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Preface

The purpose of this research was to develop 2 matkematical Jocationfallocation model
for the generalized search and rescue problem (GSARP). The model proposed hereir pro-
vides good feasible solutions for a single time block. Future research may show that this
model formulation can be adapted to provide good feasible search and rescue network
configurations for the multi-time period GSARP.

In the process of producing this thesis, I have had a great deal of help from others.
I would like to thank my thesis advisors Dr. Yupo Chan and Dr. James Ctrissis for their
continuing insight and perspective. I would also like to thank my research sponsors Dr.
Alfred Marsh, Capt. David Drake, and Ms. Sara Cohen for their assistance and technical
support on this challenging problem. A word of thanks is also in order for Mr. Douglas
Burkholder and Mr. Jack Phillips whose technical assistance with the computer services
was invaluable. Finally, I wish to thank my family whose love and support in the final

weeks carried me through to completion.

Jean M. Steppe
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Absiraci

k&' A multiobjective linear programming approach is applied to the problem of locatizg
receiving stations and HFDF receivers in 2 search and rescue network in order to maximize
the expected number of distress signals that are gzeolocated. The multiobjective formulation
is made up of two contrasting objectives: one maximizes the expected accurate lines of
bearing, and one minimizes tke excess coverage in the network. The individeal objectives
are weighted and combined into a composite objeciive functioa. The resultiag problem is
expressed as a two-stage network flow problem and is solved using SAS LP with 2 imited
number of binary variables. Thke problem is iteratively solved for several weightings of the
composite objective function_,&lutions are evaivated by 2 FORTRAN prosram provided

by the Department of Defense. In all cases, the best results were three to four standazd
deviations better than a sample of 1000 or more heusistically tasked random petwork
configurations. These results demonstrate that 2 two-stzge multiobjective formulation
consistently provides good feasible network configurations and is, therefore, 2 practical

alternative to the robust, vet intractable, nonlizear integer formulation.
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LOCAYING DIRECTION FINDERS IN A GENERALIZED SEARCH AND
RESCUE NETWORK

L Irtroduzciion

—— =The Urlted States is brilding 2 wosldwide network of search 2nd rescue (SAR) ste-
tiozs for performing SAR over brozd ocezan arezs. The objective of this network is to
geoloczte distress signals from aireraft 2nd ships in ozder to initizte SAR missions. CAn
optiznz] SAR neiwosk desizn wozld maximize the expecied successiul geolocations defiv-
ered by the wosldwide net over the ocezn zrezs considered™ (17:1). The design of 2n opiimal
SAR melwosk entails allocaling 2 limited number of receiving stations to 2 larger set of
candidate receiving siation locations 2nd 2llocating 2 limited number of high frequency

éirection finder (HFDF) receiver 2sseis among the selected receiving stations (17:2).

Receiving stations in the SAR network have 2 signal reception svstem which performs
2cquisition 2nd direction finding (performed by HFDF receivers) to provide lines of bearing
(LOB) for 2 disiress signal (17:1). Drake describes the process of geolocating 2 distress
signal (11:1-S). The process begins when Central Control is notified of the acquisition
of 2 distress signal. Upon notification, Central Control requests operators at other SAR
network stations to iransmit LOBs for the signal of interest. To decrease the likelihood
of grossly inaccurate position estimates, LOBs from at least three receiving stations are

required before making a geolocational point estimate of the distress signal.

The SAR facility Jocation and frequency allocation problem is currently handled with
a brute force greedv approach in which each candidate station is evaluated with a fixed
networh of active stations to determine which combination of stations delivers the Jargest
number of expected geolocations (5). Complete enumeration and comparison of all possible
netwosh confignrations is a combinatorially explosive tash and is not cunsidered an efficient

methodology for optimizing the expected number of geolocations in a SAR network.




7.2 HFDF Assignzent Proiers

The GSARF is related to the HFDF assignment problem resezrched by Drake and
Johmeon which atiempts fo maximize expected geslocations for a fixed network (11, 34).
The GSARP and the HFDF zssignment problem are similar in fhree respects. First, both
 problems seek 1o maximize the mumber of expected geolocations. Second, both problems
musi optimally 2ssign frequencies to a limifed number of HFDF receiver assets. Third,

both problems must’consider stochasiic {ransmissicn and propagation probabilities.

Drzke propeses 2 nonlinear objective function o optimize the expected geolocations
(11). Drake’s ronlinear function, while providing 2 robust description of the true objective
aad 2 mezns to measure ow good 2 soluiion is, becomes computationally impractical to
optimize as the size of the problem increases towards realistic sizes. For computational
tractability, Johnsoa formuiated the problem as 2 muitiobjective linear integer program
(MOLIP) using three objective functions which respectively maximized the expected num-
ber of lines of bearings, maximized expected number of transmissions, 2nd minimized
excess coverage of a frequency (14). Johnson solved the MOLIP using a network flow
model. The best solution was more than 13 standard deviations better than the sample

mean of a completely randomized set of HFDF assignments (14:37).

There are two additional degrees of difficulty in the GSARP that were not addressed
by the previous research. The first is that the GSARP must determine optimal locations
for additional receiving stations to be placed among a fixed base network of receiving
stations, whereas the HFDF assignment problem dealt only with a fixed base network of
stations. The second and most significant degree of difficulty is that the GSARP must
locate HFDF resources in bundles of eight to the receiving stations, whereas the HFDF
assignment problem used a predefined allocation to successfully solve the MOLIP using a

network flow model (14).

1.3 Rescarch Objeclive

The purpose of this research is to develop a mathematical programming model to

locate direction finders in a generalized search and rescue (GSAR) network. Specifically,
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the GSAR. problem (GSARP) entails locating additional receiving stations with a fixed
base network of receiving stations and assigning HFDF receivers and their frequencies to
selected receiving stations so that the direction finders are in the best configuration to
max:mize the number of expected successful geolocations in a given time block for 2 SAR
network.

1.4 Overview of Research Effort

The research effort presented in the remzining chapters includes 2 literature review,
model formulation, compatational experience with model formulations, solution method-

ologies, network representations and results.

Selected facility location problems are discussed in the literature review in Chapter
2. Chapter 3, Model Formulation, presents a nonlinear integer programming (NLIP) for-
mulation developed from Drake’s nonlinear formulation of the HFDF assignment problem,
as well as 2 simplified multiobjective linear integer programining (MOLIP) formulation
that was motivated by Johnson’s HFDF assignment problem research (11, 14). Computa-
tional experience with these formulations is documented in Chapter 4 to support the use
of the MOLIP formulation for the GSARP. Chapter 5 describes solution methodologies
that are used to solve the GSARP. Linear and integer programming, multiobjective opti-
mization strategies as well as motivation for network representations are all discussed in
detail. Chapter 6 then discusses the potential of two specific network representations for
the MOLIP formulation. The network representations are described with test case results

validating the selection of a two-stage network representation.

Chapter 7, Results, presents thesis research results for the two-stage network repre-
sentation of the MOLIP formulation. Results both with and without a covering constraint
are presented for comparison. A DOD computer program cailed EVAL evaluates the
approximate nonlinear objective function value for each MOLIP solution (8). The best
solution for each time bloch with and without a covering constraint is compared with the
mean and standard deviation of EVAL results found by the Department of Defense for
a large set of randomly generated network configurations (each configuration satisfies the

MOLIP constraints) that are each tashed by a greedy heuristic which maximizes the lines
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of bearing at each individual station. This heuristic provides good fezs:ble solutions for a
fixed network (10).

This sesearch shows that the two-stage MOLIP methodology consistently selects
good feasible location configurations that are better than nearly all of the randomly selected
network configurations which were heuristically tasked. The MOLIP heuristic is a robust
methodology for lIocating HFDFs in a2 SAR network. It is effective compared to a random

selection-and efficient compared to the computationally intractable NLIP formulation.




II. Literature Review

2.1 Iniroduction

Selected facility location literature related to the generalized search and rescue prob-
lem (GSARP) will be presented. Specifically, this literature review coverslocation problems
with uncertainty, maximum-expected-covering location problems, backup-coverage loca-
tion problems, and equity-maximizing location problems. Literature concerning HFDF
bearing accuracy and model selection will be covered as part of model formulation in
Chapter 3. Literature related to solution strategy will be covered as part of solution
methodology in Chapter 5.

2.2 Facility Location Problems

In #*An Overview of Representative Problems in Location Research,” Brandeau and

Chiu give a general definition of a location problem (3):

A location problem is a spatial resource allocation problem. In the general
location paradigm, one or more service facilities (“servers™) serve a spatially
distributed set of demands (“customers™). (3:646)

The objective function of a typical facility location problem optimizes costs, such as dis-
tances or time, related to facility-facility or facility-demand interactions (3:646-647). In

other words, facilities are located so that customer demand can be satisfied economically.

Two classes of facility location problems found in the literature are the sei covering
problem and the p-median problem. The set-covering problem minimizes the number of
facilities located for a predetermined level of coverage, whereas the p-median problem
requires that p facilities be located with the objective of being proximal to the demands

on the average.

Facility location problems can have either uncapacitated or capacitated demand.
The uncapacitated problem has no restriction on the demand that can be satisfied by each
facility, while the capacitated problem restricts the amourt of demand satisfied by each

facility (19:7-8). The capacitated facility cannot always respond to all demands.




The GSARP can be modeled as a capacitated p-median facility location problem
with the receiving stations acting as service fadilities, the frequency bands at transmitter
locations acting as customers, and the joint probabilities of transmission, propagation, and
bearing accuracy acting as a weighted demand. The weighted demand acts like a fixed

charge on the allocation of a specific frequency to a specific receiving station.

The following paragraphs discuss location problems with uncertainty and three types
of capacitated facility location prcblems: maximum-expected-coverage location problems,
backup-coverage location problems (models I, II, and III), and equity-maximizing location

problems.

2.3 Location Problems wiih Uncertainty

Demand is sometimes uncertain when facility location decisions are made. In the
GSARP, the transmission of a signal on a given frequency is given as a probability distri-

bution for each distress location.

A two-stage stochastic inodel for production and location under demand uncertainties
is considered by Louveaux and Thisse (16:145-149). During the first stage, the firm uses
the predicted demand to choose the location and production capacity to maximize its
expected profit utility. During the second stage, the firm uses the true demand to choose
a production distribution schedule so as to maximize profit, given location and production

decisions made in stage one.

The GSARP can be thought of as the first stage of optimization where the location
of receiving station and HFDF assets is determined using stochastic demand. During the
second stage of a two-stage stochastic model, the HFDF assignment problem could be

solved using updated transmission and propagation probabilities.

2.4 Mazimum-Ezpecled-Covering Location Problem

Daskin considers the maximum-expected-covering-location problem where demand
and server availability are unknown (7:48-68). This model specifically addresses the pos-

sibility that facilities may not be available to respond to demand. Daskin makes three




I
important assumptions: the probability p that a facility can;;t respond to demand js the
same for all facilities; the ability of a facility to be busy is independent cf all other facilities
being busy; and ousy probabilities are invariant with.respect to the server location (1:278).
However, Daskin’s assumption of equal and invariant busy probabilities does not hold for
the GSARP. The GSARP has propagation probabilities representing the busy probabil-
ity of an HFDF asset. These busy probabilities differ for each time period and for every

combination of distress location, frequency, and receiving station.

Batta, Dolan, and Krishnamurthy reexamine Daskin’s formulation of the maximum-
expected-covering location problem (1:277-286). They investigate relaxing the three as-
sumptions made in Daskin’s model. In relaxing the assumptions, Batta, Dolan, and Kr-
ishnamurthy use a hypercube queuing model in a single node substitution heuristic to
determine the set of server locations which maximizes the expected coverage (1:277-286).
They adjust Daskin’s maximum-expected-covering location problem, based upon random
sampling of servers without replacement, to produce results in better agreement with the
hypercube queueing model. Batta, Dolan, and Krishnamurthy conclude that all three
models (Daskin’s maximum-expected-covering location problem, hypercube queueing, and
adjustment of Daskin’s maximum-expected-covering location problem) produce results of
similar quality (recommended facility locations are physically close to one another). How-
ever, it is noted that computational intensity and accuracy of coverage estimation differ

for each model (1:278).

The GSARP can be conceived as a maximum-expected-covering location problem.
The demand is stochastic, represented as a probability distribution for each distress signal
location for a given time period. Server availability is also stochastic, represented as the
probability that a signal propagates on a particular frequency from a distress signal location

to a receiving station location for a given time period.

2.5 Backup Coverage

Backup coverage involves the second and subsequent coverage of a demand node
by service facilities. The efficient coverage of stochastic demand and server availability,

may require backup coverage in areas of high demand (13:1434). The GSARP which has
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stochastic demand and server availability‘;'équires frequencies be covered by at least three
HFDF assets for geolocations to be attempted on that frequency. Additional HFDF assets
in the network will result in backup coverage. The GSARP reduces to locating receiving
stations and HFDF assets and allocating backup coverage among the assets to maximize
the number of geolocations in the network. The following paragraphs review the Hogan

and Revelle and the Pirkul and Schilling concepts of backup coverage (13, 21).

2.5.1 Backup Coverage Model I (BACOP1). Two multiobjective medels for backup
coverage are presented by Hogan and Revelle (13:1437-1440). Their first model, BACOP1,
incorporates aspects of both the set-covering location problem and the maximum-covering
location problem. BACOP1 has two objectives. The first objective is to minimize the
number of facilities sited which ensure primary coverage of demand. The second objective
maximizes the amount of demand that is provided backup coverage. In this formulation,
a structural backup coverage variable is assigned the value of one to identify when a
particular demand is covered two or more times and is assigned the value of zero otherwise.
The backup coverage variable for a particular demand node is weighted by the amourt of
demand at that node. This insures that some lev.l o: backup coverage is provided for
the maximum amount of demand. This model can also be extended to levels of coverage
greater than two with additional constraints and an additional objective for each level

(13:1443).

The GSARP has some similarities and differences to the backup coverage model BA-
COP1 (13:1437-1440). Both require primary coverage of demand. However, BACOP1 is
a set-covering problem minimizing the number of facilities needed for primary coverage of
all demands. The GSARP, on the other hand, is a p-median (p-facility) maximal cover-
age problem which can be constrained to provide primary coverage of three HFDI"s per

frequency.

2.5.2 Backup Coverage Model II (BACOP2). Hogan and Revelle’s second backup
coverage model, BACOP2, permits assignment of backup coverage to areas of high demand,
prior to assigning first coverage to areas of low demand (13.1437-1441). The BACOP2

formulation, an extension of the maximum covering location problem, is multivbjective.




The first objective maximizes the demand that receivés primary coverage, and'the second
objective maximizes the demand that receives backup coverage. The amount of demand
receiving primary and backup coverage is maximized because the structural variables in
the objective functions representing a given demand: node are weighted by the amount of

demand at that node.

The backup coverage model BACOP2 discussed by Hogan and Revelle has two sig-
nificant crossovers to the GSARP (13:1437-1441). First the GSARP requires a p-median
maximal covering model which BACOP2 represents. Second, the concept of weighting

both primary and backup coverage by the demand for coverage is a reasonable way to

model the GSARP.

2.5.3 Backup Coverage Model III. Pirkul and Schilling discuss a maximum-covering
location problem where primary and backuy services are required from separate facilities
for each demand .. 140-153). This model is applicable when considering demand for
emergency services. In this situation, it is desirable to have backup coverage available
within a certain distance if primary coverage is not immediately available. Pirkul und
Schilling’s research recognizes the negative effect of assigning demand to a facility that is a
great distance away. Their model attempts to provide acceptable assignments for uncovered
demands by using a declining distant-dependent function for demand assignments that

exceed the acceptable coverage distance.

Pirkul and Schilling’s distant-dependent function has potential crossovers to the
GSARP. For the GSARP a similar concept, called an accuracy-dependent function could
be used to weight each line of bearing (LOB). This type of a weighting function could

embody the negative effect of assigning demand to a facility that has large LOB errors.

2.6 FEquity Maximizing Location Problems

Most facility location problems maximize benefits o1 minimize cost (or travel dis-
tance) across all demand in the system. Tlhis is efficient but not equitable, because some
customers must travel farther to 1eceive the same benefit (2:137). This inequity becomes

relevant when all custcmers pay the same fee to use a facility. In this case, all customers




should receive the same benefit. Berman and Kaplan consider a facility location problem
which.attempts to equalize facility benefits for all customers by'using taxes or side benefits
(2:137-138). Their formulation attempts to maximize the benefit derived per customer by
using an approach which minimizes the sum of absolute taxes or side payments that would

be required for a given set of facilities and demands to be in equilibrium (2:140-143).

The GSARP might benefit from equity-maximizing considerations. For the HFDF
assignment problem, Johnson discusses the decreasing utility of assigning additional HFDF
receivers to frequencies once a frequency is adequately covered (14:17-18). To deal with
this, Johnson used an objective which penalizes assignment 'of additional HFDFs to a
frequency that already has its fair share of HFDI resources (14:18-19). If there were no
penalty for excess coverage, HFDF assets would be assigned to frequencies with the greatest
probabilities of transmission and propagation with no regard for the number currently
assig. - ! to the frequency. This objective imposes a side payment to the assignment of

HEDT resources which exceed the equal coverage criteria.

2.7 Conclusions

The GSARP is best characterized as a capacitated maximum-covering location prob-
lem. The problem is capacitated due to the limited number of HFDTF receiver assets
available to fulfill demand. The GSARP is maximum covering, since the objective is to

maximize the number of geolocations.

Hogan and Revelle discuss a backup coverage model for a maximum covering location
problem, BACOP2, which has potential crossovers to the SAR problem (13:1436-1437).
Two modifications can make the BACOP2 formulation more suitable for the GSARP.
First, primary coverage for all significant demands should be required. Second, each unit
of primary and backup coverage should be weighted by the amount of demaud it is expected

to satisfy.

Pirkul and Schilling present the concept of a declining distant-dependent function to
incorpoiate the negative effect of assigning a facility to a demand that is far away. For

the GSARP, a similar concept of a declining accuracy-dependent function could be used

10




to'weight each line of bearing. This weight could embody the negative effect of assigning

demand to-a HFDF asset to-a station that has large LOB errors.

An equity-maximizing objective could also be used for the GSARP, similar to the
way Johnson penalized excess coverage for the HFDF assignment problem (14:17-18). This
-objective recognizes the decreasing utility of assigning additional HFDF receivers to a

frequency that is already adequately covered.

11




III. Model Formulation

This-chapter: presents both the nonlinear and the linear multiobjective formulations
of the generalized search and rescue problem (GSARP), along with a summary of the
literature motivating the multiobjective linear formulation, The first section describes the
scoped thesis problem, as well as the comprehensive GSARP. This is followed by a complete
description of the notation used for the nonlinear and linear models. The last two sections

present the nonlinear and the multiobjective linear formulations.

8.1 The Generalized Search and Rescue Problem (GSARP)

The GSARP requires that HFDF receiving stations and receiver assets be located
within a fixed search and rescue (SAR) network so that the number of expected geoloca-
tions is maximized. Each receiving station location has a set of propagation probabilities
which are unique for each combination of time block, transmitter, station, and frequency.
Each transmitter location has a set of transmission probabilities which are unique for each
combination of time block, transmitter, and frequency. A 24 hour day is broken into
12 two-hour time blocks. The purpose of this research is to develop a model which can

determine an optimal SAR network configuration for any two hour time block.

Determining an optimal SAR network configuration is a combinatorially explosive
task. For example, if 10 additional receiving stations are to be chosen from 25 candidate
stations, there are more than 3 million possible network configurations. If eight HFDF
receivers can be assigned to a receiving station and there are 30 candidate frequencies, this
results in more than 5 million possible frequency assignments for the HFDF receivers at
any station. If there are 30 frequencies and 10 receiving stations each with eight HFDF re-
ceiving assets, there are more than 10% possible SAR network configurations. It is clearly
impractical to consider complete enumeration and comparison of all possible network con-

figuration.

The comprehensive multi-time period GSARP has the additional dimension of time
which makes it a more complex problem than the single time period GSARP, which is the

focus of this research. The multi-time period GSARP involves determining a good feasible

12
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network configuration of receiving stations and HFDF receivers that is robust over all time
périods. Eventually a robust single time period solution methodology which produces good

configurations can be expanded to consider thé multi-time period GSARP.

3.2 Notation

The following notation is used for the nonlinear and linear model formulations of the

GSARP.

Subscripts: Let ¢ index transmitting locations
j»h index receiving station locations

k index frequency bands

Decision Variables:

if a receiving station is located at j

X; =
0 otherwise
1 if an HFDF receiver is located at station j as-
/ Xik = signed to frequency k

0 otherwise

Z; = the number of bundles of HFDF receivers allocated

to station j. Fach bundle has eight HFDF receivers.

Yy = the number of HFDF receivers placed on frequency &
which exceed the fairshare of resources for that fre-

quency.

13
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Probabilities:

Ueaz{ X} = the probability of 2 sigmal from location 7 proge-

Zalize to 2 periiceler coszbimation of siztions, a-

Fz = the probability that 2 distress siemal ezxzamaiine from
distress Jocation 7 is broadcastizg on frequency k.

Pz = the probability that 2 disiress sigmal exmanating from
location  propazzies fo stztion 7 on frequency k.

W;; = the probability thet 2 Hpe of beaming from siafion j is

within the 2ccepiable dircelzrized exvor region defined

for transmitiing locesion 1.
Other Notation:

F = the set of siziions belonging to the fixed base met-
work of receiving siaiions 2lready locaied in the SAR
netwosk.

d: = the a2cceptzble dirculasized esror radivs defined for
iransmitter 1.

C = the set of 2ll combinations of three or more receiving
stations.

«a = any combination of three or more receiving stations.

( 1 if combination a vields 2 confidence region radius

i less than or equal to the acceptable error radius
oi = 4
of transmitter joration i.

| 0 otherwise

FS = the fairshare of HFDF receivers for each frequency
NB = the total number of bundles of HFDF receivers

NS = the total number of receiving stations

14




32 Nowkueer Foomnleton

This section presents the noalivesr pmatbermatical forrmulation of the GSARP adzpted
froem Drale’s formulation for the freguency assizmment problem (11). Drake’s porlinear
formulation c2m e stated 25 Maximize the member of expected geslocations for the SAR
network which is subject £o 2 fived base metwork of HFDF receiving stations, smited
additionz] HFDF receivime stztions, Bmited HFDF receivers, 2llocation of HFDF receivers
in muliiples of eight, allocation of HFDF receivers only to locations which have an HFDF
receivieg station, 2nd 2l varizbles binzry or integer. Three Iines of bezring 2rd 2 confidence
resioa raéivs of lecs than d; zre requizred for potentizl geolocaticn of tramsmitter 7.

3.3.1 Nonlmeer Objective Function. The roxlinezr objective function is the prob-
2bility of 2 distress siznal trensmission, Fiz. summed over 2l fransmitter locziions, 7, and
frequencies, k, muliiplied by the probability of 2 siznal propagating to a pariicular com-
bination of siziions, I,:(X), summed over 2ll combinations of three or mose stztions,
C. muliiplied by an indicator varizble, I.,. that indicates whether 2 combination of sta-
tions procuces 2 circularized confidence region with 2 radius less than d,. The probabiliiy,
L..:(X). of 2 siznal propagating to 2 particular combination of stations is the probability
ihat the signel propagates to all stations in ithe combination multiplied by the the HFDF
binary decision vanables for that combination, 2ll multiplied by the probability that the
signal does not propzgata io any other stations multiplied by the HFDF binary decision

variables for these other stations not in the combination. In mathematical terms,

Vo X) = ['H P X 5&} [H( 1- I’;hkx\'u)] .

14 hea

Using Ujat(X), the complete nonlinear objective function is defined as:

1 K
max Zz sz Z U:ai:(-\—)[m'
i k aeC

2.3.2 Constraints. The nonlinear formulation has six constraints. The first con-

straint ensures the fixed base networh of HFDF receiving stations is not disturhed:




X;=1, YjeF

The second constraint eisures that the number ¢f HFDF receiving stations located

does not exceed the total number of HFDF receiving stations available:
J
Y X; < NS.
i

The allocation of HFDF receivers in multiples (bundles) of eight is handled by the

third conciraint:

K
EX,';; -82;=0, Vij.
E

The fourth constraint was developed so that the number of bundles of HFDT receivers

located does not exceed the toial number of HFDF receivers available:
J
Z Z; < NB.
j

The fifth constraint prevents the allocation of an HFDF receiver to a location which

does not have a station:
Xir—~X;50, VYVijk

All variables are restricted to be integer or strictly binary by constraint six:
X;e{0,1}

X;i € {0,1}

Z, = integer.

