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AFITIGOR!ENS9T[-M

Astred

A multiobjective linear programming appwac is applied to the prokm of locatrg

receiving stations and HFDF receivers in asearch and rescme network in order to maximze

the expected number of distress sgnals that aregeolocated. The multiobjective fmnulation

is made up of two contrasting objectives: one maximizes the expected accurate lines of

bearing, and one minimizes the excess coverage in the network. The indvidual objectives

are weighted and combined into a composite objective functio.. The resultiag piobem is

expressed as a two-stage network low problem and is solved using SAS LP with a rimited

number of binary variables. The problem is iteratively sol-red for several weigAtings of the

composite objective function Solutions are evauated by a FORMRAN program provided

by the Department of Defense. In all cases, the best results were three to four standard .

deviations better than a sample of 1000 or more heuristically tasked random network

configurations. These results demonstrate that a two-st2ge multiobjectire formulation

consistently provides good feasib!e network configurations and is, therefore, a practical

alternative to the robust, yet intractable, nonlinear integer formulation.

'2x



LOCATUG DMRECtIO-N FLPIDERS WN A GENERALZED ARCH AM.D

RESCUE EITYORK

L Illrv&dioz

TE -U.Uj'ed States is bc-iding a wordwide nietw~ork of search and rescue (S-AI) sta-

tons for pezforming SA]L over broad ocel areas. The objective of this network is to

,,- ocate distre signals rom aircraft and ships in order to initiate SAR misions. _An

optima! SAIL network design woild maxismize the expected succs-cfe. -eo.ocztions deliv-

ered b1" the wordvide net over the ocean areas considered4 (17:1). The design of an optima!

SA nletwoork entails allocating a limited number of receiving stations to a larger -et of

candidate receiving station locations and allocating a limited number of high frequency

direction finder (IIFDF) receiver a-ets among the selected receiving stations (17:2).

P.eceiving stations in the SAI, network have a signal reception system which performs

acquisition and direction finding (performed by JIFDF receivers) to provide lines of bearing

(LOB) for a distress signal (17:1). Drake describes the process of geolocating a distress

signal (11:1-S). The process begins when Central Control is notified of the acquisition

of a distress signal. Upon notification, Central Control requests operators at other SAR

network stations to transmit LOBs for the signal of interest. To decrease the likelihood

of grossly inaccurate position estimates, LOBs from at least three receiving stations are

required before making a geolocational point estimate of the distress signal.

The SARl facility location and frequency allocation problem is currently handled with

a brute force greedy approach in which each candidate station is evaluated with a fixed

network of active stations to determine which combination of stations delivers the largest

number of expected geolocations (5). Complete enumeration and comparsoh of all possible

netuork configurations is a combinatorially explosive task and is not cunsidcred an efficient

methodolog- fat optimizing the expected number of geolocations in a SAR network.



I H fFDF AwgrsncLfro*=

The GSAXP is nel-ed to the JFDF asipme t, probm resmrced by Drke and

JoaIsm wich attempts to maxize erpected gecOlcations for a fixed etaok (11, 14).

Mbe GSARP and the HFDF asigmet problem we similar in three respects. First, both

problems seek to maxiiz the number of e-ected g-Olocations. Second, both problems

mrt optimally assipgn requendes to a limited number of IFDF receiver assets. Third,

both problems mu.tcongder stochasic transmisscion and propagation probabilities.

Drake prop-ses a nonlinear objective function to optimize the expected geolocatios s

(11). Drakes nonlinear function -hile providing a robust description of the true objective

and a mqras to measure how good a solution is, becomes computationally impractical to

optimize as the size of the problem increases towards realistic sizes. For computational

tractability, Johnson formulated the problem as a muitiobjective linear integer program

(MOLIP) using three objective functions which respectively maximized the expected num-

ber of lines of bearings, maximized expected number of transmissions, and minimized

excess coverage of a frequency (14). Johnson solved the MOLIP using a network flow

model. The best solution was more than 13 standard deviations better than the sample

mean of a completely randomized set of HtFDF assignments (14:37).

There are two additional degrees of difficulty in the GSARP that were not addressed

by the previous researcl. The first is that the GSARP must determine optimal locations

for additional receiving stations to be placed among a fixed base network of receiving

stations, whereas the JIFDF assignment problem dealt only with a fixed base network of

stations. The second and most significant degree of difficulty is that the GSARP must

locate ]IFDF resources in bundles of eight to the receiving stations, whereas the HFDF

assignment problem used a predefined allocation to successfully solve the MOLIP using a

network flow model (14).

1.3 Research Objective

The purpose of this research is to develop a mathematical programming model to

locate direction finders in a generalized search and rescue (GSAR) netu~ork. Specifically,

2



theMARprole (GS-ARP) entails loatng adiiosa euno ains with a fixed

bae netwok of receiving stations- and assigning aFDF receivers and their frequencies to

selected receiving stations so that the direction finders are in the best configuration to

maximize the number of expected successful geolocations in a given time block for a SAR

network.

1.4 Orerview of Research Effort

The research effort presented in the remaining chapters includes a literature review.

model formulation, computational experience with model formulations, solution method-

ologies, network representations and results.

Selected facility location problems are discussed in the literature review in Chapter
2. Chapter 3, Model Formulation. presents a nonlinear integer programming (NLIP) for-

mulation developed from Drake's nonlinear formulation of the HFDF assignment problem,

as well as a simplified multiobjective linear integer programming (MOLIP) formulation

that was motivated by Johnson's HFDF assignment problem research (11, 14). Computa-

tional experience with these formulations is documented in Chapter 4 to support the use

of the MOLIP formulation for the GSARP. Chapter .5 describes solution methodologies

that are used to solve the GSARP. Linear and integer programming, multiobjective opti-

mization strategies as well as motivation for network representations are all discussed in

detail. Chapter 6 then discusses the potential of two specific network representations for

the MOLIP formulation. The network representations are described with test case results

validating the selection of a two-stage network representation.

Chapter 7, Results, presents thesis research results for the two-stage network repre-

sentation of the MOLIP formulation. Results both with and without a covering constraint

are presented for comparison. A DOD computer program called EVAL evaluates the

approximate nonlinear objective function value for each MOLIP solution (8). The best

solution for each time block with and without a covering constraint is compared with the

mean and standard deviation of EVAL results found by the Department of Defense for

a large set of randomly generatr d network configurations (each configuration satisfies the

MOLIP constraints) that are each tasked by a. greedy heuristic 'uhicl maximizes the lines

3



of bearing at each individual station. This heuristic provides good fearible solutions for a

fixed network (10).

This resrch shows that the two-stage MOLIP methodology consistently selects

good feasible location configurations that are better than nearly all of the randomly selected

network configurations which were heuristically tasked. The MOLIP heuristic is a robust

methodology for locating HFDFs in a SAR network. It is effective compared to a random

selection -and efficient compared to the computationally intractable NLIP formulation.

I,

In

I4



IL Liteaitre Review

2.1 Introduction

Selected facilit y location literature related to the generalized search and rescue prqb-

lem (GSARP) Vill be presented. Specifically, this literature review covers location problems

ith uncertainty, maximum-expected-covering location problems, backup-coverage loca-

tion problems, and equity-maximizing location problems. Literature concerning HFDF

bearing accuracy and model selection will be covered as part of model formulation in

Chapter 3. Literature related to solution strategy will be covered as part of solution

methodology in Chapter 5.

2;2 Facility Location Problems

In 'An Overview of Representative Problems in Location Research," Brandeau and

Chiu give a general definition of a location problem (3):

A location problem is a spatial resource allocation problem. In the general
location paradigm, one or more service facilities ("servers") serve a spatially
distributed set of demands ("customers"). (3:646)

The objective function of a typical facility location problem optimizes costs, such as dis-

tances or time, related to facility-facility or facility-demand interactions (3:646-647). In

other words, facilities are located so that customer demand can be satisfied economically.

Two classes of facility location problems found in the literature are the set covering

problem and the p-median problem. The set-covering problem minimizes the number of

facilities located for a predetermined level of coverage, whereas the p-median problem

requires that p facilities be located with the objective of being proximal to the demands

on the average.

Facility location problems can have either uncapacitated or capacitated demand.

The uncapacitated problem has no restriction on the demand that can be satisfied by each

facility, while the capacitated problem restricts the amourt of demand satisfied by each

facility (19:7-8). The capacitated facility cannot always respond to all demands.

5



The GSARP can be modeled as a capacitated p-median facility location problem

with the receiving stations acting as service facilities, the frequency bands at transmitter

locations acting as customers, and the joint probabilities of transmission, propagation, and

bearing accuracy acting as a weighted demand. The weighted demand acts like a fixed

charge on the allocation of a specific frequency to a specific receiving station.

The following paragraphs discuss location problems with uncertainty and three types

of capacitated facility location problems: maximum-expected-coverage location problems,

backup-coverage location problems (models 1,11, and III), and equity-maximizing location

problems.

2.3 Location Problems with Uncertainty

Demand is sometimes uncertain when facility location decisions are made. In the

GSARP, the transmission of a signal on a given frequency is given as a probability distri-

bution for each distress location.

A two-stage stochastic model for production and location under demand uncertainties

is considered by Louveaux and Thisse (16:145-149). Dur;ng the first stage, the firm uses

the predicted demand to choose the location and production capacity to maximize its

expected profit utility. During the second stage, the firm uses the true demand to choose

a production distribution schedule so as to maximize profit, given location and production

decisions made in stage one.

The GSARP can be thought of as the first stage of optimization where the location

of receiving station and ]HFDF assets is determined using stochastic demand. During the

second stage of a two-stage stochastic model, the HIFDF assignment problem could be

solved using updated transmission and propagation probabilities.

2.4 Maximum-Expected-Covering Location Problem

Daskin considers the maximum-expected-covering-location problem where demand

and server availability are unknown (7:48-68). This model specifically addresses the pos-

sibility that facilities may not be available to respond to demand. Daskin makes three

6
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important assumptions: the probability p that a facility cannot respond to demand is the

same for all facilities; the ability of a facility to be busy is independent of all other facilities

being busy; and ousy probabilities are invarianit with.respect to the server location (1:278).

However, Daskin's assumption of equal and invariant busy probabilities does not hold for

the GSARP. The GSAR2P has propagation probabilities representing the busy probabil-

ity of an HFDF asset. These busy probabilities differ for each time period and for every

combination of distress location, frequency, and receiving station.

Batta, Dolan, and Krishnamurthy reexamine Daskin's formulation of the maximum-

expected-covering location problem (1:277-286). They investigate relaxing the three as-

sumptions made in Daskin's model. In relaxing the assumptions, Batta, Dolan, and Kr-

ishnamurthy use a hypercube queuing model in a single node substitution heuristic to

determine the set of server locations which maximizes the expected coverage (1:277-286).

They adjust Daskin's maximum-expected-covering location problem, based upon random

sampling of servers without replacement, to produce results in better agreement with the

hypercube queueing model. Batta, Dolan, and Krishnamurthy conclude that all three

models (Daskin's maximum-expected-covering location problem, hypercube queueing, and

adjustment of Daskin's maximum-expected-covering location problem) produce results of

similar quality (recommended facility locations are physically close to one another). How-

ever, it is noted that computational intensity and accuracy of coverage estimation differ

for each model (1:278).

The GSARP can be conceived as a maximum-expected-covering location problem.

The demand is stochastic, represented as a probability distribution for each distress signal

location for a given time period. Server availability is also stochastic, represented as the

probability that a signal propagates on a particular frequency from a distress signal location

to a receiving station location for a given time period.

2.5 Backup Coverage

Back'up coverage involves the second and subsequent coverage of a demand node

by service facilities. The efficient coverage of stochastic demand and server availability,

may require backup coverage in areas of high demand (13:1434). The GSARP which has

7



stochastic demand and server availability requires frequencies be covered by at least three

HFDF assets for geolocations to be attempted on that frequency. Additional HFDF assets

in the network will result in backup coverage. The GSARP reduces to locating receiving

stations and HFDF assets and allocating backup coverage among the assets to maximize

the number of geolocations in the network. The following paragraphs review the Hogan

and Revelle and the Pirkul-and Schilling concepts of backup coverage (13, 21).

2.5.1 Backup Coverage Model I (BA COP1). Two multiobjective models for backup

coverage are presented by Hogan and Revelle (13:1437-1440). Their first model, BACOPI,

incorporates aspects of both the set-covering location problem and the maximum-covering

location problem. BACOPI has two objectives. The first objective is to minimize the

number of facilities sited which ensure primary coverage of demand. The second objective

maximizes the amount of demand that is provided backup coverage. In this formulation,

a structural backup coverage variable is assigned the value of one to identify when a

particular demand is covered two or more times and is assigned the value of zero otherwise.

The backup coverage variable for a particular demand node is weighted by the amount of

demand at that node. This insures that some lev%'. , backup coverage is provided for

the maximum amount of demand. This model can also be extended to levels of coverage

greater than two with additional constraints and an additional objective for each level

(13:1443).

The GSARP has some similarities and differences to the backup coverage model BA-

COP1 (13:1437-1440). Both require primary coverage of demand. lowever, BACOPI is

a set-covering problem minimizing the number of facilities needed for primary cove-age of

all demands. The GSARP, on the other hand, is a p-median (p-facility) maximal cover-

age problem which can be constrained to provide primary coverage of three ]IFDF's per

frequency.

2.5.2 Backup Coverage Model II (BACOP2). hogan and Revelle's second backup

coverage model, BACOP2, permits assignment of backup coverage to areas of high demand,

prior to assigning first coverage to areas of low demand (13.1437-1441). The BACOP2

formulation, an extension of the maximum co~ering location plioblcm, is multiubjectixe.



The first objective maximizes the demand that receives primary coverage, and the second

objective maximizes -the demand that receives backup coverage. The amount of demand

receiving primary and backup coverage is maximized because the structural variables in

the objective functions -representing a given demand- node are weighted by the amount of

demand at that node.

The backup coveragemodel BACOP2 discussed by Hogan and Revelle has two sig-

nificant crossovers to the GSARP (13:1437-1441). First the GSARP requires a p-median

maximal covering model which BACOP2 represents. Second, the concept of weighting

both primary and backup coverage by the demand for coverage is a reasonable way to

model the GSARP.

2.5.3 Backup Coverage Model III. Pirkul and Schilling discuss a maximum-covering

location problem where primary and backup services are required from separate facilities

for each demanO .. 140-153). This model is applicable when considering demand for

emergency services. In this situation, it is desirable to have backup coverage available

within a certain distance if primary coverage is not immediately available. Pirkul and

Schilling's research recognizes the negative effect of assigning demand to a facility that is a

great distance away. Their model attempts to provide acceptable assignments for uncovered

demands by using a declining distant-dependent function for demand assignments that

exceed the acceptable coverage distance.

Pirkul and Schilling's distant-dependent function has potential crossovers to the

GSARP. For the GSARP a similar concept, called an accuracy-dependent function could

be used to weight each line of bearing (LOB). This type of a weighting function could

embody the negative effect of assigning demand to a facility that has large LOB errors.

2.6 Equity Maximizing Location Problems

Most facility location problems maximize benefits ol minimize cost (or travel dis-

tance) across all demand in the system. This is efficent but n-t equitable, because some

customers must travel farthei to ieceive the same benefit (2:137). This ixiequit) becomes

relexant when all custcmers pay the same fee to use a facilit3. In this case, all customcis

9



should receive the same benefit. Berman and Kaplan consider a facility location problem

which-attempts to equalize facility benefits for all customers by using taxes or side benefits

(2:137-138). Their formulation attempts to maximize the benefit derived per customer by

using an approach which minimizes the sum of absolute taxes or side payments that would

be required for a given set of facilities and demands to be in equilibrium (2:140-143).

The GSARP might benefit from equity-maximizing considerations. For the HFDF

assignment problem, Johnson discusses the decreasing utility of assigning additional HFDF

receivers to frequencies once a frequency is adequately covered (14:17-18). To deal with

this, Johnson used an objective which penalizes assignment 'of additional HFDFs to a

frequency that already has its fair share of HFDF resources (14:18-19). If there were no

penalty for excess coverage, HFDF assets would be assigned to frequencies with the greatest

probabilities of transmission and propagation with no regard for the number currently

assig. . I to the frequency. This objective imposes a side payment to the assignment of

HFDF resources which exceed the equal coverage criteria.

2.7 Conclusions

The GSARP is best characterized as a capacitated maximum-covering location prob-

lem. The problem is capacitated due to the limited number of HFDF receiver assets

available to fulfill demand. The GSARP is maximum covering, since the objective is to

maximize the number of geolocations.

Hogan and Revelle discuss a backup coverage model for a inaximum covering location

problem, BACOP2, which has potential crossovers to the SAR problem (13:1436-1437).

Two modifications can make the BACOP2 formulation more suitable for the GSARP.

First, primary coverage for all significant demands should be required. Second, each unit

of primary and backup coverage should be weighted by the amount of demand it is expected

to satisfy.

Pirkul and Schilling present the concept of a declining distant-dependent function to

incorpoiate the negative effect of assigning a facility to a demand that is far away. For

the GSARP, a similar concept of a declining accuracy-dependent function could be used

10



to weight each line of bearing. This weight could embody the negative effect of assigning

demand toa HFDF asset toga station that has large LOB errors.

An equity-maximizing objective could also be used for the GSARP, similar to the

way Johnson penalized excess coverage for the HFDF assignment problem (14:17-18). This

,objective recognizes the decreasing utility of assigning additional HFDF receivers to a

frequency that 'is already adequately covered.

11



III. Model Formulation

This chapterpresents both the nonlinear and -the linear multiobjective formulations

of the generalized- search and rescue problem (GSARP); along with a summary of the

literature motivating the multiobjective linear formulation. The first section describes the

scoped thesis problem, as well as the comprehensive GSARP. This is followed by a complete

description of the notation used- for the nonlinear and linear models. The last two sections

present the nonlinear and the multiobjective linear formulations.

3.1 The Generalized Search and Rescue Problem (GSARP)

The GSARP requires that HFDF receiving stations and receiver assets be located

within a fixed search and rescue (SAR) network so that the number of expected geoloca-

tions is maximized. Each receiving station location has a set of propagation probabilities

which are unique for each combination of time block, transmitter, station, and frequency.

Each transmitter location has a set of transmission probabilities which are unique for each

combination of time block, transmitter, and frequency. A 24 hour day is broken into

12 two-hour time blocks. The purpose of this research is to develop a model which can

determine an optimal SAlt network configuration for any two hour time block.

Determining an optimal SAP. network configuration is a combinatorially explosive

task. For example, if 10 additional receiving stations are to be chosen from 25 candidate

stations, there are more than 3 million possible network configurations. If eight HFDF

receivers can be assigned to a receiving station and there are 30 candidate frequencies, this

results in more than 5 million possible frequency assignments for the HFDF receivers at

any station. If there are 30 frequencies and 10 receiving stations each with eight HFDF re-

ceiving assets, there are more than 1066 possible SAR network configurations. It is clearly

impractical to consider complete enumeration and comparison of all possible network con-

figuration.

The comprehensive multi-time period GSARP has the additional dimension of time

which makes it a more complex problem than the single time period GSARP, hich is the

focus of this research. The multi-time period GSARP involves determining a good feasible

12
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network configuration of receiving stations and HFDF receivers that is robust over all time

periods. Eventually a robust single time period solution methodology which produces good

configurations can be expanded to consider themulti-time period GSARP.

3.2 Notation

The following notation is used for the nonlinear and linear model formulations of the

GSARP.

Subscripts: Let i index transmitting locations

j, h index receiving station locations

k index frequency bands

Decision Variables:

1 if a receiving station is located at j
Xj = 0 otherwise

1 if an HIFDF receiver is located at station j as-

Xik = signed to frequency k

0 otherwise

Zj = the number of bundles of HFDF receivers allocated

to station j. Each bundle has eight HFDF receivers.

Yk = the number of HFDF receivers placed on frequency k

which exceed the fairshare of resources for that fre-

quency.

13
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variables for these other stations not in the combination. In mathematical terms.

UiM(X) = h PiLk] [1( - PihlX 1

Using UiA,(X), the complete nonlinear objective function is defined as:

I K
max j1 Z ,

i k OEC

.3.92 Constraintb. Tie nonlinear formulation has six constraints. The first con-

straint ensures the fixed base networl, of IIFDF recei ing stations is not di.turbed:
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The second constraint ----res that the number of HFDF receiving stations located

does not exceed the total number of JIFDF receiving stations av-ailable:

J

The allocation of JIFDF receivers in multiples (bundles) of eight is handled by the

third constraint:

K

ZXs -sz,-o, Vj.

The fourth constraint was developed so that the number of bundles of IIFDF receivers

located does not exceed the total number of HFDF receivers available:

J

Zj <NB.

The fifth constraint prevents the allocation of an llFDF receiver to a location which

does not have a station:

Xjk-xs< o, Vj,. .

All variables are restricted to be integer or strictly binary by constraint six:

X E f{o,1)

Xjk, E {0, 1)

Zj = integer.
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3.3.3 Understanding the Nonlinear Formidation. A careful look at the nonlinear

formulation shows that expected behavior of a SAR network is modeled. In a SAR network

there is declining utility for each additional IFDF receiver on a frequency that already has

adequate coverage (6). When coverage for a frequency is maximized, there is no utility in

assigning additional HFDF receivers on that frequency. A study of the nonlinear objective

function shows the following items to be true.

. Less than primary coverage for a frequency results in no contribution to the objective

function.

9 Primary coverage consisting of three HFDF receivers assigned to a frequency only

contributes positively to objective function.

I~ . Further coverage consisting of primary coverage plus additional HFDF receiver(s)

assigned to a frequency contributes positively to the objective function.

* Frequency saturation points for frequencies may exist where putting more resources

on that freyaency results in almost no additional expected geolocations for the net-

work.

e During the allocation of an HFDF resource the nonlinear objective considers all

possible allocations. The difference in the sum total of probabilities with and without

an HFDF resource decision variable X3I represents the number of additional expected

geolocations resulting from the allocation of an HFDF to Xjk.

3.3.4 Computational Feasibility of the Nonlinear Formulation. The nonlinear for-

mulation is a robust description of the GSARP which seeks to maximize expected ge-

olocations. This formulation is robust, because it explicitly addresses the combinatorial

nature of the GSARP. Unfortunately, the nonlinear formulation has an explosive number

of nonlinear terms for even small SAR. networks. For example, a location problem with

just ten receiving station candidates and five frequencies results in 500 nonlinear terms

in the objective function. Binary decision variables also complicate the problem, because

some type of implicit enumeration scheme must be used to fine an optimal solution. A rule

of thumb bounding the number of possible solutions for problemb %ith binary variables

17



requiring implicit enumeration is 2'1 where n is the number of integer vriables. The num-

ber of possible solutions to be enumerated becomes unreasonably large very quickly as the

number of variables,n increases. Clearly this type of formulation is impractical even for

small problems. A simplified formulation is required which embodies characteristics of the

inherent nonlinearities and seeks to directly or indirectly maximize expected geolocations.

3.4 Multiobjective Linear Integer Formulation

For computational tractability, the GSARP is formulated as a multiobjective linear

integer programming (MOLIP) model. The following paragraphs present a summary of the

literature motivating the formulation and descriptions of the accuracy weighting function,

objective function, and constraints.

3.4.1 Summary of Relevant Literature. There are three properties of the nonlinear

objective function which characterize the SAR network behavior.

* The objective function measures the number of additional expected geolocations

resulting from each potential location assignment.

