
NPS ARCHIVE
1990.09
PLOSAY, J.

NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS

ENHANCED VAX 'VMS PROGR* MMING
SOLUTIONS WITH APPLICATIONS

FOR PRELIMINARY MARINE VEHICLE DESIGN

by

James R. Plosay

September 1990

Thesis Advisor. F.A. Papoulias

Approved for public release; distribution is unlimited.

•

classified

inty classification of this page

REPORT DOCUMENTATION PAGE

Report Security Classification Unclassified lb Restrictive Markings

Security Classification Authority

Declassification Downgrading Schedule

3 Distribution, Availability of Report

Approved for public release; distribution is unlimited.

erforming Organization Report Number(s) 5 Monitoring Organization Report Number(s)

Name of Performing Organization

ival Postgraduate School

6b Office Symbol

(if applicable) 34

7a Name of Monitoring Organization

Naval Postgraduate School

Address (city, state, and ZIP code)

onterev, CA 93943-5000

7b Address (city, state, and ZIP code)

Monterev. CA 93943-5000

Name of Funding Sponsoring Organization 8b Office Symbol
(if applicable)

9 Procurement Instrument Identification Number

Address (city, state, and ZIP code) 10 Source of Funding Numbers

Program Element No Project No Task No Work Unit Accession No

Tnie (include security classification) ENHANCED VAX, VMS PROGRAMMING SOLUTIONS WITH APPLICATIONS
)R PRELIMINARY MARINE VEHICLE DESIGN

Personal Amhor(s) James R. Plosay

i Type of Report

aster's Thesis

13b Time Covered
From To

14 Date of Report (year, month, day)

September 1990

15 Page Count

144

Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-

ion of the Department of Defense or the U.S. Government

Cosati Codes

Id Group Subgroup

18 Subject Terms (continue on reverse if necessary and identify by block number)

Preliminary ship design, VAX/VMS programming, VAX graphics

Abstract (continue on reverse if necessary and identify by block number)

A Mechanical Engineering Department project in which the VAX/VMS system was utilized to create an interactive menu
iven program to solve basic preliminary ship design problems.

Enhancement of an existing program was initiated to improve the user interface by adding user-friendly help information,

so, routines were written to calculate propulsive power requirements based upon the ship form coefficients selected and
mparisons made using the Method of Silverleaf and Dawson and the Admiralty Coefficient prediction method. Further

mputational routines were added to predict range and endurance figures for estimated voyage data and selected propulsion

int types, using the U.S. Navy Design Data Sheet DDS9400-1 methodology. Finally, the detailed printed report generated

the system was updated to include reports of these calculations for the users design study.

Distribution Availability of Abstract

unclassified unlimited same as report DTIC users

21 Abstract Security Classification

Unclassified

a Name of Responsible Individual

A. Papoulias

22b Telephone (include Area code)

(408) 646-3381

22c Office Symbol

ME Pa

) FORM 1473,84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

Enhanced VAX/VMS Programming

Solutions with Applications

for Preliminary Marine Vehicle Design

by

James R. J^losay

Lieutenant, United States Navy

B.S.,Nuclear Engineering, Pennsylvania State University, 1983

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1990

/; /O/")/)

Anthony xHealey, Chairman,

Department of Mechanical Engineer*

ABSTRACT

A Mechanical Engineering Department project in which the VAX/VMS system was

utilized to create an interactive menu driven program to solve basic preliminary ship

design problems.

Enhancement of an existing program was initiated to improve the user interface by

adding user-friendly help information. Also, routines were written to calculate

propulsive power requirements based upon the ship form coefficients selected and com-

parisons made using the Method of Silverleaf and Dawson and the Admiralty Coefficient

prediction method. Further computational routines were added to predict range and

endurance figures for estimated voyage data and selected propulsion plant types, using

the U.S. Navy Design Data Sheet DDS9400-1 methodology. Finally, the detailed

printed report generated by the system was updated to include reports of these calcu-

lations for the users design study.

111

tn

THESIS DISCLAIMER

A. SOFTWARE DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

B. COPYRIGHTS AND TRADEMARKS USED

The following copyrights and trademarks are used throughout the text of this thesis

and are considered the property of their registering corporations and owners:

Apple A trademark of Apple Computer Corporation

Lisa A trademark of Apple Computer Corporation

Macintosh A trademark of Apple Computer Corporation

ASSET A trademark of Boeing Company

CA-DISSPLA A trademark of Computer Associates, Incorporated

DEC A trademark of Digital Equipment Corporation

VAX A trademark of Digital Equipment Corporation

VAX/VMS A trademark of Digital Equipment Corporation

MS Windows A trademark of Microsoft Corporation

MS-DOS A trademark of Microsoft Corporation

Star A trademark of XEROX Corporation

IV

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND OF GRAPHICAL USER INTERFACES 1

B. TOOL BOX' AND PRELIMINARY SHIP DESIGN 1

C. WHY WINDOWING SCHEMES? 2

D. STANDARDS AND CONVENTIONS 4

1. Attribute Blocks 4

2. Code Documentation 5

II. DIALOG BOXES 6

A. FUNCTION OF THE DIALOG BOX 6

B. TYPES OF DIALOG BOXES 6

1. Visual Display Information Box 6

2. Conversational Dialog Box 7

3. Other Enhancements 9

III. PROPULSIVE POWER REQUIREMENTS 11

A. BACKGROUND 11

B. METHODOLOGY 11

1. Method of Admiralty Coefficients 12

2. Method of Silverleaf and Dawson 13

C. COMPARISON OF THE METHODS 17

D. THE TOOL BOX POWER PREDICTION MODULE IS

1. Operation of the Power Prediction Module 18

2. An Instructional and Illustrative Example 18

3. Power Prediction Module Output 35

a. SCREEN DISPLAYS 35

b. STORED DATA FILE 35

c. SPEED-POWER RELATIONSHIP Plots 36

d. REPORT MODULE Predicted Power Report 38

E. CONCLUSIONS 47

IV. ENDURANCE CALCULATIONS 48

A. BACKGROUND 48

B. METHODOLOGY 48

1. Method Of U.S. Navy, Design Data Sheets (DDS 9400-1) 49

C. COMPARISON OF THE METHOD 52

D. THE TOOL BOX ENDURANCE ESTIMATION MODULE 53

1. Operation of the Endurance Estimation Module 53

E. ENDURANCE ESTIMATION MODULE OUTPUT 55

1. REPORT MODULE Estimated Endurance report 55

F. CONCLUSIONS 55

V. CONCLUSIONS AND RECOMMENDATIONS 59

A. WINDOWING GUT'S AND PRELIMINARY SHIP DESIGN 59

B. CONCLUSIONS 59

C. RECOMMENDATIONS 60

APPENDIX A. TYPICAL DIALOG BOX SOURCE CODE 62

A. VISUAL DISPLAY INFORMATION BOX 62

B. CONVERSATIONAL DIALOG BOX 63

APPENDIX B. TOOL BOX POWER PREDICTION 64

A. SUBROUTINE POWER SOURCE CODE 64

B. SUBROUTINE POWER VARIABLE DECLARATIONS FILE 83

APPENDIX C. POWER PREDICTION TEST ROUTINE 84

A. SOURCE CODE 84

B. TEST ROUTINE OUTPUT 89

APPENDIX D. POWER PREDICTION REPORT MODULE SOURCE CODE 96

APPENDIX E. TOOL BOX ENDURANCE ESTIMATION 100

A. SUBROUTINE ENDURANCE SOURCE CODE 100

B. SUBROUTINE ENDURANCE VARIABLES DECLARATIONS FILE .115

APPENDIX F. TOOL BOX ENDURANCE ESTIMATION REPORT 117

VI

A. ENDURANCE ESTIMATION REPORT SOURCE CODE 117

APPENDIX G. OTHER SOURCE CODE 121

A. TOOL BOX MAIN PROGRAM 121

B. TOOL BOX MAIN PROGRAM VARIABLE DECLARATIONS 129

C. TOOL BOX MAIN SUB-PROGRAM VARIABLE DECLARATIONS . . 129

LIST OF REFERENCES 130

BIBLIOGRAPHY 132

INITIAL DISTRIBUTION LIST 133

Vll

LIST OF TABLES

Table 1. COMPARISON OF POWER PREDICTION METHODS 16

Table 2. COMPARISON OF DDS9400-1 ENDURANCE ESTIMATION 51

Vlll

LIST OF FIGURES

Figure 1. Iterative Design Spiral (typical) 3

Figure 2. Visual Display Information Dialog Box 8

Figure 3. Conversational Dialog Box Display 10

Figure 4. TOOL BOX Opening Menu Screen Display 19

Figure 5. POWER PREDICTION MODULE Opening Menu Screen Display ... 20

Figure 6. DATA ENTRY Display Screen at Initialization of KB Entry 21

Figure 7. INPUT DATA FROM FILE Filename Entry 22

Figure 8. DATA ENTRY Screen showing Mirror of User Input Values 24

Figure 9. DATA ENTRY Help Screen Display (1) 26

Figure 10. DATA ENTRY Display after Update 27

Figure 11. DATA ENTRY Help Screen Display (2) 28

Figure 12. DATA ENTRY Screen Display with all Input Changes 30

Figure 13. DATA STORE Display using Timed Dialog Boxes 31

Figure 14. DATA STORE Filename Screen Display 32

Figure 15. PLOT GRAPH Screen Display for Screen Plot 33

Figure 16. PLOT GRAPH Screen Display upon Completion of Disk Plot 34

Figure 17. STORED DATA File (Typical); Output from Worked Example 35

Figure 18. SPEED-POWER RELATIONSHIP Plot 37

Figure 19. REPORT MODULE Opening Screen Display 39

Figure 20. REPORT MODULE Request for Data Entry (Input) 40

Figure 21. REPORT MODULE Request for Data Entry (Output) 41

Figure 22. REPORT MODULE Report Output File Request 42

Figure 23. REPORT MODULE Output Device Request 43

Figure 24. REPORT MODULE Output Report, Page 1 of 2 45

Figure 25. REPORT MODULE Output report, Page 2 of 2 46

Figure 26. U.S.N. Design Data Sheet (typical), for Endurance Calculations 50

Figure 27. ENDURANCE Module Main Data Display Screen 54

Figure 28. User Display during Resetting of the Help Level 56

Figure 29. Endurance Estimation Report, page 1 of 2 57

Figure 30. Endurance Estimation Report, page 2 of 2 58

IX

I. INTRODUCTION

A. BACKGROUND OF GRAPHICAL USER INTERFACES

Advances in the electronics industries since the 1970s have enabled the development

of increasingly more capable and complex computer systems. To harness these systems,

software engineers have produced programs that enable todays users to have a degree

of computational power that was unfathomable just 10 years ago. As a result, software

programs have been increasing in complexity every year. This has turned out to be a

double edged sword; on the one hand the desktop computer power has enabled the de-

velopment and solution of problems that would require the resources of a mainframe

computer not too long ago, but it has also meant that the user is confronted with the

requirement to comprehend all of this capability. This has led to the development of

user interfaces that seek to simplify and manage the task confronting the user [Ref. 1:

pp. 115-139]. Among these user interfaces have been a host of graphical systems that

attempt to simplify the program presentation to the user by means of visual icons and

multiple screen windows for specific tasks. These interfaces are termed Graphical User

Interface, or GUI for short.

The very first development of the GUI occurred in the late 1970's at XEROX Cor-

poration's Palo Alto Research Center (PARC) and was embodied in the XEROX Star

Office System computer [Ref. 2]. The Star System was not agressively marketed and

languished in the PARC laboratories until 1984 when its basic ideas were consolidated

into the APPLE Corporation's Lisa, and subsequently the Macintosh system, which was

ultimately more commercially successful and exists even this day. Since that time several

other GUI's have been developed and popularized for the express purpose of interfacing

between man and machine [Ref. 1 : pp. 337- 371].

B. 'TOOL BOX' AND PRELIMINARY SHIP DESIGN

This brings us to the point of developing a program that will enable a user to solve

basic preliminary ship design problems without necessarily being completely familiar

with the inner details of the program code. Having at our disposal a Digital Equipment

Corporation (DEC) VAX VMS Network, we have taken a basic ship design program

previously developed [Ref. 3] at the Naval Postgraduate School and enhanced its use-

fulness by the careful application of graphical presentations. This program as it existed

previously computed some basic ship static and hydrodynamic stability parameters,

predicted the ship's turning circle, and printed a detailed hard copy report of those cal-

culations if so desired. It began the design process utilizing basic GUI principles but

did not reach its potential with respect to its ability to communicate with the user. This

does not at all reflect upon the abilities of its developer, but only indicates the scope of

the software developement task. In the short time available to the preliminary author,

he was able to implement many of the VAX Systems User Interface Services (UIS)

routines in the initial version. However, time and other constraints kept him from a full

implementation of the VAX systems capabilities for graphical presentation. This is the

point where this author has engaged the project and made some important enhance-

ments of the basic code and also some additions to its computational abilities.

Figure 1 on page 3 (from Ref. 4, p. 15), shows a generally accepted version of the

Iterative Design Spiral, typically used in Preliminary Ship Design to refine a design as

conditions and data become more concrete. TOOL BOX , as it existed, sought to define

the early parameters required for the design, and attempted to show quickly that the

design would be stable and maneuverable, essentially completing the boxes labeled (a)

and (b) in Figure 1. From this point we will progress further along the iteration pattern

and provide the calculations indicated in box (c) of Figure 1, and go back and try to

enhance some of what was accomplished before. The modular concept of TOOL BOX

supports this type of application where the design calculations will be performed time

and again, as the design data is finalized. Thus each module will provide the specific

calculation required by one of the Design Spirals major elements, and the modules can

be accessed in any order required.

Additionally, we will add some commonly utilized GUI features to enhance the

programs ease of use and information presentation, and attempt to make full use of the

VAX,'VMS Operating Systems capabilities for Graphical Programming in High Level

Languages.

C. WHY WINDOWING SCHEMES?

One common feature shared by most, if not all GUI's, is the ability to display mul-

tiple windows on screen simultaneously, with separate windows for separate tasks. This

scheme has the advantage of concentrating the user's attention on a certain window that

is considered the active window. Windowing GUI's are present in all forms of computing

environments today, from Microsoft Windows for MS-DOS based systems, to the Apple

Macintosh, to a variety of systems for UNIX and its derivatives, and many others.

JOwnEP-S
REQUIREMENTS | ^
v.wc SP* R

GEN REQUIREMENTS
QUALITY STANQARQS _ *- 4 SERVlC

SPECIAL CEaTuRES

OPERATIONAL

INFORMATION

(a)

(b)

(c)

(d)

SELECTION OF OESj_Cn PARAMETERS

(4 VAL. EA. V/y&_ B/T. C p .£..

A L'O

SELECTION Of APPROPRIATE

DESiGn FACTORS 6 Empirical
RELATIONSHIPS

PERMUTATION OF

vytr. B/T. C_.
*ysu

POWER CALCULATIONS
6 CA LC. Of REO'0.

FUEL OIL CAPACITY

STANDARD SERIES
RESISTANCE INTO

FUEL RATE RELATIONSHIP

PERMUTATIONS Of L VALUES

S CALCULATION OP WEIGHTS
ANO VOLUMES VOLUME RELATIONSHIPS

I32J Ships T

1ST INTERPOLATION

OF Ships wiTh PEO'C
FACTOR

SELECTION
STOWAGE

LEAST COST SHIP"

I

EVALUATION Of ThE

.
|
EFFECTS A RELATIVE COST

OF DESIGN CHANGES

"1

2H Ships t

COST RELATIONSHIPS

2ND INTERPOLATION SELECT
OF SHIPS "I** RE5"C CARGO

>*
ON

Sd SHIPS T

3fiO INTERPOLATION
FSEE3CARC CHECK & COST

FECI C Mil. FREE5GASC -UHVl

WEIGHT ft CE1TE 3 S relationships—*

—p»

15 SHIPS >

i;» INTERPOLATION
STaSil.Tv CHECK 4 COST

OPTIMIZATION ON S T trans inE=T'A RE-ATionShiPS

ft MIN S-ASIL'TT CRITERIA

OPERATIONAL C--E = E>.T!AL

t ShiPS T

5Th INTEPPOLATION-

COST optimization
On prismatic C0E cr

LIMITATIONS

!

Figure 1. Iterative Design Spiral (typical)

However windowing systems do allow for the presentation of information to the user in

a manner not obtainable by command-line systems.

For example, one of the most powerful ship design programs available today is

ASSET from Boeing Company, based in Seattle, Washington. This program employs

strictly a command-line interface where the user inputs various commands to the system

and awaits a prompt to continue. Nevertheless, for all the power available in ASSET,

it suffers from this command-line interface in the worst fashion. A user either has to

know the commands available and all the options for them, or they must have the ref-

erence manual handy at all times. Since manuals are generally not available for all users

at once, it is considerably harder to master all of its features without constant use and

practice.

My primary goal in this project was to enhance the methods used by TOOL BOX

in which information was presented to the user by utilizing some basic GUI presentation

methods such as 'pop-up' dialog boxes that would convey some important or useful in-

formation to the user at the appropriate time, then disappear when not required. This

form of windowing has the advantages of getting the user's attention quickly since the

display screen changes in a most abrupt fashion. Since the user will now be concen-

trating on the small piece of information conveyed by the dialog box, and any options

will be displayed for them at this time, no requirement for reference manuals or mem-

orization is needed. This technique is employed by all the GUI's available today, so the

method is consistent with current software design practice. GUI traits that we will in-

corporate will be timed display of choices or information, visual prompting for needed

input, multiple display of windows, and so forth. Also, we shall improve the

calculational power embodied in TOOL BOX by adding other routines based around the

same central core code and utilizing the same interface.

D. STANDARDS AND CONVENTIONS

1. Attribute Blocks

Attributes are used to describe the basic default format representation of text

and graphics. These attributes are stored in blocks that can be modified by the pro-

grammer. Whenever any modification (for example the screen font) is desired, it is

necessary to copy the basic attribute block to another numbered block and then

modify the attribute concerning screen fonts. Otherwise a previously modified block can

be used as the basic block and modified again. Attribute block can never be changed,

as it contains all the system defaults. All previous modifications remain unless changed

by the current modification. The system programmers references [Ref. 5 Chapter 9,

section 2.2] contain more on what modifications can be performed and how to accom-

plish the desired changes. The previous author has utilized blocks 1 thru 10 for his

preliminary code; in order to ensure that we don't mistakenly modify a block that is in

use in some other undocumented portion of the program, we will use blocks 20 thru 50

for our additions to the code. The documentation for the previous section of code is

incomplete, thus we will skip blocks 1 1 thru 19 as a safety feature. The DEC VAX/VMS
system allows up to 255 different attribute blocks, so we should have no problem utiliz-

ing separate blocks for this part and any subsequent additions. Optimization and min-

imization of code and resources is not an objective at this point in the development.

2. Code Documentation

This is the standard we will use to add documentation and comments into the

code section to explain each step to a reader. All too often a source code that has not

been documented internally by the author will be reviewed by another programmer and

the lack of clear concise documentation will lead to lengthy frustration. Therefore, our

method will be as follows;

• Comments in the source code shall begin with c*****, and every line that is not

intuitively obvious will have a comment preceeding it.

• Subroutines will be preceeded by a description of the purpose and utilization of the

routine. If the routine is called by more than one section, it will be noted.

• New sections or changes added by this author to existing code will be annotated
as changed, so credit may fall to the appropriate author.

• Complete copies of the TOOL BOX source code, including parts not covered in this

document, may be obtained from Professor F.A.Papoulias, Code ME, Pa, Naval
Postsraduate School, Monterev CA 93943-5000 or from Professor J.F. Hallock,

Code ME, HI, Naval Postgraduate School, Monterey CA 93943-5000.

II. DIALOG BOXES

A. FUNCTION OF THE DIALOG BOX

The use of 'pop-up' dialog boxes is fundamental in the operation of most GUI's in

that, at some point during the execution of the program, some element of information

will need to be conveyed to the user. TOOL BOX is designed in this manner to overcome

the limitations of command-line based ship design analysis programs thus every effort

will be made, mostly via context sensitive dialog boxes, to present information to the

user as it is required without requiring the reference manual to be handy. Basically the

dialog boxes function as follows:

1. The point of the program that the author deems important calls the dialog box
routine.

2. The dialog box is presented, displaying the information or choices available to the

user. This involves VAX LTS routines to create a display, to create a window, to

modify the text as the author desires for presentation, and to execute its function.

3. If some action is required by the user, the program waits for that action.

4. If only information is to be displayed, then a suitable time is given for it to be

viewed by the user.

5. Upon completion the dialog box is removed from view by the system. This step

involves VAX LTS routines to time the display to completion, delete the display

(and associated keyboards, windows, and viewports) and remove itself from the

screen.

The best resource for the actual routines used and the parameters required is the

specific system manual [Ref. 5 Chapter 18]. This is an indispensable source for the

VAX/VMS programmer.

B. TYPES OF DIALOG BOXES

Two distinct types of dialog boxes were required to be used. The similarities are

apparent, yet each functions differently enough to warrant separate discussion.

1. Visual Display Information Box

This type of dialog box is used to display information to the user at the appro-

priate time. No conversation between the user and the system is required, therefore the

routine can be fairly simple. An example of this type of display is the subroutine

SHOW_SAVE used during any attempt by the user to save a data file. Its purpose is

simple: it reminds the user not to save the file under the same name and extension as

was used previously in another part of the program, since this will cause the new data

file to overwrite the old one. This subroutine code is simple and is reproduced in Ap-

pendix A. Essentially the subroutine is called during an attempt to save a data file by

the system. It pops up and writes to a new display box and window the message about

using a different filename and extension. It does not need any action by the user, as it

is for informational purposes only. Since no action is required, it must remove itself

from display after an appropriate time has passed, yet give the user enough time to read

and comprehend its message. For this time delay we have used a system library call to

the VAX function LIBSSPAWN('WAIT 00:00:15'). This function 'spawns' a new

process that calls the intrinsic VAX function WAIT for a delay set as 15 seconds. The

time format is HH:MM:SS in hours, minutes, and seconds. Upon completion of this

delay, the display window is deleted and the system proceeds at the point the delay

process was spawned. This method is rather elegant in that only system functions are

used for the delay. The LTS routines required for this action are

UIS$CREATE_DISPLAY, UIS$CREATE_WTNDOW, UISS5ETJFONT,

UISSSOUNDJJELL, UISSTEXT, and UIS$DELETE_DISPLAY. The font and bell

routines are optional; however, they add to the display by making it both audible and

visually diiferent than the existing display when the window is created. Also, the bell

volume is fully variable by the programmer. A value of '0' for the second argument will

set the volume to its most quiet position, and an '8' will set it to the loudest position.

We have used a value of 'A' which creates a medium loud bell, loud enough to draw at-

tention but not to cause the user to be startled. If no volume is specified, then the sys-

tem defaults the bell volume to the workstation volume setting. The window created by

this process is shown as Figure 2 on page 8 below.

The presentation of this display lasts approximately 15 seconds depending upon

the number of windows and processes currently open on the terminal, and so will be

slightly longer if multiple concurrent process are active. Upon removal of itself, the

display returns to the window that was active when the dialog box routine was called.

2. Conversational Dialog Box

This type of dialog box is used to display information to the user and also to

give the user a choice for proceeding. An example of this type of procedure is the sub-

routine NOWHERE that is called by the mouse selection of a Reserve Module from the

Main Menu. This routine uses essentially the same UTS routines as the previous

method, but also incorporates a FORTRAN PAUSE statement that interrupts the

progress of the program. Using the PAUSE statement here gives the user two choices:

ENTER DATA

INPUT DATA

••• SAVING DEFINED DATA FILE ••
DO NOT USE SANE NANE A EXTENSION
AS DATA FILE FOR OTHER SUB-SECTION
PLEASE WAIT

PROGRAM WILL RESUME

INITIAL TRAMS STABILITY

LONGITUDINAL STABILITY

RETURN TO MAIN

EXIT TH£ PROGRAM

5. MEAN DRAFT (FT)

6. BEAM (FT)

7. DISPLACEMENT (LTONS)

0. BLXK. COEFICIENT (Cb) .

9. PRISMATIC COEF (Cp) .

10. MIDSHIPS COEF (Cm) .

11. VERT. PRISM. COEF. . . . (Cvp)

12. LONG. CENTER OF BRAV. (Xg)

•••RESULTS***

MAX. CROSS SECTION (Ax) .

WATER PLANE AREA (Aw) .

MISHIP5 SECTION AREA (Am)

.

VOLUMETRIC DISPLACEMENT

WATERPLANE AREA COEF. . . (Cwp)

LENGTH TO BEAM L/B. . .

LENGTH TO DRAFT L/T. . .

dd963

453 00

437.00

32 00

28.00

54.00

19301.

0.863

0.452

0.50

0.80

0.0

3299.3

26380.

864.00

0.67554E*06

1.1102

0.3009

14 . 156

Figure 2. Visual Display Information Dialog Box

1. Enter 'CONTINUE' or C and the program will resume at the point of inter-

ruption.

2. Enter 'EXIT' and the program will terminate at that point, deleting all displays and

windows associated with it, and return the user to the active process that was used

to call the program TOOL BOX.

This selection of choices was chosen since at this point the user is in the Main

Menu Window and the direction to proceed will be either, (1) to continue if that selection

is entered, or (2) to end the program and exit if the user has selected these future mod-

ules just out of curiosity. The user need not see what has been typed at the terminal

when a choice is made; however, if the calling window is visible at the bottom of the

screen as in Figure 3 on page 10, then the typed text reply will appear here. This is only

necessary if the user happens to be a poor speller, since the program will not proceed

without the entry of a properly spelled command. Thus the VAX shorthand command

for ' CONTINUE' as C is best utilized. Otherwise, the user enters a choice by typing

on the terminal keyboard followed by a carriage return, and the program proceeds along

that selection. The result of this process is shown in Figure 3 on page 10 after presen-

tation of the dialog box.

No timing of the display is required since it will remain there until a proper

command is entered. The routine UISSSOUND_BELL is used again to signal audibly

the user and gain his attention; the bell volume again is set to a medium volume at '4'.

The code for this routine is reproduced in Appendix A.

3. Other Enhancements

Although we have not used the technique here, is is possible to have a conver-

sational dialog box that shows the users reply in the window that requests it. For this

routine, we would use essentially the same format as in the subroutine NOWHERE,

except we would attach and enable a keyboard to the display by utilizing the UIS rou-

tines UIS$CREATE_KB and UIS$ENABLE_KB. Then a small routine would have to

be added to accept and display keyboard input into the window. This is not difficult;

and it might be helpful by allowing the user to see what has been typed as their reply,

thereby alleviating some errors caused by typing mistakes. This technique has not been

used here since there are only two allowable responses when using the FORTRAN

PAUSE statement; CONTINUE and EXIT. Any other response will be ignored without

exception and no action will be taken by the program until a proper response has been

entered. Upon completion of the routine, the attached keyboard would have to be dis-

abled and deleted by UIS routines and the text reply passed to the calling program as

input for some action. This sequence is possible and some use may be found for it later

in the development.

^-^H "TB HSHH
" " ~ THIS FEATURE NOT AVAILABLE ---

TYPE "CONTINUE" TO RESUME
OR "EXIT" TO END PROGRAMSTATIC STA

MANEUVERING

POWER PREDICTION
A PROGRAM FOR PRELIMINARY

ANALYSIS OF

SHIP CHARACTERISTICS

ENDURANCE
PROFESSOR F A PAPOULIAS

AND

GERALD K. MCGOUIAN

JAMES R PLOSAY

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

1969/90

FILE UTILITIES

GENERATE REPORT

EXIT THE PROGRAM

HsRUN TOOLBOX
FORTRAN PAUSE

I

Figure 3. Conversational Dialog Box Display

10

III. PROPULSIVE POWER REQUIREMENTS

A. BACKGROUND
One of the more useful pieces of information to have during preliminary ship design

is an estimate of the vessel's propulsion plant power requirements. This is especially

handy since the size of the plant required to drive the vessel will also give an initial es-

timate of volume required to enclose it, manpower required to operate it, and the cost

to purchase and maintain it. So a single 'ball-park' figure will go a long way towards

helping to advance the preliminary design.

One of the foremost sources of information and research conducted in this calcu-

lation was Rear Admiral David W. Taylor, USN(ret,dec), for whom the David Taylor

Naval Ship Research and Development Centers (DTRC) in Carderock and Annapolis,

Maryland were named. His studies for the then US Navy Construction Corps at the

beginning of this century still serve as required reading for students of ship design and

naval architecture [Ref. 6]. Some of this research has been duplicated and enhanced by

more recent scholars utilizing more powerful calculational abilities than Adm. Taylor

ever envisioned. These studies [Refs. 7, 8 , 9, 10] have resulted in some variations of

Adm. Taylor's basic equations and will be examined here for two methods of power

prediction that we will utilize.

B. METHODOLOGY
Many methods of power prediction exist in the literature and a short amount of re-

search will produce most of them. The list of methods begins with the 'Quick and Dirty'

method of Admiralty Coefficients, which assumes that an already established hull form

(parent ship) with its basic parameters is known and that it is simply being modified for

the new design. This method has been slightly modified [Ref. 8 : pp. 308- 310] and is

used here in that form. There are several graphical methods for power prediction that

require charted information on the specific hull form or a family of hull forms close to

the design in question. These methods will not be used since those charts would have

to be available in digitized form for all ship classes of interest. There is also an entire

class of prediction calculations based upon the total estimated hull form resistance to

movement through the water. This method will not be used here because it entails much

more detail than we desire, or have at this stage of design. Then there is a method ori-

ginally proposed by Silverleaf and Dawson [Ref. 9 : pp. 167- 196] and subsequently

11

modified by Stian Erichsen [Ref. 10 : pp. 83- 115] in a University of Michigan College

of Engineering departmental paper in 1971. This method will also be presented here and

the user can choose the desired result with care.

Some notes about the methods presented here must be discussed first, in order that

no potential conflicts arise later on:

• These methods were developed for monohull surface craft only; no capability to

predict power requirements for catamaran, trimaran, SWATH, etc., types of vessels

is intended.

• The resulting power requirement figures do not include added resistance due to

waves, fouling, or other environmental factors.

1. Method of Admiralty Coefficients

The first method to be used is based upon the Admiralty Coefficient since a

great deal of information about that Coefficient is available in the literature. This

method assumes that the ship's resistance is all frictional, and thus the power required

for propulsion varies proportionately as the cube of the ships speed. The Admiralty

coefficient A
c
for a vessel when no parent vessel is used is given by :

^ = 3.70(vT + -2
fr-) (i)

where L is length of vessel in meters between forward and aft perpendiculars and V is

speed of vessel in meters per second. Otherwise, if a parent vessel is available, the

Admiralty coefficient is given as

A 2/3 F3

where P
s
is parent ship power in kilowatts needed to make a speed of V meters per sec-

ond and A is parent ship displacement in metric tonnes.

Then, using that coefficient to characterize the vessel, we take

Pn = -^7" (3)

where Pn is power in kilowatts of the new ship needed to make the same speed V and A

is the new ships displacement mass in tonnes.

12

An improved version of this formula that incorporates almost all of the essential

ship parameters except that it neglects the influence of the block coefficient CB is given

by

P = i

7=—L (4)
15,000- 110/Jv'L

where n is propulsion shaft revolutions per second needed to make a speed of V meters

per second and all other parameters are as described previously above in metric units.

This form is easily equated to our more common form of English Horsepower (hp) units

by a simple conversion factor, and is the equation we will use for our first method of

power calculation in the program. Also, some obvious limitations to this formula ap-

pear readily enough and should be noted :

• L cannot be larger than 1941.177 meters or the numerator becomes a negative

value.

• The product of shaft speed n in revolutions per second and the square root of L
cannot exceed 136.364 or the denominator becomes a negative value.

• A realistic maximum shaft speed of 4 revolutions per second (240 rpm) limits ship

length even further to 1162.196 meters. This is not too much of an overall limita-

tion, but it is present nonetheless.

These limitations will not affect us for the most part but should be noted in any

event as they could end up being important. It should be noted further that this formula

(4) tends to fit special cases and types of ships. When used outside of these allowable

ranges, the results tend to produce erroneous expectations. According to Harvald,

[Ref. 7 : p. 290], "It is not often mentioned within which area the formulas can be ap-

plied". Thus we have a method that can be quite accurate for power prediction, if we

happen to fall within the allowable range, and which otherwise could generate a false

prediction. For the first method however, it will be satisfactory for an initial estimate.

We can then couple these results with the second method. If the results are close, we

can assume that our prediction is reasonable. If they depart, then we will have to use

them with caution.

2. Method of Silverleaf and Dawson

The second method that we will use for power prediction is given by Silverleaf

and Dawson [Ref. 9] as modified by S. Erichsen [Ref. 10]. It uses almost all of the ship

specific parameters of the design and is usually highly reliable for ships within the fol-

lowing ranges of speed - length ratio VkjyjL and beam - draft ratio BjT :

13

0.4 <(-=)< 1.2 (5)

and

2.0^(y)<4.5 (6)

with CB and length - beam ratio LjB for single screw ships

0.50 <CB < 0.86 (7)

3.33 <{\)< 9.50 (8)B

or for twin screw ships

0.54 <CB < 0.80 (9)

3.80 <(-^-)< 11.50 (10)
D

Where the parameters are specified as follows for these and the following equations :

Vk is ship speed in knots

VB is the ships Boundary Speed, which is that speed, for a given hull form, below
which the resistance coefficient does not vary greatly, and above which it begins to

increase rapidly, [Ref. 9 : p. 168].

L is ship length between perpendiculars in feet

B is ship beam in feet

T is ship draught in feet

A is displacement mass in tons

CB is the Block Coefficient given by

c«=w (")

for ships in standard seawater.

The Silverleaf and Dawson formula then is given by

_ (l+xW l2 V2

BKBTKvKB
d 421.bh(H400KLBP)

{ >

14

where Pd is delivered horsepower required at the propeller. Equation (12) will be used

as the second method of power calculation in the program development. The terms in

this formula are all specified for design parameters that may or may not be same as the

model from which the formula was derived. Thus some corrections need to be applied

to each parameter below. For a design that does not exactly match the model design,

then :

Utilizing ship speed at the Boundary Speed VB expressed in knots :

VB = {\.1-\ACB)JI (13)

Correcting for ship Length :

(\+x)

0.85 for L > 1000.0

0.85 + 0.001851"
l°°^ L

I
25

for L< 1000.0

(14)

Correcting for the Beam - Draft ratio

KBT —
0.982

0.96 + 5.4*10~4(10
067

r)

for B\T< 2.4

for B\T> 2.4

(15)

Correcting for ship speed Vk not equal to the Boundary speed VB :

Kv=
2.75 - 7.25(-p-) + 5.5(-jr~ f iorVjVB <\

* B * B

21.2 - 43.2(-~) + 23.0(-^)

2
for V\ VB > 1

VB *

B

(16)

Correcting for a ship hull that benefits from a design with a bulbous bow

KR =

1.00

0.95

for ships without a bulbous bow

for ships with a bulbous bow

(17)

15

Correcting for Hydrodynamic Efficiency of the hull form at L = 400.0 feet

^400 —

2.60-0.2917

2.38-0.2917

V
1/6

V
1/6

for a single screw

for twin screws

with a correction for ship length L not equal to 400.0 feet :

Klbp —

0.9196 + 2.31*10~4L - 7.5*10
_8
L 2

for L * 400.0

1.0 otherwise

(18)

(19)

Correcting for open water efficiency at propeller speed not equal to 120 revolutions per

minute, where :

Vo = >/().120 + <5»/o (20)

with

*70,120

0.98-0.55CB

0.90-0.33Q

for a single screw

for twin screws

and for propellor rotating speed N revolutions per minute

<5>/o
=

0.360-O.OO29A"

0.135- 0.001 1/V

for a single screw

for twin screws

(21)

(22)

Thus we have all the required parameters for the Silverleaf and Dawson formula.

This formula tends to be more accurate over the entire range of ship specific

parameters. The parameter limitations are delineated in the beginning and cover a wide

range of vessels.

16

C. COMPARISON OF THE METHODS
A quick comparison of the two methods utilizing equations (4) and (12) as generated

by a test code of the formulas and data from established merchant designs [Ref. 4 : pp.

137- 171] is presented in tabular form in Table 1.