16
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3.3.3 Understanding the Nor;iinear Formilation. A careful look at the nonlinear
formulation shows that expected behavior of a SAR network is modeled. In a SAR network
there is declining utility for each additional HFDF receiver on a frequency that already has
adequate coverage (6). When coverage for a frequency is maximized, there is no utility in
assigning additional HFDF receivers on that frequency. A study of the nonlinear objective

function shows the following items to be true.

o Less than primary coverage for a frequency results in no contribution to the objective

function.

e Primary coverage consisting of three HFDF receivers assigned to a frequency only

contributes positively to objective function.

o Further coverage consisting of primary coverage plus additional HFDF receiver(s)

assigned to a frequency contributes positively to the objective function.

¢ Frequency saturation points for frequencies may exist where putting more resources
on that frequency results in almost no additional expected geolocations for the net-

work.

¢ During the allocation of an HFDI' resource the nonlinear objective considers all
possible allocations. The difference in the sum total of probabilities with and without
an HFDF resource decision variable X, represents the number of additional expected

geolocations resulting from the allocation of an HFDF to X;.

3.3.4 Computational Feasibility of the Nonlinear Formulation. The nonlinear for-
mulation is a robust description of the GSARP which seeks to maximize expected ge-
olocations. This formulation is robust, because it explicitly addresses the combinatorial
nature of the GSARP. Unfortunately, the nonlinear formulation has an explosive number
of nonlinear terms for even small SAR networks. For example, a location problem with
just ten receiving station candidates and five frequencies results in 5060 nonlincar terms
in the objective function. Binary decision variables also complicate the problem, because
some type of implicit enumeration scheme must be used to find an optimal solution. A rule

of thumb bounding the number of possible solutions for problems with binary variables

17
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requiring implicit enumeration is 2" where n is the number of integer variables. The num-

ber of possible solutions to be enumerated becomes unreasonably large very quickly as the
number of variables;n,increases. Clearly this type of formulation is impractical even for
small problems. A simplified formulation is required which embodies characteristics of the

inherent nonlinearities and seeks to directly or indirectly maximize expected geolocations.

3.4 Multiobjective Linear Integer Formulation

For computational tractability, the GSARP is formulated as a multiobjective linear
integer programming (MOLIP) model. The following paragraphs present a summary of the
literature motivating the formulation and descriptions of the accuracy weighting function,

objective function, and constraints.

3.4.1 Summary of Relevant Literature. There are three properties of the nonlinear

objective function which characterize the SAR network behavior.

o The objective function measures the number of additional expected geolocations

resulting from each potential location assignment.

o The objective function shows the declining utility (or decrease in additional expected
geolocations) for each additional HFDF receiver on a frequency that already has

adequate coverage.

o The objective function recognizes frequency saturation points where putting more
resources on that frequency results in almost no additional expected geolocations for

the network.

From the literature review there were three ideas which influence the GSARP’s for-

mulation and have potential to model some of the characteristic SAR network behavior.

The first concept is Hogan and Revelle’s maximum-coverage model BACOP2 (13).
The model has two desirable characteristics which can be implemented in a simplified for-
mulation for the GSARP. First, the multiobjective natuie of the model allows the optimum

coverage configuration to represent different levels of coverage being tiadea off against one
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another. Second, the weighting of the variables rewards coverage levels to higher demands

more than that to lower demands.

* The second promising concept is Johnson’s multiobjective formulation for the HFDF
frequency assignment problem which is closely related to the GSARP and, consequently,
provides significant insight for‘ model formulation (14). Johnson’s formulation has three
objectives which are outlined in the next few paragraphs. The first and the third objective
functions can easily be incorporated directly or indirectly into the GSARP formulation.
On the other hand, the second objective appears to be highly correlated with the first

objective while its importance is questionable.

Johnson’s first objective essentially maximizes the expected number of lines of bear-
ings for the network, assuming a line of bearing is taken for every signal that transmits

and propagates. In mathematical terms,

I J K

max ZZZFikﬁijjk
ik

Three or more lines of bearing are required for geolocation of a specific signal. Johnson as-
serts that maximizing the number of lines of bearing provided for the various transmissions
in a fixed network of receiving stations should tend to maximize the number of signals that
can be geolocated (14:16). This objective function can be thought of as an indirect way of

maximizing the number of geolocations for the SAR network.

Johnson's second objective function which maximizes transmissions was also consid-
ered for the HFDT location problem (14). However, there are two points that support not

using this objective in the GSARP formulation.

The first point for not using Johnson's second objective is that it is implicitly max-
imized within the first objective function which maximizes the expected number of lines
of bearings for the network. In a sense, the second objective can be considered less im-
portant than the first objective. In a recent study, Olson and Dillinger found the omission
of less important objectives had little impact on the results of multiobjective optimization

problems (20:9-10).
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A second point against the.use of Johnson’s second objective is that it is highly cor-
related with the first-objective function due to the objectives having several variables in
common. Correlated objective functions are undesirable, because the weighting between
objective functions does not always behave intuitively. Sometimes a very important objec-
tive will have a very small weight for the best solution. The angle between the cost vectors
is an-acceptable way to measure the correlation between objective functions (23:198). The
smaller the angle, the larger the correlation. The correlation between objectives one and
two was confirmed during a case study where the angle of correlation between Johnson’s
first and second objective functions was measured to be 4.3296 degrees (15:11). In math-

ematical terms, Johnson’s second objective is:

I J K

max ZEZF;};XJ';;.
i j ok

Johnson’s third objective function penalizes excessive coverage by HFDF receivers
of a frequency (14:17-19). This objective recognizes the declining utility (decrease in ad-
ditional expected geolocations) for each additional HFDF receiver on a frequency that
already has adequate coverage. It can be thought of as an equity maximizing objective,
since the objective will not penalize equal coverage. By evaluating the objective functions
several times and giving varying levels of importance to the excess coverage objective,
there is potential for revealing the optimal tradeoff between the objectives which will
maximize geolocations. Searching for the optimum tradeoff of frequency coverage using
multiple objectives is effectively a heuristic way for searching the nonlinear decision space.

In mathematical terms, Johnson’s third objective is:
K
min Z Y:.
k

The third promising cuncept is the declining distant-dependent function discussed by
Pirkul and Schilling (21:140-153). Their mode} attempts to provide acceptable assignments
for uncovered demands by using a declining distance-dependent function for demand assign-

ments that exceed the acceptable coverage distance. For the GSARDP, a similar weighting
=) g o
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function will-be developed to recognize the negative effect of assigning an HFDF resource to
-a facility that has large lines of bearing (LOB) errors. This accuracy-dependent weighting

function is described in the next section.

3.4.2 Declining Accuracy- Weighting Function. An accuracy-weighting function was
developed from a techrical paper which documents confidence area mathematics and as-
sumptions associated with position finding (12). Consider a LOB from receiving station j
to transmitter ;. Several assumptions concerning HFDF confidence area mathematics are

reasonable to make for the HFDF location problem (6):

1. Projections of the LOBs are straight lines.
2. The earth is flat near target position T;.

3. The angular bearing error of the LOB taken from receiving station j to transmitter

i is 0y; is normally distributed with a mean of zero and a variance of o%;.

4. The width of the bearing fan, e;;, is (Ri; X sin j;) which is normally distributed with
a mean of zero and a variance of €%, since ;; is normally distributed. Ryj is the

range from station j to transmitter 1.

It is also true for the GSARP that an acceptable circularized error radius d, is
known for transmitter i. From this information the following declining accuracy-dependent
function can be developed:

d;

2= —
e,-j

where 2, is a standard ncrmal random variate which equals the number of standard de-
viations of bearing fan width that are within the acceptable circularized error radius d,.
The resulting weighting function, W,,, equals the probability that the bearing fan e,; is
less than d;:

Wi =1-2[1~ &(z;,))

where &(z,) is a function of the percentile of the standard rormal random variate. The
geometry of this weighting functiou from receiving station j to transmitter location ¢ can

be seen in Figure 1.
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Figure 1. Geometry of the Accuracy Weighting Function

Transmitter Location (i)

Receiving Station (j)

3.4.8 Multiobjective Linear Objective Functions. The GSARP has two opposing
objectives when it is formulated as a multiobjective linear integer program (MOLIP).
These objectives were adapted from Johnson’s formulatici of the frequency assignment
problem (14). The first objective maximizes the number of expected lines of bearings

while the second objective minimizes the excess coverage of frequencies.

3.4.8.1 Objective Function One. The first objective function is designed to
maximize the expected number of SAR network geolocations by maximizing the expected
number of accurate LOBs for the SAR network. A LOB is generated when a signal trans-
mits and propagates from a transmitter location to a receiving station on a given frequency.
The probability of generating a LOB from station j to transmitter ¢ on frequency & is mul-
tiplied by the probability of generating an accurate LOB from station j to transmitter
location i, W,,. This objective is similar to Johnson's first objective for the HFDF fre-

quency assignment problem with the accuracy of the LOBs incorporated (14:16-17).

K

I J
max Z Z Z W Fin P X
i

1 k
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3.4.3.2 Objective Function Two. The second objective function is identical
to Johnson’s excess coverage objective which penalizes excessive coverage of a frequency
by HFDF receivers (14:17-19). This objective recognizes the declining utility (decrease in
additional expected geolocations) for each additional HFDF receiver on a frequency that
already has adequate coverage. Excess coverage is defined as anything more than the fair
share. Fair share is defined as the total number of HFDF receivers divided by the total
number of frequencies rounded to the next largest integer. In mathematical terms, the

second objective is,

K
min ZYk.
k

3.4.4 Constraints. The MOLIP formulation has eight constraints. The first con-

straint ensures the fixed base network of HFDF receiving stations is not disturbed.
X;j=1, VjeF

The second constraint ensures that the number of HFDF receiving stations located does

not exceed the total number of HFDF receiving stations available:

J
> X;< NS

i
HFDF receivers are allocated in multiples (bundles) of eight by the third constraint:

K
> Xj—-8Z;=0, Vi
k

The fourth constraint prevents the number of bundles of HFDF receivers from exceeding

the total number of HFDF receivers available:

J
Z Z; < NB.
j
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The fifth constraint ensures that an HFDF receiver is not allocated to a location which

does not have a station:

Xik—X;<0, Vik.

Constraint six is a guasi-covering constraint which guarantees either no coverage at all,
or at least primary coverage . Johnson’s formulation of the HFDF assignment problem
included a full covering constraint. However, it may not be logical to explicitly require
primary coverage for all frequencies since the probability of transmission may be close to
zero for some frequencies. Since a minimum of three signals are required for a geolocation,
the quasi covering constraint prevents the wasteful allocation of just one or two resources to
a frequency. This mimics the nonlinear objective function which receives no contribution

for less than primary coverage:

Z-’ ik —2Xpk <50, Vh¢s, gk
J€s

J
where : s € §: { all combinations ( ) and J = NS
J-1

With the seventh constraint, the structural excess coverage variable is assigned the

value of excess coverage allocated to frequency &:

Y Xi-Yi<FS Yk

J

The ecighth constraint restricts all variables to be binary integer or integer:

X; € {0,1}
X;x € {0,1}

Z; € {0,1,2,3}

Yr > 0 and integer.
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3.4.5 The Complete Multiobjective Linear Formulation. The complete problem to

be analyzed and solved is:

I J K
max 3> WiiFuPiuX
ik

i

subject to

X;
J

2. X;

i

K
ZXJ'L- ~ 8Z;
k

J
>

J
ij"'Xj

Z« 5k — 2Xhk
j&s

J
ZXjk - Y
i

IA IA

IN

IN

m

v m

K
min E Y
k

1, VjePF

NS

0, Vj7k
0, Vjkh¢s

FS, Yk

{0,1}
{0,1}
{0,1,2,3}

0 and integer.

(9)
(10)
(11)
(12)
(13)

3.4.6 Computational Tractability. The multiobjective linear integer formulation

has significantly fewer terms and variables than the nonlinear formulation. For J sta-

tions and K frequencies there are J x K + J + I integer variables of which J x K + J

variables are binary. For example, a problem with 10 receiving station candidates and five

frequencies results in just 50 linear objective function terms compared to 5060 terms for
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the:nonlinear formulation.

The next chapter, Computational Experience with Model Formulations, will investi-

gate the nonlinear and multiobjective linear infeger formulations in more detail by com-
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paring test case problem results for the two formulations.
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IV. Computational Ezperience with Model Formulations

4.1 Overview of Test Cases

Two small-scale test problems were studied to document any relationship found be-
tween the nonlinear integer program (NLIP) and the multiobjective linear integer program
(MOLIP) formulations presented in Chapter 3. Size limitations, data selection, and result

comparisons are discussed for test cases in the next three subsections.

4.1.1 Size Limitations. The size of the test cases was limited for two reasons. The
first reason is that the computational complexity of the nonlinear objective function coeffi-
cients becomes combinatorially explosive as the problem size increases. Secondly, problem
size is limited, because the nonlinear integer optimization code’s enumeration scheme makes

large problems computationally undesirable.

Both test cases used five receiving station locations and four transmitter locations.
The first test case used three frequencies while the second test case used five frequencies.
This resulted in the first test case having 20 and 23 variables for the NLIP and MOLIP
formulations respectively. The second test case had 30 and 35 variables for the NLIP and
MOLIP respectively. The number of nonlinear objective function terms was 48 for the
first test case and 80 for the second test case. Using just five receiving station locations
kept the number of variables, the number of terms, and the computaticnal complexity to

a minimum.

4.1.2  Data Selection. The data used in both test case problems is a subset of the
data provided for computations by the Department of Defense. While the NLIP formu-
lation explicitly considers wccuracy for a combination of stations to a transmitter, the
MOLIP formulation considers only the accuracy for a single line of bearing from a receiv-
ing station to a transmitter. For this reason, test case problem data was selected with
one or more combinations of receiving stations having an unacceptable confidence 1egion
accuracy for transmitter(s) in the NLIP formulation. The performance of the MOLIP is

studied with this data, to see if the MOLIP can find solutions comparable to the NLIP
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even thoagh it does not Lave any ixformziion aboxt the mnsccepiable acensaey of one or
more corfidence regioms.

4-1.3 Comperison of Resslls. The solxtions of both the NLIP and MOLIP formuw-
lations are compared by evalzaiirng both solztions weing the nonknezr cbjeciive fumciion.
The relative percent diffesence im resulis is computed by wsize the Sormula Below.

(MOLIPsclution — NLIPsolstion)
NLIPsolmiion

* 106%

4.2 Nonlineer Integer Progremsming (NLIP)

This section presents the modified NLIP fonnplation and the NLIP 2lsosithr used

o solve the {est case problems.

4.2.1 NLIP Soluiion Algorithm. The NLIP soluiioz algorithm vees an implicit enn-
meration scheme designed to spedfically hardle ronlinesr programming problems with
linear constraints (4). The NLIP algorithm generates 2l feasible incumbent solutions that
are encountered in the course of finding the sclution. A feasible incembent solotion is 2n
intermediate solution that is the best fezsible solution during 2 particular sizge of the op
timization search. At any time during the search, the current feasible incumbent solution
represents a lower bound for the opiimal solution. Dusing the opiimizaiion procedure,
solutions are rejected when they are less than the current incuinbent soleiion or upper
bound. Monotonicity of the objective function is required for this sez2rch to always find
the optimal solution. Monotonicity has not been shown for the NLIP; however, for the
test problems, the NLIP algorithm converged to the same solution for every starting point

that was used.

A matrix generator is used to create the input file required by the nonlinear zero-
one solver. A copy of the optimization code. input files. matrix generator code, and toy
problem data files can be found on the floppy dish one that accompanies this thesis. The
files for the two toy problems can be found in two directories named ¢, and 1032 on

floppy disk 1.
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422 NLIP Test Cese Forzmalelion. The NLIP formulztion discussed in detail in
Chapter 3 is surmmzsized 202im with respect to the specific NLIP forrnlation vsed for the
test cases. Dre {o size Fimitations, HFDFs are dezlt with 25 sinsle entifies rather than as
bandles of extities. This modification resnlts in corstraints three znd four being different
from what was presented im section 3.3,

I K
max 33 RS Uul X
: k ol

where U X)= [H P:’jE;Xj)‘c] [H {(1—- 1’-:&&3'&&)]

1= Afor
subject {0
X: = L ¥ jJeF

J

YX; < AS

j
J K
7 =

where NI is the number of HFDF receivers

Xje — X

A
(=}

Y .k
X; € {0.1}
{0,1}.

m

Xje

4-3 Multiobjective Linear Inicger Programming (MOLIP)

This section presents the modified MOLIP formulation and the MOLIP algorithm

used to solve the test case problems.
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4.3.1 MOLIP Solution Algorithm '.l: he ADBASE multiple objective linear program-
ming package was used to identify the efficient frontier by computing all efficient eztreme
poinis associated with the solation space of each test case (22). An efficient extreme point
is also referred to as a parefo-optimal solution. A pareto-optimal solution is a feasible solu-
tion which is as good as or better than all other viable solutions for the multiple objective
problem. It is the pareto optimal solutions generated by ADBASE which are compared
to the NLIP results. For each extreme point, ADBASE can also provide the— relative cost
for each variable not in 2 current solution. From these costs the relative weighting or

importance of each objective function can be determined for an extreme point.

A copy of the input files, coefficient generator codes and test case problem data files
can be found on the floppy disk which accompanies this thesis. The files for the two toy

problems can be found in the two directories named toyl and Zoy2 on floppy disk 1.

4.3.2 MOLIP Test Case Formulation. The MOLIP formulation discussed in detail
in Chapter 3 is summarized again with respect to the specific MOLIP formulation used for
the test case. Due to test case problem size limitations, HFDFs are dealt with as single
entities rather than as bundles of entities. This modification results in constraints three and
four being different from what was presented in section 3.4. Another limitation in solving
the test case is caused by the fact that ADBASE is not a mixed integer programming
package. The quasi-covering constraint which is equation 8 presented in section 3.4.5,
required that either zero or greater than three HFDF's be assigned to a frequency; however,
this constraint prevents ADBASE from finding an integer solution. As a result, the quasi-
covering constraint is not included so that ADBASE can be used to identify the entire

efficient frontier for comparison with the NLIP solution.

In order to clearly identify the relative weightings of the objective, the two objective
functions had to be normalized. Multiplying the first objective function by 100 makes
both objective functions closer to the same order of magnitude. ADBASL is optimizing

the normalized problem when it computes all efficient extreme points.
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where NH is the number of HFDF receivers

Xix—-X; £ 0, Vi, k
J
> Xj-Ye < FS, Yk

X; € {0,1}
XJL € {071}
Yr > 0 and integer.

4.4 Test Case 1 Resulis

For test case 1, the NLIP algorithm identified 13 feasible incumbent solutions before
the algorithm found the optimal solution of 0.1137217. ADBASE found four efficient
extreme points. However three of these extreme points can effectively be collapsed to
provide the same solution. The only difference in these three extreme points is that one of
them has ST3 with no HI'DTI" resources assigned, one of them has ST4 with no resources
assigned, and the last one doesn’t have ST3 or ST4. These three solutions are in effect

the same, because locating a receiving station without any resources assigned contributes
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nothing to the objective function. As a result, the four efficient extreme poiats are collapsed
to provide two tnique pareto-optimal solutions which'correspond to. two different-levels of
coverage as defined by the second objective function. These two pareto-optimal solutions
are evaluated using the nonlinear objective function providing péreto-optimal solutions of
0.1082104‘6 and 0.1127499. It is-interesting to note that the second solution of 0.1127499
corresponds to the eleventh feasible incumbent solution for the NLIP. The NLIP algorithm’s
computations took about one CPU minute and the ADBASE :algorithm took less than
.one CPU minute, both on a VAX 11/785. Convergence of the NLIP algorithm was not
significantly improved when the best MOLIP solution was used as astarting point. The two
pareto-optimal solutions for the MOLIP along with NLIP optimal solution are compared
in the Table 1. For test case 1, the specific formulation and data, as well as the formatted

input files for the MOLIP and NLIP solvers are all presented in Appendix G.

Table 1. Test Case 1 Results

| Type Solution | M | Stations | Station HFDFs-| NLIP obj | % diff |

true NLIP N/A ST1 F1F2F3 0.1137217 | none
ST?2 F1F2F3
: ST4 F2 F3
I ST5 F1 F3 .
M1 A1 > 0.439 | ST1 F1F27F3 10.1127499 | 0.85%
ST2 F1F2F3 '
ST3 F2
: ST5 F1 F2 F3
N M2 A < 0.439 | ST1 F1F2F3 0.1082105 | 4.86%
ST2 F1 T2 F3
ST3 or ST4 | none '
STS F1 F2 I3

M2 represents the pareto optimal solution where three efficient extreme points col-
lapse to the same solution. The impact of the second objective function can be seen in
M2. This solution does not allow excess coverage for any of the frequencies which, for the

first test case, is defined as coverage beyond three HFDF's for a frequency.

Figure 2 is a graph depicting the relative impact of objectives one and two for the two

MOLIP solutions. The line connecting A; and A, represents the line of objective weightings
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Figure 2. A\-Conés for Test Case 1 Objective Weightings

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

M2

M1

01 02 03 0.4 0.5

0.6

0.7 0.8 0.9
A

1.0

33




between objective one and objective two where A; is the weighting for objective function
one and A is the weighting for objective function two. It is clear from the graph that Ay
added to A, must equal one. All of the weightings where ) is less than 0.4388 correspond
to M2 and all the weightings where ); is greater than 0.4388 correspond to M1.

The small size of this test case makes it difficult to draw generalizations about how
successful the MOLIP formulation will be in providing a good solution for the GSARP.
However, three observations can be made. First, the MOLIP solution is relatively close to
the NLIP solution. Second, a higher weighting on objective one is preferred for the best
solution. Third, the MOLIP solution will provide two or more pareto optimal GSARP

network solutions which can be selected based on their relative NLIP solutions.

4.5 Test Case 2 Results

Test case 2 represents a slightly larger problem. The difference is that test case
two allocates HFDF's to five frequencies rather than three. For this test case, the NLIP
dlgorithm identified 28 feasible incumbent solutions before the algorithm found the optimal
solution of 0.1440151. ADBASE found three efficient extreme points which correspond to
different levels of coverage determined by the second objective function. The pareto-
optimal solutions are evaluated using the nonlinear objective function. The corresponding

MOLIP optimal solutions are 0.12465, 0.10547, and 0.093934

For this problem, the ADBASE solution was not a feasible incumbent solution for
the NLIP. However, the best MOLIP solution lies between the objective value of the 19th
and 20th incumbent solutions of the NLIP. The increased size of this test case significantly
affected the CPU time required for the NLIP solution algorithm. The NLIP optimization
code took 4 hours and 55 minutes of CPU time on a VAX 11/785, whereas ADBASE code
still took just one or two minutes of CPU time. When the best MOLIP solution was used
as a starting solution for the NLIP, the solution time was decreased by only 29 minutes or

10%.

The impact of the second objective function can be seen in M2 and M3, since the

level of excess coverage is less than in M1. For example, M3 for test case two does not
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allow excess: coverage for any-of the frequencies.

Table 2. Test Case 2 Results i ,
| Type Solution | A Stations | Station HFDFs | NLIP obj | % diff |
true NLIP N/A ST1 F2F3 F4 F5 0.1440151 none

ST2 F2F3TF4 F5 .
| ST3 F2F3F4 F5
) STs | F3F4F5

M1 A1 > 0.383 | ST1 F1 F2 F3 F4 F5 | 0.1246539 | 13.444%
‘ ST2 F3F4F5 ’
ST4 F1F2F3F4F5
STS T4 F5
M2 T\ <0.383 | STI F1F2F3F4 | 0.1054576 | 26.773%

and ST2 F2 F3 F4 F5

A1 > 0.362 | ST4 F1F2F3F4F5
ST5 F1F4
M3 A1 < 0.362 | ST1 F1F2F3 0.0939340 | 34.774%
ST2 F2F3F4F5
ST4 F1F2F3T4TFs
ST5 F1F4F5

The configuration of the GSARP network changes quite a bit for each pareto-optimal
solution. The fact that the configuration is changing as the excess coverage objective
weighting increases makes it possible for the MOLIP to expose several possible configura-
tions representing different levels of coverage. As a result, several pareto-optimal configu-

rations can be evaluated as possible solutions to the true GSARP.

