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* 1 Introduction

rn The Finite Element Method-(FEM) has been used in the analysis of structural designs for
about two decades now. The field of computational mechanics has come to rely heavily on
this technique, and gradually the FEM is becoming the most popular analysis procedureI within various fields of design. This design and analysis procedure can be clearly divided
into two types of processes. The first type involves performing large scale algorithmic com-
putations and data processing. The second type of process involves decision-making which
requires perception, intelligence, knowledge, and reasoning power.

This second type of-process involving decision-making is traditionally performed by engi-
neers who are expected to master the expertise necessary to effectively use the finite element
software in the design process. Many computer aids like CAD software, graphic interfaces
and on--sc'reen data displays have helped to reduce the involvement of human designers by
providing decision making data in an easily accessible form. Still, the involvement of a hu-
man expert in the decision-making process represents a major part of the time and effort of

I performing analysis and design for the following reasons:

* the scarcity of experts available to make correct and quick decisions

o ethe expense, in time and dollars, of training new experts

* the decision-making process itself, which is often routine and trivial, yet time-consum-
ing

I To overcome these problems, several research efforts are currently underway attempting to

formalize decision-making criteria and-to develop intelligent automated software to supple-

ment the human designer. This report summarizes research performed in this direction at

the Computational Mechanics Company, Inc.

1.1 Summary of Objectives of the Project

I The primary goal of this project was to study the feasibility of automation of the decision-

making process in both the mathemat.,"l methods (so-called deep knowledge) and artificial

I intelligence tasks (shallow knowledge) in the engineering design process. In particular, this

study focused on automated numerical analysis and design by an advanced h-p adaptive

version of the Finite Element Method. In this process, comp1ex decisions are being made,

I to date primarily by the engineer, concerning:

iethe mathematical model of the structure

!1
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* representation. of material properties

9 selection of a computational method and strategy

* . optimal mesh design

* optimal time step, load step, etc., selection

* handling of computational difficulties (divergence, zero pivots, etc.)

I . Verification of the reliability of finite element results

* modification of the model in order to satisfy design objectives

0 optimization of the-design

I" Until recently, most of the above decisions were made by the designer and required consid-
erable expertise in structural mechanics and numerical analysis.

.* The objective of this research effOrt was to study the feasibility of automating the deci-
sion making process in computational mechanics by means of novel algorithmic procedures

I (a4aptive mesh refinement, adaptive time stepping), and by application of new computer
technologies, designed to automatically handle nonalgorithmic decisions based on heuristics,
experience, and human expertise.

1.2 Research Summary

I The first year of the effort was devoted to assessing the current state-of-the-art in decision
making software, evaluation of logical steps in the engineering design process, evaluation.1 of possible tools (software) that can be used toward automation of this process, and the
formulation of a general computational environment for coupling a finite element analysis

twih knowledge-based systems. Simultaneously, continuous progress on the theoretical basis

for complex decisions involved in h-p adaptive finite elements was being made.

In the second year of the project the effort was focused on a detailed formulation of criteria

and methods of automation of selected aspects of computational mechanics. Moreover,
the concepts formulated in the project were verified by practical application of knowledge

I engineering software (Expert Systems) in the h-p adaptive finite element analysis. This
effort, which was beyond the original statement of work, has proven to provide a great

* gain in efficiency, reliability, and ease of use that can be achieved by coupling knowledge

engineering with classical methods of computational mechanics.

The particular ,asks completed in the project are listed below:

2I!



1. An extensive literature survey was undertaken to assess the state-of-the-art in auto-
mated decision making,.-in pai-icular with. respect to applications in the engineering

* design process. The study indicated that some introductory efforts had been performed
toward automating the selection of a structural model and computational strategies.
Prior to this- project, however, no complex integrated effort has been presented which.
automates the whole design process. In particular, no efforts have been reported on
interactive coupling of finite element programs and knowledge-based systems.