Table 1. COMPARISON OF POWER PREDICTION METHODS

Ship Design
Design Power

(hp)

Admiralty
Method (hp)

S & D Method
(hp)

Large General Cargo 24.000.0 20.351.91 23,780.55

Container 'A' 1 7.500.0 14,127.90 11.503.22

Container 'B' 32,000.0 30,511.81 29,480.57

Roll On-Roll Off 37,000.0 28,573.58 27,435.27

LASH Barge Carrier 32.000.0 26.203.87 23.787.66

SEABEE Barge Carrier 36,000.0 26,772.95 21.918.27

Tanker A' 15,000.0 12,045.93 11,077.69

Tanker B' 45,000.0 53,068.73 36,030.91

LXG Tanker 43,000.0 39,727.77 37,910.40

Bulk Carrier 15,300.0 10,940.75 8,578.57

Ore Bulk Oil Carrier 24.000.0 21. "00.58 18.981.25

Immediately we can draw some conclusions of the two methods used here to calcu-

late propulsive power requirements;

• In all cases except one the Admiralty Method has underestimated the power re-

quirements, although after an allowance for a service and fouling margin, that

underestimation is not excessive. The one case where this estimation did exceed the

actual power requirements (Tanker 'B') the result was not grossly excessive, and
was in error of only 15 percent.

• The Silverleaf and Dawson Method also will always underestimate the power re-

quirements by a slight margin. This margin of error for underestimation is usually

not excessive and can be accounted for by service, fouling, and other margins.

A test program was used to generate the data for Table 1 since the TOOL BOX

screen displays would consume excessive space in this paper.

Also, the following should be noted :

• These values are computed for essentially calm seaways only. No added resistance

from waves in a rough sea is predicted by these methods.

17

• The figures shown are not the total plant requirement for propulsion, only that di-

rectly needed at the propeller to drive the ship. Thus margins for gear train losses,

service losses, fouling losses, etc must be added for a total plant size estimation

figure.

• And similarity, from Silverleaf & Dawson's formula there is also a correction for a

ship design that includes a hydrodynamically well designed (WD) bulbous bow.

For that case, the power requirement for propulsion is 95% of the power require-

ment shown, since the improved bow shape lessens the hull form resistance. Those
figures are also listed in Appendix C on the next line directly below the S & D
calculation.

Overall though, the two methods taken in combination do allow a fairly accurate

prediction of a designs propulsive power requirements. The results generated by this

module of TOOL BOX can thus be used to size and estimate the machinery box volume,

estimate the manpower required to maintain and operate the machinery plant, estimate

the cost of the propulsion plant, and so forth.

D. THE TOOL BOX POWER PREDICTION MODULE
Implementation of this algorithm of code into the existing TOOL BOX framework

constituted a fairly easy and straight forward process. An examination of the subroutine

methodology of the previous modules was made and the same basic pattern was fol-

lowed. The resulting code is shown in Appendix D and borrows many elements of the

STATIC STABILITY module (whose flow diagram was utilized) in addition to the vis-

ual display dialog boxes for HELP WINDOWS that present pertinent information to the

user and then disappear.

1. Operation of the Power Prediction Module.

The procedure used to operate the Power Prediction Module is essentially a

logical progression through the available menu choices. We will progress through the

screen displays in an example designed to show all the relevant points of the TOOL BOX

Power Prediction Module. It is understood that when the user is instructed to enter a

response to a program prompt, that they will follow-up that action by depressing the

Return key on the VT220 LK201 keyboard. That action is needed to complete any data

entry operation.

2. An Instructional and Illustrative Example

Shown in Figure 4 on page 19 is the TOOL BOX Opening Menu as the pro-

gram is initiated by the user. This screen is common to the core code of the program,

and all the program modules are initiated through this screen using the mouse device.

18

~ MAIN MINU]

STATIC STABILITY T00_ bo>:

VERSION IB 01

MANEUVERING

S PROGRAM FOR PRELIMINARY

ANALYSIS OF

SHIP CHARACTERISTICS

PROFESSOR F A PAPOULIAS

AND

GERALD . MCGOWAN

JAMES R PLOSBV

MBVBl POSTGRBDUBTE SCHOOL

MONTEREY. CALIFORNIA

1989/90

POWER PREDICTION

ENDURANCE

RESERVE MODULE

FILE UTILITIES

GENERATE REPORT

EXIT THE PROGRAM

i SRUN TOOLBOX

Figure 4. TOOL BOX Opening Menu Screen Display

The third mouse selection available to the user is now POWER PREDICTION

and a click on this selection (when the mouse pointer is in that box and the text has

become reverse highlighted) will initiate this module and call up its associated display

screen. The screen resulting from this selection is shown as Figure 5 on page 20.

As Figure 5 is displayed to the user, it should be noted that nothing is shown

in the DATA DISPLAY AREA on the right hand side. That is because no data is

passed in at initialization time. A mouse click on the First menu choice ENTER DATA

FROM KB will initialize the data entry subroutines and the program defaults will dis-

19

DhTh HISP.hY hPEh

ENTER DhT« FROM KB

INPUT D«TS FROM FILE

STORE DISPLAYED DftTfl

PLOT GR«PH TO SCREEN

PLOT GRflPH TO DISK

RETURN TO MFIIN

EXIT THE PPOGR«M

Figure 5. POWER PREDICTION MODULE Opening Menu Screen Display

play in the data region as shown in Figure 6 on page 21. Otherwise the user can click

the mouse pointer on the second box INPUT DATA FROM FILE and load a prede-

fined data file, perhaps one used before or created by the instructor. This sequence is

shown as Figure 7 on page 22, with an existing data file entered in the RESPONSE

AREA to be loaded for data entry.

20

i raui » PHI 01CTION UINOOU tl:

OPTIONS KENU DhTh DISP.hY hPEH

1

2

3

4

5

6

7

B

9

i

i

SHIP NAME

LENGTH (Lpp)

DESIGN DRAFT

. (FT) . .

. (FT) . .

. (FT). .

(LTONS)

. (Cb) . .

. (KTS)

.

(RPM)

.

GENCARGO

592 50

35.0

82.0

31995

0.66980

20.90

120

1.0

••••••••••••

•*••••••••••

20352

23775

22536

llll 1 Will IIWI1

INPUT DATA FROM FILE

BEAM

DISPLACEMENT

BLOCK COEFICIENT. . . .

SHIP SPEED

PROPELLER SPEED

NUMBER OF SHAFTS. . . .

StORE DISPLAYED DATA

PLOT GRAPH TO SCREEN

PLOT GRAPH TO DISK

»****END OF REQD INPUTS********

»RESULTS*

•••HORSEPOWER. (up) •••••••*•

MF THOD

RETURN TO MAIN

EXIT THE PROGRAM

P rSPONSE hP'h

ADMIRALTY

S.&.D.W/.NO BB.

S.&.D.W/. . . .BB.

BB= WELL DESIGNED BULB BOW. . .

.

INS TPUCT IONS

ENTER A LINE NUMBER

OR [RETURN] TO EXIT

[s

SRUN TOOLBOX

Figure 6. DATA ENTRY Display Screen at Initialization of KB Entry

21

OPTIONS KENU IihTh DISP_«Y hPEh

ENTER DATA FROM >t

STORE DISPLAYED DAIS

PLOT GRAPH TO SCREEN

PLOT GRAPH TO DIS>

RETURN TO MAIN

EXIT THE PROGRAM

(FORTRAN STOP
$RUN TOOLBOX

Figure 7. INPUT DATA FROM FILE Filename Entry

22

After the user clicks the mouse pointer on the ENTER DATA FROM KB se-

lection, the program calls in the stored default values of ship parameters. This is done

for several reasons:

• It makes little sense to see all zeroes for data by a new user. Default values will

give the user an idea of what is required.

• There are so many restricting data checks on allowable entries in the algorithm

(eqns. 5- 10) that the resulting HELP displays would consume inordinate

amounts of time (if all initial entries were zeroes). This is because as we progress

from zero length, beam, draft, displacement, block coefficient, ..., etc., to our final

values the error checking codes would be called in with almost every parameter
change due to the large changes in magnitude from zero to any realistic value.

• It speeds up the processing of the initial calculations.

Proceeding, note that, in the lower left hand INSTRUCTION'S box of

Figure 6 on page 21, the user is prompted to enter a line number for whichever line it

is desired to modify. This can be entered as an integer (1) or a real number (1.). The

program code does not care specifically one way or another. Suppose we wish to modify

the existing data from the set displayed, which comes from the LARGE GENERAL
CARGO vessel of Table 1 on page 17, to another set from that same table for the

TANKER B design. First we would need to change the data file name to a unique value

for that design. We would enter a 1 for the line to change, then enter the name of our

design. Notice that the user is prompted for the exact detail required for the corre-

sponding Line number chosen, as in the INSTRUCTIONS box at the lower left corner

of Figure 8 on page 24. So here we'll use BTANKER for our design name, as shown in

Figure 8 above the INSTRUCTIONS box, where the user will also note that their data

entry is mimicked in the RESPONSE AREA on the left middle screen box as shown.

This is one feature that will help the user : to have all input echoed back to the

screen as it is being entered, so that changes can be made on the spot if required. After

that entry is completed, this data will be written to the screen corresponding to the Line

entry that was modified, in this case Line 1.

23

POUfU I'hlDinDIN UlNDliU

OPTIONS VZW DhTh DISPlhY hPEh

1. SHIP NAME

2. LENGTH (Lpp) (FT) . .

3. DESIGN DRAFT (FT) . .

4. BEAM (FT) . .

5. DISPLACEMENT (LTONS5

6. BLOCK. COEFICIENT (Cb) . .

7. SHIP SPEED (K.TS) .

B PROPELLER SPEED (RPM) .

GENCARGO

582,50

35

82.0

31995.0

0.66980

20 80

120.0

1.0

20352

23775

22586.

INPUT D«T« FROM FILE

STORE CISPLfiYED D«T«

PLOT GRAPH TO SCREEN

PLOT GRAPH TO DISC 9. NUMBER OF SHAFTS

»*END OF REQD INPUTS*****

••RESULTS***

****»*HORSEPOWER, (HP) **********

RETURN TO MAIN

EXIT THE PROGRSM

PtSPOHSS hPEh
MFTHOD

BTANK.ER
ADMIRALTY

S.&.D.W/.NO BB

INSTRUCTIONS s.a.D.ui/. . . .BB

ENTER NEliJ SHIP NAME

[RETURN] TO EXIT

BB= WELL. DESIGNED. BULB. BOW. . . .

_

I s
HsRUN TOOLBOX

Figure 8. DATA ENTRY Screen shoving Mirror of User Input Values

24

Continuing then, we need to modify some other design parameters for our new

design, so we'll move on to Line 2, design LENGTH (LPP). For this entry we'll enter

a 2 for Line 2, then the value 1143.00 that corresponds to our design length.

Almost as soon as this operation is complete, a HELP WINDOW appears be-

cause we have violated a range requirement of one of the two sets of calculations.

Which specific equation we violated is unknown at this point, but the HELP WINDOW
tells us that the LENGTH/BEAM RATIO IS OUT OF RANGE for one of the calcu-

lations, as shown in Figure 9 on page 26. This screen is a timed display screen of the

type shown in Chapter 2 previously, so it will disappear after approximately 15 seconds.

The user can keep this display on screen if desired by depressing the VT220 key Fl which

corresponds to HOLD SCREEN for the VAX system. Then the screen message can be

copied or noted as to what problems might have arisen.

Also notice that in Figure 9 on page 26 that the Results Block on the lower

right corner of the display has been blanked to avoid confusion while this display is in

view. After this display has been in view for 15 seconds, it will disappear from view and

the algorithm will proceed. Upon completion of the calculations, the results will reap-

pear and the screen will be updated to include our changes to Line 2. This is shown in

Figure 10 on page 27. Notice in this case that the Silverleaf and Dawson result has been

set to zero, since we exceeded the algorithms limits on Length-to-Beam ratio as deline-

ated in Equation 8. The value we entered is perfectly reasonable; however, we made

such a drastic change in one parameter that is linked to another parameter through these

range limitations that we exceeded the range for — given by Equation 8. This display

(Figure 10) now shows the value for the Admiralty Prediction, so we can easily guess

that our data was invalid for the Silverleaf and Dawson Prediction. The Admiralty value

is valid, we just have no second value to correlate it against as desired. Notice also in

Figure 10 on page 27 that the Displacement value of Line 5 has been updated using

Equation 11, assuming a constant CB value.

Proceeding further towards our goal of entering the TANKER B design data,

we need to update the next item. Line 3, DESIGN DRAFT. Thus we'll enter a 3 for

Line 3, then 74.00 for the TANKER B draft. Again, almost immediately, another HELP

WINDOW appears, this time displaying a message that we have entered data that makes

the BEAM DRAFT RATIO OUT OF RANGE. Again, note that the Results Block has

been cleared since our design data has changed, making the previous calculations invalid.

We see this screen display in Figure 11 on page 28. This display shows that the same

25

» POWER PREDICTION FAILURE «««

TOOL BOX MAY FAIL TO ACCURATELY
PREDICT POWER REQUIREMENTS FOR
ADMIRALTY OR S & D METHOD DUE TO
LENGTH/BEAM RATIO OUT OF RANGE

PLEASE WAIT
PROGRAM WILL RESUME

PLOT GSftPH TO TJlSf.

PC lUPf. 10 MBIN

EXIT THE PROGRAM

RESPONSE HP Eh

9 NUMBER OF SHAFTS 10
•»*»*£^rj Qp R(.yij IN'-'U TS******** ************

•••RESULTS***

•HORSEPOWER (HP)

METHOD:

ADMIRALTY

S.&.D.W/.NO BB

S.&.D.UI/. . . .BB

BB=. WELL. DESIGNED. BULB BOW . .

.

Figure 9. DATA ENTRY Help Screen Display (1)

routine is used for all the error messages generated in the calculations section, making

it an efficient subroutine since it can display context sensitive help messages.

26

OPTIONS f'ENIJ DhTh DISP-hV hPEh

1. SHIP NAME

2 LENGTH (Lpp) (FT) . .

BTANK.ER

1143.00

35.0

82.0

62778.

0.669B0

20. BO

120.0

10
•••••**

••••••••••••

31914

O.OOOOOEfOO

O.OOOOOE+QO

•»»•••••••••

—
INPUT DATA FROM CUE 3. DESIGN DRAFT (FT) . .

4. BEAM (FT) . .

5. DISPLACEMENT (LTONS)

6. BLOCK. COEFICIENT (Cb) . .

7. SHIP SPEED (KTS) .

B. PROPELLER SPEED (RPM) .

STORE DISPLAYED DATA

PLOT GRAPH TO SCREEN

PLOT GRAPH TO DISK 9. NUMBER OF SHAFTS

••••END OF REQD INPUTS********

RESULTS

•••HORSEPOWER. (HP) **********

RETURN TO f*UN

EXIT THE PROGRAM

RESPONSE HP Eh
METHOD

ADMIRALTY

S.&.D.W/.NO BB

INSTRUCTIONS S.&.DID/....BB

ENTER A LINE NUMBER

OR [RETURN] TO EXIT

. BB=. WELL. DESIGNED BULB. BOW. . . .

•••••••••••••••A**

$RUN TOOLBOX

Figure 10. DATA ENTRY Display after Update

27

... POWER PREDICTION FAILURE ••
TOOL BOX MAY FAIL TO ACCURATELY
PREDICT POWER REQUIREMENTS FOR
ADMIRALTY OR S & D METHOD DUE TO
BEAM/DRAFT RATIO OUT OF RANGE
PLEASE WAIT

PROGRAM WILL RESUME

06

PLOT GRAPH TO DISK

RETURN TO MAIN

EXIT THE PROGRAM

RESPONSE HP Eh

MLFLLLL* JP LLU

NUMBER OF SHAFTS

»END OF REQD INPUTS

iwnu . uu.u

1.0

••RESULTS***

••••HORSEPOWER. (HP) •»*•*•»

METHOD:

ADMIRALTY

S.&.D.W/.NO BB

S.&.D.UI/. . . .BB

BB= WELL. DESIGNED BULB. BOW. . . .

Figure 11. DATA ENTRY Help Screen Display (2)

28

After another 15 second delay, the HELP WINDOW in Figure 11 disappears,

and we can continue. Proceeding along this route further, we must also change the data

for Lines 4, 5, and 7 to make all the neccessary changes to get to the TANKER B design

parameters. Notice here that we will not change Line 6 for the Block Coefficient CB ,

since the algorithm knows that we have uniquely specified Draft, Beam, Length, and

Displacement, thus from Equation 1 1 again, the Block Coefficient is directly specified.

At any time if we change either the Beam, Draft, or Length, then the code recalculates

Displacement assuming CB does not change. But if we force a new Displacement, then

the code calculates a new CB based upon Equation 1 1 and the specified Length, Beam,

and Draft. Finally, all the DATA is updated and our DATA DISPLAY AREA appears

similar to Figure 12 on page 30, with all the required data in place and new calculations

for Predicted Power appear in the Results Block.

At this point we can enter a simple Return key to exit from KEYBOARD
ENTRY mode, and the screen appears as in Figure 12 on page 30. The mouse pointer

is now enabled again, and we can proceed through the menu options. Here it would be

prudent to save our new data set for later use or retrieval, so we can select Option 3 on

the menu, STORE DISPLAYED DATA, to a file using the filename we gave on Line

1. Clicking on that Option will bring up another HELP WINDOW, reminding us to use

different and unique filenames for our data since saving files under the same name will

simply overwrite the previous data, rendering it useless in the future. This screen ap-

pears in Figure 13 on page 31 and uses another timed display dialog box developed in

Chapter 2 Figure 2 on page 8.

After the file save operation is complete, the program will inform the user of the

actual filename saved by writing it to the screen display in the INSTRUCTIONS box

as shown in Figure 14 on page 32. It is important to note here that the program uses

a default .DAT filename extension and truncates filenames to an 8.3 format. That is,

eight (8) letters plus the three (3) letters for the .DAT extension. Names longer than this

will be truncated to this format.

The user can now select the fourth option on the menu, PLOT GRAPH TO

SCREEN to have a CA-DISSPLA plot of speed versus power required plotted to the

VAX terminal screen. Selection of this option will show a screen display as seen in

Figure 15 on page 33 after the graph is calculated and plotted by the system. This

process takes a few seconds, so a message appears in the INSTRUCTIONS BOX for the

user suggesting that they sit back and relax for a moment. The time delay is not all that

lengthy, and the screen display will soon appear.

29

POUtP rvi mi lint. uiMiinu

OPTIONS KENU DhTh DISP-hY hPEh

1. SHIP NftME

2. LENGTH (Lpp) (FT) . .

3. DESIGN DRftFT (FT) . .

4. BEftM (FT) . .

5. DISPLACEMENT (LTONS)

6. BLOCK COEFICIENT (Cb) . .

7. SHIP SPEED (KTS) .

8. PROPELLER SPEED (RPM) .

BTftNKER

1143.00

74.00

22B.00

450910.0

0.B1836

15.90

120

1.0

INPUT DATA FROM FILE

STORE DISPLAYED DATA

PLOT GRAPH TO SCREEN

PLOT GRAPH TO DISK 9. NUMBER OF SHftFTS

53069

36031.

34229.

RETURN TO MAIN

••RESULTS"*

••••••HORSEPOWER. (HP) *•••*••••
EXIT THE PROGRAM

P-SPONSE hPEh
MF THfin

ADMIRftLTY

S.&.D.ID/.NO BB

INSTRUCTIONS S.&.D.W/. . . .BB

. BB=. WELL. DESIGNED BULB BOW . . .ENTER ft LINE NUMBER

OR [RETURN] TO EXIT

SPUN TOOLBOX

Figure 12. DATA ENTRY Screen Display >vith all Input Changes

Here we encounter the first difficult point of the program, deleting the

CA-DISSPLA plot and continuing our work. Although a number of methods have been

tried, the easiest method of deleting the plot from the screen is to click the mouse pointer

on the calling window just visible at the lower edge of the TOOL BOX windows, in order

to bring this window to the foreground. Now a simple carriage return will delete the plot

window, and the user can again click the mouse pointer on the TOOL BOX display

window (now in the background) to bring it back to the foreground, and continue.

This method is archaic, but it is the only consistent method of deleting the display this

30

Figure 13. DATA STORE Display using Timed Dialog Boxes

author has found. It does not seem entirely intuitive, but it works. A better method

must be found.

Alternatively, the user can select the next screen option, Option 5, PLOT
GRAPH TO DISK to plot the same screen display graph to a disk file. Ifwe select this

option, again, some time is involved in plotting the CA-DISSPLA graph, so the program

informs the user of this in the INSTRUCTIONS area as before.

This graph plotting operation takes approximately 3 minutes to complete with

no progress updates for the user to follow, so some patience is required. When the plot

31

i? PnwiR minu iiiim uiNiinu »

OPTIONS MEHU DhTh JISP-HV HPti H

1. SHIP NAME

2. LENGTH (Lpp)

3. DESIGN DRAFT

4. BEAM

5. DISPLRCEMENT

6. BLOCK COEFICIENT. . , ,

7. SHIP SPEED

8. PROPELLER SPEED

. (FT) .

. (FT) . .

. (FT) . .

(LTONS)

. (Cb) . .

. (KTS) .

. (RPM) .

BTRNKER

1143.00

74.00

228 00

450910.0

81836

15.90

120

1.0

»»»#»**»**

53069.

36031

34229.

ENTER DATA FROM KB

INPUT DATA FROM FIIE

STORE DISPLAYED DATA

PLOT GRAPH TO SCREEN

PLOT GRAPH TO DISK 9 NUMBER OF SHAFTS. . .

.

»»«.»•»«*

»»#»» END OF REQD INPUTS'

*»*RESULTS»»*

RETURN TO MAIN

EXIT THE PROGRAM

RESPONSE HP Eh
mf THnn

RDMIRRLTY

S.&.D.W/. NO BB.

BOUJ. . . .

INS TPUCT IONS S.&.D.W/. . . .BB

. BB= WELL DESIGNED , BULBFILE SAVED R5

BTRNK.ER . DRT

I s
H$PtUN TOOLBOX

Figure 14. DATA STORE Filename Screen Display

is complete, the program informs the user via another HELP WINDOW dialog box

shown in Figure 16 on page 34 and uses a timed dialog box routine similar to those

developed previously. This window informs the user of the filename that the graph was

saved under, STD00001.DAT by default. It also informs the user how to get a hardcopy

printout of the plot using the high resolution of the VAX Laser printer.

Upon completion of this display, the user can either EXIT in one of the modes

discussed before or can continue to develop other ship designs using different parame-

ters. One further note is needed though; CA-DISSPLA by default appends new plots

32

OPTIONS M

ENTER DATA 1

INPUT DATA 1

STORE DISPlI

PLOT GRAPH 1

RETURN TO mJ

EXIT THE p|

RESPONSE J

INSTRUCT if

calculating!

PLEASE RELAl

HsRUN TOOLBOX 1

SPEED-POWER RELATIONSHIP

(J.D 2.0 4.0 fil) 8.0 10.0 [&B 14.0

SPEED tfv'TS)

;20.0

ft *#•##*•*»••***

53069.

! 36031

34229.

Figure 15. PLOT GRAPH Screen Display for Screen Plot

onto old existing plot files under the same filename, so any new plot will not have unique

VAX/VMS filenames or version numbers. This can be something of a sore spot if you

only desire the last plot in a large plot file; however, the file can be edited with the EDT

EDITOR to remove old plots. But a bonus is that new plots will not delete old plots

since the VAX/VMS system defaults to storing only the two most recent version of a file,

so no data will be lost due to that method, it may just be at the end of a very large file.

33

•«* SAVING DEFINED GRAPH FILE •••

GRAPH IS BEING WRITTEN TO DISK
USING THE FILENAME:

"STDOOOOl. DAT"

YOU CAN OBTAIN HARDCOPY PLOTS
BY THE DCL COMMAND:

"PRINT/QUEUE'LAtER STDOOOOl. DAT"

AFTER TERMINATION OF TOOLBOX.

PLEASE WAIT
PROGRAM WILL RESUME

EXIT THE PROGROM

RESPONSE hPEh

•••RESULTS***

••••HORSEPOWER. (HP) *******

METHOD:

ADMIRALTY

S.&.D.W/.NO BB

S.8.D.W/. . . .BB

BB= . WELL . DESIGNED . BULB. BOW.

53069

36031

34229.

****<#»*».**»»»*#«•»*»»***,»-*»**** »»»»•»»»»»»*

[RUN ON 9/5/90 USING SERIAL NUMBER 913Z AT NAUV POSTGRAD SCHOOL
PROPRIETARY SOFTWARE PRODUCT Or COMPUTER ASSOCIATES. INC.
|m32 UIRTUAL STORAGE REFERENCES. B READS. O WRITES.

Figure 16. PLOT GRAPH Screen Display upon Completion of Disk Plot

Hopefully, we have shown enough of a complete process here to allow a new

user enough familiarity to accomplish preliminary design tasks using this Module.

34

3. Power Prediction Module Output

There are four (4) primary outputs of the Power Prediction Module;

• The screen displays, for quick calculations or information.

• The saved data file, used alone or in conjunction with the Report Module.

• The Speed-Power Relationship plots.

• The Report Module printout of the Power Prediction data, which is much more
useful than the second item, but requires the use of another Module.

a. SCREEN DISPLA YS

These displays have been dealt with in some depth, and there is little else to

say except to use the program, get familiar with it and its capabilities, and use it as a

design tool. The speed at which new calculations can be performed by simply changing

any variable make this type of program excellent for the What if..... type of calculations,

without the boring repetitiveness of hand performed calculations.

b. STORED DATA FILE

Figure 17 is an example of a stored data file typically output from the pro-

gram. In this case, it corresponds to the previous developmental example, the

BTAXKER.DAT file:

BTANKER
1143.0
74. 000
228. 00

0.45091E+06
0. 81836
15.900
120. 00
1. 0000
53069.
36031.
34229.

Figure 17. STORED DATA File (Typical); Output from Worked Example

As it is easily seen that, unless the user is familiar with the order of the re-

sult variables, very little information is easily obtained from Figure 17, although all the

information is there in the same order as the screen displays dealt with previously.

35

c. SPEED-PO)VER RELA TIONSHIP Plots

Figure 18 on page 37 is also from the BTANKER development and is the

disk plot that resulted from that data. The screen plot is identical to this plot.

As can be seen from this figure, much useful information is displayed on this

plot. In the lower righthand corner we have both the filename that the plot was devel-

oped under and the time it was developed. Also, we have a full plot of speed in knots

versus power in horsepower for the full range of ship speeds from zero (0.0) to the design

operating speed (PW_VK). It is easily noted that all three plots trend upward in a cubic

relationship to speed through the water. One interesting point however was the tend-

ency of the Silverleaf and Dawson plots to start at very high power at low speeds, de-

crease to a minimum, then trend upwards again similar to the Admiralty plots. This

error can be ignored since our equations show a definite relationship of speed at or near

the Boundary Speed VB from Equation 13. At low speeds, the ship speed is far away

from the required proximity to the Boundary Speed, so the prediction may not be en-

tirely valid. That plus the speed-to-length ratio at low speed may preclude the ships

power from even being predicted at these extremely low speeds. The solution then was

to find the minimum Predicted Power level and its corresponding speed in the power

matrix and set all Predicted Power points at speeds slower than that speed equal to the

minimum Predicted Power. This has the effect of saying to the user that some speed

exists at which efficient operation will result in minimum power useage at speeds below

that particular speed. At operations above that speed, the penalty is seen in the cubic

growth of the power required curve. This is a side benefit of using this Predicted Power

curve Relationship that would not have been obvious without the plots.

36

SPEED-POWER RELATIONSHIP

o °.

o

o
d

, ^ o
Pk in

o
CO

co
W C\)

go

o

q
d

in

-B B-

° r

0.0 2.0

"POWER CI

C= ADU. POK
•=S&D P0W
D= SiiD POW

O D B-

URVES *' 1'*

ER
R W/0 BP
F */ BB

-B— -B Q-

,y

4.0 G.O 3.0 10.0

SPEED (KTS)

14.0

BTANKER
20-JUL-1990 06:56:25.20

Figure 18. SPEED-POWER RELATIONSHIP Plot

37

d. REPOR T MODULE Predicted Power Report

It was also desired to use the existing Report Module to add an additional

report using the data generated by the Power Prediction module. This subroutine source

code is shown in Appendix D and is consistent with the display and data entry format

of the other Report sections. Again, we will use our BTAN'KER data file and develop

an illustrative example for the report generated by this section.

After the user has finished generating the design data using the Power Pre-

diction Module, the data file must be saved to user storage and the filename noted for

future use. Then, exiting the Power Prediction module using the RETURN TO MAIN
option, the user can now select the MAIN MENUs GENERATE REPORT option us-

ing the mouse pointer. This selction will produce a new screen display for the Report

Module as shown in Figure 19 on page 39. This report menu is common to all the

sections of the Report Module, with the new addition of Option 3, CREATE POWER
PREDICTION RPT.

The user can select this option using the mouse device, and the screen dis-

play will shift to appear as Figure 20 on page 40, with the users selection highlighted in

reverse video and the program query filling the right hand side. Here we will enter

BTANKER.DAT in response to the programs request for the data filename and exten-

sion to be used in the report. Notice that what we type is also echoed to the screen

display as we type it.

Upon entering the data filename as requested, the right hand side of the

screen display will clear, and again the user will be queried for another entry, this time

for the filename to be given to the produced report, as shown in Figure 21 on page 41

For this we can give any name desired, however a logical choice would be the same

filename as the data with a .RPT or .PRN extension to indicate what it contains. We

have chosen to use BTAN'KER.PRN, although any other selection would be adequate.

• Again, the user is cautioned not to use the same name and extension as another

pre-existing file (unless that data is to be discarded) since the VAX System will only

save two copies of a file with the same name and extension. Thus it is possible for

old data files to be deleted by the system if the user is not careful.

Upon entering the output filename and extension as requested in

Figure 21, the right hand side will again clear, and the report will be written to disk

storage using the filename specified by the user. At this point, the user can enter EXIT

and be returned to the MAIN MENU screen, or the Report we have just generated can

be sent to an output device. This selection is option 5, PRINT A REPORT, and is

38

CPEATE MANEUVERING REPORT

CREATE STATIC STAB REPORT

CREATE POWER PREDICTION RPT

CREATE ENDURANCE REPORT

PRINT A REPORT

tXIT

EXIT THE PROGRAM

«RUN TOOLBOX

Figure 19. REPORT MODULE Opening Screen Display

shown in Figure 22 on page 42 after the selction has been made. Here the program will

again query the user for the filename and extension of the report to be printed. Any

existing filename and extension can be used, but it would be prudent to print out the

report that we have just finished generating. So here we'll enter BTANKER.PRN as

requested, which is shown in Figure 22, to complete the action.

Finally, the program needs to know what output device to be used to print

the report on, and it will query the user for this information as shown in Figure 23 on

page 43. At this point we must know the VAX system names for output devices, either

39

iy 5* ^ MMIM Ml Nil | »|

[

[

[

[

[

[

[

ENTER THE FILE NAME

AND EXTENSION OF THE

DATA FILE TO BE USEE

OR [RETURN] TO EXIT

BTANKER.DAT

CREATE HANEUVERING REPORT

CREATE STATIC STAB REPORT

CREATE ENDURANCE REPORT

PRINT A REPORT

exit

EXIT Tut PROGRAM

Imt » HUN TOOLBOX

Figure 20. REPORT MODULE Request for Data Entry (Input)

LASER, LA210_i (i= 1,2), or LA75_i (i= 1,2), as valid printing devices. For this exam-

ple, we'll enter LASER as shown, and the report file will be sent to the named device

as requested. At this point we can EXIT, or accomplish another print task, if we have

generated multiple data files from the POWER PREDICTION Module. In this manner,

multiple rqports can be created and printed in one session, so long as unique files contain

the input data required.

40

ENTER THE FILE NAME

AND EXTENSION TO BE

ASSIGNED TO THE REPORT

OR [RETURN] TO EXIT

BTANKER.PRN

CREATE MANEUVERING REPORT

CREATE STATIC STAB. REPORT

CREATE ENDURANCE REPORT

PRINT A REPORT

EXIT

EXIT THE PROGRAM

ESRUN TOOLBOX

Figure 21. REPORT MODULE Request for Data Entry (Output)

41

ENTER THE FILE NAME

AND EXTENSION OF THE

REPORT TO BE PRINTED

OR [RETURN] TO EXIT

BTANKER.PRN

CREATE MANEUVERING REPORT

CREATE STATIC STAB. REPORT

CREATE POWER PREDICTION RPT

CREATE ENDURANCE REPORT

1 II IIIMl—

EXIT

EXIT THE PROGRAM

ESRUN TOOLBOX

Figure 22. REPORT MODULE Report Output File Request

42

ENTER THE PRINTER TO

USED TO PRINT THE FILE

LASER

CREATE MANEUVERING REPORT

CREATE STATIC STAB REPORT

CREATE POWER PREDICTION RPT

CREATE ENDURANCE REPORT

EXIT

EXIT THE PROGRAM

I
•s

SRUN TOOLBOX

Figure 23. REPORT MODULE Output Device Request

43

(1) PREDICTED POWER Output Report. Shown in Figure 24 on page

45 and Figure 25 on page 46 is the Report file created by the Report Module, using the

data we created from the BTANKER development. As can be seen, some other useful

information is given in the Report that was not available in either the stored data file

or via the screen displays.

We have added a calculation for some of the Coefficients of Form

that are so readily used in preliminary ship design at various points, and are always

helpful to have handy. We have made them available here in the Report since they

would not comfortably fit on the Screen Displays shown previously.

44

TOOL BOX

POWER PREDICTION REPORT

THIS REPORT WAS GENERATED USING THE PROGRAM

TOOL BOX WHICH WAS DEVELOPED TOR THE NAVAL

ENGINEERING DEPARTMENT OF THE

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

PROFESSOR F. PAPOULIAS

AND

LT. GERALD MCGOWAN
LT. JAMES PLOSAY

1989/90

PAGE 1 OF 2 / POWER PREDICTION

Figure 24. REPORT MODULE Output Report, Page 1 of 2

45

POWER PREDICTION REPORT

THE INPUT SHIP PARAMETERS ARE AS FOLLOWS

THE REPORT IS LOCATED IN- FILE : BTANKER.PRN
THE INPUT DATA FILE USED IS : BTANKER.DAT
A***

DESIGN PARAMETERS
SHIP NAME IS BTANKER

LENGTH BETWEEN PERPENDICULARSFT..,

DESIGN DRAFT FT. . .

DESIGN BEAM FT...

DESIGN DISPLACEMENT LTONS .

DESIGN DISPLACEMENT LTONS.

1143.00

74.0000

228.000

450910.

450910.

COEFFICIENTS OF FORM********************
BLOCK COEFFICIENT: 0.818360
SPEED-LENGTH RATIO: 0.470299
BEAM-DRAFT RATIO: 3.08108
LENGTH-BEAM RATIO: 5.01316
**

DESIGN OPERATING SPEED (NOM)KNOTS.

PROPULSION SHAFT SPEED RPM

.

NUMBER OF PROPULSION SHAFTS

1*********1 r*****************************
DESIGN RESULTS (HORSEPOWER)

ADMIRALTY POWER

SILVERLEAF & DAWSON POWER:

DESIGN W/O BULBOUS BOW.

DESIGN W/ BULBOUS BOW.

>****•**********************! ****** i

POWER ESTIMATIONS PRESENTED ARE BASED UPON FOLLOWING

:

(1) METHOD OF ADMIRALTY COEFF1

C

T F"T.~

HARVALD, Sv.Aa. , "RES1STAPC5 "I' rl :"" ' '
••'

SHIPS", JOHN WILEY & SOU?, ' "" VOF'' ,
"

. .
I '0 3

(2) METHOD OF SILVERLEAF AND TV.'-"!!. A? MODIFIED BY
ERICHSEN: ERICHSEN,S., REFOFT Mo. 123,
"OPTIMUM CAPACITY OF SHIPS AND POFT TEFMIMALS"
UNIV. OF MICHIGAN, ANN ARPOD ,»J.: 10 ~i

15.9000

120.000

1.00000

53068.7

36030.9

34229.3

S.

PAGE 2 OF 2 / POWER PREDICTION

Figure 25. REPORT MODULE Output report, Page 2 of 2

46

E. CONCLUSIONS

Thus we conlude the development and examples for the Predicted Power calcu-

lations section. Using the data displayed in Table 1 on page 17 we can conclude that

our methods seem reasonably accurate enough for preliminary design work, and cer-

tainly when both values are available.

It would be possible to use this Module and the Report with only one of the three

Power predictions available by the Module, either just the Admiralty Prediction, or the

two Silverleaf and Dawson Predictions. But this gives us no real feel for the accuracy

of the predicted value by cross checking it against another value from an independently

developed method. But using these figures and some additional data from reference

material [Ref. 4 : p. 127, Ref. 11 : p. 16J, we can begin to get the preliminary data for

Machinery plant size, manning requirements, costs, fuel storage requirements, and other

vital pieces of the puzzle that we need to continue the iteration and design the vessel.