In Figure 3 is a graph depicting the relative impact of objective one and objective
two for the two MOLIP solutions. The line connecting A; and A; represents the line of
objective weightings between objective one and objective two where A; is the weighting
for objective function one and A, is the weighting for objective function two. Once again,
it is clear from the graph that A\; added to A; must equal one. Notice all of the weightings
where ), is less than 0.36237 correspond to M3 and all the weightings where Ay is greater
than 0.36237 and less than 0.382776 correspond to M2. There is no clear explanation
for why M2 commands such a small A-cone. M2 and M3 both represent pareto-optimal
solutions where objective two is more heavily weighted. The impact of objective two,

which penalized excess coverage, is reflected in the solutions that are presented in Table 2.
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Finally, all the weightings where A; is greater than 0.38278 correspond to the best MOLIP
solution M1.

Figure 3. A-Cones for Test Case 2 Objective Weightings
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4.6 Observations and Conclusions

Several observations were made from these test cases. First, it is important to re-

member that the test case problems were limited in size. With this qualification, it can be

36




]

observed that the MOLIP ‘results are relatively close to the tr’ue" ﬁLIP solution for both
test cases. Test case one was 0.85% from it’s true NLIP, and test case two was 13.44%
from it’s true NLIP solution. Furthermore, the best solution for both test cases was the
one which most heavily weighted the first.objective, which maximizes the expected number
of accurate lines of bea.ring. The conclusion that can be drawn from these results is that
there is no reason to doubt that the MOLIP might provide good feasible solutions for the
larger GSARP.

A second observation is that the practicality of the NLIP solution algorithm decreases
with increased problem size. The NLIP for test case two had ten more structural variables
than test case one. The addition of ten variables increased the CPU time on a VAX 11/785
from approximately one minute for the first test case, which has 20 structural variables,
to nearly five CPU hours for the second test case, which has 30 structural variables. This
indicates that the required CPU time is unmanageable for the larger GSARP which has

991 structural variables as defined by the formulation in Chapter 3.

Another observation is that the GSARP network configuration solutions change as
the weighting on the excess coverage objective is increased. This allows the MOLIP to
expose several solutions representing different levels of coverage. The result is several
pareto-optimal solutions are produced that can be evaluated and compared as potential

solutions to the GSARP.

Integrality problems exist with the MOLIP that are not addressed with these test
cases. These integrality problems associated with constraints that are not used for the test

cases will be addressed in the next chapter, Methodology.
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V. Methodology

A multiobjective linear integer programming (MOLIP) formulation was identified
as a promiéing approach for the ‘generalized search and rescue problem (GSARP). This
chapter describes the methodologies used- to.solve the MOLIP formulation of the GSARP.
Linear programming, integer programming, multiobjective optimization and network rep-

resentation are specifically covered.

5.1 Linear Programming

For computational tractability, a linear formulation with both a linear objective
function a.nc'l linear constraints is used to approximate good GSARP solutions in place
of the highly nonlinear formulation proposed by Drake (11). A general procedure used
for solving Iine'c}r programming problems is the simplex method. The simplex method
involves searcling the feasible region boundary defined as the region contained within or
on the intersection of the linear constraint equations. The algorithm iteratively moves to
better adjacent corner point solutions, which are the points where the constraint equations
intersect. When no better adjacent corner point solution can be found, the search is
terminated. While the simplex method could theoretically examine every corner point,
it has proven (on the average) to be very efficient on most problems of practical origin
(18:38). The linear programming software considered for the computations herein utilize

variants of the simplex method for solving linear programs.

5.2 Integer Programming

The decision variables for the MOLIP presented in chapter three must be integer.
Specifically, the variables X, and X,; must equal zero or one, while ¥; must be a positive

integer greater than or equal to zero.

The subset of constraints used for the test cases in Chapter 4 preserve the integral-
ity of the decision variables, and integer solutions can be found efficiently using linear

programming algorithn s. Unfortunately, the remaining subset of constraints destroy the
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integrality of the decision variables- when they are used with pure linear programming

algorithms,

‘The-integer programming technique most often found with commercially available
software is-the branch-and-bound technique. A generalization of the branch-and-bound
algoritixm follows (14:22). The branch-and-bound algorithm solves iterative linear pro-
gramming problems with integer constraints relaxed. At each iteration, the set of feasible
solutions is partitioned into subsets (hence branching) and an upper bound is calculated
for each subset. When an integer solution is found its value becomes a lower bound for the
optimal solution for 2 maximization problem (hence bounding). A subset is abandoned
from further branching if its upper bound is less than the lower bound for the optimal
solution. If a subset has either an infeasible solution or an integer solution, it is also aban-
doned, since no improvement can be found from the subset by further partitioning. Any
subset that has been abandoned due to an integer solution, infeasible solution, or an upper
bound that is dominated by an integer solution, is said to have been fathomed. Any inte-
ger solution found that has a larger upper bound than the incumbent integer lower bound
becomes the new incumbent lower bound for the optimal solution. Subsets continue to be
partitioned or abandoned until all subsets have been fathomed. At this point, the opti-
mal integer solution is the current incumbent integer lower bound solution, if one exists.
To solve problems of practical size, branching and/or bounding rules can be implemented

which may improve the performance of the branch-and-bound search (18:252- 258).

The next two subsections discuss the bundling constraints and the quasi-covering

constraints which destroy the integrality of the MOLIP solution.

5.2.1 Bundling Constraints. The bundling constraint defined for the GSARP re-
quires that HFDF receivers be allucated in bundles (multiples) of eight to the receiving
stations. For the thesis problem, each station can receive either one or two bundles of
HFDT receivers. This constraint was considered to be nonnegotiable, since it was re
quested by the DOD who is sponsoring the research. Therefore, the bundling constraint
will be explicitly modeled in the network representations presented in chapter six. The

bundling constraint dictates that mixed integer programming be cousidered in order to
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-achieve integer solutions.

5:2.2 Quasi-Covering. Constraints. The-quasi-covering constraint defined for -the
GSARP requires that a frequency receives at least primary coverage of three HFDF re-
ceivers or no coverage at all. This constraint was introduced in an attempt to better mimic
the behavior of the nonlinear formulation. This constraint is considered negotiable, since

it was not requested by the research sponsor.

From a computational standpoint, this constraint cannot be practically implemented.
Using the constraint would require the explicit integerization of all 991 variables introduced
in the model formulation. Due to insufficient scratch work space for the branch-and-bound
algorithm, experimental runs with just 115 variables using SASLP in the mixed integer
mode did not converge to the optimal integer solution. Therefore, alternate means of

addressing the quasi-covering are considered.

One way to address the constraint is to allow the linear program to find an optimal
solution without using the quasi-covering constraint. This would still prevent unnecessary
HFDF's from being assigned to frequencies that have a very low probability of transmission.
However, the objective function would still benefit from the assignment of just one or two
HFDFs to a frequency, when, in reality, no geolocation would be attempted with less than

primary coverage of three HFDFs providing a signal (11:1).

A second way to address the quasi-covering constraint is to use a true covering
constraint as Johnson did in her research for the HFDF assignment problem (14). This
constraint ensures that the objective function correctly benefits from placement of an
HFDF on a frequency, since the constraint requires primary coverage for each frequency.
On the other hand, this constraint places at least primary coverage on each frequency even

if there is little or no probability of transmission on a frequency.

The bottom line is that both ways of dealing with the intended quasi-covering con-
straint have the potential to assign HFDF's to frequencies which result in little or no im-

provement of the true GSARP objective, maximizing the expected number of geolocations

in a SAR network.
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The strategy for addressing the quasi-covering constraint is brute force. Neither

alternative is clearly better than the other; therefore, both alternatives are explored by

this research. In other words, thesis results include solutions both with and without the

covering constraint in order to document their performance on the large problem.

5.2.8 Integer Programming Software Although several integer branch-and-bound
codes were available for use with small problems, only SAS LP was available which could
handle problems with greater than 100 variables. SAS LP also has a sparse input structure

which is designed to make larger problems easier to input and run more efficiently.

5.8 Multiobjective Optimization

The true objective for the GSARP, maximizing geolocations in a SAR network, is not
multiobjective. However, the nonlinear objective proposed by Drake is intractable for large
problems. This was confirmed by the larger test case problem presented in chapter four
(11). The multiobjective approach described in Chapter 3 can be considered a heuristic
for exposing several pareto optimal solutions representing different coverage levels in a
SAR network. This research assumes that a multiobjective approach can provide better

solutions than either of the single objective functions by themselves.

The remainder of this section describes pareto optimality, methods for identifying

the efficient frontier, and analysis of the GSARP’s efficient frontier.

5.8.1 Pareto-Optimality. A pareto-optimal solution, also referred to as an efficient
extreme point, is a feasible solution that is as good as, or better than, all other feasible
solutions. Irom a pareto-optimal point, it is not possible to move in a direction so as to
increase one of the objectives without necessarily decreasing another objective. The set
of all pareto-optimal points is called the efficient set or the efficient frontier. The efficient
{frontier must be identified in order to analyze the solutions of a multiobjective optimization
problem. Some of the methods used for identifying the efficient fiontier are described in

the remaining subsections.
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5.3.2 Malticbiective Stzpler Metiod. Yor Baezr problemes, the rantiiobpective sio-
plex method cam be nsed to idextify the efident foontter. ADBASE., which wres 2 ponlis-
objective rexvised simplex metbod, s the only sofiware zvallzble 2t AFIT that can ddeatify
the entire efficient frostier (22). Alhowsh ADBASE was implesvented swocessfelly on the
test cases preseated im chapler four, it cammot Be wsed to sofve the thesis problers, sizce 5t
is not capable of guarasteeing izteger solutiozs to meltiobjective Brezr intezer problesns.

5.3.3 Supporied and Unsepporied Perelo-Optineal Points. A pareio-oplimal point
can be mapped inio the critesion space by ploiting the valees of oze chiective fonciion
versus zrothker. For 2 meliicbjeciive linezr prosram, ke ciiesion meppires of pereio
opiimal soletions will form 2 piece-wise linear convex kol wheze 21 of ke pareto-opiirazl
points czn be found oa the border of the convex bl (23:431). Pareto-opiimal points found

on the border of ihe convex hull 2re c2lled szpporied pareto-opiimat poinis (23:431).

Figure 4. Supporied versus Unsupporied Pareie- Optimal Soluiions (23:232)

Max obji1fobj2 Aax obj1fobj2
obj2 obj2
) A
& efiicient froatier efficient irontier
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z2° .
23 \’
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 §  §
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objT obir

unsupported efiicient points

not on efficient frontier
21.22. 23

— RN

supported efficient points
all on efficient frontier

In multiobjective integer and nonlinear programs. the criterion mapping of 2 pareto
optimal point into the criterion space czn lie iuside the border of the conves hall {23:132).

Pareto-optimal points inside the border of the convex hull are called unsupported efficient
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poiats {23:432) Figure 4 shows zn example of supported pareto-opiimmal solutices ver-
sus wxsepported pareto-opiimal solziions. Becaxse wrsupported pareto-optizmal points
are domizated by other convex combinations of the objeciive functions, they canpot be
generated using the weishted surs 20proach described in the following pzragraph.

5.3.4 Weighied Sums Approcck. Yoz the weighted sems approach, each objective
is muMiplied by a stricily positive scalar weight A; such that the sem of the A:s equals one.
The wesghted objectives are them combined to form 2 consolidated obyective function. The
weighted sums approach can be thought of 2s 2 metkod that expesiments with strictly
convex combinations of the objective functions where it is not obviors what mishi be an
optimzl combination of A:s (23:265). The weizhted sums approach has an 2dvantage over
2 multiobjecive simplex method, beceuse it can be implemented with 2 standard linear
programming package which in general, reguizes less computation. Unfortunately, the set
of 21l possible convex combipations of the objeciive fuaction is infinile, so there is no
guarantee that ihe eatire efficient frontier will be identifted using the iterative z2pproach.
When the weighted sums a2pproach is used with 2n integer programming problem, it may
not be able to identiiv the entire efiicdent frontier since unsupported efficient points which

can occur with integer programming canaot be ideatified with this method (23:433).

5.3.5 Cosrelation Between objectives. Complicating the use of the weighted sums
approach is the degree to which the objectives are correlated. If the objective functions
are correlated, the weighting vectors can behave inconsistently (23:198). In other words,
an important objective that is highly correlated with another objective may have a very
low weighting for the best solution wtich is counter-intuitive. An acceptable method for
measuring the correlation between objectives is to measure the angle between objective
cost vectors (23:198). The measure to which the ith and ,.h objectives are correlated can

be calculated by the formula:
- ( (Yo )
a = Cos T
e fizdl & iz
The smaller the angle a, the greater the correlation. The angle between objectives
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ome 2ad two for the MOLIP formulation is 42.6 degrees for fime block one datz and 41.4
degrees jor time block seven da2ta. The correlation between these objeciives is neitker high
nor Jow, since the angle is midway between zero and 90 degrees.

Figere 5. Mustration of Bounding Constraints for the MOLIP
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5.8.6 Consliraint Reduced Feasible Region Method. Constraint reduction of the fea-
sible region is a2 method which attempts to irap an optimal solution by selecting one of
the objectives for maximization subject to bounds on the other objectives thereby forming
a new set of constraints (23:202). The resulting feasible region is a subsct of the original
feasible region which existed with multiobjectives. The GSARP feasible region can be
reduced by forming a bounding constraint with the second objective function as shown in
Figure 5. Constraining the second objective provides a means for investigating all possi-
ble integer levels of excess coverage, thus potentially revealing additional supported and

unsupported pareto optimal integer solutions for the MOLIP.

44




5.3.7 Scaling the Objective Functions. “Three philosophies are available for rescal-
ing the objective functions: normalization, use of 10 raised to an appropriate power, and
the application of range equalization factors (23:200).” When the desire to use scaling is
to bring ali objective coefficients to the same order of magnitude, using 10 raised to an
appropriate power is a viable alternative to normalization (23:200). One reason using an
appropriate power of ten may be preferable to normalization is that the original coefficienis
are still recognizable, since they differ by only a decimal psint. Range equalization is used
if it is desired to equalize the ranges of possible objective function values . Due to reduced
problem size, the test case results presented in chapter four used a scaled version of the
first objective. Scaling is not needed for the full scale thesis problem, since both of the

objectives are the same order of magnitude.

5.3.8 Analysis of the GSARP Efficient Frontier. For many multiobjective opti-
mization problems, a decision maker is presented with a set of available options which
are presented from the set of pareto optimal solutions. From these options, the decision
maker, based on his judgement and knowledge of the problem, selects the pareto optimal
point which he considers “best” . For the GSARP, there is only one true objective which
is to maximize the number of expected geolocations in the SAR network. Therefore, the
set of pareto optimal soiulions identified by the MOLIP must be mapped to the solution

space of the GSARP, which is referred to in terms of expected geolocations.

Evaluation of a GSARP solution using the full nonlinear objective requires that ev-
ery combination of receiving stations be evaluated with every frequency and transmitter
location combination, involving millions of calculations. The department of Defense has
provided a program, EVAL, to evaluate any given allocation of HFDT bundles to stations
for any given frequency assignment to the HFDF receivers in a SAR network(8). EVAL
can be used to calculate the true objective function or it can be used to approximate the
true objective function by evaluating just a subset of possible receiving station combina-
tions for each transmitter location/frequency combination(14:32). EVAL is documented
to provide good results when the number of stations considered for each transmitting lo

cation/frequency combination is between ten and twelve (8). Also, the increase in the




T e e

S

— ——

objective function when more than ten to twelve stations are considered diminishes as

each additional station is added while the computation time required for the evaluation is
doubled(14:32).

5.4 Network Representation

For many linear programming problems, there are advantages to using a network
representation. The primary advantage for some linear programming problems is that
special more efficient network algorithms can be used in place of linear programming.
Some problems have a unimodular constraint matrix guaranteeing integer solutions without
restricting the variables to be integer. Some problems can still benefit from using a network
representation, although they may not have a unimodular constraint structure and cannot

take advantage of efficient network algorithms.

A network representation can be used to better understand the flow of the problem
and how the constraints are tied together. For some problems, such as the GSARP, a
network representation makes it easier to identify arcs which must be explicitly integerized

to guarantee an integer solution.

Figure 6. Example of Network Representation

In a network representation nodes and arcs are used to represent the flow of resources.
The flow through the simple network in Figure 6 will be described to illustrate the use of

the network representation. The nodes are labeled as A through . Node A is referred to
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as.the source node and there are M units of resources that must flow from the source nodé
directly into the network via arcs AB, AC, and AD. Conservation of flow must be present
at- every node in the network. In other words, the flow into a nod;a must equal the flow
out-of a node. For example, the flow into AB-must equal the sum of the flows BE, BF
and BG. Node H is referred to as the sink node and M refers to the amount of flow-that is
required to flow into node H. The objective function is partially represented as the cost of
flow Cgg multiplied by the amount of flow in arc BE. The sum of all such flows multiplied

by their associated costs can be maximized or minimized.

A network can be effectively used to represent the GSARP. Two possible network
representations are .presented in detail in the next chapter, Network Representations for

the MOLIP.

5.5 Solution Strategy

The integer requirements of the GSARP eliminate the use of pure linear programming

or ADBASE. Within these constraints a solution strategy is outlined:

e Determine a network representation that is appropriate for the MOLIP.
o Determine which variables must be iniegerized to guarantee an integer solution.

o Using SAS LP with a limited number of integer variables, apply the weighted sums
approach to determine the efficient frontier for two time blocks using two formula-

tions: one with a covering constraint and one without a covering constraint.

e Use EVAL to evaluate the pareto-optimal extreme points identified by the weighted

sums approach.

o Use the constraint reduced feasible region method to search for additional supported
and unsupported pareto-optimal points, which correspond to areas of the efficient

frontier that produce good EVAL results.

o Compare the best-pareto optimal solution identified from EVAL to the mean and

standard deviation of EVAL results found by the Department of Defense for 1,000




randomly generated locations that are tasked by maximizing the expected number

of lines of bearing-for each station.

The solution strategy outlined above will be used to arrive at the results-presented

in chapter seven.
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VI. Network Representations for the MOLIP

Two network representations are presented for the MOLIP. The first is a single-
stage network which has two sets of integer variables. The second is a two-stage network
which has.one set of integer variables for each stage. Test case results show that a two-
stage network produces solutions similar to a single-stage network, using significantly less

computation time.

6.1 Notation

The following notation is used to describe the network representations presented in
this chapter. The majority of the notation described in this section is for decision variables
which are represented as the flow from one arc to another. In general, the first two capital
letters represent the start node for the flow and the last two capital letters represent the
end node for the flow. These arc flow dcci'sion variables correspond directly the the flow

pictured in the network representations.

1 if a receiving station is located at j in the single-stage
SOSTy = network representation.

0 otherwise.

4
1 if a receiving station is located at j in stage one of

5015Tj = 4 the two-stage network representation.

0 otherwise.

1 if two bundles are located at station j in stage-two of

SO25Tj = the two-stage network representation.

0 otherwise ( one bundle is located at station j).
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1 if receiving station j is assigned one bundle of HFDF
- receivers in single-stage network representation.

STjSl=1< 0 otherwise-(either receiving station j is located and

assigned two bundles of HFDF receivers or receiving

station j is not located).

2 ifreceiving station j is assigned two bundles of HFDF

Teceivers in single-stage network representation.
STjST=1{ 1 ifreceiving station j is assigned one bundle of HFDF
Teceivers.

0 if receiving station j is not located.

e

1 if an HFDF receiver is located at station j transmit-

STjFk = ting on frequency &.

\ 0 otherwise.

FEEX=arc flow from the frequency node % to the excess cov-

erage node. This represents the units of excess cover-

age assigned to frequency k. Excess coverage is any

coverage to a frequency beyond its fair share (FS).

FiNE=arc flow from the frequency node & to the nonexcess
coverage node. This represents the units of coverage

assigned to frequency k that are not excess coverage.

These arcs have a capacity of eight.

EXSI =arc flow from excess coverage node to the termination
node or sink. This represents the total units of excess

coverage assigned to all frequencies.

NESI =arc flow from nonexcess coverage node to the termi-
nat'on node or sink. This represents the total number

of units of excess coverage assigned to all frequencies.
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G=the multiplicative gain-(in flow) of-an arc. If m units

flow into the aré GX m units-flow out of an arc.

{M}=external flow.requirements at the source and sink. At
the-source M is positive and represents the required
number of units that must flow out of the source. At
the sink and slack M is negative and represents the

required number of units that must flow into the sink.

J=the set of stations selected in stage one

NS=total number of stations to be located among j sta-

tions.

NB=total number of bundles of HFDF receivers to be al-

located to NS stations.

FS=the fair share of HFDF's for any frequency. Fair share
is defined as NSxG/K.

6.2 Single-Stage Network

The single-stage network representation in Figure 7 is a full representation of the
MOLIP (discussed in Chapters 3 and 5) with no covering constraint used to replace the
quasi-covering constraint discussed in 5.2.2. There are two sets of arcs that must be
explicitly integerized in order to represent the MOLIP in a single network. The first set of
arcs emanating from the source node must be integerized in order to sclect the stations.
The slack arcs must also be integerized as these arcs regulate whether a station that is

selected gets one or two bundles of HFDF receivers.

6.8 Mathematical Representation of Single-Stage Network

The single-stage mathematical formulation is primarily a set of conservation of flow

equations corresponding to the nodes snown in the Figure 7. The source, slack, and sink
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Figure 7. Single-Stage Network Representation

Receiving
Stations

Frequencies

Excess
Coverage

Nonexcess
Coverage

{-(NS*2-NB))

Legend: (arc capacity,cost,gains parameter)
NS = number of stations to be assigned

TS = fairshare of coverage for each {requency
NB = number frequency bundles to be assigned

G = gains parameter { } = fixed external flow

G*arcflow = the flow into the next node




nodes use their fixed. external flows shown in brackets as part of their conservation of flow

equations. This formulation corresponds closely to the MOLIP presented in chapter three.

J K
max Y CiSTjFk
i k

min EXSI

where Cjy = I W5 P Fyr

subject to

J
Y S0STj = NS
B
2 X SOSTj ~ STjSL - STjST = 0, Vj
J
Y STjSL = 2xNS-NB
j

K
Gx STjST-) STjFk = 0, Vj
k

J
> STjFk~FKEX-FKNE = 0, V&

J
K
> FEEX-EXSI = 0
k

K
> FENE-NESI = 0
k

EXSI 4+ NESI

(NS x G)
ST;Fk

IA

1, Vi, k
FENE

IA

FS, vk
{0,1}
{0,1)

SOST;j

m

ST;SL

m

6.4 Computational Ezperience with the Single-Stage Network

To investigate the computational tractability of he single-stage network formulation,

several runs for the full thesis problem were attempted using SAS LP. This formulation
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of the full thesis problem has 1084 variables, 55 of whxch were restricted to be binary.
Every run that was attempted terminated prematurely using all available storage space,
after two to four CPU hours on a VAX 11/785. In each case, the program crashed because
there was insufficient space to continue after filling up as much as 400 thousand blocks on
some runs. The SAS work directories were using as excessive amount of space ~toring the
branch-and-bound tree as it searched for an integer solution. Local computing platform
limitations on the available memory and space for utility data sets prevented successful

completion of any runs, rather than SAS-related limitations.

The single-stage network has proven to be computationally intractable due to com-
puting resource limitations. An alternate formulation is desired which can provide com-
parable results while using fewer resources. Such an alternate formulation is presented in

the next section.

6.5 Two-Stage Network

A formulation is discussed which uses fewer computer resources by significantly re-
ducing the storage space needed for branch and bound tree . The strategy was to formulate
the MOLIP using fewer explicitly defined binary variables. A two-stage network represen-
tation was investigated since it provided a means to reduce the number of integer arcs in
half for each stage. The two-stage concept was motivated from a multicommodity flow
formulation. That is to say, the first and second bundle of HFDF's received by a station

are treated as two different commodities.

In the two-stage concept for the MOLIP, the first stage selects the stations to be
located and the second stage selects the number of bundles each selected station receives.
It is clear that the two-stage approach is an approximation to the single-stage. The re-
maining sections present the networks and mathematical representations of the two-stage
concept. Results are also presented which document that the two-stage formulation per-

forms similarly to the single-stage formulation on smaller problems.