" The objective function shows the declining utility (or decrease in additional expected

geolocations) for each additional HFDF receiver on a frequency that already has

adequate coverage.

* The objective function recognizes frequency saturation points where putting more

resources on that frequency results in almost no additional expected geolocations for

the network.

From the literature review there were three ideas which influence the GSARP's for-

mulation and have potential to model some of the characteristic SAPt network behavior.

The first concept is Hogan and Revelle's maximum-coverage model BACOP2 (13).

The model has two desirable characteristics which can be implemeiited in a simplified for-

inulation for the GSARP. First, the multiobjectie natuie of the modcl allows the optimum

coverage configuration to reprebent different levels of coverage being t i ddeu off against one
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another. Second, the weighting of the variables rewards coverage levels to higher demands

more than that to lower demands.

The second promising-concept is Johnson's multiobjective formulation for the HFDF

frequency assignment problem which is closely related to the GSARP and, consequently,

provides significant insight for model formulation (14). Johnson's formulation has three

objectives which are outlined in the next few paragraphs. The first and the third objective

3! functions can easily be incorporated directly or indirectly into the GSARP formulation.

On the other hand, the second objective appears to be highly correlated with the first

objective while its importance is questionable.

Johnson's first objective essentially maximizes the expected number of lines of bear-

ings for the network, assuming a line of bearing is taken for every signal that transmits

and propagates. In mathematical terms,

I J K

Max E P S ikPijkXjk
i 6 k

Three or more lines of bearing are required for geolocation of a specific signal. Johnson as-

serts that maximizing the number of lines of bearing provided for the various transmissions

in a fixed network of receiving stations should tend to maximize the numbe- of signals that

can be geolocated (14:16). This objective function can be thought of as an indirect way of

maximizing the number of geolocations for the SARI network.

Johnson's second objective function which maximizes transmissions was also consid-

ered for the HFDF location problem (14). However, there are two points that support not

using this objective in the GSARP formulation.

The first point for not using Johnson's second objective is that it is implicitly max-

imized within the first objective function which maximizes the expected number of lines

of bearings for the network. In a sense, the second objective can be considered less im-

portant than the first objective. In a recent study, Olson and Dillinger found the omission

of less important objectives had little impact on the results of multiobjective optimization
problems (20:9-10).

1
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A second point against the-use of Johnson's second objective is that it is highly cor-

related with the first objective function due to the objectives 'having several variables in

common. Correlated objective functions are undesirable, because the weighting between

objective functions does not always behave intuitively. Sometimes a very important objec-

tive will have a very small weight for the best solution. The angle between the cost vectors

is an -acceptable way to measure the correlation between objective functions (23:198). The

smaller the angle, the larger the correlation. The correlation between objectives one and

two was confirmed during a case study where the angle of correlation between Johnson's

first and second objective functions was measured to be 4.3296 degrees (15:11). In math-

ematical terms, Johnson's second objective is:

I J K

max ZZEFikXjlk.ijk jk
i i k

Johnson's third objective function penalizes excessive coverage by HFDF receivers

of a frequency (14:17-19). This objective recognizes the declining utility (decrease in ad-

ditional expected geolocations) for each additional HFDF receiver on a frequency that

already has adequate coverage. It can be thought of as an equity maximizing objective,

since the objective will not penalize equal coverage. By evaluating the objective functions

several times and giving varying levels of importance to the excess coverage objective,

there is potential for revealing the optimal tradeoff between the objectives which will

maximize geolocations. Searching for the optimum tradeoff of frequency coverage using

multiple objectives is effectively a heuristic way for searching the nonlinear decision space.

In mathematical terms, Johnson's third objective is:

K

min E Yk.
k

The third promising cuwnept is the declining distant-depenident function discussed by

Pirkul and Schilling (21:140-153). Their model attempts to provide acceptable assignments

for uncovered demands by using a declining distance-dependent function for demand assign-

ments that exceed the acceptable coverage distance. For the GSARP, a similar XvQighting
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.function will-be developed to recognize the negative effect of assigning an HFDF resource to

-a facility that has large lines of bearing (LOB) errors. This accuracy-dependent weighting

function is described in the next section.

3.4'2 Declining Accuracy- Weighting Function. An accuracy-weighting function was

developed from a technical paper which documents confidence area mathematics and as-

sumptions associated with position finding (12). Consider a LOB from receiving station j

to transmitter i. Several assumptions concerning HFDF confidence area mathematics are

reasonable to make for the HFDF location problem (6):

1. Projections of the LOBs are straight lines.

2. The earth is fiat near target position Ti.

3. The angular bearing error of the LOB taken from receiving station j to transmitter

i is aij is normally distributed with a mean of zero and a variance of A3.

4. The width of the bearing fan, eij, is (Rij x sin aij) which is normally distributed with

a mean of zero and a variance of e,. since aij is normally distributed. Rij is the

range from station j to transmitter i.

It is also true for the GSARP that an acceptable circularized error radius d, is

known for transmitter i. From this information the following declining accuracy-dependent

function can be developed:
di

z =
eij

where z,, is a standard normal random variate which equals the number of standard de-

viations of bearing fan width that are within the acceptable circularized error radius d,.

The resulting weighting function, W,,, equals the probability that the bearing fan e,, is

less than di:
W = 1 - 2[1 -Dz)1

where i(z,3 ) is a function of the percentile of the standard normal random variate. The

geometry of this weighting function from receiving station j to transmitter location i can

be seen in Figure 1.
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Figure 1. Geometry of the Accuracy Weighting Function
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3.4.3 Multiobjective Linear Objective Functions. The GSARP has two opposing

objectives when it is formulated as a multiobjective linear integer program (MOLIP).

These objectives were adapted from Johnson's formulatio:i of the frequency assignment

I problem (14). The first objective maximizes the number of expected lines of bearings

while the second objective minimizes the excess coverage of frequencies.

3.4.3.1 Objective Function One. The first objective function is designed to

maximize the expected number of SAR network geolocations by maximizing the expected

number of accurate LOBs for the SAR network. A LOB is generated when a signal trans-

mits and propagates from a transmitter location to a receiving station on a given frequency.

The probability of generating a LOB from station j to transmitter i on frequency k is mul-

3 tiplied by the probability of generating an accurate LOB from station to transmitter

location i, W,. This objective is similar to Johnson's first objective for the HFDF fre-

quency assignment problem with the accuracy of the LOBs incorporated (14:16-17).

max 2WjikPjkX k
Si k
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3.4.3.2 Objective Function Two. The second objective function is identical

to Johnson's excess coverage objective which penalizes excessive coverage of a frequency

by HFDF receivers (14:17-19). This objective recognizes the declining utility (decrease in

additional expected geolocations) for each additional HFDF receiver on a frequency that

already has adequate coverage. Excess coverage is defined as anything more than the fair

share. Fair share is defined as the total number of HFDF receivers divided by the total

number of frequencies rounded to the next largest integer. In mathematical terms, the

second objective is,
K

min LYk.
k

3.4.4 Constraints. The MOLIP formulation has eight constraints. The first con-

straint ensures the fixed base network of IIFDF receiving stations is not disturbed.

Xj=1, V jEF

The second constraint ensures that the number of HFDF receiving stations located does

not exceed the total number of HEDP receiving stations available:

J

HFDF receivers are allocated in multiples (bundles) of eight by the third constraint:

-Xjk-SZ=O, Vj.
k

The fourth constraint prevents the number of bundles of IIFDF receivers from exceeding

the total number of HFDF receivers available:

J
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The fifth constraint ensures that an HFDF receiver is not allocated to a location which

Il does not have a station:

Xk k-Xj1  o, Vj, k.

Constraint six is a quasi-covering constraint which guarantees either no coverage at all,3 or at least primary coverage. Johnson's formulation of the HFDF assignment problem

included a full covering constraint. However, it may not be logical to explicitly require

* primary coverage for all frequencies since the probability of transmission may be close to

zero for some frequencies. Since a minimum of three signals are required for a geolocation,3 the quasi covering constraint prevents the wasteful allocation of just one or two resources to

a frequency. This mimics the nonlinear objective function which receives no contribution

3 for less than primary coverage:

I1 I jk - 2Xhk <; O, V h s, j, k.
jEs

where' s ES: all combinations (J 1) and J=NS}.

SI With the seventh constraint, the structural excess coverage variable is assigned the

value of excess coverage allocated to frequency k:

I ZXjk-Yk<FS Vk.
3

3 The eighth constraint restricts all variables to be binary integer or integer:

3 A' E {0, 1}

Xjk E {0,1}

3Z E {o,1,2,3}

kI' > 0 and integer.
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3.4.5 The Complete Multiobjective Linear Formulation. The complete problem to

be analyzed and solved is:

I J K

max jWjFkP-Xjk (1)
i j k

K

min EYk (2)
k

subject to

X = 1, VjEF (3)

JzX VS (4)
6

K

L Xjk- z = 0, V j (5)
k

ZZ _ AfB (6)

J

xs -Xj 0 , V j,k (7)
Ijk - 2Xhk 0 , V j,k,h €s (s)

Xk- -Yk < FS, V k. (9)

Xj E {o,1} (10)

Xjk. E {0, 1) (11)

Zj E {o,1,2,3) (12)

Yk - 0 and integer. (13)

3.4.6 Computational Tractability. The multiobjective linear integer formulation

has significantly fewer terms and variables than the nonlinear formulation. For J sta-

tions and K frequencies there are J x K + J + K integer variables of which J x K + J

variables are binary. For example, a problem x ith 10 receiving station candidates and fie

frequencies results in just 50 linear objective function terms compared to 5060 terms foi
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I the~nonlinear formulation.

The next chapter, Computational Experience with Model Formulationc will investi-

gate the nonlinear and multiobjective linear integer formulations in more detail by com-

paring test case problem results for the two formulations.

I

i
i
I
i
I
I

I
I
I
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IV. Computational Experience with Model Formulations

4.1 Overview of Test Cases

Two small-scale test problems were studied to document any relationship found be-

tween the nonlinear integer program (NLIP) and the multiobjective linear integer program

(MOLIP) formulations presented in Chapter 3. Size limitations, data selection, and result

comparisons are discussed for test cases in the next three subsections.

4.1.1 Size Limitations. The size of the test cases was limited for two reasons. The

first reason is that the computational complexity of the nonlinear objective function coeffi-

cients becomes combinatorially explosive as the problem size increases. Secondly, problem

size is limited, because the nonlinear integer optimization code's enumeration scheme makes

large problems computationally undesirable.

Both test cases used five receiving station locations and four transmitter locations.

The first test case used three frequencies while the second test case used five frequencies.

This resulted in the first test case having 20 and 23 variables for the NLIP and MOLIP

formulations respectively. The second test case had 30 and 35 variables for the NLIP and

MOLIP respectively. The number of nonlinear objective function terms was 48 for the

first test case and 80 for the second test case. Using just five receiving station locations

kept the number of variables, the number of terms, and the computational complexity to

a minimum.

4.1.2 Data Selection. The data used in both test case problems is a subset of the

data provided for computations by the Department of Defense. While the NLIP formu-

lation explicitly considers accuracy for a combination of stations to a transmitter, the

MOLIP formulation considers only the accuracy for a single line of bearing from a receiv-

ing station to a transmitter. For this reason, test case problem data was selected with

one or more combinations of receiving stations haing an unacceptable confidence legion

accuracy for transmitter(s) in the NLIP formulation. The performance of the MOLIP is

studied with this data, to see if the MOLIP can find solutions comparable to the NLIP
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4.2 'Monlinear Integer Pr. m-w-9 (NLIP)

This section presents the modified MA1P fouiatio= and the MAUP alzorithm rsiA

to solve the test case problems.

4.2-1 NLIP Solion Algorilhs. The MAP so~utio- algorithm us.s an im.iten-

meration scheme designed to specifically handle nonlinear progamming poh-lems with

linear constraints (4). The NLIP algorithm generates 2! feasib!e incumbent solutions that

are encountered in the course of finding the solution. A feasible incumbent solution is an

intermediate solution that is the best feasible solution during a particular stage of the op-

timization search. At any time during the search. the current feassb!e incumbent solution

represents a lower bound for the optimal solution. During the optimization procedure,

solutions are rejected vwhen they are less than the current, incumbent solution or upper

bound. Monotonicit" of the objective function is required for this search to always find

the optimal solution. Monotonicity has not been shown for the NLIP; howrever, for the

test problems, the NLIP algorithm converged to the same solution for every" starting point

that was used.

A matrix generator is used to create the input file required by the nonlinear zero-

one solver. A copy of the optimization code. input files. matrix generator code, and toy

problem data files can be found on the floppy disk one that accompanies this thesis. The

files for the two toy problems can be found in t,o directories, named 1'r and toY2 on

floppy disk I.
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>i1 < !Ys

J K

where XII1 is the -number of IIFDF receivers

X,&.- X1  < O. V jjk

XjE 1{O-

.XjL E {011.

4.3 Multiobjcclive Linear Inlcgcr Programming (MIOLlP)

Thuis section present-, the modified XMOIP formulation and the NIOLIP algorithm

used to solve the test case problemns-
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4.3.1 MOLIP Soltion Algorithm The ADBASE multiple objective linear program-

ming package was used to identify the efficient frontier by computing all efficient extreme

points associated with the solution space of each test case (22). An efficient extreme point

is also referred to as a pareto-optimal solution. A pareto-optimal solution is a feasible solu-

tion which is as good as or better than all other viable solutions for the multiple objective

problem. It is the pareto optimal solutions generated by ADBASE which are compared

to the NLIP results. For each extreme point, ADBASE can also provide the relative cost

for each variable not in a current solution. From these costs the relative weighting or

importance of each objective function can be determined for an extreme point.

A copy of the input files, coefficient generator codes and test case problem data files

can be found on the floppy disk -which accompanies this thesis. The files for the two toy

problems can be found in the two directories named toyl and toy2 on floppy disk 1.

4.3.2 MOLIP Test Case Formulation. The MOLIP formulation discussed in detail

in Chapter 3 is summarized again with respect to the specific MOLIP formulation used for

the test case. Due to test case problem size limitations, HFDFs are dealt with as single

entities rather than as bundles of entities. This modification results in constraints three and

four being different from what was presented in section 3.4. Another limitation in solving

the test case is caused by the fact that ADBASE is not a mixed integer programming

package. The quasi-covering constraint which is equation 8 presented in section 3.4.5,

required that either zero or greater than three IlFDFs be assigned to a frequency; however,

this constraint prevents ADBASE from finding an integer solution. As a result, the quasi-

covering constraint is not included so that ADBASE can be used to identify the entire

efficient frontier for comparison with the NLIP solution.

In order to clearly identify the relative weightings of the objective, the two objective

functions had to be normalized. Multiplying the first objective function by 100 makes

both objective functionb closer to the same order of midgilitude. ADBASE is optimizing

the normalized problem when it computes all efficient extreme points.
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subject to

X1 = 1, VjEF

X_ < NSiJ K
Xj Y k < NH

where NVH is the number of HFDF receivers

I Xsk-X < 0, Vj, kJ

ZXFk-Yk < FS, Vk
Xi E {0,1}

I Xsk E 0,1}
Yk > 0 and integer.

4.4 Test Case 1 Results

For test case 1, the NLIP algorithm identified 13 feasible incumbent solutions before

the algorithm found the optimal solution of 0.1137217. ADBASE found four efficient

extreme points. However three of these extreme points can effectively be collapsed to3 provide the same solution. The only difference in these three extreme points is that one of

them has ST3 with no ]IFDF resources assigned, one of them has ST4 with no resources3 assigned, and the last one doesn't have ST3 or ST4. These three solutions are in effect

the same, because locating a receiving statioii without any resources assigned contributes
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nothing to the objective function. As a result, the four efficient extreme points are collapsed

to provide-two unique pareto-optimal solutions which correspond to two different-levels of

coverage as defined by the second objective function. These two pareto-optimal solutions

are evaluated using the nonlinear objective function providing pareto-optimal solutions of

0.10821046 and 0.1127499. It is-interesting to note that the second solution of 0.1127499

corresponds to the eleventh feasible incumbent solution for the NLIP. The NLIP algorithm's

computations took about one CPU minute and the ADBASE algorithm took less than

one CPU minute, both on a VAX 11/785. Convergence of- the NLIP algorithm was not

significantly improved when the best MOLIP solution was used as a starting point. The two

pareto-optimal solutions for the MOLIP along with NLIP optimal solution are compared

in the Table 1. For test case 1, the specific formulation and data, as well as the formatted

input files for the MOLIP and NLIP solvers are all presented in Appendix G.

Table 1. Test Case 1 Results

Type Solution A, Stations Station HFDFs NLIP obj % diff

true NLIP N/A STI F1 F2 F3 0.1137217 none
ST2 F1 F2 F3
ST4 F2 F3
ST5 F1 F3

M1 A, > 0.439 STI F1 F2 F3 0.1127499 0.85%
ST2 F1 F2 F3
ST3 F2
ST5 F1 F2 F3

M2 A, < 0.439 STI F1 F2 F3 0.1082105 4.86%
ST2 F1 F2 F3
ST3 or ST4 none
ST5 F1 F2 F3

M2 represents the pareto optimal solution where three efficient extreme points col-

lapse to the same solution. The impact of the second objective function can be seen in

M2. This solution does not allow excess coverage for any of the frequencied which, for the

first test case, is defined as coverage beyond three HFDFs for a frequency.

Figure 2 is a graph depicting the relative impact of objectives one and two for the two

MOLIP solutions. The line connecting A1 and A2 represents the line of objective weightings
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Figure 2. A-Cones for Test Case- 1 Objective Weightings
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between objective one and objective two where A, is the weighting for objective function

one and A2 is the weighting for objective function two. It is clear from the graph that A,

added to A2 must equal one. All of the weightings where A, is less than 0.4388 correspond

to M2 and all the weightings where A, is greater than 0.4388 correspond to Mi.

The small size of this test case makes it difficult to draw generalizations about how

successful the MOLIP formulation will be in providing a good solution for the GSARP.

However, three observations can be made. First, the MOLIP solution is relatively close to

the NLIP solution. Second, a higher weighting on objective one is preferred for the best

solution. Third, the MOLIP solution will provide two or more pareto optimal GSARP

network solutions which can be selected based on their relative NLIP solutions.

4.5 Test Case 2 Results

Test case 2 represents a slightly larger problem. The difference is that test case

two allocates HFDFs to five frequencies rather than three. For this test case, the NLIP

algorithm identified 28 feasible incumbent solutions before the algorithm found the optimal

solution of 0.1440151. ADBASE found three efficient extreme points which correspond to

different levels of coverage determined by the second objective function. The pareto-

optimal solutions are evaluated using the nonlinear objective function. The corresponding

MOLIP optimal solutions are 0.12465, 0.10547, and 0.093934

For this problem, the ADBASE solution was not a feasible incumbent solution for

the NLIP. However, the best MOLIP solution lies between the objective value of the 19th

and 20th incumbent solutions of the NLIP. The increased size of this test case significantly

affected the CPU time required for the NLIP solution algorithm. The NLIP optimization

code took 4 hours and 55 minutes of CPU time on a VAX 11/785, whereas ADBASE code

still took just one or two minutes of CPU time. When the best MOLIP solution was used

as a starting solution for the NLIP, the solution time was decreased by only 29 minutes or

10%.

The impact of the second objective function can be seen in M2 and M3, since the

level of excess coverage is less than in Mi. For example, M3 foi test case two does not
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allow excess. coverage for any -of the frequencies.

Table 2. Test Case 2 Results
Type Solution A, Stations Station HFDFs NLIP obj % diff

true NLIP N/A ST I F2 F3 P4 F5 0.1440151 none
ST2 F2 F3 F4 F5
ST3 P2 F3 F4 F5
ST5 F3 F4 F5

M1 Al > 0.383 STI F1 F2 F3 F4 F5 0.1246539 13.444%
ST2 F3 F4 F5
ST4 P1 F2 P3 F4 F5
ST5 F4 F5

M2 A, < 0.383 STI F1 F2 F3 F4 0.1054576 26.773%
and ST2 P2 F3 F4 F5

A, > 0.362 ST4 F1 F2 P3 P4 P5
ST5 Fl F4

M3 A, < 0.362 STI F1 F2 F3 0.0939340 34.774%
ST2 F2 F3 F4 P5
ST4 P1 F2 P3 F4 P5
ST5 F1 F4 F5

The configuration of the GSARP network changes quite a bit for each pareto-optimal

solution. The fact that the configuration is changing as the excess coverage objective

weighting increases makes it possible for the MOLIP to expose several possible configura-

tions representing different levels of coverage. As a result, several pareto-optimal configu-

rations can be evaluated as possible solutions to the true GSARP.

In Figure 3 is a graph depicting the relative impact of objective one and objective

two for the two MOLIP solutions. The line connecting A, and A2 represents the line of

objective weightings between objective one and objective two where A, is the weighting

for objective function one and A2 is the weighting for objective function two. Once again,

it is clear from the graph that A1 added to A2 must equal one. Notice all of the weightings

where A1 is less than 0.36237 correspond to M3 and all the weightings where A, is greater

than 0.36237 and less than 0.382776 correspond to M2. There is no clear explanation

for why M2 commands such a small \-cone. M2 and M3 both represent pareto-optimal

solutions where objective two is more heavily weighted. The impact of objective two,

which penalized excess coverage, is reflected in the solutions that are presented in Table 2.
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Finally, all the weightings where A1 is greater than 0.38278 correspond to the best MOLIP

solution Mi.

Figure 3. A-Cones for Test Case 2 Objective Weightings'
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4.6 Observations and Conclusions

Several observations were made from these test cases. First, it is important to re-

member that the test case problems were limited in size. With this qualification, it can be
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observed, that the MOLIP results are relatively close-to the true NLIP solution for both

test cases. Test case one was 0.85% from it's, true NLIP, and test case two was 13.44%

from it's true NLIP solution. Furthermore, the best solution for both test cases was the

one whichmost heavily Weighted the first-objective, which maximizesthe expected number

of accurate lines of bearing. The conclusion that can be drawn from these results is that

there is no reason to doubt that the MOLIP might provide good feasible solutions for the

larger GSARP.

A second observation is that the practicality of the NLIP solution algorithm decreases

with increased problem size. The NLIP for test case two had ten more structural variables

than test case one. The addition often variables increased the CPU time on a VAX 11/785

from approximately one minute for the first test case, which has 20 structural variables,

to nearly five CPU hours for the second test case, which has 30 structural variables. This

indicates that the required CPU time is unmanageable for the larger GSARP which has

991 structural variables as defined by the formulation in Chapter 3.

Another observation is that the GSARP network configuration solutions change as

the weighting on the excess coverage objective is increased. This allows the MOLIP to

expose several solutions representing different levels of coverage. The result is several

pareto-optimal solutions are produced that can be evaluated and compared as potential

solutions to the GSARP.

Integrality problems exist with the MOLIP tiat are not addressed with these test

cases. These integrality problems associated with constraints that are not used for the test

cases will be addressed in the next chapter, Methodology.
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V. Methodology

A multiobjective linear integer programming (MOLIP) formulation was identified

as a promising approach for the -generalized search and rescue problem (GSARP). This

chapter describes the methodologies used to solve the MOLIP formulation of the GSARP.

Linear programming, integer programming, multiobjective optimization and network rep-

resentation are specifically covered.