47

IV. ENDURANCE CALCULATIONS

A. BACKGROUND
Another useful calculation to perform during Preliminary Ship Design once the ex-

pected Propulsive Power requirements are known, is the Voyage Endurance calculation.

From this calculation, a number of useful figures arise: expected range of the vessel at

design operating speed, 1he amount of fuel required to be carried for a certain length

voyage or speed, the added weight of that fuel to the vessels total displacement, and so

on. These figures will give us the total amount of fuel that needs to be carried, and thus

the tank volume required to store it, the additional dimensions and size required to

contain that storage, the relative efficiency of using one type propulsion plant versus

another, and so forth. Additionally, this type of programmed calculation is well suited

to the What if.... type of iterations where design variables are modified to see their

overall effect upon the design. Specifically, items such as:

• What if we speed up our transitfrom xx to yy knots? How will that effect the amount

offuel we have to carry?

• What if we change from geared diesels to steam turbine propulsion equipment? What
effect will that change in fuel economy have on the amount offuel we are required to

carry?

As we can see here, this application is well suited to the applications of modern GUI

programming that can reduce or eliminate the need for repetitious hand calculations,

thus making it relatively simple to modify a parameter of the preliminary design at any

point and check its effect upon the overall design.

B. METHODOLOGY
Basically, we can proceed along one of several directions: (l) we can set the design

speed and voyage length, then see how much fuel would be required, or (2) we can set

the amount of fuel carried and how fast we want to go, then see how far we can go, or

(3) we can set the voyage distance and amount of fuel available, then see how fast we

can go to get there. The first option, (l), seems to be the most likely candidate for cal-

culation since it provides the most important factor in this stage of design: the total re-

quirement of fuel in weight and volume that we are required to carry. The other options

can be achieved through an iterative process by adjusting the voyage length or speed to

get a desired weight of required fuel stowage or fixed volumetric limitations.

48

From several sources [Ref. 6 : pp. 173- 174, Ref. 12 : pp. 253- 282], there are al-

gorithms for calculating endurance based upon all the relevant ship data that should be

available up to this point in the preliminary design. The essential core parts of the al-

gorithms are the same however, so we will only examine the most thorough and involved

method researched.

1. Method Of U.S. Navy, Design Data Sheets (DDS 9400- 1)

This method, [Ref. 13], utilizes a tabular form provided by the Navy to its sur-

face combatants to calculate all the essential parameters that we require here for en-

durance calculations. This method and its form , which is shown in Figure 26 on page

50, is dated from 01 November 1963, but is still valid in all its calculations.

In order to complete the calculation, the following sets of data must be known:

• Endurance Variables:

(1) Endurance Required (miles)

(2) Endurance Speed (knots)

(3) Endurance Fuel Load (tons)

• Design Parameters:

(4) Full Load Displacement (ltons)

(5) Rated Full Power (shp)

(6) Design Endurance Power (shp; at 1,2, and 3)

(7) Cruising Electric Load (kW)

(8) Tailpipe Allowance Factor (%)

• Engineering Parameters:

(9) Propulsion Fuel Rate (lbs; shp- hr)

(10) Auxiliary Generator Fuel Rate (lbs/kw- hr)

(11) Other Fuel Consumption (lbs/hr)

Then, from these sets of numbers, we can proceed to calculate the estimated

endurance in terms of the amount of fuel we are required to carry, in the following

manner (using (n) as referring to the data parameter required from the above list):

1. First we need the Average Endurance Power, estimated as (6) x 1.10. We will call

this result (A). Then we can find the ratio of (A) to the rated Full Power,

(A) I (5) and call this result (B).

2. At (A), we also need to know the Propulsion Fuel Rate in (lbs/shp- hr). We will

call this item (C).

49

'•

SECURITY CLASSFICA
(Lacluding Group No.)

TION

A

DATE

APPENDIX B
SURFACE SHIP ENDURANCE CALCULATION FORM

DESIGN

PREPARED 3Y

CHECKED BY

(1) Endurance Required, Miles

EXAMPLES

Steam Diesel or Gas Turbine

3,000 1.200

(2) Endurance Speed, Knots 15 6

(3) Full Load Displacement, Tom 3,000 400

(4) _
Rated Full Power, SH? 50,000 700

(5) Design Endurance Power 5 (2) it (3), SHP 3,000 150

(6) Arerage Eodurance Power, SKP

:

3,000 x 1.10- 3,300 150x 1.10- 165

(J)x 1.10

(7) Rauo, Afge. End. SHP/rated F.P. SHP: .066 0.24

(6)/(4)

(B) Cruising Elecric Load, KT 500 30

(9) Calculated Propuliioo Fuel Rate 9 (6), — 0.505

lbs/SHP-hr.
'

CIO) Calc. P;od. Fuel Consumption, lbs/hr: — 0.505 x 165 - 83.4

(9) x (6)

(11) Caic. Aux. Gen. Fuel Rate<? (S), :— 0.69O

lbi/XT-hr.

(12) Calc. Aux. Gen. Fuel Consumption, — 0.690 x 30= 20.8

!bs/hr: (11) x (8)

(13) Caic. Fuel Consumption For Other — 15.0(heaur.g)

Services, Ibs/hr.

(14) Total Calc. all-purpose Fuel Consump- — 83-4 x 20.8 * 15-0 = 119.2

tion, Iba/hr: (10)+ (12)- (13)

(15) Calc. All-purpose Fuel Rate, Ibi/SHP-hr: 1.00 119.2/165 - 0.722

(14)/(6) or Heat 3ajar.ee

(16) Fuel Rate Correction Firar Based on (7) 1.04 1.04

(17) Specified Fuel Rate, lbs/SHP-hr: 1.00 x 1.04 - 1.04 C.722 x 1.04 = 0.750

'(15)x (16)

(IS) Avge. Endurance Fuel Rate, lbi/SHP-hr: 1.04 x 1.05 - 1.092 0.750 x 1.05 - 0.7S7

(17)x 1.05

(19) Endurance Fuel (Burnable), Tons:

(l)x (6)x (18)/(2)x 2240

3000 x 3300 x 1.092 ,„ 12CCx }65x 0.7=7 _ n t

15 x 2240 6 x 2240

(20) Tailpipe Allowance Factor 0.9S 0.95

(21) Endurance Fuel Load, tons: (19)/(20) _

REFERENCES FOR SOURCE OF DATA

322/0.98 - 329 11.6/0.95 - 12.2

Design Endurance Power

All-Purpose Fuel Rate

Installed Fuel Load

Figure 26. U.S.N. Design Data Sheet (typical), for Endurance Calculations

50

3. Using (C) we can estimate the Propulsion Fuel Consumption, (C) x (A), in (lbs/hr),

and label this result (D).

4. Also, we will need to know the Auxiliary (Electric) Generator Fuel Rate in

(lbs/kW-hr), and the 'Other' Fuel Rate in (lbs'hr). We will label these as (E) and

(F). The information required to make these calculations should become available

after the preliminary Propulsion requirements have been estimated, and a plant

type is selected from the available literature.

5. Using (E), we can estimate the Generator Fuel Consumption as (E) x (7), which

we will label as (G), and then (D) + (0) + (F) which we will call the Total Fuel

Consumption, (H).

6. Now we need a Fuel Consumption Correction, based upon the magnitude of (B).

This parameter will be labeled (I).

7. Using (I), we can get the Specified Fuel Rate (I) x (A), and label this as (J).

8. Finally, we can obtain the Average Endurance Fuel Rate, (I) x 1.05, labeled (K).

9. This figure will give rise to the Theoretical Endurance Fuel required, or

(l)x(A)x(K)

(2) x 2240.0

which we will label as (L).

(23)

10. Before we can finish the calculation however, we must account for (8), the Tailpipe

Allowance that indicates how much fuel is carried that is below the suction point

of the fuel oil transfer system and is thus unaccessible for use. This varies with tank

geometry, being 0.95 for broad shallow tanks, and 0.98 for tall narrow tanks.

11. Using (8), we can calculate the Endurance Fuel Load as (L) / (8) and save this as

the desired result.

From the development above, we can easily have the user input the required

values (1) through (11), and have a simple routine to calculate required fuel load in tons,

as well as total trip time at the input values of speed and distance, volumetric storage

requirements for the fuel using standard conversion factors, and total percent of full load

devoted to fuel storage. These last parameters are useful for checking the validity of the

design and whether or not it is reasonable in terms of standard design practices.

51

C. COMPARISON OF THE METHOD

Using the same Design Data as in Chapter 3 from Reference 4 that was used to

generate Table 1 on page 17, we can compare our estimated Endurance calculations

against the actual Endurance Fuel Oil load values of some modern commercial vessels

at their design endurance load and speed.

Table 2. COMPARISON OF DDS9400-1 ENDURANCE ESTIMATION

Ship Design
Actual Endurance
(Tons Fuel Oil)

DDS9400-1 Endurance
(Tons Fuel Oil)

Large General Cargo 3596.00 3200.8

Container 'A' 3380.00 2435.1

Container 'B' 6943.00 4032.4

Roll On-Roll Off 3465.00 4617.7

LASH Barge Carrier 4928.00 40S8.7

SEABEE Barge Carrier 5997.00 5169.9

Tanker 'A' 3624.00 2662.9

Tanker 'B' 17857.00 8427.1

LNG Tanker 4400.00 6040.7

Bulk Carrier 1868.00 2115.0

Ore Bulk Oil Carrier 4845.00 4024.2

The values used here in comparison are for a general voyage of 10,000.0 nautical

miles at rated power, using fuel economy values from the literature [Ref. 11 : p. 16], and

an estimated cruising electric load given by KW = 0.0\5shp + 1.6N + 9jN + 80.0, where

shp is cruising shaft horsepower and Ar

is the number of crew and passengers onboard,

with the resultant electic load in Kilowatts (k\V).l All other data is obtained from Ref-

erence 4, pages 137- 171, and the calculations were performed using TOOL BOX screen

displays.

2

1 Rule-of-Thumb equation for Preliminary' Electic Load calculations obtained from Naval Sea

Systems Command, Washington D.C.

2 Other standards used for unknown values include: Tailpipe Allowance of 0.95, Auxiliary

generator fuel oil rate of 0.700 lb/kW'-hr, and 'other' fuel oil rate of 15.0 lb/hr.

52

D. THE TOOL BOX ENDURANCE ESTIMATION MODULE
1. Operation of the Endurance Estimation Module

The major operations of the ENDURANCE Module function the same as all

the other modules. A quick examination of Figure 27 on page 54, will show that the

first three mouse selection functions: ENTER DATA FROM KB, READ DATA FROM
FILE, and STORE DISPLAYED DATA are all consistent functions from the other

modules. The fourth selection, CALCULATE ENDURANCE LIMIT, performs the ac-

tual calculation of fuel load for the data as it is shown on the program screen. Notice

from the screen display shown in Figure 27 that the last two required data points, lines

10. and 11. are highlighted by an asterisk. These two data points have the calculational

routine tied in to them so that as this data is modified, the calculations are performed

and the screen updated immediately. The reasoning for this is that these are the signif-

icant variables that will be modified most often. Also, these values will most likely not

be entered until all the other variables are set to non- zero values, saving the time in-

volved in tracking through the HELP WINDOW error displays during the program in-

itialization. Otherwise, if a higher line number is modified, the user will need to enter

the new value, hit RETURN to exit keyboard data entry mode, and click the mouse

pointer on the fourth selection, CALCULATE ENDURANCE LIMIT. The function-

ing methodology, data entry process, and HELP windows function similarily to the

POWER ESTIMATION Module that we have just covered in some depth, so they will

not be repeated here.

The other new feature that has been added to this module is the fifth mouse

selection shown in Figure 27, that is labeled CHANGE HELP LEVEL ON/OFF. This

new feature has been added because of the limitations imposed on the programmer due

to having only a small area available for information presentation to the user in the

INSTRUCTIONS area at the lower left corner. This small area limits the available

number of lines of text information that can be presented to the user to provide hints

or examples of input data that is required. We can easily institute context sensitive

HELP WINDOWS using our previously developed dialog box routines, but wanted the

ability to provide the user the ablity to disable HELP information and prompting for

each value if they desire once they become proficient. This has been accomplished using

a simple subroutine named SET_HELP_LEVEL that is called from the ENDURANCE
main menu, and resets a pointer that is an input value to the SET_HELP windowing

routine used to create and display the help information. The HELP level setting is ON
by default each time the ENDURANCE Module is called from the MAIN MENU, so

53

7" rmuiPMiFi iTMiK iniN uihimiu mi

OPTIONS t'EHU JhTh DISP.hY hPEh II

1 . SHIP NAME

2. FULL LOAD DISPLACEMENT (TONS)

3. FULL RATED PLANT POWER (SHP)

4. AVG ENDURANCE POWER (SHP)..

5. CRUISING ELEC LOAD (K.W)

6. TAIL PIPE ALLOWANCE #)

7. CRUISING MAIN FUEL RATE

8. CRUISING ELEC FUEL RATE, , .

,

9. CRUISING OTHER FUEL RATE. .

.

10. •EST. ENDURANCE RANGE (MILES)

11. *EST. ENDURANCE SPEED (KNOTS)

CONT-A

22080.

17500.

17500.

468.00

. 95000

0.48000

0.70000

15.000

10000.

20.000

EHTER DATA FROM KB

INPUT DATA FROM Flit

STOOE DISPLAYED DATA

CALC ENDURANCE LIMIT

CHANGE HELP LEVEL ON/OFF

RETURN TO MAIN

2435 .

1

500.00

92532.

11 . 020

EXIT THE PROGRAM

•RESULTS FROM CALC»»
RESPONSE hPEh

EST. ENDURANCE FUEL LOAD (TONS!

ELAPSED TRIP TIME (HRS) :

FUEL STORAGE REQUIREMENTS (FT
A
3lINSTRUCTIONS

SELECT AN OPTION

WITH THE MOUSE

FUEL WEIGHT ALLOWANCE CK-FL) :

.

HsRUN TOOLBOX

Figure 27. ENDURANCE Module Main Data Display Screen

an advanced user can simply reset the help level indicator upon entering this module if

they so desire. Figure 28 on page 56 shows this process and the display window that

informs the user of this selection. Alternatively, the user can set the help level indicator

back to ON at any time during the progress of the program, without any loss of conti-

nuity. For this case, the screen display shown would be exactly similar to Figure 28

except that the instructions would be reversed.

• NOTE: Setting the HELP_LEVEL indicator to OFF does not disable the presen-

tation of HELP WINDOWS containing error messages or information messages.

54

This feature solely pertains to the parameter definition displays presented during

the process of entering data from the keyboard in this module.

Thus the user has the ability to determine some of the functionality of their

work environment by changing the way in which information is presented. Once a de-

sign begins to develop, there will be less need for the parameter definition windows, so

this option will allow the user the flexibility of definitions only when they are desired.

The user could also get a program parameter definition by entering that data line num-

ber while HELP_LEVEL is ON, without changing the actual value entered.

E. ENDURANCE ESTIMATION MODULE OUTPUT

Again, the available output methods are essentially similar to those of the other

modules, except that in this case there is no CA-DISSPLA graph output available. The

screen displays, and stored data files are all closely related to those presented previously,

so we won't devote space to reviewing them.

1. REPORT MODULE Estimated Endurance report

Examining the printed report available from the REPORT Module, we are pre-

sented with a two page report detailing all the Endurance variables and the results

obtainined from the ENDURANCE Module as shown in Figure 29 on page 57, and

Figure 30 on page 58. The method of obtaining a final printout of the report is identical

to that used by any of the other modules incorporated into TOOL BOX, and any

printout device available may be used.

F. CONCLUSIONS

Thus we conclude the development and discussion of the Endurance Estimation

Module. The usefulness of the information calculated here can be very helpful in de-

termining the size of the storage tanks used for Fuel Oil, the predicted or estimated

amount of Fuel Oil stowage required in tons, and the percent of full load that this

amount constitutes. The parameters that we have calculated all become essential ele-

ments of the iterative design process shown in Figure 1 on page 3, and thus the easier

we can make the process of obtaining them, then the entire design process will become

easier.

55

HELP SYSTEM SETTXM6S ••••
CHANGING HELP LEVEL FROM

HELP WINDOWS ON
TO

HELP WINDOWS OFF
PLEASE WAIT

PROGRAM WILL RESUME

RETURN TO mniH

EXIT THE PROGBftM

U LHU1J1HH LLLL F ULL HH I L U.JJUUU '

9. CRUISING OTHER FUEL RATE 15.000

10»EST. ENDURANCE RANGE (MILES). 10000.

11. *EST. ENDURANCE SPEED (KNOTS) . 20 000

••RESULTS FROM CALC**

EST. ENDURANCE FUEL LOAD (TONS) 2435.1

ELAPSED TRIP TIME (HRS) : 500. 00

FUEL STORAGE REOUIREMENTS (FT
A
3) 92532.

FUEL WEIGHT ALLOWANCE &-FL) : . . 11.020

Figure 28. User Display during Resetting of the Help Level

56

TOOL BOX

ENDURANCE LIMIT REPORT

THIS REPORT WAS GENERATED USING THE PROGRAM

TOOL BOX WHICH WAS DEVELOPED FOR THE NAVAL

ENGINEERING DEPARTMENT OF THE

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

PROFESSOR F. PAPOULIAS

AND

LT. GERALD MCGOWAN
LT. JAMES PLOSAY

1989/90

PAGE 1 OF 2 / ENDURANCE LIMIT

Figure 29. Endurance Estimation Report, page 1 of 2

57

ENDURANCE LIMIT REPORT

THE INPUT SHIP PARAMETERS ARE AS FOLLOWS

THE REPORT IS LOCATED IN FILE : dtanker.prn
THE INPUT DATA FILE USED IS : dtanker.dat
**

DESIGN PARAMETERS
SHIP NAME IS dtanker

DESIGN FULL LOAD DISPLACEMENT: 22080.0
(LTONS)

DESIGN FULL POWER LEVEL: 17500.0
(SHP)

DESIGN ENDURANCE POWER LEVEL: 16000.0
(SHP)

DESIGN CRUISING ELECTRIC LOAD: 500.000
(KW)

DESIGN FUEL TANKS TAIL PIPE ALLOWANCE: 0.950000
(%)

DESIGN MAIN PROPULSION FUEL ECONOMY: 0.450000
(LES/SHP-HR)

DESIGN ELECTRIC PLANT FUEL USE RATE: 0.250000E-01
(LBS/KW-HR)

DESIGN OTHER FUEL USE RATES: 0.100000E-01
(LBS/HR)

DESIGN RANGE: 3000.00
(NMILES

)

DESIGN CRUISING SPEED: 21.9000
(KNOTS)

CALCULATED ENDURANCE FUEL LOAD: 552.260
(TONS-FUEL OIL)

CALCULATED JOURNEY TIME ALLOWANCE: 136.990
(HRS g DESIGN SPD & DISTANCE)

CALCULATED FUEL STORAGE REQUIREMENTS: 20986.0
(FT'3 VOLUMETRIC STORAGE)

CALCULATED FUEL RATIO OF FULL LOAD: 2.50120
(I OF DESIGN FULL LOAD)

i *******

i

t***********************i t ***** i

ENDURANCE LIMIT VALUES PRESENTED ARE BASED UPON
FOLLOWING:
(1) U.S. NAVY DESIGN DATA SHEET DDS9400-1 FORMAT

CALCULATIONS USING ESTIMATION FACTORS FOF
FOULING, MACHINERY INEFFICIENCIES, ETC

PAGE 2 OF 2 / ENDURANCE LIMIT

Figure 30. Endurance Estimation Report, page 2 of 2

58

V. CONCLUSIONS AND RECOMMENDATIONS

A. WINDOWING GUIS AND PRELIMINARY SHIP DESIGN

We have seen in the original paper [Ref. 3] that we could design and program a

Windowing GUI to accomplish preliminary ship design calculations using the capabili-

ties of the VAX/VMS User Interface Services (UIS) routines and the FORTRAN pro-

gramming language. Further, we have shown here that we could use these capabilities

to provide context sensitive HELP information to the user, and enhance the user inter-

face by the addition of Dialog boxes that provide information at appropriate moments

during the execution of the program, thus negating a requirement to have a Users

Manual handy at all times, or to require specific and lengthy training in the use of the

program.

B. CONCLUSIONS

These capabilities provide us with the ability to develop a powerful and easy to use

in-house development environment for working with preliminary design problems that

is easily expanded with new Modules and calculational routines as the needs of the

Students and Faculty evolve, and that places no limitations on the developer. Specif-

ically, we can summarize the attributes of TOOL BOX in the following manner:

• Easily utilized by design engineers and students, without lengthy training or com-
plicated users manuals, to provide basic ship design parameters and study the ef-

fects of changing those parameters in an interactive design environment using

modern graphical programming techniques.

• Follows accepted progression along an Iterative Design Spiral commonly in use in

the Marine Industry today, thus affording the developer a logical progression thru

the Preliminary Design process.

• Provides valuable information in a timely fashion to the developer in an easily ac-

cessed manner, thus avoiding the constraints of current Computer Aided Design

(CAD) programs that do not utilize modularity.

• Easily enhanced by the addition or modification of any module.

• Easily programmed in whatever development language is most familiar or appro-

priate. Here we have used FORTRAN; the UIS routines however are non-specific,

and can be utilized by any language supported on the VAX Network, including C
and PASCAL.

59

C. RECOMMENDATIONS
Throughout the design and programming of the additions to TOOL BOX that we

have made, we have kept a fairly lengthy wish list of things that we would do better or

different given the opportunity. Things that I feel need to be accomplished in the next

version include the following:

• Continue the progression along the Iterative Design Spiral, continuing to add
functionality and utility to the core TOOL BOX code.

• Figure out a method of having more AST functions enabled simulaneously than
we now use. It has been reported by the original author that too many of these

functions enabled simultaneously causes a system slow-down and sluggishness.

There should be a means to get around this capability.

• Reprogram the opening menu, and perhaps the Module menus, to accomodate a

wider range of user choices. As it stands currently, the Opening Menu has a single

RESERVE module left for use. This needs to be increased if we are going to

accomodate the entire design spiral of Figure 1 on page 3 into TOOL BOX. The
mouse boxes could be made smaller or grouped into two or more columns to

accomodate this feature.

• Another possibility would be to group the Module functions into sub-groups, per-

haps having a single Main Menu box used to select the two functions we have ac-

complished here, instead of each Module having its own selection box on the Main
menu. Then there would need to be sub-menus to select which of the two functions

was desired from those available to the sub-group.

• Enhanced use of color would make the system more user friendly and visually at-

tractive. The HELP windows could easily be made different in color from the rest

of the program, thus distinguishing them from the main program.

• Find a means of adding a FILE-NOT-FOUND recovery capability to the READ
DATA FROM FILE selections that appear on all of the Module menus, thus

avoiding program crashes due to a simple spelling mistake in data entry procedures.

• Find a means, perhaps thru some assembly language routines, to significantly in-

crease the speed of the program. There are a few places where the system response

has diminished as the code size grew. This program now accounts for roughly 8000
lines of FORTRAN source code, a language that has never been known for its

speed.

Finally, our last recommendation is that the development of TOOL BOX continue

along these lines and those already established. This program could become a unique

and easily adaptable tool for the Total Ship Systems Engineering (TSSE) curriculum at

NPS Monterey. This program would provide a friendly computer-based development

environment for the TSSE students and greatly aid in preliminary design problems, thus

allowing the students to concentrate on new technologies and methods, rather than

laboriously computing oft-required, and oft-changing variable parameters such as those

provided here.

60

Complete copies of the TOOL BOX source code, including parts not covered in this

document, may be obtained from Professor F.A. Papoulias, Code ME/Pa, Naval Post-

graduate School, Monterey CA 94943-5000.

61

APPENDIX A. TYPICAL DIALOG BOX SOURCE CODE

A. VISUAL DISPLAY INFORMATION BOX
This is the source code for the pop-up information display boxes utilized in the

program.

SUBROUTINE SHOW_SAVE

C *

C THIS SUBROUTINE POPS UP A DIALOG BOX TO INSTRUCT THE USER NOT *

C TO USE THE SAME DATA FILE NAME AS USED IN A PREVIOUS PROGRAM *

C SECTION [SINCE IT WILL OVERWRITE THE OLD ONE CAUSING ERRORS *

C OR LOST DATA] . IT IT CALLED BY THE SUBROUTINE THAT SAVES THE *

C DATA FILES *

C *

C

IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF !

CHARACTER*34 SAVE1/'*** SAVING DEFINED DATA FILE *** '/

CHARACTER*34 SAVE2/' DO NOT USE SAME NAME & EXTENSION '/

CHARACTER*34 SAVE3/'AS DATA FILE FOR OTHER SUB-SECTION'/
CHARACTER*34 SAVE4/ ' PLEASE WAIT '

/

CHARACTER*34 SAVE5/ ' PROGRAM WILL RESUME' /
REAL Y_POSN

C*****CREATE THE DISPLAY FOR THE DIALOG BOX
VD_SAVE=UIS$CREATE_DISPLAY(0. 0,0. 0,10. 0,5.0,20. 0,6. 0)

C*****CREATE THE WINDOW TO DISPLAY THE TEXT IN
WD_SAVE=UIS$CREATE_WINDOW(VD_SAVE, ' SYS$WORKSTATION'

,

'HELP BOX'

)

C*****COPY ATTRIBUTE BLOCK *0' AS BLOCK ' 21
' AND CHANGE THE FONT SIZE

CALL UIS$SET_FONT(VD_SAVE ,0,21,' DTABER0R03WK00GG0001UZZZZ02A000 ')

C*****siGNAL THE USER TO GET THEIR ATTENTION
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

C*****WRITE THE TEXT INTO THE WINDOW
Y_P0SN=4.
CALL UIS$TEXT(VD_SAVE,21,SAVE1,0.2,Y_POSN)
Y_POSN=Y_POSN-. 8

CALL UIS$TEXT(VD_SAVE,21,SAVE2,0. 2,Y_POSN)
Y_POSN=Y_POSN-. 8

CALL UIS$TEXT(VD_SAVE,21,SAVE3,0. 2,Y_POSN)
Y_POSN=Y_POSN-.

8

CALL UIS$TEXT(VD_SAVE,21,SAVE4,0. 2,Y_P0SN)
Y_POSN=Y_POSN-. 8

CALL UIS$TEXT(VD_SAVE,21,SAVE5,0. 2,Y_P0SN)
C*****SPAWN A NEW PROCESS TO WAIT 15 SECONDS AND COMPLETE PROCESS

CALL LIB$SPAWN('WAIT 00:00:15')
CALL UIS$SOUND_BELL('SYS$WORKSTATION 1

,4)
CALL UIS$DELETE_DISPLAY(VD_SAVE)
RETURN
END

62

B. CONVERSATIONAL DIALOG BOX

This segment of code produces the dialog boxes that require user input to continue.

SUBROUTINE NOWHERE
QJcftJcftftftjfftltftMtftit-if-it-ff-kitrkft'jt-fyfticit-k'fy-fr-ieif**************************************

C *

C THIS SUBROUTINE IS CALLED BY A MOUSE BUTTON SELECTION OF AN *

C OPTION THAT IS NOT ENABLED YET. IT POPS UP A DIALOG 'HELP' *

C BOX THAT INSTRUCTS THE USER AND GIVES THEM THE OPTION OF *

C CONTINUING BACK TO THE PROGRAM AT THE POINT OF INTERRUPTION *

C OR ENDING THE PROGRAM ENTIRELY. *

C *

C

IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE ' SYS$LIBRARY: UISUSRDEF

'

CHARACTER*34 HINT1/'*** THIS FEATURE NOT AVAILABLE ***'/
CHARACTER*34 HINT2/' TYPE "CONTINUE" TO RESUME '/

CHARACTER*34 HINT3/ ' OR "EXIT" TO END PROGRAM '/

REAL Y_P0SN
C*****CREATE THE DISPLAY WINDOW FOR THE DIALOG BOX

VD_TEST=UIS$CREATE_DISPLAY(0. 0,0. 0, 10. 0,5. 0,20. 0,5. 0)
C*****CREATE THE WINDOW TO DISPLAY THE HELP TEXT

WD_TEST=UIS$CREATE_WINDOW(VD_TEST, ' SYS$WORKSTATION' ,

'HELP BOX'

)

C*****SET THE SCREEN FONTS WE DESIRE FROM ATTRIBUTE BLOCK '0* TO BLOCK
C*****'2l' AND CALL THE FILENAME OF THE FONT

CALL UIS$SET_FONT(VD_TEST,0,21,'DTABER0R03WK00GG0001UZZZZ02A000')
C*****siGNAL THE USER ON PROCESS PAUSE FOR DISPLAY OF HELP BOX

CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)
C*****pRINT THE TEXT AS WE WANT IT

Y_P0SN=4.
CALL UIS$TEXT(VD_TEST,21,HINT1,0.4,Y_POSN)
Y_POSN=Y_POSN-l
CALL UIS$TEXT(VD_TEST,21,HINT2,0. 4,Y_P0SN)
Y_POSN=Y_POSN-l
CALL UIS$TEXT(VD_TEST,21,HINT3,0. 4,Y_POSN)
PAUSE

C*****siGNAL THE USER PROCESS RESTARTED
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

C*7V***RETURN TO CALLING PROCESS AT POINT OF INTERRUPT
CALL UIS$DELETE_DISPLAY(VD_TEST)
RETURN
END

63

APPENDIX B. TOOL BOX POWER PREDICTION

A. SUBROUTINE POWER SOURCE CODE
This is the source code for the TOOL BOX Power Prediction module and all the

subroutines called by the module. The INCLUDE File TOP_POWER.FOR follows this

section.

THIS SUBROUTINE IS THE MAIN PART OF PROPULSIVE POWER CALCULATIONS.
IT SETS UP SCREENS AND CONTROLS POWER PROGRAM ACTIONS.

IT IS CALLED FROM THE MAIN TOOL BOX MENU BY THE "POWER PREDICTION"
SELECTION USING THE MOUSE. IT REQUIRES THE FOLLOWING INPUTS FOR
OPERATION AFTER INITIALIZATION:

PW_FNAME
PW_LPP
PW_NSHAFT
PW_DISP
PW_VK
PW_B
PW_T
PW_CB
PW NRPM

2)

SHIP NAME GIVEN TO SAVED DATA FILES
SHIP LENGTH BETWEEN PERPENDICULARS (FT)
NUMBER OF PROPULSION SHAFTS (1 OR
DISPLACEMENT (TONS STD SEAWATER)
SHIP SPEED (KTS)
SHIP BEAM (FT)
SHIP DRAFT (FT)
SHIP BLOCK COEFFICIENT
SHAFT SPEED (RPM)

CHAR
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

AND CALCULATES THE FOLLOWING INTERMEDIATE VALUES:

SUBROUTINE POWER

C
C

C

C

c

C

c

C

C

C

c

c

C

c

c

c

c

C

C

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

PW_NRPS
PW_LPPM
PW_VKM
PW_DISPM
PW.VB
PW_SLR
PW_BTR
PW_LBR
&&&&&&&

SHAFT SPEED (RPS)
SHIP LENGTH BETWEEN PERPENDICULARS (METERS)
SHIP SPEED (METERS PER SECOND)
SHIP DISPLACEMENT (METRIC TONS)
S&D BOUNDARY SPEED VALUE
S&D SPEED -LENGTH RATIO
S&D BEAM-DRAFT RATIO
S&D LENGTH-BEAM RATIO
AND OTHER CALCULATION-SPECIFIC VARIABLES

AND OUTPUTS THE FOLLOWING VALUES:
PW_ADME
PW_SDNB
PW.SDBB

OeqcocCXOCQC Qt

ADMIRALTY POWER PREDICTION
S&D PREDICTION FOR NO BULBOUS BOW
S&D PREDICTION FOR SHIP INCLUDING A BULBOUS BOW
ALL INPUT DESIGN VARIABLES
UPDATED VALUES OF INPUTS IF ANY PARAMETER CHANGES

ALL PARAMETERS ARE PASSED IN COMMON BY THE INCLUDE *TOP_POWER. FOR'
FILE THAT HAS ALL THE PARAMETER DEFINITIONS, TYPE STATEMENTS,
AND SET UP.

CALLED BY MAIN MODULE 'TOOL BOX'

*
*

*

*

*

*

*

*

64

C CALLS SUBROUTINES , POWER_KB_DATA_IN l
,

' PW READ FILE 1

. PW_RECORD' , *
C ' PW_CALC_1

'

,

' POWER_GRAPH
'

,

' TO_MAINT , AND ' EXIT f *
C *

INCLUDE 'GENERAL. FOR'
INCLUDE 'TOP_POWER. FOR'
EXTERNAL TO_MAIN , EXIT , DARK2 , LIGHT2 , NOWHERE , PW_CALC_2
EXTERNAL POWER_KB_DATA_IN , PW_RECORD , PW_READ_FILE , PW_CALC_1
EXTERNAL PW_SDI_LABEL , PW.SORT , PW_FAIL , POWER_GRAPH
EXTERNAL G_DISK,G_SCREEN

C*****INITIALIZE THE PARAMETERS TO AVOID DIVIDE BY ZERO ERRORS. ALSO
C THIS INSURES THAT WHEN WE INITIALLY CALL THE KEYBOARD DATA ENTRY
C ROUTINE THAT THE DATA PASSES ALL THE 'PW_CALC_2' FAILURE
C CRITERION. OTHERWISE WE HAVE THE POTENTIAL TO TAKE "FOREVER"
C WAITING THROUGH THE HELP SCREENS AS WE SLOWLY ENTER OUR DESIGN
C DATA. ALSO, IT GIVES THE USER AN IDEA OF WHAT KIND OF SHIP
C WILL GENERATE VALID DATA.

IF (PW.TIMES .EQ.) THEN
PW_KB_UP(1)=' GENCARGO'
PW_INFILE=' GENCARGO'
PW_FNAME=' GENCARGO. DAT'
PW_NSHAFT=1.
PW_KB_UP(9) = '1.0'

PW_VK=20. 80
PW_KB_UP(7)='20. 80'

PW_LPP=582.50
PW_KB_UP(2) = '582. 50

'

PW_T=35.0
PW_KB_UP(3)='35.0'
PW_B=82.
PW_KB_UP(4)='82.0'
PW_DISP=31995.0
PW_KB_UP(5)=' 31995.0'
PW_CB=0. 6698
PW_KB_UP(6) = '0. 66980'

PW_NRPM=120.
PW_KB_UP(8)='120.0'

END IF
PW_TIMES=PW_TIMES+1

C*****ERASE THE DATA AREA
CALL UIS$ERASE(VD_ID,3.6,10. 1,9.9,18.5)

C*****rEM0VE THE MOUSE POINTER TO SOME OTHER AREA
STA = UIS$SET_POINTER_POSITION(VD_ID,WD_MAIN,9.9,4.5)

C*****CREATE POWER WINDOW
WD_POWER=UIS$CREATE_WINDOW(VD_ID, ' SYS$WORKSTATION' ,' POWER

& PREDICTION WINDOW' ,-. 5,9. 9,10. 1,19. ,40. ,30.)

DO 10 Y_COOR = 13. 1,18. 4,.