6.5.1 Stage-One Representation. The first stage pictured n Figure 8 integerizes

the set of arcs from source 1 to the stations so that the stations can be selected. Each
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station selected will automatically be assigned one bundle of HFDF receivers in stage two.

Figure 8. Stage-One Network Representation

Receiving
Stations

Frequencies

Excess
Coverage

Source 1 Node

{NS}

Nonexcess
5,0,1) Coverage

Legend: (arc capacity,cost,gain parameter)
NS = number of stations

F'S = fair share of coverage for each frequency

G = gain G*arcflow = flow into next node

{ } = fixed external flow

6.5.2 Mathematical Representation of Stage One. The stage-one mathematical for-
mulation is also primarily a set of flow conservation equations corresponding to the nodes
shown in Figure 8. The source and sink nodes use the fixed external flows (shown in

brackets) as part of the flow conservation equations.




J K
max Z;Cﬁﬂj!"k
E;

min EXSI
where C = YT WPy Fi
subject to
J
Y S01STj
3
E

G x SO1STj — Y STjFk

J
Y STjFk— FLEX — FENE
3

;3
Y FEEX — EXSI

»

K
Y FENE - NESI

EXSI -+ NESI
STsFEk

FENE
SO1STj

IA AN 1

m

NS

0, Vj
0, ¥k
0

0
NSxG
1. Vi, k
FS, Vi

{0.1}

6.5.3 Stage-Two Representation. In the second stage, the set of arcs from the sec-

ond source to the stations selected in stage one are integerized to determine which stations

are to receive a second bundle of HFDF receivers.

6.5.4 Mathemalical Representation of Stage Two. The stage-two mathematical for-

mulation is primarily a set of flow conservation equations corresponding to the nodes shown

in the Figure 9. The source and sink nodes use fixed, external flows (shown in brackets)

as part of flow conservation equations.
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Figure 9. Stage-Two Network Representation

E2 LAY

Legend: (arc capacity.cost.gain parameter)
NS = number of stations chosen in stage one
NB = total number of bundles to be assigned
FS = fairshare of coverage for each frequency

G = gains parameter  G#arcflow = flow into next node
{ } = fixed external flow

wn
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J K
max zz C;:STHFk
] k

min EXSI

where Cjz = 7 W5 P Fye
and J € { stations chosen in stage one }
subject to

SOISTj = 1, VieJ
J
Y 5028Tj = (NB-—NS)
5
K
G x SO1STj + G x S02STj— Y STjFk = 0, Vj
E

J
Y STjFE—-FLEX-FINE = 0, Vi
i

K
S FKEX-EXSI = 0
£

K
> FENE —~ NESI
E

i
=)

EXSI 4+ NESI NS*G

STjFk

A

1, Vi k

FENE

IA

FS, Vi

S02STj € {0,1}

m

6.6 Computational Ezperience with Neitwork Represenialions

Using the weighted sums approach, pareto-optimal solutions for two test cases were
examined. The purpose of the case study was to determine if the two-stage network
representation could provide comparable results to the single-stage network representation
Jjn addition to being more efficiert. The test cases were designed with a scaled-down

version of the thesis problem data. st fifteen of thirty receiving stations «nd all
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thirty-one frequencies were used. Three of the receiving stations were fixed, representing
a fixed, base network. Data for the respective case studies was selected from time blocks

one and seven.

The single-stage network optimization selects ten receiving stations with five stations
receiving one bundle of HFDF receivers and the other stations receiving two bundles.
Unlike the single-stage network, the two-stage network does not attempt to optimize station
and bundle location in one step. In the first stage, 10 stations are located . Each station
from stage one is allocated one bundle of HFDF receivers. In the second stage, an additional
five bundles of HFDF receivers are allocated to five of the stations located during stage

one.

Table 3. Case 1: Comparison of Network Representations using Time Block One

| Solation | Single-Stage EVAL | Two-Stage EVAL | % diff |
A;=1.0 6.90 6.90 none
A1=0.99 6.99 6.90 none
A1=0.975 6.90 6.90 none
2;=0.95 6.90 6.90 none
A1=0.90 6.67 6.67 none
A1=0.85 6.45 6.45 none
21=0.80 6.37 6.37 none
A1=0.75 5.64 5.64 none
2;=0.70 4.25 4.93 16%
3,=0.65 381 357 6%
3 <0.60 3.81 2.94 22.8%
[‘average computation time | 17 min3lsec | 1min29sec | -91% |

Test case results shown in Figure 3 and Figure 4 illustrate that the total CPU time
required by the two-stage network is significantly less than for the single-stage network.
The required CPU time is reduced by more than 90% in both test cases. Furthermore,

both network representations produced similar results for both network configurations and

EVAL results. These findings were consistent for both test cases.
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Table 4. Case 2: Comparison of Network Representations using Time Block Seven

! Solution | Single-Stage EVAL | Two-Stage EVAL | % diff |
=10 ’ 5.16 5.16 none
A1=0.99 5.16 5.16 none
A;=0.975 5.16 5.16 none
A3=0.95 5.12 5.12 none
A3=0.90 481 481 none
A1=0.85 4.48 448 none
2;=0.80 4.45 4.45 none
A1=0.75 3.98 3.98 none
A1=0.70 3.54 3.54 none
2;=0.65 3.73 3.04 -18%
A; <0.60 3.73 3.02 -19%
| average computation time | 26min59sec | 1min3sec | -96% |

6.7 Solution Strategy Revisiled

Chapter five presented an initial solution strategy. This chapter addressed the first

two items mentioned in that strategy which are, restating:

e Determine a network representation that is appropriate for the MOLIP.

e Determine which variables must be integerized to guarantee an integer solution.

A two-stage network representation evolved to reduce the computing time and re-
sources needed to solve the MOLIP formulation. Computational experience with the two-
stage MOLIP formulation, which uses half the number of integer variables during each
stage, shows a significant reduction can be achieved in computation time and resources.
Furthermore, case study results show the two-stage results are comparable to the single-
stage for both test cases. Consequently, the two-stage formulation was determined to be
appropriate for the computation of thesis results presented in the next chapter. Chapter 7
will present results obtained by applying the two-stage MOLIP with the solution strategy

outlined in Chapter 5.
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VIL Results, Conclusions and Recommendations

This chapter summarizes and discusses the results obtained from the solution strate-
gies presented in Chapters 5 and 6. The Department of Defense provided all necessary
transmission and reception probabilities for the twelve two-hour time blocks. Results are
presented for two time blocks to validate that the two-stage heuristic works well with con-
trasting sets of data. Specifically, time block one and seven, which are separated by ten
hours, are used. For each time block, results with and without a covering constraint are

compared.

7.1 Time Block One Results

The results for time block one can be found in table 5 and table 6. These tables
show results from both the weighted sums approach and the constraint reduced feasible

region mcthod. Result, from the weighted sums approach can be identified by a A; value

Table 5. Results for Time Block One Without Covering Constraint

[ Solution | Station Config | Bundle Config | Objective 1 | Objective 2 | EVAL result |

=10 Config A Config 1 136.60 97 17.345
A1=0.99 A 1 136.59 -96 17.340
A1=0.975 A I 136.59 -96 17.340
A1=0.95 A I 136.57 -95 17.340
Obj2=-94 A 1 136.52 -94 17.196
Obj2=-92 A 1 136.38 -92 17.057
Obj2=-90 A | 136.23 -90 17.047
Obj2=-88 A 1 136.03 -88 16.910
A1=0.90 A 1 135.82 -86 16.877
Obj2=-85 A 1 135.70 -85 16.900
21=0.85 A Config 11 134.25 -75 16.530
A1=0.80 A 11 131.96 -64 15.875
A1=0.75 A Config 111 131.71 -54 15.477
A1=0.70 Config B Config IV 119.37 -30 14.580
A1=0.65 B Config V 110.05 -1 12.412
A1=0.60 B \Y 104.60 -2 12.010
Ay <=0.55 B \Y 104.60 0 11.700

[ Specific taskings for each solution are on floppy disk 2 in directory timel. |

in the solution column, whereas results from tl:e coustraint reduced feasible region method
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list an Obj2 value in the solution column. The best EVAL solution of 17.345 was found
using the formulation without a covering constraint with 100% weight on the first objec-
tive and 0% weight on the second objective. The best result with a covering constraint

was 16.66. Several conﬁguratioﬁs for stations and bundles are generated by the MOLIP.

Table 6. Results for Time Block One With a Covering Constraint

{ Solution | Station Config | Bundle Config | Objective 1 | Objective 2 | EVAL result |

A=1.0 Config A Config 1 128.87 -75 16.36
A1=0.99 A 11 128.86 -72 16.54
0Obj2=-70 A 11 128.83 -70 15.99
A1=0.975 A II 128.80 -69 16.66
A1=0.95 A 111 128.69 -66 16.57
0Obj2=-63 A Config IV 128.31 -63 16.11
Obj2=-61 A Config IV 128.17 -61 16.15
A1=0.90 A Config IV 128.07 -60 16.13
1,=0.85 A Config IV 127.32 55 16.04
A1=0.80 A Config IV 126.11 -49 15.42
A1=0.75 Config B Config V 121.47 -36 15.06
A1=0.70 B \Y 119.19 -30 14.50
A1 <=0.65 B \Y% 104.11 0 12.71
| Specific taskings for each solution are on floppy disk 2 in directory coverl. ]

For time block one, the formulation without a covering constraint generates five unique
station/bundle configurations which can be mapped to just two station configurations.
Several pareto-optimal solutions can be mapped to a single configuration. For example,
station configuration A and bundle configuration 1 are identical for the first 10 pareto-
optimal solutions in table 5. These solutions differ only by their frequency taskings. A

similar set of unique station/bundle configurations exists for the covering formulation.

On a VAX 11/785, the average CPU time required for one pareto-optimal solution was
approximately 10 minutes for the formulation without a covering constraint and 37 minutes
for the formulation with a covering constraint. The second stage of the optimization

accounted for approximately 90% of this CPU time.

The Department of Defense provided comparison results for a randomized set of
locations tasked with a heuristic that maximizes the lines of bearing individually at cach

station. While not optimal, this heuristic on the average provides good feasible taskings
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for a fixed network which are better than a randomized tasking(10). For time block one, a

- standard normal curve representing these comparison results is compared to the MOLIP

results in Figure 10. These results had a mean of 14.149 and a standard deviation of

Figure 10. Time Block One Comparison of Results

¥ L i ] L] i

0.5 Randomized Results with Heuristic —

MOLIP RESULT without Cover ¢

04 - MOLIP RESULT with COVER + |
: No Cover MOLIP with Heuristic -B—

20 22

EVAL

1.1175 for 3500 random samples , and a high and low of 17.71 and 10.321 respectively.
The best MOLIP solution for the first time period was 2.86 standard deviations above the
mean of randomized locations that are heuristically tasked. Furthermore, when the best
MOLIP configuration was tasked with the same heuristic as the randomized locations it
produced an EVAL solution of 17.5145 which is 3.01 standard deviation above the mean
of the randomized locations. These results show that with a maximum lines of bearing
heuristic, the MOLIP was able to provide a good feasible configuration that is in most
cases better than any of the randomized configurations . Figure 11 shows a plot of both
efficient frontiers for the first time block. The second objective function value, 2, is plotted
on the x-axis and the first objective function value, 2; is plotted on the y-axis for each
pareto-optimal solution. The shape of the efficient frontier is similar both with and without
the covering constraint. The efficient frontier of the covering formulation lies inside the
convex hull of solutions for the no cover formulation. Symbols with + or z inside them
represent the pareto-optimal solutions which correspond to the best EVAL solution. In

general, the EVAL solutions corresponding to MOLIP solutions are unimodal. As a result,

63




Figure 11. Efficient Frontiers for Time Block One
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the constraint-reduced feasible region method was only used to generate additional pareto-
optimal solutions in the neighborhood of the best EVAL solution. The additional solutions
provided by the constraint reduced feasible region method did not unveil any unusual or
unexpected information about the MOLIP’s efficient frontier or the MOLIP’s best EVAL

solution.

7.2 Time Block Seven Resulls

Table 7 and table 8 have the results for time block seven with both the weighted
sums approach and the constraint reduced feasible region method. For time block seven,
the formulation without a covering constraint generates four unique station/bundle config-
urations which can be mapped to four configurations of stations. As with time block one,
several pareto-optimal solutions can be mapped to a single configuration. For example, the
first three pareto-optimal solutions in table 7 all have station configuration A and bundle
configuration I which differ only by their frequency taskings. Tor the covcring forniulation,

the six bundle configurations are mapped to the same set of stations.

On a VAX 11/785, the average CPU time required for one pareto optimal solution

of time block seven was appioximately 6 minutes for both formulations. The second stage




Table 7. Results for Time Block Seven Without Covering Constraint

| Solution | Station Config | Bundle Config | Objective 1 | Objective 2 | EVAL result |

A1=1.0 Config A Config 1 111.27 -98 14.11
21=0.99 A 1 111.27 -98 14.11
A1=0.975 A I 111.27 -98 14.11
A1=0.95 Config B Config II 110.75 -88 14.23
0Obj2=-81 B I 110.15 -81 14.47
A1=0.90 B 11 110.04 -80 14.40
Obj2=-77 B 1§ 109.68 =77 14.26
Obj2=-73 Config C Config 111 109.06 -73 14.47
Obj2=-T1 C 111 108.78 -71 14.40
Obj2=-69 C it} 108.45 -69 14.71
Ob)2=-68 C 111 108.23 -68 14.72
A1=0.85 C III 108.11 -67 14.71
0Obj2=-66 C 111 107.93 -66 14.69
Obj2=-64 C il 107.56 -64 14.65
A1=0.80 C 111 104.47 -50 14.13
A1=0.75 Config D Config IV 97.39 -26 13.64
A1=0.70 D v 92.02 -12 13.31

A <=0.65 D v 86.44 0 12.12
| Specific taskings for each solution are on floppy disk 2 in directory time?7. |

of the optimization accounts for approximately 80% of the total CPU time.

Unlike time period one results, the best EVAL solution of 15.06 was found using
the formulation with a covering constraint. The best solution has a A weight for the first
objective in the range of 0.90 to 0.95. The best result without a covering constraint was
of similar quality, with an EVAL result of 14.72. The Department of Defense provided
similar comparison results for time period seven. A standard normal curve representing
these comparison results is compared to the MOLIP results in Figure 12. The EVAL
comparison results had a mean of 11.134 and a standard deviation of 0.9663 for 1000
randomized locations. The sample also had high and low EVAL values of 13.81 and 7.83
respectively. The performance of the best MOLIP solution for this time period exceeds
the best comparison result and is more than four standard deviations above the mcan of
the randomized locations which were heuristically tasked. The best result with a covering
constraint was evaluated with the maximum lines of bearing leuristic that was used to

evaluate the randomized configurations. This produced an EVAL result of 14.07. This




Table 8. Results for Time Block Seven With a Covering Constraint

| Solution | Station Config | Bundle Config | Objective 1 | Objective 2 | EVAL result |

A1=1.0 Config A Config 1 105.98 -88 14.17
A1=0.99 A I 105.98 -74 14.72
A1=0.975 A 1 105.97 -72 14.76
Obj2=-70 A | 105.87 -70 14.88
0Obj2=-69 A Config II 105.83 -69 14.95
A1=0.95 A 11 105.78 -68 14.95
Obj2=-67 A II 105.71 -67 14.96
Obj2=-66 A 11 105.63 -66 15.00
Obj2=-65 A 11 105.55 -65 15.06
Obj2=-64 A 11 105.43 -64 15.01
Obj2=-63 A 11 105.35 -63 14.98
A1=0.90 A 11 105.13 -61 14.99
A1=0.85 A Config 111 104.10 -54 14.19
A1=0.80 A Config IV 102.56 -47 14.29
A1=0.75 A Config V 96.99 -28 13.54
A1=0.70 A Config VI 92.01 -15 12.84
A1 <=0.65 A VI 84.68 0 12.27

| Speciﬁé t—askings for each solution are on floppy disk 2 in directory cover?. |

Figure 12. Time Block Seven Comparison of Results
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result surpasses the maximum EVAL result found in any of the randomized locations,
although it is still less than the best result the MOLIP found with either formulation These
results confirm that with a maximum lines of bearing heuristic, the MOLIP can provide
a good feasible configuration that is in most cases better than any of the randomized

configurations.

Figure 13 shows a plot of both efficient frontiers for the seventh time block. The

Figure 13. Efficient Frontiers for Time Block Seven
Max Oinlegtive 1

T T T T T T T T T
¢ o without covering constraint <
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shape of efficient frontiers for this time block is similar to efficient frontiers shown in
figure 11 for the first time block. The best EVAL solution was found using the covering
formulation. As in the first time block, the efficient frontier of pareto-optimal solutions
with the covering constraint lies inside the convex hull of pareto-optimal solutions without
the covering constraint. Once again, nothing unusual or unexpected is identified about the
MOLIP efficient frontier from the additional solutions provided by the constraint reduced

feasible region method.

7.8 Analysis of Results

After analysis, several observations can be made about the MOLIP solutions for the

GSARP.
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o The two-stage MOLIP solution methodology is capable of consistently producing
good feasible solutions for the GSARP. This result is supported by the comparison
of MOLIP results to those generated by the Department of Defense for comparison.
For time blocks one and seven, the MOLIP identified solutions that are 2.86 and 4.06
standard deviations, respectively, above the mean of randomly generated locations

which are tasked by a greedy heuristic that provides good feasible solutions.

¢ The search space of the weighted sums approach can be reduced. For the contrasting
time blocks, the best MOLIP solutions correspond to a value of A; between 0.85
and 1.0 . Figure 14 illustrates that the EVAL results corresponding to the MOLIP
solutions are approximately unimodal, and, in all cases, the maximum value occurs
in the A, range of 0.85 to 1.0. In fact, the optimal range for A; has decreased from
0.383 to 1.0 in the very small test cases in Chapter 4, to this reduced range of 0.85
to 1.0 for the larger research problem. This might indicate that the weighting on

objective one approaches unity as the problem size increases.

o The constraint-reduced feasible region method did not uncover unexpected or signif-
icantly improved results. That is to say, the character of the efficient frontier and
corresponding EVAL solutions was sufficiently exposed during the weighted sums

approach.

e The set of pareto-optimal solutions can be mapped to a set of station/bundle config-
urations. In many cases, several pareto-optimal solutions, which differ only by their

frequency taskings, can be mapped to the same station/bundle configuration.

o The covering formulation performs well on the average compared to the no covering
f:)rmulation. For time block one, the covering formulation’s best result was 3.9%
worse than the result with no covering constraint. On the other hand, the time block
seven covering formulation produced a result that was 2.3% better than the result
produced without a covering constraint. When considering just a single time block,
neither formulation is clearly superior. However, the covering formulation is robust
and makes more sense if multiple time periods are being simultaneously optimized,

since it covers all the frequencies.
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Figure 14. Comparison of EVAL Results
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The MOLIP objective function can be generalized using the inequality 0.85 < A; < 1.0
where A; + A2 = 1, to reduce the weighted sums search region. Figure 15 demonstrates the

reduced search space resulting from a limited range for the A weights.
max  Ayzy 4 Aoz,

By defining a constant P, the optimal MOLIP solutions can be related to the EVAL

solutions by the relationship:
P x (/\121 + Ag22) = EVAL.

Table 9 demonstrates, based on the research results presented for time blocks one and

seven, how the value of P can be bounded for various ranges of A, .

7.4 Conclusions

This research demonstrates that the MOLIP heuristic is a practical alternative to
the proposed nonlinear formulation which is computationally intractable for realistic size

probleius. The MOLIP heuristic is robust, providing good feasible network configurations
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Figure 15. Reduced Criterion Search Space
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Table 9. A; and P Value Ranges Relating the MOLIP and EVAL Resalts

[ A %ange | Bounded P Range |
0.95< 1 <100} 649<P< 7.891

090< X <095 59:< P<7.21

0.55< X 090 | 5.56< P<6.77
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for comtrastine {ime periods, wsing similar weighiings for the objectives in cach case. The
reselis presexted herein indiczte that the optimal 3; weighiize Fes i (be range of 0.55
t0 1.0. If the search region is reduced £ is opiimai range, the two-sizge weizhted
rums MOLIP methodology can be used to eficently determine good feasible SAR petwork

cozfigerations.

7.5 Recommendations for Fetere Resecrch

Logical extensions for future research are -

1. Explere additional time periods to confirm the copsistency of the two-stzge MOLIP

results and ke consistency of the range of objective weightiags.

2. Develop a modified MOLIP to 2llow more than just one or two bundles of HFDFs to
be 2ssigned to each staiion, that is, also allow for the possibility that some stations
are assigaed three or four bundles of HFDFs.

3. Apply the weighted sums two-stage network methodology to the comprehensive
multi-time period GSARP discussed in Chapter 3. The multi-time period GSARP
simultaneously solves the 12 time blocks to find one station/burdle configuration
that is optimal. Using the reduced A; search region from 0.85 to 1.0, determine the
network configaration which simultaneously produces the best EVAL results for ali

of the time periods. Figure 16 in Appendix H illustrates this concept.

4. Bound the true optimal solution to the GSARP so that the quality of heuristic

solutions can be compared tc a common bound.
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Appendix A. Dete Sorling

Data for twelve time periods was provided by the Department of Defense. This
FORTRAN prozram sorts the data 2nd writes the data for each time petiod to 2 differeat
file. A copy of this code called appendi is provided on floppy disk 1 in the FORTRAN
directory.




7]
PROGRAM DATASPLIT

i

Cc

C PROGRAM DATESPLIT ADAPTED FROM CAPT KRISTA JOHNSOE’S DATA SPLIT
C

C PROGRAM DATASPLIT READS TRANSKISSION PROBABILITIES FROK A FILE
C CALLED TGIPTX.DAT AKD HFDF PROPAGATION PROBABILITIES FRGM A FILE
C CALLED EFDFPAQ_DAT. THE PROBEBILITIES ARE WRITIEM TO SEPARATE
C ACCORDINRG TO TIME PERIOD.

a O 6 a0 a6 a6 a6 6

c
cceecceceecceceecceccecccceceececcoeccececcececcecccececececcceecececccececcecececceeccceece

DIMEESIOR DP(40,30,31), F(40,31)

OPEN (11,FILE=>HFDFPAQ.DAT’,STATUS="0LD’)
OPEN (12,FILE=’TGIPTX.DAT’ ,STATUS="0LD’)

OPEN (21,FILE="D1.DAT’,STATUS=’HNEW’)
OPEN (22,FILE="F1.DAT’,STATUS="NEW’)

OPEN (26,FILE="D2.DAT’,STATUS="HNE¥’)
OPEN (27,FILE="F2.DAT’,STATUS=’HE¥’)

OPEN (31,FILE=’D3.DAT’,STATUS="HEW’)
OPEN (22,FILE="F3.DAT’,STATUS=’HNEW’)

OPEN (36,FILE=’D4.DAT’,STATUS=’NEW’)
OPEN (37,FILE=’F4.DAT’,STATUS=’NEW’)




' OPEX (41,FILE="D5.DAT’ ,STATUS="EEN’)
OPEN (4Z,FILE=’F5.DAT’ ,STATUS="EEN>)

OPEN (46,FILE=D6.DAT’ ,STATUS="NEN’)
OPEX (47,FILE="F6.DAT’ ,STATUS="NEN’)

OPEN (51,FILE="D7.DAT’ ,STATUS=>NZW’)
OPEX (52,FILE=F7.DAT’ ,STATUS="XEN’)

OPEN (56,FILE=’D8.DAT’ ,STATUS="KER’)

GPElN (57,FILE=F8.DAT’ ,STATUS="NER’)

gPEY (61,FILE=D9.DAT’ ,STATUS="EER’)
OPEN (62,FILE=’F9.DAT’ ,STATUS="NEW’)

OPEN (€€,FILE=’D10.BAT’ ,STATUS="HEK’)
OPEX (67,FILE="F10.DAT’,STATUS="NEK’)

OPEN (71,FILE=>D11.DAT’,STATUS="NEW’)
OPEN (72,FILE=>F11.DAT’,STATUS=’NER’)

OPEN (76,FILE=>D12.DAT’,STATUS="NEW’)
OPEN (77,FILE="F12.DAT’,STATUS=’NEW?>)

cccceeceeceececeecececeeccecceecececeecceeecceceecceceeccececececccceccceccececcececccee
C c
C THIS SECTION READS HFDF PROPAGATION PROBABILITIES FOR THE HFDF C
C RECEIVERS AND WRITES THEM TO FILES ACCORDING TO TIME PERIOD c
c c
CCCCCeeeeecceeeecceececceccceceececeeececcceeeceecececceccceeceececceece




D0 100 I=1,40
D0 80 J=1,30.