2. The general, logical structure of the engineering design process was examined. The
basic objective was to identify consecutive logical stages of this process as well as
decisions made and knowledge used and generated at each stage. Possible methods
and software necessary to automate consecutive stages were identified. The general
conclusion was that full automation requires a synchronized process in both algorithmic
and heuristic procedures.

3. An evaluation of the types of knowledge used in the engineering design process was
performed. This includes, in particular, "deep" and "shallow" knowledge.

4. Evaluation of possible computer tools and software for handling deep and shallow
knowledge in the engineering design of aerospace structures was performed. This in-
cludes algorithmic procedures, expert systems, object-oriented programming, knowl-
edge acquisition, and neural networks.

5. A detailed study and development of methods, co. 'epts, and algorithms related to the
automation of the design process was performed. The issues addressed included:

* selection of a mathematical model for given situations

* .selection of computationalmethods andstrategies

* design of optimal discretizations

* development of adaptive computational ;methods for maximum effectiveness and

robustness

* verification of acceptability of final results

6. Further progress toward an automatic mesh refinement procedure in the adaptive h-
Sp finite element method was achieved. Moreover, a procedure for the solution of non-

linear problems, with large deformations and contact constraints, was formulated and
- implemented. This procedure was automated by the application of knowledge-basedI expert systems.

I
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7. A general computational environment for the interactive coupling of finite element pro-
grams and knowledge-based expert systems was formulated. This formulation includes
the-specification of functional elements of the integrated system as weIlas general data

* types and the data structure involved.

8. An extensive search and evaluation was performed on artificial intelligence software
available today, its capabilities and the direction-of evolution. This study indicates

that simple rule-based expert systems are being replaced with much more powerful
systems with object-oriented capabilities and even knowledge acquisition capabilities.

9. A direct -coupling of the h-p adaptive finite element code with the Expert System soft-
ware'"Nexpert Object" was implemented. This implementation enables direct commu-

nication between the two technologies, so that heuristic-decisions in the finite element
analysis can be automatically handled by the knowledge engineering software.

• 10. Several advisory expert systems were implemented in the above coupled environment

to automatically handle selected decisions in the finite element analysis. These include:

* automated selection of computational strategies

* monitoring and control of performance of the finite element computations.

* automatic verification of the mathematical model and finite element results

11. Representative examples illustrating performance of the coupled finite element-expert

system environment were solved.

* 12. Based on the results of the project, further possibilities of automation of 'the design of
aerospace structures were identified.

I 1.3 Personnel

I The research effort was performed during the course of this project was provided by a highly

specialized team of COMCO researchers. In particular, the Principal Investigator in the

first year of the project was Dr. Jon Bass, Vice President of Science and Engineering at

COMCO, In the second year of the project the Principal Investigator was Dr. W. Wojtek

Tworzydlo, Senior Research Engineer and Manager of Advanced Projects Group I. Professor
I J. T. Oden, President and Senior Scientist of COMCO, was project supervisor. Assisting at

different stages of the project were the following Graduate Research Engineers: Chris Berry,

Olivier Hardy, Shakhil Sheikh, Tim Westermann, and Shibu Vadaketh.

During the course of the project, considerable help in issues related to object-oriented

programming and knowledge engineering was obtained from a consultant, Jackie Combs, a

I specialist at the Artificial Intelligence Center at Lockheed.

4
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The mr mI is the poject w s p sm W at tw U Ainal AFOSft Faum a
SOM'2Structuresi hel in 1. iangc. Fnluds Jum M8-2019WU

ICatains asects of this Eark woody in a mpbg d the adapftit dem-nte d
code PELEX with the eipq t sysem s B-re NEXPR OBJECT, =e pmueed in the
form o a pI re Flee at AUTOFACT 1M.

Currently a paper s the edmt aad entitled 'Toard an Autmated Eavirom-Imeat in C omputationalk s e s~am
wen inMechacscis being Irearq for publicatioa.

I 1.5 Outline of the Report

I This report presents the results oi the literatm sur theoreical study, and pratical

design and impofmetatmio n automated enr for design by the inite

eement method. The report is divided into several sections discussing rious aspects o(fCte

effort.