8

DY = Y_COOR + . 2

CALL UIS$SET_POINTER_AST(VD_ID,WD_POWER,DARK2, ,X0,Y_C00R,X1,
& DY,LIGHT2)

10 CONTINUE
C*****SET MENU TITLES

OPTION(ll) = OPTION(21)
0PTI0N(12) = OPTION(20)

C*****tfRITE SCREEN
CALL UIS$TEXT(VD_ID,0,OPTION(11),. 3,15. 1)

65

CALL UIS$TEXT(VD_ID,0,OPTION(12),.3,15.9)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_POWER,EXIT,

, ,X0,13. 0,
& XI, 13. 4)

CALL UIS$SET_BUTTON_AST(VD ID,WD POWER,TO MAIN, , ,X0,13. 8,
£c XI, 14. 2)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_POWER,G_SCREEN, , ,X0, 14. 6,
& XI, 15.0)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_POWER,G_DISK, , ,X0, 15. 4,
& XI, 15. 8)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_POWER,PW RECORD, , ,X0, 16. 2,
& XI, 16. 6)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_POWER,PW_READ_FILE, , ,X0
6c ,17. , XI, 17. 4)

CALL UIS$SET_BUTTON_AST(VD_ID ,WD_POWER , POWER_KB_DATA_IN

,

6c ,,X0,17.8, XI, 18. 2)
19 WNDOW = WD_POWER
20 RETURN

END
C

C
SUBROUTINE POWER_KB_DATA_IN

C *

C THE POWER_KB_DATA_IN ROUTINES LOAD IN KB DATA AND ALLOWS *

C THE OPERATOR TO CHANGE INPUTS AND SEE REAL TIME EFFECTS *

C OF THOSE CHANGES ON THE POWERING CHARACTERISTICS OF THE *

C PRELIMINARY DESIGN. *

C *

C CALLED BY SUBROUTINE 'POWER
1 *

C CALLS SUBROUTINES * PW_SDI_LABEL'
,

'KEY_READ*
,

' PW_SORT'

,

*

C 'PW_CALC_1' *

C

INCLUDE 'TOP. FOR'
INCLUDE 'TOP_POWER. FOR'
REAL PW_LINE_NO
STA=UIS$SET_P0INTER_P0SITI0N(VD_ID,WD_P0WER,9. 9,14.5)
KB_ID=UIS$CREATE_KB('SYS$WORKSTATION'

)

CALL UIS$ENABLE_KB(KB_ID,WD_POWER)
C*****FIRST, WE WE WRITE UP THE LINE LABLES AND FIRST INSTRUCTIONS

CALL PW_SDI_LABEL(VD_ID)
C*****SECOND, CALCULATE AND DISPLAY STARTING VALUES

CALL PW_CALC_1
C*****THIRD, ALLOW USER TO CHANGE INPUT THEN
C*****RECALCULATE RESULTS IN REAL TIME
1 CALL UIS$ERASE(VD_ID, -0.4,10. 1,3. 4,10. 9)

CALL UIS$TEXT(VD_ID,7,'ENTER A LINE NUMBER' ,0. 0, 11. 0)
CALL UIS$TEXT(VD_ID,7,'OR [RETURN] TO EXIT* ,0. 0, 10. 6)

3 CALL KEY_READ (PW_LINE,. TRUE. ,0.0,12. 0,*300)
READ (PW_LINE,FMT='(F2.0)',ERR = 5) PW_LINE_NO
PLINE_NO = INT(PW_LINE_NO)
GO TO (10,20,30,40,50,60,70,80,90) PLINE_NO

C

C*****if ix GETS TO HERE A MISTAKE HAS BEEN MADE ********* A A A***A A* A A-A A

C

5 CALL UIS$ERASE(VD_ID, -0.4, 10. 1,3.4,10.9)

66

CALL UIS$TEXT(VD_ID, 7,' IMPROPER LINE NUMBER' ,0. 11. 0)
CALL UIS$TEXT(VD_ID,7,'ENTER A NEW NUMBER PLEASE* ,0. 0, 10. 6)
GOTO 3

10 CALL PW_SORT(PLINE_NO,DEL_Y,PW_LINE,*300)
PW_KB_UP(1) = PW.LINE
PW.INFILE = PW_LINE
READ (PW_LINE, FMT='(G)* ERR = 5)
WRITE (PW_KB_UP(1), FMT='(A)') PW_INFILE
CALL UIS$ERASE(VD_ID,8. 2,17. 9,9. 9,18. 3)
CALL UIS$TEXT(VD_ID,7,PW_KB_UP(1),8. 2,18. 2)
GOTO 1

20 CALL PW_SORT(PLINE_N0,DEL_Y,PW_LINE,*300)
PW_KB_UP(2) = PW_LINE
READ (PW.LINE, FMT=' (G) ' ,ERR = 5) PW_LPP
PW_DISP = PW_CB*PW_LPP*PW_B*PW_T/35
WRITE (PW_KB_UP(5), FMT=' (G12. 5)

'
) PW_DISP

CALL UIS$ERASE(VD_ID,8. 2,16. 3,9. 9,16. 7)
CALL UIS$TEXT(VD_ID,7,PW_KB_UP(5),8.2,16. 6)
CALL PW_CALC_1
GOTO 1

30 CALL PW_SORT(PLINE_NO,DEL_Y,PW_LINE,*300)
PW_KB_UP(3) = PW_LINE
READ (PW_LINE, FMT=' (G)

'
,ERR = 5) PW_T

PWJ3ISP = PW_CB*PW_LPP*PW_B*PW_T/35
WRITE (PW_KB_UP(5), FMT=' (G12. 5)

'
) PW_DISP

CALL UIS$ERASE(VD_ID,8. 2,16. 3,9. 9,16. 7)
CALL UIS$TEXT(VD_ID,7,PW_KB_UP(5),8. 2,16. 6)
CALL PW_CALC_1
GOTO 1

40 CALL PW_SORT(PLINE_NO,DEL_Y,PW_LINE,*300)
PW_KB_UP(4) = PW_LINE
READ (PW_LINE, FMT=' (G)

'
,ERR = 5) PW_B

PW_DISP = PW_CB*PW_LPP*PW_B*PW_T/35
WRITE (PW_KB_UP(5), FMT=' (G12. 5)

'
) PW_DISP

CALL UIS$ERASE(VD_ID,8. 2,16. 3,9. 9,16. 7)
CALL UIS$TEXT(VD_ID,7,PW_KB_UP(5) ,8. 2,16. 6)
CALL PW_CALC_1
GOTO 1

50 CALL PW_S0RT(PLINE_N0,DEL_Y,PW_LINE,*300)
PW_KB_UP(5) = PW.LINE
READ (PW_LINE, FMT=' (G)

'
,ERR = 5) PW_DISP

PW_CB=35^PW_DISP/(PW_LPP--VPW_B'VPW_T)
WRITE (PW_KB_UP(6), FMT=' (G12. 5)

'
) PW_CB

CALL UIS$ERASE(VD_ID,8. 2,15. 9,9. 9,16. 3)
CALL UIS$TEXT(VD_ID,7,PW_KB_UP(6),8.2,16.2)
CALL PW_CALC_1
GOTO 1

60 CALL PW_SORT(PLINE_NO,DEL_Y,PW_LINE,*300)
PW_KB_UP(6) = PW.LINE
READ (PW_LINE, FMT=' (G)

'
,ERR = 5) PW_CB

67

c

PW DISP = PW_CB*PW_LPP*PW B*PW T/35
WRITE (PW_KB_UP(5), FMT=' (G12. 5)

'
) PW.DISP

CALL UIS$ERASE(VD_ID,8. 2,16. 3,9. 9,16. 7)
CALL UIS$TEXT(VD_ID,7,PW_KB_UP(5),8.2,16. 6)
CALL PW_CALC_1
GOTO 1

70 CALL PW_SORT(PLINE_NO,DEL_Y,PW_LINE,*300)
PW_KB_UP(7) = PW_LINE
READ (PW_LINE, FMT='(G)' ERR = 5) PW_VK
WRITE (PW_KB_UP(7), FMT= f

(G12. 5)
'
) PW_VK

CALL PW_CALC_1
GOTO 1

C

80 CALL PW_SORT(PLINE_NO,DEL_Y,PW_LINE,*300)
PW_KB_UP(8) = PW_LINE
READ (PW_LINE, FMT='(G)' ERR = 5) PW_NRPM
WR ITE (PW_KB_UP (8) , FMT= ' (G 1 2 . 5)

'

) PW_NRPM
CALL PW_CALC_1
GOTO 1

C

90 CALL PW_SORT(PLINE_NO,DEL_Y,PW_LINE,*300)
PW_KB_UP(9) = PW LINE
READ (PW_LINE, FiMT=' (G) ' ,ERR = 5) PW.NSHAFT
WRITE (PW_KB_UP(9), FMT=' (G12. 5)

'
) PW_NSHAFT

CALL PW_CALC_1
GOTO 1

C

300 CALL UIS$DISABLE_KB(KB_ID)
CALL UIS$ERASE(VD_ID,-. 4,10. 1,3. 4,10. 9)
CALL UIS$TEXT(VD_ID, 7,' SELECT AN OPTION' ,0. ,11.)

CALL UIS$TEXT(VD_ID,7,' WITH THE MOUSE ',0. ,10.6)
RETURN
END

C

C

SUBROUTINE PW_SORT(PLINE_NO , DEL_Y , PW_LINE , COUNT ,*)
p -'- J-J- »'- ^*- y- ^'* J- J. .'- fc'- »'- .U J- -'- .'- J- -*- -J, -.*- JL -'- J. ^'- Jf- J* »'- »»—f- *•- -', *'. Ji~ JU -'-J- *J- J- J- -X. -'- -J- JU -.'- J- -'- *.'- -*- -'- *'- J- «.'- -'- J- J- J- »'- -t-»U »'- J- J- -J-J

f
J- J-

c *

C SUBROUTINE PW_SORT SORTS OUT THE LINE NUMBER TO THE *

C VARIABLE INVOLVED AND CALLS THE APPROPRIATE SCREEN *

C INSTRUCTION TO BE WRITTEN IN THE INSTRUCTION BOX.
C *

C CALLS SUBROUTINE *KEY_READ'

c

INCLUDE 'TOP. FOR'
INCLUDE 'TOP_POWER. FOR'
REAL DEL_Y, DY, D0T_Y
LOGICAL PW_FCHAR
CHARACTER PW_KB_INST(9)*25

C*****sET THE SCREEN INSTRUCTIONS STRINGS
PW_KB_INST(1) = 'ENTER NEW SHIP NAME'
PW_KB_INST(2) = 'ENTER LENGTH (LPP) IN FT'
PW_KB_INST(3) = 'ENTER DRAFT (T) IN FT.

'

PW_KB_INST(4) = 'ENTER BEAM (B) IN FT.
'

68

PW_KB_INST(5)
PW_KB_INST(6)
PW_KB_INST(7)
PW_KB_INST(8)
PW_KB_INST(9)

"DISPLACEMENT IN LTONS
1

'ENTER BLOCK COEFICIENT'
'ENTER SHIP SPEED IN KNOTS'
'ENTER PROPELLER RPM'
'ENTER NUMBER OF SHAFTS'

C****,vERASE THE INSTRUCTION AREA AND FIND ITS DATA POSITION
CALL UIS$ERASE(VD_ID, -0.4,10. 1,3.4,10.9)
DEL_Y = 18. 6 - . 4 * PLINE.NO

C*****WRITE THE APPROPRIATE INSTRUCTION STRING
CALL UIS$TEXT(VD_ID, 7, PW_KB_INST(PLINE_NO), 0.0,11.0)
CALL UIS$TEXT(VD_ID, 7, '[RETURN] TO EXIT' ,0. 0, 10. 6)

C*****DECIDE IF WE WANT THE FIRST LINE (NAME) OR A VALUE
IF (PLINE_N0 .EQ. 1) THEN

PW_FCHAR = .FALSE.
ELSE

PW_FCHAR = .TRUE.
ENDIF
CALL KEY_READ(PW_LINE,PW_FCHAR,0. 0,12. 0,*300)
DY = DEL_Y - . 35
CALL UIS$ERASE(VD_ID,8. 2,DY,9. 9,DEL_Y)
CALL UIS$TEXT(VD_ID,7,PW_LINE,8. 2,DEL_Y)
RETURN

300 RETURN 1

END

SUBROUTINE PW_SDI_LABEL(VD_ID)

*
*
*

PERFORM DISPLAY VARIABLES IS A ROUTINE WHICH READS UP THE
DATA ONTO THE DISPLAY AREA ALONG WITH THE SCREEN LABELS.

CALLED BY SUBROUTINES ' POWER' ,' POWER_KB_DATA_IN'
'- -.'--.'-.'.. -'.. > '- -'.• -J- «.'- J< J<J* J< k'a J<J« •.'• J< k'a .'..•.'- «.'»«J»»**fc**fc'»«'j »'. >'•J. JdJ. Jd J.J> »'.J. J. J*J. J.J. .L J.J<J.J. J.J*J. fc'»«&» BJL *.t* al* -.1* •.'. i'-m-'-t'. »'« ^'. -'.-'- .'

IMPLICIT INTEGER (A-Z)
INCLUDE ' TOP.POWER. FOR

'

INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE ' SYS$LIBRARY: UISUSRDEF'
REAL DEL_Y, DOT_Y
CHARACTER P_LINE_LBL(20)*35
CALL UIS$ERASE(VD_ID,4. ,10. 1,9.9,18.3)
P_LINE_LBL(1) :

P_LINE_LBL(2) =

P_LINE_LBL(3) =

P_LINE_LBL(4)
P_LINE_LBL(5) =

P_LINE_LBL(6) =

P_LINE_LBL(7) =

P_LINE_LBL(8) =

P_LINE_LBL(9) •

P_LINE_LBL(10)
P_LINE_LBL(11)
P_LINE_LBL(12)
P_LINE_LBL(13)
P_LINE_LBL(14)

1. SHIP NAME
2. LENGTH (Lpp) (FT). .

3. DESIGN DRAFT (FT). .

4. BEAM (FT). .

5. DISPLACEMENT (LTONS)
6. BLOCK COEFICIENT (Cb). .

7. SHIP SPEED (KTS).
8. PROPELLER SPEED (RPM).
9. NUMBER OF SHAFTS
*****END OF REQD INPUTS********

RESULTS'
******HORSEPOWER. (HP) **********

'

69

10

20

METHOD:
ADMIRALTY
S.&.D.W/.NO BB
S.&.D.W/ BB

BB=. WELL. DESIGNED. BULB. BOW

4*1

P_LINE_LBL(15) =

P_LINE_LBL(16) =

P_LINE_LBL(17) =

P_LINE_LBL(18) =

P_LINE_LBL(19) =

P_LINE_LBL(20) =
DO 10 I = 1,20,1

DEL_Y = 18. 6

CALL UIS$TEXT(VD_ID,7,P_LINE_LBL(I),4. ,DEL_Y)
CONTINUE
DO 20 I = 1,12,1

DEL_Y = 18. 6 - . 4*1
CALL UIS$TEXT(VD_ID,7,PW_KB_UP(I),8. 2,DEL_Y)

CONTINUE
RETURN
END

SUBROUTINE PW_CALC_1

C *

C SUBROUTINE PW_CALC_1 *

C PW CALC 1 CALLS PW TALC 9 WHTCH DOES THE POWER fHPI
C

c

SUBROUTINE PW_CALC_1
PW_CALC_1 CALLS PW_CALC_2 WHICH DOES THE POWER (HP)
CALCULATIONS. ON RETURN, PW_CALC_1 DISPLAYS THE RESULTS
OF THE CALCULATIONS AND THEN RETURNS TO THE ROOT PROGRAM.

C CALLED BY SUBROUTINES ' POWER' ,' POWER_KB_DATA_IN' ,' POWER_GRAPH' *

C CALLS SUBROUTINE ' PW_CALC_2

'

*

C

INCLUDE 'TOP. FOR*
INCLUDE 'TOP.POWER. FOR'
REAL DY
CALL UIS$ERASE(VD_ID,8. 1,9. 95,9. 9,13.)

CALL PW_CALC_2
WRITE(PW_KB_UP(16), FMT=' (G12. 5)

'
) PW_ADME

WRITE(PW_KB_UP(17), FMT=' (G12. 5)
'
) PW_SDNB

WRITE(PW_KB_UP(18), FMT=' (G12. 5)
'
) PW_SDBB

PW_KB_UP(10)

10

PW_KB_UP(11)
PW_KB_UP(12)
PW_KB_UP(13)
PW_KB_UP(14)
PW_KB_UP(15)
PW_KB_UP(19)
PW_KB_UP(20)
DO 10 I = 10

DY = 18. 6

20

i

^'rVc1'r•)V•)V?V•)VVr'5'c•>V1V
,A,

'

i

'c-'c-WwrVci

•.4*1

CALL UIS$TEXT(VD_ID,7,PW_KB_UP(I),8.2,DY)
CONTINUE
RETURN
END

SUBROUTINE PW CALC 2
r~i -J- JU -' - -'- J- >J* JU J- JU JU Jm -

' - JUJL JLJL - '. - -. JU JU -' - »'- JU -J- -.*-JU JU -'- ^*- •.'- -'- -.'- --'- »*- - '- -'- -' - - *- -'- — - - '- -' - <•!- -J- ~- -'- <Jg >J- -1- -1- »*- -.'- ~'- -'- -J-"£ ^- ~ - *>r* -'- Jp «J- J- -'- ~V

70

c *

C SUBROUTINE PW_CALC_2 JUST DOES THE CALCULATION OF THE POWER *

C REQUIREMENTS FROM THE INPUT DATA. IT IS BASED UPON TWO *

C ALGORITHMS FOR POWER PREDICTION: THE ADMIRALTY COEFFICIENT, *

C AND THE METHOD OF SILVERLEAF AND DAWSON AS MODIFIED BY STIAN *

C ERICHSEN AT UNIV. OF MICHIGAN. IT IS ALSO USED IN THE REPORT *

C SECTION FOR GENERATION OF THE WRITTEN REPORT OF THE DESIGN. *

C *

C CALLED BY SUBROUTINE 'PW_CALC_l' *

C CALLS SUBROUTINE 'PW_FAIL' *

C

INCLUDE 'TOP. FOR'
INCLUDE 'TOP_POWER. FOR'

C*****FIRST CONVERT ENGLISH UNITS TO METRIC FOR ADMIRALTY CALCULATION
C*****KNOTS->M/S ; FT->M ; LTONS->MTONS

;

PW_NRPS = PW_NRPM/60.
PW_LPPM = PW_LPP/3. 280
PW_VKM = PW_VK*0. 514444
PW_DISPM = PW_DISP/1.016
I_PW_NSHAFT=INT(PW_NSHAFT)

C*****BEGIN ERROR CHECKING LOOPS FOR ADM CALCULATION
C THIS SECTION CHECKS THE ADM FORMULA DATA FOR VALIDITY BEFORE
C THE CALCULATION BEGINS. IF A PARAMETER IS OUT OF RANGE, THE
C ERROR CODE IS SET AS ' PW.CAUSE ' AND PASSED TO THE SUBROUTINE
C 'PW_FAIL* WHICH DISPLAYS A HELP WINDOW SHOWING THE SPECIFIC
C REASON THE DATA WAS REJECTED. THE ADM VALUES ARE SET TO
C ZERO AND THE PROGRAM CONTINUES TO THE S&D CALCULATION.

IF (PW_LPPM .GT. 1162.196) THEN
PW_CAUSE=1
CALL PW_FAIL(PW_CAUSE)
PW_ADME=0.
GOTO 100

ENDIF
IF (PW_NRPS*(PW_LPPM**0.5) . GT. 136.364) THEN

PW_CAUSE=2
CALL PW_FAIL(PW_CAUSE)
PW_ADME=0.
GOTO 100

ENDIF
C*****CALCULATE POWER BY METHOD OF ADMIRALTY COEFFICIENTS

PW_ADM=5. 0*((PW_DISPM**(2. 0))**(1. 0/3. 0))*(PW_VKM**3. 0)
& *(33. 0-0. 017*PW_LPPM)/(15000. 0-110. 0*PW_NRPS*PW_LPPM**0. 5)

C*****coNVERT METRIC KILOWATTS BACK TO HORSEPOWER
PW_ADME = PW_ADM/0. 7456999

C*****NOW WE HAVE ADMIRALTY POWER IN HORSEPOWER (HP)
C

100 CONTINUE
C

C*****N0W CALCULATE S&D POWER AND REQUIRED CORRECTIONS
C

C*****cALCULATE THE BOUNDARY SPEED AND SOME COEFFICIENTS
PW_VB = (1. 70-1.40*PW_CB)*(PW_LPP)**0.5
PW_SLR = PW_VK/(PW_LPP**0.5)
PW_BTR = PW_B/PW_T

71

0. 86 . OR. PW_CB . LT. 0. 50) THEN

4.50 .OR. PW_BTR . LT. 2.0) THEN

PW_LBR = PW_LPP/PW_B
C*****BEGIN ERROR CHECKING LOOPS FOR S&D CALCULATION
C THIS SECTION CHECKS THE S&D FORMULA DATA FOR VALIDITY BEFORE
C THE CALCULATION BEGINS. IF A PARAMETER IS OUT OF RANGE, THE
C ERROR CODE IS SET AS 'PW_CAUSE' AND PASSED TO THE SUBROUTINE
C 'PW_FAIL' WHICH DISPLAYS A HELP WINDOW SHOWING THE SPECIFIC
C REASON THE DATA WAS REJECTED. THE S&D VALUES ARE SET TO
C ZERO AND THE PROGRAM CONTINUES.

IF (I_PW_NSHAFT . EQ. 1) THEN
IF (PW_SLR . GT. 1.20 .OR. PW_SLR . LT. 0.40) THEN

PW_CAUSE=3
CALL PW_FAIL(PW_CAUSE)
PW_SDNB=0.
PW_SDBB=0.
GOTO 200

END IF
IF (PW_CB .GT.

PW_CAUSE=4
CALL PW"_FAIL(PW_CAUSE)
PW_SDNB=0.
PW_SDBB=0.
GOTO 200

ENDIF
IF (PW_BTR .GT.

PW_CAUSE=5
CALL PW_FAIL(PW_CAUSE)
PW_SDNB=0.
PW_SDBB=0.
GOTO 200

ENDIF
IF (PW_LBR .GT

PW_CAUSE=6
CALL PW_FAIL(PW_CAUSE)
PW_SDNB=0.
PW_SDBB=0.
GOTO 200

ENDIF
ELSE IF (I_PW_NSHAFT

IF (PW_SLR .GT. 1

PW_CAUSE=3
CALL PW_FAIL(PW_CAUSE)
PW_SDNB=0.
PW_SDBB=0.
GOTO 200

ENDIF
IF (PW_CB .GT. 0. 80 .OR.

PW_CAUSE=4
CALL PW_FAIL(PW_CAUSE)
PW_SDNB=0.
PW_SDBB=0.
GOTO 200

ENDIF
IF (PW_BTR .GT

PW_CAUSE=5
CALL PW_FAIL(PW_CAUSE)
PW SDNB=0.

9.50 .OR. PW_LBR . LT. 3.33) THEN

EQ.

20
2)

OR.

THEN
PW SLR LT. 0.40) THEN

PW_CB . LT. 0. 54) THEN

4.50 .OR. PW_BTR . LT. 2.0) THEN

72

PW_SDBB=0.
GOTO 200

ENDIF
IF (PW_LBR . GT. 11.50 .OR. PW_LBR . LT. 3.80) THEN

PW_CAUSE=6
CALL PW_FAIL(PW_CAUSE)
PW_SDNB=0.
PW_SDBB=0.
GOTO 200

ENDIF
ELSE

PW_CAUSE=7
CALL PW_FAIL(PW_CAUSE)
PW_SDNB=0.
PW_SDBB=0.
GOTO 200

ENDIF
C*****CORRECT FOR SHIP LENGTH

IF (PW_LPP .GT. 1000.0) PW_CX=0.850
IF (PW_LPP . LE. 1000.0) PW_CX=0. 850+0. 00 185*

& ((1000. 0-PW_LPP)/100.0)**2. 5

C*****CORRECT FOR BEAM/DRAFT RATIO
IF (PW_B/PW_T .LT. 2.40) C_KBT=0. 982
IF (PW_B/PW_T . GE. 2.40) C_KBT=0. 960+

& 0. 00054*10. 0**((2. 0*PW_B)/(3. 0*PW_T))
C*****CORRECT FOR SHIP SPEED NOT EQUAL TO BOUNDARY SPEED

IF (PW_VK/PW_VB .LE. 1.0) C_KV=2. 75-7. 25*(PW_VK/PW_VB)+
& 5 . 5 0* ((PW_VK / PW_VB) **2 .)

IF (PW_VK/PW_VB .GT. 1.0) C_KV=21. 2-43. 2*(PW_VK/PW_VB)+
& 2 3 . 0* ((PW_VK/ PW_VB) **2.0)

C*****C0RRECT FOR HYDRODYNAMIC EFFICIENCY AT LPP=400. FT
IF (I_PW_NSHAFT . EQ. 1) C_H400=2. 60-0. 2917*(PW_VK/

& (PW_DISP**(1.0/6.0)))
IF (I_PW_NSHAFT . EQ. 2) C_H400=2. 38-0. 2917*(PW_VK/

& (PW_DISP**(1.0/6.0)))
C*****CORRECT FOR LPP NOT EQUAL TO 400. FT

IF (PW_LPP .EQ. 400.0) C_KLBP=1.
IF (PW_LPP .NE. 400.0) C_KLBP=0. 9196+(PW_LPP*2. 31E-04)

-

& (7. 5E-08*(PW_LPP**2. 0)

)

C*****CORRECT FOR OPEN WATER EFFICIENCY AT PROP SPEED=120 RPM
IF (I_PW_NSHAFT . EQ. 1) C_ETA_0120=0. 98-0. 55*PW_CB
IF (I_PW_NSHAFT . EQ. 2) C_ETA_0120=0. 90-0. 33*PW_CB

C*****cORRECT FOR ACTUAL PROP SPEED RPM
IF (I_PW_NSHAFT . EQ. 1) C_DETA_0=0. 360-0. 0029*PW_NRPM
IF (I_PW_NSHAFT . EQ. 2) C_DETA_0=0. 135-0. 001 1*PW_NRPM

C*****ADD THE TWO ABOVE FOR TOTAL PROP SPEED CORRECTION
PW_ETA_0=C_ETA_0120+C_DETA_0

C*****CALCULATE S&D FOR NO BULBOUS BOW
T0P_ANS=PW_CX*(PW_DISP**(2. 0/3. 0))*(PW_VB**3. 0)*C_KBT*C_KV
B0T_ANS=427. 1*PW_ETA_0*C_H400*C_KLBP
PW_SDNB=TOP_ANS/BOT_ANS

C*****ADJUST S&D FOR SHIP WITH BULBOUS BOW
PW_SDBB=PW_SDNB*0. 9500

C*****NOW WE HAVE S&D POWER IN HORSEPOWER (HP) FOR BOTH BOW SHAPES
C AND THE ADMIRALTY POWER.
C

73

200 CONTINUE
C

RETURN
END

C

C

SUBROUTINE PW_RECORD

C *

C SUBROUTINE 'PW.RECORD
1

SAVES THE KBD INPUT DATA TO A USER *

C SPECIFIED FILE. FILE TYPE IS '.DAT' AUTOMATICALLY *

C *

C CALLED BY SUBROUTINE 'POWER*. *

C CALLS SUBROUTINE 'SHOW SAVE' *
CALLED BY SUBROUTINE 'POWER'.
CALLS SUBROUTINE 'SHOW_SAVE'

c
INCLUDE 'TOP. FOR'
INCLUDE 'TOP_POWER. FOR'
STA = UIS$SET_POINTER_POSITION(VD_ID,WD_POWER,0. ,10.)

CALL SHOW_SAVE
OPEN(21, FILE=PW_INFILE,STATUS=' UNKNOWN' ,blank='null'

)

WRITE (21,200) PW_INFILE
WRITE (21,210) PW_LPP
WRITE (21,210) PW_T
WRITE (21,210) PW_B
WRITE (21,210) PW_DISP
WRITE (21,210) PW_CB
WRITE (21,210) PW_VK
WRITE (21,210) PW_NRPM
WRITE (21,210) PW_NSHAFT
WRITE (21,210) PW_ADME
WRITE (21,210) PW_SDNB
WRITE (21,210) PW_SDBB
ENDFILE (21)
CL0SE(21)

C

C*****AND REPORT OUT WHEN DONE
C

PW.FNAME = PW_INFILE(: INDEX(PW_INFILE ,

' '))//'. DAT'
CALL UIS$ERASE(VD_ID,-. 4,10. 1,3. 4,10. 9)
CALL UIS$TEXT(VD_ID,7,'FILE SAVED AS',0. ,11.)

CALL UIS$TEXT(VD_ID,7,PW_FNAME,0. ,10.6)
200 FORMAT (BN,2X,A)
210 FORMAT (G12.5)

RETURN
END

C

C

SUBROUTINE PW_READ_FILE
r~< ju . <- -\. - . y- .'- Vr -'- -'; ;': V' "V ic *•'" Vr "V*%J* "*" ''" it "' itJ' Jljm% -'* *J*it -1- ~V J"V -'- *'**r- ~VA "'" ~VV*Jc "V ~V ~V J-

*ie*i"ie *'• *V *'* V * V*A ~VJ* V' ~V V* "V ~J"Vc "V #'- Vr

c *

C READ FILE IS A SUBROUTINE WHICH READS THE DATA INPUT FILE *

C SPECIFIED BY KEYBOARD ENTRY *

C *

C CALLED BY SUBROUTINE 'POWER' *

C CALLS SUBROUTINES ' PW_SDI_LABEL'
,

' PW_CALC_l' *

74

C

INCLUDE 'TOP. FOR'
INCLUDE ' TOP_POWER. FOR

'

STA=UIS$SET_POINTER_POSITION(VD_ID,WD_POWER,0. ,10. 2)
KB_ID=UIS$CREATE_KB(' SYS$WORKSTATION

?

)

CALL UIS$ENABLE_KB(KB_ID,WD_POWER)
CALL UIS$ERASE(VD_ID,-.4,10. 1,2.3,10.9)
CALL UIS$TEXT(VD_ID,7,'ENTER THE FILE NAME' ,0. ,11.

)

CALL UIS$TEXT(VD_ID,7,'AND FILE EXTENSION' ,0. , 10. 6)
CALL KEY_READ(PW_LINE,'TRUE' ,0. ,12. ,*150)
OPEN(21, FILE=PW_LINE,STATUS=' UNKNOWN')
READ (21,200) PW_INFILE
READ (21,210) PW_LPP
READ (21,210) PW_T
READ (21,210) PW_B
READ (21,210) PW_DISP
READ (21,210) PW_CB
READ (21,210) PW_VK
READ (21,210) PW.NRPM
READ (21,210) PW_NSHAFT
REWIND 21

C**** now READ IT IN AS CHARACTER DATA TO PRINT TO SCREEN
READ (21,200) PW_KB_UP(1)
DO 10 I = 2,9,1

READ (21,220) PW_KB_UP(I)
10 CONTINUE

C

200 FORMAT (2X,A)
210 FORMAT (G12.5)
220 FORMAT (2X,A)
150 CLOSE(21)

CALL PW_SDI_LABEL(VD_ID)
CALL UIS$DISABLE_KB(KB_ID)
CALL PW_CALC_1
CALL UIS$ERASE(VD_ID,-.4,10. 1,3.4,10. 9)
CALL UIS$TEXT(VD_ID, 7,' SELECT AN OPTION' ,0. ,11.)

CALL UIS$TEXT(VD_ID,7,' WITH THE MOUSE *,0. ,10.6)
RETURN
END

C

C

C

SUBROUTINE SAVE_GRAPH

C *

C THIS SUBROUTINE POPS UP A DIALOG BOX TO INSTRUCT THE USER THAT *

C THE POWER PREDICTION CURVE GRAPH PLOT HAS BEEN WRITTEN TO DISK *

C UNDER THE NAME ' POWER_PLOT. UIS' AND INSTRUCTS THEM ON HOW TO *

C RETRIEVE THE FILE IN HARDCOPY FORM. IT IS CALLED BY THE SUB- *

C ROUTINE 'POWER' SUBMENU SELECTION 'GRAPH POWER' AND IS *
C DISPLAYED AFTER THE GRAPH HAS BEEN CREATED, VIEWED, AND SENT *

C TO DISK. *
C *

C CALLED BY SUBROUTINE 'POWER GRAPH' *

75

c

IMPLICIT INTEGER(A-Z)
INCLUDE *SYS$LIBRARY:UISENTRY I

INCLUDE 'SYS$LIBRARY:UISUSRDEF'
INCLUDE ' TOP_POWER. FOR

'

CHARACTER*34 PLOTA/'*** SAVING DEFINED GRAPH FILE ***'/
CHARACTER*34 PLOTB/' GRAPH IS BEING WRITTEN TO DISK '/

CHARACTER*34 PLOTC/ ' USING THE FILENAME: 7
CHARACTER*34 PLOTD/ ' "STDOOOOl.DAT" '/

CHARACTER*34 PLOTE/' YOU CAN OBTAIN HARDCOPY PLOTS '/

CHARACTER*34 PLOTF/ ' BY THE DCL COMMAND: 7
CHARACTER*34 PLOTG/

1 "PRINT/QUEUE=LASER STD00001. DAT"

7

CHARACTER*34 PLOTH/' AFTER TERMINATION OF TOOLBOX. 7
CHARACTER*34 PLOTI/ ' PLEASE WAIT 7
CHARACTER*34 PLOTJ/ ' PROGRAM WILL RESUME7
REAL Y_POSN

C*****CREATE THE DISPLAY FOR THE DIALOG BOX
VD_PLOT=UIS$CREATE_DISPLAY(-5. 0,-2. 5,10. 0,5. 0,26. 0,14. 0)

C*****CREATE THE WINDOW TO DISPLAY THE TEXT IN
WD_PLOT=UIS$CREATE_WINDOW(VD_PLOT, ' SYS$WORKSTATION' ,

'HELP WINDOW'

)

C*****COPY ATTRIBUTE BLOCK '0' AS BLOCK '23* AND CHANGE THE FONT SIZE
CALL UIS$SET_FONT(VD_PLOT,0,23, ' DTABER0R03WK00GG0001UZZZZ02A000'

)

C*****C0PY ATTRIBUTE BLOCK '23' AS BLOCK '24' AND CHANGE TO BOLD FONT
CALL UIS$SET_FONT(VD_PLOT,23,24,'DTABER0R03WK00PG0001UZZZZ02A000')

C*****SIGNAL THE USER TO GET THEIR ATTENTION
CALL UIS$SOUND_BELL(*SYS$WORKSTATION' ,4)

C*****WRITE THE TEXT INTO THE WINDOW AND SPAWN PROCESS TO 'WAIT' 15 SEC
Y_P0SN=4.
CALL UIS$TEXT(VD_PLOT, 24, PLOTA.
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_PLOT, 23, PLOTB
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_PL0T,23,PL0TC
Y_F0SN=Y_P0SN-.

6

CALL UIS$TEXT(VD_PLOT, 24, PLOTD,
Y_P0SN=Y_P0SN-.

6

CALL UIS$TEXT(VD_PLOT, 23, PLOTE
Y_P0SN=Y_P0SN-.6
CALL UIS$TEXT(VD_PLOT, 23, PLOTF,
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_PLOT, 24, PLOTG,
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_PLOT, 23, PLOTH,
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_PLOT, 23, PLOTI
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_PLOT, 23, PLOTJ,
CALL LIB$SPAWN('WAIT 00:00:15*)
CALL UIS$SOUND_BELL('SYS$V/ORKSTATION' ,4)
CALL UIS$DELETE_DISPLAY(VD_PLOT)
RETURN
END

C

C

C

-2.5,Y_POSN)

-2.5,Y_POSN)

-2.5,Y_POSN)

-2.5,Y_POSN)

-2.5,Y_POSN)

-2.5,Y_P0SN)

-2.5,Y_POSN)

-2.5,Y_P0SN)

-2.5,Y_POSN)

-2.5,Y_POSN)

76

SUBROUTINE PW_FAIL(PW_CAUSE)

C *

C THIS SUBROUTINE POPS UP A DIALOG BOX TO INSTRUCT THE USER THAT *

C THE POWER PREDICTION ALGORITHM WILL FAIL TO ACURATELY PREDICT *

C PROPULSIVE POWER REQUIREMENTS DUE TO THE INPUTED DATA BEING *

C OUTSIDE OF THE PARAMETERS ALLOWED BY THE SILVERLEAF & DAWSON *

C OR ADMIRALTY FORMULAS. THE SPECIFIC CAUSE IS PASSED AS THE *

C PARAMETER 'PW_CAUSE' TO THE SUBROUTINE FROM THE ERROR CHECKING *

C LOOPS IN SUBROUTINE PW_CALC_2. THIS PARAMETER ENABLES THIS *

C SUBROUTINE TO BE WRITTEN ONCE FOR ALL CASES AND STILL BE *

C SPECIFIC FOR EACH INDIVIDUAL CASE. *

C *

C THE ALGORITHMS USED ARE DETAILED IN SUBROUTINE PW_CALC_2 *

C *

C CALLED BY SUBROUTINE 'PW_CALC_2' *

c
IMPLICIT INTEGER(A-Z)
INCLUDE ' SYS$LIBRARY: UI SENTRY'
INCLUDE ' SYS$LIBRARY: UISUSRDEF 1

INCLUDE 'TOP_POWER. FOR'
CHARACTER*34 FAILA/'*** POWER PREDICTION FAILURE ***'/

CHARACTER*34 FAILB/' TOOL BOX MAY FAIL TO ACCURATELY '/

CHARACTER*34 FAILC/' PREDICT POWER REQUIREMENTS FOR */

CHARACTER*34 FAILD/' ADMIRALTY OR S & D METHOD DUE TO '/

CHARACTER*34 FAILE/ ' PLEASE WAIT '

/

CHARACTER*34 FAILF/ ' PROGRAM WILL RESUME* /

REAL Y_POSN
CHARACTER-36 FAIL(7)

C*,Wc** INITIALIZE THE FAILURE MESSAGES ARRAY
FAIL(1)
FAIL(2)
FAIL(3)
FAILC4)
FAILC5)
FAIL(6)
FAILC 7)

SHIP LENGTH OUT OF RANGE
SHIP LENGTH OR NRPM OUT OF RANGE '

SPEED/ LENGTH RATIO OUT OF RANGE '

SHIP BLOCK COEFFICIENT OUT OF RANGE'
BEAM/DRAFT RATIO OUT OF RANGE
LENGTH/BEAM RATIO OUT OF RANGE '

NUMBER OF SHAFTS INCORRECT (1 OR 2)'

C*****CreaTE THE DISPLAY FOR THE DIALOG BOX
VD_FAIL=UIS$CREATE_DISPLAY(-5. 0,-2. 0,10. 0,4. 0,26. 0,10. 0)

C*****CREATE THE WINDOW TO DISPLAY THE TEXT IN
WD_FAIL=UIS$CREATE_WINDOW(VD_FAIL, 'SYS$WORKSTATION'

,

'HELP WINDOW'

)

C*****C0PY ATTRIBUTE BLOCK ' ' AS BLOCK '25' AND CHANGE THE FONT SIZE
CALL UIS$SET_FONT(VD_FAIL,0,25, 'DTABERORO3WKOOGGO001UZZZZ02AOO0'

)

C*****C0PY ATTRIBUTE BLOCK '25' AS BLOCK '26' AND CHANGE TO BOLD FONT
CALL UIS$SET_FONTCVD_FAIL,25,26,'DTABER0R03WK00PG0001UZZZZO2A000')

C*****siGNAL THE USER TO GET THEIR ATTENTION
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

C*****WRITE THE TEXT INTO THE WINDOW AND SPAWN PROCESS TO 'WAIT' 15 SEC
Y_POSN=2.

