(r)sin0o cos0o sina+ 
2 

2n]tl cos $Q sin 00 sin a[ ]2 ^ }, 9) 

Higher order terms in a have been dropped, and the last two terms in the square root 

are the error terms introduced. This formula can be used to get an approximate estimate 

of the error. In any case, the eiTor is under 0.05% for as many as 5 fringes of 
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Fig. 5-12. A graph of the fractional error in the accuracy of the RNF 
measurement caused by the extended size of the sample rod. The directivity 
of the source is determined by m. The error stays relatively unchanged for 
higher values ofm. A Lambertian source would be given by m^0. 

curvature over a 100 micrometer aperture. The polished samples typically had less 

than one fringe of curvature over the aperture. 

One source of error not considered here is the effect of stress on the glass. 

Residual stress in the glass from either fabrication or polishing causes an effective 

index change in the glass. This is especially true in silica rich glasses, since fused silica 

has one of the highest stress-optic coefficients of any optical material. Raine17 et al. 

suggest that the problem is even worse for interferometry, where the polishing must be 

performed on two sides rather than a single side. 
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There are two main sources of noise in the system. The first source results 

from power fluctuations in the He-Ne laser. Any fluctuations in laser power result in 

fluctuations in the measured index. Over a typical scan, the total amount of power 

reaching the detector might vary by 30% from the average. This means that a certain 

percentage noise in the laser causes 3 times that noise in the index measurement. The 

laser noise is typically 10mV on a 1 volt signal, or 1%. The use of a reference monitor 

is a straightforward method of accounting for drift in the laser beam. However, this 

method is better at reducing long term drift than at reducing short term noise. Noise 

with a frequency content higher than 0.5 Hz is difficult to divide out since the computer 

needs a finite amount of time to measure the two signals and this delay causes the 

detectors to become uncorrelated. 

Division reduces the rms noise by typically 50%, for bandwidths of 1 Hz. 

Long term drift of laser power is usually less than 0.5% over 30 minutes. 

The amount of index noise also depends on the quality of the optical polish. In 

practice, the noise in An is typically ±0.0002 rms. 

5.3.4.   Comparison   with   Microprobe   Analysis. 

Microprobe analysis was used to help confirm that the measurement system was 

working properly. Figure 5-13 shows a microprobe scan and a refracted near field 

scan of a radial gradient made with Ge02 doped silica. The microprobe analysis yields 

the percentage of Ge02 in the sample. The refractive index is assumed to be 

proportional to the amount of GeC>2 in the glass. (See Chapter 4 for the relationship 

between Ge02 concentration and refractive index.) 
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Fig. 5-13. Comparison of a refracted near field (RNF) scan and a microprobe 
scan of a radial gradient. For the microprobe, the index is assumed to be 
linearly proportional to the concentration qfGe02, see Table 4-1(b). 

The microprobe analysis confirmed that the RNF measurement was working 

properly. Some disadvantages of the microprobe are complicated sample preparation 

and limited spatial resolution due to electron scattering in the bulk of the material. 

5.3.5.   Comparison   with   a   Mach-Zender 

Interferometer. 

As an additional check on the operation of the measurement system, an 

interferometer was also used to measure some of the samples.   As previously 
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mentioned, a disadvantage of the interferometer was the necessity of polishing thin 

samples. 

The Mach-Zender interferometer used was one that had been used for 

measurement of chromatic dispersion in gradient index glasses. The rms phase error is 

±0.02 fringes, determined by scanning a homogeneous piece of glass. The relation 

between uncertainty in index and fringes is simply 

t , (5-20) 

where / is the thickness of the sample and A is the wavelength, giving an uncertainty in 

An of 0.0001 for a 100 micrometers thick sample. Since a goal is to be able to resolve 

in index to 0.0001, the interferometer is capable of this with a signal to noise of about 

1. 

The magnification of the imaging optics following the interferometer determines 

the spatial resolution. For scanning the samples, the 0.2 x 4.0 millimeter slit was 

replaced with a 200 micrometer diameter pinhole. Two lenses provide magnification of 

1.8x and 37x respectively, for an overall magnification of 67x. Hence an aperture at 

the detector plane of 200 micrometers corresponds to a feature size at the object of 3.9 

micrometers. 

Figure 5-14 compares a RNF scan with a measurement made by an 

interferometer. Software limitations in the interferometer allowed a maximum of about 

400 points per scan. This limited the interferometer scan to either the total width of the 

scan or the spatial resolution. In order to measure the whole sample, two scans were 

made. The phase (fringe count) at the end of the first scan was then added to the 

second scan. This assumes that the interferometer stage movement is accurate to within 
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Fig.5-14.  A refracted near-field scan and an interferometer scan of two 
different sections of sample 101. 

one micrometer. In any case, the scan clearly establishes that the interferometer is not 

able to resolve the sharp changes in index. 

Several possible reasons exist for the inability of the interferometer to measure 

this gradient well. The interferometer used was of the heterodyne type, first analyzed 

by Miceli.18 As used in a Mach-Zender interferometer, this method involves 

sinusoidally modulating a mirror mounted on a piezoelectric transducer in the reference 

arm19 A stationary detector placed in the fringe pattern can be used to measure the 

electrical phase shift between the signal from the fringe pattern and the modulating 

signal.  The electrical signal from this detector is filtered to remove harmonics and 
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compared with the phase of the signal being fed to the piezoelectric transducer (PZT). 

Under certain conditions, the electrical phase difference is direcdy proportional to the 

optical phase shift 

The change in refractive index is given by 

Apt 
An-—- 

* , (5-21) 

where r is the thickness, A the wavelength in free space, and Ap the change in phase, 

measured in fringes. The fringes are tracked between steps, so there is actually i.o limit 

on the change in index between steps of the scanning optics. 

It is necessary for the collection optics after the interferometer to be sufficiently 

fast to collect all of the light from the sample. The maximum slope of the gradient is 

given by 

dn    CA 
&    2tx t (5.22) 

where CA is the clear aperture of the collection lens, t is the thickness of the sample, 

and 2 is the distance from the sample to the collection lens. For a 100 micrometer thick 

sample, the maximum slope is 0.0016 micrometer'1. Samples measured by the RNF 

method had gradients slopes of about 0.0005 micrometer1. The difficulty is that a 

sample with severe detraction effects or absorption will cause errors in the 

measurement of the electrical phase shift, since the amplitude of the signal from the 

fringe pattern may vary so much that the signal is lost. The interferometer lacks the 

dynamic range needed to *rack the variations in amplitude. If the phase jumps more 

than half a fringe between successive measurements, the fringe count is in e"ror. 

Several pieces of pure silica were also polished to a 100 micrometer thickness. 

When measured in the interferometer, they had a power of a tenth of a fringe, 
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equivalent to a change in index of 0.0005. This showed that the process of polishing 

of thin samples may affect the index measurement slightly. 

5.4.    Conclusion 

The refracted near-field (RNF) method has been shown to be useful for 

measuring the particular refractive index gradients that were examined in this thesis. 

Use of this method has enabled the quantitative assessment of the layered structure of 

radial gradients fabricated by the MCVD process in gradients up tc 0.5 mm. in 

diameter. The refracted near-field method has pre^'^ly been used to measure smaller 

optical fibers up to 0.125 mm. in diameter. Theoretical calculations have shown that 

the RNF method is still accurate for larger samples. Interferometric methods are less 

useful in resolving the central index depression found in these samples. 

The instrument showed good spatial resolution (approximately 1.0 micrometer 

spot size) and high resolution in refractive index. Comparisons with an interferometer, 

microprobe analysis, and standards from NBS have been used to help verify proper 

operation. However, neither the interferometer nor the microprobe had spatial 

resolution as high as the RNF measurement system. 
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Chapter  VI.     Measurement  of  Lens   Performance. 

6.0.      Introduction. 

The goal of this thesis was to increase the understanding of how lenses 

fabricated by the chemical vapor deposition method perform in an imaging system, and 

therefore, the lenses were measured to assess their performance. Although an original 

goal had been to measure the coupling efficiency of the lenses when used to couple 

light into single-mode fibers, the index profiles had such a severe effect on the 

performance of the lenses that this was not possible. Instead, an attempt was made to 

corroborate the theoretical methods used in Chapter 3 and the effect of the lenses on a 

Gaussian beam input. 

This chapter discusses the construction of a near-field scanning system and the 

use of this system in measuring the effect of manufactured gradients on a Gaussian 

beam input. 

6.1.     Measurement   System. 

The performance of the lenses was investigated in order to determine the 

validity of the beam propagation method (BPM), which was used in Chapter 3 to 

analyze the effects of non-ideal profiles on lens performance. 