READ (11,’(A5)’) STIRIP1

READ (11,”(A5)”) STRIP2

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (21,910) (DP(1,J.K), K=1,31)
READ (11,900) (DP(1,J,K), K=1,31)

WRITE (26,910) (DP(I,J.K), K=1,31)
READ (11,900) (DP(I,J,K), K=1,31)

WRITE (31,910) (DP(1,J.K), K=1,31)
READ (11,900) (DP(I,J,K), K=1,31)

WRITE (36,910) (DP(1,J,K), K=1,31)
READ (11,900) (DP(I,J,X), K=1,31)

WRITE (41,910) (DP(1,J,K), K=1,31)
READ (11,900) (DP(1,J,K), K=1,31)

WRITE (46,910) (DP(1,J,K), K=1,31)
READ (11,900) (DP(I,3,K), K=1,31)

WRITE (51,910) (DP(I,J,K), K=1,31)
READ (11,900) (DP(I,J,K), K=1,3i)

WRITE (56,910) (DP(I,J,K), K=1,31)
READ (11,900) (DP(I,J,K), K=1,31)

WRITE (61,910) (DP(I,J,K), K=1,31)
READ (11,900) (DP(I,J,X), K=1,31)

WRITE (66,910) (DP(I,J,K), K=1,31)
READ (11,900) (DP(I,J,K), K=1,31)

WRITE (71,910) (DP(I,J,K), K=1,31)
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READ (11,900) (DP(I,J,K), K=1,31)
WRITE (76,910) (DP(I,J,K), K=1,31)
80 CONTINUE
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100 CONTINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
c c
C THIS SECTION READS TRANSMISSION PROBABILITIES FOR EACH FREQUENCY C
C. AT EACH SITE 4ND WRITES THEM TO FILES ACCORDING TO TIME PERIOD C
c c
Cccctccceccceccccceccecccceccceccecceccecccecceccceccecccecceccceccee

D0 200 I=1,40

READ (12,°(k5)?) STRIP1

READ (12,°(A5)’) STRIP2

READ (12,900) (F(I,K), K=1,31)
WRITE (22,910) (F(I,X), X=1,31)
READ (12,900) (F(I,K), K=1,31)
WRITE (27,910) (F(I,K), K=1,31)
READ (12,900) (F(I,K), K=1,31)
WRITE (32,910) {F(I,X), K=1,31)
READ (12,900) (F(I,X), K=1,31)
WRITE (37,910) (F(I,X), K=1,31)
READ (12,900) (F(I,K), K=1,31)
WRITE (42,910) (F(I,X), K=1,31)
READ (12,900) (F(I,X), K=1,31)
WRITE (47,910) (F(I,K), K=1,31)
READ (12,900) (F(I,K), K=1,31)
WRITE (52,910) (F(I,K), K=1,31)
READ (12,900) (F(I,K), K=1,31)
WRITE (57,910) (F(I,X), K=1,31)
READ (12,900) (F(I,K), K=1,31)
WRITE (62,910) (F(I,K), K=1,31)

SiEe NSNS A " parm g Ve TPTPe AL L INT A aSaA T AR NS v > B NIRRT B B TRATELIR T i ’ ) \ T oo ™




- 5 Ep— . B SR

READ (12,900) (F(I,K), K=1,31)

WRITE (67,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (72,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (77,910) (F(I,K), K=1,31)
200 CONTINUE

900 FORMAT (1X,31(F3.2,2X))
910 FORMAT (1X,31(F3.2,1X))

END




Appendix B. Computing Objective Function Coefficients

Objective function coefficients are needed for SAS LP input files. This FORTRAN
program calculates coefficients for the first objective function of any time period. A copy
of this code called append? is provided on floppy disk 1 in the FORTRAN directory.
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PROGRAM OBJFUNC

CCCCCCCCCCCCCCCCCCCCCCCCCCECCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCet
c

C THIS PROGRAM COMPUTES OBJECTIVE FUNCTION COEFFICIENTS. THE COEF-
C FICIENTS FOR THE OBJECTIVE FUNCTION ARE WRITTEN TO A FILE CALLED
C 08JT*.DAT. WHERE * STANDS FOR THE TIME BLOCK.

C THIS FILE HAS THE STATION NUMBER , THE FREQUENCY NUMBER AND THE
C CORRESPONDING OBJ FUNCTION COEFFICIENT IN EACH ROW.

c

C D*x and F* are the data files created by the data split program

C for time period *. Ratioout.dat contains the weighting function

C function data Wij which is used for objective function one.

a Q a O a o G a a a a

C
€ccceecccceeeceecececcceccceccceecececcecececccecccecececcecccecceccececce

DIMENSION F(40,31), DP(40,30,31), FAN(40,30), COEF(30,31)

OPEN(10,FILE=’D7.DAT? ,STATUS=’0LD’)
OPEN(11,FILE="F7.DAT> ,STATUS=’0LD’)
OPEN(12,FILE=’RATIOOUT.DAT? ,STATUS=’0LD’)
OPEN(13,FILE="0BJT7.DAT’ ,STATUS=’NEW’)

D0 100 I=1,40
READ(*”,200) (F(I,X),K=1,31)
D0 80 J=1,30
READ(10,900) (DP(I,J,K),K=1,31)
READ(12,910) FAN(I,J)
80  CONTINUE
100 CONTINUE




QML SR s isa 2y

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
C COMPUTE COEFFICIENTS FOR OBJECTIVE FUNCTION C
-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

DO 200 J=1,30

oo e e e T

DO 180 K=1,31
COEF(J,K) = 0.0
D0 160 I=i,40
COEF(J,XK) = COEF(J,K) + F(I,K)*FAN(I,J)*DP(I,J,K)
160 CONTINUE WRITE(13,920) J,K,COEF(J,K)

I

oo

Ty

Havg

180  CONTINUE
200 CONTINUE

900 FORMAT(1X,31(F3.2,1X))
910 FORMAT(20X,F10.4)
920 FORMAT(1X,I2,2X,I2,2X,714.7)

e e o

END

i A

80




Appendix C. Single-Stage SAS LP Input File

This FORTRAN program generates the SAS LP input files for a single-stage network.
It was specifically set up to generate input files for the test cases in Chapter 4. A copy of
this code called append3 can be found on floppy disk 1 in the FORTRAN directory.
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PROGRAM SINGLESTAGE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
C PURPOSE: THIS PROGRAM WRITES THE INPUT FILE FOR SAS PROC LP

C THE PROBLEM IS MULTIOBJECTIVE AND THEREFORE SEVERAL WEIGHT-
INGS OF THE OBJECTIVE FUNCTION WILL BE INVESTIGATED.

Q

C
C
c
TOYWT.DAT HAS THE OBJECTIVE FUNCTION WEIGHTINGS C
DBJT*,DAT HAS. THE OBJECTIVE FUNCTION COEFFICIENTS FOR C
TIME PERIOD ’*’ FOR OBJECTIVE ONE, WITH NO C

WEIGHTINGS APPLIED. ‘C

SL*W&n.SAS IS THE SAS INPUT FILE FOR TIME PERIOD ’#’ c
AND WEIGHT ’&’ c

Integer Variables (all binary) 12 SOST] variables c
and 15 STjf variables c

This code generates test problems used in chapter six to C
validate the performance of a two-stage network against this C
single-stage network. Only 15 stations are used with 3 fixedC
stations, but all 31 frequencies are used. Fairshare is C
only 4 . This small version has to integerize the ssource toC
station arcs and the station to slack arc as picured in two- C

stage network in chapter six. C

QO O O O QO O O o 0o o o O a a Q@

MOST RECENT CHANGE: 24 Jan 91 C
Cceeeececceececececeecececceceeeccceeceeceececcecccecceeccceceececececcee
PARAMETER (NS=15,NF=31)

INTEGER J,K,N

REAL Wi,W2,COEF,WCOEF1(NS,NF),WCOEF2(NF) ,HFDF,STAT,
&FAIRSH

OPEN (9,FILE=’TEST.DAT’,STATUS=’UNKNOWN’)
OPEN (10,FILE=’TOYWT.DAT’,STATUS=’0LD’)
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30
20

40

‘OPEN. (11,FILE=>0BJT1.DAT’ ,STATUS=’0LD’)

initialize variables

~

‘HFDF = 120
'STAT = 10
FAIRSH = 4

¢

DO 100 N=1,10
weightings for objective functions 1, and 2
READ(10,700) Wi,W2
WRITE(9,*) N,Wi,W2

weighted coefficients for objective function 1
DO 20 J=1,NS
DO 30 K=1,NF
READ(11,705) COEF
WRITE(9,%)J,K,COEF
WCOEF1(J,K) = W1%COEF*1.0
WRITE(9,*)J,K,W1,W2,WCOEF1(J,K)
CONTINUE
CONTINUE

REWIND(11)
weighted coefficients for excess coverage of freq k
DO 40 K=1,NF
WCOEF2(K) = W2 * (-1)
WRITE(9,*) ¥2,WCOEF2(K)
CONTINUE

open file to write sas input for each weighting N
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I (%.EQ.i) CPEN (22,FILE="[3STEPPE.TEESES.sasiplsiiwin SIS?,

& STATUS="KER")

IF (N.EQ.2) OPEN (12,FILiE="[JSTEFPE THESIS.SISIPIsLIN?n. SLS”,
L STATUS="FEX")

IF (K.EQ.2) OFEN (22,FILE~"[ISTErPE.TEESIS.SASIPIsLIW3n.S1S”,
& STATUS="KEN")

IF (N.ER.4) OPEN (12,FILE="[ISTEPFE.THESIS.SASIPIsLiNsn.SAS”,
& STATUS="KEw")

IF (K.EQ.5) CPEN (22,FIiZ=’[3SIEPFE.TESSIS.SASLPISLI%5a.S2S”,
& - STATUS="KZN")

IF (¥.E0.6) OPEX (i2,FILE=’ [JSTECPE.THESIS.SASLPISLINGn.SES”,
& STATUS="KE%")

IF (¥.EQ.7) CPEN (12,FILE=’[ISTEPPE.THESIS.SASLPYSL1%7n.SAS?,
& STATUS="KZ4’)

Ir (5.EQ.8) OPEN (12,FILE=’ [JSTZFPE.THESIS.SASLPIsLiNGn.SES?,
& STATUS="¥EW*)

IF (YN.EQ.9) GPEN (12,FIiE=’ [JSTEPPE.THESIS.SASLPIsL1%2n.SAS?,
& STATUS="KEW")

IF (1.EQ.3i0) OPEN(12,FiLE=’[3STEPPE.TEESIS.SASLPIsL1¥10n.S4S?,
& STATUS="NHEX’)

IF (N.EQ.11) OPEN(12,FILE=’ [JSTEPPE.THESIS.SASLPIsLi¥1in.SAS?,
- STATUS="KE¥X?)

IF (N.EQ.12) GPEN(12,FILE=’ [JSTEPPE.THESIS.SASLP]1sL1¥W12n.SLS?,
£ STATUS=HEW’)

IF (N.EQ.13) OPEN(12,FILE=’ [JSTEPPE.THESIS.SASLP]sL1H13n.SAS’,
& STATUS="HEW’)

IF (H.EQ.14) DPEN(12,FILE=’ [JSTEPPE.THESIS.SASLP]sL1¥14n.S4S57,

& STATUS="NEW?)
IF (N.EQ.15) OPEN(12,FILE=’ [JSTEPPE.THESIS.SASLP)sLi¥15n.SAS?,
& STATUS="NEW?)

&4




c

i

IF (¥.23.16) CFEN(12,FILE="[JISTEFPE.THESIS. SISIPYSLINI6n.S1S”,

2 STATUS="KEL")

IF (¥.EQ.1T) OPEN(12,FILE="[ISTEPPE. THESIS. SASLPIsLINITR. SAS”,
3 STATUS="8ER")

IF (X.EQ.18) OPEN(12,FILE="[JSTEPPE. TRESIS.SASEPIsLIK18a.S2S?,
& STATUS=>XER"*)

IF (%.E.19) CPEN(12,FILE=’[JSTEPFE.THESIS.SASLP)sL1W19n.585,
& STATUS="KEW")

IF (M.E9.20) OPEN(12,FilE=’[ISTEPPE.THESIS.SASLP)SL1Z0n.SES’,
& STATUS=°TEX*)

IF (6.EG.21) OPE¥(12,FILE=’[ISTEPPE.THESIS.SASLP)sLi¥21n.S4S”,
t 4 STATUS="K=4?)

write the S2S input file

¥RITE (i2,%) ’OPTIONS LINESIZE=78;’
¥RITE (12,%)

WRITE (12,%) ’TITLE ’’LOCATING 2 SER NETWORK WITH GOOD HFDF
& FREQUENCY ASSIGHMENTS’’;?

WRITE (12,%)

¥RITE (12,*) ’DATA SAR;’

¥RITE (12,%)

WRITE (12,#) ’INPUT _TYPE_ $ _COL_ $ _ROW_ $
& _COEF_;>

WRITE (12,%)

WRITE (12,%) ’CARDS;’

create the objective function

objective function one data and upperbounds for obj vars.

WRITE(12,*) ’MAX . PROFIT L

]
<




c

PO 110 J=1,KS
DC 115 X=1,NF
IF ((3 .LT- 10) .£XD. (X .LT.10)) THEN
VRITE (12,750) *. s?,3,7F %,’ PROFIT *

& ,¥CCEF1(J3,X)
ELSEIF (3 .i7. 30) TiE=
WRITE (12,751) ’. s?,3,°F’ K,’ PROFIT *
& SNCOEF1(J,K)
ELSEIF (K .LT. 10) THEN
WRITE (12,752) °. $?,3,°F’ K,’ PROFIT °’
& ,¥COEF1{J,K)
ELSE
WRITE (12,753) °. $?,3,°F? K,? PROFIT °
& ,¥COEF1(3,X)
ENDIF
115  CONTINUE
110 CONTINUE

objective function two data & upperbounds for obj vars
DO 125 X=1,NF
IF (K .LT. 10 ) THEN

W¥RITE (12,760) °. F’,K,’EX PROFIT’ ,WCDEF2(K)
WRITE (12,765) *UPPERBD F’,K,’EX UPF’,K
& ,’EX 6.0’
ELSE
WRITE (12,761) °. F,K, EX PROFIT’ ,WCOEF2(K)

WRITE (12,766) ’UPPERBD F’,K,’EX UPF’,K
& » EX 6.0°
ENDIF
125 CONTINUE

86
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source to receiving station constraint
| WRITE(12,%) SEQ ] SaST .2
WRITE(12,%) . _RHS_ SOST » STAT
DD 130 J=1,XS
IF (J .ILT. 10) THEE
WRITE(12,770) °. S0S1”,4,? SoST
ELSE
WRITE(12,771) °. ses1’,3,? SOST
ENDIF
130 CONTINUE

conservation of flow at the receiving stations

D0 135 J=1,KS

IF ((3 .EQ. 1) .OR. (J .EQ. 8) .OR. (J .EQ. 15) .OR.

& (J .EQ.27) .0R. (J .EQ. 28)) THEN

IF (J .LT. 10) THEN

WRITE(12,775)°EQ . CONST? ,J
& )’ .

WRITE(12,775)°. _RHS_ CONST? ,J
& s’ 1.0?°

WRITE(12,780)°. spsT’,J,’ CONST?,J
& s’ 3.0°

WRITE(12,785) UPPERBD sosT?,J,? UPsSOST?, J

& ,? 1.0°
WRITE(12,790)°. ST’,3,’SL CONST?,J
& ) -1.0?

WRITE(12,730) >BINARY sT°,3,’SL BINARY
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C 5 true fixed stations are 1,8,15,27,28 as defined by thesis prob
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WRITE(12,800)°. s1’,3,°8%,3,? CONST?,J

2 :1,39’

iw

T
WRITE(12,800) >UPPERBD  ST’,J3,’S’,J,? UFPERS’,J
2 »? 2.0°
ELSE
WRITE(12,776) ’EQ . CONST?,J
& ,? .2
WRITE(12,776)”. _RHS_ CONST?,J
x .’ i.0°
WRITE(12,781)°. SG6ST?,J,’ CONST’,3
& ,? 3.0’
WRITE(12,786) UPPERBD  SOST’,J,”  UPSOST’,J
& ,? 1.0°
WRITE(12,791)°. ST?,3,°SL COKST? ,J
& ,2 -1.0?
WRITE(12,731)°BINARY  ST?,J,’SL  BINARY 1°

¥RITE(12,803)°. sr’,3,’8%,3,? CONST?,J
& s’ -1.0?
WRITE(12,803) *UPPERBD ST’,J,’S’,J,’ UPPERS?,J
& s’ 2.0°
ENDIF

ELSE

iF (J .LT. 10) THEN
WRITE(12,775)’EQ . CONST?,J
& s’ .?
WRITE(12,775)°. _RHS_ CONST? ,J
& y’ 0.0’
WRITE(12,780)°. so0sT’,3,° CONST?,J

el
w0




4 »? 2.0°

WRITE(12,730)’BIEARY SOST’,J,° BINARY 1’
mm(12,790)’. sT’,J,’SL . CONST’,J
x ,> -1.0°
- WRITE(12,730) ’BINARY ST’,J,’SL  BINARY 1’
WRITE (12,800)°. s1°,3,78%,3,? CONST’,J

.3 4..N
‘» “i.v

»

WRITE (12,800) >UPPERBD s1’,3,’s?,3,’ UPPERS? ,J

4 »? 2.0°
ELSE
WRITE(12,776)°EQ . CONST?,J
& s’ ?
WRITE(12,776)°. _RHS_ CONST? ,J
& ' . 0.0°
WRITE(12,781)°. so0s1’,J,’ CONST?,J
& s 2.0°
WRITE(12,731) ’BINARY S0ST’,J,’ BINARY 1’
WRITE(12,791)°. sT1°,7J,’SL CONST?,J
& s’ -1.0°
WRITE(12,731) ’BINARY s1°,3,°SL BTNARY 1’
WRITE(12,803)°. sT’,3,’8%,3J,° CONST?,J
& ,’ -1.Q°

WRITE(12,803) *UPPERBD ST’,J,’S’,J,’ UPPERS’? ,J
& s’ 2.0°
ENDIF
ENDIF
135 CONTINUE

C conservation of flow at slack

WRITE(12,*) ’EQ . CONSL J?
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WRITE(12,%) °.
DO 175 J¥1,ls
IF (3 .LT. 10) THEN
WRITE(12,830) °.
ELSE
WRITE(12,831) .
ENDIF
175 CONTINUE
WRITE(12,%) .
" WRITE(12,*) *UPPERBD

-RES_

SLSI
SLSI

CONSL 5.0°

sT’,J,’SL CONSL 1.0°

s1’,J,°SL CONSL 1.0°

CONSL -1.0°

UPSLSI 20.0°

conservation of flow at restationing node

DD 178- J=1,NS
IF (J .LT. 10) THEN
WRITE(12,775) ’EQ
WRITE(12,775)°.
WRITE(12,800)°.
& s’ 8.0°
DO 176 X=1,NF
IF (K .LT. 10) THEN
WRITE(12,850)°.
& »J,’
ELSE

-1.0°

WRITE(12,851)°.
& +Js’
ENDIF
176 CONTINUE
ELSE

-1.0’

WRITE(12,776) ’EQ
WRITE(12,776)°.

_RHS_ cons?,J,’

. coxs?,J,? .2
0.0°

s1,J,’s8,3,° CONs’,J

5?,3,’F,K,’ Cons’

s$’,3,’F’ ,K,’ CONS?

. cons’,J,’ L

_RHS_ cons’,J,’ 0.0’

90




| Ao AL
- "
i\
'

R S S 2 BN R R LR LA

g 1
' R
g ; WRITE(12,803)°. sT’,3,’8%,1,? CONS?,J,
' t . 8.0
E, DO 177 K=1,NF
l IF (K .LT. 10) THEN
E WRITE(12,852)°. s$?,3,’F’,K,’ CONS’
;" »J,? -1.0°
% ELSE
gl WRITE(12,853)°. s?,J,’F? K,’ CONS’
% 4 »J,’ -1.0°
El ENDIF
E 177 CONTINUE
F' ENDIF
E 178 CONTINUE
1
c conservation of flow at each freouency
DO 180 K=1,NF
IF (K .LT. 10) THEN
WRITE(12,835) ’EQ CONF’ ,K,° J?

WRITE(12,835) ’. RHS_
WRITE(12,840) °. F?,K,’EX
WRITE(12,840) °. F’,K,’NE

WRITE(12,845) ’UPPERBD F?,K,’NE
ELSE
WRITE(12,836) ’EQ

WRITE(12,836) °. _RHS_
WRITE(12,841) °. F’,K,’EX
WRITE(12,841) °. F?,K,’NE

WRITE(12,846) ’UPPERBD F?,K,’NE
ENDIF
DO 185 J=1,NS
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CONF’,K,> 0.0’
CONF’ ,K,’
CONF’ ,K,’

UPF’,K,’NE

CONF’ ,K,’ J?
CONF’ ,K,” 0.0’
CONF’ ,K,’
CONF’ ,K,’

UPF’,K,’NE

~-1.0°
-1.0°
4.0°

-1.0’
-1.0°
4.0’




- FE— T T
: . s 3 by Cmar:

IF ((J .LT. 10) .AND. (K .LT. 10)) THEN

WRITE(12,850) °. s’,J,’F’ K,
: ,? 1.0’

WRITE(12,720) *UPPERBD s’,3,’F’ K,?
& ’F! K,? 1.0’

ELSE IF (J .LT. 10) fHEN
WRITE(12,857) °. s’,J,°F’,K,’
& ,? 1,0°
WRITE(12,721) *UPPERBD s’,J,°F’,K,’
& ’F’ ,K,’ 1.0’
ELSE IF (K .LT. 10) THEN
WRITE(12,858) °. s’,J,°F’ X,?
& ,? 1.0°
WRITE(12,722)’UPPERBD s,J,’F’,K,’

& ’F’LK,? 1.0?
ELSE
WRITE(12,853) . 5?,J,°F,X,?
& s’ 1.0°

WRITE(12,723)°UPPERBD S’,J,’°F’,K,’
& ’F?LK,? 1.07
ENDIF
185  CONTINUE
180 CONTINUE

conservation of flow at excess coverage

WRITE(12,%) ’EQ . CONEX
WRITE(12,%) ’. _RHS_ CONEX
DO 195 K=1,NF

IF (K .LT. 10) THEN
WRITE(12,855) ’. F’,K,’EX
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CONF’ K

upsT?,J,

CONF’ ,K

upsT’,J,

upsT’,J,

CONF’ K

CONF’ ,K

UpPsT?,J,

0.0’

CONEX

1.0°




ELSE

WRITE(12,856) ’. F?,K,’EX CONEX 1.0
ENDIF )
195 CONTINUE
WRITE(12,%) °. EXSI CONEX -1.0?
WRITE(12,*) *UPPERBD EXSI UPEXSI 80’
3 c conservation of flow at nonexcess coverage
‘ WRITE(12,*) ’EQ . CONNE .2
WRITE(12,%) °. RHS_ CONNE 0.0’

DO 200 K=1,NF
IF (K .LT. 10) THEN

WRITE(12,855) °. F’,K,’NE CONNE 1.0?
» ELSE
3 WRITE(12,856) . F’,K,’NE CONNE 1.0?
L‘ ENDIF

200 CONTINUE
WRITE(12,%) °. NESI CONNE -1.0?

2in

WRITE(12,%*) *UPPERBD " NESI UPNESI 120.0°

sink constraint

T T T T V——_ T
Q
-

WRITE(12,%) ’EQ . SINK
WRITE(12,%) . _RHS_ SINK 120.0°
WRITE(12,%) . NESI SINK 1.0°
WRITE(12,%) °. EXSI SINK 1.0°
WRITE(12,%) . SLSI SINK 1.0’

WRITE (12,%) *; °
WRITE (12,%) ’PROC LP SPARSEDATA MAXIT1=10000 MAXIT2=100000 IMAXIT
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100

700
705

720

721
722
723
730
731
740
741
750
751
752
753
755
756
757
758
760
761
765

=99999999

WRITE (12,*) ’PRINTFREQ=200;’

WRITE (12,*) ’RUN;’