5.1 Linear Programming

For computational tractability, a linear formulation with both a linear objective

function and linear constraints is used to approximate good GSARP solutions in place

of the highly nonlinear formulation proposed by Drake (11). A general procedure used

for solving linear programming problems is the simplex method. The simplex method

involves searching the feasible region boundary defined as the region contained within ur

on the intersection of the linear constraint equations. The algorithm iteratively moves to

better adjacent corner point solutions, which are the points where the constraint equations

intersect. When no better adjacent corner point solution can be found, the search is

terminated. While the simplex method could theoretically examine every corner point,

it has proven (on the average) to be very efficient on most problems of practical origin

(18:38). The linear programming software considered for the computations herein utilize

variants of the simplex method for solving linear programs.

5.2 Integer Programming

The decision variables for the MOLIP presented in chapter three must be integer.

Specifically, the variables X3 and Xjk must equal zero or one, while Yk must be a positive

integer greater than or equal to zero.

The subset of constraints used for the test cases in Chapter 4 preserve the integral-

ity of the decision variables, and integer solutions can be found efficiently using linear

programming algorithn s. Unfortunately, the remaining subset of constraints destroy the
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integrality of the decision variables when they are used with pure linear programming

algorithms,

The-integer programming technique most often found with commercially available

software is-the branch-and-bound technique. A generalization of the branch-and-bound

algorithm follows (14:22). The branch-and-bound algorithm solves iterative linear pro-

gramming problems with integer constraints relaxed. At each iteration, the set of feasibie

solutions is partitioned into subsets (hence branching) and an upper bound is calculated

for each subset. When an integer solution is found its value becomes a lower bound for the

optimal solution for a maximization problem (hence bounding). A subset is abandoned

from further branching if its upper bound is less than the lower bound for the optimal

solution. If a subset has either an infeasible solution or an integer solution, it is also aban-

doned, since no improvement can be found from the subset by further partitioning. Any

subset that has been abandoned due to an integer solution, infeasible solution, or an upper

bound that is dominated by an integer solution, is said to have been fathomed. Any inte-

ger solution found that has a larger upper bound than the incumbent integer lower bound

becomes the new incumbent lower bound for the optimal solution. Subsets continue to be

partitioned or abandoned until all subsets have been fathomed. At this point, the opti-

mal integer solution is the current incumbent integer lower bound solution, if one exists.

To solve problems of practical size, branching and/or bounding rules can be implemented

which may improve the performance of the branch-and-bound search (18:252- 258).

The next two subsections discuss the bundling constraints and the quasi-covering

constraints which destroy the integrality of the MOLIP solution.

5.2.1 Bundling Constraints. The bundling constraint defined for the GSARP re-

quires that HFDF receivers be allucated in bundles (multiples) of eight to the receiving

stations. For the thesis problem, each station can receive either one or two bundles of

HFDF receivers. This constraint was considered to be nonnegotiable, since it was re

quested by the DOD who is sponsoring the research. Therefore, the bundling constraint

will be explicitly modeled in the network representations presented in chapter six. The

bundling constraint dictates that mixed integer programming be colisidered in ordc-i to
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achieve, integer solutions.

5.2.2 Quasi-Covering Constraints. The -quasi-covering constraint defined for -the

GSARP requires that a frequency receives at least primary coverage of three HFDF re-

ceivers or no coverage at all. This constraint was introduced in an attempt to better mimic

the behavior of the nonlinear formulation. This constraint is considered negotiable, since

it was not requested by the research sponsor.

From a computational standpoint, this constraint cannot be practically implemented.

Using the constraint would require the explicit integerization of all 991 variables introduced

in the model formulation. Due to insufficient scratch work space for the branch-and-bound

algorithm, experimental runs with just 115 variables using SASLP in the mixed integer

mode did not converge to the optimal integer solution. Therefore, alternate means of

addressing the quasi-covering are considered.

One way to address the constraint is to allow the linear program to find an optimal

solution without using the quasi-covering constraint. This would still prevent unnecessary

HFDFs from being assigned to frequencies that have a very low probability of transmission.

However, the objective function would still benefit from the assignment of just one or two

HFDFs to a frequency, when, in reality, no geolocation would be attempted with less than

primary coverage of three HFDFs providing a signal (11:1).

A second way to address the quasi-covering constraint is to use a true covering

constraint as Johnson did in her research for the HFDF assignment problem (14). This

constraint ensures that the objective function correctly benefits from placement of an

HFDF on a frequency, since the constraint requires primary coverage for each frequency.

On the other hand, this constraint places at least primary coverage on each frequency even

if there is little or no probability of transmission on a frequency.

The bottom line is that both ways of dealing with the intended quasi-covering con-

straint have the potential to assign HFDFs to frequencies which result in little or no im-

provement of the true GSARP objective, maximizing the expected number of geolocations

in a SAP. network.
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The strategy for addressing the quasi-covering constraint is brute force. Neither

alternative is clearly better than the other; therefore, both alternatives are explored by

this research. In other words, thesis results include solutions both with and without the

covering constraint in order to document their performance on the large problem.

5.2.3 Integer Programming Software Although several integer branch-and-bound

codes were available for use with small problems, only SAS LP was available which could

handle problems with greater than 100 variables. SAS LP also has a sparse input structure

which is designed to make larger problems easier to input and run more efficiently.

5.3 MuItiobjective Optimization

The true objective for the GSARP, maximizing geolocations in a SAR network, is not

multiobjective. However, the nonlinear objective proposed by Drake is intractable for large

problems. This was confirmed by the larger test case problem presented in chapter four

(11). The multiobjective approach described in Chapter 3 can be considered a heuristic

for exposing several pareto optimal solutions representing different coverage levels in a

SARl network. This research assumes that a multiobjective approach can provide better

solutions than either of the single objective functions by themselves.

The remainder of this section describes pareto optimality, methods for identifying

the efficient frontier, and analysis of the GSARtP's efficient frontier.

5.3.1 Pareto-Optimality. A pareto-optimal solution, also referred to as an efficient

extreme point, is a feasible solution that is as good as, or better than, all other feasible

solutions. From a pareto-optimal point, it is not possible to move in a direction so as to

increase one of the objectives without necessarily decreasing another objective. The set

of all pareto-optimal points is called the efficient set or the efficient frontier. The efficient

frontier must be identified in order to analyze the solutions of a multiobjective optimization

problem. Some of the methods used for identifying the efficient fiontier are described in

the remaining subsections.
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5.34 Wdfled Swas Appwck For the weigited sums approach, each objective

is mahtipWl by a strictly positive scalar weit X sock that the sum of the -s equals one-

The wuigted objectives are them comined to form a consolidated objectivefundion. The

weig*ted sums approach can be thoug t cf as a method that experiments with esrictly

convex combinations of the objective functions where it is not obvious what might be an

optimal co-mBination of A:s (23:165). The weghted sum approch ha an ad antae o'er

a multiobjecive simplex method, because it can be implemented with a standard linear
pr-orammig package wich in geeral, requires less computation. Unfortunately, the set

of all pos-sible con-vex combinations of the objective function is infinite, so there is no

guarantee that the entire eficient frontier will be identified using the iterative approach.

Ahen the weighted sums approach is used with an integer programming prob.em, it may

not be able to identil" the entire efficient frontier since unsupported efilcient points which

can occur with integer programming cannot be identified with this method (93:433).

5.3.5 Corrlation Between objectires. Complicating the use of the weighted sums

approach is the degree to which the objectives are correlated. If the objective functions

are correlated, the weighting vectors can behave inconsistently (23:19S). In other words,

an important objective that is highly correlated with another objective may have a very

low weighting for the best solution wi.ich is counter-intuitive. An acceptable method for

measuring the correlation between objectives is to measure the angle between objective

cost vectors (23:198). The measure to which the ith and _,'_h objectives are correlated can

be calculated by the formula:

(cc)Tc')Ct = cOs-  11 Ci 11211 C I11-

The smaller the angle a. the greater the correlation. The angle between objectivC,
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one and two for the MOUiP formulation is 42.6 degrees for time block one data and 41.4
degrees for time block sreen data. Tie corrdation between these objectives is nither high

am low. since the.angle is miidway between zero and 90 degrees.

Figu-e 5. Illustration of Bounding Constraints for the MOLIP
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5.3.6 Constraint Reduced Feasible Region Method. Constraint reduction of the fea-

sible region is a method which attempts to trap an optimal solution by selecting one of

the objectives for maximization subject to bounds on the other objectives thereby forming

a new set of constraints (23:202). The resulting feasible region is a subset of the original

feasible region which existed with multiobjectives. The GSARP feasible region can be

reduced by forming a bounding constraint with the second objective function as shown in

Figure 5. Constraining the second objective provides a means for investigating all possi-

ble integer leels of excess coerage, thu: potentially revealing additional supported and

unsupported pareto optimal integer solutions for the MOLIP.
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5.3.7 Scaling the Obetire Functions. 'Three philosophies are available for rescal-

ing the objective functions: normalization, use of 10 raised to an appropriate power, and

the application of range equalization factors (23:200)2" When the desire to use scaling is

to bring all objective coefficients to the same order of magnitude, using 10 raised to an

appropriate power is a viable alternative to normalization (23:200). One reason using an

appropriate power of ten may be preferable to normalization is that the original coefficients

are still recognizable, since they differ by only a decimal point. Range equalization is used

if it is desired to equalize the ranges of possible objective function values . Due to reduced

problem size, the test case results presented in chapter four used a scaled version of the

first objective. Scaling is not needed for the full scale thesis problem, since both of the

objectives are the same order of magnitude.

5.3.8 Analysis of the GSARP Efficient Frontier. For many multiobjective opti-

mization problems, a decision maker is presented with a set of available options which

are presented from the set of pareto optimal solutions. From these options, the decision

maker, based on his judgement and knowledge of the problem, selects the pareto optimal

point which he considers "best' . For the GSARP, there is only one true objective which

is to maximize the number of expected geolocations in the SAR network. Therefore, the

set of pareto optimal sotions identified by the MOLIP must be mapped to the solution

space of the GSARP, which is referred to in terms of expected geolocations.

Evaluation of a GSARP solution using the full nonlinear objective requires that ev-

ery combination of receiving stations be evaluated with every frequency and transmitter

location combination, involving millions of calculations. The department of Defense has

provided a program, EVAL, to evaluate any given allocation of HFDF bundles to stations

for any given frequency assignment to the HFDF receivers in a SAlt network(S). EVAL

can be used to calculate the true objective function or it can be used to approximate the

true objective function by evaluating just a subset of possible receiving station combina-

tions for each transmitter location/frequency combination(14:32). EVANL is documented

to provide good results when the number of stations considered for each transmitting lo

cation/frequency combination is between ten and twelve (8). Also. the increase in the
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objective function when more than ten to twelve stations are considered diminishes as

each additional station is added while the computation time required for the evaluation is

doubled(14:32).

5.4 Network Representation

For many linear programming problems, there are advantages to using a network

representation. The primary advantage for some linear programming problems is that

special more efficient network algorithms can be used in place of linear programming.

Some problems have a unimodular constraint matrix guaranteeing integer solutions without

restricting the variables to be integer. Some problems can still benefit from using a network

representation, although they may not have a unimodular constraint structure and cannot

take advantage of efficient network algorithms.

A network representation can be used to better understand the flow of the problem

and how the constraints are tied together. For some problems, such as the GSARP, a

network representation makes it easier to identify arcs which must be explicitly integerized

to guarantee an integer solution.

Figure 6. Example of Network Representation

CBE

Source BESink
Node Node

[M] [-M)

In a network representation nodes and arcs are used to represent the flow of resources.

The flow through the simple network in Figure 6 will be described to illustrate the use of

the network representation. The nodes are labeled as A through 11. Node A is referred to
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as-the source node and there are Munits- of resources that must flow from the source node

directly into the network via arcs AB, AC, and AD. Conservation of flow must be present

at every node in the network. In other- words, the flow into a node must equal the -flow

out of a node. For example, the flow into AB must equal the sum of the flows BE, BF

and BG.,Node H is referred to as the sink node and M refers to the amount of flow-that is

required to flow into node H. The objective function is partially represented as the cost of

flow CBE multiplied by the amount of flow in arc BE. The sum of all such flows multiplied

by their associated costs can be maximized or minimized.

A network can be effectively used to represent the GSARP. Two possible network

representations are presented in detail in the next chapter, Network Representations for

the MOLIP.

5.5 Solution Strategy

The integer requirements of the GSARP eliminate the use of pure linear programming

or ADBASE. Within these constraints a solution strategy is outlined:

* Determine a network representation that is appropriate for the MOLIP.

* Determine which variables must be integerized to guarantee an integer solution.

* Using SAS LP with a limited number of integer variables, apply the weighted sums

approach to determine the efficient frontier for two time blocks using two formula-

tions: one with a covering constraint and one without a covering constraint.

* Use EVAL to evaluate the pareto-optimal extreme points identified by the weighted

sums approach.

* Use the constraint reduced feasible region method to search for additional supported

and unsupported pareto-optimal points, which correspond to areas of the efficient

frontier that produce good EVAL results.

* Compare the best-pareto optimal solutioni identified from EVAL to the mean and

standard deviation of EVAL results found by the Department of Defense for 1,000
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randomly generated locations that are tasked by maximizing the expected number

of lines of bearing-for each station.

The solution strategy outlined above will be used to arrive at the results -presented

in chapter seven.
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VI. Network Representations for the MOLIP

Two -network representations are presented for the MOLIP. The first is a single-

stage network which has two sets of integer variables. The second is a two-stage network

which has.one set of integer variables for each stage. Test case results show that a two-

stage network produces solutions similar to a single-stage network, using significantly less

computation time.

6.1 Notation

The -following notation is used to describe the network representations presented in3I this chapter. The majority of the notation described in this section is for decision variables

which are represented as the flow from one arc to another. In general, the first two capital

I letters represent the start node for the flow and the last two capital letters represent the

end node for the flow. These arc flow decision variables correspond directly the the flow

I pictured in the network representations.

I 1if a receiving station is located at j in the single-stage

SOSTj = network representation.

i 0 otherwise.

1 if a receiving station is located at j in stage one of

SO1STj = the two-stage network representation.

0 otherwise.

1 if two bundles are located at station j in stage-two of

SO2STj the two-stage network representation.

0 otherwise ( one bundle is located at station j).
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1 if receiving station i is assigned one bundle of HFDF

receivers in sinle-stage network representation.

STjS1 0 otherwise, (either receiving station j is located and

assigned two bundles of HFDF receivers or receiving

3 Istation j is not located).

2 if receiving station j is assigned two bundles of HFDF

receivers in single-stage network representation.

STjST = 1 if receiving station j is assigned one bundle of HFDF

I receivers.

0 if receiving station j is not located.

1 if an IIFDF receiver is located at station j transmit-

I STjFk = ting on frequency k.

0 otherwise.

I FkEX=arc flow from the frequency node k to the excess cov-

erage node. This represents the units of excess cover-

age assigned to frequency k. Excess coverage is any

I coverage to a frequency beyond its fair share (FS).

FkNE=arc flow from the frequency node k to the nonexcess

11 coverage node. This represents the units- of coverage

assigned to frequency k that are not excess coverage.

These arcs have a capacity of eight.

EXSI =arc flow from excess coverage node to the termination

node or sink. This represents the total units of excess

3 coverage assigned to all frequencies.

NESI =arc flow from nonexcess coverage node to the termi-

naton node or sink. This represents the total number

of units of excess coverage assigned to all frequencies.
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G=the multiplicative gain-(ih flow) of an arc. If m units

flow into the arc Gx m units flow out of an arc.

{M}=external flow. requirements at the source and sink. At

the-source M is positive and represents the required

number of units that must flow out of the source. At

the sink and slack M is negative and represents the

required number of units that must flow into the sink.

J=the set of stations selected in stage one

NS=total number of stations to be located among j sta-

I1 tions.

NB=total number of bundles of HFDF receivers to be al-

located to NS stations.

FS=the fair share of HFDFs for any frequency. Fair share

is defined as NSxG/K.

I 6.2 Single-Stage Network

. The single-stage network representation in Figure 7 is a full representation of the

MOLIP (discussed in Chapters 3 and 5) with no covering constraint used to replace the

quasi-covering constraint discussed in 5.2.2. There are two sets of arcs that must be

explicitly integerized in order to represent the MOLIP in a single network. The first set of

arcs emanating from the source node must be integerized in order to select the stations.

The slack arcs must also be integerized as these arcs regulate whether a station that is

selected gets one or two bundles of HFDF receivers.

6.3 Mathematical Representation of Single-Stage Network

The single-stage mathematical formulation is primarily a set of conservation of flow

I equations corresponding to the nodes ,nown in the Figure 7. The source, slack, and sink

I
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Figure 7. Single-Stage Network Representation

Receiving Frequencies
Stations. . _(T Excess

(2,oGv 0,G Coverage

- Sink~
SourceNode

*Node 444-SG

(1,0,2) NonexcessI(,cjk, , Coverage
Ik (1,0,1)

{-(NS*2-NB)}

Legend: (arc capacity,costgains parameter)

NS = number of stations to be assigned

FS = fairshare of coverage for each frequency

NB = number frequency bundles to be assigned

I G = gains parameter { } = fixed external flow

G*arcflow = the flow into the next node
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nodes use their fixed, external flows shown in brackets as part of their conservation of flow

,equations. This formulation corresponds closely to the MOLIP presented in chapter three.

J K

max E E CjSTjFk
i k

min EXSI

where Cj= Es' WijPijkFjk

subject to

J

LSOSTj = NS

2xSOSTj-STjSL-STjST = 0, Vj
J

ZSTSL = 2xNS-NB
i
K

GxSTjST-ZSTjFk = 0, Vj
k

J

ZSTjFk-FkEX-FkNE = 0, Vk

K

FkEX-EXSI = 0
k
K

-FkNE-NESI = 0
k

EXSI+NESI = (NSxG)

STjFk < 1, Vj, k

FkNE < FS, Vk

SOSTj E {0,1}

STjSL E {0,1}

6.4 Computational Experience with the Single-Stage Network

To investigate the computational tractability of he single-stage netxN ork formulation,

several runs for the full thesis problem were attempted using SAS LP. This formulation
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of the full thesis problem has 1084 variables, 55 of which were restricted to be binary.

Every run that was attempted terminated prematurely using all available storage space,

after two to four CPU hours on a VAX 11/785. In each case, the program crashed because

there was insufficient space to continue after filling up as much as 400 thousand blocks on

fsome runs. The SAS work directories were using as excessive amount of space -toring the

branch-and-bound tree as it searched for an integer solution. Local computing platform

limitations on the available memory and space for utility data sets prevented successful

completion of any runs, rather than SAS-related limitations.

The single-stage network has proven to be computationally intractable due to com-

puting resource limitations. An alternate formulation is desired which can provide com-

parable results while using fewer resources. Such an alternate formulation is presented in

the next section.I
6.5 Two-Stage Network

A formulation is discussed which uses fewer computer resources by significantly re-

ducing the storage space 'ieeded for branch and bound tree. The strategy was to formulate

I the MOLIP using fewer explicitly defined binary variables. A two-stage network represen-

tation was investigated since it provided a means to reduce the number of integer arcs in

I half for each stage. The two-stage concept was motivated from a multicommodity flow

formulation. That is to say, the first and second bundle of HFDFs received by a station

I are treated as two different commodities.

In the two-stage concept for the MOLIP, the first stage selects the stations to be

located and the second stage selects the number of bundles each selected station receives.

It is clear that the two-stage approach is an approximation to the single-stage. The re-

maining sections present the networks and mathematical representations of the two-stage

concept. Results are also presented which document that the two-stage formulation per-

forms similarly to the single-stage formulation on smaller problems.

6.5.1 Stage-One Representation. The first stage pictured i Figure 8 integerizes

the set of arcs from source 1 to the stations so that the stations can be selected. Each

I
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station selected will automatically be assigned one bundle of HFDF receivers in stage two.

Figure 8. Stage-One Network Representation

I Receiving FrequenciesStationsFrqecs

Coverage

I 1,0,G)

N onexcess
I (,Cj,1)S,0,1) Coverage

I Leend:(arc capacity,cost,gain parameter)

i NS = number of stations

FS = fair share of coverage for each frequency

IG =gain G*arcflow = flow into next node

{ =fixed external flow

I 6.5.2 Mlathenzatical Representation of Stage One. The stage-one mathematical for-

mulation is also primarily a set of flow conservation equations corresponding to the nodes
I shown in Figure 8. The source and sink nodes use the fixed external flows (shown in

brackets) as part of the flow conservation equations.
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I

*hf Ci ikA-kr
miu EXSI

Esoesrrej = ! fs

GxsoIsrj-jsOTjrL = 0. Vi

s'rjFL--FkEX- Fk-N = 0, Vk

GFkE;.-_,j- EXSI = 0jk

K~FkBXEXSI = 0

I K: ." x

EXSI+-NESI NSxG
STjFk < 1. Vj, k

IFkNE < FS, ILk

SOJSTj g- 1o,0)

3 6.5.3 Stage-Two Representation. In the second stage. the set of arcs from the sec-

ond source to the stations selected in stage one are integerized to determine which stations

are to receive a second bundle of HFDF receivers.

6.5.4 Mathematical Representation of Stage Two. The stage-two mathematical for-

mulation ;s primarily a set of flon conservation equations corresponding to the nodes shown

in the Figure 9. The source and sink nodes use fixed, external flovs (shown in brackets)

as part of flow conservation equations.

I
56i-_ _ _ _ _ _ _ _ _ _ _ _



F e-i - 9. $gSaewo _et'mr Repenatie

Stations

1 Sourcel

C-%ezage

Source2 (1,Ol Nonexces

Nodev.N ecs
3e -S 1,0) Coe-age

Legend: (arc capacity.cost.gain parameter)

NS = number of stations chosen in stage one
NB = total number of bundles to be assigned

FS = fairshare of coverage for each frequency
G = gains parameter G*arcflow = flow into next node

{) = fixed external flow
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INI

*~ 1K

win EXSI

where Cji $1 1kPqk

and J E I stations chosen in stage one }

subject to

I SOISTj = 1: ViEJ
J

EjS2STj = (NB- Ns)
K

GxSOSTj + G x S2STj- E STjFk = o, V j

J k

./STjF; - FIZEX - FkNE = 0, V I

K

EFkEX-EXSI = 0

K

EFkNE-NESI = 0
k

BXSI+NESI = NS*G

STjFk <_ 1, Vj, k

FkNE < FS, VI;

3 So2STj {o,1}

6.6 Computational Experience with Network Representations

Using the weighted sums approach, pareto-optimal solutions for two test cases were

examined. The purpose of the case study was to determine if the two-stage network

representation could proide comparable results to the single-stage netuork representation

,in addition to being more efficient. The test cases were designed with a scaled-down

version of the thesis problem data. st fifteen of thirty receiving stations mid all
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thirty-one frequencies were used. Three of the recei'ing stations were fixed, representing

a-fixed, base network. Data for the respective case studies was selected from time blocks

one and seven.

The single-stage network optimization selects ten receiving stations with five stations

receiving one bundle of HFDF receivers and the othe stations receiving two bundles.

Unlike the single-stage network, the two-stage network does not attempt to optimize station

and bundle location in one step. In the first stage, 10 stations are located . Each station

from stage one is allocated one bundle of HFDF receivers. In the second stage, an additional

five bundles of HFDF receivers are allocated to five of the stations located during stage

one.