The system shown in Fig. (6-1) was built in order to measure the effect of 

refractive index perturbations on the intensity of a Gaussian beam input. A microscope 
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objective and scanning detector measure the intensity of the field at the back of the 

sample. The source laser was a He-Ne laser with an output power of 6 milliwatts. The 

measured beamwaist diameter at the output mirror was about 0.6 millimeters in 

diameter. 

To test the lenses, the output of the laser was transformed into a 100 micrometer 

diameter beamwaist at the test plane. Synthesis of Gaussian beams with particular 

characteristics can be difficult given a fixed source laser, a finite selection of lenses, and 

a reasonable amount of table space. In order to make this process easier and lend some 

insight to the possible solutions, the Delano (Y-Y) diagram was used.1"2 See 

Appendix B for a discussion of this useful technique for Gaussian beam design. 

Two microscope objectives, LI and L2, both with a 43.1 mm. focal length, 

were used to produce a waist with a diameter of 100 micrometers at the input plane. 

The samples were mounted on a glass microscope cover slip with optical cement in 

order to simplify handling. A three-axis stage held the cover slip to enable fine 

positioning. 

A 4.6 mm. focal length microscope objective, L3, with a numerical aperture of 

0.65, forms an image on the output side of the lens under test to the detector plane. At 

the detector plane, a 100 micrometer diameter pinhole is mounted over a silicon 

photocell. The detector assembly is mounted on a motorized stage so that the detector 

can be scanned along a line in the image plane. The output from the photocell is fed 

into a current pre-amplifier and then to a lock-in amplifier. An IBM computer controls 

the movement of the stage and reads the signal from the lock-in amplifier. Peak signal 

levels at the detector were about 2 microwatts. 
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To ensure that the beam diameters entering the lens were the correct diameter, 

they were measured by a knife-edge scanning method. A razor blade is positioned on a 

translation stage with its edge at the test plane, parallel to the y direction. The stage 

translates in the x direction, and all of the light that passes the razor blade falls onto a 

detector. Appendix B discusses the relation between the beam diameter and the 

detected power at the detector, P(x). 

The lenses LI and L2 were positioned to give a 100 micrometer beam diameter 

at the test plane. The magnification between the test plane and the detector plane 

depends on the relative location of those two planes and L3. Because of the extremely 

short working distance of lens L3, measuring the location of these planes in relation to 

L3 would be difficult. Instead, a knife edge was inserted in the sample holder and 

moved a known distance across the test plane. The corresponding movement in the 

image plane could be measured with the translating stage to obtain the magnification. 

The magnification was measured to be 42.2±0.2. 

This magnification means that for a pinhole diameter of 100 micrometers, the 

resolution at the test plane (the object plane of L3) is 2.0 micrometers. 

Three different thicknesses of a radial gradient were polished on both sides and 

measured with the system in Fig. 6-1. Figure 6-2 shows the refractive index profile of 

sample 103, as measured by the refracted near-field method. This sample was silica 

doped with Ge02, the total change in index is approximately 0.021. For analysis with 

the beam propagation code, a set of parameters was used to describe the index profile. 

Using Eq. (3-11), n(r) is given as 
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Fig. 6-2. Refracted near-field scan (dotted line) of the index profile of 
sample 103, along with the profile (solid line) that was used as input to the 
beam propagation code. 
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For this profile, the parameters were estimated to be as follows: 

(6-1) 

*00 1.480 

*10 -3.2E-7 micTometers-2 
Snd -0.021 

™d 32.0 micrometers 
Snp 0.0008 

\ 56 micrometers 

H'B 140.0 micrometers 
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The curve described by the set of parameters above is also shown in Fig. 6-2. The 

parameters were fit in order to approximate the magnitude and scale of the 

perturbations, due to asymmetry in the part the fit is better on one side of the profile 

than on the other. 

Figure 6-3 shows the near-field scan for a 100 micrometer thick sample and the 

corresponding intensity as predicted by the propagation method (BPM) described in 

Chapter 3. For the 100 micrometer thick sample, there already exists a noticeable 

amount of sinusoidal modulation. This modulation is directly due to the layer structure 

of the lens caused by the fabrication process, as described in Chapter 4. 

Figures 6-4 and 6-5 show the scan and theoretical intensity for a 250 and 500 

micrometer thick sample. The amount of sinusoidal modulation is increasing for the 

larger thicknesses. For the 500 micrometer thickness, a significant amount of power 

has been channeled out of the central portion of the Gaussian beam. This is analogous 

to effect shown in Fig. 3-12(c). 

The measured intensities are not exactly symmetrical, especially in the 500 

micrometer thick sample, Fig. 6-4. This may be due to scattering in the bulk of the 

sample. Bubbles may form in the glass during the manufacturing process which then 

act as scattering sites. 

The most noticeable difference between the measured fields and those predicted 

by the beam propagation method is that the amount of sinusoidal modulation is much 

greater in the measured lenses. It may be that the index fluctuations exist at the edge of 

the profile, but are below the resolution of the scanning method used in Chapter 5. The 

uncertainty in the measurement is approximately 0.0001, yet the calculation in Chapter 

3 show that an index modulation of this magnitude would effect the wavefront 

severely. 
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Fig. 6-3(a-b). The measured refractive index of sample #103 was used with 
the beam propagation method to predict the output field intensity for a 
Gaussian input beam. The predicted intensity for a 100 micrometer thickness 
is shown in (a). The actual intensity is shown in (b), it was measured by the 
scanning system described in Fig. 6-1. 
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Fig. 6-4(a-b). The theoretical (a) and the measured(b) intensities for a 250 
micrometer thickness of sample 103 are shown. 
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Fig. 6-5(a-b). The theoretical (a) and the measured(b) intensities for a 500 
micrometer thickness of sample 103 are shown. 
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6.2.    Annealing of Lenses. 

One possible method to reduce the layer structure of the refractive index profile 

is to perform a high-temperature anneal, so that the dopant (in this case GeO^ diffuses 

across the layer boundaries. Shiraishi3 et al. report on using this method in the 

fabrication of fiber tapers. 

As pan of an experiment to determine this, a sample was fabricated with a large 

step profile. The sample consisted of several layers with a constant amount of dopant 

flowing through the tube, there was no gradation between the silica tube and the inner 

layers, as there is in a normal parabolic profile. 

An anneal was performed for 10 hours at 1250 °C. The refracted near-field 

(RKF) scans of the edge between the silica tube and the deposited layer for the 

unannealed and the annealed sample are shown in Fig. 6-6(a-b). The results show that 

any diffusion that may have occurred was not measurable. 

Figure 6-7(a-b) show microprobe analysis scans for another pair of samples. 

The resolution of the microprobe is estimated to be in the 3 to 4 micron range, and it is 

limited by the scattering in the silica.4 The microprobe may be less accurate at 

measuring the low level of dopant found in these samples. 

A higher temperature anneal was attempted, but resulted in deformation of the 

sample. It was likely that for silica rich glasses, any temperature high enough to allow 

appreciable diffusion caused softening of the glass. 
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Fig. 6-7(a-b) Microprobe scans of sample 120 with a step index. In (a) *,.e 
sample is not annealed (two repeated scans are shown), in (b) the sample was 
annealed 10 hours at 1250 °C. 
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6.3.    Summary. 

A near-field scanning system was constructed in order to measure the effects of 

refractive index perturbations in radial gradients manufactured by the chemical vapor 

deposition process. 

Two effects predicted by beam propagation analysis of the manufactured 

gradients are sinusoidal modulation and depletion of the power from the center of a 

Gaussian beam. Both of these effects were observed with the near-field scanning sys- 

tem. Because both the theoretical and observed modulation of the transmitted field is so 

large, it was difficult to reliably quantify the amount of modulation. However, the 

measurements are evidence that the beam propagation method would be useful in 

determining the allowable deviations in the refractive index profile for a lens. 

Unfortunately, both theoretical calculations and investigation of the fabricated 

lenses showed that measurement of the single-mode coupling efficiency of these lenses 

was not possible. 

The observed modulation of the optical field at the very edge of the lens was 

greater than that predicted by the beam propagation method. This may be due to an 

inability of the RNF measurement to resolve the small changes in index at the edge of 

[he profile 
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Chapter VII.    Conclusions and suggestions for future study. 

The primary goal of this research was to increase the ability to analyze the use 

of radial gradients in single-mode optical systems. The design methodology outlined in 

Chapter 2 is a useful contribution allowing analysis of single-mode coupling efficiency 

in general optical systems. Although this method turned out to be less useful for 

analyzing the lenses fabricated for this thesis, it allows the designer to quickly 

investigate a wide variety of systems, within the context of general lens design 

software. More importantly, the designer need not take special steps to evaluate tilts, 

decenters, etc., which must be examined to produce a finished design. This allows the 

designer to investigate more complicated systems than would otherwise be possible 

using analytic methods. 