8

CALL UIS$TEXT(VD_FAIL,26,FAILA,-2.5,Y_POSN)
Y_POSN=Y_POSN-. 6

CALL UIS$TEXTC VD_FAIL, 25 , FAILB , -2. 5 ,Y_POSN)
Y_POSN=Y_POSN-.6
CALL UIS$TEXT(VD_FAIL,25,FAILC,-2. 5,Y_POSN)
Y POSN=Y POSN-.

6

77

CALL UIS$TEXT(VD_FAIL,25,FAILD,-2.5,Y_P0SN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_FAIL,26,FAIL(PW_CAUSE),-2.5,Y_P0SN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_FAIL,25,FAILE,-2. 5,Y_P0SN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_FAIL,25,FAILF,-2.5,Y_P0SN)
CALL LIB$SPAWN('WAIT 00:00:15')
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)
CALL UIS$DELETE_DISPLAY(VD_FAIL)
RETURN
END

C

C

C

SUBROUTINE POWER_GRAPH(TYPE)

C

C THIS SUBROUTINE CREATES A CA-DISSPLA METAFILE GRAPH OF THE *

C PROPULSIVE POWER CURVE OF THE SHIP DESIGN FROM ZERO (0) *

C KNOTS TO THE OPERATING SPEED 'PW_VK' GIVEN AT THE STAGE *
C OF DESIGN WHEN THE SUBROUTINE WAS CALLED. IT IS CALLED BY *

C A MOUSE CLICK ON THE MAIN POWER MENU 'GRAPH POWER* SO IT *
C IS IMPORTANT THAT THE DESIGN PARAMETERS BE FINALIZED AT
C THAT POINT SINCE ALL THE REQUIRED PARAMETERS WILL BE PASSED *

C IN COMMOM BLOCKS. IT ALSO CALLS THE SUBROUTINE ' SAVE_GRAPH'*
C THAT ANNOUNCES THE METAFILE NAME TO THE USER BEFORE IT *
C WRITES THE FILE TO DISK. *

C *

C CALLED BY SUBROUTINE 'POWER' *

C CALLS SUBROUTINES 'SAVE_GRAPH' AND MANY CA-DISSPLA ROUTINES *

INCLUDE 'TOP. FOR'
INCLUDE ' TOP_POWER. FOR

'

CHARACTER*23 DATETIME ,PWG_NAME
REAL LM,LF,BF,TF,N,DELTAM,DELTAT,VM,VK(0: 15) ,PHP_AD,VKP,

& CB,C_VB,C_X,KBT,H400,KV,ETA0120,DETA0,C_ETA0,VMTK(0: 15),
& GPW_SD(0: 15) ,GPW_SDB(0: 15) ,KLBP,C_VL,C_BT,C_LB, VMT(0: 15),
& TOP_SD,TOP_SD1,BOT_SD,NRPM,GPW_ADM(0: 15) ,GPW_ADMP, VMG,
& MIN_P0WER1 ,MIN_POWER2 ,MAX_PWR
INTEGER I_NSHAFT , INDEX1 , INDEX2 , I , J , K , L , PLOT_TYPE , TYPE
INTEGER*4 STATUS
PLOT_TYPE=TYPE

C*****2ERO OUT ALL MATRICES AND VARIABLES
DO 5 1=0,15,1

VK(I)=0.
VMTK(I)=0.
GPW_SD(I)=0.
GPW_SDB(I)=0.
VMT(I)=0.0
GPW_ADM(I)=0.

5 CONTINUE
MIN_P0WER1=0.
MIN_POWER2=0.
INDEX1=0
INDEX2=0

78

»J~ .J* .J. .J* 1*. .<. .J* .J- .J. _•- -*' -*-

MAX_POWER=0.
C*****RECALCULATE COMMON VALUES FOR ACCURACY

CALL PW_CALC_1
C*****TELL WORLD TO SIT TIGHT AND WAIT

CALL UIS$ERASE(VD_ID,-0. 4,10. 1,3. 4,10. 9)
CALL UIS$TEXT(VD_ID, 7, 'CALCULATING PLOT. ..' ,0. 0,11. 0)
CALL UIS$TEXT(VD_ID, 7,' PLEASE RELAX & WAIT' ,0. 0, 10. 6)

C*****TRANSFER VALUES VIA COMMON BLOCKS
PWG_NAME=PW_ INF I LE
I_NSHAFT=INT(PW.NSHAFT)
LF=PW_LPP
BF=PW_B
TF=PW_T
DELTAT=PW_DISP
VKP=PW_VK
CB=PW_CB
NRPM=PW_NRPM

C*****SET UP CA-DISSPLA ENVIRONMENT*,v,v,v** ,v***** ,v****,v***** ,i,r**,v,v* ,v*

C 'LN03I' SENDS OUTPUT TO A LASER PRINTER CAPABLE FILE; 'PAGE' *

C SETS PAGE SIZE AS STANDARD, ' BLOWUP' INCREASES PICTURE SIZE; *
C 'AREA2D' SETS 2D PLOT SIZE; 'TRIPLX' SELECTS THE FONT FILE; *
C 'X/Y NAME'S SET AXIS NAMES; 'HEADIN' SETS THE GRAPH TITLE; *
C 'GRAF' SETS AXIS SIZES(ORIGIN,MAX X,Y , UNITS , SCALE , ETC);
C 'THKFRM' DRAWS A THICK LINE AROUND THE SUBPLOT AREA; 'FRAME' *

C FRAMES THE ENTIRE PAGE; 'GRID' SELECTS GRAPH GRIDDING:
C 'RASPLN' SELECTS TYPE OF CURVE SMOOTHING/ INTERPOLATION TO USE;

*

C 'HEIGHT' SETS CHARACTER HEIGHTS AS WE WANT THEM TO BE; *

C*****DETERMINE IF DESIRE PLOT TO DISK (1) OR TO SCREEN (2)
IF (PLOT_TYPE .EQ. 1) THEN

CALL PGPX
ELSEIF (PLOT_TYPE . EQ. 2) THEN

CALL LN03I
ELSE

CONTINUE
END IF
CALL PAGE(8. 5,11. 0)
CALL BL0WUP(1. 15)
CALL AREA2D(6. 0,8. 0)
CALL TRIPLX
CALL HEIGHT(0. 200)
CALL XNAMEC SPEED (KTS)$',100)
CALL YNAME('HORSEPOWER (HP)$',100)
CALL HEIGHT(0.375)
CALL HEADIN(' SPEED-POWER RELATIONSHIP?

'

, -24, -1. ,1)
CALL HEIGHT(0. 200)
MAX_PWR=MAX(PW_ADME , PW_SDBB , PW_SDNB

)

CALL GRAF(0.0,2. 0,PW_VK,0. 0,5000. 0, (MAX_PWR+2000. 0))
CALL THKFRM(0. 04)
CALL FRAME
CALL GRID(-2,-l)
CALL RASPLN(2. 0)

C*****SET UP ADMIRALTY POWER ARRAY IN 15 INCREMENTS
LM=LF/3. 28
DELTAM=DELTAT/ 1.016
VM=PW_VK*0. 514444/15.

79

N=NRPM/60.
DO 10 1=0,15,1

VMT(I)=I*VM
VMTK(I)=PW_VK*I/15.0
GPW_ADMP=5. 0*((DELTAM**2. 0)**(1. 0/3. 0))*(VMT(I)**3. 0)*

& (33. 0-(0. 017*LM))/(15000. 0-110. 0*N*LM**0. 5)
GPW_ADM(I)=GPW_ADMP/0. 7456999

10 CONTINUE
C*****ALSO, ACCOUNT FOR CASE THAT ADMIRALTY METHOD HAS FAILED

IF (PW_ADME . LT. 1.) THEN
DO 12 J=l,15,l

GPW_ADM(J)=0.0
12 CONTINUE

ENDIF
C*****GRAPH ADMIRALTY POWER CURVE

CALL MARKER(16)
CALL DOT
CALL CURVE (VMTK , GPW_ADM ,16,1)
CALL HEIGHT(0.070)
CALL LINESC ADM. POWER', ID, 1)

C*****FILL IN S&D ARRAY IN 15 INCREMENTS TO PLOT CURVE
DO 20 1=0,15,1

VK(I)=PW_VK*I/15.0
VMTK(I)=PW_VK* 1/15.0
C_VB=(1.70-1. 4*CB)*LF**0. 5

IF (LF . GT. 1000.) C_X=0. 85
IF (LF . LE. 1000.0) C_X=0. 85+0. 00185*

& ((1000. 0-LF)/100. 0)**2. 5

IF (BF/TF . LT. 2. 40) KBT=0. 982
IF (BF/TF . GE. 2.40) KBT=0. 96+

& 0. 00054*10. 0**((2. 0*BF)/(3. 0*TF)

)

1.0) KV=2. 75-7.25*(VK(I)/C_VB)+
5. 50*((VK(I)/C_VB)**2. 0)

1.0) KV=21. 2-43.2*(VK(I)/C_VB) +
23. 0*((VK(I)/C_VB)**2. 0)

(I_NSHAFT. EQ. 1) H400=2. 60-0. 2917*VK(I)/(DELTAT**(1. 0/6. 0))
(I_NSHAFT. EQ. 2) H400=2. 38-0. 2917*VK(I)/(DELTAT**(1. 0/6. 0))

400. 0) KLBP=1.
400. 0) KLBP=0. 9196+2. 31E-04*LF-7. 50E-08*LF**2.

IF (VK(I)/C_VB .LE

IF (VK(I)/C_VB .GT

IF
IF
IF
IF
IF
IF
IF
IF
C

LF .EQ
LF .NE
I_NSHAFT
I_NSHAFT
I_NSHAFT
I NSHAFT

EQ.

EQ.

EQ.

EQ.

) ETA0120=0. 98-0. 55*CB

) ETA0120=0. 90-0. 33*CB

) DETA0=0. 360-0. 0029*NRPM
) DETAO=0. 135-0. 0011*NPRM

ETA0=ETA0120+DETA0

T0P_SD=C_X*(DELTAT**(2. 0/3. 0))*(C_VB**3. 0)*KBT*KV
B0T_SD=427. 10*C_ETA0*H400*KLBP

C

GPW_SD(I) =TOP_SD/BOT_SD
GPW_SDB(I) = 0.9500*(TOP_SD/BOT_SD)

C

20 CONTINUE
C*****SEARCH THE POWER ARRAYS TO FIND THE MINIMUMS AND THEIR INDICES.
C THIS HAS TO BE DONE DUE TO THE INVALIDITY OF THE S&D FORMULAS
C AT SPEEDS « BOUNDARY SPEED. THIS ERROR CAUSES THE UN-
C CORRECTED GRAPHS TO START AT HIGH HORSEPOWER AT LOW SPEED

80

C (AN UNREALISTIC ASSUMPTION), DROP TO A MINIMUM (THAT WE FIND),
C AND THEN GROW ASYMPTOTICALLY TO THE TRUE PREDICTION. THUS WE
C WILL SIMPLY FIND THE MINIMUM AND SET ALL LOW SPEED VALUES TO THE
C LEFT OF THIS POINT EQUAL TO THAT MINIMUM FOR EACH CURVE.
C*****ALSO, ACCOUNT FOR CASE THAT S&D METHOD HAS FAILED

IF (PW.SDNB .LT. 1.0 .AND. PW_SDBB . LT. 1.0) THEN
DO 22 J=l,15,l

GPW_SD(J)=0.
GPW_SDB(J)=0.

22 CONTINUE
ENDIF
MIN_POWER1=GPW_SD(0)
MIN_POWER2=GPW_SDB(0)
DO 25 J=l,15,l

IF (GPW_SD(J) .LT. MIN_P0WER1) THEN
MIN„P0WER1=GPW_SD(J)
INDEX 1=J

ELSE
CONTINUE

ENDIF
IF (GPW_SDB(J) .LT. MIN_POWER2) THEN

MIN_POWER2=GPW_SDB(J)
INDEX2=J

ELSE
CONTINUE

ENDIF
25 CONTINUE

C*****SET ANY POWER TO LEFT OF S&D MINIMUM EQUAL TO MINIMUM
DO 26 K=INDEX1,0,-1

GPW_SD(K)=MIN_P0WER1
26 CONTINUE

DO 27 L=INDEX2,0,-1
GPW_SDB(L)=MIN_POWER2

27 CONTINUE
C*****GRAPH BOTH S&D CURVES

CALL MARKER(15)
CALL DASH
CALL CURVE (VMTK , GPW_SD , 16,1)
CALL HEIGHT(0. 070)
CALL LINESCS&D POWER W/O BB',ID,2)
CALL MARKER(17)
CALL CHNDOT
CALL CURVE (VMTK, GPW_SDB, 16,1)
CALL HEIGHT(0. 070)
CALL LINES('S&D POWER W/ BB',ID,3)
CALL HEIGHT(0. 150)
CALL LEGNAM('***poWER CURVES***^'

j
i 8)

CALL LEGEND(ID, 3,1. 75,6.8)
C*****STAMP FILENAME ON GRAPH SO ORIGIN IS KNOWN

CALL HEIGHT(0. 100)
CALL MESSAG(PWG_NAME,23,4.5,-0. 75)

C*****GET SYSTEM DATE&TIME AND STAMP ON GRAPH
STATUS=LIB$DATE_TIME(DATETIME)
CALL HEIGHT(0. 100)
CALL MESSAG(DATETIME,23,4. 5,-0. 90)
-DONE

81

»J-J-J-J-»*-T

CALL ENDPL(O)
CALL DONEPL

C*****DETERMINE IF PLOT VENT TO DISK (1) OR TO SCREEN (2)
IF (PLOT_TYPE . EQ. 1) THEN

CONTINUE
ELSEIF (PLOTJTYPE . EQ. 2) THEN

CALL SAVE_GRAPH
ELSE

CONTINUE
ENDIF

C*****CLEAR THE INSTRUCTION BOX SO THE USERS KNOWS ITS DONE
CALL UIS$ERASE(VD_ID,-0. 4,10. 1,3. 4,10. 9)

50 RETURN
END

C

C

c

SUBROUTINE G_DISK

C *

C THIS SUBROUTINE CALLS THE CA-DISSPLA ROUTINE TO PLOT TO *

C DISK FILE. *

C *

C CALLED BY SUBROUTINE MAIN MENU 'POWER* *

C CALLS SUBROUTINE * POWER_GRAPH' *
/"i JUJL JL Jm J.JL JL JL JL JLJL JL JLJ> JL J- J-JL JLJ> JL JL JL JLJL JLJL JL -J. JL -'- JL JL JL -'- -' - -'-JL JL J. J - JL J- .'--.'- J - -' L J-JL JL J- J- JL j„ jl, jl . i, jl, ju JLJLJ- JL -'-

INCLUDE 'TOP. FOR'
TYPE = 1

CALL POWER_GRAPH(TYPE)
RETURN
END

C

C

c

SUBROUTINE G_SCREEN

C *

C THIS SUBROUTINE CALLS THE CA-DISSPLA ROUTINE TO PLOT TO
C SCREEN. *

C *

C CALLED BY SUBROUTINE MAIN MENU 'POWER' *

C CALLS SUBROUTINE ' POWER_GRAPH

'

*
f*i JL JL J— JL J- t*. —'.• -.LJ«-L JLJLJL JL JL JLJL »*«• JL -.'

"Jif*S"*Jf*j!f *jtf »J
]f*Sf*jU J" JL jg* if*A" C*£C*fC^fC*fC¥* jtf SHPjf"jfr Sflf^flfTfTHf Sflf *V *'- *^* Wf "^*

IflPWP V*JL J«" "fa* "J* Jf *•« J—

INCLUDE 'TOP. FOR'

TYPE = 2

CALL POWER_GRAPH(TYPE)
RETURN
END

C

C

c

c

82

B. SUBROUTINE POWER VARIABLE DECLARATIONS FILE

This file is the INCLUDE File TOP_POWER.FOR that is common to every sub-

routine in the Power Prediction module and Power Prediction Report subroutine. This

commonality is made to ensure that all data is available to every subroutine without

needing to pass every parameter as an argument.

*****THE DECLARATIONS FOR THE PROPULSIVE POWER SECTION IN ONE FILE
C

CHARACTER PW_LINE*12 , PW_INFILE*12
CHARACTER PW_KB_UP (2) * 1 2 , PW_FNAME* 1

2

INTEGER PW.TIMES , PW_CAUSE , I_PW_NSHAFT , PLINE_NO

REAL PW_LPP , PW_T , PW_B , PW_DI SP , PW_CB , PW_VK
REAL PW.NRPM , PW_SDNB , PW_SDBB , PW_NSHAFT
REAL PW VB , PW_CX , C_KBT , C_KV , C_H400 , C_KLBP
REAL C_ETA_0 120 , C_DETA_0 , PW_ETA_0 , PW_TEMP
REAL PW.ADME , PW_ADM , PW_SLR , PW_BTR , PW_LBR
REAL PW_NRPS , PW_LPPM, PW_VKM, PWJDISPM
REAL TOP_ANS,BOT_ANS

COMMON /PW.NAMES/ PW_LPP,PW_T,PW_B,PW_DISP,PW_CB,PW_VK
COMMON /PW_VARS/ PW_NRPM , PW_NSHAFT , PW.TIMES , PW_KB_UP
COMMON /PW_COEFF/ PW_VB,PW_CX,C_KBT,C_KV,C_H400,C_KLBP
COMMON /COEFFS2/ C_ETA_0120 ,C_DETA_0,PW_ETA_0,PW_TEMP
COMMON /PW.RESULTS/ PW_SDNB,PW_SDBB

5
PW_ADME ,PW_ADM

COMMON /PW_METRIC/ PW_NRPS ,PW_LPPM,PW_VKM,PW_DISPM
COMMON /PW_FILES/ PW_FNAME ,PW_INFILE

83

APPENDIX C. POWER PREDICTION TEST ROUTINE

A. SOURCE CODE
This code was used to verify and correct the Silverleaf and Dawson prediction for-

mulas. It also makes an excellent 'stand- alone' program for general power calculations

outside of the TOOL BOX environment.

PROGRAM TRIAL_POWER
Qiticititititititititic^^

C *

C THIS PROGRAM TESTS THE SILVERLEAF & DAWSON PROPULSIVE POWER *

C PREDICTION FORMULA FOR SOME REALISTIC DESIGNS WITH KNOWN *

C PROPULSION REQUIREMENTS. THE ADMIRALTY PREDICTION IS ALSO *

C CALCULATED FOR COMPARISON AND THE DATA IS PRESENTED IN *

C TABLE 1 OF CHAPTER 3. *

C *

C REQUIRED INPUTS ARE AS FOLLOWS: *

C SHIP LENGTH(LPP) IN FEET *

C SHIP BEAMfB) IN FEET *

C SHIP DRAFT(T) IN FEET *

C SHIP DISPLACEMENT DELTA) IN TONS STD SEAWATER *

C NUMBER OF PROPULSION SHAFTS (1 OR 2)
*

C PROPELLER BLADE SPEED(N) IN REV/SEC *

C SHIP SPEED(V) IN KNOTS *

C *

C THIS PROGRAM IS WRITTEN IN VAX FORTRAN AND WILL ALSO COMPILE *

C UNDER LAHEY FORTRAN LP77 V3. AND MICROSOFT FORTRAN 4.01 FOR *

C MS-DOS BASED SYSTEMS WITH A CHANGE TO THE OUTPUT FILENAME TO *

C ADHERE TO MS-DOS CONVENTIONS. *

C
Q it it it it -.V -.V it it it V.- -.V itit it it it it it it it it it itit it it it it it it it itit it it it it it it it it it it itit it

c

REAL LM , LF , BF , TF , N , DELTAM , DELTAT , VM , VK , PHP_AD , PKW , NRPM

,

& CB , C_VB , C_X , C_KBT , C_KV , C_H400 , ETAO 120, DETAO , C_ETA0

,

b. PHP.SDjC.KLBP^HPlSD^SLjC.BT^.LB,
& TOP_SD,BOT_SD
INTEGER NSHAFT, IANSWER

C-.v*,Wc*oPEN AN OUTPUT FILE
OPEN (UNIT=8,FILE='TRIAL_POWER. TXT' ,STATUS=' UNKNOWN'

)

1 CONTINUE
Cititititit INITIALIZE (RE-INITIALIZE) 'CORRECTING' VARIABLES

VK=0.
C_KV=0.

C

rj*****QUERY FOR REQUIRED DATA
C

PRINT *,' ENTER SHIP LENGTH IN FEET :

'

READ *,LF
PRINT *, 'ENTER SHIP BEAM IN FEET :

'

READ *,BF
PRINT *, 'ENTER SHIP DRAFT IN FEET :

'

84

READ *,TF
PRINT *, 'ENTER DISPLACEMENT IN TONS :

'

READ *,DELTAT
PRINT *, "ENTER NUMBER OF SHAFTS AS AN INTEGER :

'

READ *,NSHAFT
PRINT *, 'ENTER PROPELLER SPEED IN REV/SEC :

'

READ *,N
PRINT *, 'ENTER SHIP SPEED IN KNOTS :

'

READ *,VK
LM=LF/3. 28
DELTAM=DELTAT/ 1.016
VM=VK*0. 514444

C

C*****ERROR CHECK LENGTH(M) ,N*SQRT[LENGTH(M)] FOR ADMIRALTY METHOD
C

IF (LM . GT. 1162. 196) THEN
PRINT */******LENGTH OUT OF RANGE (ADM)***************** 1

GOTO 13

ELSE
CONTINUE

ENDIF
IF (N*(LM**0.5) .GT. 136.364) THEN

PRINT *
,

' ******PRODUCT N*L(l/2) OUT OF RANGE (ADM) *********

GOTO 13

ELSE
CONTINUE

ENDIF
C

C*****CALCULATE POWER BY ADMIRALTY METHOD
C

PRINT *,

'

STARTING ADMIRALTY CALCULATION'
C

PKW=5. 0*((DELTAM**2.)**(1. 0/3. 0))*(VM**3. 0)*(33. 0-(0. 017*LM)
Sc)/(15000. 0-110. 0*N*LM**0. 5)

C*****TRANSLATE TO HORSEPOWER FROM KILOWATTS
PHP_AD=PKW/0. 7456999

C*****OUTPUT TO FILE AND SCREEN
WRITE (8,7)
WRITE (8,28)
WRITE (8,8)
WRITE (8,9) PHP_AD
WRITE (8,7)
WRITE (8,91)
WRITE (8,92)
WRITE (8,10) LM,DELTAM
WRITE (8,11)
WRITE (8,12) VM,N
PRINT *,

'

POWER IN HP BY ADMIRALTY METHOD = ' ,PHP_AD
C

13 WRITE (8,7)
C

C*****ERROR CHECK BLOCK COEFFICIENT, SPEED LENGTH RAT10, BEAM/DRAFT RATIO
C FOR SILVERLEAF AND DAWSON METHOD
C

NRPM=N*60.
CB=35 . 0*DELTAT/ (LF*BF*TF

)

85

C_SL=VK/LF**0.

5

C_BT=BF/TF
C_LB=LF/BF

IF (NSHAFT . EQ. 1) THEN
IF (C_SL . GT. 1.20 .OR. C_SL . LT. 0.40) THEN

PRINT *,'*******VK/SQRT(L) RATIO OUT OF RANGE (1
)********'

GOTO 30
ELSE

CONTINUE
ENDIF
IF (CB . GT. 0. 86 . OR. CB . LT. 0. 50) THEN

PRINT *,********BLOCK COEFFICIENT OUT OF RANGE (1
)*******'

GOTO 30
ELSE

CONTINUE
ENDIF
IF (C_BT .GT. 4.50 .OR. C_BT . LT. 2.0) THEN

PRINT *,*********BEAM/DRAFT RATIO OUT OF RANGE (1
) *******

'

GOTO 30
ELSE

CONTINUE
ENDIF
IF (C_LB .GT. 9.50 .OR. C_LB . LT. 3.33) THEN

PRINT *,'********LENGTH/BEAM RATIO OUT OF BOUNDS(1
)*****'

GOTO 30
ELSE

CONTINUE
ENDIF

ELSEIF (NSHAFT . EQ. 2) THEN
IF (C_SL .GT. 1.20 .OR. C_SL . LT. 0.40) THEN

PRINT *,'*******VK/SQRT(L) RATIO OUT OF RANGE(2)********'
GOTO 30

ELSE
CONTINUE

ENDIF
IF (CB . GT. 0. 80 . OR. CB . LT. 0. 54) THEN

PRINT *,'*******BLOCK COEFFICIENT OUT OF RANGE(2
)*******'

GOTO 30
ELSE

CONTINUE
ENDIF
IF (C_BT .GT. 4.50 .OR. C_BT . LT. 2.0) THEN

PRINT *,'********BEAM/DRAFT RATIO OUT OF RANGE(2
)*******"

GOTO 30
ELSE

CONTINUE
ENDIF
IF (C_LB .GT. 11.50 .OR. C_LB . LT. 3.80) THEN

PRINT *,
, ********LENGTH/BEAM RATIO OUT OF RANGE (2

)******

'

GOTO 30
ELSE

CONTINUE
ENDIF

ELSE
PRINT *,'********NUMBER OF SHAFTS OUT OF RANGE (1 , 2

)******

'

86

GOTO 30
ENDIF

C
WRITE (8,141)
PRINT *, BLOCK COEFFICIENT = ' ,CB

WRITE (8,15) CB
PRINT *,

'

SPEED-LENGTH RATIO = ' ,C_SL
WRITE (8,16) C_SL
PRINT *,

f BEAM-DRAFT RATIO = ' ,C_BT
WRITE (8,17) C_BT
PRINT *, LENGTH-BEAM RATIO = * ,C_LB
WRITE (8,18) C_LB
WRITE (8,141)

C

WRITE (8,7)
C

C*****NOW CALCULATE BY SILVERLEAF h DAWSON METHOD
C

PRINT *,

'

STARTING S & D CALCULATION*
WRITE (8,14)

C

C_VB=(1.70-1. 4*CB)*LF**0. 5

IF (LF . GT. 1000.) C_X=0. 85
IF (LF .LE. 1000.0) C_X=0. 85+0. 00185*((1000. 0-LF)/100. 0)**2. 5

IF (BF/TF . LT. 2.40) C_KBT=0. 982
IF (BF/TF . GE. 2. 40) C_KBT=0. 96+

& 0. 00054*10. 0**((2. 0*BF)/(3. 0*TF))
IF (VK/C.VB .LE. 1.0) C_KV=2. 75-7. 25*(VK/C_VB)+

& 5 . 5 0* ((VK/ C_VB) **2.)

IF (VK/C_VB .GT. 1.0) C_KV=21. 2-43. 2*(VK/C_VB) +
& 23. 0*((VK/C_VB)**2. 0)
IF (NSHAFT . EQ. 1) C_H400=2. 60-0. 2917*VK/(DELTAT**(1. 0/6. 0)

)

IF (NSHAFT .EQ. 2) C_H400=2. 38-0. 2917*VK/(DELTAT**(1. 0/6. 0))
IF (LF .EQ. 400.0) C_KLBP=1.
IF (LF .NE. 400.0) C_KLBP=0. 9196+2. 31E-04*LF-7. 50E-08*LF**2.
IF (NSHAFT .EQ. 1) ETA0120=0. 98-0. 55-CB
IF (NSHAFT .EQ. 2) ETA0120=0. 90-0. 33*CB
IF (NSHAFT .EQ. 1) DETAO=0. 360-0. 0029-NRPM
IF (NSHAFT .EQ. 2) DETAO=0. 135-0. 0011*NRPM
C_ETA0=ETA0120+DETA0

C

C*****CALCULATE S & D POWER NUMERATOR & DENOMINATOR FOR
C NORMAL AND 'CORRECTED' VERSIONS
C

T0P_SD=C_X*(DELTAT**(2. 0/3. 0))*(C_VB**3. 0)*C_KBT*C_KV
B0T_SD=427. 10*C_ETA0*C_H400*C_KLBP

C*****VALUE
PHP_SD =T0P_SD/B0T_SD

C*****oUTPUT VALUES
PRINT *,' POWER IN HP BY S&D METHOD FOR NO B/B = ' ,PHP_SD
WRITE (8,19) PHP_SD

C*****CORRECT IF WELL-DESIGNED BULBOUS BOW IS PRESENT & OUTPUT
PHP1SD = 0. 95*PHP_SD
PRINT *,' POWER IN HP BY S&D METHOD FOR B/B = ' ,PHP1SD
WRITE (8,20) PHP1SD
WRITE (8,7)

87

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

(8,91)
(8,23)
(8,24)
(8,25)
(8,26)
(8,27)
(8,271)
(8,28)
(8,28)

LF,BF,TF

DELTAT,N,NRPM

VK,C_VB,NSHAFT

BEGIN AGAIN' CONDITIONS TO EXIT OR CONTINUEC'fVnViV'jVSET

C

29 PRINT *,

30 CONTINUE
PRINT *,

PRINT *,

PRINT *,

READ *, IANSWER
IF (IANSWER .EQ.) THEN

CLOSE (UNIT=8)
GOTO 31

IANSWER .EQ
1

ELSEIF (

GOTO
ELSE

GOTO
ENDIF

DO YOU WANT TO PROCESS AGAIN(??):
ENTER ZERO (0) TO TERMINATE OR ONE
RESPONSE: (???): '

1) THEN

INSTRUCTIONS: '

(1) TO PROCEED: '

29

-*..*-^r--'._i.

''FORMAT STATEMENTS

7

8

9

91
92

10

11

12

141
15

16

17

18

14

19

20
23
24
25
26
27

271
28

31

(2X

FORMAT(2X,
FORMAT (2X
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT(2X,
FORMAT (2X
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(2X
(2X
(10X,'LENGTH(M) DISPL(MTONS) '

)

(10X,'SPEED(M/S) PROP SPD(RPS)*)
(2X

(2X
(2X
(2X
(2X
(2X
(2X

(2X

(2X

(2X
(2X

')

'ADMIRALTY CALCULATION')
'POWER IN HORSEPOWER FOR ADMIRALTY METHOD.
'SHIP DESIGN CHARACTERISTICS')

,F12.2)

2F19.2)

2F19. 2)

'BLOCK COEFFICIENT ' ,F15. 6)
'SPEED LENGTH RATIO ' ,F15. 6)
' BEAM/DRAFT RATIO ' ,F15. 6)
' LENGTH/BEAM RATIO ' ,F15. 6)
'SILVERLEAF & DAWSON CALCULATIONS*)
POWER
POWER

IN
IN

HP
HP

BY
BY

S&D
S&D

METHOD
METHOD

FOR
FOR

NO
WD

B/B.

B/B.

,F15.

,F15.
2)

2)
(10X,'LENGTH(FT) BEAM(FT) DRAFT(FT)')

3F19. 2)
(10X,'DISPL(TONS) SHAFT RPS SHAFT RPM')

3F19. 2)
(10X, 'DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS')

2F19. 2,13X,I3)
1 yc*vryov*yrycy.-yc****yfyc^cycy-**y-ycyfyc^ '

)

CONTINUE
STOP
END

88

B. TEST ROUTINE OUTPUT

This output was used to verify the algorithms and is used in part in Table 1 of

Chapter 3.

LARGE GENERAL CARGO Design

»'_ ju s* »*- -v J- J- JU ju -'- «*- -'- J- JU y- J-j- JU -'- J- -'-JU -y J- -'
- -'- y- -T

r
-'- V"'ww "V 7 r ~V V* ~V "** -V *-1" ~V *'*J-A *V ~V #VJ"V -

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 20351.91

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

177.59 31491.14
SPEED(M/S) PROP SPD(RPS)

10.70 2.00

BLOCK COEFFICIENT 0. 669842
SPEED LENGTH RATIO 0. 861818
BEAM/DRAFT RATIO 2. 342857
LENGTH/BEAM RATIO 7. 103659

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 23780. 55
POWER IN HP BY S&D METHOD FOR WD B/B 22591. 52

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT) DRAFT(FT)

582.50 82.00 35.00
DISPL(TONS) SHAFT RPS SHAFT RPM

31995.00 2.00 120.00
DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS

20.80 18.40 1

J
f
J- J- -'. JU -*- JU -'- -'

:
JUJUJU JU J-JU JU JU JUJU J. JU JU J> JU JUJU JUJU J.JUJUJUJU JUj- JU J- J- J. J.J. JU y. JU JUJU J- J-JU J-

CONTAINER A Design

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 14127.90

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

176.83 21732.28
SPEED(M/S) PROP SPD(RPS)

10. 29 2. 00

89

BLOCK COEFFICIENT 0. 542293
SPEED LENGTH RATIO 0. 830455
BEAM/DRAFT RATIO 2. 476191
LENGTH/BEAM RATIO 7. 435897

ftftftftftftftftftftftftftftftftft

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 11503. 22
POWER IN HP BY S&D METHOD FOR WD B/B 10928. 06

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT) DRAFT(FT)

580.00 78.00 31.50
DISPL(TONS) SHAFT RPS. .

.'

SHAFT RPM
22080.00 2.00 120.00

DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS
20.00 22.66 1

VfftiVftftftVrftyoViVftsVftVriYyoVftft^VrVoViVyrftftyc^ftftVrVr^

ftftftftftftftftftiWcftftftft^ft^ftftftftftftftftftftft'ftft

CONTAINER B Design

ftVrftftVoVVcVoVftftftftftftVfftftft-^ftftftftftVrftftftftftftftftftftftVcftftftft

ADMIRALTY CALCULATION
POWER IN HORSEPOWER, FOR ADMIRALTY METHOD 30511.80

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

206.40 38090.55
SPEED(M/S) PROP SPD(RPS)

11.73 2.00

ft ft ft ft iV ft ftft ft ft ftftft ft ftft ft

BLOCK COEFFICIENT 0. 619424
SPEED LENGTH RATIO 0. 876275
BEAM/DRAFT RATIO 2. 794118
LENGTH/BEAM RATIO 7. 126316

ftft ft ft ft ft ft ?Yft ft ft ft ft ft ftft ft

SILVERLEAF 6c DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 29480.5 7

POWER IN HP BY S&D METHOD FOR WD B/B 28006. 54

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT) DRAFT(FT)

677.00 95.00 34.00
DISPL(TONS) SHAFT RPS SHAFT RPM

38700.00 2.00 120.00
DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS

22.80 21.67 1

ftftftftftftftftftftft^^VftVcVrftVrftftftftftftftiVftVfft^ViV^Vr^ViViVft'j'c'jVftft'jVftftftftft^rftft

VrrVftftiVxftftftVcftVfVrV-ftVriVVrVc^VftftiVftftiVAiVVrft^Vft^Vftft^Vftftftftftftftftftftftftftft

ROLL ON/ROLL OFF Design

90

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 28573. 58

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

195.12 33233.27
SPEED(M/S) PROP SPD(RPS)

11.83 2.00

BLOCK COEFFICIENT 0. 565724
SPEED LENGTH RATIO 0. 909155
BEAM/DRAFT RATIO 3. 187500
LENGTH/BEAM RATIO 6. 274510

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B.