Table 3. Case 1: Comparison of Network Representations using Time Block One

Solution Single-Stage EVAL Twvo-Stage EVAL % diff

A _=1.0 6.90 6.90 I none
A1=0.99 6.99 6.90 none
A1=0.975 6.90 6.90 none
A),=0.95 6.90 6.90 none
A1=0.90 I 6.67 6.67 none
A1=0.85 6.45 6.45 none
A1=0.80 6.37 6.37 none
AI1=0.75 5.64 5.64 none
AI=0.70 4.25 4.93 16%
A1=0.65 I 3.81 3.57 -6%
A, 0.60 3.81 2.94 -22.8%

average computation time 17 min 51 sec 1 min 29 sec -91%

Test case results shown in Figure 3 and Figure 4 illustrate that the total CPU time

required by the two-stage network is significantly less than for the single-stage network.

The required CPU time is reduced by more than 90% in both test cases. Furthermore,

both network representations produced similar results for both net% ork configurations and

EVAL results. These findings were consistent for both test cases.
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Table 4. Case 2: Comparison of Network Representations using Time Block Seven

Solution Single-Stage EVAL I Two-Stage EVAL % diff

A1=1. 5.16 5.16 i none
AI=0.99 _ 5.16 -_-_-__ __5.16 'none

_ __A_=0.975 5.16 _ 5.16 _ none
A_=0.95 5.12 5.12 none
A=0.90 4.81 4.81 ! none
A1=O.85 4.48 4.48 1 none
A1=0.80 4.45 4.45 none

A1=0.75 3.98 3.98 none
AI=0.70 3.54 3.54 none
A1=0.65 3.73 3.04 -18%
A, 0.60 3.73 3.02 -19%

average computation time 26 min 59 sec, 1 min 3 sec 1 -96%

6.7 Solution Strategy Revisited

Chapter five presented an initial solution strategy. This chapter addressed the firbt

two items mentioned in that strategy which are, restating:

" Determine a network representation that is appropriate for the MOLIP.

* Determine which variables must be integerized to guarantee an integer solution.

A two-stage network representation evolved to reduce the computing time and re-

sources needed to solve tc MOLIP formulation. Computational experience with the two-

stage MOLIP formulation, which uses half the number of integer variables during each

stage, shows a significant reduction can be achieved in computation time and resources.

Furthermore, case study results show the two-stage results are comparable to the single-

stage for both test cases. Consequently, the two-stage formulation was determined to be

appropriate for the computation of thesis results presented in the next chapter. Chapter 7

will present resultb obtaiiied by applying the t% o-stage MOLIP with the solution strtcg

outlined in Chapter 5.
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VIL Results, Conclusions and Recommendations

This chapter summarizes and discusses the results obtained from the solution strate-

gies presented in Chapters 5 and 6. The Department of Defense provided all necessary

transmission and reception probabilities for the twelve two-hour time blocks. Results are

presented for two time blocks to validate that the two-stage heuristic works well with con-

trasting sets of data. Specifically, time block one and seven, which are separated by ten

hours, are used. For each time block, results with and without a covering constraint are

compared.

7.1 Time Block One Results

The results for time block one can be found in table 5 and table 6. These tables

show results from both the weighted sums approach and the constraint reduced feasible

region mcthod. Result. from the weighted sumb ipproach can be identified by a A1 value

Table 5. Results for Time Block One Without Covering Constraint

Solution Station Config Bundle Config Objective 1 Objective 2 EVAL result
Ai=1.0 Config A Config 1 136.60 -97 17.345
A1=0.99 A 1 136.59 -96 17.340

I:=0.975 A I 136.59 -96 17.340
AI=0.95 A 1 136.57 -95 17.340
Obj2=-94 A 1 136.52 -94 17.196
Obj2=-92 A I 136.38 -92 17.057
Obj2=-90 A 1 136.23 -90 17.047
Obj2=-88 A 1 136.03 -88 16.910
, =0.90 A 1 135.82 -86 16.877
Obj2=-85 A I 135.70 -85 16.900
A1=0.85 A Config II 134.25 -75 16.530
A,=0.80 A II 131.96 -64 15.875
A 1 0.75 A Config I1 131.71 -54 15.477
A1=0.70 Config B Config IV 119.37 -30 14.580
AI=0.65 B Config V 110.05 -11 12.412
A1=0.60 B V 104.60 -2 12.010
A, <=0.55 B V 104.601 0 11.700

Specific taskings for each solution are on floppy disk 2 in directory iel. j

in the solution column, vhereas results from the cowstraint reduced feasible region method
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list an Obj2 value in the solution column. The best EVAL solution of 17.345 was found

using the formulation without a covering constraint with 100% weight on the first objec-

tive and 0% weight on the second objective. The best result with a covering constraint

was 16.66. Several configurations for stations and bundles are generated by the MOLIP.

Table 6. Results for Time Block One With a Covering Constraint

Solution Station Config Bundle Config Objective 1 Objective 2 EVAL result
AI=1.0 Config A Config I 128.87 -75 16.36
A1=0.99 A II 128.86 -72 16.54

Obj2=-70 A II 128.83 -70 15.99
A1=0.975 A II 128.80 -69 16.66
A1=0.95 A III 128.69 -66 16.57

Obj2=-63 A Config IV 128.31 -63 16.11
Obj2=-61 A Config IV 128.17 -61 16.15
A1=0.90 A Config IV 128.07 -60 16.13
A1=0.85 A Config IV 127.32 -55 16.04
A1=0.80 A Config IV 126.11 -49 15.42
A1=0.75 Config B Config V 121.47 -36 15.06
A1=0.70 B V 119.19 -30 14.50

A1 5=0.65 B V 104.11 0 12.71

Specific taskings for each solution are on floppy disk 2 in directory cover1.

U For time block one, the formulation without a covering constraint generates five unique

station/bundle configurations which can be mapped to just two station configurations.

Several pareto-optimal solutions can be mapped to a single configuration. For example,

station configuration A and bundle configuration I are identical for the first 10 pareto-

optimal solutions in table 5. These solutions differ only by their frequency taskingc. A

similar set of unique station/bundle configurations exists for the covering formulation.

On a VAX 11/785, the average CPU time required for one pareto-optimal solution was

approximately 10 minutes for the formulation without a covering constraint and 37 minutes

for the formulation with a covering constraint. The second stage of the optimization

accounted for approximately 90% of this CPU time.

The Department of Defense provided comparison results for a randomized set of3 locations tasked with a heuristic that maximizes the lines of bearing individually at each

station. While not optimal, this heuristic on the average provides good feasible taskings
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for a fixed network which are better than a randomized tasking(10). For time block one, a

standard normal curve representing these comparison results is compared to the MOLIP

results in Figure 10. These results had a mean of 14.149 and a standard deviation of

Figure 10. Time Block One Comparison of Results

0.5 Randomized Results with Heuristic -

MOLIP RESULT without Cover '>
MOLIP RESULT with COVER +

0.4No Cover MOLIP with Heuristic -0-

0.3

0.2

0.1

8 10 12 14 16 18 20 22
EVAL

1.1175 for 3500 random samples , and a high and low of 17.71 and 10.321 respectively.

The best MOLIP solution for the first time period was 2.86 standard deviations above the

mean of randomized locations that are heuristically tasked. Furthermore, when the best

MOLIP configuration was tasked with the same heuristic as the randomized locations it

produced an EVAL solution of 17.5145 which is 3.01 standard deviation above the mean

of the randomized locations. These results show that with a maximum lines of bearing

heuristic, the MOLIP was able to provide a good feasible configuration that is in most

cases better than any of the randomized configurations . Figure 11 shows a plot of both

efficient frontiers for the first time block. The second objective function value, z 2, is plotted

on the x-axis and the first objective function value, z is plotted on the y-axis for each

pareto-optimal solution. The shape of the efficient frontier is similar both with and without

the covering constraint. The efficient frontier of the covering formulation lies inside the

convex hull of solutions for the no cover formulation. Symbols with + or x inside them

represent the pareto-optimal solutions which correspond to the best EVAL solution. In

general, the EVAL solutions corresponding to MOLIP solutions arc unimodal. As a result,
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Figure 11. Efficient Frontiers for Time Block One
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I the constraint-reduced feasible region method was only used to generate additional pareto-

optimal solutions in the neighborhood of the best EVAL solution. The additional solutions

I provided by the constraint reduced feasible region method did not unveil any unusual or

unexpected information about the MOLIP's efficient frontier or the MOLIP's best EVAL

I solution.

I 7.2 Time Block Seven Results

Table 7 and table 8 have the results for time block seven with both the weighted

sums approach and the constraint reduced feasible region method. For time block seven,

the formulation without a covering constraint generates four unique station/bundle config-

urations which can be mapped to four configurations of stations. As with time block one,

several pareto-optimal solutions can be mapped to a single configuration. For example, the

first three pareto-optimal solutions in table 7 all have station configuration A and bundle

configuration I which differ only by their frequency taskings. For the coC7'irg foi rnulation,

the six bundle configurations are mapped to the same set of stations.

On a VAX 11/785, the average CPU time required for one pareto optimal solution

of time block seven was appioxiniately G minutes for both formulationis. The second btage

I
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Table 7. Results for Time Block Seven Without Covering Constraint

Solution I Station Config Bundle Config Objective 1 Objective 2 EVAL result
A=1.0 Config A Config 1 111.27 -98 14.11

AI=0.99 A I 111.27 -98 14.11
A1=0.975 A I 111.27 -98 14.11
AJ-0.95 Config B Config II 110.75 -88 14.23

Obj2=-81 B II 110.15 -81 14.47
A1=0.90 B II 110.04 -80 14.40

Obj2=-77 B II 109.68 -77 14.26
Obj2=-73 Config C Config III 109.06 -73 14.47
Obj2=-71 C III 108.78 -71 14.40
Obj2=-69 C III 108.45 -69 14.71
Obj2=-68 C III 108.23 -68 14.72
A1=0.85 C III 108.11 -67 14.71

Obj2=-66 C III 107.93 -66 14.69
Obj2=-64 C III 107.56 -64 14.65
A1=0.80 C III 104.47 -50 14.13
A1=0.75 Config D Config IV 97.39 -26 13.64
A1=0.70 D IV 92.02 -12 13.31

A1 5=0.65 D IV 86.44 0 12.12
Specific taskings for each solution are on floppy disk 2 in directory tinzc7.

of the optimization accounts for approximately 80% of the total CPU time.

Unlike time period one results, the best EVAL solution of 15.06 was found using

the formulation with a covering constraint. The best solution has a A weight for the first

objective in the range of 0.90 to 0.95. The best result without a covering constraint was

of similar quality, with an EVAL result of 14.72. The Department of Defense provided

similar comparison results for time period seven. A standard normal curve represent:i7g

these comparison results is compared to the MOLIP results in Figure 12. The EVAL

comparison results had a mean of 11.134 and a standard deviation of 0.9663 for 1000

randomized locations. The sample also had high and low EVAL values of 13.81 and 7.83

respectively. The performance of the best MOLIP solution for this time period exceeds

the best comparison result and is more than four standard dexiations above the mcan of

the randomized locations which were heuristically tasked. The best result with a covering

constraint was evaluated with the maximum lines of bearing heuristic that was used to

evaluate the randomized configurations. This produced an EVAL result of 14.07. This
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Table 8. Results for Time Block Seven With a Covering Constraint

Solution Station Config Bundle Config Objective 1 Objective 2 EVAL result
AJ=I.0 Config A Config 1 105.98 -88 14.17
A1=0.99 A I 105.98 -74 14.72
A1=0.975 A I 105.97 -72 14.76
Obj2=-70 A I 105.87 -70 14.88
Obj2=-69 A Config II 105.83 -69 14.95
A1=0.95 A II 105.78 -68 14.95

Obj2=-67 A II 105.71 -67 14.96
Obj2=-66 A 11 105.63 -66 15.00
Obj2=-65 A II 105.55 -65 , 15.06
Obj2=-64 A 11 105.43 -64 15.01
Obj2=-63 A II 105.35 -63 14.98
A1=0.90 A II 105.13 -61 14.99
A1=0.85 A Config III 104.10 -54 14.19
A1 =0.80 A Config IV 102.56 -47 14.29
A1=0.75 A Config V 96.99 -28 13.54
A1=0.70 A Config VI 92.01 -15 12.84

A1 <=0.65 A VI 84.68 0 12.27

Specific taskings for each solution are on floppy disk 2 in directory cover7.

Figure 12. Time Block Seven Comparison of Results
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result surpasses the maximum EVAL result found in any of the randomized locations,

although it is still less than the best result the MOLIP found with either formulation These

results confirm that with a maximum lines of bearing heuristic, the MOLIP can provide

a good feasible configuration that is in most cases better than any of the randomized

configurations.

Figure 13 shows a plot of both efficient frontiers for the seventh time block. The

Figure 13. Efficient Frontiers for Time Block Seven
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shape of efficient frontiers for this time block is similar to efficient frontiers shown in

figure 11 for the first time block. The best EVAL solution was found using the covering

formulation. As in the first time block, the efficient frontier of pareto-optimal solutions

with the covering constraint lies inside the convex hull of pareto-optimal solutions without

the covering constraint. Once again, nothing unusual or unexpected is identified about the

MOLIP efficient frontier from the additional solutions provided by the constraint reduced

feasible region method.

7.3 Analysis of Results

After analysis, several observations can be made about the MOLIP solutions for the

GSARP.
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e The two-stage MOLIP solution methodology is capable of consistently producing

good feasible solutions for the GSARP. This result is supported by the comparison

of MOLIP results to those generated by the Department of Defense for comparison.

For time blocks one and seven, the MOLIP identified solutions that are 2.86 and 4.06

standard deviations, respectively, above the mean of randomly generated locations

which are tasked by a greedy heuristic that provides good feasible solutions.

e The search space of the weighted sums approach can be reduced. For the contrasting

time blocks, the best MOLIP solutions correspond to a value of A1 between 0.85

and 1.0 . Figure 14 illustrates that the EVAL results corresponding to the MOLIP

solutions are approximately unimodal, and, in all cases, the maximum value occurs

in the A 1 range of 0.85 to 1.0. In fact, the optimal range for A1 has decreased from

0.383 to 1.0 in the very small test cases in Chapter 4, to this reduced range of 0.85

to 1.0 for the larger research problem. This might indicate that the weighting on

objective one approaches unity as the problem size increases.

e The constraint-reduced feasible region method did not uncover unexpected or signif-

icantly improved results. That is to say, the character of the efficient frontier and

corresponding EVAL solutions was sufficiently exposed during the weighted sums

approach.

* The set of pareto-optimal solutions can be mapped to a set of station/bundle config-

urations. In many cases, several pareto-optimal solutions, which differ only by their

frequency taskings, can be mapped to the same station/bundle configuration.

e The covering formulation performs well on the average compared to the no covering

formulation. For time block one, the covering formulation's best result was 3.9%

worse than the result with no covering constraint. On the other hand, the time block

seven covering formulation produced a result that was 2.3% better than the result

produced without a covering constraint. When considering just a single time block,

neither formulation is clearly superior. lloxever, the covering formulation is robust

and makes more sense if multiple time periods are being simultaneously optimized,

since it covers all the frequencies.
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q •Figure 14. Comparison of EVAL Results
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3 The MOLIP objective function can be generalized using the inequality 0.85 < A,1 < 1.0

where A 1 + A2 = 1, to reduce the weighted sums search region. Figure 15 demonstrates the

3 reduced search space resulting from a limited range for the A weights.

3 max A1z1 + A2 z2 .

3 By defining a constant P, the optimal MOLIP solutions can be related to the EVAL

solutions by the relationship:

P x (A zI + A2z2) = EVAL.

I Table 9 demonstrates, based on the research results presented for time blocks one and

seven, how the value of P can be bounded for various ranges of A1

7.4 ConclusionsI
This research demonstrates that the MOLIP heuristic is a practical alternative to

3! the proposed nonlinear formulation which is computationally intractable for realistic size

probleins. The MOLIP heuristic is robust, providing good feasible network configurations
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fmr costrtiag time pesiods, using similar wooigin for the objectins in each case. The

rewflts pesmed -eg imdicte that the optimal A, rm3t~gle in 21be range of 0.8%

to 1.0. If tie serch rep-on is reduced t is optimal nmge, the two-st2ge wtioted

am MOLIP met ca be wed to e5c6etly deterine good femlkt SAR mtwork

7.5 Reommen.dalions for Fla-e Reci

LoCZI extve1ons for future research ar:

1. FI61Gre additional time periods to confirm the consistency of the tw'o-tage IIOLIP

results and the consistency of the range of objectire vrightings.

2. Develop a modified MOLIP to allow more than just one or two bundles of HFDFs to

be assigned to each station, that is. also allow for the possibility that some stations

are assigned three or four b;undles of HIFDFs.

3. Apply the weicghted sums two-stage network methodology to the comprehensive

multi-time period GSARP discussed in Chapter 3 The multi-time period GSARP

simultaneously solves the 12 time blocks to find one station/bundle configuration

that is optimal. Using the reduced A, search region from 0.85 to 1.0, determine the

I network configdration which simultaneously produces the best EVAL, results for all

of the time periods. Figure 16 in Appendix I illustrates this concept.

4. Bo'wd the true optimal solution to the GSARP so that the quality of heuristic

solutions can be compared to a common bound.
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Appendix A. Ddae Sodii

J - Data for twewe, time peiods wspromided *y the Department of Defense. Ibis

FORMANK program sorts the data and writes the data for each time period to a different

file. A copy of this code caled epgndl is proided on Soppy disk I in the FORTRA
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PORMDATASPLT

C C

C PROGRAM DATASPLIT ADAPTED FROM CMP ZR2JSTA JOHNSON'S DATA SPLIT C

C C

C PROGRAM DATASPLIT READS TRAUSMISSIDI PROBABILITIES FROM A FILE C

C CALLED TGT-PTL.DAT AND HFDF PROPAGATION PROBABILITIES FROM A FILE C

C CALLED HFDFPAQ .DAT. ThE PROBABILITIES ARE WRBITTEN TO SEPARATE C

C ACCORDING TO TIME PERIOD. C

C C

CCCCCcCCCCCCCCCCCCCCCCCCCCCCCcCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccC

DIMENSION DP4,30,31), F(40,31)

OPEN (11,FILEP='HFDFPAQ.DAT' ST-ATUS='1OLD )

OPENI (12,FILE='ITGTPDTX.DAT' ,STATUS='IOLD')

OPEN (21, FILE='ID1. DAT' ,STATUS='INEW'1)

OPEN (22,FILE='FI.DAi' ,STATUS='NIEW')

OPEN (26,FILE='D2.DAT' ,STATUS='NEW')

OPEN (27,FILE='F2.DAT' ,STATUS='NIEW')

OPEN C31,FILE='D3.DAT' ,STATUS='NEW')

OPEN (3-2,FILE='F3.DAT' ,STATUS= 'NEW')

OPEN (36,FILE='D4.DAT' ,STATUS='NEW')

OPEN (37 ,FILE='F4.DAT' ,STATUS='NIEW')
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OPEN (41,FILE-'DS.DAT"' STATUS'NEII')

OPEN (42,FLE='F.DAT',STATUS--'NEI')

OPEN (46,FLE='D6.DAT' ,STATUS='NEis')

OPEN (47,FDhE='F6.DAT',STAiJuS='NFM')

OPEN (51,FILE--'.lDT' ,SrTUS='IEM')

OPEN (52,FILE--'F..DAT' ,STATIJS='NEII')

OPEN (56,FILE--'D8 .DAT' ,STATJS-'NEit')

OPEN (s7,FILE--'F8.DAT',,sTATIJs=',Nui)

OPE4 (61,FILE='lD9.DAT' ,STATUS='NEV')

OPEN (62, FILE--'F9.DAT', STATUJS= -NEW')

OPEN (6e,FrILE=-'PlnO.DAT' ,STATUS='NEW'

OPEN (67,FILE='Flo.DA-T',ST-ATUS='NEW')

OPEN (71,FILE='Dll.DAT' ,STATUS= 'NEW')

OPEN (72, FILE='Fl. DAT' ,STATUS='IUEW'1)

OPEN (76,FILE='Dl2. DAT' ,STATUS='INEW'1)

OPEN (77,FILE='FI2.DAT' ,STATUS='NIEW')

cCCccccccccccccCCcCccCCcCCCcCcCcCcCCCCCCccccccccCCCCCCcCcCc

C C

C THIS SECTION READS HFDF PROPAGATION PROBABILITIES FOR THE HFDF C

C RECEIVERS AND WRITES THEM TO FILES ACCORDING TO TIME PERIOD C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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DO 100 I=1,40

DO 80 J=1,30,

READ (11',(AS)') STRIPI

READ (1,'(AS)') STRIP2

READ (11,900) (DPCI,J,K), K=1.31)

WRITE (21,910) (DP(I,J,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (26,910) (DP(I,J,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (31,910) (DP(I,J,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (36,910) (DP(IJ,K), K=1,31)

READ (11,900) (DP(IJK), K=1,31)

WRITE (41,910) (DP(I,J,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (46,910) (DP(IJK), K=1,31)

READ (11,900) (DP(I,JK), K=1,31)

WRITE (51,910) (DP(IJ,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (56,910) (DP(I,J,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (61,910) (DP(I,J,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (66,910) (DP(I,J,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (71,910) (DP(I,J,K), K=1,31)

READ (11,900) (DP(I,J,K), K=1,31)

WRITE (76,910) (DP(I,J,X), K=I,31)

80 CONTIJUE
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100 CONTINUE

CCCCCcCCcCCCCCCccCCCcCCCCCcCCCCCCccCCCCCCCccCCCCCCccCcCCCcccCCCcCCCCCC

C C

C THIS SECTION READS TRANSMISSION PROBABILITIES FOR EACH FREQUENCY C

C AT EACH SITE AND WRITES THEM TO FILES ACCORDING TO TIME PERIOD C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 200 I=1,40

im,- READ (1,(,))STRIP1

READ (12,'(AS)') STRIP2

!.3 READ (12,900) (F(I,K), K=1,31)

WRITE (22,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (27,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K). K=1,31)

WRITE (32,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (37,910) (F(I,), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (42,910) (F(I,K), K=1,31)

READ (12,900) (F(IK), K=1,31)

WRITE (47,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (52,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (57,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (62,910) (F(I,K), K=1,31)
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READ (12,900) (F(I,K), K=1,31)

WRITE (67,910) (F(I,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (72,910) (FCI,K), K=1,31)

READ (12,900) (F(I,K), K=1,31)

WRITE (77,910) (F(I,K), K=1,31)

200 CONTINUE

900 FORMAT (IX,31(F3.2,2X))

910 FORMAT (1X,31(F3.2,1X))

I1 END

I
I
I
I
I
I
I
U
I
I
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Appendix B. Computing Objective Function Coefficients

Objective function coefficients are needed for SAS LP input files. This FORTRAN

program calculates coefficients for the first objective function of any time period. A copy

of this code called append2 is provided on floppy disk 1 in the FORTRAN directory.
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PROGRAM OBJFUNC

cCcCcCCCCCCCcCCCcCCCCCcccCCCCc cccccccccccccccccc

C C

C THIS PROGRAM COMPUTES OBJECTIVE FUNCTION COEFFICIENTS. THE COEF- C

C FICIENTS FOR THE OBJECTIVE FUNCTION ARE WRITTEN TO A FILE CALLED C

C OBJT*.DAT. WHERE * STANDS FOR THE TIME BLOCK. C

C THIS FILE HAS THE STATION NUMBER , THE FREQUENCY NUMBER AND THE 'C

C CORRESPONDING OBJ FUNCTION COEFFICIENT IN EACH ROW. C

C C

-. C D* and F* are the data files created by the data split program C

C for time period *. Ratioout.dat contains the weighting function C

C function data Wij which is used for objective function one. C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DIMENSION F(40,31), DP(40,30,31), FAN(40,30), COEF(30,31)