The beam propagation method has been shown to be useful in analyzing 

refractive index perturbations that could not be analyzed by geometrical ray tracing. 

Because the computational time is proportional to the length of the lens, the method is 

especially useful for the short lens lengths considered in this thesis. The beam 

propagation method has been used to obtain an understanding of the effect certain 

refractive index fluctuations have on the performance of a lens. 

The relationship of the theoretical results in Chapter 3 and the experimental 

measurements in Chapter 5 and 6 show that these methods are valid for investigation of 

extremely complicated non-ideal index profiles.    Unfortunately, the theoretical 
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investigations in Chapter 3 and the measurements performed on the fabricated samples 

suggest that vapor deposition methods may not be appropriate for imaging components 

in diameters greater than several hundred microns. The necessity of keeping the index 

modulation below 0.0001 in index means that a large number of layers need to be 

deposited. Although the fabrication process used in this thesis could be improved to 

increase the number of layers, for a change in index approximately 200 layers are 

needed to keep the index modulation below 0.0001. It may be that chemical vapor 

deposition processes are simply inappropriate for this purpose, but the techniques 

developed in this thesis would be well applied to evaluating improvements to the 

MCVD process or any other fabrication process. 

A system for measuring the radial gradients based on the refracted near-field 

method has been built for measuring the fabricated samples. Although this is a very 

sensitive method, the theoretical calculations done in Chapter 3 suggest that even 

greater resolution in refractive index would be useful. The refracted near-field 

apparatus built for this thesis could be improved by operating the scanning optics at a 

higher numerical aperture. It would also be necessary to reduce the polished surface 

roughness of the samples. Since most current research with the refracted near-field 

method involves cleaved fibers, the effects of polishing on accuracy and resolution 

have not been investigated. 



Appendix A; Symbols. 

Because this thesis touches on many different aspects of optics, a wide variety 

of symbols are used. This appendix contains a list of all the symbols used in this 

thesis. It is hoped that this will reduce any confusion on the part of the reader. The 

symbols are listed for each chapter, in alphabetical order. In some cases, obvious 

symbols, such as x,y,z or r,$ may be omitted. Symbols used in a following chapter 

are repeated, unless their meaning is obvious (such as X for wavelength). 

A.1. Symbols for Chapter 2. 

a 

a 

An 

g 

rx'     ry 

Radius of a radial gradient. 

Inverse of the pitch length L for a radial gradient, 

a . 

Coupling coefficient between two fields with mode numbers m 

and n. 

Magnitude of an index change for a gradient. 

Components of displacement of the chief ray from the center of the 

image plane. 

Angle of paraxial ray before leaving radial gradient. 

Equivalent to a. (inverse of the pitch length L) 

Normalized (with respect to the pupil radius) coordinates of the 

receiver field in the pupil. 
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Kx • ^i> Normalized (with respect to the pupil radius) coordinates of the 

source field in the pupil. 

k wavenumber, = 2nfk. 

A Wavelength of light in free space. 

n(r) Index of refraction of a radial gradient. 

n0 Base index of refraction, not necessarily a gradient. 

A'o o B ase index of refraction of a gradient 

N] o Parabolic coefficient for the gradient index profile. 

N20. Ar
30,...       Coefficients of higher order terms for a radial gradient. 

NA(r) Numerical aperture. 

Tj Coupling efficiency. 

r Radial coordinate. 

f4 7r,- Radius of entrance and exit pupils. 

%»% Optical field of source and receiver in the exit pupil. 

2 Far field half angle (to e'1 point in amplitude) of a Gaussian beam, 

assumed to be circularly symmetric. 
0,    ,6l 

Y>*   Y'y       Far field half angles of a receiver field, non-circularly symmetric 

Gaussian beam. 

-.,.«   -./.,       p^ fieid ha]f angles of a source field, non-circularly symmetric 

Gaussian beam. 

&F*HM Full width angle to half maximum power points for a Gaussian 

field. 

0, Computed angular radius of exit pupil in image space, as seen by 

the receiver. 
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<u. *„. 

e    e ».♦y »    >.-y 

ep.y,e 

^0.*y , ^O.-y 

*V« ' Py.* 

4»s • ?>..' 

'<? 

r 

Angles between the chief ray and the rays traced from the edges of 

the exit pupil to the image plane in the sagittal plane. 

Angles between the chief ray and the rays traced from the edges of 

the exit pupil to the image plane in the tangential plane. 

Projection of angle onto the xz plane between chief ray in object 

space and the optical axis of the object plane 

Projection of angle onto the y-z plane between chief ray in object 

space and the optical axis of the object plane 

Computed angular radius of entrance pupil in object space, as seen 

by the source. 

Angles between the chief ray and the rays traced from the object to 

the edges of the entrance pupil in the sagittal plane. 

Angles between the chief ray and the rays traced from the object to 

the edges of the entrance pupil in the tangential plane. 

Normalized coordinates of the source distribution in the entrance 

pupil. 

Normalized coordinates of the receiver distribution in the exit 

pupil. 

Radius of the e'] amplitude point of a Gaussian beam. 

Radius of the exit pupil, used when referring to the integration of a 

wavefront in the pupil. 

Thickness of a lens. 

Closing angle of the paraxial marginal ray in image space. 

Slope of a paraxial ray in a parabolic gradient. 
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xso% 

*0 

y(z) 

w. 

H-. 

w 
•y 

W. 

w. 

W(x,y) 

W*(x,y) 

CO •"»It 

4 

Distance from axis to the radius that is at the half power point of a 

Gaussian beam. 

Distance from axis to the radius that is at the e"1 amplitude point of 

a Gaussian beam. 

Radial coordinate of a paraxial ray in a parabolic gradient. 

Semi-diameter of a Gaussian beam assumed to be symmetrical in 

the x and y directions. 

Source beam semi-diameter in x direction 

Source beam semi-diameter in y direction 

Receiver beam semi-diameter in x direction 

Receiver beam semi-diameter in y direction 

Optical path difference (OPD) of an optical system, units are in 

waves. 

OPD, adjusted to include effects of decenter of chief ray from the 

center of the image plane. 

Gaussian beam semi-diameter for the input to a lens. 

Gaussian beam semi-diameter of the output of a lens. 

Quarter pitch length of a radial gradient lens. 

A.2.    Symbols for Chapter 3. 

ex Also used to describe the shape of radial gradients, see footnote 29 

in Chapter 3. 

A(kx.ky,z) Plane wave spectrum of the optical field. 
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Sn Magnitude of an index perturbation. 

Snp Magnitude of the sinusoidal modulation of the index profile. 

8nd Magnitude of the index depression. 

An Magnitude of an index change for a gradient. 

E(x,y,z) Optical field 

k wavenumber, = 27tnA 

K wavenumber, - 2izfk 

k   k Components of wavenumbers in x and y directions. 

h Period of a sinusoidal index modulation, where numerator is linear 

in r. 

4, Period of a pure sinusoidal index modulation, where numerator is 

parabolic in r. 

Nt,Ny Dimensions of the 2-dimensional array used in the beam 

propagation method. 

A'oo Base index of refraction of a gradien! 

Ario Parabolic coefficient for the gradient in,lex profile. 

OPD Optical path difference. 

OPL Optical path length. 

P Highest spatial frequency of an index perturbation. 

s Highest spatial frequency of the optical field. 

"d Width of index depression. 

WP e'] width of the magnitude of the sinusoidal index modulation. 

O) Semi-diameter of the radial amplitude distribution of a Gaussian 

beam, 2co is commonly referred to as the beam diameter. 

Ax Size of each array point in ^.e transverse direction. 
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Al Step size for beam propagation. 

ZP Effective quarter pitch distance of the sinusoidal oscillations of a 

refractive index profile. 

A.3. Symbols for Chapter 4. 

a Coefficient of thermal expansion. 

Dj Diameter of seed (input) rod. 

A Diameter of pulled (output) rod 

e Reduction ratio in pulling preform to a smaller diameter. 

Kj, K 2             Constants used in calculating partial pressures of the dopants. 

P Partial pressure of a dopant 

T Temperature, degrees Kelvin. 

VJ Velocity of torch during pulling process. 

V2 Velocity of tailstock (and hence pulled rod) during pulling 

process. 

A.4. Symbols for Chapter 5. 

a A parameter used in the equation for the intensity panem from an 

optical system with a centrally obscured pupil. 

a Local wedge angle in the end face of a polished rod. 