POWER IN HP BY S&D METHOD FOR WD B/B.
27435.27
26063.51

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT). .

640.00 102.00
DISPL(TONS) SHAFT RPS. .

33765.00 2.00

DRAFT(FT)
32.00

SHAFT RPM
120.00

DESIGN SPD(KTS),
23. 00

. BOUN SPD(KTS) # SHAFTS
22.97 1

JUJUJUJUJL y- y- y - y- ~ '. y - y- y- y- juy. juj~ juy- juju jujujuju ju j- ju j- y- ju y- jujuj-y-j-y- j - ju j- -j- V' y- -J-y - y- y- -'-

LASH BARGE CARRIER Design

y- y - y- y- y - y- y- y - y. y- y. JU yu y-y- y - . '- ju y . y-y- y- JUy. JU y- JUJU y - y - JU JU y, JU JUy- y- Jf J. JU y-JU JU JU JU JU JU JU JU JU

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 26203. 87

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

220.73 32135.83
SPEED(M/S) PROP SPD(RPS)

11.57 2.00

ju y- y - y- y - y-y- y- y- y- y- y-y- y- - - y - y-

BLOCK COEFFICIENT 0. 563709
SPEED LENGTH RATIO 0. 836206
BEAM/DRAFT RATIO 3. 571429
LENGTH/BEAM RATIO 7. 240000

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 23787. 66
POWER IN HP BY S&D METHOD FOR WD B/B 22598. 28

SHIP DESIGN CHARACTERISTICS

91

LENGTH(FT) BEAM(FT) DRAFT(FT)
724.00 100.00 28.00

DISPL(TONS) SHAFT RPS SHAFT RPM
32650.00 2.00 120.00

DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS
22.50 24.51 1

SEABEE BARGE CARRIER Design

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 26772.95

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

220. 34 56387. 79

SPEED(M/S) PROP SPD(RPS)
10.29 2.00

^'jV^V'jV'A-'jV'jVVc'sViVVfjV'jVVnViV'jV

BLOCK COEFFICIENT 0. 670064
SPEED LENGTH RATIO 0. 743962
BEAM/DRAFT RATIO 2. 708440
LENGTH/BEAM RATIO. 6. 824363

•jViV-VVoV'jV'sV'sVsV-W-VmV'sV'jV&;'?

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 21918. 27

POWER IN HP BY S&D METHOD FOR WD B/B 20822. 36

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT) DRAFT(FT)

722.70 105.90 39.10
DISPL(TONS) SHAFT RPS SHAFT RPM

57290.00 2.00 120.00
DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS

20.00 20.48 1

TANKER A Design

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 12045.93

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

201.22 46536.41
SPEED(M/S) PROP SPD(RPS)

8.23 2.00

j- »t- -•- j,y.j- «.».j
f
ju _«(,4- «i- j- j-^- y- .i-

92

BLOCK COEFFICIENT 0. 795976
SPEED LENGTH RATIO 0. 622799
BEAM/DRAFT RATIO 2.571429
LENGTH/BEAM RATIO 7. 333333

yo'c-V'sVynV^WciV'sWc'jWc'j'csV'sVVc

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 11077.69
POWER IN HP BY S&D METHOD FOR WD B/B 10523. 80

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT) DRAFT(FT)

660.00 90.00 35.00
DISPL(TONS) SHAFT RPS SHAFT RPM

47281.00 2.00 120.00
DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS

16.00 15.05 1
yoV}V}WeyoV?V}VVc-V}V-V}V}V?ViV*^V}VyoV?V?ViV}^

VfVryf^VcVrVfVc,Vf^ViV>VVr?V?VVrVriViVVfV--ViViV*iVVr7VVr**iVVf7Vyr**VfiV*Vf7VycVc*-V^V^^fiV

TANKER B Design

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 53068. 73

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

348.48 443809.00
SPEED(M/S) PROP SPD(RPS)

8. 18 2. 00

it'kir'iriefcirieJt'ititieSiJtic'Jtit

BLOCK COEFFICIENT 0. 818361
SPEED LENGTH RATIO 0. 470299
BEAM/DRAFT RATIO 3. 081081
LENGTH/BEAM RATIO 5. 013158

•jVVr i't ft i' Vc ->'c i\ -k Vc-V ft ft ft ft ft -V

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 36030. 91
POWER IN HP BY S&D METHOD FOR WD B/B 34229. 36

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT) DRAFT(FT)

1143.00 228.00 74.00
DISPL(TONS) SHAFT RPS SHAFT RPM

450910.00 2.00 120.00
DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS

15.90 18.74 1

AAAAAA****A*A**A*A**Vt**A**A7V**A****VHf**AVIr*TWt*Vt^fA*TS:

LNG TANKER Design

93

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 39727. 77

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

273.48 93110.23
SPEED(M/S) PROP SPD(RPS)

10.49 2.00

BLOCK COEFFICIENT 0. 717015
SPEED LENGTH RATIO 0. 681136
BEAM/DRAFT RATIO 3. 972222
LENGTH/BEAM RATIO 6. 272727

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B.

POWER IN HP BY S&D METHOD FOR WD B/B.
37910.40
36014.88

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT). .

897.00 143.00
DISPL(TONS) SHAFT RPS. .

94600.00 2.00

DRAFT(FT)
36. 00

SHAFT RPM
120.00

DESIGN SPD(KTS),
20.40

BOUN SPD(KTS) # SHAFTS
20. 85 1

BULK CARRIER Design

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 10940. 75

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

178.05 31594.49
SPEED(M/S) PROP SPD(RPS)

8. 69 2. 00

BLOCK COEFFICIENT 0. 645051
SPEED LENGTH RATIO 0. 699327
BEAM/DRAFT RATIO 2. 912500
LENGTH/BEAM RATIO 6. 266095

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 8578. 57
POWER IN HP BY S&D METHOD FOR WD B/B 8149. 64

SHIP DESIGN CHARACTERISTICS

94

LENGTH(FT) BEAM(FT) DRAFT(FT)
584.00 93.20 32.00

DISPL(TONS) SHAFT RPS SHAFT RPM
32100.00 2.00 120.00

DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS
16.90 19.26 1

ORE/BULK/OIL CARRIER Design

ADMIRALTY CALCULATION
POWER IN HORSEPOWER FOR ADMIRALTY METHOD 21700.58

SHIP DESIGN CHARACTERISTICS
LENGTH(M) DISPL(MTONS)

260.67 97647.63
SPEED(M/S) PROP SPD(RPS)

8.49 2.00

•k •sV »V iV ^V -kk -kk-kk rkk VckiV }V

BLOCK COEFFICIENT 0. 838120
SPEED LENGTH RATIO 0. 564288
BEAM/DRAFT RATIO 2. 310044
LENGTH/BEAM RATIO 8. 081285

?Vkkk•&kkkkkkV?kkkkk

SILVERLEAF & DAWSON CALCULATIONS
POWER IN HP BY S&D METHOD FOR NO B/B 18981. 25
POWER IN HP BY S&D METHOD FOR WD B/B 18032. 19

SHIP DESIGN CHARACTERISTICS
LENGTH(FT) BEAM(FT) DRAFT(FT)

855.00 105.80 45.80
DISPL(TONS) SHAFT RPS SHAFT RPM

99210.00 2.00 120.00
DESIGN SPD(KTS) BOUN SPD(KTS) # SHAFTS

16.50 15.40 1

&ftkkkkitki'<kkkkkkkkkkkki';kkkickftkkkkkk-kkkkkkkkkkit-kk-!c->'c-k

kkkfa^kkki'ckkkitkftk&kkkkkkkkftkKftJrkkkkitk*kitkki(-kkkk-k-kkk

95

APPENDIX D. POWER PREDICTION REPORT MODULE SOURCE

CODE

This is the source code for the subroutines that were added to the Report Module

to produce the Power Prediction Reports.

SUBROUTINE POWER.RPT

C *

C POWER REPORT SECTION READS IN A DATA FILE CREATED BY THE *

C POWER PREDICTION MODULE OF THE MAIN PROGRAM AND WRITES A *

C DETAILED HARD COPY REPORT OF THE RESULTS. THE FIRST PART OF *

C THE REPORT ECHOS THE INPUT DATA AND THE CALCULATES THE *

C RESULTS FOR THE REPORT. *

C *

C CALLED BY SUBROUTINE 'REPORT* *

C CALLS SUBROUTINE !

PW_CALC_2' *

INCLUDE 'TOP. FOR'
INCLUDE 'TOP.POWER. FOR'
CHARACTER PW_INPUT_DATA* 12 , PW_PRFILE*12

C*****MOVE THE MOUSE POINTER AWAY FROM THE SELECTION
STA = UIS$SET_POINTER_POSITION(VD_ID,WD_RPT, 9. 9,23.5)

C*****SET UP 'THE FIRST SCREEN INSTRUCTIONS
CALL UIS$ERASE(VD_ID, 4.1,20.1,8.4,24.9)
CALL UIS$TEXT(VD_ID,7,'ENTER THE FILE NAME

'
,4. 5 , 24.

)

CALL UIS$TEXT(VD_ID,7,'AND EXTENSION OF THE' ,4. 5 ,23. 6)

CALL UIS$TEXT(VD_ID,7,'DATA FILE TO BE USED' ,4. 5 , 23. 2)
CALL UIS$TEXT(VD_ID,7,'0R [RETURN] TO EXIT' ,4. 5 ,22. 8)

C*,v***read THE DATA INPUT FILE NAME
CALL KEY_READ (PW_INPUT_DATA, . FALSE. ,5. ,21.2,-30)

C*****Now WE NEED THE NAME OF THE OUTPUT REPORT FILE
CALL UIS$ERASE(VD_ID, 4.1,20.1,8.4,24.9)
CALL UIS$TEXT(VD_ID,7,' ENTER THE FILE NAME

'
,4. 5 , 24.

)

CALL UIS$TEXT(VD_ID,7,' AND EXTENSION TO BE ',4.5,23.6)
CALL UIS$TEXT(VD_ID, 7, 'ASSIGNED TO THE REPORT' ,4. 5 , 23. 2)
CALL UIS$TEXT(VD_ID,7,' OR [RETURN] TO EXIT' ,4. 5 ,22. 8)
CALL KEY_READ (PW_PRFILE , . FALSE. ,5. ,21.2,*30)

C*****READ THE DATA IN
1 OPEN (21, FILE = PW_INPUT_DATA, STATUS = 'OLD')

OPEN (22, FILE = PW_PRFILE, STATUS = 'NEW' ,BLANK=' NULL'

)

READ (21,100) PW.INFILE
READ (21,110) PW_LPP
READ (21,110) PW_T
READ (21,110) PW_B
READ (21,110) PW_DISP
READ (21,110) PW_CB
READ (21,110) PW_VK
READ (21,110) PW_NRPM

96

READ (21,110) PW_NSHAFT
READ (21,110) PW_ADME
READ (21,110) PW_SDNB
READ (21,110) PW_SDBB
REWIND(21)
CLOSE (21)

C*****RE-CALCULATE FOR ACCURACY
CALL PW_CALC_2
PW_SLR = PW_VK/(PW_LPP**0.
PW_BTR = PW_B/PW_T
PW_LBR = PW_LPP/PW_B

C*****GENERATE THE COVER PAGE OF
DO 5 I = 1,18,1

WRITE (22,130) '
'

5 CONTINUE
WRITE 1;22 120)

'

WRITE (;22 ,120)
'

WRITE (;22 120)
'

& REPOR'r*

WRITE <;22 120)
'

WRITE (
'22 ,120)

'

&PR0GRAI1'

WRITE (;22 120)
'

WRITE (;22 120)
'

&NAVAL •

WRITE (
'22 120)

'

WRITE (;22 120)
'

&THE *

WRITE (;22 120)
'

WRITE (!22 120)
'

WRITE (;22 120)
'

WRITE (;22 120)
'

WRITE (.22 120)
'

WRITE (:22 120)
'

WRITE (;22 120)
'

WRITE (:22 120)
'

WRITE (;22 120)
*

WRITE (;22 120)
'

WRITE (;22 120)
'

WRITE (:22 120)
'

WRITE (;22 120)
'

WRITE (:22 120)
'

WRITE (;22 120)
'

WRITE (:22 120)
'

5)

THE REPORT

TOOL BOX '

POWER PREDICTION

THIS REPORT WAS GENERATED USING THE

TOOL BOX WHICH WAS DEVELOPED FOR THE

ENGINEERING DEPARTMENT OF

NAVAL POSTGRADUATE SCHOOL*

MONTEREY, CALIFORNIA'

PROFESSOR F. PAPOULIAS '

AND '

LT. GERALD MCGOWAN '

LT. JAMES PLOSAY'
1989/90

'

DO 6 I = 1,13,1
WRITE (22,120)

6 CONTINUE
WRITE (22,120)

'

WRITE (22,120)
'

WRITE (22,120)
'

C*****IN THIS SECTION, THE ECHO

PAGE 1 OF
i

2 / POWER PREDICTION'

OF SHIP PARAMETERS AND CALCULATED

10

DATA IS PRESENTED.

DO 10 I = 1,5,1
WRITE (22,130)

CONTINUE

97

WRITE

(

22 ,120)
'

WRITE(22 ,130)
'

WRITE (
'22 ,120)

'

WRITE(22 ,130)
'

WRITE (22 ,150)
'

WRITE('22 ,150)
'

& PW INPU:r DATA
WRITE(22 ,160)

'

WRITE

(

'22 ,130)
'

WRITE

(

22 ,150)
'

WRITE

(

22 ,130)
'

WRITE

(

22 ,140)
'

WRITE(22 ,130)
'

WRITE

(

22 ,140)
'

WRITE(22 130)
*

WRITE(22 140)
'

WRITE(22 130)
'

WRITE(22 140)
'

WRITE(22 130)
'

WRITE(22 160)
'

WRITE(22 140)
'

WRITE

(

22 140)
'

WRITE(22 140)
'

WRITE

(

22 140)
'

WRITE(22 160)
'

WRITE(22 130)
'

WRITE

(

22 140)
'

WRITE(22 130)
'

WRITE(22 140)
'

WRITE(22 130)
'

WRITE(22 140)
'

WRITE(22 130)
'

WRITE(22 130)
'

WRITE(22 130)
'

WRITE(22 130)
*

WRITE(22 140)
'

WRITE(22 130)
'

WRITE(22 130)
'

WRITE(22 130)
'

WRITE

(

22 140)
'

WRITE(22 130)
'

WRITE(22 140)
'

WRITE(22 130)
*

WRITE(22 130)
'

WRITE

(

22 130)
'

WRITE(22 130)
'

&NG:
'

WRITE! 22 130)
*

WRITE

(

22 ,130)
'

&F 1

WRITE(22 ,130)
'

&83
1

WRITE(22 ,130)
'

& BY S.
i

WRITE! 22 130)
'

WRITE!;22 ,130)
'

POWER PREDICTION REPORT '

i

THE INPUT SHIP PARAMETERS ARE AS FOLLOWS'
t

THE REPORT IS LOCATED IN FILE : * ,PW_PRFILE
THE INPUT DATA FILE USED IS : *

,

DESIGN PARAMETERS'
SHIP NAME IS ' ,PW_INFILE

LENGTH BETWEEN PERPENDICULARS FT *

,PW_LPP

DESIGN DRAFT FT ' ,PW_T

DESIGN BEAM FT ' ,PW_B

DESIGN DISPLACEMENT LTONS. .
' ,PW_DISP

COEFFICIENTS OF TORh*********************
BLOCK COEFFICIENT: ',PW_CB
SPEED-LENGTH RATIO:

'
,PW_SLR

BEAM-DRAFT RATIO: ' ,PW_BTR
LENGTH-BEAM RATIO: '

, PW_LBR
?V?V?VVc'VfVr<V?ViVVry-vV?V-V5V^V?ViVVf?VVf?V7V ,

j'riV>V-'f?V
,)VVf'5ViV?V-V ,5ViV?V ,

5V
,5Vyc

'

i

DESIGN OPERATING SPEED (NOM) KNOTS.
.

'
,PW_VK

t

PROPULSION SHAFT SPEED RPM. .
' ,PW_NRPM

t

NUMBER OF PROPULSION SHAFTS ' ,PW_NSHAFT

DESIGN RESULTS (HORSEPOWER)'
i

ADMIRALTY POWER ' ,PW_ADME

SILVERLEAF & DAWSON POWER:

'

i

DESIGN W/O BULBOUS BOW ' ,PW_SDNB

DESIGN W/ BULBOUS BOW ' ,PW_SDBB
!

I

}Wc-Wf}WfyryryoV5Vyf3W?TY-VVoV*ycycy-yryoV}V**^ '

POWER ESTIMATIONS PRESENTED ARE BASED UPON FOLLOWI

(1) METHOD OF ADMIRALTY COEFFICIENTS'
HARVALD, Sv.Aa. /'RESISTANCE AND PROPULSION

SHIPS", JOHN WILEY & SONS, NEW YORK,N. Y. ; 19

(2) METHOD OF SILVERLEAF AND DAWSON, AS MODIFIED

ERICHSEN: ERICHSEN,S. , REPORT No. 123
,

'

"OPTIMUM CAPACITY OF SHIPS AND PORT TERMINAL

98

&s"'
WRITE(22,130) ' UNIV. OF MICHIGAN, ANN ARBOR, MI. ;

1971'
WRITE(22,130) ' **

'

WRITE (22,120) *
'

WRITE (22,120) ' PAGE 2 OF 2 / POWER PREDICTION'
CLOSE (22)

100 FORMAT (A)
110 FORMAT (G12.5)
120 FORMAT (10X,A)
130 FORMAT (10X,A)
135 FORMAT (10X, A,' ' ,A)
140 FORMAT (10X,A,

'
' ,G14. 6)

150 FORMAT (10X,2A)
160 FORMAT (10X,A)

C*****£XIT FROM THE REPORT AND ENABLE MOUSE
30 CALL UIS$ERASE(VD_ID, 4.1,20.1,8.4,24.9)

CALL UIS$TEXT(VD_ID,7,' SELECT AN OPTION WITH' ,4. 5 ,24.)

CALL UIS$TEXT(VD_ID,7,' THE MOUSE' ,4. 5,23. 6)
RETURN
END

99

APPENDIX E. TOOL BOX ENDURANCE ESTIMATION

A. SUBROUTINE ENDURANCE SOURCE CODE
This program is the TOOL BOX Endurance Estimation module that is called from

the Main Menu, and all of its associated subroutines.

SUBROUTINE ENDURANCE

c *

C THIS SUBROUTINE IS THE MAIN PART OF THE ENDURANCE CALCULATIONS. *

C IT SETS UP SCREENS AND CONTROLS ENDURANCE PROGRAM ACTIONS. *

C *

C IT CALCULATES ENDURANCE USING THE USN DDS9400-1 FORMAT
C IT IS CALLED FROM THE MAIN TOOL BOX MENU BY THE "ENDURANCE" *

C SELECTION USING THE MOUSE. IT REQUIRES THE FOLLOWING INPUTS FOR *
C OPERATION AFTER INITIALIZATION: *

C *

C ND.DISP FULL LOAD DISPLACEMENT (TONS) REAL *

C ND_PWR CRUISING POWER (HP) REAL *

C ND_NDPWR AVERAGE ENDURANCE POWER REQD FOR CRUISING *

C REAL *

C ND_ELEC CRUISING ELECTRIC LOAD (KW) REAL *

C ND_MFR MAIN PROPULSION FUEL RATE (LBS/HR) REAL *

C ND_EFR CRUISING ELECTRIC PLANT FUEL RATE (LBS/KW-HR) *

C REAL *

C ND_OTH OTHER FUEL CONSUMPTION RATES REAL *

C ND_TPA FUEL STORAGE TAIL PIPE ALLOW (%) REAL *

C *

C USING THE FOLLOWING ITERATIVE VARIABLES: *

C ND_RANGE ENDURANCE RANGE (NMILES) REAL
C ND_SPD ENDURANCE SPEED (KNOTS) REAL *

C ND_FUEL VOYAGE FUEL CAPACITY (TONS) REAL
C *

C AND CALCULATES THE FOLLOWING SOLUTION VALUES: *

C ND_TIME TIME (HRS) FOR JOURNEY OF ND_RANGE AT ND_SPD *

C REAL *

C ND_VOL FUEL STORAGE CAPACITY REQD REAL *

C ND_PCT FUEL PERCENT OF FULL LOAD DISPL REAL *

C *

C ALL PARAMETERS ARE PASSED IN COMMON BY THE INCLUDE *TOP_ENDU. FOR* *

C FILE THAT HAS ALL THE PARAMETER DEFINITIONS, TYPE STATEMENTS, *
C AND SET UP. *

C *

C CALLED BY MAIN MODULE 'TOOL_BOX' *

C CALLS SUBROUTINES ' ND_KB_DATA_IN'
,

' ND_READ_FILE' ,ND_RECORD'

,

*

C 'ND_CALC_l' ,'TO_MAIN' ,AND 'EXIT' *

C *

INCLUDE 'GENERAL. FOR'
INCLUDE 'TOP_ENDU. FOR'
EXTERNAL TO_MAIN, EXIT, DARK2, LIGHT2 , NOWHERE ,ND_CALC_2

100

EXTERNAL ND_KB_DATA_IN,ND_RECORD,ND_READ_FILE ,ND_CALC_1
EXTERNAL ND_SDI_LABEL , ND_SORT , MUCH_TOO_MUCH , TOO_MUCH , ND_LI ST
EXTERNAL KEY_READ,SET_HELP_LEVEL

C*****SET HELP LEVEL FOR PARAMETER WINDOWS TO 'ON' UPON ENTRY
ND_HELP=1

C*****INITIALIZE THE PARAMETERS TO AVOID DIVIDE BY ZERO ERRORS. ALSO
C THIS INSURES THAT WHEN WE INITIALLY CALL THE KEYBOARD DATA ENTRY
C ROUTINE THAT THE DATA PASSES W/O DIVIDE BY ZERO ERRORS

IF (ND.ENTERS . EQ.) THEN
C**,wc*INPUT VARIABLES

ND_SOLVE=l
ND_INFILE=' GENERIC'
ND_KB_UP(1)=' GENERIC'
ND_DISP=1.
ND_KB_UP(2)='1.0"
ND_PWR=0. 0001
ND_KB_UP(3)='0. 0001'

ND_NDPWR=0. 0001
ND_KB_UP(4) = *0. 0001'
ND_ELEC=0. 0001
ND_KB_UP(5)=' 0.0001'
ND_TPA=0.0001
ND_KB_UP(6)= '0.0001'
ND_MFR=0. 0001
ND_KB_UP(7) = '0. 0001'

ND_EFR=0.0001
ND_KB_UP(8)= '0.0001'
ND_OTH=0. 0001
ND_KB_UP(9)= '0.0001*
ND_RANGE=0. 0001
ND_KB_UP(10)=' 0.0001'
ND_SPD=0.0001
ND_KB_UP(11)=' 0.0001'
ND_FUEL=0. 0001
ND_KB_UP(12) = '0. 0001'

ND_WGT=0. 0001
ND_KB_UP(18) = '0. 0001'

ND_VOL=0. 0001
ND_KB_UP(19) = '0. 0001'

ND_PCT=0. 0001
ND_KB_UP(20) = '0. 0001'

ENDIF
ND_ENTERS=ND_ENTERS+1

C*****ERASE THE DATA AREA
CALL UIS$ERASE(VD_ID,3. 6,10. 1,9. 9,18. 5)

C*****REMOVE THE MOUSE POINTER TO SOME OTHER AREA
STA = UIS$SET_POINTER_POSITION(VD_ID,WD_MAIN,9. 9,4. 5)

C*****CREATE POWER WINDOW
WD_NDUR=UIS$CREATE_WINDOW(VD_ID, 'SYS$WORKSTATION' ,

'ENDURANCE
& PREDICTION WINDOW' ,-.5,9. 9,10. 1,19. ,40. ,30.)

DO 10 Y_COOR = 13. 1,18.4,. 8

DY = Y.COOR + . 2

CALL UIS$SET_P0INTER_AST(VD_ID,WD_NDUR,DARK2, ,XO,Y_COOR,X1,
& DY,LIGHT2)

10 CONTINUE
C*****set MENU TITLES

101

OPTION(ll) = OPTION(23)
OPTION(12) = OPTION(22)

C*****WRITE SCREEN
CALL UIS$TEXT(VD_ID,0,OPTION(11),. 3,15. 1)

CALL UIS$TEXT(VD_ID,0,OPTION(12),. 3,15. 9)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_NDUR,EXIT,

,
,X0,13. 0,

& XI, 13. 4)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_NDUR,TO_MAIN,

, ,X0,13. 8,
& XI, 14. 2)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_NDUR,SET_HELP_LEVEL, , ,X0,14. 6,
& XI, 15.0)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_NDUR,ND_CALC_l,
,
,X0,15. 4,

& XI, 15. 8)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_NDUR,ND_R£CORD, , ,X0,16. 2,

& XI, 16. 6)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_NDUR,ND_READ_FILE,

, ,X0
& ,17. ,X1,17.4)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_NDUR,ND_KB_DATA_IN,
& ,,X0,17.8, XI, 18. 2)

WNDOW = WD_NDUR
20 RETURN

END
C

C

SUBROUTINE ND_KB_DATA_IN

c *

C THE ND_KB_DATA_IN ROUTINES LOAD IN KB DATA AND ALLOWS *

C THE OPERATOR TO CHANGE INPUTS AND SEE REAL TIME EFFECTS *

C OF THOSE CHANGES ON THE ENDURANCE CHARACTERISTICS OF THE *

C PRELIMINARY DESIGN. *

C *

C CALLED BY SUBROUTINE 'ENDURANCE' *

C CALLS SUBROUTINES ' ND_SDI_LABEL'
,

" KEY_READ'
,

' ND_SORT'

,

C 'ND_CALC_1', 'ND.LIST' *

c

INCLUDE 'TOP. FOR'
INCLUDE 'TOP_ENDU.FOR'
REAL ND_LINE_NO
STA=UIS$SET_POINTER_POSITION(VD_ID,WD_NDUR,9. 9,14. 5)
KB_ID=UIS$CREATE_KB(' SYS $WORKSTATION'

)

CALL UIS$ENABLE_KB(KB_ID,WD_NDUR)
C*****FIRST, WE WE WRITE UP THE LINE LABLES AND FIRST INSTRUCTIONS

CALL ND_SDI_LABEL(VD_ID)
C*****sECOND, CALCULATE AND DISPLAY STARTING VALUES

CALL ND_CALC_1
C*****THIRD, ALLOW USER TO CHANGE INPUT THEN
C*****RECALCULATE RESULTS IN REAL TIME

1 CALL UIS$ERASE(VD_ID,-0. 4,10. 1,3.4,10. 9)
CALL UIS$TEXT(VD_ID,7,'ENTER A LINE NUMBER' ,0. 0, 11. 0)
CALL UIS$TEXT(VD_ID,7,'OR [RETURN] TO EXIT' ,0. 0, 10. 6)

3 CALL KEY_READ(ND_LINE,. TRUE. ,0. 0,12.0, *300)
READ (ND_LINE,FMT=*(F2.0)' ,ERR = 5) ND_LINE_NO
NLINE.NO = INT(ND_LINE_NO)

102

GO TO (10,20,30,40,50,60,70,80,90,100,110) NLINE_NO
C

C*****IF it GETS TO HERE A MISTAKE HAS BEEN MADE **********************
C

5 CALL UIS$ERASE(VD_ID, -0.4, 10. 1,3.4,10. 9)
CALL UIS$TEXT(VD_ID, 7,' IMPROPER LINE NUMBER* ,0. 11. 0)
CALL UIS$TEXT(VD_ID,7,'ENTER A NEW NUMBER PLEASE* ,0. 0, 10. 6)
GOTO 3

C

10 CALL ND_SORT(NLINE_NO,DEL_Y,ND_LINE,*300)
ND_KB_UP(1) = ND.LINE
ND_INFILE = ND_LINE
READ (ND_LINE, FMT='(G)' ERR = 5)
WRITE (ND_KB_UP(1), FMT= f

(A)') ND_INFILE
CALL UIS$ERASE(VD_ID,8. 2,17. 9,9. 9,18. 3)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(1),8. 2,18. 2)
GOTO 1

C

20 CALL ND_SORT(NLINE_NO,DEL_Y,ND_LINE,*300)
ND_KB_UP(2) = ND_LINE
READ (ND_LINE, FMT=' (G)

*
,ERR = 5) ND_DISP

WRITE (ND_KB_UP(2), FMT=' (G12. 5)
'
) ND_DISP

CALL UIS$ERASE(VD_ID,8. 2,17. 5,9. 9,17. 9)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(2),8.2,17.8)
GOTO 1

C

30 ND_NDX=1
IF (ND_HELP . EQ. 1) CALL ND_LIST(ND_NDX)
CALL ND_SORT(NLINE_NO,DEL_Y,ND_LINE,*300)
ND_KB_UP(3) = ND_LINE
READ (ND_LINE, FMT=' (G)

'
,ERR = 5) ND_PWR

WRITE (ND_KB_UP(3), FMT=' (G12. 5)
'
) ND_PWR

CALL UIS$ERASE(VD_ID,8. 2,17. 1,9. 9,17.5)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(3),8. 2,17. 4)
GOTO 1

C

40 ND_NDX=2
IF (ND.HELP .EQ. 1) CALL ND_LIST(ND_NDX)
CALL ND_SORT(NLINE_NO , DEL_Y , ND_LINE , *300

)

ND_KB_UP(4) = ND_LINE
READ (ND_LINE, FMT=' (G)

'
,ERR = 5) ND_NDPWR

WRITE (ND_KB_UP(4), FMT=' (G12. 5)
'
) ND_NDPWR

CALL UIS$ERASE(VD_ID,8. 2,16. 7,9. 9,17. 1)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(4),8.2,17.0)
GOTO 1

C

50 ND_NDX=3
IF (ND_HELP .EQ. 1) CALL ND_LIST(ND_NDX)
CALL ND_SORT(NLINE_NO,DEL_Y,ND_LINE,*300)
ND_KB_UP(5) = ND_LINE
READ (ND_LINE, FMT=' (G)

'
,ERR = 5) ND_ELEC

WRITE (ND_KB_UP(5), FMT=' (G12. 5)
'
) ND.ELEC

CALL UIS$ERASE(VD_ID,8. 2,16. 3,9. 9,16. 7)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(5),8.2,16.6)
GOTO 1

103

c

c

c

c

c

60 ND_NDX=4
IF (ND_HELP . EQ. 1) CALL ND_LIST(ND_NDX)
CALL ND_S0RT(NLINE_N0,DEL_Y,ND_LINE,*300)
ND_KB_UP(6) = ND_LINE
READ (ND_LINE, FMT='(G)" ERR = 5) ND_TPA
WRITE (ND_KB_UP(6), FMT=' (G12. 5)

'
) ND_TPA

CALL UIS$ERASE(VD_ID,8. 2,15. 9,9. 9,16. 3)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(6),8. 2,16.2)
GOTO 1

70 ND_NDX=5
IF (ND_HELP .EQ. 1) CALL ND_LIST(ND_NDX)
CALL ND_SORT(NLINE_NO,DEL_Y,ND_LINE,*300)
ND_KB_UP(7) = ND_LINE
READ (ND_LINE, FMT='(G)' ERR = 5) ND_MFR
WRITE (ND_KB_UP(7), FMT= f

(G12. 5)
'
) ND_MFR

CALL UIS$ERASE(VD_ID,8. 2,15.5,9.9,15. 9)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(7),8. 2,15. 8)
GOTO 1

80 ND_NDX=6
IF (ND_HELP .EQ. 1) CALL ND_LIST(ND_NDX)
CALL ND_SORT(NLINE_NO,DEL_Y,ND_LINE,*300)
ND_KB_UP(8) = ND_LINE
READ (ND_LINE, FMT='(G)' ERR = 5) ND_EFR
WRITE (ND_KB_UP(8), FMT=

f

(G12. 5)
'

) ND_EFR
CALL UIS$ERASE(VD_ID,8. 2,15. 1,9. 9,15. 5)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(8),8. 2,15. 4)
GOTO 1

90 ND_NDX=7
IF (ND_HELP .EQ. 1) CALL ND_LIST(ND_NDX)
CALL ND_S0RT(NLINE_N0,DEL_Y,ND_LINE,*300)
ND_KB_UP(9) = ND.LINE
READ (ND_LINE, FMT=' (G)

'
,ERR = 5) ND_OTH

WRITE (ND_KB_UP(9), FMT=* (G12. 5)
'
) ND_OTH

CALL UIS$ERASE(VD_ID,8. 2,14. 7,9. 9,15. 1)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(9),8.2,15.0)
GOTO 1

100 CALL ND_SORT(NLINE_NO,DEL_Y,ND_LINE,*300)
ND_KB_UP(10) = ND_LINE
READ (ND_LINE, FMT=' (G)

'
,ERR = 5) ND_RANGE

WRITE (ND_KB_UP(10), FMT=' (G12. 5)
'
) ND_RANGE

CALL UIS$ERASE(VD_ID,8. 2,14. 3,9. 9,14. 7)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(10),8. 2,14.6)
CALL ND_CALC_1
GOTO 1

110 CALL ND_SORT(NLINE_NO,DEL_Y,ND_LINE,*300)
ND_KB_UP(11) = ND_LINE
READ (ND_LINE, FMT=' (G)

'
,ERR = 5) ND_SPD

WRITE (ND_KB_UP(11), FMT=' (G12. 5)
'
) ND_SPD

CALL UIS$ERASE(VD_ID,8. 2,13. 9,9. 9,14. 3)
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(11),8.2,14. 2)
CALL ND CALC 1

104

GOTO 1

C
C
300 CALL UIS$DISABLE_KB(KB_ID)

CALL UIS$ERASE(VD_ID,-. 4,10. 1,3. 4,10. 9)
CALL UIS$TEXT(VD_ID, 7,' SELECT AN OPTION' ,0. ,11.)
CALL UIS$TEXT(VD_ID,7,' WITH THE MOUSE ',0. ,10.6)
RETURN
END

C

C
SUBROUTINE ND_SORT(NLINE_NO,DEL_Y,ND_LINE, COUNT,*)

C *

C SUBROUTINE ND_SORT SORTS OUT THE LINE NUMBER TO THE *

C VARIABLE INVOLVED AND CALLS THE APPROPRIATE SCREEN *

C INSTRUCTION TO BE WRITTEN IN THE INSTRUCTION BOX. *

C *

C CALLS SUBROUTINE *KEY_READ' *
Q Vc VcVoWoV ?ViWoV>Wc ?V ?V** Vc Vr ?V ^V?VVr }V ?V }V }V <V^
C

INCLUDE 'TOP. FOR'
INCLUDE 'TOP_ENDU.FOR'
REAL DEL_Y, DY, DOT_Y
LOGICAL ND_FCHAR
CHARACTER ND_KB_INST(11)*25

C*****SET THE SCREEN INSTRUCTIONS STRINGS
ND_KB_INST(1) = 'ENTER NEW SHIP NAME
ND_KB_INST(2) = 'ENTER FULL LOAD DISPL
ND_KB_INST(3) = 'ENTER FULL RATED POWER
ND_KB_INST(4) = 'ENTER ENDURANCE POWER
ND_KB_INST(5) = 'ENTER NOMINAL ELEC LOAD
ND_KB_INST(6) = 'ENTER TPA AS O.XY%
ND_KB_INST(7) = 'ENTER FUEL RATE (LBS/HR)
ND_KB_INST(8) = 'ENTER FUEL USE(LBS/KwHR)
ND_KB_INST(9) = 'ENTER FUEL USE (LBS/HR)
ND_KB_INST(10) = 'ENTER ENDURANCE RANGE
ND_KB_INST(11) = 'ENTER ENDURANCE SPEED

C*,v***ERASE THE INSTRUCTION AREA AND FIND ITS DATA POSITION
CALL UIS$ERASE(VD_ID,-0. 4,10. 1,3. 4,10. 9)
DEL_Y = 18. 6 - .4 * NLINE.NO

C*****WRITE THE APPROPRIATE INSTRUCTION STRING
CALL UIS$TEXT(VD_ID,7,ND_KB_INST(NLINE_NO),0. 0,11. 0)
CALL UIS$TEXT(VD_ID, 7, '[RETURN] TO EXIT' ,0. 0, 10. 6)

C*****DECIDE if WE WANT THE FIRST LINE (NAME) OR A VALUE
IF (NLINE_NO .EQ. 1) THEN

ND_FCHAR = .FALSE.
ELSE

ND.FCHAR = .TRUE.
ENDIF
CALL KEY_READ(ND_LINE,ND_FCHAR,0. 0,12. 0,*300)
DY = DEL_Y -

. 35
CALL UIS$ERASE(VD_ID,8. 2,DY,9. 9,DEL_Y)
CALL UIS$TEXT(VD_ID,7,ND_LINE,8. 2,DEL_Y)
RETURN

300 RETURN 1

105

PERFORM DISPLAY VARIABLES IS A ROUTINE WHICH READS UP THE
DATA ONTO THE DISPLAY AREA ALONG WITH THE SCREEN LABELS.