OPEN(1O,FILE='D7.DAT',STATUS='OLD')

OPEN(11,FILE='F7.DAT',STATUS='OLD')

OPEN(12,FILE='RATIOOUT.DAT',STATUS='OLD')

OPEN(13,FILE='OBJT7.DAT',STATUS='NEW')

I DO 100 I=1,40
I READ(4",300) (F(I,K) ,K=1,31)

DO 80 J=1,30

READ(1O,900) (DP(I,J,K),K=I,31)

READ(12,910) FAN(I,J)

80 CONTINUE

100 CONTINUE
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C COMPUTE COEFFICIENTS FOR OBJECTIVE FUN~CTION' C

IDO 200 J13
DO 180 K=1,81

COEF(J,K) = 0.0

DO 160 I=1,40

I. COEF(J,K) = COEF(J,K) + F(I,K)*FAN(I,J)*DP(I,J,K)

160 CONTINUE WRITE(13,920) J,K,COEF(J,K)

:1180 CONTINUE

200 CONTINUE

1900 FRA(X3(32l)
910 FORMAT(20X,FIO.4)

1920 OMT X,22,22,-147
* END
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Appendix C. Single-Stage SAS LP Input File

This FORTRAN program generates the SAS LP input files for a single-stage network.
It was specifically set up to generate input files for the test cases in Chapter 4. A copy of

this code called append3 can be found on floppy disk 1 in the FORTRAN directory.
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PROGRAM SINGLESTAGE

ccCCcdcCCCccccccccccccccccccccccccccccccccccccccCcccccccccccc

C PURPOSE: THIS PROGRAM WRITES THE INPUT FILE FOR SAS PROC LP C

C THE PROBLEM IS MULTIOBJECTIVE AND THEREFORE SEVERAL WEIGHT- C

C INGS OF THE OBJECTIVE FUNCTION WILL BE INVESTIGATED. C

C TOYWT.DAT HAS THE OBJECTIVE FUNCTION WEIGHTINGS C

C OBJT*.DAT HAS THE OBJECTIVE FUNCTION COEFFICIENTS FOR C

C TIME PERIOD '*' FOR OBJECTIVE ONE, WITH NO C

C WEIGHTINGS APPLIED. *C

C SL*W&n.SAS IS THE SAS INPUT FILE FOR TIME PERIOD '*' C

C AND WEIGHT '&' C

C Integer Variables (all binary) 12 SOSTj variables C

C and 15 STj. variables C

C This code generates test problems used in chapter six to C

C validate the performance of a two-stage network against this C

C single-stage network. Only 15 stations are used with 3 fixedC

C stations, but all 31 frequencies are used. Fairshare is C

C only 4 . This small version has to integerize the ssource toC

C station arcs and the station to slack arc as picured in two- C

C stage network in chapter six. C

C MOST RECENT CHANGE: 24 Jan 91 C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PARAMETER (NS=15,NF=31)

INTEGER J,K,N

REAL W1,W2,COEF,WCOEFI(NS,NF),WCOEF2(NF),HFDF,STAT,

&FAIRSH

OPEN (9,FILE='TEST.DAT',STATUS='UNKNOWN')

OPEN (1O.FILE='TOYWT.DAT',STATUS='OLD')
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OQPEN (11,FILE='OBJT1.DA.T' ,STATUS='OLD')

C initialize vartiables

HFDF ' 120

STAT =10

FAIRSH = 4

DO 100 N=1,10

C weightings for objective functions 1, and 2

READ(10,700) W1,W2

C WRITE(9,*) N,W1,W2

C weighted coefficients for objective function 1

DO 20 J=1,NS

DO 30 K=1,NF

READ(11,705) COEF

C WRITE(9,*)J,K,COEF

WCOEFI(J,K) = W1*COEF*1.0

C WRITE(9,*)JK,W1,W2,WCOEF1(J,K)

30 CONTINUE

20 CON~TINUE

REWIND(1i)

C weighted coefficients for excess coverage of freq k

DO 40 K=1,NF

WCOEF2(K) =W2 * (-1)

C WRITE(9,*) W2,WCOEF2(K)

40 CONTINUE

UC open file to write sas input for each weighting N
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IF (SE.3) OM (12,iFUE-- (JSTE-L1NSJS..SSPs-i:.Ib.SLS'

IF (N-EQ.) OM (IU SJ~I S.SlSP~13n].SSX,

a
IF (M-EQ.) OPEN (1,U1'[SP1.SS.SSTP~sL1Ia.Sh SS,

IF (LEQ.7) OPN (12, Mrl E - -r-ESSO]sLl-n A'

a:SThIL-Ps=','r

IF (N.EQ.8) OP-43 (12,.F-ThE' DJEIMPPE THESIS SSLO sL1W8n. SAS',
8: STATur='!Exa

a: -s._7S=' iEW)

IF (M.EQ.9) 0PE1 (12,n-LE:'[--EPPP.TESS.SS-P]sLiWE.O.SS,

& S7!TTUS=' iwz)

IF (!I.EQ.iO) OPE!J(12,F1ILE =1 EJ'zriE-..THESIS. SASLPJ sL1W1On. SAS'

& STATUS= 'hEW 1)

IF (hl.EQ.11) OPER (12, FILE='I [3S-TPPE. THESIS. SASLPJIsL~l in. SAS,

& STATUJS= 2IiErw')

IF (H.EQ. 12) OPEUI(12,FILE-' [JSTE-PPE.THESIS.SASLP~sL1W12n.SAS',

& STATUS='IiEW')

IF (II.EQ. 13) OPE1i(12,FILE=-' JSTEPPE.T-HESIS.SASLP~sLI13n.SAS',

& STATUS='U1EW')

IF (JLEQ..14) DPEJJC12,FILE=' [JSTE-PPE.THiESIS.SASLP~sLlWl4n.SAS',

& STA TUS= I NEW I)

IF (U.EQ. 15) OPENC12,FILE=' [JSTIEPPE.TIIESIS.SASLP]sLlWiSn.SAS',

& STATUS='UEW')
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IF (N-EQ16) (1,U=

3IF (E-EQ-17) IPEMl(12,FUE='ESE .IEISS&--]LV7-LX

a STIWS='E~')

I F (N.EQ-18) DFEN(12,FUE=' (JSTjPL --TESIS.SI-P~sLW1&LtSIS',

IF OLE 19) DPa(12,FfLE-' EJST-?L -. HESS.SSL~sL~iign.SAS',

3 F (N .EQ.20) 0irEV(12,PJ-LE=' [3Sjt-hPPE.-TSIS.SSLP]sL2n.sItS',

a ST17Us=_2ra')3IF (N-EQ.21) O'-EN(12,FIL---E=' (3r--PE.Ti1ESIS.SPSLP]sL1W21n.SPS',

& STATIJS='NEW')

C riethe SAS in]DUt file

K WRITE (12,*) 'OPTIONS LIKESIZE=78;'

WITE (12,*)

WRITE (12,*) 'TITLE " LOCATINIG A SAR NETWORK WITH GOOD HFDF5 k FREQUENCY ASSIGHENTS" ;'

WRITE (12,*)5 WRITE (12,*) 'DATA SAR;'

WRITE (12,*)3 ~WRITE (12,*) 'INPUT -YPE-. $ _COL_. $ -.ROW-. $

& _.COEF..;'I5 WRITE (12,)

WRITE C12,*) 'CARDS;'5C create the objective function

3C objective function one data and upperbounds for obj vars.

WRITE(12,*) 'MAX . PROFIT



I
DO 110 J=-1,lS

DO 115 K=,lF

IF (( .LT- 10) .AIND. (K .LT10)) M

WRITE (12,750) . S',J,'F',R., PROFIT

a .VIC EF1(,I)

WRITE (12,751) '. S',3,'F',K," PROFIT

& UCOEFI(J,X)

ELSEIF (K .LT. 10) THEN

WRITE (12,752) PO S',3,'F',K," PRFIT '

a ,WCOEFI%-J,K)

ELSE

i WRITE (12,753) • S',J,'F',K,• PROFIT '

S ,WCOEF1(JK)

I ENDIF

115 CONTINUE

.10 CONTINUE

C objective function two data & upperbounds for obj vars

DO 125 K=I,NF

IF (K .LT. 10 ) THEN

WRITE (12,760) '. F',K,'EX PROFIT',WCOEF2(K)

WRITE (12,765) 'UPPERBD F',K,'EX UPF',K

& , 'EX 6.0'

ELSEI
WRITE (12,761) '. F',K,'EX PROFIT',WCOEF2(K)

WRITE (12,766) 'UPPERBD F',K,'EX UPF',K

& 'EX 6.0'

ENDIF

125 CONTINUE
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C source-to recei~ing station constraint

~ IRITE(12,*) '. ..s... SOSI ',STAT

DO 130 J=1,U1S

IF (J .LT. 10) TE

3 RITE(12,770) 1. SCSI',, S onT 1.0'

ELSE.

IiRITE(2,771) '.SbST',3, SOST 1.0'

ENDIF

3 130 CONTINUE

3C conservation of flow at the receiving stations

DO 135 J=1,NS

3 C 5 true fixed stations are 1,8,15,27,28 as defined by -thesis prob

IF (( .EQ. 1) .DR1. (3 .EQ. 8) Mfl. (3 .EQ. 15) .OR.3 k(3 .EQ.27) DOR. (3 .EQ. 28)) THEN

.3 IF (3 .LT. 10) THEN

WRITE(12,77S)'EQ . CONST',J

I ~& ,

WRITE(12,775)). R1HS.. CONST',JI & ,' 1.0'

WRITE(12,780)'. SOST' ,3,' CONST' ,3

3 & ,' 3.0'

WRITE(12,785)'UPPERBD SOST' ,J,' UPSOST' ,3

I ' 1.0'

WRITE(12,790)'. ST' ,J, 'SL CONST' ,J

& 2 -1.0' 
1

WRITEC12,730) 'BINARY ST' ,J, 'SL BINARY 1
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IIRTE(2,80)'PPEBD ST' ,3,'S',J,' UPPERS' ,J

2.0'

ELSE

VR(12,776)'EQ . CONST"',

VRITE(12,776)1. ..RHS.. COIST' ,

S 'A

WRITE(12,781)2. SGST',3,' CONST',3

& ,' 3.0'

WRITE(12,786) 'UPPERBD SOST' ,J,' UPSOST' ,3

1 , 1.0'

WRITE(12,791)'. ST', 'SL CONST' ,J

"I' -10

WRITE(12,731)'BINARY ST',J,'SL BINARY 1',

WRITE(12,803)'. ST',J,'S',J,- CONST',J

& 3' -1.0'

WRITE(12,803)'UPPERBD ST',J,'S',J,' IJPPERS',3

& ,' 2.0'

ENDIF

* ELSE

5 IF (3 .LT. 10) THEN

WRITE(12,775) 'EQ . CONST',J

& ,,

WRITE(12,775)'. ..RHS-. CONST',J

& ,' 0.0'

WRITE(12,780)'. SOST',J,' CONST',J



U & ,' 2.0'

I WRITE(12,730)'BIIRY S051' ,3,' BINARY 1'.

IIRITE(12,790)'. ST'I,J,'SL .CONST',J

VRITE(12,730) 'BINARY SI' ,J, 'SL BINARY 1',

FWRITE (12,800)'. ST',J,'S',J,' CONST',J

WRITE (12,800)'LiPPERBD ST',J,'S'j,'* UPPERS',JI! & ,' 2.0'
I ELSE

'WRITE(12,776)'EQ . CONST',J

-RITE(12,776)'. -RHS_ CONST',J

I & 0.0'

WRITEC12,781)'. SOST',J,' CONST',J

I & ,' 2.0'

WRITE(12,731)'BINARY SOST',J,' BINARY 1',

UWR.ITE(12,791)'. ST',J,'SL CONST',J

& ,' -1.0'

IWRITE(12,731)'BINARY ST',J,'SL BTNARY 1'

WRITE(12,803)'. ST',J,'S',J,' CONST',J

WRITE(12,803)'UPPERBD ST',J,'S',J,' UPPERS',J

I & ,' 2. 0'

EIJDIF

I ENDIF

135 CONTINUE

C conservation of flow at slack

'I WRITE(12,*) 'EQ . CONSL
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-DO 175 3=1,NS

IF (3 .LT. 10) THEN

WRITE(12,830)-'. ST',J,'SL CONSL 1.0'

ELSE

WRITE(12,831) '.ST',J,'SL CONSL 1.0'

ENDIF

175 CONTINUE1 7WR11EC12,*) '.SLSI CONSL -1.0'
WRTE1,* UPPEABD SLSI UPSLSI 20.0'

C conservation of flow at restationing node

DO 178J=1,NS

IF (J .LT. 10) THEN

WRITE(12,775)'EQ .CONS',J,'

WRITE(12,775)'. ..RHS_. CONS',],' 0.01

WRITE(12,800)'. ST',J,'S',J,' CONS',J

& 1' 8.0'

DO 176 K=1,NF

IF (K .LT. 10) THEN

WRITE(12,850)'. S',J,'F',K,' CONS'

& ill' -1.0'

ELSE

WRITE(12,851)'. S',J,'F',K,' CONS'

& ill' -1.0'

ENDIF

176 CONTINUE

ELSE

WRITE(12,776)'EQ .CONS,.],'

WRITE(12,776)'. ..RHS.. CONS,.],' 0.0'
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WRITE(12,803)'. ST J S J' CONS' ,J,

I & '- 8.0'

DO 177 K=1,NF

I IF (K .LT. 10) THEN

WRITE(12,852)'. S',J,'F',K,' CONS'

&J, -1.0'

ELSE

,jWRITE(12,853)'. S',J,'F',K,' CONS'

a ,J,'1 -1.0'

I ENDIF

177 CONTINUE

ENDIF

178 CONTINUE

C conservation of flow at each freouency

DO 180 K=1,NF

IF (K .LT. 10) THEN

WRITE(12,835) 'EQ . CONF',K,'

WRITE(12,835) '..RHS-. CONF',K,' 0.0'

IWRITE(12,840) '.F',K,'EX CONF',K,' -1.0'

WFLITE(12,840) '.F',K,'NE CONF',K,' -1.0'

IWRITE(i2,845) 'UPPERED F',K,'NE UPF',K,'NE 4.0'

ELSE

3 WRITE(12,836) 'EQ . CONF',K,'

WRITE(i2,836) '...RHS-. CONF',K,' 0.0'

WRITE(12,841) '.F',K,'NE CONF',K,' -1.0'

WRITE(12,846) 'UPPERBD F',K,'NE UPF',K,'NE 4.0'

ENDIF

IDO 185 J1N
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3 ~ ~IF (( .LT. 10) .AND. (K .LT. 10)) THEN

WRIlt12,850) '.S',J, 'F',K,' CONF',K

WRITE(12,720)"UPPERBD S',J,'F',K,' 'UPST',J,

& F',K,' 1.0'

ELSE IF (3 .LT. 10) THEN

WRITE(12,857) .S',J,'F',K,' CONF',K

WRITE(12,721) 'UPPERBD S' ,J, 'F',K,' UPST' ,3,

*1& YF',K,' 1.0'

ELSE IF (K .LT. 10) THEN

WRITE(12,858) '.S),J,'F',K,' CONF',K

& ,' 1.0'V

WRITE(12,722)'UPPERBD S',J,'F',K,' UPST',J,

& 'F',K,' 1.0'

ELSE3WRITE(12,853) '.S),J,'F),K,y CONF',K

& 2) 1.01

WRITE(12,723)'UPPERBD S',J,'F',K,' UPST',J,

& )F),K,' 1.0'

ENDIF

18IONIU
185 CONTINUE

C conservation of flow at excess coverage

IWRITE(12,*) 'EQ CONEX

WRITE(12,*) 1. .tHS- CONEX 0.0'

DO 195 K=1,NF

IF (K .LT. 10) THEN

WRITE(12,855) '.F',K,'EX CONEX 1.0'
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ELSE

WRITE(12,856) '.F',K,'EX CONEX 1.0'

ENDIF

195 CONTINUE

WRITE(12,*) '.EXSI CONEX -1.0'

WRITE(12,*) 'UPPERBD EXSI UPEXSI 80'

C conservation of flow at nonexcess coverage

WRITEC12,*) 'EQ . CONNE

WRITE(12,*) '...RHS. CONNE 0.0'

DO 200 K=1,NF

IF (K .LT. 10) THEN

WRITE(12,855) '.F',K,'NE CONNE 1.0'

ELSE

WRITE(12,856) '.F',K,'NE CONNE 1.0'

ENDIF

200 CONTINUE

WRITE(12,*) '.NESI CONNE -1.0'

WRITE(12,*) 'UPPERBD NESI UPNESI 120.0'

C sink constraint

WRITE(12,*) 'EQ SINK

WRITE(12,*) '. RHS. SINK 120.0'

WRITE(12,*) '.NESI SINK 1.0'

WRITE(12,*) '.EXSI SINK 1.0'

WRITE(12,*) '.SLSI SINK 1.0'

WRITE 12,*) '

WRITE (12,*) 'PROC LP SPARSEDATA MAXIT1=10000 MAXIT2=100000 IMAXIT
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b&=999999 99'

5 WITE (12,*) 'PRINTFREQ--200;'1

U WRITE (12,*) 'RUN;'

I CLOSE (12)

1100 CONTINUE
1700 FORMAT (F7.5,F7.5)

705 FORMAT (10X,F14.7)

1 720-FORMAT (1X,-Ai3,I1,AI,11,AlO,I1,A1,I1,A8)

721 FORMAT (1X,A12,I1,A1,I2,A9,I1,A1,12,A8)

1722 FORMAT (1X,A12,12,Al,I1,A9,I2,A1,Il,A8)
723 FORMAT (1X,A11 ,I2,A1 ,I2,A8 ,I2,A1 ,I2,A8)

1730 FORMAT (1X,A13,Ii,A19)
731 FORMAT (lX,A12,12,A19)

3740 FORMAT (IX,A15,I1,A20)
741 FORMAT (1X,A14,I2,A20)

1750 FORMAT (iX,A13,I1,AI,Il,A13,FlO.6)
751 FORMAT (iX,A12,I1,Al,I2,Al3,F1O.6)

1752 FORMAT (lX,A12,I2,A1,I1,Al3,F1O.6)
753 FORMAT (1X,All,12,Al,I2,A13,Fl0.6)

755 FORMAT (1X,A13,I1 ,Al,I1,A8,11 ,A1,Il,A8)

756 FORMAT (1X,A12,I1,A1,12,A7,Il,A1,I2,A8)

3757 FORMAT (iX,A12,I2,Al,IlA7,12,A1,I1,A8)
758 FORMAT (1X,A11,I2,A1,I2,A6,I2,A1,I2,A8)

I760 FORMAT (1X,A13,11,Al4,FlO.6)
761 FORMAT (lX,A12,I2,A14,F1O.6)

765 FORMAT (1X,A13,I1,A11,I1,A11)
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-* 766 FORMAT- (lX,A12,12,AI10,A11)

770 FORMAT (!X,A15,Il,A21)

1 77-3'FORMAT (iX,A15,I1,A12,IlA8)

- 774 FORMAT CIX,A14,I2,A11,I2,A8)

177.5 FORMAT (lX,A28,I1,A8)
776 'FORMAT (1X,A27,12,A8)

780- FORMAT C1X,A15iIl,Afl,Ii-,A8)

781 FORMAT (lX,A14,I2,Alo,I2,A8)

1785 FORMAT (1X,A15,I1,All,Il,A8)
786 FORMAT (lXA14,12,Alo,I2,A8):1 -790 FORMAT (1X,A18,li-,Ai3,Il,A8)

79i FORMAT C1X,A12,12,Al2,I2,A8)

795 FORMAT (iX,A13,11,All,Il,A9)

796 FORMAT (1X,A12,12,Alo,I2,A9)-

800 FORMAT (1X,A13,Il,A1,Il,A11,Il,A8)

- -803 FORMAT (1X,A11,12,A1,I2,AIO,I2,A8)

.1830 FORMAT (lX,A13,11,A22)
831 FORMAT (lX,A12,12,A22)

[835 FORMAT (1X,A27,Il,A6)

836 FORMAT (1X,A26,12,A6)

I840 FORMAT ('LX,A13,Il,A13,I1,A9)
841 FORMAT (1X,A12,12,A12,I2,A9)

I845 FORMAT (lX,A13,Ii,All,IlAlO)
846 FORMAT (1X,A12,12,AIO,I2,AIO)

850 FORMAT (lX,A13,I1,AlIl,A12,Il,A8)

851 FORMAT (1X,A12,11,A1,I2,AI2,Il,A8)

852 FORMAT (lX,A12,12,Ai,I1,Al2,I2,A8)

853 FORMAT (lX,All,12,Al,I2,All,I2,A8)

855 FORMAT (1X,A13,II.,A22)
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856 FORMAT (1XA,12.=2)

I:857 FORMAT (1I,AI2,I1,A1,1E2,A11,!2.Av,)

858 FORMAT (zaz2A,1&2!.

END

IO



3 Appeadix D; SIag-Oze SA4S LP lIxpul f~c

3 SAS LP reqvime aa imat. Me- Tlis FOTDAN prop= n entts am inpust Me is

th~espare t fotwe sta eof the twr-sapfogmdlaim A cops of ths codecak

3 appewdl is prouideon m 1 m ffisk 1 in the FORTRAN &dozcto

19



FROM8M stape1

C S STAGE OE O OnI I TION C

C :PUROSE: TIS POGRAM WRITS THE IPUVT FILE FOR SAS PROC LP C

C MEE FROMM IS W.TIOB3J=CTW AND THEREFORE SEVERAL VEIGRT- C

C NGS OF THE OBJECTI-VE FUNCTION WILL BE SIGATED. C

C TOT I.DAT HAS TrE OBJECTIVE FUNOCTION WEIGHTTIiGS C

-C 033T*.DAT HAS MH OBJECTIVE FONCTION0 COEFFICIETS, FOR C

C TIME PERIOD '1* FOP OBJECTIVE ONE, WITH NO C

C WEIGi INGS j&PPLIED. C

C Nswk.SAS IS THE SAS INPUT FILE FOR TIME PERIOD "s' C

1C AND WEIGHT 'V C

C ULPf.TICOMY.ODIT- FLOW IDEA USED FOR BUNDLING. FIRST SOURCE C

C GIVES BUNDLE TO 20 STATIONS, 2ND SOURCE ALLOCATES 10 ADDITNL C

C BUNqDLES TO STATIONS THAT ALREADY HAVE ONE BUNDLE FROM SOURCE C

SC ONE. C

C This program generates matrix input for the stage one optimi C

C zation. The twenty stations selected by stage one will be C

C located. Currently there are 25 binary variables (SOSTj). C

C Five stations are already fixed: 1, 8, 15, 27, and 28. C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PARAMETER (NS=30,NF=31)

INTEGER J,K,N

REAL W1,W2,COEF,WCOEF1I(NS,IJF),WCOEF2(NF),HFDF,STAT,

&FAIRSH

OPEN (9,FILE='TEST.DAT' ,STATUS='UNKNOWN ')
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I
I