CLOSE (12)

CONTINUE

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(F7.5,F7.5)

(10X,F14.7)
(1X,A13,11,41,11,A10,11,A1,11,48)
(1X,A12,11,A1,12,A9,11,A1,12,A8)
(1X,A12,12,41,11,A9,12,A1,11,48)
(1X,A11,12,A1,12,A8,12,A1,12,A8)
(1X,A13,11,A19)

(1X,A12,12,419)

(1X,A15,11,420)

(1X,A14,12,420)
(1X,A13,11,A1,11,A13,F10.6)
(1X,A12,11,A1,12,A13,F10.6)
(1X,A12,12,A1,11,A13,F10.6)
(1X,A11,12,A1,12,A13,F10.6)
(1X,A13,I1,A1,11,A8,11,A1,11,48)
(1X,A12,11,A1,12,A7,11,A1,12,48)
(1X,A12,12,A1,11,A7,12,A1,11,A8)
(1X,A11,12,A1,12,A6,12,A1,12,48)
(1X,A13,1I1,A14,F10.6)
(1X,A12,12,A14,F10.6)
(1X,A13,11,A11,11,A11)
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766 FORMAT (1X,A12,12,A10,12,A11)
770 FORMAT (1X,A15,I1,A21)

~ 7 -TTESFORMAT -(i%;A14512,421) - -
773 FORMAT .(1X,A15,T1,A12,11,48)
774 FORMAT (1X,A14,12,A11,12,A8)
775 FORMAT (1X,A28,I1,A8)
776 FORMAT (1X,A27,12,A8)
780- FORMAT (1X,A15,I1,A11,I1,A8)
781 FORMAT (1X,A14,12,410,I2,A8)
785 FORMAT (iX,A15,11,A11,I1,A8)
786 FORMAT (1X,A14,I12,A410,12,A8)
790 FORMAT (1X,A13,T1,A13,11,A8)
791 FORMAT (1X,A12,12,A12,12,A8)
795 FORMAT (1X,A13,I1,A11,I1,A9)
796 FORMAT (1X,A12,12,A10,I2,A9)
800 FORMAT (1X,A13,I1,A1,I1,A11,11,A8)
803 FORMAT (1X,A11,I2,41,I2,A10,12,A8)
830 FORMAT (1X,A13,I1,422)
831 FORMAT (1X,A12,12,A22)
835 FORMAT (1X,A27,I1,46)
836 FORMAT (1X,A26,12,46)
840 FORMAT (iX,A13,11,A13,11,A9)
841 FORMAT (1X,A12,12,A12,12,A9)

845 FORMAT (1X,A13,I1,A11,I1,A10)

846 FORMAT (1X,A12,12,A10,12,410)

850 FORMAT (1X,A13,1I1,A1,11,A12,11,48)
851 FORMAT (1X,A12,11,A1,12,A12,11,4A8)
852 FORMAT (1X,A12,12,A1,11,A12,12,A8)
853 FORMAT (1X,A11,12,A1,12,A11,12,A8)
855 FORMAT (1X,A13,I1,422)
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856 FORMAT (1X,412,12,522)

857 FORMAT (1X,£12,71,81,12,A11,72,4%)

858 FORMAT (1X,£12,12,41.71,812,%1,48)
END
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Appendix D.: Stage-Onc SAS LP Input File

SAS LP reguires an input file. This FORTRAN program generates 2= izput &le in
the sparse fosmat for the stzge one of the two-stage formulation. A copy of this code called
appexdi is proxided on floppy disk 1 in the FORTRAN directosy.




c TEESIS STAGE CXE CPYIMIZATION c
C -PURPOSE: THES PROGRAM WRITES THE INFUT FILE FOR SAS FROC IP C
C THEE PROBLEM IS YULTIOBJECTIVP AXD TESREFORE SEVERRL WEIGET- C
€ IXGS OF THE OBJECTIVE FUXCTION WILL BE INVESTIGATED. c
C TOYWY.DAT HiS THEE OBJECIIVE FUNCTION WEIGHTIEGS C
C 0B3T+.DAT A4S THE OBJECTIVE FUNCTIOF COEFFICIEETS FOR C
c TIME PERICD ’#’ FOR OBJECTIVE OKE, WITH ED C
< WEIGHTINGS APPLIED. C
C MsWk.SAS IS THE SAS IKPUT FILE FOR TiME PERIOD ’s’> C
c £%ND WEIGHT &’ c
C MULTICOMMODITY FLOW IDEZ USED FGR BUNDLING. FIRST SOURCE C

C GIVES BUNDLE TG 20 STATIONS, 2D SOURCE ALLOCATES 10 ADDITAHL C
C BUNDLES T8 STATIONS THAT ALREADY HAVE ORE BUNDLE FROM SOURCE C
C ONE. c
C This progran generates matrix input for the stage one optimi C
C zation. The twenty stations selected by stage one will be C
C located. Currently there are 25 binary variables (SOSTj). C
C Five stations are already fixed: 1, 8, 15, 27, and 28. C

Cccceeceeeecceeccecececeecceccccecceeecceccceecceccceececceccecceece
PARAMETER (NS=30,NF=31)
INTEGER J,K,N
REAL Wi,%2,COEF,¥WCOEF1(}S,NF),¥COEF2(NF) ,HFDF,STAT,

&FAIRSH

OPEN (9,FILE=’>TEST.DAT’,STATUS=>UNKNOWN’)
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30
20

OPEX (10,FILE="TOYNT.DAT’ ,STATUS="0LD”)
OPEN (11,FYLE="0BJI7.DAT’,STATUS=’0LD”)

initialize variables
statl represents tkat the 20 stations chosen will each get
one bundie of HFDFs

HFDF = 240
STATL = 20
FAIRSH = 8

DD 100 N=1,24
weightings for objective functicns 1, and 2
READ(10,700) W1,W2
WRITE(9,*) N,¥Wi,W2

weighted coefficients for objective function 1
D0 20 J=1,NS
D0 30 K=1,NF
READ(11,705) COEF
WRITE(9,*)J,K,COEF
WCOEF1(J,K) = Wi*COEF#1.0
WRITE(9,#*)J,K,W1,W2,WCOEF1(J,X)
CONTINUE
CONTINUE

REWIND(11)
weighted coefficients for excess coverage of freq k
DO 40 K=1,NF

WCOEF2(K) = W2 * (-1)
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c

WRITE(9,%) W2,H¥COEF2(X)
40  CONTINUE

open file to write sas input for each weighting ¥
IF (N.EQ.1) OPEN (12,FILE=’[JSTEPPE.THESIS.SASLPINTH1.SAS’,

2 STATUS="NEN’)
IF (N.EQ.2) OPEN (12,FILE=’[JSTEPPE.THESIS.SASLPINTW2.SAS’,
% STATUS="HEW’)
IF (4.E9.3) OPEM (i2,FILE=’[JSTEPPE.THESIS.SASLPI¥TH3.SAS’,
X STATUS="REX’)
IF (N.EQ.4) OPEN (12,FILE=’ [JSTEPPE.THESIS.SASLPIN7W4.SAS?,
& STATUS="NEW?)
IF (N.EQ.5) OPEN (12,FILE=’ [JSTEPPE.THESIS.SASLPIM7KS5.SAS?,
& STATUS="NEW’)

IF (N.EQ.6) OPEN (12,FILE=’[JSTEPPE.THESIS.SASLPIM7W6.SAS’,
& STATUS="REW’)

IF (N.EQ.7) OPEN (12,FILE=’[JSTEPPE.THESIS.SASLPIM7W7.SAS?,
& STATUS="NEW’)

IF (N.EQ.8) OPEN (12,FILE=’[JSTEPPE.THESIS.SASLPIM7¥8.SAS?,
& . STATUS="NEW’)

IF (N.EQ.9) OPEN (12,FILE=’[JSTEPPE.THESIS.SASLPIM7H9.SAS?,
& STATUS="NEW’)

IF (N.EQ.10) OPEN(12,FILE=’ [JSTEPPE.THESIS.SASLPIM7W10.SAS?,
& STATUS="NEW’)

IF (N.EQ.11) OPEN(12,FILE=’ [JSTEPPE.THESIS.SASLPIM7W11.SAS’,
& STATUS="NEW’)

IF (N.EQ.12) OPEN(12,FILE=’ [JSTEPPE.THESIS.SASLPIM7W12.SAS’,
& STATUS="NEW’)

IF (N.EQ.13) OPEN(12,FILE=’[JSTEPPE.THESIS.SASLPIM7W13.SAS’,
& STATUS=’NEW’)
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c

IF (M.EQ.14) OPEN(12,FILE~’[JSTEPPE.THESIS.SASLPIN7W14.SAS’,

2 STATUS="KEW”)

IF (M.EQ.15) OPEN(12,FILE=" [JSTEPPE.THESIS.SASLPIN7#1S.SAS?,
z STATUS="KEN’)

IF (N.EQ.16) OPEN(12,FILE=’[JSTEPPE.THESIS.SASLPIN7N16.SAS’,
4 STATUS="NEN’)

IF (N.EQ.17) OPEN(12,FILE=’ [JSTEPPE.THESIS.SASLPIMTW17.SAS’,
z STATUS="NEK’)

IF (¥.EQ.18) OPEN(12,FILE=’[JSTEPPE.THESIS.SASLPIN7W18.SAS?,
: STATUS="KER’)

IF (K.EQ.19) OPEN(12,FILE=’ [JSTESPE.THESIS.SASLPIM7W19.S4S?,
& STATUS="KEW’)

IF gN.EQ.20) OPEN(12,FILE=> [JSTEPPE.THESIS. SASLPIM7H20.SAS?,
4 STATUS="NEW?)

IF (N.EQ.21) OPEN(12,FILE=’[JSTEPPE.THESIS.SASLPIM7W21.SAS?,
& STATUS="NEW?)

IF (N.EQ.22) OPEN(12,FILE=’[JSTEPPE.THESIS.SASLPIM7¥22.SAS?,
& STATUS="HEW’)

IF (N.EQ.23) OPEN(12,FILE=’[JSTEPPE.THESIS.SASLPIM7%23.5AS’,
& STATUS="NEW’)

IF (N.EQ.24) OPEN(12,FILE=’[JSTEPPE.THESIS.SASLPIM7H24.SAS’,
& STATUS="NEW?)

write the SAS input file

WRITE (12,*) ’OPTIONS LINESIZE=78;’

WRITE (12,%)

WRITE (12,%) ’TITLE ’’LOCATING A SAR NETWORK WITH GOOD HFDF
& FREQUENCY ASSIGHMENTS’?;’

WRITE (12,%)

WRITE (12,*) ’DATA SAR;’
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WRITE (12,%)

WRITE (12,%) >INPUT _TYPE_ $ _COL_ $ _ROW_ $

.& _COEF_;’

WRITE (12,%)
WRITE (12,*) >CARDS;?

create the objective function

objective function one data & upperbounds for obj vars.

WRITE (12,%) *MAX
D0 110 J=1,KS
DO 115 K=1,NF

. PROFIT

IF ({3 .LT. 10) .AND. (X .LT.10)) THEN

WRITE (12,750) °.
& ,WCOEF1(J,X)
WRITE (12,755) ’UPPERBD
& 2 1.0
ELSEIF (J .LT. 10) THEN
WRITE (12,751) °.
& ,WCOEF1(J,X)
WRITE (12,756) ’UPPERBD
& ,? 1.0°
ELSEIF (X .LT. 10) THEN
WRITE (12,752) °.
& ,WCOEF1(J,X)
WRITE {(12,757) *UPPERBD
& y’ 1.0°
ELSE
WRITE (12,753) °.
& ,WCOEF1(J,X)
WRITE (12,758) ’UPPERBD

s1T,J3,°’F’ ,K,?

s1°,3,’F’,K,?

sT’,J3,’F’,K,?

sT’,J3,’F’,K,’

sT’,J1,’F’,K,’

sT’,J,’F’,K,’

sT’,J,°F’ ,K,’

s1°,J,°F’ ,K,’

102
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PROFIT °

vpPsST?,J,’F? K

PROFIT °’

upsT’,J,’F’ K

PROFIT °

UPST?,J,’F’,K

PROFIT °

UpsT?,J,’F’,K




RIS T

PR A S

NLUE Mt A Saoads 2oa b A

,l'
.

‘Il
:

'I'
lll
’ '

3

& .’ 1.0’

ENDIF
115 CONTINUE
110 CONTINUE

c objective function two data & upperbounds for obj vars
DO 125 K=1,NF
IF (K .LT. 10 ) THEN

WRITE (12,760) . F’,K,’EX PROFIT’ ,HCOEF2{K)

WRITE (12,765) ’UPPERBD F’,K,’EX UPF’,K
-/ » EX 16.0°
ELSE

WRITE (12,761) °. F’,K,’EX PROFIT’ ,WCOEF2(K)

WRITE (12,766) ’UPPERBD F’,K,’EX UPF’,K
& » EX 16.0°
ENDIF
125 CONTINUE

C source ONE to receiving station constraint

C 20 stations will get one bundle of HFDF resources
WRITE(12,%) °EQ . S01ST !
WRITE(12,%) ’. -RHS_ S01ST > ,STAT1

b0 130 J=1,NS
IF (J .LT. 10) THEN

WRITE(12,770) ’. sG1sT’,3,? S01ST
ELSE

WRITE(12,771) ’. s01s3T?,J,° S01ST
ENDIF

130 CONTINUE
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c conservation of flow at the receiving stations
Do 135 J=1,NS
c fixed stations defined for thesis problem
IF ((J .EQ. 1) .OR. (J .EQ. 8) .OR. (J .EQ. 15) .OR.
& (J .EQ.27) .OR. (J .EQ. 28)) THEN

IF (J .LT. 10) THEN

WRITE(12,775) ’EQ . CONST?,J
& s .0

WRITE(12,775)°. -RHS_ CONST?,J
& ,? 1.0°

WRITE(i2,780)°. 501sT’,J,? CONST?,J
& y? 8.0’

WRITE(12,785)’UPPERBD  S01ST’,J,’ UPS01ST’,J
& )’ 1.0?
D0 140 K=1,NF
IF (K .LT. 10) THEN

WRITE (12,800)°. sT’,3,’F? K, CONST?,J
& s’ -1.0°
ELSE
WRITE(12,802)°. sT’,J,’F,K,’ CONST?,J
& ,’ -1.0°
ENDIF
140 CONTINUE
ELSE
WRITE(12,776)’EQ . CONST?,J
& )’ L7
WRITE(12,776)’. _RHS_ CONST?,J
& y’ 1.0’
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WRITE(12,781)°. soisT’,J,’ CONST? ,J

|}
i ,

& 3’ 9.0’
WRITE(12,786) *UPPERBD S01ST’,J,’ UPSOST? ,J
& s’ 1.0°
DD 145 K=1,NF
IF (K .LT. 10) THEN

WRITE(12,801)°. sT’,J,’F? ,K,? CONST?,J
& s’ -1.0°
ELSE
WRITE(12,803)°. 5T?,1,°F’,K,? CONST?,J
& )’ -1.0°
ENDIF
145 CONTINUE
ENDIF
ELSE

IF (J .LT. 10) THEN

WRITE(12,775)’EQ . CONST?,J
& y’ ?

WRITE(12,775)°. _RHS. CONST?,J
& y’ 0.0’

WRITE(12,780)°. so01sT’,7J,? CONST?,J
& )’ 8.0’

WRITE(12,740) ’BINARY S01ST’,J,’ BINARY 1
DO 150 K=1,NF
IF (X .LT. 10) THEN

WRITE (12,800)’. sT’,J3,°F K, CONST? ,J
& ,? -1.0°
ELSE
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- WRITE(12,802)°. sT’,J,’F’,K,’

& )Y -1.0°
ENDIF
150 CONTINUE
ELSE
‘WRITE(12,776)EQ . CONST?,J
& ,? .
WRITE(12,776)°. _RHS_ CONST?, J
% ,? 0.0°
WRITE(12,781)°. S01ST?,3,” CONST?,
& ,? 8.0
WRITE(12,741)’BINARY  SO01ST’,J,”  BINARY
DO 155 K=1,NF
IF (K .LT. 10) THEN
WRITE(12,801)°. ST?,J,7F’ K,?
& S -1.0°
ELSE
WRITE(12,803)’. ST?,J,’F’ K,’
% o -1.0°
ENDIF
155 CONTINUE
ENDIF
ENDIF
135 CONTINUE

conservation of flow at each frequency
DO 180 K=1,NF
IF (K .LT. 10) THEN
WRITE(12,835) ’EQ . CONF’ X,
WRITE(12,835) ’. -RHS CONF’ ,K,’
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WRITE(12,840) °.
WRITE(12,840) ’.

WRITE(12,845) ’UPPERBD

ELSE
WRITE(12,836) ’EQ
WRITE(12,83¢) °.
WRITE(12,841) °.
WRITE(12,841) °.

WRITE(12,846) *UPPERBD

ENDIF
DO 185 J=1,NS

F’,K,’EX
F’,K,’NE
F’,K,’NE UPF’?,

CONF’,K,?
-RHS_ CONF’ ,K,’
F?,K,’EX
F?,K,’NE

F’,K,’NE UPF?,K,

IF ((J .LT. 10) .AND. (X .LT. 10)) THEN

WRITE(12,850) °.
& y? 1.0°

sT’,3,'F,K,°

ELSE IF (J .LT. 10) THEN

WRITE(12,851) ’.
& .’ 1.0°

sT’,J,’F ,K,?

ELSE IF (X .LT. 10) THEN

WRITE(12,852) ?.
& y’ 1.0°
ELSE
WRITE(12,853) °’.
& )’ 1.0’ ‘
ENDIF
185  CONTINUE
180 CONTINUE

conservation of flow at
WRITE(12,%*) ’EQ
WRITE(12,%) .

sT?,3,°F,K,?

sT’,J,’F’ K,

excess coverage
COREX .
RHS CONEX 0.0’

CONF’,K,’ ~-1.0°
CONF’ K, -1.0°
K,’NE 8.0°

b

0.0?

CONF?!,K,”  -1.0°
CONF’,K,’  -1.0?

’NE 8.0’

CONF’ K

CONF? ,K

CONF’ ,X

CONF’,K
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D0 195 K=1;NF
IF (K :LT. 10) THEN
WRITE(12,855) . F*,K,’EX CONEX 1.0?

ELSE
WRITE(12,856) ’. F?,K,’EX CONEX 1.0
ENDIF
195 CONTINUE
WRITE(12,%) °. EXSI CONEX -1.0?
WRITE(12,%) UPPERBD EXSI UPEXSI  160.0°

conservation of flow at nonexcess coverage
WRITE(12,%) ’EQ . CONNE .?
WRITE(12,%) . -RHS_ CONNE 0.0’
DO 200 K=1,NF

IF (X .LT. 10) THEN

WRITE(12,855) °’. F’,K,”’NE CONNE 1.0°
ELSE

WRITE(12,856) °. F?,K,’NE CONNE 1.0’
ENDIF

200 CONTINUE
WRITE(12,%) 7. NESI CONNE -1.0?
WRITE(12,%) ’UPPERBD NESI UPNESI 160.0°

sink constraint

WRITE(12,%*) ’EQ . SINK .

WRITE(12,%) . .RHS. SINK 160.0°

WRITE(12,%) . NESI SINK 1.0°

WRITE(12,%) 7. EXSI SINK 1.0?
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E . o WRITE (12,%) °; °

l‘ WRITE (12,%) *PROC LP SPARSEDATA POUT=SOLUTION MAXIT1=10000

C MAXIT2=999999 IMAXIT=99999999’
WRITE (12,%) ?PRINTFREQ=500;’
WRITE (12,%) ’RUN;’

R, Uy et Y

CLOSE (12)

s

100 CONTINUE

700 FORMAT (2(F7.4))
705 FORMAT (10X,F14.7)
730 FORMAT (1X,A28,I1,A8)

731 FORMAT (1X,A27,12,A8)

735 FORMAT (1X,A15,I1,A8,I1,A6)

736 FORMAT (1X,A15,I2,A8,12,A6)

740 FORMAT (1X,A15,I1,A13)

741 FORMAT (1X,A14,12,A13)

750 FORMAT (1X,A13,I1,A1,I1,A13,F10.6)

751 FORMAT (1X,A12,11,A1,12,A13,F10.6)

752 FORMAT (1X,A12,I2,A1,I1,A13,F10.6)

753 FORMAT (1X,A11,I2,A1,1I2,A13,F10.6)

755 FORMAT (1X,A13,I1,A1,I1,A8,11,A1,11,A8)
756 FORMAT (1X,A12,I1,A1,I2,A7,I1,A1,12,A8)
757 FORMAT (1X,A12,I12,A1,11,A7,12,A1,11,A8)
758 FORMAT (1X,A11,I2,A1,12,A6,12,A1,12,A8)
760 FORMAT (1X,A13,11,A13,F10.6)

761 FORMAT (1X,A12,12,A13,F10.6)

765 FORMAT (1X,A13,11,A11,11,A11)

766 FORMAT (1X,A12,12.A10,1I2,A11)
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770 FORMAT (1X,A15,X1,421)

771 FORMAT (1X,A24,312,421)

773 FORMAT (1X,415,11,412,71,48)
774 FORMAT (1X,A14,12,811,12,48)
775 FORMAT (1X,£28,71.48)

776 FORMAT (1X,A27,32,48)

780 FORMAT (1X,A15,71,811,71,48)
781 FORMAT (1X,414,12,410,12,48)
785 FORMAT (1X,A15,7%1,K11,11,88)
786 FORMET (1X,414,72,410,72,48)
790 FORMAT (1X,413,31,413,71,28)

791
795
796
8C0
802

‘801

803
810
811
815
816
820
821
822
823
825
826
827
828

FoRMsT (1X,212,72 £12 72 18)

FOBMAT (1X,413,11,411,71,210)

FORMAT (1X,212,72,210,32,410)

FORMAT (1X,213,31,41,73,433,73 28)

FORMAT (1X,A12,71,21,32,21%,71,£8)

FORMAT (1X,A12,12,81,73,410,72,48)

FORMAT (1X,411,72,21,72,410,12,28)

FORMAT (1X,426,11,11,26)

FORMAT (1X,425,12,11,26)

FORMAT (1X,A12,11,41,71,31,310,71,71,28)
FORBAT (1X,410,12,41,12,11,49,12,11,48)
FORMAT (1X,A12,11,71,41,71,410,71,71,49)
FORMAT (1X,A11,11,71,A1,32,410,71,71,49)
FORMAT (1X,A11,12,11,41,71,49,12,11,49)
FORMAT (1X,A10,12,11,A1,12,49,12,11,49)
FORMAT (1X,A12,11,71,A1,11,48,11,11,41,11,48)
FORMAT (1X,A11,11,11,A1,12,47,11,11,A41,12,48)
FORMAT (1X,A11,12,11,A1,11,A7,12,11,41,11,48)
FORMAT (1X,A10,12,11,A1,12,A¢,12,11,A1,12,48)

110




7
830 FoBMAT (1X,A13,11,522)

831 FORMAY (1X,112,12,522)
&35 FoRMAT (1X,A27,11,46}
836 FORMAT (1X,A26,12,56)
840 FORMAT (1X,£13,11,£13,11,49)
841 FCRMAT (1X,A12,12,412,%2,19)
845 FORMLT (1X,813,71,A11,%1,49)
846 FORMAT (1X,212,12,210,12,49)
850 FCRWAT (3X,£23,73,21,71,812,71,28)
251 FORMAT (3X,£22,%3,83,72,413,72,48)
852 FORMAT (3X,412,72,21,71 £12.51,28)
853 FOMAT (2X,211,72,51,72,231,72,28)
855 FORMAT (3X,A23,11,422)
€56 FORMAT (1X,212,312,422)

EXD
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Appendix E. Siege-Two SAS LP Input File

SAS LP requires an input file. This FORTRAN program generates an input file in
ke sparse format for the second stage of the iwo-stage formulation. A copy of this code
called appends is provided on fioppy disk 1 in the FORTRAN directory.
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PROGRAM STAGE2

C€ccccceceecceeceeccececceceeccceccceccccececccecceccececcceccccecccece

c THESIS STAGE-TWO CGPTIMIZATION

C PURPOSE: THIS PROGRAM WRITES THE INPUT FILE FOR SAS PROC LP
C THE PROBLEM IS MULTIOBJECTIVE AND THEREFORE SEVERAL WEIGHT-
C INGS OF THE OBJECTIVE FUNCTION WILL BE INVESTIGATED.