CA Clear aperture (diameter) of a lens. 
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£ Obscuration ratio for an centrally obscured pupil. 

kz Component of wavevector k along the z axis. 

n0ll Refractive index of the index matching oil. 

n(rc) Refractive index at the radius of the cladding. 

P(r) Total amount of power reaching detector when spot is focused at r 

from the axis. 

Geringes Uncertainty in fringe measurement. 

&M Uncertainty in index measurement. 

6air> &o> Ojt Angles used in tracing rays through the refracted near-field 

G2'^3^0max> diagram. See Fig. 5-4. 

9 3 min- 

t Thickness of a sample used for interferometer measurement. 

A.5.    Symbols for Chapter 6. 

P(x) Total amount of power reaching detector during a knife-edge scan. 

w Semi-diameter of a Gaussian beam. 

A.6.   Symbols for Appendix B. 

Radius of a radial gradient. 
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A(z), B(z),       Coefficients for a ray transfer matrix. 

C(z), D(z) 

b Confocal parameter for a Gaussian beam. This is equal to 

A 

dj, d2 Distance between a beamwaist and a lens, (before and after). 

fo Constant relating the H and the input and output beamwaist 

diameters for a lens. 

/;, f2 Focal lengths of lenses. 

H Scaling factor for Delano diagram. 

P(r,z) Intensity (power) of a Gaussian beam. 

<7o Complex beam parameter at the beamwaist. 

q(z) Complex Gaussian beam parameter. 

R(z) Radius of curvature of wavefrom of a Gaussian beam. 

2 Half angle of the divergence of a Gaussian beam. 

w(z), w e'] radius of the amplitude of a Gaussian beam. 

Hr wy Beam waists in the x and y planes for an astigmatic Gaussian 

beam. 

H0 Beam radius at the waist, of a Gaussian beam. 

H',. vv2 Input and output waists for lens as described with the Delano 

diagram. 

z0 A scale parameter for a Gaussian beam, equal to one half the 

confocal parameter. 



Appendix B: Gaussian  Beams. 

B.1.    Introduction. 

The equations describing the propagation of Gaussian beams are used 

repeatedly throughout this thesis. This appendix summarizes the most useful 

equations. A section is given on the use of the Delano diagram for designing the 

measurement system discussed in Chapter 6.   The Delano (y-y) diagram is a 

powerful design tool that seems to be considered obscure or difficult to learn. It is 

hoped that the inclusion of design data as described with a Delano diagram will lead to 

its wider use. 

B.2.   Fundamental   Equations  for  Gaussian   Beams. 

The equation describing the propagation of a Gaussian beam in free space is 

given by1 

HV 
£(r,z,r) = £0—-^-exp 

W{2) 

<   -f'   ^ 
exp 

<     ikr* ^ 

2R(z) 
exp(-i'(fo - at)) 

(B-l) 

where w0 is the beam size at the waist, w(z) is the e'] beam semi-diameter in amplitude, 

and R(z) is the radius of phase curvature of the wavefront. The spot size w(z) is given 

by 

179 



180 

w(z) = wc 1 + 
f    \2 

2   I 

Vzo (B-2) 

and flfzj is given by 

R{z) = z 

The term z0 is a scale parameter, it is given by 

1 + [Ä 
(B-3) 

A, (B-4) 

The waist semi-diameter at the beamwaist is given by w0, and n0 is the index of 

refraction of the medium. Keeping only the terms in Eq. B-l that affect the amplitude 

and not the phase, the radial variation of amplitude for a Gaussian beam is 

K'n 
£(r,z) = £0—~-exp 

w(z) 

f     \2>i r 

M*\ (B-5) 

For the rest of the calculations, the dependence on z will be dropped, the beam semi- 

diameter will be taken as r0. The intensity P(r) is proportional to the square of the 

amplitude, and is given by 

2% 
mi 

P(r) = —2-exp 
<   ,rv 
-2 

\     VoJ J (B-6) 

where P0 is the total amount of power in the Gaussian beam. In calculatvig integrals 

involving Gaussian beams, it is desirable to carry out the integration to a radius where 

there is negligible power in the beam. For example, in Chapter 3 a maximum radius of 

1.5 ry was chosen for computing rms OPD error as a function of step size for the beam 

propagation method. The amount of power contained within this radius is: 
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2*        l.5r- 
2ft M" J   ^H"2 

o    ^o 

'V 
Vroy 

2> 

rdr 

Carrying out the coupling integrals to this radius accounts for 98% of the power in the 

beam. 

An important quantity related to the size of a Gaussian beam is the confocal 

parameter b, where 

b = »0"0 

A . (B-8) 

After traveling from the beamwaist a distance equal to the confocal parameter, the e'1 

diameter of the beam is increased by a factor of V2. The confocal parameter provides 

an indication of how far the beam must travel along the axis in order to spread out ap- 

preciably. This can be valuable to get an estimate of the "scale" of the beam. After 

traveling several times the confocal parameter, the half angle of the beam divergence is 

nearly constant and given by 

2     nnwo . (B-9) 

In some cases the phase curvature and the beam size at a given plane are given, and the 

goal is to find the size and location of the beam waist. Dividing Eq. B-3 by Eq. B-4 

results in 

R      n "oHo . (B-10) 

This can be rearranged to give the distance required to travel to the actual waist, 
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2 = 
tfVwV2 

0   __ R 

Rki 
1 + 

( XnR 
Knn0w j 

(B-ll) 

Substituting this expression for the distance into the Eq. (B-3) allows a solution for the 

semi-diameter at the beamwaist, 

2 

wl = 

1 + 

w 
7 2 \2 

/tt (B-12) 

Eq. B-10 and B-12 combined give the location and size of the beamwaist if an observer 

knows the curvature and semi-diameter at another plane. 

B.3. Gaussian Beam Propagation in a Parabolic Index 

Media. 

The equations for the propagation of a Gaussian beam in a quadratic index 

media are well known and very useful for design purposes. The pitch length of a radial 

gradient lens is given by Eq. 2-4 as 

L = 2n. *o     _ 

-2M 
= 2 jr. 

-2An 
(B-13) 

Many of the computational programs written in the course of this thesis used A^10 

An 
instead of —r. Although they are equivalent, N,0 is easier to use because it is a single 

measure of the focusing power of a gradient index lens. If one is trying to fit an ex- 

perimental index profile, the exact value for the radius may be hard to define. In that 

case, it is easier to measure A;
10, which is simply the parabolic curvature of the profile. 
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The propagation of a Gaussian beam can be described by a single parameter, the 

complex beam parameter q(z). The parameter is a function of the propagation distance 

z and is given by 

C{z)q0 + D(z) 0.J4J 

A,B,C, and D are the terms of the ray matrix for the length of the optical system.2  The 

beam diameter and phase radius of curvature are related to q(z) by 

i      i       a. 
q{z)    R(z)    W(zK 

In a radial gr«.dient, the terms Aß,C, and D in Eq. B-14 are given by 

(B-15) 

A(z) = cos 
(2jt2_ 

L 

B{z) = — sin — 
In     \ L 

n( .    -In . flnz 
C(z) = sin 

D{z) = cos 
2nz 

(B-16a,b,c,d) 

The output beam size can be found for a quarter pitch GRIN rod by application 

of the previous formulas.   At the quarter pitch length, the argument inside the 

parentheses of Eq. B-16a,b,c,d is y- The output <? is then given by 

If the input beam has a waist wm at the first surface of the lens, then 

1      = 1 _ -/A 
q(z = 0)     q0     nwl 

(B-17) 

(B-18) 
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Combining the two equations above and noting that the output q is purely imaginary, 

the output waist v*^ is computed as 

2jrtV00
w« ^ ^l9) 

A useful quantity to know is the amount of gradient necessary to keep a 

Gauscian beam a: a constant SCIKI ^lomeicr. Verdeyen^ shows that the size w of such a 

beam is given by 

XL 
H> = 

Woo* (B-20) 

Using 

L = 2K. 
i-2NH (B-21) 

from Eq. (B-13) in Eq. (B-20) results in the necessary gradient, 

-A2 

M« = 
2;r2N00w

4 ^_22) 

B.4.    Astigmatic Gaussian Beams 

Coupling Gaussian beams into and out of rectangular waveguides is a common 

application. Since such waveguides have different dimensions in the x and y planes, 

the effects of astigmatic Gaussian beams must be understood by optical designers. 

Consider a Gaussian beam emitted from the rectangular waveguide of a diode 

laser.  The waveguide has different beamwaist sizes in the x and y directions, and 
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hence different angular divergences. When the beam reaches a lens, the beamwaists in 

the x and v directions appear to be located at different distances in z. 