OPEN (1OFUI.=IOTV.DAT" STAJSSOLD')

OPE (11,FnL E'0B317.DAT' SSA US 'oLD')

IC initialize variables

IC sttl represents that the 20 stations chosen uil each get

C one bundle of HFDFs

HFDF = 240

3 STATI = 20

FAIRSH = 8

DO 100-N=1,24

C weightings for objective functions 1, and 2

READ(10,700) W1,W2

3 C WRITE(9,*) N,W1,W2

3 C weighted coefficients for objective function 1

DO 20 3=1,NS

DO 30 K=1,NF

READ(11,705) COEF

3 C WRITE(9,*)J,K,COEF

WCOEF1(J,K) = WI*COEF*1.0

3 C WRITE(9,*)J,K,W1,W2,WCOEFI(J,K)

30 CONTINUE

20 CONTINUE

3 REWIND(11)

C weighted coefficients for excess coverage of freq k

3 DO 40 K=i,NF

WCOEF2(K) = W2 * (-1)

9
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3c C IIKIT(9,) V2.YCOEF2(K)

40 CONTINUE

1C open file to write sas input for each weighting N3 IF (N.EQ1) OPEN (12,FILE--' [JSTEPpE.THESIS.SLPJN7Ii. SAS'

& ~STAIUJS=-'UEV')3IF (I.EQ .2) OPEN (12,FILE--' [JS'IEPPE.THESIS. SsLP]NM2.ShsA ',

a ~ STATUS--'NEI2)

IF (N.EQ.3) OPEN C12,FILE='[ JSTEPPE.THESIS. SASLP]MV73. SAS,

& STATUS=-'NEW2)

IF (N.EQ.4) OPEN (12,FILE'[-IJSTPPE.THESIS-SASLp]w7w4.SAS',

k STATiJS=-NEW')

IF (N.EQ.6) OPEN (12,FILE=' [JSTEPPE.THESIS.SASLPIN7W5.SAS',

& STATUS=' NEW')

IF (N.EQ.6) OPEN (12,FILE=' [JSTEPPE.THESIS.SASLP]H7W7.SAS',

& STATUS= I'NEW'I)

IF CN.EQ.7) OPEN C12,FILE=' [JSTEPPE.THESIS.SASLP)H7W9.SAS',

k STATUS='NEW')3 IF (N.EQ.8) OPEN (12,FILE=' [JSTEPPE.THESIS.SASLP]M7W8.SAS,

& STATUS='NEW')3 IF CN.EQ.9) OPEN (12,FILE=' [JSTEPPE.THESIS.SASLP]M7W9.SAS,

& STATUS='NEW')3 IF (N.EQ. 10) OPEN(12,FILE=' [JSTEPPE.THESIS.SASLP]M7W10.SAS',

& STATUS='NEW')

IF (z.EQ.13) OPEN(12,FILE=' [JSTEPPE.THESIS.SASLP]N7WI1 .SAS',

& STATUS='NEW')

IF(I.E.1) PE(1,FLE' JSEPE.HEISSALPH100SA'



I IF (N-EQ. 14) OPEN(12,FILE=' IEJSTEPPE-TBESIS.SASLP]K7M1.SAS',

& STATUS='-I)

IF (I.EQ.16) OPE(12,FILE=' (JSTEPPL-TBESIS.SASLP]N711&SIS',

a STATIS-91EI')

IF (I.EQ .16) OPEN(12,FILE-' [JSTEPPE..TESIS.SASIpYxl'1.ShS',

STATUS='UEV)

IF (I.EQ .17) flPEJ(12 ,FILE=' [JsTEPPE.HESIS.SASLPIuvl.SAS',

STATUS=' KMl)

IF (N.EQ.20) OPEN (12,FILE=' I[JSTPPE THESIS. SASLP]H WN2. SAS',

STATUS='NEI')

IF CN.EQ.1) OPEH(12,FILE=' 3STEPE..ESIS.SASLPM7W1.SAS',I & STATUS='NEJ')

IF (N.EQ.20) OPEII(12,FILE=' [JSTEPPE.THESIS.SASLP]M7W2o.SAS',

& STATUS='NEW')

IF (N.EQ.21) OPEUC(12,FILE=' [JSTEPPE.THESIS.SASLP]M7W21.SAS',

& STATUS= 'NEW')

WIE (N.Q 22) 'OPINS2,IE'SEPP.TEISSSL]7W2SA'

WRT& ( * 'TITE"ATNGW') NTOK IHGODHD

I FR(EQNCY ASSGNENTS";ILE'[JTPETSI.AL]72SSWRTI1,*

WRITE (12,*) 'OPTIOS LIESZE8

I WRIT (1101



I
I

WRITE (12,*)

WRITE (12,*) INPUT -TYPE- $ _COL_ $ _ROW_ $

.& _COEF_.;'

WRITE (12,*)

WRITE (12,*) 'CARDS;'

C create the objective function

C objective function one data & upperbounds for obj vars.

WRITE (12,*) 'MAX PROFIT

DO 110 J=I,NS

DO 115 K=1,NF

IF ((J .LT. 10) .AND. (K .LT.10)) THEN

WRITE (12,750) '. ST',J,'F',K,' PROFIT '

,WCOEF1(J,K)

WRITE (12,755) 'UPPERBD ST',J,'F',K,' UPST',J,'F',K

,& 1.0'

ELSEIF (J .LT. 10) THEN

WRITE (12,751) ' ST',J,'F',K,' PROFIT I

& ,WCOEF1(J,K)

WRITE (12,756) 'UPPERBD ST',J,'F',K,' UPST',J,'F',K

& ,' 1.0'

ELSEIF (K .LT. 10) THEN

WRITE (12,752) ' ST',J,'F',K,' PROFIT I

& WCOEFI(J,K)

WRITE (12,757) 'UPPERBD ST',J,'F',K,' UPST',J,'F',K

& ' 1.0'

ELSE

WRITE (12,753) '. ST',J,'F',K,' PROFIT I

& ,WCOEF1(J,K)

WRITE (12,758) 'UPPERBD ST',J,'F',K,' UPST',J,'F',K
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S, 1.0'

ENDIF

115 CONTINUE

110 CONTINUE

C objective function two data & upperbounds for obj vars

DO 125 K=1,NF

IF (K .LT. 10 ) THEN

WRITE (12,760) '. F',K,'EX PROFIT',WCOEF2(K)

WRITE (12,765) 'UPPERBD F',K,'EX UPF',K

& ,'EX 16.0'

ELSE

WRITE (12,761) '. F',K,'EX PROFIT',WCOEF2(K)

WRITE (12,766) 'UPPERBD F',K,'EX UPF',K

& ,'EX 16.0'

ENDIF

125 CONTINUE

I C source ONE to receiving station constraint

C 20 stations will get one bundle of HFDF resources

WRITE(12,*) 'EQ S01ST

WRITE(12,*) ' _RHS_ SOIST ',STAT1

I DO 130 J=1,NS

IF (J .LT. 10) THEN

WRITE(12,770) ' SO1ST',J,' SOIST 1.0'

ELSE

I WRITE(12,771) ' SOIST',J,' S01ST 1,01

ENDIF

130 CONTINUE
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C conservation of flow at the receiving stations

DO 135 J=I,NS

C fixed stations defined for thesis problem

IF ((J .EQ. 1) .OR. (J .EQ. 8) .OR. (J .EQ. 15) .OR.

& (J .EQ.27) .OR. (J .EQ. 28)) THEN

IF (J .LT. 10) THEN

WRITE(12,775)'EQ CONST',J

I & ,3 .

WRITE(12,775)'. _RHS_ CONST',J

& ,' 1.0'

WRITE(12,780)'. SOIST',J,' CONST',J

& ,' 9.0'

WRITE(12,785)'UPPERBD SOST',J,' UPSOIST',J

& ,) 1.0'

DO 140 K=1,NF

IF (K .LT. 10) THEN

WRITE (12,800)'. ST',J,'F',K,' CONST',J

I & ,' -1.0'

ELSE

WRITE(12,802)'. ST',J,'F',K,' CONST',J

& ,' -1.0'

ENDIF

140 CONTINUE

ELSE

WRITE(12,776)'EQ CONST',J

I & 9;

WRITE(12,776)'. _RHS_ CO14ST',J

& '3 1.0'

104



WRITE(1,781)'. SOIST' ,J,' CONST' ,3

i1 9.0'

WRITE(12,786) 'UPPERBD SOIST' ,3,' UPSOST' ,J

& '1 1.0'

DO 145 K=1,NF

IF (K .LT. 10) THENIWRITE(12,801)'. ST',J,'F',K,' CONST',J

-&0

ELSE

WRITE(12,803)'. ST',J,'F',K,' CONST',J

& ,' -1.0'

ENDIF

145 CONTINUE

ENDIF

I ELSE

I IF (J .LT. 10) THEN

I & WRITE(12,775)'EQ CONST',J

WRITE(12,775)'. -.RHS.. CONST',J

I & ,' 0.0'

WRITE(i2,780)'. S01ST',J,' CONST',J

& )' 8.0'

WRITE(12,740)'BINARY SOIST',J,' BINARY 1'

DO 150 K=1,NF

IF (K .LT. 10) THEN

WRITE (12,800)'. ST',J,'F',K,' CONST',J

& ,' -1.0'

ELSE

Io



WRITE(i2,:02)'. ST',J,'F),K,' CONST',J

ENDIF

I150 CONTINUE

ELSE

WRITE(12,776)'EQ CONST',J

IWRITE(12,776)'. ..RHS- O.T,

& ,' 0.0'

FWRITE(12,781)'. S01ST ,J,' CONST' ,J

& ,) 8.0'

IWRITE(12,741)'BINARY SO1ST',J,' BINARY 1'

IF (KLT. 10) THEN

WRITE(12,801)'. ST',J,'F',K,' CONST',J

I& ,) -1.0'

ELSE

IWRITE(12,803)'. STY,J,'F',K,' CNT,

& ,' -1.0'

INI
155 CONTINUEI ENDIF

ENDIF

I 135 CONTINUE

IC conservation of flow at each frequency

DO 180 K=1,NF

IF (K .LT. 10) THEN

14WRITE(12,835) 'EQ CONF),K,'

WRITE(12,835) '...RHS-. CONF',K,' 0.0'
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WrLITE(12,840)- P. FK, IEX CONF',K,' -1.0'

WRITE(12,840) ' ~ F',K,'NE CONF',K,' -1.0'

II WRITE,(12,845) 'UPPERBD F',K,'NE UPF',K,'NE 8.0'

ELSE

WRITE(12,836) 'EQ . CONF',K,'

IWRITE(12,836) '.-RHS. CONF',K,' 0.0'

WRITE(12,841) '.F',K,'EX CONF',K,' -1.0'

WRITE(12,841) '. F',KNE CONF',K,' -1.0'

WRITE(12,846) 'UPPERBD F',K,'NE UPF',K,'NE 8.0'

ENDIF

DO 185 J=1,NS

IF (,(J LT, 10) .AND. (K .LT. 10)) THENI & WRITE(12,850) '.ST',J,'F',K,' CONF',K

& J) 1.0'

ELSE IF (J .LT. 10) THEN

WRITE(12,851) 1. ST',J,'F',KS' CONF',K

& S 1.0'

ELSE IF (K .LT. 10) THEN

WRITE(12,852) '.ST',J,'F',K,' CONF',K

& 1) 1.0'

ELSE

WRITE(12,853) '.ST',J,'F',K,' CONF',K3& 1 1.0'

ENDIF

185 CONTINUE

180 CONTINUE

HC conservation of flow at excess coverage

WRITE(12,*) 'EQ . CONEX

WRITE(12,*) '. HS- CONEX 0.0'
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DO 195 K=1,NF'

IF (K ;LT. 10) THEN

WRITE(12,855) '.F',K,.'EX CONEX 1.0'

I -ELSE
WAITE(12,856) '. ',K,'EX CONEX 1.0''I ENDIF

195 CONTINUE

WRITE(12,*) '.EXSI CONEX -1.0'

-*WRITE(12,*) "UPPERBD EXSI UPEXSI 160.0'

C conservation of flow at nonexcess coverage

WRITE(12,*) 'EQ .CONNE

WRITE(12,*) '. ..RHS_ CONNE 0.0'

IDO 200 K1N
IF (K .LT. 10) THEN

IWRITE(12,855) '.F',K,'NE CONNE 1.0'

ELSE

IWRITE(12,856) '.F',K,'NE CONNE 1.0'

ENDIF

I 200 CONTINUE

WRITE(12,*) '.NESI CONNE -1.0'

IWRITE(12,*) 'UPPERBD NESI UPNESI 160.0'

IC sink constraint

WRITE(12,*) 'EQ .SINK

IWRITE(12,*) '..RHS_ SINK 160.0'

WRITE(12,*) '.NESI SINK 1.0'

IWRITE(12,*) '.EXSI SINK 1.0'
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WRITE (12,*) 'I 'WRITE (12,*) 'PROC LP SPARSEDATA POUT=SOLUTION MIAXITI=10000

C MAXIT2=9§9999 IMAXIT=99999999'

WRITE (12,*) ~PRINtFREQ=5OO;-'

WRITE (12,*) 'RUN;,'

3 CLOSE (12)

100 CONTINUE

700 FORMAT (2(T7.4))

1 705- FORMAT (1OX,F14.7)

730 FORMAT (1X,A28,I1,A8)

731 FORMAT (iX,A27,12,A8)

735 FORMAT (1X,Al5,Il,A8,I1,A6)

1736 FORMAT (lX,Al5,12,A8,I2,A6)
740 FORMAT (lX,A15,I1,Al3)

741 FORMAT (1X,A14,12,A13)

750 FORMAT (lX,A13,11,Al,Il,A1S,Fl0.6)

U751 FORMAT (lX,A12,I1,A1,I2,Al3,FlO.6)
752 FORMAT (1X,A12,12,Al,Il,A13,Fl0.6)

753 FORMAT (lX,All,12,A1,I2,Al3,FlO.6)

[I755 FORMAT (1X,A13,I1,AI,Il,A8,Il,Al,I1,A8)
1756 FORMAT (lX,A12,11,A1,12,A7,I1 ,A1,I2,A8)

757 FORMAT (1X,A12,12,A1,I1,A7,12,A1,I1,A8)

1758 FORMAT (1X,A11,12,A1,12,A6,I2,A1,I2,A8)
760 FORMAT (lX,A13,I1,Al3,Fl0.6)

I761 FORMAT (lX,A12,12,A13,F1O.6)
765 FORMAT (1X,A13,11,A11,I1,Al1)

766 FORMAT (lX,A12,12.Al0,I2,All)
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770 FORMAT (11I,1.h21)

771 FORMAT (1X,A14,12.h21)

773 FORMAT (IA15.I1.A12,I1.,A8)

1 774 FORMAT (1XA14,12,Afl412.AS)

775 FORMAT (l1,M2,114,S)

776 FORMAT (UX.122Af)

780 FORMAT (1I,A1SU1,A11,I1,hS)

781 FORMAT (1XA14,12,1O,12ABS)

785 FORMAT (lX,A1S,Il,A111,AS)

786 FOiRmAT (11,114,12,110,12,18)

790 FORMAJT (!XL13,1,113,11,18)

791 F(EMAT (1I,112,12,A12.!2,AS)3795 FOP-MAT (IX,A13,I1,Al1,ll,A1O)

796 FORMKAT (!X,A!2,-!2,A1O,7-2,A!O)

800 FORMAT(1A31,1Ik11,)

802 FORMAT (11,Al2,I1,A1,12,11!,1,A8)

801 FORMAT (lX,A12,12,Al,l!,A1O,12,A8)

803 FORMAT (IX,.' 1,12,A1,12,MO0,12,kB8)

810 FOR.MAT (1X,A26,I1,I1,A-6)

811 FORMAT (IX,A25,I2,111,1A6)

815 FORMAT (XA2I,1IlAO1IB

816 FORMAT (1X,A10,12,A1,12,11,A-9,12,I1,AB)

820 FORMAT (lX,A1I,I1~l,A1,1,AlO,11,i1,A9)

821 FORMAT (1X,A11,I21I1,A1,12,A1O1,II1,A9)

8122 FORMAT C1X,A10,12,I1,A1,I1,A9,12 ,I1,A9)

823 FORMAT C1X,A1O2,I,A1,I2,A9,12,I1,A9~A)

825 FORMAT (1X,Al2,I1,l1,A1,12,A8,Il,l1,A1,I2,A8)

827 FORMAT (1X,A11,I2,I1,A1,ll,A7,12,11,Al,Il,A8)

828 FORMAT (lX,AIOI2,I1,A1,I2,AL,I2,I1,Al,I2,AB)
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No0 NMT (1X1"1Ih2)

831 JUK&T (IXA12,12,M2)

W35 FODAT (1X,127,11,AG)

836 FUK&T (1,hN,I2,AS)

go0 FUE&T (1I1,I,1M31,19)

I 8"I FOMET (IX.112,112.&12,12,&9)

845 FURM&T (1X,A1311,AI1,I1,19)

3 846 FOI T (II,&12,12,110,12,h9)

85 FIMMAT(i,3,1A,1A2IA)

1 851 FORMIT (1X,k12,11,Al,12,A11,12,18)

3 852 FORMA17 (I1,L1212,11,!2,A1,12,18)

5Z FODYhPf (1X,A!3,I1,M2)

3 856 FORM'AT (lX,112,12,h22)



3 Appendix R Stage-Two SAS LP Input File

-3 ISA S LPequires an input ile. This FORTRAN, program generates an input file in

the sparse format for the second stage of the two-stage formulation. A copy of this code

3 clled append5 is pro'ided on floppy disk I in the FORTRAN directory.

1:1

I
I

I
I
I

I
I
I
I

I
11
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1

PROGRAM STAGE2

CCCCCCCCCcc CCCccccccCCCCCCCCCCccCCcCCCcCCcccCCCCCCCCCCccccC

C THESIS STAGE-TWO OPTIMIZATION C

C PURPOSE: THIS PROGRAM WRITES THE INPUT FILE FOR SAS PROC LP C

I C THE PROBLEM IS MULTIOBJECTIVE AND THEREFORE SEVERAL WEIGHT- C

C INGS OF THE OBJECTIVE FUNCTION WILL BE INVESTIGATED. C

C TOYWT.DAT HAS THE OBJECTIVE FUNCTION WEIGHTINGS C

C OBJT*.DAT HAS THE OBJECTIVE FUNCTION COEFFICIENTS FOR CIC TIME PERIOD '*' FOR OBJECTIVE ONE, WITH 11O C

C WEIGHTINGS APPLIED. C

C F*Wk.SAS IS THE SAS INPUT FILE FOR TIME PERIOD '*' C

C AND WEIGHT 'k' C

C MULTICOMMODITY FLOW IDEA USED FOR BUNDLING. tWO STAGE C

C PROCESS IS USED. IN STAGE ONE 20 BUNDLES ARE ASSIGNED, ONE C

C TO EACH OF 20 STATIONS, CHOSEN AMONG 30 STATIONS. STAGE TWO C

C ASSIGNS 10 MORE BUNDLES, EITHER ONE OR ZERO TO EACH OF THE C

C TWENTY STATIONS SELECTED IN STAGE ONE. C

C THIS PROGRAM GENERATES THE MATRIX INPUT FOR STAGE TWO OF THE C

C OPTIMIZATION. C

C INTEGER VARIABLES: 20 S02STj C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

I PARAMETER (NS=30,NF=31)

INTEGER J,K,N

IREAL Wl,W2,COEF,WCOEFI(NS,NF),WCOEF2(NF),HFDF,STAT,
&FAIRSH

OPEN (9,FILE='TEST.DAT',STATUS= UNKNOWN')

I OPEN (10,FILE='TOYWT.DAT' ,STATUS='OLD')
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OPEN (11,FILE='OBJT7.DAT' ,STATUS='OLD')

C initialize variables

C stati represents that the 20 stations chosen will each get

C one bundle of HFDFs, the stat2 says that 10 of those stations

C can receive another bundle of HFDFs

HFDF = 240

STATI = 20

STAT2 = 10

FAIRSH = 8

DO 100 N=1,24

C weightings for objective functions 1, and 2

READ(10,700) W1,W2

C WRITE(9,*) N,W1,W2

C weighted coefficients for objective function 1

DO 20 J=1,NS

DO 30 K=I,NF

READ(11,705) COEF

C WRITE(9,*)J,K,COEF

WCOEF1(J,K) = W1*COEF*1.0

C WRITE(9,*)J,K,W1,W2,WCOEF1(J,K)

30 CONTINUE

20 CONTINUE

REWIND(11)

C weighted coefficients for excess coverage of freq k

114



DO 40 K=I,NF

I WCOEF2(K) = 12 * (-1)

C WRITE(9,*) H2,WCOEF2(K)

40 CONTINUE

I C open file to wr-ite-sas input for each weightingN

IF (N.EQ.1) OPEN (12,FILE=' [JSTE.PPE.THESIS.TIME7]F7WI.SAS',

I STATUS=INEW')

IF (N.EQ.2) OPEN C12,FILE=' [JSTEPPE.THESIS.TIME7]F7W2.SAS',

I & STATUS='NEW')

IF (N .EQ.3) OPEN C12,FILE=' [JSTEPPE.THESIS.TIME7]F7W3.SAS',

I& STATUS='NEW')

IF (N.EQ .4) OPEN (12,FILE=' [JSTEPPE.THESIS.TIME7]F7W4.SAS',

& STATUS='NEW')

IF (N.EQ.5) OPEN (12,FILE=' [JSTEPPE.THESIS.TIME7]F7W5.SAS',

& STATUS='NEW')

IF (N .EQ.6) OPEN (12,FILE=' [JSTEPPE.THESIS.TIME7]F7W6.SAS',

& STATUS='NEW')

IF (N.EQ.7) OPEN (12,FILE=' [JSTEPPE.THESIS.TIME7]F7W7.SAS',

& STATUS='NEW')

IF (N.EQ.8) OPEN (12,FILE=' [3STEPPE.THESIS.TIME7]F7W8.SAS',

I& STATUS='NEW')

IF (N.EQ.) OPEN (12,FILE=' JSTEPPE.THESIS.TIME7]F7W9O.SAS',

& STATUS='NEW')

IF (N.EQ.1O)OPEN(12,FILE=' [JSTEPPE.THESIS.TIME7]F7WlO.SAS',

& STATUS='NEW')

IF (N.EQ.11)OPEN(12,FILE=' [JSTEPPE.THESIS.TIME7]F7WI1.SAS',

& STATUS='NEW')
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IF (N.EQ. 13)OPENC12,FILE=' [JSTEPPE.THESIS.TIME7]F7Wl3.SAS',

& STATUS= 'NEW')

IF (N.EQ.14)OPEN(12,FILE=' [JSTEPPE.THESIS.TIME7)F7WI4.SAS',

& STATUS='NEW')

IF CN.EQ.16)DPEN(12,FILE=' [JSTEPPE.THESIS.TIME7]F7WI6.SAS',

& STATUS='NEW')

IF (N.EQ. 16)OPEN(12,FILE=' [JSTEPPE.THESIS.TIME7]F7Wl8.SAS',

& ST.ATUS='NEW')

IF (N.EQ.17)OPENC12,FILE=' [JSTEPPE.THESIS.TIME7]F7W17.SAS',

& STATUS='NEW')

IF (N.EQ. 18)OPEN(12,FILE='{JSTEPPE.THESIS.TIME7]F7W20.SAS',

& STATUS='NEW')

IF (N.EQ. 19)OPEN(12,FILE=' [JSTEPPE.THESIS.TnIE7]F7W19 .SAS',

& STATUS='NEW')

IF (N.EQ .20)OPEN(12,FILE=' [3STEPPE.THESIS.TIME7] F7W20.SAS',

& STATUS='NEW')

IF (N.EQ.24)OPEN(12,FILE=' [JSTEPPE.THESIS.TIME7]F7W24.SAS',

& STATUS='NEW')

WIE (N.Q22*)OPN1,IE'[SEP.HSSTIE]72.A

WRT& ( * 'TITE"ATNW') NTOK IHGODHD

I FR(EQNC3ASIGENTS";ILE'[STPETSITIE]72.A
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WRITE (12,*)

WRITE (12,*) 'DATA SAR;'

m WRITE (12,*)

WRITE (12,*) 'INPUT -TYPE- $ _COL_ $ -ROW- $

&m _COEF_;'

WRITE (12,*)

WRITE (12,*) 'CARDS;'

C create the objective function

C objective function

WRITE (12,*) 'MAX PROFIT

C objective function two data & upperbounds for obj vars

DO 125 K=I,NF

IF (K .LT. 10 ) THEN

WRITE (12,760) ' F',K,'EX PROFIT',

& WCOEF2(K)

WRITE (12,765) 'UPPERBD F',K,'EX UPF',K

& ,'EX 12.0'

ELSE

WRITE (12,761) ' F',K,'EX PROFIT',WCOEF2(K)

WRITE (12,766) 'UPPERBD F',K,'EX UPF',K

& ,'EX 12.0'

3 ENDIF

125 CONTINUEI
C source TWO to receiving station constraint

C 10 FIXED stations will get one more bundle of HFDF resources

WRITE(12,*) 'EQ S02ST

I
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I
I

WRITE(12,*) ' _RHS_ S02ST ',STAT2

DO 135 J=1,NS

C fixed stations

IF ((J .EQ. 1) .OR. (J .EQ. 8) .OR. (J .EQ. 15) .OR.