C TOYWI.DAT HAS THE OBJECTIVE FUNCTION WEIGHTINGS

C OBJT*.DAT HAS THE OBJECTIVE FURCTION COEFFICIENTS FOR
c TIME PERIOD %’ FOR OBJECTIVE ONE, WITH NO
c WEIGHTINGS APPLIED.

C F*K&.S58S IS THE SAS INPUT FILE FOR TIME PERIOD ’=’

C AND WEIGHT ’°&’°

C MULTICOMMODITY FLOW IDEA USED FOR BUNDLING. tWO STAGE
C PROCESS IS USED. IN STAGE ONE 20 BUNDLES ARE ASSIGNED, ONE
C TO EACH GF 20 STATIONS, CHOSEN AMONG 30 STATIONS. STAGE TWO
C ASSIGNS 10 MORE BUNDLES, EITHER ONE OR ZERO TO EACH OF THE

C TWENTY STATIONS SELECTED IN STAGE ONE.

C THIS PROGRAM GENERATES THE MATRIX INPUT FOR STAGE THO OF THE
C OPTIMIZATION.

G O QO O QOO O O QO a o O 0 o o O a0 O O

C INTEGER VARIABLES: 20 S02STj
Ccccececcecececccececcecceccecccecceeccceecccececccecccccccecccecccece

PARAMETER (NS=30,NF=31)

INTEGER J,K,N

REAL W1,W2,COEF,WCOEF1(NS,NF),WCOEF2(NF) ,HFDF,STAT,
&FAIRSH

OPEN (9,FILE=’TEST.DAT’,STATUS=’UNKNOWN?)
OPEN (10,FILE=’TOYWT.DAT’,STATUS=’0LD’)

113




a a a o

30
20

OPEN (11,FILE=20BJT7.DAT’ ,STATUS="0LD’)

initialize variables
statl represents that the 20 stations chosen will each get
one bundle of HFDFs, the stat2 says that 10 of those stations

can receive another bundle of HFDFs

HFDF = 240
STAT1 = 20
STAT2 = 10
FAIRSH = 8

DO 100 N=1,24

weightings for objective functions 1, and 2
READ(10,700) Wi,W2
WRITE(9,*) N,Wi,W2

weighted coefficients for objective function 1
DO 20 J=1,NS
DO 30 K=1,NF
READ(11,705) COEF
WRITE(9,%*)J,K,COEF
WCOEF1(J,K) = W1xCOEF*1.0
WRITE(9,%*)J,K,W1,W2,WCOEF1(J,K)
CONTINUE
CONTINUE

REWIND(11)

weighted coefficients for excess coverage of freq k
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DO 40 K=1,NF
I WCOEF2(X) = W2 * (-1)
' ¢ WRITE(9,*) W2,WCOEF2(K)

40 CONTINUE

c open file to write sas input for each weighting N
IF (N.EQ.1) SPEN (12,FILE=’ [JSTEPPE.THESIS.TIME7]F7W1.SAS’?,
4 STATUS="NEW’)
IF (N.EQ.2) OPEN (12,FILE=’[JSTEPPE.THESIS.TIME7]F7®2.SAS’,
& STATUS="NEW’)
IF (N.EQ.3) OPEN (12,FILE=’ [JSTEPPE.THESIS.TIME7]F7W3.SAS’,
& STATUS="HKEW’)

IF (N.EQ.4) OPEN (12,FILE=’ [JSTEPPE.THESIS.TIME7]F7W4.SAS’,

' & STATUS=’NEW’)
IF (N.EQ.5) OPEN (12,FILE=’[JSTEPPE.THESIS.TIME7]F7W5.S4S’,

. & STATUS=’NEW’)
IF (N.EQ.6) OPEN (12,FILE=’[JSTEPPE.THESIS.TIME7]F7W6.S4S’,

& STATUS=’NEW?)

IF (N.EQ.7) OPEN (12,FILE=’[JSTEPPE.THESIS.TIME7]F7W7.SAS’,

A & STATUS=’NEW’)
" IF (N.EQ.8) OPEN (12,FILE=’[JSTEPPE.THESIS.TIME7]F7W8.SAS’,
& STATUS="NEW’)

IF (N.EQ.9) OPEN (12,FILE=’ [JSTEPPE.THESIS.TIME7]F7W9.SAS’,
& STATUS=’NEW’)

pt o,

IF (N.EQ.10)OPEN(12,FILE=’[JSTEPPE.THESIS.TIME7]F7W10.SAS’,
& STATUS="NEW?)

IF (N.EQ.11)OPEN(12,FILE=’[JSTEPPE.THESIS.TIME7]F7W11.SAS’,
& STATUS="NEW)

IF (N.EQ.12)0PEN(12,FILE=’ [JSTEPPE.THESIS.TIME7]F7W12.SAS",
& STATUS="NEW?)
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IF (N.EQ.13)OPEN(12,FILE=’ [JSTEPPE.THESIS.TIME7]F7W13.54S°,

4 STATUS="KE¥’)
IF (N.EQ.14)OPEN(12,FILE=’[JSTEPPE.THESIS.TIME7]F7W14.SAS’, .
& STATUS="NEW?)

IF (N.EQ.15)0PEN(12,FILE=’ [JSTEPPE.THESIS.TIME7]FTW15.54S",
& STATUS=NEW?) ,
IF (N.EQ.16)0PEN(12,FILE=" [JSTEPPE.THESIS.TIME7]F7W16.54S°,
& STATUS="NEW?)

IF (N.EQ.17)0PEN(12,FILE=’ [JSTEPPE.THESIS.TIME7T]F7TH17.SAS’,
& STATUS=NEW’)

IF (N.EN.18)OPEN(12,FILE="[JSTEPPE.THESIS.TIME7]F7W18.5AS’,
& STATUS=NEW’)

IF (N.EQ.19)OPEN(12,FILE=’ [JSTEPPE.THESIS.TIME7]F7W19.SAS’,
& STATUS=’NEW’)

IF (N.EQ.20)0PEN(12,FILE=’[JSTEPPE.THESIS.TIME7]F7W20.SAS’,
& STATUS=’NEW’)

IF (N.EQ.21)0PEN(12,FILE=’[JSTEPPE.THESIS.TIMETF7H21.5AS’,
% STATUS=NEW’)

IF (N.EQ.22)0PEN(12,FILE=’ [JSTEPPE.THESIS.TIME7JF7W22.5AS’,
& STATUS="NEW?)

IF (N.EQ.23)0PEN(12,FILE=’[JSTEPPE.THESIS.TIME7]FTH23.5AS’,
% STATUS="NEW’)

IF (N.EQ.24)0PEN(12,FILE=’ [JSTEPPE.THESIS.TIME7]F7H24.SAS’,
g STATUS="NEW’)

C write the SAS input file

WRITE (12,*) ’OPTIONS LINESIZE=78;’

WRITE (12,%)

WRITE (12,%) ’TITLE ’’LOCATING A SAR NETWORK WITH GOOD HFDF
& FREQUENCY ASSIGNMENTS’’;?
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WRITE (12,%)

WRITE (12,%) ’DATA S2R;’

WRITE (12,%)

WRITE (12,%) ’INPUT _TYPE. $ _COL_ $ _ROW_ $
& _COEF_;?

WRITE (12,%)

WRITE (12,%) ’CARDS;’

C create the objective function
c objective function
WRITE (12,%) ’MAX . PROFIT .
c objective function two data & upperbounds for obj vars
DD 125 K=1,NF

IF (K .LT. 10 ) THEN
WRITE (12,760) °. F’,K,’EX PROFIT’,
& WCOEF2(K)

WRITE (12,765) ’UPPERBD F?,K,’EX UPF’ K
& , EX 12.0?
ELSE
WRITE (12,761) . F’,K,’EX PROFIT’ ,WCOEF2(X)

WRITE (12,766) ’UPPERBD F’,K,’EX UPF’ ,K
& ,» EX 12.0°
ENDIF
125 CONTINUE

C source TWO to receiving station constraint
C 10 FIXED stations will get one more bundle of HFDF resources
WRITE(12,%) 'EQ . S02S8T .
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WRITE(12,%) °. _RHS_ S025T 7 ,S5TAT2

DO 135 J=1,NS

fixed stations

IF ((J .EQ. 1) .OR. (J .EQ. 8) .OR. (J .EQ. 15) .OR.

& (J .EQ.27) .OR. (J .EQ. 28) .or.

other fixed stations from STAGE one optimization
(j.eq.2).or.(j.eq.3).or.(j.eq.25).or.(j.eq.9).or.

&

& (j.eq.10).o0r.(j.eq.i2).or.(j.eq.14).0r.(j.eq.16).or.
& (j.eq.17).or.(j.eq.18).or.(j.eq.4).or.(j.eq.21).o0r.
&

(j.eq.22).0r.(j.eq.7) .or.(j.eq.29))then
objective function one

DO 115 K=1,NF
IF ((J .LT. 10) .AND. (X .LT.10)) THEN
WRITE (12,750) ’. ST’,J,°F’,K,’ PROFIT °’
& ,WCOEF1(J,X)
WRITE (12,755) 'UPPERBD  ST’,J,’F’,K,’ UPST’,J,’F’,K

& )? 1.0°
ELSEIF (J .LT. 10) THEN
WRITE (12,751) . ST?,J,’F’ K,’ PROFIT °’
& ,WCOEF1(J,K)
WRITE (12,756) ’UPPERBD  ST’,J,’F’,K,”  UPST’,J,’F’,K
& ) 1.0°
ELSEIF (K .LT. 10) THEN
WRITE (12,752) °. ST’,J,’F’ K, PROFIT °’
& ,WCOEF1(J,K)
WRITE (12,757) ’UPPERBD  ST’,J,’F’,K,”  UPST’,J,’F’,K
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& )’ 1.0°
ELSE
WRITE (12,753) °. sT’,J,’F? ,K,? PROFIT °

& ,WCOEF1(J,K)

WRITE (12,758) °UPPERBD ST’,J,’F’,K,* UPST’,J,’'F’,K

3 )’ 1.0’
ENDIF
115  CONTINUE
C
C source TWO to receiving station constraint
C 10 stations will get one more bundle of HFDF resources
IF (J .LT. 10) THEN
WRITE(12,770) °. so2sT1’,J,’ S02sT
ELSE
WRITE(12,771) . s02s71’,7J,? S02sT
ENDIF
Y
C fixed stations constraint from stage one
c

if (j .1t. 10) then

write(12,775)°EQ . FIXsT’,J
& ) ! L2

write(12,775)°. ~RHS_ FIXsT’,J
& )’ 1.0°

write(12,780)°. soisT’,3J,? FIXST’,J
& )? 1.0’

else

write(12,776)°EQ . FIXST’,J

& ,! L0
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140

write(12,776)°. . -RHS_ FIXST?,J
s 1.0°
write(12,781)°7. s01s12,7,? FIXST?,J
)’ 1.0°

endif

conservation of flow at receiving stations

IF (J .LT. 10) THEN

WRITE(12,775)’EQ . CONST? , J

” . )

WRITE(12,775)°. _RHS_ CONST? , J

) 1.0

WRITE(12,780)° . S01sT?,3," CONST’ ,J
9.0

WRITE(12,780)’ . S028T?,J,° CONST” ,J
8.0

WRITE(12,740) 'BINARY S028T?,J,” BINARY 1’
DO 140 K=1,NF
IF (K .LT. 10) THEN

WRITE (12,800)°. sT’,J,’F’ K, CONST?,J
)’ -1.0°
ELSE
WRITE(12,802)°. sT’,J,’F’,K,’ CONST? ,J
»? -1.0°
ENDIF
CONTINUE
ELSE
WRITE(12,776) ’EQ . CONST’,J
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2
?

b

WRITE(12,776)°.

2
’

1.00

WRITE(12,781)°.

H
?

9.0’

WRITE(12,781)°.

?
?

WRITE(12,741) ’BINARY

8.0’

DO 145 K=1,NF

IF (K .LT. 10) THEN

WRITE(12,801)°.
)’ -1.0?

ELSE

WRITE(12,803)°.
)’ -1.0?

ENDIF

CONTINUE

ENDIF

sST’,J,°F’,K,?

sT’,3,°F’,K,?

conservation of flow at each frequency

DO 185 K=1,NF
IF ((J .LT. 10) .AND. (X .LT. 10)) THEN

WRITE(12,850) .

& )
ELSE IF (J .LT. 10) THEN

H

1.0°

WRITE(12,851) ’.

& )
ELSE IF (K .LT. 10) THEN

1.0°

5T’,J,°F’,K,’

sT°,3,’F? ,K,?
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WRITE(12,852) °.

& s’ 1.0°
ELSE

WRITE(12,853) °.

& )’ 1.0?
ENDIF
185 CONTINUE

ENDIF
135 CONTINUE

sT’,3,’F’ X,° CONF’ ,K

!

sT’,J,’F’,K,? CONF? K

conservation of flow at each frequency

DO 180 K=1,NF

IF (X .LT. 10) THEN

WRITE(12,835)
WRITE(12,835)
WRITE(12,840)

WRITE(12,840)

WRITE(12,845)

ELSE

WRITE(12,836)

WRITE(12,836)

WRITE(12,841)

WRITE(12,841)

'EQ
’O

b
.

*UPPERBD

'EQ

CONF’ ,K,? !
~RHS_ CONF’,K,” 0.0’
F?,K,’EX CONF’ ,K,’ -1.0°
F?,K,’NE CONF’ ,K,? -1.0°
F’,K,’NE UPF’,K,’NE 8.0°

CONF’ ,K,’ J
_RHS_ CONF’,K,” 0.0’
F’,K,’EX CONF’ ,K,” -1.0°
F’,K,’NE CONF’ K, -1.0°
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180

195

200

J
WRITE(12,846) *UPPERBD  F’,K,’NE
ENDIF
CONTINUE

conservation of flow at excess coverage

WRITE(12,*) *EQ . CONEX
WRITE(12,%) ’. _RHS_ CONEX
D0 195 K=1,NF

IF (X .LT. 10) THEN

WRITE(12,855) °’. F?,X,’EX
ELSE
WRITE(12,856) °. F?,K,’EX
ENDIF
CONTINUE
WRITE(12,%) ’. EXSI CONEX
WRITE(12,*) ’UPPERBD EXSI UPEXSI

conservation of flow at nonexcéss coverage

WRITE(12,%) ’EQ . CONNE
WRITE(12,%) . RHS_ CONNE
D0 200 K=1,NF

IF (X .LT. 19) THEN

WRITE(12,855) . F?’,K,’NE
ELSE
WRITE(12,856) . F’,K,’NE
ENDIF
CONTINUE
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WRITE(12,%) *. KESE
WRITE(12,%) *TPPERED KESE

sink constraint

VEETE(12,%) “EQ -

VRITE(12,%) . BES_
¥RITE(12,%) . XESX
WRITE(22,%) *. EXSE

¥RIZE (12,%) *; ?

¥RITE (12,%) °PROC LP SPARSEDATE POTI=SOLUILICY MAIIT1=10000

& MARITZ=555959 IMEXIT=855555355
YRITE (12,%) *PRINIFRES=500;°
¥RITE (12,%) ’RU%;’

CLOSE (i2)

100 CONTINUE

700 FORMAT (2(F7.4))

705 FORMAT (10%,F14.7)

730 FORMAT (1X,428,11,48)

731 FORMAT (1X,A27,12,48)

735 FORMAT (1X,A15,11,48,11,46)

736 FORMAT (1X,A15,12,48,12,46)

740 FORMAT (1X,415,11,412)

741 FORMAT (1X,A14,12,A13)

750 FORMAT (1X,A13,11,A1,11,A13,F10.6)
751 FORMAT (1X,A12,11,A1,12,A13,F10.6)
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752 FORAT (1X,£12,72,21.71,213,F10.6)

753 TORMAY (3X,A11,72,21,32,813,F20.6)

755 FORMAT (1X,£13,13,4%,51,£8,71,81,73,46)
756 FORMAT (1X,412,7%,81,72,47,72,41,72,48)
757 FORMAT (1X,K12,72,81,71,87,%2,81,71,4E)
758 FORMAT (1X,A11,12,41,72,46,12,81,72,46)
760 FORMAT (1X,R13,71,213,F10.6)

761 FCRMAT (1X,A12,72,413,F10.6)

765 FORMAT (1X,813,71,21%8 .73 £31)

766 FORMAT (1X,412,32,410,12,231)

770 FCR¥AT (1X,215,¥1,421)

771 FORMAT (1X,414,32,421)

773 FORMAT {1X,4:15,11,2352,71,28)

772 FORYAT (1X,414,72,411,12,28)

775 FORMAT (1X,428,71,48)

776 FORMAT (1X,227,12,48)

780 FORMAT (iX,415,71,411,71,£8)

781 FORMAT (3X,21£,32,310,72,48)

785 FORMAT (1X,415,71,211,71,48)

786 FORMAT (1X,£14,12,210,12,28)

790 FORMAT (4X,413,11,£13,11,48)

791 FORMAT (1X,£12,12,£12,12,48)

795 FORMAT (1X,A13,71,411,71,410)

3 796 FORMAT (1X,A12,12,410,12,410)

; 800 FORMAT (4X,A13,11,A1,11,411,71,48)
802 FORMAT (1X%,412,311,41,12,411,11,48)
801 FORMAT (1X,A12,12,A1,11,410,12,48)

803 FORMAT (1X,A11,12,41,12,A10,12,48)
810 FORMAT (1X,A26,11,11,46)
811 FORMAT (1X,A25,12,11,46)
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815 FCRMAT (1X,A12,Y1,41,71,71,A10,71,71,48)

816 FORMAT (1X,410,12,41,72,11,49,12,11,48)

820 FORMAT (1X,A12,11,11,A1,11,410,11,11,49)

821 FORMAT (1X,811,1%,71,A1,12,A10,71,11,49)

822 FORMAT (1X,£11,372,711,A1,11,49,12,11,49)

823 FORMAT (1X,A10,72,11,41,12,49,12,11,A9)

825 FORMAT (1X,£12,11,71,A1,71,A8,11,11,41,11,48)
826 FORMAT (1X,A11,71,73,A1,12,A7,11,71,41,72,A8)
827 FORMAT (1X,A11,172,31,A1,%1,47,72,11,41,11,48)
828 FORMAT (1X,£10,72,11,41,72,46,12,11,4%,12,A8)
830 FORMAT (1X,413,11,422)

831 FORMAT (1X,£12,12,822)

835 FORMAT (1X,£27,11,46)

836 FORMAT (1X,226,12,46)

840 FORMAT (1X,£13,71,413,11,A5)

841 FORMAT (1X,412,12,412,12,A7)

845 FORMAT (1X,£13,11,A11,11,A7)

846 FGRMAT (1X,412,12,410,12,49)

850 FORMAT (1X,413,11,31,11,A12,71,48)

851 FORMAT (1X,412,11,41,12,A11,12,A8)

852 FORMAT (1X,£12,12,41,11,A12,11,48)

853 FORMAT (1X,A11,1I2,A1,12,811,12,48)

855 FORMAT (1X,413,71,A22)

856 FORMAT (1X,A812,12,422)

END




Appendix F. Description of Floppy Disk Files

F.1 Floppy Disk One

Floppy disk one has three directories: FORTRAN, TOY1, and TOY2. The files in

-each directory are described in the next subsections.

F.1.1 FORTRAN Directory. The files in the FORTRAN directory are also listed

in the appendices. These fortran program files are:

Appendl.tex Data split program.

Append2.tex Objective function coefficients program.
Append3.tex Generation of single-stage SAS input file.
Append4.tex Generation of stage-one SAS input file.

Append5.tex Generation of stage-two SAS input file.

F.1.2 TOY1 Directory. The files in the TOY1 directory are used for the first test
problem which is described in Chapter 4. This toy problem uses time block one data with
stations 10, 12, 14, 21, and 30, transmitters 28 through 31, and frequencies 7 through 9.
The toy problem can be modified to use the same stations, transmitters, and frequencies

for any time block. The files in this directory are:

Ditoyl.for This FORTRAN program strips HFDF propagation data from the large
D1.dat file created by the data split program in appendix one.

Diltoyl.dat This file is the HFDF propagation data created by D1toyl.for.

Fltoyl.for This FORTRAN program strips frequency data from the large Fl.dat file

created by the data split program in appendix one.
Fltoyl.dat This file is the frequency data created by D1toyl.for.

Trigtoy.for This FORTRAN program strips trig data for the test problem from Trig-

data.dat and reads it into trigtoyl.dat.
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Trigtoy.dat This file is the trig data file created by Trigtoy.for.

Alphatoy.for This FORTRAN program uses Trigdata.dat and calculates I,;s used in the
nonlinear objective function.
Alphatoy.dat This file is the I,;s created by Alphatoy.for.

Nonlincl.for This FORTRAN program uses Ditoy.dat, Fltoy.dat, and Alphatoy.dat to

calculate coefficients for the nonlinear objective function.

Nonlincl.dat This file is the nonlinear objective function coefficients created by Non-

lincl.for.

Datltoyl.for This FORTRAN program uses Nonlinc.dat to build the input file used by

the zero-one nonlinear optimization code.
Datltoyl.dat This file is the input data file for Zlinctoy.for created by Datltoyl.for.

Zlinctoy.for This FORTRAN program is the zero-one nonlinear optimization code which

optimizes with no initial starting conditions. It requires Datltoyl.dat as an input

file (4).

Zlinittoy.for This FORTRAN program is Zlinctoy.for which has been modified to use spe-

cific initial starting conditions. These starting conditions can be modified internally

from run to run.

Ratiotoy.dat This file is the weight data W;; used for the first objective function of the
MOLIP.

Objftoyl.for This FORTRAN program uses the D1toy.dat, Fltoy.dat, and Ratiotoy.dat

to calculate coefficients for the first objective function of the MOLIP.

Objftoyl.dat This file is the objective function coefficients for the first objective function

of the MOLIP.
Jtemptoyl.ifi This file is the Ifile input for ADBASE.

Jtemptoyl.qfi This file is the Qfile input for ADBASE.
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F.1.3 TOY2 Directory. The files in the TOY2 directory ar; .used for the second
test problem which is described ir-Chapter 4. This toy problem uses time block one data
with stations 10, 12, 14, 21, and 30, transmitters 21 through 24, and frequencies 7 through
9, 16 and 17. The toy problem can be modified to use the same stations, transmitters,
and frequencies for any time block. The files in this directory are the same as the files in
directory TOY1 except they are modified to use the specific transmitters and frequencies

for this test problem.

F.2 Floppy Disk Two

The top level directory has Udfeval.for,a FORTRAN program which produces EVAL
results. Udfeval.for requires an formatted input file with the tasking result to be evalu-
ated. Formatted input files with thesis results are found in the four directories: TIME1,
COVER1, TIMET7, and COVER7. COVER implies that a covering constraint is used for
the results in COVER directories, whereas no covering constraint is used with files in TIME
directories. In general, the files in the directories are named either T*W! or T+FIX!. If
the file is named T+*W! the * is the time block and the ! is A weight. For instance, !=1
corresponds to A;=1.0 and !=2 corresponds to A;=0.99. If the file is named T*FIX], the
* is the time block and the ! corresponds to the fixed weighting on the second objective

function.
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Appendix G. Nlustration of MOLIP versus NLIP Test Problem 1

This appendix illustrates the specific formulation and test data used for the first
test-problem which compares NLIP and MOLIP formulations in Chapter 4 . The detailed

results for this test case. Details are presented in Section 4.4.

G.1 Specific Formulations

The MOLIP and NLIP formulations are presented with summation indices that are

specific to test problem 1.

G.1.1 MOLIP formulation.

subject to

2
I

1, Vje{1,2,3}

NS

RS
e
IA

J
5 3
>0 X < NH
Jj ok

where NH is the number of HFDT receivers

Xik—X; £ 0, Vi, k
ink—-Yk < FS, Vi
’ X, € {0,1}
Xjr € {0,1}
Y: 2> 0 and integer.
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G.1.2 NLIP formuldtion.
4 3
max Y. Y Fix Y. Uiek(X)iq
i 'k aeC

where Uzat(X) = [Tjea Pt Xit] [Tagall — P Xns)]

subject to

X;

il

1, VY je{L,23)

5
> X; < NS

J
5 3
D2 X < NH
ik

where NH is the number of HFDT receivers

o9
[
23
A

0, V 4k
X; € {0,1}
X € {0,1}.