The fact that the beam divergences are different in the x and y directions reduces 

the coupling efficiency. Let wx and wy be the two beam waists, and ZQA and z0<y be the 

scale lengths for the beam in the x and y directions. Then 

r0.x = 
TTW' 

(B-23a) 

and 

TCW, 
2o.,= 

A , (B-23b) 

where r0 is one half of the confocal parameter and X is the wavelength.   After 

propagating the beams a distance z, the radii of the phase fronts in the two directions 

are given by 

R   =2- 

and 

A-r 

f        -2    > 

:<4 

(B-24a) 

(B-24b) 

The optical path difference between these two phase fronts is obtained by first 

computing the sag for each wavefront alone. The approximate sag for a wavefront is 

given by 

h2 

sag = — 
*     2/? (B-25) 

where h is the height at which the sag is computed. The difference in sag between the x 

and y directions is taken as 
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A sag = 
.2R,    2R, 

CB-26) 

where the w is used instead of h. This is an approximate relation giving the difference 

in sag between the two wave fronts, llie OPD is then 

X      A ,2A,    1RXJ 

Figure A-l shows the calculated OPD difference using Eq. B-27 for a typical 

case. The waist wy is fixed at 0.82 micrometers. For the aspect ratio of 2.23, the 

waist wx equals 1.83 micrometers. For this case, only 200 microns from the source 

the difference in phase curvatures will decrease to less than a twentieth of a wave. 

A convenient measure of the distances required for the phasefronts to have 

practically the same curvature is given by the confocal parameter b, as given in Eq. 

B-8, 

*    n        27rw'2 
£ = 2z0 = —— 

A . (B-28) 

If H' =1.83 micrometers and X =1.3 micrometers, then the confocal parameter is 51 

micrometers. After a beam has traveled several lengths of the confocal parameter from ' 

the beam waist, its phase front appears to have a curvature centered almost exactly at 

the beam waist. Although the waists in the x and y direction are different, just a few 

hundred microns away the phasefronts will have practically the same radius of 

curvature. 

If this beam is now focused by a lens to a circularly symmetric receiver, there 

will st.il be a mismatch caused by the different sizes of the beam in the x and y 

directions. Bilger4 shows that the coupling efficiency is given by 
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Fig. B.l. A graph of the optical path difference between the wavefronts in 
the x and y directions. Even for the very high aspect ratio shown by the 
dashed line, the OPD between the two wavefronts in the x and y directions 
quickly decreases. 

where 

m. = 

r? = J(l-m:)(l-m;) 
(B-29) 

(B-30a,b) 

This equation was used in Chapter 2 to calculate the loss due to astigmatism for the 

laser diode coupler design. 
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B.5.   Use of the Delano diagram for Gaussian beam 

synthesis. 

A common problem in optical design with Gaussian beams is to find the 

appropriate distances between the waists and a single lens, given the input and output 

waists and the focal length of the lens. For example, in Chapter 6 it was necessary to 

produce a 100 micron diameter beam from the output of a He-Ne laser. The section 

below discusses the use of the Delano (y - y) diagram in order to calculate the lens 

spacing. 

Two lenses with a focal length of 43.1 mm. were used, the first was placed at 

the waist of the laser output., 80 mm. from the laser output coupler. Since the waist at 

the laser output coupler was 0.59 mm. in diameter, thus produces a waist in the rear 

focal plane of the first lens of 

KWr (B-31) 

where vv0 is the input waist, wi is the output waist of the first lens, and/j is the focal 

length of the first lens. The output waist is then 0.029 mm. The y - y diagram for the 

second lens is shown in Fig. B-2, the input waist for the second lens is at E. Kessler 

shows that for a lens of a given focal length/and desired output waist w2, two solu- 

tions exist.5 The possible distances from the input waist w, to the lens are given by 

w2 (B-32) 

where 

Jo 
H (B-33) 
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0.OZ9 f™ 

Fig. B-2.    The Delano diagram for the beam system described 
in the  text. 
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and 

* . (B-34) 

For this case, the input waist to the second lens is 0.029 mm., and the desired output 

waist is 0.10 mm. The distance dl is 

d, =31.3, 54.8 mm. (B-35) 

These two solutions correspond to the points C and D on the diagram. The two output 

distances are given by 

V       *'•• ) CB-36) 

or 

d2 = -182, 95.9 mm. (B_31) 

These correspond to the output beamwaists at B and E in the diagram. The beamwaist 

at B is a virtual beamwaist, and hence not useful in this case. The final solution is then 

given by the path ADFE. Tne total diSuLice between the bezmwaists !«• 

54.8+95.9=149.9  mm. 

In practice, some adjustment due to the finite thickness of the lenses will be required. 
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B.6.      Diameter   measurement   of   Gaussian   beams. 

Some of the techniques for measuring the diameter of Gaussian beams include 

knife-edge scanning and grating modulation.6-7,8 The intensity distribution in the x-y 

plane of a Gaussian beam of amplitude A0 propagating in the z direction is given from 

Eq. (B-6): 

/>(*.>') = —%-exp '-!£&" 
JTW v w 

V (B-38) 

where n is the beam diameter and the total power is PQ. A razor blade is positioned on 

a translation stage with its edge parallel to the y direction. The stage translates in the x 

direction, and all of the light that passes the razor blade falls onto a detector. The total 

power at the detector is given by P(x), where 

P(x) = 2fjL\~dx'txp 
f   jt" 

w 

.'2 

|J>'"P[-^, 
(B-40) 

Evaluating the integral in y and substituting the Eq. (B-39) for E0 produces 

w-Sdztdx-txp f    x.2\ 

7CW V w (B-41) 

The integral above can be simplified using the expression for the complementary error 

function9 

erfc(x) = -r*-f dic\p(-t2) 
V*J' , (B-42) 

giving 

P(x) = ^trfc 
2 

'x^ 

KWj (B-43) 
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Useful quantities to know are that the distance between the 90% and 10% power points 

is 1.8 times the beam diameter, and the distance between the 25% and 75% points is 

approximately equal to one beam diameter. 
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Appendix C: Test Lenses used In coupling code. 

This appendix contains descriptions of an assortment of lenses used to verify 

proper operation of the coupling code. The lenses are used to check for specific types 

of coupling loss. The lenses discussed are for use with CodeV^. Other lens design 

programs may handle tilts and decenters slightly differently, so the user must be careful 

on choosing the coordinate systems. The following descriptions are segregated 

according to the type of loss. Included with a description of each lens is the appropriate 

formula for calculating the theoretical loss. In some cases, it is desirable to know the 

accuracy as a function of the number of fans traced For this reason, the computed loss 

is given for various numbers of fans traced. 

AU of the lenses have the same base configuration: 

Numerical aperture- 0.15 
Wavelength- 1.0 micrometers 
Beamwaist semi-diameter, source- 4.24 micrometers 
Beamwaist semi-diameter, receiver- 4.24 micrometers 

C.l.     Perfect   Lens. 

The lens PERFECT1.SEQ has fourth and sixth order aspheres which reduce the 

aberrations. Higher order aberrations mean the OPD is not perfectly flat. 

The loss versus the number of fans is shown in the table below. The numerical 

aperture of the lens is 0.15. With a wavelength of 1.0 microns and a source beamwaist 

of 4.24 microns, the numerical aperture of the beam will be 0.075. This means that 

nearly all of the power of the beam is within the stop. 
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# of fans dB Loss 
9 -3.3E-02 
13     • -1.2E-02 
15 -1.3E-02 
17 -9.3E-03 

C.2.      Longitudinal   Defocus. 

The lens DEF1.SEQ has approximately 0.8 waves of defocus at the edge of the 

pupil, this has fourth and sixth order aspheres to reduce other aberrations. 

Unfortunately, higher order aberrations mean the OPD is not a perfect parabola, which 

would be the case for defocus only. The efficiency for the case of longitudinal defocus 

is given by (see Chapter 2) 

4Z2 + w 2 > 

v = 
H' Ll 

4Z2 + w,  + w 
w; 

2^ 

+ 4Z 
w. (C-l) 

where 

Z = 
Az 

In 

(C-2) 

This should give loss of -1.435 dB assuming all the light is getting through the system, 

i.e. the wings of the Gaussian are not truncated outside of the stop. For the case when 

there the stop is twice the beam diameter, the additional loss is about .02 dB, for a total 

of-1.455 dB. The actual loss is show in the table below. 

# of fans dB Loss 
17 -1.458 
19 -1.460 
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C.3.   Lateral   Decenter   of  the   Image   and   Object 

Planes. 