& (J .EQ.27) .OR. (J .EQ. 28) .or.

C other fixed stations from STAGE one optimization

& (j.eq.2).or.(j.eq.3).or.(j.eq.25).or.(j.eq.9).or.
& (j.eq.2O).or.(j.eq.12).or.(j.eq.14).or.(j.eq.16).or.

& (j.eq.17).or.(j.eq.18).or.(j.eq.4).or.(j.eq.21).or.

& (j.eq.22).or.(j.eq.7).or.(j.eq.29))then

C objective function one

C

DO 115 K=I,NF

IF ((J .LT. 10) .AND. (K .LT.10)) THRF.

WRITE (12,750) '. ST',J,'F',K,' PROFIT I

& ,WCOEF1(J,K)

WRITE (12,755) 'UPPERBD ST',J,'F',K,' UPST',J,'F',K

& ,' 1.0'

ELSEIF (J .LT. 10) THEN

WRITE (12,751) '. ST',J,'F',K,' PROFIT I

& ,WCOEFI(J,K)

WRITE (12,756) 'UPPERBD ST',J,'F',K,' UPST',J,'F',K

I & ,' 1.0'

ELSEIF (K .LT. 10) THEN

WRITE (12,752) ' ST',J,'F',K,' PROFIT I

& ,WCOEFI(J,K)

WRITE (12,757) 'UPPERBD ST',J,'F',K,' UPST',J,'F',K
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I:

, & ,' 1.0'

ELSE

WRITE (12,753) ST',J,'F',K,' PROFIT

& ,WCOEFI(J,K)

WRITE (12,758) 'UPPERBD ST',J,'F',K,' UPST',J,:F',K

& ,' 1.0'

ENDIF

115 CONTINUE

IC
I C source TWO to receiving station constraint

C 10 stations will get one more bundle of HFDF resources

IF (J .LT. 10) THEN

WRITE(12,770) ' S02ST',J,' S02ST 1.0'

ELSE

WRITE(12,771)' S02ST',J,' S02ST 1.0'

ENDIF

C

C ixed stations constraint from stage one

C

if (j .At. 10) then

write(12,775)'EQ FIXST',J

write(12,775)'. _RHS_ FIXST',J

Ii & ,' 1.0'

write(12,780)'. S01ST' ,J,' FIXST',J

I & ' 1.0'

else

write(12,776)'EQ FIXST',J

I
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write(12,776)'. ..RHS-. F'IXST',J

1.0'

write(12,781)'. SOIST' ,J,' FIXST' ,J

I endif

C conservation of flow at receiving stations

IF (J .LT. 10) THEN

WRITE(12,775)'EQ . CONST',J

&

I .0
WRITE(12,780)'. ...RHS... 1 CONST,J

& 9' .0'

WRITE(12,780)'. S02ST' ,J,' CONST' ,J

& 8.0'

WRITE(12,740) 'BINARY S02ST' ,J,1 BINARY 1'

DO 140 K=1,NF

IF (K .LT. 10) THEN

WRITE (12,800)'. ST',J,IF',K,' CONST',J

1 & I2 -10

ELSE

I&WRITE(12,802)'. ST',J,'F',K,' CONST',J

-10

ENDIF

140 CONTINUE

ELSE

WRITE(12,776))EQ . CONST',J
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& I

WRITEW1,776)'. -.RHS-. CONST',J

& ,' 1.0'

WRITE(12,781)'. SQiST' ,J,' CONST' ,3

& ,' 9.0'

WRITE(12,781)'. SO2ST' ,J,' CONST' ,J

& 8.0'

WRITE(12,741)'BINARY SO2ST',J,' BINARY 1V

DO 145 K=1,NF

IF (K .LT. 10) THENI&WRITE(12,801)'. ST',J,'F',K,' CONST',J

& -1.0'

ELSE

WRITE(12,803)'. ST',J,'F',K,l CONST',J

ENDIF

145 CONTINUE

ENDIF

IC conservation of flow at each frequency

IDO 185 KIN

IF ((J *LT. 10) .AND. (K .LT. 10)) THEN

UWRITE(12,850) '.ST',J,'F',K,' OF,

& ,' 1.0'

ELSE IF (J .LT. 10) THEN

WRITE(12,851) 1. ST',J,'F',K,' CONF',K

& 2 1.0'

ELSE IF (K .LT. 10) THEN
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I WRITE(12,852) .ST',J,'F',K,' CONF',K

- & 1.0'

ELSE

IWRITE(12,853) '.ST',J,'F',K,' CONF',K

& ,' 1.0'

ENDIF

185 CONTINUE

ENDIFI 135 CONTINUE

C

C conservation of flow at each frequency

DO 180 K=1,NF

IF (K .LT. 10) THENI WRITE(12,835) 'EQ .CONF',K,'

WRITE(12,835) '..RHS-. CONF',K,' 0.0'

IRT(280 IKIE OF,, 10
WRITE(12,840) '.F',K,E CONF',K,' -1.0'

IWRITE(12,845) 'UPPERBD F',K,'NE UPF',K,'NE 8.0'

I ELSE

WRITE(12,836) 'EQ . CONF',K,'

WRITE(12,836) '. 315.. CONF',K,' 0.0'

WRITE(12,841) '. F',K,'EX CONFI,K,' -1.0'

IWRITE(12,841) '.F',K,'NE CONF',K,' -1.0'
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WAITE(12,846) 'UPPERBD F',K,'NE UPF',K,'NE 8.0'

ENDIF

I 180 CONTINUE

IC conservation of flow at excess coverage

I WRITE(12,*) ',EQ .CONEX

WRITE(12,*) 1. ..RHS.. CONEX 0.0'

I DO 195 K=1,NF

IF (K .LT. 10) THEN

IWRITE(12,855) '.F',K,'EX CONEX 1.0'

ELSE

IWRITE(12,856) 1. F',K,'EX CONEX 1.0'

ENDIF

U 195 CONTINUE

WRITE(12,*) '.EXSI CONEX 10

IWRITE(12,*) 'UPPERBD EXSI UPEXSI 120.0'

C

UC conservation of flow at nonexcess coverage

C

I WRITE(12,*) 'EQ .CONNE

WRITE(12,*) '..RHS.. CONNE 0.0'

I DO 200 K=1,NF

IF (K .LT. 1J) THEN

IWRITE(12,855) '.F',K,'NE CONNE 1.0'

ELSE

IWRITE(12,856) '.F',K,'NE CONNE 1.0'

ENDIF

I 200 CONTINUE
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WRMl(12,*) - -EEE XESI WE! 240.02

C

c simk constraiut

I WdnT(12,*) IEQ - s
3 IRMT(12,*) '..3S. sEM 240.0'

IIRIE(12,*) '-NESI S~l 1.01

VRMI(12,*) '.EISZ Sm i.0

WRIIE (12,*) 1;

WRITE (!2,*) 'PRi)C LP SPAR-ED-ATA JYSiIl!!IT=00

kMAIT2=99~9 = M I~~9

WRITE (12,*) PuiEzO;

3 W ITE (12,*) 'RUNI;'

CLOSE (12)

ii 100 COJItiJp

700 FORMAT (2(F7..4))

705 FORMAT (IOXF14.7)

730 FORMAT (1X,A28,I1,A8)

731 FORMAT (lX,A27,12,A8)

735 FORMAT C1X,A15,Ii,AB,II,A6)

736 FORMAT (1X,AIS,I2,AB,12,A6)

740 FORMAT C1X,A15,11,A13-)

741 FORMAT (1X,A14,12,A13)

750 FORMAT (1X,A13,I1,A1,l1,A13,F1O.6)

751 FORMAT (1X,A12,I1,A1,I2,Al3,F10.6)
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752 FVOSI&T(Jj2A,1131O)

753 FVMT (11,&11jl2,AI12,A13,F!0.6)

755 FWAT (Z&3l,1I,6U1I,

756 iDWIAT(I,2,,A4,7I,12A)

757 F(3M&T (IX.A12,12,A1.I1,A7,IZ2A1,I1,hS)

756 FWRMT (1X,All,12,,A1,12,&6,312.A1,12,AS)

760 FOMUT (1X.A13.I1,A1t3,F1O.6)

761 FMAT (1X.A12,12,,A13.FIO.6)

765 FORMAT (IX,.&13,Ii,AI1I,11,111)

766 -ORMT (11,A12,12,AIO,12,11)

770 FOMAT (1X,A15,Ii,A21)

771 FORMAT (1x,A!4,12,A21)

773 FCFYAT (X 4 1,1h2I,8

774 FORAT (IX,A14,I2,A11,12,A8)

775 FDR.KAT(X,21A8

776 FOIIMAT (lX,A-27,12,AB)

780 FO.;LAT(1,1,1ZIA8

781 FORMAT (1X,A.14,]-2,A10,12,AB-')

785 FORIMT(XA5I1A1I,

786 FORMAT (1X,P.14,12,A-1O,12,P.8)

79- 0IF O~rMAT (1X,A13,I1,A13,11,A8)

791 FORMAT (11,A12,12,A12,12,A8)

795 FORMATl (IX,A13,I1,AI1,Ii,AI0)

796 FORMAT (1XA12,I2,AI0,I2,AI0)

800 FORMAT (-LX,A13,I1,Al,I1,A11,IlA8)

802 FORMAT (1X,A12,11,A1,12,A11,I1,A8)

801 FORMAT (1X,A12,12,Al,I1,AIO,12,A8)

803 FORMAT (1X,A11,12,A1,12,AIO,12,A8)

810 FORMAT (lX,A26,:111,A6)

811 FORMAT (1X,A25,12,I1,A6)
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3 815 FORMAT (IX,A12,I1,A,1,1I1,A1O,1I,1,A8)

816 FORMAT (IX,AIO,12,A1.12.I31,A9,12,11,AS)

3 820 FORMAT (lX,A12,11,11,A1~l,AlO,I1,I1,A9)

821 FORMAT (IX,AI11,1I1,A1,12,AIO,I1,I1,h9)

3 822 FORMAT (ILXA11,12,I1,A1,I1,A9,I2,I1,hi9)

823 FORMAT (IX.A1O,12,I1,A1,12,h9,12,I1,A9)

3 82 FORMAT (1X,A12,1,.1,11,ll,A8.I1,I1,A,1,18)

826 FORMAT (11.A11,iI,A1,12,A7, 11, I1,A1,12,A8)

827 FORMAT (1X,A11,12,I1,A1,I1,A7,12,Ii,A1,I1,A8)

828 FORMAT (11,AIO,12,I1,A1,12,A6,12,I1,A1,12,A8)

830 FORMHAT (1X,A13,Ii,A22)

831 FORMAT (1XA12,12.A22)

1 35 FORMAT (1X,A27,I1,A6)

836 FOIFRMAT (IX,A26,I2,A6)

3840 FORMAT (1X,A13,1A13I11,AS)

841 FORMAT (1X,A12,12,A12,12,A7)

3845 FORMAT (1X,A13,1l,A11,Il,A7)

846 FORMAT C1X,Aj2,I2,AIO,I2,A9)

850 FORMAT (1X,A13,I1,AI,I1,A12,I1,A8)

851 FORMAT (1X,A12,I1,AI,12,A11,12,A8)

3852 FORMAT (1X,A12,12,A1,II,A12,I1,A8)

853 FORMAT C1X,AlI,12,AI,I2,AI1,12,A8)

3855 FORMAT (1X,A13,11,A22)
856 FORMAT (1X,A12,12,A22)
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Appendix F. Description of Floppy Disk Files

F.1 Floppy Disk One

Floppy disk one has three directories: FORTRAN, TOYl, and TOY2. The files in

3each directory are described in the next subsections.

F.1.1 FORTRAN Directory. The files in the FORTRAN directory are also listed

in the appendices. These fortran program files are:

Appendl.tex Data split program.

Append2.tex Objective function coefficients program.

Append3.tex Generation of single-stage SAS input file.

Append4.tex Generation of stage-one SAS input file.

Append5.tex Generation of stage-two SAS input file.

F.1.2 TOY1 Directory. The files in the TOY1 directory are used for the first test

problem which is described in Chapter 4. This toy problem uses time block one data with

stations 10, 12, 14, 21, and 30, transmitters 28 through 31, and frequencies 7 through 9.

The toy problem can be modified to use the same stations, transmitters, and frequencies

for any time block. The files in this directory are:

Dltoyl.for This FORTRAN program strips IIFDF propagation data from the large

D1.dat file created by the data split program in appendix one.

Dltoyl.dat This file is the HFDF propagation data created by Dltoyl.for.

Fltoyl.for This FORTRAN program strips frequency data from the large F1.dat file

created by the data split program in appendix one.

Fltoyl.dat This file is the frequency data created by Dltoyl.for.

3 Trigtoy.for This FORTRAN program strips trig data for the test problem from Trig-

data.dat and reads it into trigtoyl.dat.

1
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3 rigtoy.dat This file is the trig data file created by Trigtoy.for.

Alphatoy.for This FORTRAN program uses Trigdata.dat and calculates Ias used in the

nonlinear objective-function.

Alphatoy.dat This file is the is created by Alphatoy.for.

NOnlincl.for This FORTRAN program uses Dltoy.dat, Fltoy.dat, and Alphatoy.dat to

calculate coefficients for the nonlinear objective function.

Nonlincl.dat This file is the nonlinear objective function coefficients created by Non-

lincl.for.

Datltoyl.for This FORTRAN program uses Nonlinc.dat to build the input file used by

the zero-one nonlinear optimization code.

Datltoyl.dat This file is the input data file for Zlinctoy.for created by Datltoyl.for.

Zlinctoy.for This FORTRAN program is the zero-one nonlinear optimization code which

optimizes with no initial starting conditions. It requires Datltoyl.dat as an input

file (4).

Zlinittoy.for This FORTRAN program is Zlinctoy.for which has been modified to use spe-

cific initial starting conditions. These starting conditions can be modified internally

from run to run.

Ratiotoy.dat This file is the weight data Wj used for the first objective function of the

MOLIP.

Objftoyl.for This FORTRAN program uses the Dltoy.dat, Fltoy.dat, and Ratiotoy.dat

to calculate coefficients for the first objective function of the MOLIP.

Objftoyl.dat This file is the objective function coefficients for the first objective function

of the MOLIP.

Jtemptoyl.ifi This file is the Ifile input for ADBASE.

Jtemptoyl.qfi This file is the Qfile input for ADBASE.
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F.l. TOY2 Directory. The files in the TOY2 directory are used for the second

test problem which is described in Chapter 4. This toy problem uses timeblock one data

with stations 10, 12, 14, 21, and 30, transmitters 21 through 24, and frequencies 7 through

9, 16 and 17. The toy problem can be modified to use the same stations, transmitters,

and -frequencies for any time block. The files in this directory are the same as the files in

directory TOY1 except they are modified to use the specific transmitters and frequencies

for this test problem.

F.2 Floppy Disk Two

The top level directory has Udfeval.for, a FORTRAN program which produces EVAL

results. Udfeval.for requires an formatted input file with the tasking result to be evalu-

ated. Formatted input files with thesis results are found in the four directories: TIME1,

COVER1, TIME7, and COVER7. COVER implies that a covering constraint is used for

the results in COVER directories, whereas no covering constraint is used with files in TIME

directories. In general, the files in the directories are named either T*W! or T*FIX!. If

the file is named T*W! the * is the time block and the ! is A weight. For instance, !=I

corresponds to A1=1.0 and !=2 corresponds to A1=0.99. If the file is named T*FIX!, the

* is the time block and the ! corresponds to the fixed weighting on the second objective

function.
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Appendix G. Illustration of MOLIP versus NLIP Test Problem 1

This appendix illustrates the specific formulation and test data used for the first

.test-problem which compares NLIP and MOLIP formulations in Chapter 4. The detailed

results for this test case. Details are presented in Section 4.4.

G.1 Specific Formulations

The MOLIP and NLIP formulations are presented with summation indices that are

specific to test problem 1.

G.1.1 MOLIP formulation.

4 5 3

max EEE Wij'ikPijkXjk
i i k

3

min Yk
k

subject to

X5 = 1, ViE{I,2,3}

-x3 < NS

5 3

YZXI. < NI!
Sk

where NHi is the number of IIFDF receivers

Xjk-Xj _ 0, Vj, k
5

Xjk- k < FS, V k

X3 E {0,1}

X, E {O,1)

Yk > 0 and integer.
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G.1.2 NLTPformulation.

max E EFik E ,ok(X)
i k -qEC

twhere Uiak(X) InjE PilkXjkI Ijfho(1 - PihkXhk)i

subject to

Xj = 1, V jE {1,2,3}

X3 < NS
I

ZEX k < Nil
1k (16)

3 where Nil is the number of HFDF receivers

Xjk -Xj _ 0, V j,k

X1  E {o,1}3 X3k E {0,1}.

(17)U
G.2 Test Problem Data Files

I The files in the TOY1 directory on floppy disk 1 are used for this test problem. This

toy problem uses time block one data with stations 10, 12, 14, 21, and 30, transmitters

28 through 31, and frequencies 7 through 9. The toy problem can be modified to use the

same stations, transmitters, and frequencies for any time block. Appendix 6 describes the

I specific files used to generate the data. Table 10 illustrates the frequency transmission data

denoted by F, in the formulations. Tables 11, 12, 13, and 14 illustrate the propagation

data denoted by P,3k in the formulations. Table 15 illustrates the accuracy weighting

I
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function data denoted by Wij. Table 16 illustrates the confidence region indicator data

* denoted, by c,&i.

Table 10. Frequency Transmission-Data (Fik) for Test Case 1

i/k I freq I] freq 2 1freq 3

trans 1 0.04 0.04 0.04
trans 2, 0.00 0.00 0.01
trans 3 0.03 0.05 0.05
trans 4 0.00 0.00 0.00

Table 11. Frequency Propagation Transmitter 1 Data (Pj;-) for Test Case 1

i/k freq I freq 2 T freq 3
station 1 0.98 0.95 0.96
station 2 0.98 0.98 0.98
station 3 0.90 0.92 0.83
station 4 0.97 0.98 0.90
station 5 0.98 0.94 0.94

Table 12. Frequency Propagation Transmitter 2 Data (P2jk) for Test Case 1

ij/k freq 1 freq 2freq 3 I
station 1 0.32 0.13 0.33
station 2 0.44 0.08 0.30
station 3 0.15 0.46 0.31
station 4 0.01 0.01 0.01
station 5 0.29 0.04 0.19I

G.3 TOY1 Input Files for MOLIP

G.S. I Jteniptoyl.if. This is the first of two formatted ADBASE input files for the

first test problem in Chapter 4. It contains primarily the constraint and coefficient infor-

mation.

I
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Table 13. Frequency Propagation Transmitter 3 Data (P3jk) for Test Case 1

[ j/k Ifre 11 'freq 2 Jfreq3

station 1 0.51 0.35 0.52
station-2 0.13 0.01 0.10
station 3 0.58 0.71 0.51
station 4 0.01 0.12 0.01
station 5 0.01 0.01 0.00

Tabfe 14. Frequency Propagation Transmitter 4 Data (P4jk) for Test Case 1

[ j/k [freq 1 freq 2 freq3 I
station 1 0.01 0.01 0.01
station 2 0.01 0.01 0.01
station 3 0.01 0.01 0.01
station 4 0.01 0.01 0.01
station 5 0.01 0.01 0.01I

I Table 15. Accuracy-Weighting Function Data (Wij) for Test Case 1

i/k station 1 station 2 station 3 station 4 station 5

trans 1 0.3808 0.7407 0.1951 0.1210 0.7956
trans 2 0.1477 0.1301 0.1140 0.0596 0.2504
trans 3 0.1471 0.0892 0.1580 0.0834 0.1509
trans 4 0.0515 0.7679 0.0615 0.0820 0.0427

I
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I

I
I table 16. Confidence Region Indicator Function Data.,ha for Test Case 1

a/i stations trans 1 trans 2 trans 3 trans4IN included

'combo l 1,2,3 1 0 0 - 0
combo 2 1,2,4 1 0 0 0

combo 3 1,2,5 1
combo 4' 1,3,4 1 0 0 0
combo 5 1,3,5 1 1 1 0
combo 6 1,4,5 1 1 1 0
combo 7 2,3,4 1 0 0 0
combo 8 2,3,5 1 1 1 0
combo 9 2,4,5 1 1 0 0
combo 10 3,4,5 1 1 1 0
combo 11 1,2,3,4 1 0 1 0
combo 12 1,2,3,5 1 1 1 0
combo 13 1,2,4,5 1 1 1 0
combo 14 1,3,4,5 1 1 1 0

combo 15 2,3,4,50

H Steppe SAR toy problem with 2 objectives and no pairwise constraint

I5001 2 23 23 2 0 0 45

63

1 3 1.0 1 4 1.0 1 5 1.0 2 6 1.0

2 7 1.0 2 8 1.0 2 9 1.0 2 10 1.0

2 11 1.0 2 12 1.0 2 13 1.0 2 14 1.0

2 15 1.0 2 16 1.0 2 17 1.0 2 18 1.0

2 19 1.0 2 20 1.0 3 3 -1.0 3 12 1.0

4 3 -1.0 4 13 1.0 5 3 -1.0 5 14 1.0

6 4 -1.0 6 15 1.0 7 4 -1.0 7 16 1.0

8 4 -1.0 8 17 1.0 9 5 -1.0 9 18 1.0

10 5 -1.0 10 19 1.0 11 5 -1.0 11 20 1.0

12 6 1.0 12 9 1.0 12 12 1.0 12 15 1.0

12 18 1.0 12 21 -1.0 13 7 1.0 13 10 1.0

13 13 1.0 13 16 1.0 13 19 1.0 13 22 -1.0
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14 8 1.0 14 11f 1.0 14" 14- 1.0 14 17 1.0

14 20 1.0- 14- 23- - 1-.0 15 3 1.0 16 4 1.0:

47 5 1.0 8" 6 1.0 19 7 1.0 20 8' 1.0

21 9 1.0 22 10 1.0 23 11 1.0

14

1 2.0 2 10.0 12 3.0- -13 3.0

14 3.0 15 1.0 16 1.0 17 1.0

18 1.0 i9 1.0 20 1.0 21 1.0

22' 1.0 23 1.0

2

1 1 1.0 2 2 1.0

2

1 1.0 2 1.0

0

0

18

1 6 1.7178 1 7 1.70447 1 8 1.89347 1 9 2.93833I 1 10 2.9080 1 11 2.98717 1 12 .97728 1 13 1.27887

[ 1 14 1.08597 1 15 .47198 1 16 .52436 1 17 .44037

1 18 3.12328 1 19 2.99900 1 20 3.03903 2 21 -1.0

2 22 -1.0 2 23 -1.0

!1 G.3.2 Jtemptoyl.qfi. This is the second of two formatted ADBASE input files for

the first test problem used in Chapter 4. This contains input and output parameters for

IADBASE that are related to problem being solved.