END
C

C
SUBROUTINE ND_SDI_LABEL(VD_ID)

*

CALLED BY SUBROUTINES ' ENDURANCE' ,' ND_KB_DATA_IN* *

C

IMPLICIT INTEGER (A-Z)
INCLUDE 'TOP.ENDU. FOR'
INCLUDE ' SYS$LIBRARY: UISENTRY*
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
REAL DEL_Y, DOT_Y
CHARACTER N_LINE_LBL(20)*35
CALL UIS$ERASE(VD_ID,4. ,10. 1,9. 9,18. 3)

10

20

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

SHIP NAME
FULL LOAD DISPLACEMENT(TONS)
FULL RATED PLANT POWER (SHP)
AVG ENDURANCE POWER (SHP)..
CRUISING ELEC LOAD (KW)
TAIL PIPE ALLOWANCE (%).
CRUISING MAIN FUEL RATE
CRUISING ELEC FUEL RATE
CRUISING OTHER FUEL RATE. .

.

'EST. ENDURANCE RANGE (MILES)
'EST. ENDURANCE SPEED (KNOTS)

yr7W-}V5VsVyoWr<Wf^VoV?V^ycvY**?VVc?V-V?V**Vc*3V'5'ciV

RESULTS FROM CALC*
- JU .J.Jm .J- -'- -. -' - -'-

•

N_LINE_LBL(1) =
N_LINE_LBL(2) =
N_LINE_LBL(3) =
N_LINE_LBL(4) =

N_LINE_LBL(5) =
N_LINE_LBL(6) =
N_LINE_LBL(7) =

N_LINE_LBL(8) =

N_LINE_LBL(9) =

N_LINE_LBL(10)
N_LINE_LBL(11)
N_LINE_LBL(12)
N_LINE_LBL(13)
N_LINE_LBL(14)
N_LINE_LBL(15)
N_LINE_LBL(16)
N_LINE_LBL(17)
N_LINE_LBL(18)
N_LINE_LBL(19)
N_LINE_LBL(20)
DO 10 I = 1,20,1

DEL_Y =18.6 - . 4*1
CALL UIS$TEXT(VD_ID,7,N_LINE_LBL(I),4. ,DEL_Y)

CONTINUE
DO 20 I = 1,9,1

DEL_Y = 18. 6 - .4*1
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(I),8.2,DEL_Y)

CONTINUE
RETURN
END

.•..-.j. i

EST. ENDURANCE FUEL LOAD (TONS)
1

ELAPSED TRIP TIME (HRS): '

FUEL STORAGE RETIREMENTS (FT
FUEL WEIGHT ALLOWANCE (%-FL): . .

'

c

c

SUBROUTINE ND_CALC_1

C *

C ND_CALC_1 CALLS ND_CALC_2 WHICH DOES THE ACTUAL ENDUARNCE *
C CALCULATIONS. ON RETURN, ND_CALC_1 DISPLAYS THE RESULTS *

106

C OF THE CALCULATIONS AND THEN RETURNS TO THE ROOT PROGRAM. *

C *

C CALLED BY SUBROUTINES "ENDURANCE'
,

'ND_KB_DATA_IN' *

C CALLS SUBROUTINE 'ND_CALC_2' *

c

INCLUDE 'TOP. FOR 1

INCLUDE 'TOP.ENDU. FOR'
REAL DY
CALL UIS$ERASE(VD_ID,8. 1,9. 95,9. 9,14. 7)

CALL ND_CALC_2
WRITE(ND_KB_UP(10), FMT=' (G12. 5)

'
) ND.RANGE

WRITE(ND_KB_UP(11), FMT=' (G12. 5)
'
) ND_SPD

-'* j« -'- «.'» J- «.*.. »'. J* -'» -'- -*- . . •

i

ND_KB_UP(12) =

ND_KB_UP(13) =

ND_KB_UP(14) =

ND_KB_UP(15) =

ND_KB_UP(20) = 'f tff tffVfsV&**"WfiTf& *

WRITE(ND_KB_UP(16), FMT=' (G12. 5)
'
) ND_FUEL

WRITE(ND_KB_UP(17), FMT=' (G12. 5)
*
) ND_TIME

WRITE(ND_KB_UP(18), FMT=' (G12. 5)
') ND_VOL

WRITE(ND_KB_UP(19), FMT=' (G12. 5)
'
) ND_PCT

DO 10 I = 10,20,1
DY = 18. 6 -. 4*1
CALL UIS$TEXT(VD_ID,7,ND_KB_UP(I),8.2,DY)

10 CONTINUE
RETURN
END

C

C

SUBROUTINE ND_CALC_2
p JUJU JUJL JLJL JLJ- J.JL JUJL JL -'- J-J- -'- JL J- JL J- -'- JL JL J- JLJ- J- JL J- J- JL *' - -'- -'- JU -'- JL J- JL JLJLJL JL JL JL JL -J- -'- JL J- JU -'- J- J-JUJ>J* J> - * - JUJ- J/- JL -'- -'-

c *

C SUBROUTINE ND_CALC_2 JUST DOES THE CALCULATION OF THE ENDURANCE*
C REQUIREMENTS FROM THE INPUT DATA. IT IS BASED UPON THE NAVY *

C DDS9400-1 ALGORITHM FOR ENDURANCE ESTIMATION. IT IS ALSO USED *

C IN THE REPORT SECTION FOR GENERATION OF THE WRITTEN REPORT OF *

C THE DESIGN.
C *

C CALLED BY SUBROUTINE 'ND_CALC_l' *

C CALLS SUBROUTINE 'ND_FAIL'
p J- JU J.J- JL JL - • - J. JL -?_ J. JL J. -'. JL J. JUJL JU JL JL J. J. J. JU J*J. J. J. JU JUJUJU J. JU JL JU JLJL J- J. J-JLJL J.JU J. JU J. J- J. JLJU JU JU J. JL J. J. J.J.J. JLJ. JU J.

c

INCLUDE 'TOP. FOR'
INCLUDE ' TOP_ENDU. FOR

'

C

C*****CALCULATE AVERAGE ENDURANCE POWER
ND_C_AVG = ND_NDPWR * 1. 10

C*****CALCULATE POWER RATIO FOR USE LATER
ND_RATI0 = ND_C_AVG / ND_PWR

C*****CALCULATE PROPULSION F/0 CONSUMPTION RATE
ND.PFRATE = ND_MFR * ND_C_AVG

C*****CALCULATE AUXILIARY GENERATOR F/O RATE
ND_GFRATE = ND_EFR * ND_ELEC

C*****CALCULATE TOTAL F/0 USEAGE RATE

107

ND_TFR = ND_PFRATE + ND_GFRATE + ND_OTH
C*****CALCULATE ALL PURPOSE F/O RATE

ND_APFR = ND_TFR / ND_C_AVG
C*****SET FUEL RATE CORRECTION FACTOR

IF (ND_C_AVG . LE. 0. 3333*ND_PWR) THEN
FRCORR = 1. 04

ELSEIF (ND_C_AVG . GT. 0. 3333*ND PWR .AND.
& ND_C_AVG .LE. 0. 6667*ND PWR) THEN

FRCORR = 1. 03
ELSEIF (ND_C_AVG . GT. 0. 6667*ND_PWR . AND.

& ND_C_AVG .LE. ND_PWR) THEN
FRCORR = 1. 02

ELSE
FRCORR = 1. 03

ENDIF
C*****CALCULATE SPECIFIED F/O RATE

ND_SFR = FRCORR * ND_APFR
C*****CALCULATE AVERAGE ENDURANCE F/O RATE

ND_AVGFR = ND_SFR * 1. 05
C*****DETERMINE BURNABLE FUEL LOAD

ND_WGT = (ND_RANGE * ND_C_AVG * ND_AVGFR)

& / (ND_SPD * 2240.)

C*****ADJUST FOR UNUSEABLE FUEL BELOW SUCTION
ND.FUEL = ND_WGT / ND_TPA

C*****CALCULATE FINAL OUTPUT VARIABLES
ND_VOL = ND_FUEL * 38. 00
ND_PCT = ND_FUEL * 100. / ND_DISP
NDJTIME = ND_RANGE / ND_SPD

C*****WHAT IF WE ARE OVER DRASTICALLY OR JUST A LITTLE?
IF (ND_FUEL .GT. 0. 150*ND_DISP) CALL TOO_MUCH
IF (ND_FUEL .GT. ND_DISP) CALL MUCH_TOO_MUCH
RETURN
END

C

C

SUBROUTINE ND_RECORD
Q Vr Vr Vc:WrVoY -V?Wc V- VcVoV ?V ?V VrVoV}Wr V- Vc -V }V -Y }^

c *

C SUBROUTINE 'ND_REC0RD' SAVES THE KBD INPUT DATA TO A USER *

C SPECIFIED FILE. FILE TYPE IS '.DAT' AUTOMATICALLY *

C *

C CALLED BY SUBROUTINE 'ENDURANCE* *

C CALLS SUBROUTINES 'SHOW_SAVE' *
p -j- -*-yf ju -•- j-y- jl ..•- ju ^*. ^* «j- »- ju j. ju .j- -% -'- -'- -j-j- -•-j- ~'-j- -'- •J' Jfc

-'-~V ~f*J* "i~
"' -'* *'*

*iiV- *'* it*t* "V ~Vit JL' *VV* mJ' *V * * itJ* Vc *V"V V"Vr *t "** Vc *'» V?Vc #

V

c

INCLUDE 'TOP. FOR'
INCLUDE 'T0P_ENDU. FOR'
STA = UIS$SET_POINTER_POSITION(VD_ID,WD_NDUR,0. ,10.)

CALL SHOW.SAVE
OPEN(23,FILE=ND_INFILE,STATUS='UNKNOWN' ,blank='null

'

)

WRITE (23,200) ND.INFILE
WRITE (23,210) ND_DISP
WRITE (23,210) ND_PWR
WRITE (23,210) ND_NDPWR
WRITE (23,210) ND_ELEC
WRITE (23,210) ND_TPA

108

WRITE (23,210) ND_MFR
WRITE (23,210) ND_EFR
WRITE (23,210) ND_OTH
WRITE (23,210) ND_RANGE
WRITE (23,210) ND_SPD
WRITE (23,210) ND.FUEL
WRITE (23,210) ND_TIME
WRITE (23,210) ND_V0L
WRITE (23,210) ND_PCT
ENDFILE (23)
REWIND 23
CLOSE(23)

C

C*****AND REPORT OUT WHEN DONE
C

ND_FNAME = ND_INFILE(: INDEX(ND_INFILE, ' '))//'. DAT*
CALL UIS$ERASE(VD_ID,-.4,10. 1,3.4,10.9)
CALL UIS$TEXT(VD_ID,7,'FILE SAVED AS* ,0. ,11.)
CALL UIS$TEXT(VD_ID,7,ND_FNAME,0. ,10.6)

200 FORMAT (BN,2X,A)
210 FORMAT (G12.5)

RETURN
END

C

C

SUBROUTINE ND_READ_FILE

C *

C READ FILE IS A SUBROUTINE WHICH READS THE DATA INPUT FILE *
C SPECIFIED BY KEYBOARD ENTRY
C *

C CALLED BY SUBROUTINE 'ENDURANCE' *

C CALLS SUBROUTINES 'ND_SDI_LABEL'

,

! ND_CALC_1

'

*
p ~. .j - jl -'

: «vy- -*- «V V" "V #V "V ~' "': J- i" *'" *'* -3' ~ * ~V *J"-,—J-4e V* J- *** m3' ~VA Vc ****J" ~V * Vr "V ~V J*
tffc

JL "V
*'- Vr^t"V Jc ~'r "V Vr *V *VV* ~V *V *V V; -A* 7*r V *

"A* Vr -, r *.'; iV

c

INCLUDE 'TOP. FOR'
INCLUDE 'TOP_ENDU. FOR'
STA=UIS$SET_POINTER_POSITION(VD_ID,WD_NDUR,0. ,10. 2)
KB_ID=UIS$CREATE_KB(, SYS$WORKSTATION*

)

CALL UIS$ENABLE_KB(KB_ID,WD_NDUR)
CALL UIS$ERASE(VD_ID,-.4,10. 1,2. 3,10. 9)
CALL UIS$TEXT(VD_ID,7,'ENTER THE FILE NAME' ,0. ,11.

)

CALL UIS$TEXT(VD_ID,7,'AND FILE EXTENSION' ,0. ,10.6)
CALL KEY_READ(ND_LINE,'TRUE" ,0. ,12. ,*150)
OPEN(23 ,FILE=ND_LINE , STATUS=' UNKNOWN

'

)

READ (23,200) ND_INFILE
READ (23,210) ND_DISP
READ (23,210) ND_PWR
READ (23,210) ND_NDPWR
READ (23,210) ND_ELEC
READ (23,210) ND_TPA
READ (23,210) ND_MFR
READ (23,210) ND_EFR
READ (23,210) ND_OTH
READ (23,210) ND_RANGE
READ (23,210) ND_SPD

109

READ (23,210) ND_FUEL
READ (23,210) NDJTIME
READ (23,210) ND_VOL
READ (23,210) ND_PCT
REWIND 23

C**** NOW READ IT IN AS CHARACTER DATA TO PRINT TO SCREEN
READ (23,200) ND_KB_UP(1)
DO 10 I = 2,12,1

READ (23,220) ND_KB_UP(I)
10 CONTINUE

200
210
220
150

FORMAT (2X,A)
FORMAT (G12.5)
FORMAT (2X,A)
CLOSE(23)
CALL ND_SDI_LABEL(VD_ID)
CALL UIS$DISABLE_KB(KB_ID)
CALL ND_CALC_1
CALL UIS$ERASE(VD_ID,-. 4,10. 1,3. 4,10. 9)
CALL UIS$TEXT(VD_ID, 7,' SELECT AN OPTION', 0. ,11.)
CALL UIS$TEXT(VD_ID,7,' WITH THE MOUSE ',0. ,10.6)
RETURN
END

C

C

c

py-y-y

c

c

c

c

c

c

c

c

c

1J-J-J4J-J.

SUBROUTINE ND_LIST(ND_NDX)
y.y-y-yf y-y.yfy. y.y.yf jl yf y, y. y-yfy- y- y- y-y- j-yfyfyfy- j-y- y- y- j --'--;- y- y- yj. y- -J-y-y- y^- y- y-y-y-y-y-y-y-y-y-y-y-y- y-& y-y- y-ypy- yi-y^y-

*

THIS SUBROUTINE POPS UP A DIALOG BOX TO INSTRUCT THE USER OF *

THE AVAILABLE OPTIONS FOR EACH '...NOT QUITE OBVIOUS...' PARA- *

METER THAT IS REQUESTED BY THE 'ENDURANCE' SUBROUTINE. THE
SPECIFIC PARAMETER IS PASSED AS 'ND_CAUSE' AND INDICATES WHICH *

LINES OF INSTRUCTION ARE TO BE DISPLAYED TO THE USER. *

CALLED BY SUBROUTINE 'ND_CALC_2' *

IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE ' SYS$LIBRARY: UISUSRDEF'
INCLUDE 'T0P_ENDU.F0R'
CHARACTER*34 TOP_A/ f ***** PARAMETER DEFINITION *****•/

CHARACTER*34 TOP_B/ ' PLEASE ENTER FOLLOWING INFORMATION'/
CHARACTER*34 G0_A / ' PLEASE WAIT '

/

CHARACTER* 34 GO_B /
' PROGRAM WILL RESUME ' /

CHARACTER*34 GO_C /
* OR PRESS [HOLD SCREEN] TO SAVE '/

REAL Y_POSN
CHARACTER*36 TELL(7) ,LIST(7) ,MLIST(7) ,XLIST(7)
INITIALIZE THE HEADINGS MESSAGES ARRAY
TELL(l)
TELL(2)
TELL(3)
TELL(4)
TELL(5)
TELL(6)

THE FULL POWER RATING AT
THE CRUISING POWER (TYPICAL)
THE CRUISING ELECTRICAL LOAD
STORAGE TANK TAIL PIPE ALLOWANCE
MAIN PROPULSION MACH FUEL USEAGE
GENERATOR FUEL CONSUMPTION RATE

110

TELL(7) = 'OTHER (MISC) FUEL CONSUMPTION RATE'
C*****INITIALIZE THE INSTRUCTIONS MESSAGES ARRAY

LIST(l)
LIST(2)
LIST(3)
LIST(4)
LIST(5)
LIST(6)
LIST(7)

C*****INITIAL
MLIST(1
MLIST(2
MLIST(3
MLIST(4
MLIST(5
MLIST(6
MLIST(7

C*****INITIAL
XLIST(1
XLIST(2
XLIST(3
XLIST(4
XLIST(5
XLIST(6
XLIST(7

= ' DESIGN MAXIMUM FULL POWER (SHP)
'

= "FOR STEADY CRUISING, UNDER NORMAL '

= 'TO OPERATE NORMAL SHIPS FUNCTIONS *

= 'FOR %-FUEL ABOVE THE SUCTION POINT'
= 'FOR NORMAL CONDITIONS AT CRUISING '

= 'AT CRUISING ELEC LOAD, WITH NORMAL'
= 'FOR AUX. EQUIP, BOATS, WINCHES, ETC'
ZE THE SECONDARY INSTRUCTIONS MESSAGES ARRAY
= 'NEEDED FOR PROPULSION REQUIREMENTS'
= 'WEATHER CONDITIONS & SEA STATE.
= 'AND REQUIRED AUX/HAB/DECK GEAR.
= 'OF XFER SYS THAT IS USEABLE.
= 'SPEED AND POWER SELECTED ABOVE.
= 'AUXILIARY MACHINERY IN USE.
= 'NORMALLY REQUIRED BY THE CREW.

ZE EXAMPLES ARRAY
'EX: ADMIRALTY POWER + 25% MARGIN
'EX: 0.75 * FULL POWER (TYPICAL)
'EX: 500KW (NOMINAL) CRUISING
'EX: 0.95 FOR BROAD, SHALLOW TANKS
'EX: 0.40 FOR GAS TURBINE @ 20K SHP'
*EX: 0.02 FOR DIESEL GENERATOR
'EX: 0.05 FOR OTHER SHIP SERVICES

C*****CREATE THE DISPLAY FOR THE DIALOG BOX
VD_SCR=UIS$CREATE_DISPLAY(-5. 0,-2. 6,10. 0,4. 0,26.0,10. 0)

C*****CREATE THE WINDOW TO DISPLAY THE TEXT IN
WD_SCR=UIS$CREATE_WINDOW(VD_SCR, ' SYS$WORKSTATION' ,

'HELP WINDOW'

)

C*****COPY ATTRIBUTE BLOCK '0' AS BLOCK '27' AND CHANGE THE FONT SIZE
CALL UIS$SET_FONT(VD_SCR, , 27

,

' DTABER0R03WK00GG0001UZZZZ02A000
'

)

C*****coPY ATTRIBUTE BLOCK '27' AS BLOCK '28' AND CHANGE TO BOLD FONT
CALL UIS$SET_FONT(VD_SCR ,27,28,' DTABER0R03WK00PG0001UZZZZ02A000

'

)

C*****SIGNAL THE USER TO GET THEIR ATTENTION
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

C*****WRITE THE TEXT INTO THE WINDOW AND SPAWN PROCESS TO 'WAIT
1

10 SEC
Y_P0SN=3.
CALL UIS$TEXT(VD_SCR,28,T0P_A,-2.5,Y_P0SN)
Y_POSN=Y_POSN-. 6

CALL UIS$TEXT(VD_SCR,28,T0P_B,-2.5,Y_P0SN)
Y_P0SN=Y_P0SN-.6
CALL UIS$TEXT(VD_SCR,27,TELL(ND_NDX),-2.5,Y_P0SN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_SCR,27,LIST(ND_NDX),-2.5,Y_P0SN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_SCR,27,MLIST(ND_NDX),-2.5,Y_POSN)
Y_P0SN=Y_POSN-.

6

CALL UIS$TEXT(VD_SCR,27,XLIST(ND_NDX),-2.5,Y_P0SN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_SCR,28,G0_A,-2. 5,Y_P0SN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_SCR,28,G0_B,-2.5,Y_P0SN)
Y_POSN=Y_P0SN-.

6

CALL UIS$TEXT(VD_SCR,28,G0_C,-2.5,Y_P0SN)
CALL LIB$SPAWN('WAIT 00:00:10')
CALL UIS$SOUND_BELL(' SYS$WORKSTATION' ,4)

111

CALL UIS$DELETE_DISPLAY(VD_SCR)
RETURN
END

C

C
SUBROUTINE MUCH_TOO_MUCH

c *

C THIS SUBROUTINE POPS UP A DIALOG BOX TO INSTRUCT THE USER *

C THAT THE CALCULATED WEIGHT OF FUEL IS LARGER THAN THE VESSELS *

C OWN DISPLACEMENT AND THAT CLEARLY SOME CHANGES HAVE TO BE *

C MADE TO THE INPUT DATA. *

C *

C CALLED BY SUBROUTINE 'ND_CALC_2' *
Cy«V?V?V}ViV}V7V}V3Wr}W«Wc*^VAyoV*VoV}V*iV3V}WoV^

c
IMPLICIT INTEGER(A-Z)
INCLUDE ' SYS$LIBRARY: UISENTRY*
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
INCLUDE 'TOP_ENDU. FOR'
CHARACTER*34 MTM_A/'** PARAMETER ERROR HAS OCCURRED **'/

CHARACTER*34 MTM_B/' PLEASE NOTE THAT THE SHIPS FUEL '/

CHARACTERS 34 MTM_C/' REQUIREMENTS EXCEED ITS STORAGE '/

CHARACTER*34 MTM_D/ ' ABILITY. ADJUST ITEMS 2 THRU 12 '/

CHARACTER* 34 MTM_E/ * PLEASE WAIT '

/

CHARACTER*34 MTM_F/ ' PROGRAM WILL RESUME '

/

REAL Y_POSN
C*****CREATE THE DISPLAY FOR THE DIALOG BOX

VD_MTM=UIS$CREATE_DISPLAY(-5. 0,-2. 0,10. 0,4. 0,26. 0,10. 0)

C*****CREATE THE WINDOW TO DISPLAY THE TEXT IN
WD_MTM=UIS$CREATE_WINDOW(VD_MTM, ' SYS$WORKSTATION' ,

'HELP WINDOW'

)

C*****coPY ATTRIBUTE BLOCK '0' AS BLOCK '29' AND CHANGE THE FONT SIZE
CALL UIS$SET_FONT(VD_MTM,0,29,'DTABER0R03WK00GG0001UZZZZ02A000')

C*****c0PY ATTRIBUTE BLOCK '29' AS BLOCK '30' AND CHANGE TO BOLD FONT
CALL UIS$SET_FONT(VD_MTM,29,30,'DTABER0R03WK00PG0001UZZZZ02A000')

C*****siGNAL THE USER TO GET THEIR ATTENTION
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

C**-.v**WRITE THE TEXT INTO THE WINDOW AND SPAWN PROCESS TO 'WAIT' 10 SEC
Y_P0SN=2.

8

CALL UIS$TEXT(VD_MTM,30,MTM_A,-2. 5,Y_POSN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_MTM,29,MTM_B,-2.5,Y_POSN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_MTM,29,MTM_C,-2.5,Y_POSN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_MTM,29,MTM_D,-2. 5,Y_POSN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_MTM,30,MTM_E,-2. 5,Y_POSN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_MTM,30,MTM_F,-2. 5,Y_POSN)
CALL LIB$SPAWN('WAIT 00: 00: 10'

)

CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)
CALL UIS$DELETE_DISPLAY(VD_MTM)
RETURN
END

C

112

c

c

SUBROUTINE TOO_MUCH

C *

C THIS SUBROUTINE POPS UP A DIALOG BOX TO INSTRUCT THE USER *

C THAT THE CALCULATED WEIGHT OF FUEL EXCEEDS THE NORMAL ALLOW

-

C ANCE FOR SHIPS OF APPROXIMATELY 15% OF TOTAL DISPLACEMENT. *

C THUS, CLEARLY SOME CHANGES MUST BE MADE TO THE INPUT DATA. *

C *

C CALLED BY SUBROUTINE 'ND_CALC_2' *

C
IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF*
INCLUDE "TOP_ENDU. FOR'
CHARACTER'- 34 TM_A/'** PARAMETER ERROR HAS OCCURRED ***/
CHARACTER*34 TM_B/' PLEASE NOTE THAT THE SHIPS FUEL '/

CHARACTER*34 TM_C/' REQUIREMENTS EXCEED THE NORMAL '/

CHARACTERS 34 TM_D/' RANGE OF 15% TOTAL DISPLACEMENT. */

CHARACTER*34 TM_E/ ' PLEASE WAIT '

/

CHARACTER*34 TM_F/ ' PROGRAM WILL RESUME' /

REAL Y_POSN
C*****CREATE THE DISPLAY FOR THE DIALOG BOX

VD_TM=UIS$CREATE_DISPLAY(-5. 0,-2. 0,10. 0,4. 0,26. 0,10. 0)
C*****CREATE THE WINDOW TO DISPLAY THE TEXT IN

WD_TM=UIS$CREATE_WINDOW(VD_TM, ' SYS$WORKSTATION' ,

'HELP WINDOW'

)

C*****C0PY ATTRIBUTE BLOCK '0' AS BLOCK '3l' AND CHANGE THE FONT SIZE
CALL UIS$SET_FONT(VD_TM,0,31, 'DTABER0R03WK00GG0001UZZZZ02A000'

)

C*****C0PY ATTRIBUTE BLOCK '3l' AS BLOCK '32' AND CHANGE TO BOLD FONT
CALL UIS$SET_FONT(VD_TM,31

5
32,'DTABER0R03WK00PG0001UZZZZ02A000')

C*****SIGNAL THE USER TO GET THEIR ATTENTION
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

C*****WRITE THE TEXT INTO THE WINDOW AND SPAWN PROCESS TO 'WAIT' 10 SEC
Y_POSN=2.

8

CALL UIS$TEXT(VD_TM,32,TM_A,-2.5,Y_POSN)
Y_POSN=Y_POSN-.6
CALL UIS$TEXT(VD_TM,31,TM_B,-2. 5,Y_POSN)
Y_POSN=Y_POSN-. 6

CALL UIS$TEXT(VD_TM,31,TM_C,-2.5,Y_POSN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_TM,31,TM_D,-2.5,Y_POSN)
Y_POSN=Y_POSN-.

6

CALL UIS$TEXT(VD_TM,32,TM_E,-2.5,Y_POSN)
Y_POSN=Y_POSN-. 6

CALL UIS$TEXT(VD_TM,32,TM_F,-2.5,Y_POSN)
CALL LIB$SPAWN('WAIT 00:00:10')
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)
CALL UIS$DELETE_DISPLAY(VD_TM)
RETURN
END

C

C

c

113

SUBROUTINE SET.HELP

C *

C SET_HELP ALLOWS THE USER TO DEFINE WHETHER OR NOT PARAMETER *

C DEFINITION WINDOWS ARE DISPLAYED DURING KB DATA ENTRY BY *

C SELECTING THIS OPTION ON THE MAIN 'ENDURANCE' MENU. THIS *

C FEATURE SIMPLY TOGGLES THE HELP LEVEL TO ON OR OFF AND CALLS *

C THIS WINDOW DISPLAY ACCORDINGLY. *

C *

C CALLED BY SUBROUTINE ' SET_HELP_LEVEL' *

C
IMPLICIT INTEGER(A-Z)
INCLUDE ' SYS$LIBRARY: UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
INCLUDE 'TOP.ENDU. FOR'
CHARACTER*34 HL(2)
CHARACTER*34 SH_A/'**** HELP SYSTEM SETTINGS ****'/
CHARACTER*34 SH_B/' CHANGING HELP LEVEL FROM '/

CHARACTER*34 SH_C/' TO '/

CHARACTER*34 SH_D/ ' PLEASE WAIT '

/

CHARACTER*34 SH_E/ ' PROGRAM WILL RESUME' /

REAL Y_POSN
HL(1) = * HELP WINDOWS ON

'

HL(2) = ' HELP WINDOWS OFF '

C*****CREATE THE DISPLAY FOR THE DIALOG BOX
VD_SH=UIS$CREATE_DISPLAY(-5. 0,-2. 0,10. 0,4. 0,26.0,10.0)

C*****CREATE THE WINDOW TO DISPLAY THE TEXT IN
WD_SH=UIS$CREATE_WINDOW(VD_SH, ' SYSSWORKSTATION'

,

'HELP WINDOW'

)

C*****COPY ATTRIBUTE BLOCK "0* AS BLOCK (33* AND CHANGE THE FONT SIZE
CALL UIS$SET_F0NT(VD_SH, , 33

,

' DTABER0RO3WKOOGG00O1UZZZZO2A000
'

)

C*****COPY ATTRIBUTE BLOCK '33' AS BLOCK '34' AND CHANGE TO BOLD FONT
CALL UIS$SET_F0NT(VD_SH,33,34, 'DTABER0R03WK00PG0001UZZZZ02A000'

)

C*****SIGNAL THE USER TO GET THEIR ATTENTION
CALL UIS$SOUND_BELL('SYS$WORKSTATION* ,4)

C*****WRITE THE TEXT INTO THE WINDOW AND SPAWN PROCESS TO 'WAIT' 10 SEC
Y_P0SN=2. 5

CALL UIS$TEXT(VD_SH,34,SH_A,-2. 5,Y_P0SN)
Y_P0SN=Y_P0SN-. 6

CALL UIS$TEXT(VD_SH,33,SH_B,-2.5,Y_P0SN)
Y_POSN=Y_POSN-. 6

IF (ND_HELP . EQ.) THEN
CALL UIS$TEXT(VD_SH,34,HL(1),-2.5,Y_P0SN)

ELSE IF (ND_HELP . EQ. 1) THEN
CALL UIS$TEXT(VD_SH,34,HL(2),-2.5,Y_P0SN)

ENDIF
Y_P0SN=Y_P0SN-. 6

CALL UIS$TEXT(VD_SH,33,SH_C,-2.5,Y_P0SN)
Y_P0SN=Y_P0SN-. 6

IF (ND_HELP .EQ.) THEN
CALL UIS$TEXT(VD_SH,34,HL(2),-2.5,Y_P0SN)

ELSE IF (ND_HELP . EQ. 1) THEN
CALL UIS$TEXT(VD_SH,34,HL(1),-2.5,Y_P0SN)

ENDIF
Y_P0SN=Y_P0SN-.6
CALL UIS$TEXT(VD_SH,33,SH_D,-2.5,Y_P0SN)

114

Y_POSN=Y_POSN-. 6

CALL UIS$TEXT(VD_SH, 33 , SH_E , -2. 5 , Y_POSN)
CALL LIB$SPAWN('WAIT 00:00:10')
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)
CALL UIS$DELETE_DISPLAY(VD_SH)
RETURN
END

C

C

c

SUBROUTINE SET_HELP_LEVEL

C *

C THIS SUBROUTINE ALLOWS THE USER TO HAVE THE SYSTEM PARAMETER *

C DEFINITION WINDOWS DISPLAYED OR NOT DISPLAYED, DEPENDING UPON *

C THEIR KNOWLEDGE AND PREFERENCES AND FAMILIARITY WITH TOOL BOX. *

C *

C CALLED BY SUBROUTINE 'ENDURANCE* MAIN MENU *

C CALL SUBROUTINE 'SET_HELP' *

C

IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE ' SYS$LIBRARY: UISUSRDEF'
INCLUDE ' TOP_ENDU. FOR

'

IF (ND_HELP .EQ. 1) THEN
ND_HELP=0
CALL SET_HELP

ELSE IF (ND_HELP . EQ.) THEN
ND_HELP=1
CALL SET_HELP

ELSE
ND_HELP=1
CALL SET_HELP

ENDIF
RETURN
END

C

C

c

B. SUBROUTINE ENDURANCE VARIABLES DECLARATIONS FILE

This file is INCLUDE'd in each of the subroutines of the ENDURANCE program

to porovide commonality of variable declarations.

C*****The DECLARATIONS FOR THE ENDURANCE CALCULTIONS SECTION IN ONE FILE
C

CHARACTER ND_LINE*12 ,ND_INFILE*12
CHARACTER ND_KB_UP(20)* 12 ,ND_FNAME* 12

INTEGER ND_ENTERS , NLINE_N0 , ND_NDX , ND_HELP

REAL ND_RANGE , ND_SPD , ND_DI SP , ND_PWR , ND.ELEC , ND.MFR
REAL ND_EFR , ND_FUEL , ND_TPA , ND_WGT , ND_VOL , ND_PCT
REAL ND_NDPWR , ND_0TH , ND_C_AVG , ND_RATI , ND_PFRATE , ND_GFRATE

115

REAL ND.TFR , ND_APFR , FRCORR , ND_SFR , ND_AVGFR , ND_TIME

COMMON /NDUR_VARS1/ ND_TIMES,ND_KB_UP,ND_HELP
COMMON /NDURJ/ARS2/ ND_RANGE , ND_SPD , ND_DISP , ND_PWR , ND_ELEC , ND_MFR
COMMON /NDUR_NAMES/ND_EFR , ND_FUEL , ND_TPA , ND_WGT , ND_VOL , ND_PCT
COMMON /NDUR_RESULTS/ND_NDPWR , ND_OTH , ND_C_AVG , ND_RATIO , ND_PFRATE
COMMON /NDUR_FILES/ ND_FNAME ,ND_INFILE ,ND_GFRATE ,ND_TIME
COMMON /NDUR_COEFF/ND_TFR , ND_APFR , FRCORR , ND_SFR , ND_AVGFR

C*****KEEP POWER RESULTS HANDY TO PASS IN INCASE WE NEED THEM
COMMON /PW_RESULTS/ PW_SDNB ,PW_SDBB,PW_ADME,PW_ADM

116

APPENDIX F. TOOL BOX ENDURANCE ESTIMATION REPORT

A. ENDURANCE ESTIMATION REPORT SOURCE CODE
This program contains the Source Code for the Endurance Estimation report. This

code has been added to the overall TOOL BOX program REPORT.FOR, and can be

called from the main Report menu.

SUBROUTINE ENDU_RPT

c

C SUBROUTINE ENDU_RPT READS IN A STORED DATA FILE FROM THE *
C ENDURANCE SECTION AND PRINTS A DETAILED REPORT OF THE DESIGN *

C PARAMETERS AND THEIR UNITS. *
C *

C CALLED BY SUBROUTINE 'REPORT' *

INCLUDE 'TOP. FOR'
INCLUDE 'TOP_ENDU.FOR'
CHARACTER ND_INPUT_DATA*12, ND_PRFILE*12

C*****MOVE THE MOUSE POINTER AWAY FROM THE SELECTION
STA = UIS$SET_P0INTER_P0SITI0N(VD_ID,VvTD_RPT s 9.9,23.5)

C*****sET UP THE FIRST SCREEN INSTRUCTIONS
CALL UIS$ERASE(VD_ID, 4.1,20.1,8.4,24.9)
CALL UIS$TEXT(VD_ID,7,'ENTER THE FILE NAME' 4. 5 ,24.)

CALL UIS$TEXT(VD_ID,7,'AND EXTENSION OF THE
f

,4. 5 ,23. 6)
CALL UIS$TEXT(VD_ID,7,'DATA FILE TO BE USED' ,4. 5 ,23. 2)
CALL UIS$TEXT(VD_ID,7,'OR [RETURN] TO EXIT* ,4. 5 ,22. 8)

C*****read THE DATA INPUT FILE NAME
CALL KEY_READ (ND_INPUT_DATA, . FALSE. ,5. ,21. 2, "30)

C*****NOW WE NEED THE NAME OF THE OUTPUT REPORT FILE
CALL UIS$ERASE(VD_ID, 4.1,20.1,8.4,24.9)
CALL UIS$TEXT(VD_ID,7,' ENTER THE FILE NAME' 4. 5 ,24.)