The lens DEC1.SEQ has the image surface decentercd by one micron in both the x and 

y direction. In all other respects the imaging is perfect, so that the loss is due only to 

decenter and the efficiency is given by (see Chapter 3) 

2    N 

*? = 
2d 

exP -77 w{ + w2 j (C-3). 

The magnification of this lens is -1, and the source waists are chosen to be equal, so the 

efficiency is simply given by 

r/ = exp 
w (C-4). 

For a decenter of one micron in both directions and waists of 4.24 microns, the loss 

should be -0.48 dB. Results for different numbers of fans are given in the table below: 

# of fans dB Loss 
17 -0.4869 
19 -0.4855 

The lens DEC2.SEQ is identical to DEC1.SEQ, except the object surface is decentered 

by one micron in both the x and y direction. The magnification of this lens is -1 and the 

source waists are chosen to be equal. The theoretical loss should be the same as for de- 

centering the image plane, -0.48 dB. Results for different numbers of fans are given in 

the table below: 
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# of fans dB Loss 
17 -0.4803 
19 -0.4803 

C.4.     Alpha  Tilt  of Image  Fiber. 

Tilting the image plane causes misalignment of the optical fields in the pupil. 

The lens TILT1.SEQ has a tilt at the image plane. From Chapter 3, the formula for the 

efficiency as a function of tilt is 

Vs 

KWl   +w2 J 
exp KW)*2 

(C-5) 

If the coupling medium is air, and the waists are of equal size, the above formula 

simplifies to 

v2N 

77 = exp 
f   (*»,*)a 

A2 

(C-6) 

For the case of input and output waists of 4.24 microns and a tilt of 1.5 degrees, the 

loss should be -0.528 dB. The loss is shown in the table below. 

# of fans dB Loss 
13 -0.549 
17 -0.5508 
19 -0.545 

C.5.   Alpha  Tilt   of Object  Fiber. 

Tilting the object fiber means that the source field distribution is not centered in 

the entrance pupil. The lens used is TILT2.SEQ, it differs from TILT1.SEQ in that the 

object fiber is tilted 1.5 degrees. Surface 1, which is located at the object plane, is a 
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simple tilt surface. To calculate the amount of shift of the source in the entrance pupil, 

the angle of the central ray with the object plane must be known. This is obtained using 

the GLO NO command to turn off the global coordinates, and then tracing the central 

ray. If the global coordinates are used, they will be referenced to surface 1, and the 

central ray will go straight along the axis of the global reference system, which is also 

the axis of the lens but not that of the object fiber. 

For the case of input and output waists of 4.24 microns and a tilt of 1.5 

degrees, the loss should be -0.528 dB. The loss is shown in the table below. 

# of fans dB Loss 
13 -0.5448 
15 -0.5459 
17 -0.5400 

C.6.   Beta   Tilt   of  Image   Fiber. 

The previous sections on tilted fibers used lenses for which the tilt of the image 

fiber was in the y-z plane. The coupling code must be able to handle tilts in other 

planes. To do this, it is necessary to trace 2 rays that go to the edges of the stop in the 

x-z plane. These are then used to obtain pupil shifts of the fiber distribution for the x 

direction. 

The lens is TILT3.SEQ. This lens has a beta tilt of the image plane of 1.5 

degrees. For the case of input and output waists of 4.24 microns and a tilt of 1.5 

degrees, the loss should be -0.528 dB. The loss is shown in the table below. 

# of fans dB Loss 
13 -0.541 
15 -0.542 
17 -0.538 
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C.7.   Compound   Tilt   of  Image  Fiber. 

The most general case for tilt is a tilt in both x-z and y-z planes. Equation (C-6) 

is used, where the angle 6 is a compound angle. 

The lens is TILT4.SEQ. For the case of input and output waists of 4.24 

microns and a tilt of 1.0 degrees in each direction, the loss should be -0.467 dB. The 

loss is shown in the table below. 

# of fans dB Loss 
13 -0.484 
15 -0.485 
17 -0.480 

C.8.   Compound   Tilt  of Object  Fiber. 

This case is analogous to tilting the image fiber in both alpha and beta. The lens 

is TILT5.SEQ. For the case of a tilt of 1.0 degrees in each direction, the loss should be 

-0.467 dB. The loss is shown in the table below. 

# of fans dB Loss 
13 -0.487 
15 -0.488 
17 -0.483 



Appendix D: Procedures for Chemical Vapor Deposition. 

D. 1. Properties of Materials used in Chemical Vapor Deposition. 

Listed below are some of the physical properties of silica and the binary glasses 
used in this thesis.. The tubes used for the deposition process were TO-8 tubes from 
Hearaus Amersil. The straightness of the starting tube is critical, and tubes from other 
manufacturers were not straight enough to use. 

Density, Ge02-Si02 
m/% Ge02 Density, g/cm3 

0.0 2.20 
2.5 2.22 
6.8 2.30 
8.0 2.31 
12.0 2.36 
16.0 2.44 

Density, TiC>2-Si02 
^% Ti02 Density, g/cm3 

2.6 2.201 
4.6 2.199 
5.5 2.200 
5.7 2.199 
6.4 2.197 
7.3 2.198 

Thermal expansion of silica as a function of temperature. 
T'°c a,xl0"7/°C 
-156 1.39 
-73 3.74 
93 4.92 
204 5.00 
426 5.53 
648 5.44 
871 5.17 

D.2. Tube assembly and alignment. 

Refer to Fig. 4-4 for a schematic of the equipment discussed in this appendix. 
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With a 12.5 mm. OD tube, firepolish one end to prevent it snagging the O-ring in the 
rotary joint coupling. 

Insert the tube into headstock chuck, with left end that has been firepolished just 
outside of the rotary joint coupler. Heat the tailstock end and flare out the end of the 
small tube at the tailstock end using a conical graphite tool. 

Insert a six inch section of 1.25" OD silica tube into steel ring chuck and put the ring 
chuck into the tailstock chuck. Using the six holding screws in the ring chuck, get the 
exhaust tube running true. First align the tube with the screws closest to the headstock, 
trying to get the tube centered, as measured just to the left of the steel ring chuck. After 
the tube is set so that it runs well there, use the screws that are at the tailstock end of the 
steel ring chuck and adjust these so that the end of the tube hanging out toward the 
headstock is running true. 

It may be useful to attach the exhaust fan to the outlet pipe. This will conduct hot air 
away from the PVC pipe, which can tend to get a bit soft. Heat the end of the exhaust 
tube and turn in the OD with a paddle. Since the tube is larger, this will require more 
gas from the torch. 

Now move the small tube into the rotary joint and tighten the O-ring coupling. It may 
be necessary to translate the rotary joint by loosening the two screws that hold the 
supporting plate. 

Move lathe burners to about 2" from headstock chuck, and heat with a broad flame to 
about 1300 C. while holding end of tube in hand. Use a latex glove to allow tube to 
spin more easily in your hand. When the tube starts to soften, hold the tube steady to 
straighten it, then drop lathe burners to allow tube to cool off. If this doesn't work the 
first time, a second anempt can be made. After a couple tries the tube will probably be 
so kinked that it will be unusable. 

Bring the exhaust tube about 1 inch from the end of the small tube. Aim the burners 
toward the exhaust tube, and heat till soft. To join the tubes, they both have to be 
white, with maybe just a tinge of pink. If they are pink through, they're too cold. 
Move the exhaust tube in so that both tubes eventually get heated. Push together 
quickly, leave the flame on the joint for a while, then slowly turn down to allow 
annealing. 

At this point, check the alignment of the small diameter tube. If it is off, try adjusting 
the screws holding the exhaust tube. If this improves the alignment, you must relieve 
the stress that adjusting these screws causes. To do this, heat the small diameter tube to 
about 1300 C for a few seconds. This should be done somewhere close to the 
headstock end. 
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D.S.   Deposition. 

D.3.1.    Preparation. 

Turn on the following: 
1. Rack supply. 
2. Thermistor thermometer (in fume hood). 
3. Overhead lamp. 
4. MFC controller. 
5. Pyrometer. 
6. IBM computer. 
7. Outlet box switch (in fume hood). 

Turn on the gas supply: 
1. Turn on oxygen at tank, do not adjust the regulator. 
2. Turn on hydrogen at tank, second stage of regulator should be at least 5 psi. The 
hydrogen tank should read at least 400 psi, this wül allow plenty of margin to complete 
the process. 
3. Turn on house gas at the wall. This feeds into the hand torch on the front of the 
equipment rack. 
4. Attach He line to the manifold lines. Turn on the helium supply. Adjust the needle 
valve till the helium flow is about 0.5 cc/sec, or one small bubble every second or so. 
5. Attach helium line to tubing leading to rotary joint. 