------- ---****3*********4****** ADBASE MODE = 1 SECTION

1. NUMB 1 (NUMBER OF PROBLEMS TV BE SOLVED)
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2. MODE 1 (REGULAR OR RANDOM PROBLEM MODE) 1,2

S3'. IFASE2 2 (PHASE II OPTION) 1 T0 5

4. IFASE3 2 (PHASE III OPTION) 0,1,2

S.. IWEAK 0 (EFFICIENT OR WEAKLY-EFFICIENT) 0,1

6. MLISTB 16000 (MAXIMUM NUMBER OF EFFICIENT BASES) <2500

7. IZFMT . 0 (EXPONENTIAL/FIXED FORMAT IN ZFILE) 0 TO 6

I 8. IPRINT(L) 1 (OBVIOUS ERRORS) 0,1

9. IPRINT(2) 0 (PROBLEM COEFFICIENTS) 0,1

10. IPRINT(3) 3 (NOTHING/BASES/EXTREME PTS) 0/1,2,3/4,5,6

11. IPRINT(4) 1 (EFFICIENCY TOTALS) 0,1

12. IPRINT(5) 0 (INDIVIDUAL PROBLEM DATA) 0,1

13. IPRINT(6) 0 (CUMULATIVE DATA) 0,1

14. IPRINT(7) 0 (CODE LISTS) 0,1

15. IPRINT(8) 1 (ZFILE) 0,1

16. IPRINT(9) 1 (REDUCED COSTS AND TABLEAUS) 0,1,2

17. IPRINT(10) 0 (LFILE) 0,1

18. IPRINT(11) 0 (PREMULTIPLICATION T-MATRIX) 0,1

19. IV9L 1 (BEGINNING TABLEAU VARIABLE)

I 20. IV9U 23 (ENDING TABLEAU VARIABLE)

21. 19L 1 (TABLEAUS BEGIN AT THIS BASIS)

22. I9U 23 (TABLEAUS END AT THIS BASIS)

23. IlOL 1 (LFILE BEGINS ON WAY TO THIS BASIS)

24. IIOU 23 (LFILE ENDS AT THIS BASIS)

----------- ------------------- *2*** ************ MODE = 2 SECTION

25. NSTART 5001 (STARTING PROBLEM NUMBER)

26. NOBJS 2 (NUMBER OF OBJECTIVES)

I
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27. N1 23 (NUMBER OF STRUCTURAL VARIABLES)

28. IK 23: (LESS THAN OR EQUAL TO CONSTRAINTS)

29. JZDEN 25 (PERCENT A-MATRIX ZERO DENSITY) 0 TO 100

30 . JLA -1 (A-COEFFICIENT LOWER LIMIT)

31. JUA 8 (UPPER LIMIT)

32. JLB 20 (B VALUE LOWER LIMIT)

33. JUB 30 (UPPER LIMIT)

34. JLC -3 (C-COEFFICIENT LOWER LIMIT)

35. JUC 5 (UPPER LIMIT)

36. IPRINT(12) I (PFILE) 0,1

37. KSEED 6467 (SEED TO RANDOM NUMBER GENERATOR) <99999

G.4 TOYl Input and Output Files for NLIP

These files are included for illustration of typical input for test problems.

G.4.1 Datltoyl.dat. This is the formatted input file required by the zero-one solver

Zlinctoy.for and is used for the first test problem in Chapter 4.

20 48 21

0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 3.4574401E-02

0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 3.7263501E-02

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 3.7647702E-02

0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 3.4221601E-02

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 3.4663100E-02

0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0 1 0 0 3.7265100E-02

0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 3.4221601E-02

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 3.4596998E-02

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 3.7263501E-02
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00000000000100100100 3-422329E-02

000-00100100100100000-0.1000

O0000oo 00100 1o0o OOzOOIOO-.j 6M

0 00001 00 100000 100 100-0-1955

0 000 0 100000 100 i00 100-0.1063

0 00 0 00 00 100 100100100-010096"

00000100100100100100 0-1"3=

00000010010010000000 3.A26079E-02

000000 10010000010000 3.64952D-V-02

000000 10010000000010 3.5095599E-02

00000010000010010000 3-4-2A079E-02

00000010000010000010 3.2986605E-02

00000010000000010010 3.5026590E-02

0000 000001001001-0000 3-5.-0

00000000010010000010 3.9G3699E-02

0000000001 0000010010 3-611100-E-02

00000000000010010010 3.3942800,E-02

0 000 00 100 1 0 0 1 00 1 00 0 0 -0.1007118

0 0 00 00 1 0 0 0 0 0 00001 0 -9.661670E-02

0 00 0 0 0 1 0 0 1 0 000 0 1 0 0 1 0 -0.1129165

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 -9.6645303E-02

0 0 0 0 00 0 0 0 1 0 0 1 0 0 10 0 10-9-865070IE-02

0 0 0 0 0 0 1 0 0 1 0 0 i 0 0 1 0 0 1 0 01578051

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 3o12346O0E-02

0 0 0 0 00 0 100 10 0 0 00 10 00 3.3868801E-02

0 0 0 0 0 0 0 1 0 0 10 0 0 0 0 0 0 0 1 3.5562199E-02

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 2.8684800E-02

0 0 0 0 00 0 1 0 0 0 0 0 10 00 0 0 1 3.0153999E-02

0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 1 0 0 1 3.2492701E-02

0 0 0 0 0 0 0 0 0 0 10 0 10 0 10 0 0 2.9282400E-02
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00000000001001000001 3.07660O0-%E-

I 000-00000001000001001 3.316M901-02

00000000000001001001 2.8G93OS-O2

0 0 00 00 001 001 00 1 00 1 000 -8.4320001E-02

0000000 100 1001 00000 I -. 81B0M-02

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 -9.551379SE-02

0 0 0 0 000 10 0 0 0 010 010 0 -8.O89"99E-02

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 -8A4471501E-02

00000001001001001001 0-1321234I0.00O000oo*o0 0.0000 oo_* 0.000W+ : .O . --4O* 0.0930=4

1.0000000000 -OWOIOso 100

I L0oOO 1.00000 i-000000 1.0000000000

1.000000 i000 00"I0o 1-000000 10

ii0.0000000E+00 0. 0000000zE400 1-000 .000 1.00000

0.0000000E400FC 0. 0000000E400 0.00000400 0. 0000000E400 0.ODO=-0

I 0. 00000O0-00 0.. OOODOOE00 0..0000000E'00O 0. E00OZ400 0.0000000E400

0 .OOOOOOE-E00 0.0000000E*00 0.0000000---00 0.0000000E+00 0. 000000E400 2

'I1.000M0 0.0000000zE+O0 0.OOOOOOE+0 0.0000000E400 0.OOOOOOE+00

0.0000000E+00 0.0000000E. 00 0.OOOE-40O O.0000M0E400 0.000G0000-;+00.10.00G00000E400 0.0000000E400 0.OOOOOOOE"+00 0.0OOOOOOE+00 .000Eto

0.0000000E400 0..0000000EP+00 0.000000Ei-00 0.0000000E4+00 0.0000000E4+00 1

I0.0000000E400 1.000000 0..0000000E+00 0.0000000E400 0.0000000E4-00

0. 0000000E+00 0. 0000000E+00 0. 0000000E+00 0. 0000000E+00 0.000 0000E+00

II0.000000DE400 0. 0000000E+00 0. 0000000E+00 0. 0000000E+00 0.000000E+'00

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1

.1-1.000000 0.0000000E+00 0.0000000E400 0.0000000E+00 0.0000000E~00

~10. 0000000E400 0.OOOOO-OO 0 00OE'00 0. OOOOOOOE+00 0. OOOOOOOE+0 .00000E0

0.OOOOOOOE400 0.0000000E400 0.0000000E+00 0.OOOOOOOE400 0.OOOOOOOE+00 -1

0.OOOOOOOE400 -1.000000 0.0000000E400 0.OOOOOOOE+00 0.0000000E400
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0.0C'00OE00 GOOCOW4 4 -00 DO 0.. 00 C0o.= .40.0 O W.4

0. 40050 0.000c 40 0. 00O400 0.000 :C40c)0.00M o.

-1.COOOOO 0.000 004 0.000W+ 00 000004W 0.000 £z400

1.. 0 ... 0.0* . *00DE4 0.OOOO4 0.00 0 00

0. 4000 ~ 0.00=7400 0.00 400+ 0. 400 00o 0.0000000£--40

50. .400* 0. 40004 0.0000E00 0. £4OOE00 0. 400E+ 0

-i~o - 0.0 £400*) 0..0000000E400 0.0000000-1P00 0..0000000E400o

0: 4004 1.000000 0 000 £E400 0: £00C400 0.0000000£000

5-DOO-40O.OO)Z-0 0.0000000E400 o.0000000£*00 0.0000000E400

-0000O-00 0.00000E+00 0. 000000E400 0-.0000000E400 0.0000000E4000

0.000000 0.000000E.00 100000 0.000000::000E4+00 0.0000000--400

0.0000000:&O 0.00OOOOOO 0. 00300~00 0 .0000000E400 0. COOOO00400

3 .00000E*00o 0.0000000E400 0..00000E40 0.000000E400o O.OOGoor+OOE00

0.0000000E400 -. 000000-+O 0.0000000E400 0.0000000OE400 0.0000000E+000

3 .000000E+00 O.0000040 0.0000000'r400 .000000::O 0.000000OE400

0. 0000000E4-00 0. OOOOOOOE+0O 0. 0000000rE.00 0. 000000E O0. 000000E400

0.OOOOOOE00 0.0000000-z+00 0.OOOOOOOE400 0.0000000E+0O 0..0000000--p000

0.0000000E400 -. 000O000 0.0000000E400 0.0000000E400 0.0000000E+000

30.0000000E400 0i.000000E0 O.0000000E400 0.0000000E400 .0000000Eo

0. 000000DE400 0. OOOOOOOE+00 0. OOOOOOOE.00 0.000000.OOOOOOOE-4-00 00

0.0000000E400 0.0000000E+00 0.0000000E+00 CO.0000000E400 0.OOOOOOOE+000

0.0000000E+00 -. 000O000 0.0000000E400 0.0000000E+00 0.0000000E4000

3 .0000000E+00 -1.000000E0 0.0000000E+00 0.0000000E+00 0.0000000E400

.00OO00 0 0.OOOOOOOE+00 0.0000000E400 0.0000000E400 0.OOOOOOOE+00

0000OO00 0.OOOOOOOE400 0.OOOOOOOE400 0.OOOOOOOE400 0.OOOOOOOE.000

0.OOOOOOOE+00 0.0000000E+00 -. 000O000 0.0000000E400 0.0000000E+000

3 .000000.OOOOOOOE400 0. OOOOOOOE+00 0.0000000 .OOOE-+00 0. OOOOOOOE400

0.0000000E400 1.000000 0.OOOOOOOE+00 0.OOOOOOOE400 0.OOOOOOOE400

1410



O.000000E.00 0. OOOE400 0. 00000E+00 0. 0000000E+00 0.0000000E+00 0

0.0000000f-.00 0.0000000E+03 -1.000000 0. 000000O0 0.OOOOOOOE00

0.000000E400 0. 000000E+00 0.0000000E.00 O-OOOOOOOE00 O.0000000E4O0

O.0000000E+00 0. 000000E+00 1.000000 0.0000000E+00 O.OOOOOOOE+00

O.0000000E+00 0.6000000E00 0.OOOOOOOE00 O.OOOOOOOE+00 O.OOOOOOOE+00 0

0.OOOOOOE00 O.OOOOOOOE00 -1.000000 0.OOOOOOOE-+00 0 .0000000E+00

0.OOOOOOOEOO 0.. 000000E+00 0.OOOOOOOE00 O.OOOOOOE+00 O.0000000E+00

O.OOOOOOOE+00 0. OOOOOOOE+00 0.OOOOOOOE.00 1.000000 0.0000000E+00

0.0000000E+00 0..00000E+00 0.OOOOOOE.0O 0.0000000E+'00 O.0000000E400 0

0.0000000E+00 O-OOlo .0000000E4O O.OOOOOOOE'0 1003 .000E00

0.0000000E400 0.0000000E+00 0.0000000F-400 0.0000000E+00 0.0000000EP400

6.0000000E+001 0.0000000:OE:00 0.0000000E+00 0.0000000E+00 1-000000

0.0000000E+00 0.0000000E+00 0.0000000E+00 O.0000000E400 0.0000000E00 0

0.0300000E400 0.000000E400 0.0000000E+00 -1.000000 0.0000000E-+00

0.0000000---00 0.0000000Et400 0.O000000E+00 O.0000000E400 0.0000000E400

0.0000000E400 0. 0000000E+00 /3.OOOOOOOE+00 0. 0000000E400 0. 0000000E+00

1.000000 0.OOOOOOOE4 O0.0000000E+00 0.0000000E+00 0.0000000E+00 0

0.0000000E+00 0.0000000OO:+00 0.0000000E+00 -1.000000 0.0000000E+00

0. OOOOOOOE+03 0. 0000000E400 0.0000000OE+00 0. 0000000E+00 0. OOOOOOOE400

0. OOOOOOOE+00 0. 0000000E+00 0. OOOOOOOE+00 0. 0000000E400 0. OOOOOOOE+00

0.0000000E+00 1.000000 0.0000000E400 0.0000000E+00 0.0000000E+00 0

0.0000000E+00 0.0003000E+00 0.0000000E+00 0.OOOOOOOE400 -1.000000

0.0000000E400 0.0000000E+00 0-0000000E+00 0.OOOOOOOE+00 0.0000000E+00

0.000O .OOOOOOOE+00 0.0000300E400 0E0 .OOOOOOOE400 0.OOOOOOOE400

0.OOOOOOOE400 0.OOOOOOOE+00 1.000000 0.OOOOOOOE400 0.OOOOOOOE+00 0

0.OOOOOOOE+00 0.0000000E+00 0.OOOOOOOE+00 0.OOOOOOOE+00 -1.000000

0. OOOOOOOE400 0. OOOOOOOE+00 0. OOOOOOOE+00 0. 0000000E400 0. 0000000E+00

O.0000000E400 0.OOOOOOOE400 0.OOOOOOOE+00 0.OOOOOOOE+00 0.OOOOOOOEtOO

0.OOOOOOOE400 0.OOOOOOOE+00 0.OOOOOOOE400 1.000000 0.0000000E+00 0

0.0000000E+00 0.OOOOOOOE+00 0.0fOOOOOE+00 0.OOOOOOOE+00 -1.000000
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0..0000000E400 0..0000000E+00 0.0000000E.+00 0.0000000E+00 0.0000000E.00

0.0000000E400 0.00O000E400 0..0000000E+00 0.0000000E400 0.0000000E400

0.00,00000E+00 0.00000E.00 0.0000E400 0.0000000E+00 1..000000 0

G4.2 Zerooutl.dat. This is the output file from Zlinctoy.for for the first test prob-

lem in Chapter 4.

FEASIBLE INCIJNBANT SOLUTION 1

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1051765

VARIABLE 1 = 1

VARIABLE 2 = 1

VARIABLE 3 = I

VARIABLE 4 = 1

VARIABLE 6 = 1

VARIABLE 7 = 1

VARIABLE 8 = 1

VARIABLE 9 =1

VARIABLE 10 = 1

VARIABLE 11 = 1

VARIABLE 12 = 1

VARIABLE 13 = 1

VARIABLE 14 = 1

VARIABLE 15 = 1

FEASIBLE INCUNBANT SOLUTION # 2

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1054567

VARIABLE 1 = 1

VARIABLE 2 = 1

VARIABLE 3 = 1

VARIABLE 4 1

VARIABLE 6 = 1
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VARIABLE 7 = 1

IVARIABLE 8 1

VARIABLE 9 = 1

VARIABLE 10 = 1

VARIABLE 11= 1

VARIABLE 12 1

VARIABLE 13 = 1

VARIABLE 14= 1

VARIABLE 16 = 1

FEASIBLE INCUMBANT SOLUTION 3

OBJECTIVE VALUE OF INCUMBENT SOLUTION : 0.1075858

VARIABLE 1 = 1

VARIABLE 2 = 1

VARIABLE 3 = 1

VARIABLE 4 = 1

VARIABLE 6 = 1

VARIABLE 7 = 1

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE 10 = 1

VARIABLE 11 = 1

VARIABLE 12 = I

VARIABLE 13 = 1

VARIABLE 14 = 1

VARIABLE 17 = 1

FEASIBLE INCUMBANT SOLUTION # 4

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1078107

VARIABLE 1 = 1

VARIABLE 2 = 1

VARIJBLE 3 = 1
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VARIABLE 4 = 1

VARIABLE 6-= 1

- VARIABLE 7 = 1

VARIABLE 8 = 1

'VARIABLE 9 = 1

VARIABLE 10= 1

VARIABLE 11 = 1

VARIABLE 12 = 1

VARIABLE 13 = 1

VARIABLE 15 1

VARIABLE 17 = 1

FEASIBLE INCUMBANT SOLUTION # 5

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1080909

VARIABLE 1 = 1

VARIABLE 2 = 1

VARIABLE 3 = 1

VARIABLE 4 = 1

VARIABLE 6 = 1

VARIABLE 7 1

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE 10 = 1

VARIABLE 11 = 1

VARIABLE 12 = I

VARIABLE 13 = 1

VARIABLE 16 = 1

VARIABLE 17 = 1

FEASIBLE INCUMBANT SOLUTION # 6

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1098202

VARIABLE 1 = 1
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VARIABLE 2=1

VARIABLE 7=I

VARIABLE 4 = 1

VARIABLE 6 = 1

VARIABLE 7 = 1

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE 10 = 1

VARIABLE 11 = 1

VARIABLE 12 = 1

VARIABLE 14 = 1

VARIABLE 16 = 1

VARIABLE 17 = 1

FEASIBLE INCUM4ANT SOLUTION # 7

OBJECTIVE VALUE OF INCUMBENT SOLUTION 0.1100451

VARIABLE 7 = 1

VARIABLE 2 = 1

VARIABLE 3 = 1

VARIABLE 4 = 1

VARIABLE 6 = 1

VARIABLE 7 = 1

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE 10 = 1

VARIABLE 11 = I

VARIABLE 12 = 1

VARIABLE 15 = I

VARIABLE 16 = 1

VARIABLE 17 = I

FEASIBLE INCUMBANT SOLUTION # 8
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OBJECTIVE VALUE OF INCUMBENT SbLUTiON = 0.1102149

VARIABLE 1 = 1

VARIABLE 2 1

VARIABLE 3 = 1

VARIABLE 4= 1

VARIABLE 6 = 1

VARIABLE 7 = 1

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE 10 = 1

VARIABLE 11 = 1

VARIABLE 13 = 1

VARIABLE 14 = 1

VARIABLE 15 = 1

VARIABLE 17 = 1

FEASIBLE INCUMBANT SOLUTION # 9

OBJECTIVE VALUE OF INCUMBENT SOLUTION 0.1107800

VARIABLE 1 = 1

VARIABLE 2 = 1

VARIABLE 3 = I

VARIABLE 4 = 1

VARIABLE 6 = 1

VARIABLE 7 = I

VARIABLE 8 = I

VARIABLE 9 = 1

VARIABLE i0 = 1

VARIABLE 11 = I

VARIABLE 13 = I

VARIABLE 15 = I

VARIABLE 16 = 1
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VARIABLE I = i

FEASIBLE INCUMBANT SOLUTION # 10

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1125093

VARIABLE 1 = 1

VARIABLE 2 = I

VARIABLE 3 = I

VARIABLE 4 = 1

VARIABLE 6 = 1

VARIABLE 7 = 1

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE, 10 = 1

VARIABLE 11 = 1

VARIABLE 14 = 1

VARIABLE 15 = 1

VARIABLE 16 = 1

VARIABLE 17 = 1

FEASIBLE INCUMBANT SOLUTION # 11

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1127499

VARIABLE 1 = I

VARIABLE 2 = 1

VARIABLE 3 = 1

VARIABLE 5 = I

VARIABLE 6 = 1

VARIABLE 7 = 1

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE 10 = 1

VARIABLE 11 = 1

VARIABLE 13 = 1
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.VARIABLE 18 =

VARIABLE i9= 1

VARIABLE 20 = 1

FEASIBLE INCUMBANT SOLUTION # 12

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1133375

VARIABLE 1 = 1

VARIABLE 2 = 1

VARIABLE 4 = 1

VARIABLE 5 = 1

VARIABLE' 6 = 1

VARIABLE 7 = 1

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE 10 = 1

VARIABLE 11 = 1

VARIABLE 15 = 1

VARIABLE 16 = 1

VARIABLE 17 = 1

VARIABLE 20 = 1

FEASIBLE INCUMBANT SOLUTION # 13

OBJECTIVE VALUE OF INCUMBENT SOLUTION = 0.1137217

VARIABLE 1 = 1

VARIABLE 2 = 1

VARIABLE 4 = 1

VARIABLE 5 = 1

VARIABLE 6 = 1

VARIABLE 7 = I

VARIABLE 8 = 1

VARIABLE 9 = 1

VARIABLE 10 = 1
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VARIABLE -11 =

VARIABLE 16=1I

VARIABLE 176 = 1

ISOLUTION OPTIMAL
1.000000 1.000000 1.000000E0 1.000000 1.000000

1.000000 1.000000 1.000000 .0000O00 1.000000

OPTIMAL VALUE = 0.1137217

I NUMBER OF FEASIBLE INCUMBENT SOLUTIONS =13
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Appendix H. Multi-timrte Period Concept of the Two-Stage MOLIP

Figure 16 illustrates how the two-stage MOLIP can be expanded to simultaneously

encompass 12 time periods for locating HFDFs in a SAR network. Only one set of arcs

needs to be integerized: the arcs emanating from super source 1 in stage one, an I the arcs

emanatingfrom super source 2 in stage two. Stations and bundles which are used by each

time block are located by first set of arcs. Application of this concept to the multi-time

period GSARP is a logical extension for future research as discussed in Section 7.5.

I

t,

I
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Figure 16. Multi-time Period Two-stage MOLIP Concept
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