G.2 Test Problem Data Files

(16)

(17)

The files in the TOY1 directory on floppy disk 1 are used for this test problem. This

toy problem uses time block one data with stations 10, 12, 14, 21, and 30, transmitters

28 through 31, and frequencies 7 through 9. The toy problem can be modified to use the

same stations, transmitters, and frequencies for any time block. Appendix 6 describes the

specific files used to generate the data. Table 10 illustrates the frequency transmission data

denoted by Fij in the formulations. Tables 11, 12, 13, and 14 illustrate the propagation
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vdata, denoted by P,,; in the formulations. Table 15 illustrates the accuracy weighting
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function data denoted by W;;. Table 16 illustrates the confidence region indicator data

denoted by fy;.

Table 10. Frequency Transmission -Data (Fjx) for Test Case 1

| i/k |freq1]freq2 | freq3 |
trans.1 | 0.04 | 0.04 | 0.04
trans 2.| 0.00 | 0.00 | 0.01
trans 3 [ 0.03 | 0.05 | 0.05
trans 4| 0.00 | 0.00 | 0.00

Table 11. Frequency Propagation Transmitter 1 Data (Py;z) for Test Case 1

| j/k  |freq1]dreq2 | freq3 |
station1| 0.98 | 0.95 | 0.96
station2 | 0.98 | 0.98 [ 0.98
station3 | 0.90 | 0.92 | 0.83
station4 | 0.97 | 0.98 | 0.90
station 5] 0.98 | 094 | 094

Table 12. Frequency Propagation Transmitter 2 Data (Po;x) for Test Case 1

| j/k  |ireq1 | freq2 | freq3 |
station1 | 0.32 | 0.13 0.33
station2 | 0.44 | 0.08 | 0.30
station 3 | 0.15 | 0.46 | 0.31
station 4 | 0.01 0.01 0.01
station 5| 0.29 | 0.04 | 0.19

G.3 TOY1 Input Files for MOLIP

G.8.1 Jtemptoyl.ifi. This is the first of two formatted ADBASE input files for the
first test problem in Chapter 4. It contains primarily the constraint and coefficient infor-

mation.
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Table 13. Frequency Propagation Transmitter 3 Data (Ps;x) for Test Case 1

| j/k |freq1|ireq2 |freq3 |
station1 | 0.51 | 0.35 | 0.52
station2 | 0.13 | 0.01 | 0.10
station 3 | 0.58 | 0.71 | 0.51
station4 | 0.01 { 0.12 | 0.01
station 5| 0.01 | 0.01 | 0.00

Table 14. Frequency Propagation Transmitter 4 Data (Pyjx) for Test Case 1

| j/k  |freq1|freq2 | freq3 |
station 1| 0.01 0.01 0.01
station2{ 0.01 | 0.01 0.01
station 3 0.01 0.01 | 0.01
station 4 | 0.01 0.01 | 0.01
station 5 | 0.01 0.01 0.01

Table 15. Accuracy-Weighting Function Data (W;;) for Test Case 1

| i/k | station 1 | station 2 | station 3 | station 4 | station 5 |

trans 1 | 0.3808 0.7407 0.1951 0.1210 0.7956
trans 2 | 0.1477 0.1301 0.1140 0.0596 0.2504
trans 3 | 0.1471 0.0892 0.1580 0.0834 0.1509
trans 4 | 0.0515 0.7679 0.0615 0.0820 0.0427
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Table 16. Confidence Region Indicator Function Data: (I;) for Test Case 1

afi | stations | trans 1 trans 2’| trans 3 | trans 4
T included
combol |1,23
| combo 2 |1,2,4
combo 3 11,2,5
combo 4™ | 1,34
combo 5 |1,3,5
combo 6 | 1,4,5
combo 7 | 2,34
combo 8 |23,5
combo 9 | 24,5
combo 10 | 3,4,5
combo 11 | 1,2,3,4
combo 12 | 1,2,3,5
combo 13 | 1,2,4,5
combo 14 | 1,3,4,5
combo 15 | 2,3,4,5

1

ISy [P (IS U U [FIPY OIS [FUIFY U YIS (ORPY [T APS YRS (WY
H = | =l Ol POk PO »Ro| @
o|lolo|lojolololololo|ojlo|o|olo

Steppe SAR toy problem with 2 objectives and no pairwise constraint

5001 2 23 23 2 0 0 45
63
13 1.0 1 4 1.0 1 5 1.0 2 6 1.0
2 7 1.0 2 8 1.0 2 9 1.0 210 1.0
211 1.0 212 1.0 213 1.0 214 1.0
215 1.0 216 1.0 217 1.0 218 1.0
219 1.0 220 1.0 3 3-1.0 312 1.0
4 3-1.0 413 1.0 5 3 -1.0 514 1.0
6 4 -1.0 6 15 1.0 7 4-1.0 716 1.0
8 4 -1.0 817 1.0 9 5-1.0 918 1.0
10 5 -1.0 10 19 1.0 11 5 -1.0 11 20 1.0
12 6 1.0 129 1.0 12 12 1.0 12 15 1.0
12 18 1.0 12 21 -1.0 13 7 1.0 13 10 1.0
13 13 1.0 13 16 1.0 1319 1.0 13 22 -1.0
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8 1.0

14 20 1.0

47 5.
21,

14
18

22

i4
2.0
3.0
1.0
1.0
2
1 1.0
2
1.0
0
0
18
6 1.7178
10 2.9080
14 1.08597
18 3.12328
22 -1.0
0

14 11 1.0
1493 - 1.0
i8 6 1.0
22 10 1.0

2 10.0
15 1.0
19 1.0
23 1.0

17 1.70447
111 2.98717
115  .47198
119 2.99300
223 -1.0

14 14 1.0

2311 1.0

12 3.0
16 1.0
20 1.0

1 8 1.89347
112 ,97728
116 .52436
120 3.03903

13
17
21

17 1.0

3.0
1.0
1.0

9 2.93833
13 1.27887
17 .44037
21 -1.0

G.3.2 Jtemptoyl.qfi. This is the second of two formatted ADBASE input files for

the first test problem used in Chapter 4. This contains input and output parameters for

ADBASE that are related to problem being solved.

Fokok ==k ok Tk R okok ok ok Do o e = ®kokok 3kokdokickkokddkkkkk ADBASE MODE = 1 SECTION

1. NUMB

1 (NUMBER OF PROBLEMS TC BE SOLVED)

e e > e - w4 S S = - e
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10,
11.
12,
13,
14,
15,
16.
i7.
18.

19.
20.
21,
22.
23.

MODE 1
. IFASE2 2
. IFASE3 2
. INEAK 0
MLISTB 16000
. IZFMT | 0
. IPRINT(1) 1
. IPRINT(2) 0
IPRINT(3) 3
IPRINT(4) 1
IPRINT(5) 0
IPRINT(6) 0
IPRINT(T7) 0
IPRINT(8) 1
IPRINT(9) 1
IPRINT(10) 0
IPRINT(11) 0
IVoL 1
IVoU 23
I9L 1
19U 23
110L 1
110U 23

24,

kokok— = dkokkok § kok sk ok dok ok kDo = =

25.
26.

NSTART 5001
NOBJS 2

(REGULAR OR RANDOM PROBLEM.MODE) 1,2

(PHASE II OPTION) 1 TO 5
(PHASE III OPTION) 0,1,2

(EFFICIENT OR WEAKLY-EFFICIENT) 0,1

(MAXIMUM NUMBER OF EFFICIENT BASES) <2500
(EXPONENTIAL/FIXED FORMAT IN ZFILE) O TO 6

(OBVIOUS ERRORS) 0,1

(PROBLEM COEFFICIENTS) 0,1
(NOTHING/BASES/EXTREME PTS) 0/1,2,3/4,5,6
(EFFICIENCY TOTALS) 0,1
(INDIVIDUAL PROBLEM DATA) 0,1
(CUMULATIVE DATA) 0,1

(CODE LISTS) 0,1

(ZFILE) 0,1

(REDUCED COSTS AND TABLEAUS) 0,1,2
(LFILE) 0,1

(PREMULTIPLICATION T-MATRIX) 0,1

(BEGINNING TABLEAU VARIABLE)
(ENDING TABLEAU VARIABLE)

(TABLEAUS BEGIN AT THIS BASIS)
(TABLEAUS END AT THIS BASIS)

(LFILE BEGINS ON WAY TO THIS BASIS)
(LFILE ENDS AT THIS BASIS)

skokokok Sokokkokok K skokokdokkkkkokokkkSkkk MODE = 2 SECTION

(STARTING PROBLEM NUMBER)
(NUMBER OF OBJECTIVES)
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27. N1 23  (NUMBER OF STRUCTURAL VARIABLES)

28. IK 23: (LESS THAN OR EQUAL TO CONSTRAINTS)

29. JZDEN 25  (PERCENT A-MATRIX ZERO -DENSITY) O TO 100
30. JLA -1 (A-COEFFICIENT LOWER LIMIT)

31. JUA 8  (UPPER LIMIT)

32, JLB 20 (B VALUE LOWER LIMIT)

33. JUB 30 (UPPER LIMIT)

34, JLC . -3 (C-COEFFICIENT LOWER LIMIT)

35. JuC 5§ (UPPER LIMIT)

36. IPRINT(12) 1 (PFILE) 0,1 ’

37. KSEED 6467  (SEED TO RANDOM NUMBER GENERATOR) <99999

G.4 TOY1 Input and Output Files for NLIP

These files are included for illustration of typical input for test problems.

G.4.1 Datltoyl.dat. Thisis the formatted input file required by the zero-one solver
Zlinctoy.for and is used for the first test problem in Chapter 4.

20 48 21

000001001001 00000000 3.4574401E-02
000001001 00000100000 3.7263501E-02
00000100100000000100 3.7647T702E~02
00000100000100100000 3,4221601E-02
00000100000100000100 3.4663100E-02
00000100000000100100 3.7265100E-02
620000001001 00100000 3.4221601E-02
00000000100100000100 3.4596998E-02
00000000100000100100 3.7263501E-02

—
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;Il 000000000002 C01200100C 3.4223295E-02
. 000001001001 00100 000 -0.2006000
}' - 00000100100310C00010QC0C -0.21016603

k

000001001000 0C0%200100-0.2095548
000001000001060200100-0.2006133
0000000010C01001001Q0 -0.1009688
0000010010061001001200 0.1682320
000000100190010000000 3.4260798E-02
0000002100100000100600 3.6595201E-02
000000:0010000000C 20 3.5005532=-02
0000001600002 00C2:20000 3.£260795=-02
0000001000001 00000 10 3.29366002-02
00000010000000010010 3.5026539E-02
0000660091 060:200:20000 3.532270:iE-02
0000000002002 00000 10 3.3903693=-02
000000000

WY

0000010010 3.6ii100iZ-02
0000000000001 0010010 3.3922300z-02

0000001001001 00106000-0.2007118

0000001001001 0C000 10 -9.66:i6700E-02
00000010010000010010 -0.1929165

000000100000100109 10 -9.66£53032-02
0000000001001 0C100 10 -2.8650701E-02
000000100100:20010010C 0.1578051

00000001001001000000 3.1234600E-02
00000001001000001000 3.3868801E-02
00000001001000000001 3.5562199E~-02
00000001000001001000 2.8684800E~02
00000001000001000001 3.0153999E-02
00000001000000001001 3.2492701E-02
00000000001001001000 2.9282400E-02
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00000060000C100100000 1 3.076050%E-02
00000000001200000:200 1% 3.316350:E-02

0000006000690 01002001 2.8093100E-02
0000000100:2002001300 0 -8.4320001E-02
0000000z200100200000 1-8.8:95103=-02
0000000200100 0001001-9.55:3798E-02

60000001000002001200 1-2.08349932-02

000003200601 00100100 1 -8.4£71501E-02

00000001002001001003%1 0.1322234

0.00000002400 000000400  0.0000000Z+00

1.060000
1.000500
1.600000

0.GOSO000E+00

0.C00CO00Z+00
0.0000000Z+00
0.0000000Z+00
1.000000
0.0000000Z+00
0.0000000Z+00
0.0000000E+00
0-0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
~1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

0.00600002+03
0.0800000=+00
0.0000G00E+00
0.0000000E+00
G.G000000Z+00
0.0000000E+G0
0.0000000E400
0.0000000E+00
1.000000
0.0000000E+00
0.00000C0E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
~1.000000

1.000000
3009060
1.000000
1.000060
0.0000000Z+00
0.C00000H=400
0.GO0D000Z+60
0.0000000=+00
0.00C0000=300
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
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0.0000000E+0D
1000000
1.000000
1050000
1.0608000
0.0500000=+00
0.6000000=+00
0.0000000=Z+00
0.COC0000E+C0
0.00006000E+00
0.000G000E+00
0.0000000E+00
0.000G000E+00
0.0000000E+00
0.0000000E+00
0.G000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

1.000000
0.06000000=+00
0.C000000=+00

0.0000000=+00 2

0.0300000=+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+C0
G.000C000E+00
0.0000060E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

(2N



0.00000002400
0.00000002400
~1.030008
0.0030000=40D
0.00000D0E+00
0.0000000Z400
-2.000000
9.00006000E+00
6.C000080=+G0
0.00000002+00
0.0000000=+00
0.0000000E+00
0.0000000E+00
0.0000G00E+00
0.0000000E+00
0.0000000E+00
0.000C000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

0.0000000E+00
G.0000000z+00
0.0C00000E+0
©.0300000E+00
0.00000G0Z400
0.0000000Z+00
0.0000300E+00
0.00300002+50
1.000000
. 00000002400
0.06030000=+00
0.00000C0Z+00
0.00C00002+00
0.C000000E+0D
0.00000002+00
-1.006000
9.00000002+00
0.0000000E+00
0.0000000E+00
-1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
-1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.000000

0.0000000E+DD
0.000000CE+OD
0.0000000E+00
0.0000000E+0D
0.C0000002409
0.0800000E+0D
0.0000000E+0D
0.05000002+00
0.00C0000E+00
0.0000000Z+00
0.0C000000=+00
0.00G0000=+00
1.00609500

0.0830000=+00
0.0000000E+00
0.0000000=+00
0.0000000£+00
0.0000C00E+C0
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
~1.000000

0.0000000E+00
0.0000000E+00

0.C000000=+00
©.C000000Z4+00
0.0000000E+CO
0.0600C000E+00
0.0000000E+090
6.C00000OE+00
0.0000000E+00
0.06000000E+00
0.0000000E+G0
0.0000000=+00
0.G000000E+00
0.0000800=+060
0.0000000=+00
0.6630000=+00
0.0000000E+00
0.0000000E+00
1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
(-.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

0.0000000=+00
0.0000000Z+00
0.C000000E+0D ~£
0.0300000=+00
0.C0C0C00E+0D
0.0006000Z+00
0.0000000E+00 0
0.0000000E+00
0.0090050Z+00
0.008000C=+00
0.0200000E+00 0
0.0000000E+00
0.0000000E+00
0.0000000=2+60
0.00006000=+0C O
0.0000000=+00
0.0000C00E+00
0.0000000E+00
0.0000000E+00 O
0.0000000E+00
1.000000
-0000000E+00
.0000000E+C0 O
.0000000E+00
-0000000E+00
.0000000E+00
.0000000E+00 O
.0000000E+00
.0000000E+00

o O O O o O o ©o o

.0000000E+00




0.000C000E+00
0.0000000E+00
3.0000000£+oo
0.0000000E+00
0.0000000E+00
0.C000000E+00
0.0000C00E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000G00E+00
0.C000000E+00
0.0000000E+00
0.6900000E+00
0.0000000E+00
0.0000000E+00
1.000000
0.0000000E+00
0.0000000E+02
0.0000000E+C0
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00

0.0900000E+CD
0.0000C00E+03
0.0000000E+CO
0.0000000E+00
0.G000000E+CO
0.00006009E+00
0.C0000C0E+00
0.GO00000E+00
0.0000000E+00
0.0000000E+00
0.00000C0E+00
0.0000000E+00
0.0000000E+00
0.0000009E+00
0.0000000E+00
0.0000000E+00
0.0000000E+CO
0.0000000E+00
0.0C000GOE+00
0.0000000E+00
1.0006000

.0000000E+00
.000J000E+00
.0000300E+00
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00

o © O O o o © o o

.0000000E+00

0.0000000E+00
-1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+G0
0.0000000F+00
0.0000000E+00
0.C000000E+C0
0.00000COE+00
0.0000000E+00
-0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.000CO00E+00
0.0000000E+00
1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0%00000E+00

0.0000000E+00
0.0000000E+00
0.0000000E+C0
0.00600000E+00
0.000C000E+00
0.0000000E+00
0.0000000E+00
1.000000
0.0000000E+C0
-1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
-1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
-1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
1.000000

0.0000000E+00

0.6000000E+00 O

0.C0C0000E+00
0.0000C00E+CO
0.0000000E+00

0.0000000E+00 O

0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000G00E+00
0.0000000E+00
0.0000000E+00
1.000000
0.0000000E+00
0.C000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
-1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
-1.000000
0.0000000E+00
0.0000000E+00
0.0000000E+00
-1.000000




0.0000000E+00 0.00000C0E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00 0.00GO000E+00 0.0C0000CE+00 0.0000000E+00 0.00000CGOE+C0
0.000000CE+00 0.0000000E+00 0.0000000E+00 0.0000000E+00  1.000000 0

G.4.2 Zerooutl.dat. This is the output file from Zlinctoy.for for the first test prob-
lem in Chapter 4.

FEASIBLE IKCUMBANT SOLUTION # 1
OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1051765

VARIABLE 1=1
VARIABLE 2=1
3 VARIABLE 3=1
VARIABLE 4 =1
VARIABLE 6=1
VARIABLE 7=1
VARIZBLE 8=1
VARIABLE 9=1
VARIABLE 10=1
VARIABLE i1 =1
VARIABLE 12 =1
VARIABLE i3 =1
VARIABLE 14 =1
VARIABLE 15=1
FEASIBLE INCUMBANT SOLUTION # 2

OBJECTIVE VALUE OF INCUMBENT SOLUTION =  0.1054567

VARIABLE 1=1
VARIABLE 2=1

VARIABLE 3=1

_ VARIABLE 4=1

] i VARIABLE 6=1
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VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

FEASIBLE INCUMBANT SOLUTION #

8

9
10
11
12
13
14
16

fi (] [}

R N = T - T T - T ™ N S

\

1

OBJECTIVE VALUE OF INCUMBENT SOLUTION =

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

FEASIBLE INCUMBANT SOLUTION #

W 0 ~N O b W N

10
11
12
13
14
17

1
1

OBJECTIVE VALUE OF INCUMBENT SOLUTION =

VARIABLE
VARIABLE
VARILBLE

1
2
3

1
1
1
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VARIABLE

4=1
VARIABLE 6=1

- VARIABLE 7=1
VARIABLE 8=1
‘VARIABLE 9=1
VARIABLE 10=1
VARIABLE 11 =1
VARIABLE 12=1
VARIABLE 13 =1
VARIABLE 15 = 1
VARIABLE 17 =1
FEASIBLE INCUMBANT SOLUTION # 5

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.10803909

VARIABLE 1=1
VARIABLE 2=1
VARIABLE 3=1
VARIABLE 4=1
VARIABLE 6 =1
VARIABLE 7=1
VARIABLE 8=1
VARIABLE 9 =1
VARIABLE 10 = 1
VARIABLE 11 =1
VARIABLE 12 = 1
VARIABLE 13=1
VARIABLE 16 = 1
VARIABLE 17 =1
FEASIBLE INCUMBANT SOLUTION # 6

OBJECTIVE VALUE OF INCUMBENT SOLUTION =  0.1098202
VARIABLE 1 =1
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VARIABLE 2=1
VARIABLE 3=1
VARIABLE 4=1
VARIABLE 6=1
VARIABLE T=1
VARIABLE 8=1
VARIABLE 9=1
VARIABLE 10 =1
VARIABLE 11 =1
VARIABLE 12 =1
VARIABLE 14 =1
VARIABLE 16 = 1
VARIABLE 17 =1
FEASIBLE INCUMBANT SOLUTION # 7

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1100451

VARIABLE 1=1
VARIABLE 2=1
VARIABLE 3=1
VARIABLE 4 =1
VARIABLE 6=1
VARIABLE 7=1
VARIABLE 8 =1
VARIABLE 9=1
VARIABLE 10=1
VARIABLE 11 =1
VARIABLE 12 =1
VARIABLE 15 =1
VARIABLE 16 = 1
VARIABLE 17 =1
FEASIBLE INCUMBANT SOLUTION # 8




OBJECTIVE VALUE .OF INCUMBENT SOLUTION = 0.1102749

VARIABLE 1=1
VARIABLE 2=1
‘VARIABLE 3=1
VARIABLE 4=1
VARIABLE 6=1
VARIABLE 7=1
VARIABLE 8=1
VARIABLE 9=1
VARIABLE 10 =1
VARIABLE 11 =1
VARIABLE 13 =1
VARIABLE 14 =1
VARIABLE 15 = 1
VARIABLE 17 =1
FEASIBLE INCUMBANT SOLUTION # 9

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1107800

VARIABLE 1i=1
VARIABLE 2=1
VARIABLE 3=1
VARIABLE 4 =1
VARIABLE 6 =1
VARIABLE 7=1
VARIABLE 8 =1
VARIABLE 9=1
VARIABLE 10 = 1
VARIABLE 11 =1
VARIABLE 13 =1
VARIABLE 15 =1

VARIABLE 16 = 1




VARIABLE 17 =1
FEASIBLE INCUMBANT SOLUTION # 10
- OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1125093

VARIABLE 1=1
VARIABLE 2=1
VARIABLE 3=1
VARIABLE 4=1
‘ VARTABLE 6 =1
E VARIABLE 7=1
VARIABLE 8=1
VARIABLE 9=1
‘ VARTABLE. 10 = 1
3 VARIABLE 11 =1
VARIABLE 14 =1
VARIABLE 15 = 1
VARIABLE 16 = 1
VARIABLE 17 = 1
‘ FEASIBLE INCUMBANT SOLUTION # 11

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1127499

3 VARIABLE 1=1
? VARIABLE 2=1
‘ VARIABLE 3=1
: VARIABLE 5=1
; VARIABLE 6=1
% VARIABLE 7=1
! VARIABLE 8 =1
? VARIABLE 9 =1
3 VARIABLE 10 = 1
i VARIABLE 11 =1
f VARIABLE 13 = 1




VARIABLE : 18 = 4

VARIABLE 19=1
VARIABLE 20 =1
FEASIBLE INCUMBANT SOLUTION # 12

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1133375

'VARTABLE 1=1
VARIABLE 2=1
VARIABLE 4 =1
VARIABLE 5 =1
VARIABLE' 6 =1
VARIABLE 7=1
VARIABLE 8 =1
VARIABLE 9 =1
VARIABLE 10 = 1
VARIABLE 11 =1
VARIABLE 15 = 1
VARIABLE 16 = 1
VARIABLE 17 = 1
VARIABLE 20 = 1
FEASIBLE INCUMBANT SOLUTION # 13

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1137217
VARIABLE 1 =1

VARIABLE =1
VARIABLE =1
VARIABLE
VARIABLE
VARIABLE

VARIABLE

<« o] -~ (o)) [$] > N
L]
[

VARIABLE
VARIABLE 10 = 1
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]
-
¥

. VARIABLE: 11
VARIABLE 16 = 1
VARIABLE A7 =1
VARIABLE 18 = 1
VARIABLE 20 =1

SOLUTION OPTIMAL

ry Rl Ay i = Cailaat - Y (LA C il -~
. v H .
& i

1.000000 1.000000 0.0000000E+00  1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
1.000000 1.000000 1.000000 0.0000000E+00  1.000000
OPTIMAL VALUE = 0.1137217
NUMBER OF FEASIBLE INCUMBENT SOLUTIONS = 13
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Appendix H. Multi-tinie Period Concept of the Two-Stage MOLIP

Fig}ure"16 illustrates how the two-stage MOLIP can be expanded to simultaneously
encompass 12 time periods for locating HFDFs in a SAR network. Only one set of arcs
needs to be integerized: the arcs emanating from super source 1 in stage one, an 1 the arcs
emanating from super source 2 in stage two. Stations and bundles which are used by each
time block are located by first set of arcs. Application of this concept to the multi-time

period GSARP is a logical extension for future research as discussed in Section 7.5.
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Figure 16. Multi-time Period Two-stage MOLIP Concept
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