Before starting, doublecheck that the bubblers are at a sufficient level. 

The MFC controls the oxygen flow through three valves. Line #0 controls the auxiliary 
oxygen flow, this goes straight into the tube. Line #1 controls the flow through the 
SiCl4 bubbler. Line #2 controls the flow through the dopant bubbler. Set mass flow 
controller (MFC) to 5.0 on oxygen flow for all lines. Set the teflon val"es at the 
bubbler to bypass both bubblers. 

The glass tube should already be in the rotary joint. Double check that the O-ring 
holding it in place is tight. Set the lathe rotating a few minutes at about 17 rpm. 

Hook up the black exhaust tube to the PVC exit pipe at the tailstock end of the lathe. 
Turn on the small power supply that runs the exhaust fan. The fan should be run a bit 
above stall speed, anything faster is not necessary. 

Stop the lathe, check the tightness of clamps, especially the 6 screws holding the 
exhaust tube, then resume rotating. 

D.3.2.   Fabrication   of   Sample 

Turn on the stepping motor supply and run the program to start the process.  The 
program name is procö.bas. After starting the program, the MFC's must be initialized 
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by choosing that menu selection. You can then start the motor moving at its default 
speed. Two limit switches control the extent of the motor travel. These do not have to 
be exactly adjusted now, but make sure that the ftrecarriage can not run into the 
tailstock or head stock 

Open screw valves on stems of bubblers. 

Light the torch on firecarriage, keep temp low around 1500 or so for 2 passes. This 
allows contaminants to be burned off of the inside of the tube. It may be that these 
passes could be done at an even higher temperature. Set the auxiliary oxygen flow at 
this time. This flow insures that any contaminants will go out the exhaust stack. The 
level used for the SiC14 bubbler can also be set. 

Set the control for the MFC's by using the computer. After this has been done, the 
computer will take control of the MFCs the next time that the firecarriage hits the 
tailstock limit switch. The control for the oxygen through the SiC14 bubbler can be put 
on auto or left on manual, since it is held constant for all the passes. The control for the 
auxiliary oxygen must be left on manual. 

Adjust the limit switches. The travel of the torch should go from about 5 inches 
from the chuck at the headstock end to about 1/2 inch past the joint at the exhaust rube. 
It is helpful to heat the exhaust tube because this reduces the deposition on it and 
prevent clogging. Make sure that the firecarriage will not run into the rotating tailstock. 
The small Newport stage holding the burner should be adjusted so that the torch is 
centered about 5-10 mm. downstream of where the pyrometer is looking. This is so 
that at the default traverse speed, the pyrometer is measuring at the hottest part of the 
tube. 

When the firecarriage hits the tailstock switch, the deposition starts. At this 
time, increase the torch temperature to about 1950 °C and switch the 3-way valves to 
feed through the bubbler. It seems to be easiest to adjust the flame to a certain amount 
of gas and oxygen, and then just adjust the height of the burners in order to fine tune 
the temperature. The small auxiliary temperature gage can be used while adjusting the 
gas and oxygen flow. 

After everything is going, look into the bubblers to make sure that the oxygen is 
flowing through. 

After only a few layers, the temperature at the tailstock end is often 20 degrees 
higher than the temperature at the headstock end. In order to account for this, it is 
probably easiest to raise the burners a bit as the the torch moves along on a pass. 

As the layers are deposited, check that the oxygen is still bubbling and that the 
exhaust fan is working. The computer will list the layer number and the MFC settings 
for that particular layer. 

Continue passes until sample is done. As the number of layers increases, one 
must increase the gas and oxygen to the torch in order to keep the temperature high 
enough to complete the sintering process. 
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After the last pass, the computer shuts off the MFC valves for the collapse. 

D.3.3.   Collapse. 

Reduce the motor speed to aproximately 2 cm/min. After about 3 passes, it is 
probably best to do the rest of the passes by hand. One more slow pass, going back 
and forth over the tube, will collapse it. Turn the 3-way valves so that the bubblers are 
bypassed. 

The oxygen flow should be kept on to purge the lines, but the setting should be reduced 
to about 1.0. 

For the collapse, the flames should be about 2-3 inches long, with the tube a bit 
over 1/2 inch from the burner. Having the gas or oxygen turned up too much causes a 
lot of hissing, lowers the temperature, and makes the collapse impossible. For 
collapse, move the torch translation stage so that the torch is about 2 mm. closer to the 
tailstock end than the optical axis of the pyrometer. (For the deposition, it should have 
been about 8 mm. closer to the tailstock direction. The reason for this change is due to 
the slower torch speed.) 

When the tube is close to completely collapsed, disconnect the helium supply to 
stop a bubble of hot silica from forming.The time to pull the hose is actually when the 
collapse is switched to the manual stage. 

After the collapse is finished, let the tube cool off for 10 minutes or so. Leave 
the exhaust fan on for this time. Remove the tube by loosening only 2 of the 6 screws 
holding it at the exhaust end. Loosen slightly the O-ring joint, the headstock chuck, the 
tailstock chuck, then slide the tube into the tailstock exhaust pipe. Grasping the steel 
ring chuck to make sure that it does not fall, swing the head end of the tube out and free 
of the lathe. Take the rube out of the steel ring chuck. Place the steel ring chuck with the 
two loosened screws facing up. When it is used again, tightening only those two 
screws should cause the new exhaust rube to be fairly well aligned. 

Exit from the program and print out the data file "Profile.dat". This lists the 
settings used for the MFC control during the deposition. 

Close the screw valves on the bubblers, and replace the lens cap on the 
pyrometer. 

D.3.4.   Shut   down   Procedure: 

Turn off the equipment as follows : 

1. IBM computer. 
2. Thermistor thermometer (in fume hood). 
3. Overhead lamp. 
4. MFC controller. 
5. Pyrometer. 
6. Outlet box switch (in fume hood). 
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7. Put the lens cap back on the pyrometer. 
8. Turn off the helium supply. 
9. Shut off the rack, supply. 

Turn off the gas supply: 
1. Oxygen 
2. Hydrogen. 
3. House gas. 
4. Helium supply. 

D.4. Pulling to reduce diameter. 

D.4.1.    Preparation. 

Turn on the equipment as follows : 
1. Outlet switch in fume hood. 
2. Power to rack. 
3. Pyrometer. 
4. IBM computer. 
5. Make sure the personality module with the blue paint is in place in the Aerotech 
driver board. This is the one used to drive the firecarriage stepper motor. The other is 
used to drive the motor used in the RNT setup. Make sure that the cable for the motor 
is hooked up. In normal operation, the LED's on the Aerotech board for "remote" and 
"CZ" should be on. 

Turn on the gas supply : 
1. Turn on oxygen at tank, do not adjust the regulator. 
2. Turn on hydrogen at tank, second stage of regulator should be at least 5 psi. The 
hydrogen tank should read at least 100 psi, this will allow plenty of margin to complete 
the process. Much less hydrogen is needed for this than for the CVD process. 

In order to insure that the sample will not kink when heated, the ends of the sample 
where the chucks hold the sample must be aligned with the axis of the lathe. For most 
samples, this will no' be the case. There are two alternatives: 

For samples that only have a small misalignment, it is possible to soften the glass at one 
end and then align the far end while the lathe is rotating. 
A better procedure is to cut off all sections of the tube that are not collapsed and tack on 
short sections ( 4 inches or so ) of quartz tube to act as holders. 

The first step in this process is to cut off one end, about 1/2 inch from where the 
collapsed section starts. Put the remaining piece in one of the chucks, and center the 
free end by heating near the constrained end while the lathe is rotating. 
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Put a 4 inch section of quartz tube in the other chuck. These two can simply be tacked 
together. The two tubes holding the sample in between should now be perfectly 
aligned. 

Check that the tailstock motor is operating correctly. The power switch is by the side 
of the rack. A signal generator is used to drive the tailstock motor, the direction has 
been set so that the motor moves the tailstock away from the headstock. After the 
motor is seen to be operating, set the scale to 100 Hz and turn the dial down all the 
way. This will prevent the motor from moving. 

Move the small Newport stage holding the burner so that the flame is directly in front of 
the pyrometer. 

D.4.2.    Pulling. 

Start up the computer program to control the motion of the firecarriage. The 
most recent version is called Draw.bas. 

Start lathe rotating and light fire on firecarriage. While increasing hydrogen and 
oxygen flow, move torch up closer to the rod. When temp reached 1800 or so, slowly 
increase frequency being sent to tailstock motor. If the speed of the tailstock motor is 
ramped up too fast, it will tend to pull apart at the hot zone. The same thing will 
happen if the rod is heated up too much, since the silica will ball up and pull apart. A 
good temperature to be at is around 1800 °C. 