CALL UIS$TEXT(VD_ID,7,' AND EXTENSION TO BE
f

.4. 5,23. 6)
CALL UIS$TEXT(VD_ID, 7, 'ASSIGNED TO THE REPORT* ,4. 5 ,23. 2)
CALL UIS$TEXT(VD_ID,7,' OR [RETURN] TO EXIT' ,4. 5 ,22. 8)
CALL KEY_READ (ND_PRFILE , . FALSE. ,5. ,21.2,*30)

C*****REad THE DATA IN
1 OPEN (23, FILE = ND_INPUT_DATA, STATUS = 'OLD')

OPEN (24, FILE = ND_PRFILE, STATUS = 'NEW' ,BLANK=' NULL*

)

READ (23,100) ND_INFILE
READ (23,110) ND_DISP
READ (23,110) ND_PWR
READ (23,110) ND_NDPWR
READ (23,110) ND_ELEC
READ (23,110) ND_TPA
READ (23,110) ND_MFR
READ (23,110) ND_EFR
READ (23,110) ND_0TH
READ (23,110) ND_RANGE
READ (23,110) ND_SPD

117

READ (23,110) ND_FUEL
READ (23,110) NDJTIME
READ (23,110) ND_V0L
READ (23,110) ND_PCT
REWIND(23)
CLOSE (23)

C*****RE -CALCULATE FOR ACCURACY
C*****GENERATE THE COVER PAGE OF THE REPORT

DO 5 I = 1,18,1
WRITE (24,130) '

'

5 CONTINUE

Q4ri

c

c

10

WRITE
WRITE
WRITE
WRITE
WRITE
&PROGRAM
WRITE
WRITE
&NAVAL
WRITE
WRITE

&THE '

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
DO 6 I

24 120)
'

24 120)
'

24 120)
'

24 120)
*

24
t

120)
'

24 120)
'

24
i

120)
'

24 120)
'

24. 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 120)
'

24 ,120)
'

24 ,120)
'

24 ,120)
'

24 ,120)
'

TOOL BOX
*

ENDURANCE LIMIT REPORT'

THIS REPORT WAS GENERATED USING THE

TOOL BOX WHICH WAS DEVELOPED FOR THE

ENGINEERING DEPARTMENT OF

NAVAL POSTGRADUATE SCHOOL'

MONTEREY, CALIFORNIA'

PROFESSOR F. PAPOULIAS '

AND '

LT. GERALD MCGOWAN
'

LT. JAMES PLOSAY'
1989/90

'

= 1,13,1
WRITE (24,120)

CONTINUE
WRITE (24,120)

'

WRITE (24,120)
'

WRITE (24,120) '
'

•"IN THIS SECTION, THE ECHO
DATA IS PRESENTED.

PAGE 1 OF 2 / ENDURANCE LIMIT'
i

OF SHIP PARAMETERS AND CALCULATED

DO 10 I = 1,5,1
WRITE (24,130)

CONTINUE
WRITE(24,120)
WRITE(24,130)
WRITE(24,120)
WRITE(24,130)
WRITE(24,150)

ENDURANCE LIMIT REPORT '

i

THE INPUT SHIP PARAMETERS ARE AS FOLLOWS'
i

THE REPORT IS LOCATED IN FILE : ' ,ND_PRFILE

118

100
110
120
130
135
140
150

WRITE(24,150)
&ND_INPUT_DATA
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE (24,120)
WRITE (24,120)
CLOSE (24)
FORMAT (A)

FORMAT (G12.5)
FORMAT (10X,A)
FORMAT (10X,A)
FORMAT (10X,A,
FORMAT (10X,A,
FORMAT (10X,2A

(24 ,160) '

(24 .130) '

(24 ,135) '

(24 ,130)
'

(24 ,140) '

(24 ,130) '

(24 ,140) '

(24 ,130) '

(24 ,140) '

(24 130) *

(24 ,140) '

(24 ,130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 140) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

(24 130) '

'THE INPUT DATA FILE USED IS : ',

DESIGN PARAMETERS'
SHIP NAME IS

DESIGN FULL LOAD DISPLACEMENT:
(LTONS)'

DESIGN FULL POWER LEVEL:
(SHP)'

DESIGN ENDURANCE POWER LEVEL:
(SHP)'

DESIGN CRUISING ELECTRIC LOAD:
(KW)'

DESIGN FUEL TANKS TAIL PIPE ALLOWANCE:
(%)

'

DESIGN MAIN PROPULSION FUEL ECONOMY: .

.

(LBS/SHP-HR)'
DESIGN ELECTRIC PLANT FUEL USE RATE: . .

(LBS/KW-HR)'
DESIGN OTHER FUEL USE RATES:

(LBS/HR)'
DESIGN RANGE:

(NMILES)'
DESIGN CRUISING SPEED:

(KNOTS)'
CALCULATED ENDURANCE FUEL LOAD:

(TONS-FUEL OIL)'
CALCULATED JOURNEY TIME ALLOWANCE:

(HRS @ DESIGN SPD & DISTANCE)'
CALCULATED FUEL STORAGE REQUIREMENTS:

.

(FT 3 VOLUMETRIC STORAGE)'
CALCULATED FUEL RATIO OF FULL LOAD: . .

.

(% OF DESIGN FULL LOAD)'

,ND_INFILE

,ND_DISP

,ND_PWR

,ND_NDPWR

,ND_ELEC

,ND_TPA

,ND_MFR

,ND_EFR

,ND_OTH

,ND_RANGE

,ND_SPD

,ND_FUEL

,ND_TIME

,ND_VOL

,ND_PCT

ENDURANCE LIMIT VALUES PRESENTED ARE BASED UPON'
FOLLOWING: '

(1) U.S. NAVY DESIGN DATA SHEET DDS9400-1 FORMAT'
CALCULATIONS USING ESTIMATION FACTORS FOR '

FOULING, MACHINERY INEFFICIENCIES, ETC'

i t

' PAGE 2 OF 2 / ENDURANCE LIMIT'

',A)
' ,G14. 6)

119

160 FORMAT (10X.A)
C*****EXIT FROM THE REPORT AND ENABLE MOUSE
30 CALL UIS$ERASE(VD_ID, 4.1,20.1,8.4,24.9)

CALL UIS$TEXT(VD_ID,7,' SELECT AN OPTION WITH' ,4. 5 ,24.

)

CALL UIS$TEXT(VD_ID,7,' THE MOUSE' ,4. 5 ,23. 6)
RETURN
END

120

APPENDIX G. OTHER SOURCE CODE

A. TOOL BOX MAIN PROGRAM
This source code is presented for completeness, although much of it belongs to the

original author, [Ref. 3], it is still included here since some of the UIS function calls had

to be changed to support the new Modules added in this development.

PROGRAM TOOLBOX
C VERSION B18. 01
C VERSION DATE: 09/03/90

C THE GOAL OF VERSION 18 IS TO ADD IN THE SCREEN DISPLAY PLOT
C TO THE PROPULSIVE POWER SECTION, AND TO CLEAN UP THE REMAINING
C CODE SECTIONS FOR FINALIZATION
C

C REVISION HISTORY:
AS RECEIVED FROM G. MCGOWAN
ADDED SEVERAL HELP WINDOWS TO EXISTING CODE
FINALIZED IN B14. 03
ADDED POWER PREDICTION MODULE
FINALIZED IN B15. 88
ADDED POWER PREDICTION REPORT
FINALIZED IN B16. 09
ADDED ENDURANCE MODULE
ADDED USER SELECTION OF HELP LEVEL
ADDED ENDURANCE ESTIMATION REPORT
FINALIZED IN B17. 42
ADDED POWER GRAPH TO SCREEN OPTION
FINALIZED IN B18. 12

J- JUJ- mf-J- »J, -1. J- J- -*- JLJmJLJLJLJL ~»- %J- -'- -J- J-JL JL -'- -'. J- ~'- -'- J- J- -'a. JL »'- J-J- J*J-J- JL JL *'- »'- J- ***JL -'- JL JL
-'f-

C VERSION B13.6
C VERSION B14.
C

C VERSION B15.0
C

C VERSION B16.
C

C VERSION B17.
C

C
C

C VERSION B18.0
C
p JL -l. ./. JL .J,,JL Ja,J- JL-L Ja, ..'a. J- JL J.J. -f. JL J, Ja, J

C*****GENERAL HEADER INFORMATION
INCLUDE 'GENERAL. FOR/LIST'
EXTERNAL NOWHERE , REPORT , POWER , ENDURANCE
EXTERNAL DARK1,DARK2,LIGHT1, STATIC, EXIT, MANEUVER, UTIL
REAL DY2

C

C*****siNCE THE SUBROUTINES ARE PASSED AS ARGUMENTS IN THE AST ROUTINES
C THEY MUST BE CALLED IN EXTERNAL STATEMENTS
C

C*****CREATE THE VIRTUAL DISPLAY WITH TITLES
C

C FIRST, WE SHRINK THE CALLING WINDOW.
C

C CALL LIB$SPAWN('SET TERMINAL/WIDTH=5
'

)

C CALL LIB$SPAWN('SET TERMINAL/PAGE=2'

)

C*****thEN CREATE A NEW VIRTUAL DISPLAY
VD_ID=UIS$CREATE_DISPLAY(-1. ,-1. ,20. ,25.5,40.0,30.0)

C*****AND ADD COLORS TO IT
C*****thESE TWO LINES COMMENTED OUT TO ACHIEVE GOOD B&W SCREEN COPIES
C FOR OVERHEADS. REMOVE COMMENTS IN FINAL VERSION
C CALL UIS$SET_COLOR(VD_ID,l,. 75,1. ,1.)

121

C CALL
C*****SET UP

CALL
CALL
CALL
CALL
CALL

C*****INITIALIZE
XO = 0.

XI = 3.0
Y_LINE =

FL1 =

FL2 =

YPOS =

C*****DRAW THE
C*****thIS

DO

UIS$SET_COLOR(VD_ID,0,0. ,0. ,.5)
SOME CHARACTER TYPES
UIS$SET_WRITING_M0DE(VD_ID,0,1,UIS$C_M0DE_REPLN)
UIS$SET_WRITING_M0DE(VD_ID,1,2,UIS$C_M0DE_REPL)
UIS$SET_WRITING_MODE(VD_ID,0,4,UIS$C_MODE_REPLN)
UIS$SET_CHAR_SIZE(VD_ID,4,5,,. 138,. 39)
UIS$SET_CHAR_SIZE(VD_ID,0,7, ,. 125,. 3)

= . 7

FALSE.
FALSE.
1

MAIN MENU
ROUTINE DRAWS
10 Y COOR = 0.

DY = Y COOR +

THE
2,5.
.4

TITLE
8,.

8

BOXES FOR THE MAIN MENU

CALL UIS$PLOT(VD_ID,0,0. ,Y_C00R,3. ,Y_C00R,3. ,DY,0.
DY,0. ,Y_COOR)

CONTINUE
FOR MAIN MENU BLOCKS

RESPONSE AREA '

INSTRUCTIONS '

OPTIONS MENU

10

C*****set TITLES
BLOCK(l)
BL0CK(2)
BL0CK(3)
BL0CK(4)
BL0CK(5)
BL0CK(6)
BL0CK(7)
BL0CK(8)
BL0CK(9)
BLOCK(IO) = '

BLOCK(ll) = '

LONG_TITLE(l)
LONG_TITLE(2)
LONG_TITLE(3)
L0NG_TITLE(4)
L0NG_TITLE(5)

C*****set TITLES FOR
OPTION(l)
0PTI0N(2)
0PTI0N(3)
0PTI0N(4)
OPTION(5)
OPTION(6)
OPTION(7)
OPTION(8)
OPTION(9)
OPTION(IO)
OPTION(ll)
OPTION(12)
OPTION(13)
0PTI0N(14)
OPTION(15)
OPTION(16)
OPTION(17)

SELECTIONS

DATA DISPLAY AREA

OPTIONS BLOCKS
EXIT THE PROGRAM

1

GENERATE REPORT'
FILE UTILITIES'
RESERVE MODULE'
ENDURANCE

'

POWER PREDICTION'
MANEUVERING'
STATIC STABILITY'
EXIT THE PROGRAM*
RETURN TO MAIN'

STORE DISPLAYED DATA'
INPUT DATA FROM FILE'
ENTER DATA FROM KB'
RUN TURNING CIRCLE '

RUN DYNAMIC PERFORMANCE

122

0PTI0N(18) =

0PTI0N(19) =

C*****ADD OPTIONS FOR
OPTION(20) =

OPTION(21) =

C*****ADD OPTIONS FOR
OPTION(22) =

OPTION(23) =

LONGITUDINAL STABILITY '

INITIAL TRANS. STABILITY'
VERSIONS 15 & 18

PLOT GRAPH TO SCREEN '

PLOT GRAPH TO DISK '

VERSION 17

CALC ENDURANCE LIMIT'
CHANGE HELP LEVEL ON/OFF*

C*****NOW FILL THE BLOCKS OF THE MAIN MENU WITH THE STORED TITLES
DO 20 I = 1,8,1

CALL UIS$TEXT(VD_ID , , OPTION(I) , . 3 , Y_LINE)
Y_LINE = Y_LINE + . 8

20 CONTINUE
C*****TURN ON THE MAIN MENU VIEWPORT

WD_MAIN=UIS$CREATE_WINDOW(VD_ID, ' SYS $WORKSTATION'
,

'MAIN MENU'

,

& -.5,-. 5,10. ,7. ,40. ,30.)

C*****SET UP THE AST'S FOR HIGHLIGHTING
DO 50 Y_COOR = .2,5. 8,. 8

DY = Y_COOR + . 2

CALL UIS$SET_P0INTER_AST(VD_ID,WD_MAIN,DARK1, ,XO,Y_COOR,X1,
6c DY,LIGHT1)

50 CONTINUE
C*****SET MAIN MENU AST TRAPS FOR MOUSE BUTTONS

CALL UIS$SET_BUTT0N_AST(VD_ID,WD_MAIN,EXIT,,,X0,.2,X1,.6)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_MAIN, REPORT,,, XO, 1.0, XI, 1.4)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_MAIN,UTIL,,,XO,1.8,X1,2.2)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_MAIN, NOWHERE,,, XO, 2. 6, XI, 3. 0)
CALL UIS$SET_BUTT0N_AST(VD_ID,WD_MAIN,ENDURANCE,,,X0,3.4,X1,3.8)
CALL UIS$SET_BUTTON_AST(VD_ID,WD_MAIN, POWER, , ,X0,4. 2, XI, 4. 6)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_MAIN, MANEUVER,
,
,X0,5. 0,X1,5. 4)

CALL UIS$SET_BUTTON_AST(VD_ID,WD_MAIN, STATIC, ,,X0,5. 8, XI, 6. 6)

C*****puT IN THE TITLE AND AUTHORS BLOCK TEXT
INCLUDE 'HEADER. FOR/LIST'

C*****DRAW THE STATIC/MANEUVERING/POWER/ENDURANCE INTERACTIVE DISPLAY
CALL UIS$PLOT(VD_ID,0,-. 5,10. ,10. ,10. ,10. ,18. 8,-. 5,

6c 18. 8,-. 5,10.)

CALL UIS$LINE(VD_ID,0,3.5,10. ,3. 5 , 18. 8, -. 5 , 11. ,3.5,11. ,

6c -.5, 11. 4, 3. 5, 11. 4, -.5, 12. 4, 3. 5, 12. 4, -.5, 12. 8,3.5,12.8,
6c -.5,18.4,10. ,18.4)

DO 30 Y_COOR =13. , 18.4, . 8

DY = Y_COOR + .4
DY2 = DY +. 1

Z = 9 + INT((Y_COOR - 12. 9)/. 8)
CALL UIS$TEXT(VD_ID,0,OPTION(Z),. 3,DY2)
CALL UIS$PLOT(VD_ID,0,XO,Y_COOR,X1,Y_COOR,X1,DY,XO,

6c DY,XO,Y_COOR)
30 CONTINUE

C*****FILL THE TITLE BLOCKS OF WORKING DISPLAY
CALL UIS$TEXT(VD_ID,5,BLOCK(l),-.5,12. 85)
CALL UIS$TEXT(VD_ID,5,BLOCK(2),-.5,11.4)
CALL UIS$TEXT(VD_ID,5,BLOCK(3),-.5,18.8)
CALL UIS$TEXT(VD_ID,5,L0NG_TITLE(1),4. ,18.8)

C*****TH is LINE CREATES A HARCOPY METAFILE WHEN RUN
C CALL HCUIS$WRITE_DISPLAY(VD_ID,'HARD. UIS')
C*****NOW DRAW UP THE REPORT SCREEN

123

CALL RPT_GRAPH
C*****HAVE SYSTEM WAIT FOR USER ACTION

CALL SYS$HIBER()
40 END
C

C

C*****EACH MAIN SUBROUTINE IS AN 'INCLUDE* FILE TO EASE EDITING AND
C MODIFICATIONS

INCLUDE 'REPORT. FOR/LIST'
INCLUDE ' MANUEVER. FOR/LI ST

'

INCLUDE 'STATIC. FOR/LIST'
INCLUDE 'POWER. FOR/LIST'
INCLUDE 'ENDURANCE. FOR/ LI ST'
END

C

C

SUBROUTINE DARK1

c *

C THIS SUBROUTINE TURNS THE MENU ITEM IN THE BOX TO REVERSE VIDEO *

C WHEN THE MOUSE POINTER ENTERS THE REGION DEFINED INSIDE THE *

C BOX. IT IS USED TO INDICATE TO THE USER THAT THE SELECTION IS *

C ABLE TO BE SELECTED SINCE THEY ARE IN THE REGION *

C *

c

INCLUDE 'GENERAL. FOR'
C*****TEST TO SEE IF WE HAVE BEEN HERE BEFORE AND DONE THE JOB.

POSH = UIS$GET_POINTER_POSITION(VD_ID,WD_MAIN,XPOS,YPOS)
Z = INT(YPOS/. 8)+l
YO = .8 * INT(YPOS/.8) + .4
Yl = YO + .

3

IF (FL1) RETURN
FL1 = .TRUE.

C*****TURN OFF THE LIGHTS
CALL UIS$TEXT(VD_ID,1,0PTI0N(Z),. 3,Y1)
RETURN
END

C

C

SUBROUTINE LIGHT1
p y. y- .'- y- - - - - y- .'- y- y. y- -.. y- y . ju y- y - JLjuy«jl jl jl ..

_ y, jl jl jl y* y,. jia jf y, y, j_ y_ jljl y- y- jl jl y- jl jl y-y- y- jl y- y- jl jl y. jl y- y- y- y - y- y- y - y- y- y- y-y-JL y-JL

c *

C THIS SUBROUTINE TURNS THE MENU ITEM IN THE BOX TO REVERSE VIDEO *

C WHEN THE MOUSE POINTER ENTERS THE REGION DEFINED INSIDE THE *

C BOX. IT IS USED TO INDICATE TO THE USER THAT THE SELECTION IS *

C EBLE TO BE SELECTED SINCE THEY ARE IN THE REGION *

C *

C

INCLUDE 'GENERAL. FOR'
FL1 = .FALSE.

C*****TURN ON THE LIGHTS
CALL UIS$TEXT(VD_ID , 2 ,OPTION(Z) , . 3 , Yl)
RETURN

124

END
C

C
SUBROUTINE DARK2

C *

C THIS SUBROUTINE TURNS THE MENU ITEM IN THE BOX TO REVERSE VIDEO *

C WHEN THE MOUSE POINTER ENTERS THE REGION DEFINED INSIDE THE *

C BOX. IT IS USED TO INDICATE TO THE USER THAT THE SELECTION IS *

C ABLE TO BE SELECTED SINCE THEY ARE IN THE REGION *

C *

c
INCLUDE 'GENERAL. FOR'

C TEST TO SEE IF WE HAVE BEEN HERE BEFORE AND DONE THE JOB.
POSI2 = UIS$GET_POINTER_POSITION(VD_ID,WNDOW,XPOS,YPOS)
Z2 = INT(YPOS/.8)-7
YO = .8 * INT(YP0S/.8) + .3
Yl = YO + .4
IF (FL2) RETURN
FL2 = .TRUE.

C*****TURN OFF THE LIGHTS
CALL UIS$TEXT(VD_ID,l,OPTION(Z2),. 3,Y1)
RETURN
END

C

C

SUBROUTINE LIGHT2
QVc^Y^VsWcyr^vyoViV^vyovyciWoViVVcyMWcyo^

C *

C THIS SUBROUTINE TURNS THE MENU ITEM IN THE BOX TO REVERSE VIDEO *

C WHEN THE MOUSE POINTER ENTERS THE REGION DEFINED INSIDE THE *

C BOX. IT IS USED TO INDICATE TO THE USER THAT THE SELECTION IS *

C ABLE TO BE SELECTED SINCE THEY ARE IN THE REGION *

C *
p -- y . - ' - -'- y - - '-y. J, .

' .. - '- -'- - '- - '- J- y. J- J- JU »'- y- <Jm -*- Jm Jg J- -<- J* JU JL J- JU JU JU J- -U JU .*- JU^JUJU J--V J*J- JU JU JU JUJU JU JU JU -'; -,'- - *- -'- JU J-JU -'- JU -'- -
' - JU J- J- J- - '- - r-

C

INCLUDE 'GENERAL. FOR'
C*****TELL THE WORLD WE ARE LEAVING

IF (Z2 .LE. .01) RETURN
FL2 = .FALSE.

C*****TURN ON THE LIGHTS
CALL UIS$TEXT(VD_ID,2,OPTION(Z2),.3,Yl)
RETURN
END

C

C

SUBROUTINE EXIT
Q*Vr?Y}YiYyc:kynYyciY}Yyr}Y}Y?Wryryryv:fryoVyc^^

C *

C THIS SUBROUTINE IS THE GLOBAL SYSTEM 'EXIT' ROUTINE SELECTED *
C FROM THE MAIN OR ANY SUB -MENU TO EXIT THE SYSTEM AND RETURN *
C TO THE CALLING PROCESS *
C *
CiYyoYAiYiYyoYVcyciWoY}Yyr*yciYyfycyoY}Yyr^

C

125

C*****MAKE THE DISPLAY BIG AGAIN SINCE WE SHRUNK IT TO START OFF
C

CALL LIB$SPAWN('SET TERMINAL/WIDTH=80*

)

CALL LIB$SPAWN('SET TERMINAL/PAGE=24'

)

CALL SYS$WAKE(,)
RETURN
END

C

C
SUBROUTINE NOWHERE

C *

C THIS SUBROUTINE IS CALLED BY A MOUSE BUTTON SELECTION OF AN *

C OPTION THAT IS NOT ENABLED YET. IT POPS UP A DIALOG 'HELP' *

C BOX THAT INSTRUCTS THE USER AND GIVES THEM THE OPTION OF *

C CONTINUING BACK TO THE PROGRAM AT THE POINT OF INTERRUPTION *

C OR ENDING THE PROGRAM ENTIRELY. *

C *

C

IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
CHARACTER*34 HINT1/'*** THIS FEATURE NOT AVAILABLE ***.'/

CHARACTER*34 HINT2/ 1

TYPE "CONTINUE" TO RESUME '/

CHARACTER*34 HINT3/' OR "EXIT" TO END PROGRAM '/

REAL Y_POSN
C*****CREATE THE DISPLAY WINDOW FOR THE DIALOG BOX

VD_TEST=UIS$CREATE_DISPLAY(0. 0,0. 0,10. 0,5. 0,20. 0,5. 0)
C*****CREATE THE WINDOW TO DISPLAY THE HELP TEXT

WD_TEST=UIS$CREATE_WINDOW(VD_TEST, ' SYS$WORKSTATION' ,

'HELP WINDOW*

)

C*****SET THE SCREEN FONTS WE DESIRE FROM ATTRIBUTE BLOCK V TO BLOCK
C "20' AND CALL THE FILENAME OF THE FONT

CALL UIS$SET_FONT(VD_TEST,0,20, 'DTABER0R03WKOOGGOO01UZZZZ02AO0O'

)

C**,v**siGNAL THE USER ON PROCESS PAUSE FOR DISPLAY OF HELP BOX
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

C*****print THE TEXT AS WE WANT IT
Y_P0SN=4.
CALL UIS$TEXT(VD_TEST,20,HINT1,0.4,Y_POSN)
Y_POSN=Y_POSN-l
CALL UIS$TEXT(VD_TEST,20,HINT2,0. 4,Y_P0SN)
Y_POSN=Y_POSN-l
CALL UIS$TEXT(VD_TEST,20,HINT3,0. 4,Y_P0SN)

PAUSE
C*****SIGNAL THE USER PROCESS RESTARTED

CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)
C**,Wr*RETURN TO CALLING PROCESS AT POINT OF INTERRUPT

CALL UIS$DELETE_DISPLAY(VD_TEST)
RETURN
END

C

C

SUBROUTINE T0_MAIN

c *

C THIS SUBROUTINE IS CALLED TO RETURN TO THE MAIN MENU FROM A *

126

C SUB -MENU. *

C *

C
INCLUDE 'GENERAL. FOR'

C*****DISABLE THE AST'S
STA=UIS$SET_POINTER_POSITION(VD_ID,Wndow,9. 7,14.

)

CALL LIGHT2
CALL UIS$SET_BUTTON_AST(VD_ID,WNDOW,

, , ,XO, 13. 0,X1,13. 4)
CALL UIS$SET_BUTTON_AST(VD_ID,WNDOW,

, ,
,X0,13. 8, XI, 14. 2)

CALL UIS$SET_BUTTON_AST(VD_ID,WNDOW,
, ,

,XO, 14. 6, XI, 15. 0)
CALL UIS$SET_BUTTON_AST(VD_ID,WNDOW, , , ,X0, 15. 4, XI, 15. 8)
CALL UIS$SET_BUTTON_AST(VD_ID,WNDOW,

, ,
,X0 , 16. 2, XI, 16. 6)

CALL UIS$SET_BUTTON_AST(VD_ID,WNDOW,,,,XO,17.0,X1,17.4)
CALL UIS$SET_BUTTON_AST(VD_ID,WNDOW,

, , ,X0, 17. 8, XI, 18. 2)
C*****NOW CALL UP MAIN MENU

CALL UIS$DELETE_WINDOW(WNDOW)
RETURN
END

C

C

SUBROUTINE SHOW.SAVE

C

C THIS SUBROUTINE POPS UP A DIALOG BOX TO INSTRUCT THE USER NOT *

C TO USE THE SAME DATA FILE NAME AS USED IN A PREVIOUS PROGRAM *
C SECTION [SINCE IT WILL OVERWRITE THE OLD ONE CAUSING ERRORS
C OR LOST DATA] . II IT CALLED BY THE SUBROUTINE THAT SAVES THE *

C DATA FILES
C *

c

IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY'
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
CHARACTER*34 SAVE/'*** SAVING DEFINED DATA FILE *** '/

CHARACTER*34 SAVE2/' DO NOT USE SAME NAME & EXTENSION '/

CHARACTER*34 SAVE3/'AS DATA FILE FOR OTHER SUB-SECTION'/
CHARACTER*34 SAVE4/ ' PLEASE WAIT '

/

CHARACTER*34 SAVE5/
'

PROGRAM WILL RESUME ' /

REAL Y_P0SN
C*****CREATE THE DISPLAY FOR THE DIALOG BOX

VD_SAVE=UIS$CREATE_DISPLAY(0. 0,0. 0,10. 0,5. 0,20. 0,6. 0)
C*****CREATE THE WINDOW TO DISPLAY THE TEXT IN

WD_SAVE=UIS$CREATE_WINDOW(VD_SAVE, ' SYS$W0RKSTATI0N'
,

'HELP WINDOW'

)

C*****C0PY ATTRIBUTE BLOCK '0' AS BLOCK '20' AND CHANGE THE FONT SIZE
CALL UIS$SET_FONT(VD_SAVE,0,20, 'DTABER0R03WK00GG0001UZZZZ02A000'

)

C*****C0PY ATTRIBUTE BLOCK '20' AS BLOCK '21' AND CHANGE TO BOLD FONT
CALL UIS$SET_FONT(VD_SAVE,20,21, 'DTABER0R03WK00PG0001UZZZZ02A000'

)

C*****SIGNAL THE USER TO GET THEIR ATTENTION
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

C*****WRITE THE TEXT INTO THE WINDOW AND SPAWN PROCESS TO 'WAIT' 15 SEC
Y_P0SN=4.
CALL UIS$TEXT(VD_SAVE,21,SAVE,0. 2,Y_POSN)
Y_P0SN=Y_P0SN-. 8

CALL UIS$TEXT(VD_SAVE,20,SAVE2,0. 2,Y_P0SN)

127

Y_POSN=Y_POSN-.

8

CALL UIS$TEXT(VD_SAVE,20,SAVE3,0. 2,Y_P0SN)
Y_POSN=Y_POSN-.

8

CALL UIS$TEXT(VD_SAVE,21,SAVE4,0. 2,Y_P0SN)
Y_POSN=Y_POSN-.

8

CALL UIS$TEXT(VD_SAVE,21,SAVE5,0. 2,Y_P0SN)
CALL LIB$SPAWN('WAIT 00:00:15*)
CALL UIS$SOUND_BELL('SYS$WORKSTATION' ,4)

CALL UIS$DELETE_DISPLAY(VD_SAVE)
RETURN
END

C

C

SUBROUTINE UTIL

* *

* UTILITY IS A SUBROUTINE WHICH ALLOWS THE USER *

* TO SHELL BACK TO THE CALLING WINDOW WITHOUT LEAVING THE *

* PROGRAM ENVIRONMENT. THIS ALLOWS A USER TO RUN A DCL *
* COMMAND (SAY A 'DIR') WITHOUT LEAVING THE PROGRAM. *
* WHEN FINISHED, THE USER ENTERS THE COMMAND 'EXIT' OR *
* A RETURN ON A BLANK LINE AND CONTROL RETURNS TO THE TOOL *

* BOX MENU. *

* *

INCLUDE 'GENERAL. FOR'

CHARACTER*64 CMMD
STA=UIS$SET_P0INTER_P0SITI0N(VD_ID,WD_MAIN,9. 9,5.

)

C*****retURN THE SCREEN TO DEFAULT SIZE
CALL LIB$SPAWN('SET TERMINAL/WIDTH=80'

)

CALL LIB$SPAWN('SET TERMINAL/PAGE=24'

)

C*****PUSH THAT SCREEN TO THE FOREFRONT
CALL UIS$PUSH_VIEWPORT(WD_MAIN)

1 TYPE *, 'ENTER THE DCL COMMAND ...OR [RETURN] TO EXIT'

PRINT *,' '

READ (*,FMT='(BN,A)') CMMD
PRINT *, CMMD

C*****if COMMAND IS A 'RETURN', XFER BACK TO 'TOOL BOX'

IF (CMMD . EQ. ' *) THEN
CALL UIS$POP_VIEWPORT(WD_MAIN)
RETURN

ENDIF
C*****SPAWN A NEW PROCESS FOR THE ENTERED COMMAND

CALL LIB$SPAWN(CMMD)
PRINT *,' *

GOTO 1

END
C

C

128

B. TOOL BOX MAIN PROGRAM VARIABLE DECLARATIONS

This file GENERAL.FOR is INCLUDE'ed in each subroutine of the main core

code to provide commonality of variable names and types.

rj^vrtrtrtGENERAL. TOR***
C GENERAL HEADER INFORMATION

IMPLICIT INTEGER(A-Z)
INCLUDE 'SYS$LIBRARY:UISENTRY*
INCLUDE 'SYS$LIBRARY:UISUSRDEF'
COMMON /KB/ KB_ID
COMMON /DISPLAY_1/ VD_ID,WD_MAIN,WD_STATIC,WD_MANU,WNDOW,VD_TEST
COMMON /DISPLAY_2/ WD_RPT,WD_POWER,WD_FAIL, VD_FAIL, VD_SCR
COMMON /DISPLAY_3/ WD_NDUR,WD_TM,WD_MTM,WD_SCR
COMMON /DISPLAY_4/ WD_SH,VD_SH
REAL*4 XO , YO , XI , Yl , XPOS , YPOS , Y_COOR , Y_LINE , DY
COMMON /REAL_N/ XO ,X1 , YO , Yl , Y_COOR, Y_LINE,DY, YPOS
COMMON /INTEG_R/ Z,Z2
LOGICAL''- 1 FL1,FL2,KEYBUF(4)
COMMON /L0GI/FL1,FL2
CHARACTERS 2 6 BL0CK*29 , OPTION, LONG_TITLE*40
COMMON /CHAR/ BLOCK(11) ,OPTION(23) ,L0NG_TITLE(5)

C. TOOL BOX MAIN SUB-PROGRAM VARIABLE DECLARATIONS

This file TOP.FOR is INCLUDE'ed in each of the subroutines throughout the

program that require commonality of only a few of the main program window and de-

vice variable declarations.

jrScfrJejcStJcJtli'irfcirieJijtijfitie'ts TOP. FOR **&&**&&***&***&***&***&***&&*'**'**'**'*****'*'*

IMPLICIT INTEGER (A-Z)
INCLUDE ' SYS$LIBRARY: UISENTRY'
INCLUDE ' SYS$LIBRARY: UISUSRDEF 1

COMMON /KB/ KB_ID
COMMON /DISPLAY_1/ VD_ID,WD_MAIN,WD_STATIC ,WD_MANU,WNDOW, VD_TEST
COMMON /DISPLAY_2/ WD_RPT,WD_POWER,WD_FAIL,VD_FAIL, VD_SCR
COMMON /DISPLAY_3/ WD_NDUR,WD_TM,WD_MTM,WD_SCR
COMMON /DISPLAY_4/ WD_SH,VD_SH

129

LIST OF REFERENCES

1. Coombs, M.J. and Alty, J.L., Computing Skills and the User Interface, 1st Edition,

Academic Press, 1981.

2. Smith, D.K. and Alexander, R.C., Fumbling the Future: How XEROX Invented, then

Ignored, the First Personal Computer, 1st Edition, William Morrow and Co., Inc.,

1988.

3. McGowan, G.K., Application of VAX/ VMS Graphics for Solving Preliminary Ship

Design Problems, Master's Thesis, Naval Postgraduate School, Monterey,

California, March, 1990.

4. Taggart, R., editor, Ship Design and Construction
,
published by the Society of Na-

val Architects and Marine Engineers, New York, N.Y., 1980

5. Digital Equipment Corporation, MicroVMS Programmer's Manual, April, 1986.

6. Taylor, D.W., The Speed and Power of Ships, 2nd Edition, United States Maritime

Commission, Washington, D.C., 1943

7. Harvald, Sv.Aa., Resistance and Propulsion of Ships, John Wiley & Sons, Inc., New

York, New York, 19S3

8. Watson, D.G.M., response to The Effective Horsepower of Single Screw Ships by

D. I. Moor and V. F. Small, contained in Quarterly Transactions, Royal Institute

of Naval Architects, London, United Kingdom, July 1960, Vol 102, No. 3

9. Silverleaf, A. and Dawson, J., Hydrodynamic Design of Merchant Ships for High

Speed Operation, Royal Institute of Naval Architects, London, United Kingdom,

1967

130

10. Erichsen, S., Report Number 123, Optimum Capacity of Ships and Port Terminals,

Department of Naval Architecture and Naval Engineering, College of Engineering,

University of Michigan; April, 1971

11. Harrington, R., editor, Marine Engineering
,
published by the Society of Naval Ar-

chitects and Marine Engineers, New Yrok, N.Y., 1971

12. Baker, E., Introduction to Steel Shipbuilding, 2nd Edition, McGraw-Hill, New York,

N.Y., 1953

13. U.S. Department of the Navy, Calculation of Surface Ship Endurance

Requirements, Design Data Sheet, DDS9400-1, Washington D.C., 1963

131

BIBLIOGRAPHY

The following articles concerning the rise to predominance of the Graphical

User Interface (GUI) are particularly well written as an introduction to the sub-

ject :

Hayes, F. and Baran, N., "A Guide to GUI's", BYTE , Vol. 14 Number 7, July

1989.

Seymour, J., "The GUI: An Interface You Won't Outgrow", PC Magazine , Vol. 8

Number 15, 12 September 1989.

General information on ship design and Naval Architecture can be found in the

following references :

Munro-Smith, R., Ships and Naval Architecture (SI Units) ,The Institute of Ma-

rine Engineers, London, U.K., 1973

132

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52 2

Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code ME 1

Department of Mechanical Engineering

Naval Postgraduate School
Monterey, California 93943-5000

4. Naval Engineering Curricular Office, Code 34 1

Naval Postgraduate School

Monterey, California 93943-5000

5. Professor Fotis A. Papoulias, Code Me.'Pa 2

Department of Mechanical Engineering

Naval Postgraduate School
Monterey, California 93943-5000

6. Professor James F. Hallock, Code ME/HI 2

Department of Mechanical Engineering

Naval Postgraduate School
Monterey, California 93943-5000

7. Professor Robert E. Ball. Code AA'Bp 1

Department of Aeronautics and Astronautics

Naval Postgraduate School
Monterey, California 93943-5000

8. Gerald K. McGowan, LT/USN 1

c'o Avis Grindstaff

P.O. Box 112

Dent, Minnesota 56520

9. James R. Plosav, LT/USN 2

4110 Oxford Rd.

York Springs, Pennsylvania 17372

133

2768 00003962