Gradually increase the speed of the tailstock motor until you reach the desired setting. 
At this point, any changes to gas flow, burner height, etc. causes the diameter to vary. 

For pulling down from the large diameter, the tailstock can go at 25 hz. For pulling 
down from the reduced diameter, the tailstock can go at 20 to 25 hz. The upper limit on 
the tailstock speed is around 25 hz any faster and it may pull apart. These numbers 
assume the default delay for the firecarriage motor, which is 1200. 

D.4.3.    Shut    down   procedure. 

Tum off the equipment as follows : 
1. IBM computer. 
2. Pyrometer. 
3. Rack power. 
4. outlet box switch (in fume hood). 

Turn off the gas supply : 
1. Oxygen 
2. Hydrogen. 



Appendix E: Procedure for refracted near-field scanning 

measurement. 

E.1.    Preparation and alignment. 

Turn on the He-Ne laser at least the day before, this gives it plenty of time to warm up 
and reach a stable operating temperature. 

Turn on the following items: 
computer. 
oscilloscope. 
lock-in amplifier. Set the current amplifier for the least sensitive setting. 
chopper motor. 
rack supply. 
stepping motor supply. 
reference detector power supply. 
set the current amplifier to its least sensitive setting. 

After the sample has been placed into the cell, place the shrink tubing cap on the back 
end of the rod to prevent light going through the rod and out the back end. 

Add index oil to the tank, place the cap on top of the tank. 

Stan the alignment procedure. The coordinate system is described in Fig. E-l. 
"Outboard" refers to the side closest to the edge of the table, "downstream" refers to the 
direction the light is going. 

It is useful to use a white index card placed after the cell and before the Fresnel lens to 
look at the patterns that the He-Ne causes after it hits the sample. The index of the oil is 
chosen to be a bit greater than the index of the rod, which causes the rod to act like a 
negative lens, diverging light. See Fig. E-2, this is the view looking downstream at the 
end face of the sample. 

If the beam is focussed off to the side of the sample, the area on the opposite side will 
be darker. This is shown in Fig. E-3(a-b), and is useful to tell where the beam is 
relative to the sample. 

Looking at the pattern when focussed off in the oil can be used to get a rough idea of 
the z focussing. If the He-Ne is focussed on the outboard edge of the sample, and the 
stage is too close to the objective, additional light enters from the outboard edge. 
Conversely, if the sample is too far away from the objective, some additional light will 
come in from the inboard edge, when viewed on the card. 
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Fig. E-l. A top view showing the "coordinate" system used to describe the 
measurement system. 

Outer diameter 
of sample 

Focused spot 

Dark region 

Fig. E-2. Shadow cast by rod, creating a darker region. 
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(a) 

Dark region 

Dark region 

(b) 

Fig. ES(a-b). Two diagrams of the pattern on a card held just in front of the 
Fresnel lens, for (a) the rod isfocussed on the outboard edge of the sample, 
for (b) the rod isfocussed on the inboard edge of the sample. 

By scanning an edge back and forth by hand wifh the motor shaft, the z-focus can be 
adjusted to obtain the sharpest edge response. To make sure the sample is centered in 
the y-direction, go to the center of the sample and adjust the y-axis until the pattern is 
centered top to bottom. The pattern may not be completely symmetrical. 

Balance the fields just off each side of the rod by using the horizontal adjustment on the 
aperture stop. 

E.2.. Data collection. 

After x, y, and z adjustments are complete, count the number of revolutions 
needed to scan the sample. To get a reasonable amount of the scan in the index oil, one 
should go until the shadow lines are about 30 degrees off of the vertical.   Each 
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revolution is equivalent to 4000 steps. Each step is equivalent to 0.127 microns. With 
the motor not energized, count the amount of revolutions from the 30 degree region on 
one side of the rod to the 30 degree region on the other side of the rod. Multiply this 
number by 4000 to obtain the total number of steps for the profile scan. 

Start up the data collection program on the IBM. The name is Rnfcol2.bas. 
Make sure the motor is on before running the program. 

Choose the menu item for scanning. The user will be prompted for information of the 
speed scanning, etc. some good initial starting points are: 

steps/move: 10 
# steps: 11000 
moves/sec: 4 
samples, ref. data:       33 

After the scan is finished, the amount of time taken is displayed. The output file has the 
parameters of the scan, and then four columns corresponding to the x distance, the 
signal voltage, the reference voltage, and the ratio of the signal voltage to the reference 
voltage. > 

After the scan, the arrow keys can be used to return the stage to its previous 
position. Fl is used to set a counting marker to 16000 before starting the scan, the 
count will increase by 1 for every step moved during the scan. 

After the scan is complete, the oil should be removed from the cell and both the oil and 
cell removed from room light. Continued exposure to light will cause the oil to change 
its refractive index and eventually become murky. 

If the end of the sample is tilted with respect to the optical axis, the focus will 
not be as sharp at one edge as the other. To correct for this, the following procedure 
can be used: 

1. Focus spot on outboard edge. Note reading on the z-micrometer. 
2. Go to inboard edge, refocus and note reading. Turning the z-micrometer 

clockwise decreases the reading and moves the sample towards the objective. Each 
gradation of the micrometer corresponds to 10 microns of translation. 

3. If the reading in pan 2 was less than part 1, then the inboard edge was 
further from the objective, and the sample must be rotated clockwise about the axis out 
of the table. If the reading in part 2 was greater than part 1, then the inboard edge was 
closer to the objective, and the sample must be rotated counterclockwise about the axis 
out of the table. 

4. Calculate 8, the amount of rotation needed. 

.   # gradations x 10 microns       r    jn e=——j ;       lrads] diam. sample (F-l) 

5. The rotation adjustment on the bottom stage can be used to rotate the sample 
about the vertical axis. The sample is 3.5" from the axis, the adjustment screw is 2.0" 
from the axis, so the multiplier effect is 1.75. The screw is 80 pitch, or 317.5 microns 
per screw revolution, this corresponds to an angular rotation of 6.25E-3 rads/screw 
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revolution. The actual effect is complicated by the fact that the sample translates much 
more than it rotates. 



Appendix F - Schematics And Wire Lists. 

This appendix gives a short description of some of the electronic wiring used in 
running the chemical vapor deposition process and performing the refracted near-field 
measurements. Table F-l shows the wire list for connections between the IBM PC 
serial port, the Bodine digital board and the Aerotech motor driver board. Jumper 
connections on the Bodine board are shown in Fig. F-l, along with the corresponding 
serial port settings. 

Figure F-2 shows the schematic for the detector used for the refracted near-field 
measurement. 

Purpose Bodine Color Aerotech   Purpose 

Drive Enable J2-1 orn 23A locAemote (hi=loc) 
Pulses out J2-4 whi 5A remote clock 
Direction J2-3 lgr 2C remote direction 
Cutback Override J2-2 Igr — — 
Output 4 (Bit 4) J3-10 blu 23C reset (low causes reset) 
Reset (input) J3-9 jumper J3-10 on Bodine board 
DoTü J3-5 jumper J3-6 on Bodine board 
step Inhibit/Enable J3-3 jumper J3-4 on Bodine board 
+5Vin J2-8 red 32C +5 V out 
gndin J2-6 blu 21C gnd out 

Limit Switches: Term. color Aerotech Input to Aerotech 

CW limit switch NO wht/gm 24A CW limit 
CW limit gnd gnd wht/blu 22A gnd 
CCW limit switch NO red 25A CCW limit 
CCW limit gnd gnd blk 21C gnd 

Table F-l. Connections between the IBM serial port, Bodine digital driver 
board and the Aerotech motor driver board. 
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1 

2 

3 

4 

5 

6 
7 

8 

9 

10 

11 

Address 07 

Addrtss 06 

Address 05 

Address 04 

Command Entry 

Prog I/O 

Status Reg 

Address 03 

Address 02 

Address 01 

Address 00 

JP2 

:::DD>: 
J i. 

open 

JP1-1 
JP1-2 
JP1-3 
JP1-4 
JP1-5 
JP1-6 

B 

open 
open 
open 
open 
B 
B 

JP1 

Baud rote=2400 
Duple=Echo none 
Network=S1ave 
Perity=Mork 
RXD=J1 pin 2 
TXD=J1 pin 3 

Fig F-l. Jumper settings and serial port connections on the Bodine drive 
board. 



Fig. F-2. Schematic for single-sided detector used for refracted near-field 
measurements. 