The first few sections present remits of the literature surver and a thmretical study of

I issues relating to automated decision making in cwsptaimal mechanics. In partiaular,
Section 2 presents an updated survey of literature related to the projecl Section 3 then

provides a detailed analysis of the engineering design process with particular emphasis on

choices and decisions made at consecutive stages of the design. In Section 4 different types

of knowledge used in the engineering design are identified. This analysis is the basis for the

I evaluation of computer tools (languages and hardware) that can be effective in representing
and using these types of knowledge (Section 5). In Section 6 is a more detailed discussion of

methods, concepts, and algorithms for automated computational mechanics. This includes

established numerical techniques, novel theories and algorithms as well as heuristic rules and
facts.

The studies presented in Sections 2 through 6 are the basis for the lkout and design of
the general computational environment for automated design of aerospace structures by the

I adaptive finite element method. In particular, a general outline of the various components

(pieces of software) of this environment and the general data structure are discussed in

Section 7. In Section 8 a practical design and implementation of selected object-oriented
I expert systems is presented in detail. Several numerical examples are provided which prove

the feasibility and illustrate the effectiveness of concepts deyeloped in the project. This
section is followed by conclusions and a list of references.

Parallel with the above studies a continuous effort is underway at COMCO toward op-Itimizing the h-p adaptive finite element method. The basic formulation of this method and

!5
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* 2 Literature Survey

As 6he 1.1t toin Gstis projet, an estensive fllteature sur my was coducted to creat a com-Ips~iwe badkponed mowenig the crreP tatee4the-azt in Various fields of, knowledge
which form a part dc, or are a suppleument; to, the decisias-inaking area of no mpuatationalU mchaics It was; noted that thee are three major stage s the paom of design and anal-
yas i Which extensive decision-making is required. These stages of dcion-naking ar. inIfact, responsible Wfor o f the human interactioncssay during the entire process. The,
lirst stage is the modeling stage. At this stage the physical design has to be transformed into
a mdel which the computer can understad and on which numerical analysis can be per-Iformed- Since madt of the physia s"stems cannot be taken directly as the nodel on which
the analysis is to be performed. several decisions are required so that the mathematical and
numerical models represent the actual system, as accurately as possile. Tis ph~ysical modelImst then be input in the form of a finite elemen t mesh 'which is supplied or generated by

the user. This task often requires a great deal of experience and knowledge.IThe second major task requiring exp-ertise is the numerical analysis of the modeit This
involves several complex decisions, in particular mesh design, selection of computationalI strategy, and choice of corresponding parameters'. suha iesela .tp etc.I
also involves decisions made when computational difficulties are encountered, for example,
divergence of iterative method, unstable behavior of the solution, etc. Decisions made at thisIstage require both a solid theoretical background and considerable computational experience.

The third major task involving complex decisions is analyzing the results of the numnericalIanalysis. At this stage several decisions, such as acceptance or rejection of the design, must
be made. If flaws are found in the design, remedial measures should be suggested and
appropriate changes made to the initial design before the analysis process can be repeated.

Design and analysis is an iterative process that may require several iterations to achieve
a final product. During some of the iterations the changes required are trivial, while others
may require a great deal of expertise. To achieve an automated design process, it is necessary

to automate each of the three stages mentioned above.
It is of importance to note that there are two basic types of knowledge and decisions

made in the design process:

e algorithmic knowledge and corresponding procedures

6



* heuristic knuwledge and.decisions

A detailed discussion of theso two %ypes of knowledge is presented in Section 4. Here it is
important to note that in the engiacering design process there is a very strong interaction
between algorithmic and heuristic kl ',wlcdge and that in the automated environment they
cannot be treated separately. Moteoer, dut to the continuous progress in science, some
heuristic decisions become precise enough to be treated algorithmically, usually with better
reliability, efficiency, and with the possibility of full automation. Thus, our literature survey
has focused on the most advanced algorithmic methods useful in the automation of the
design process as well as on the heuristic knowledge and software designed to handle it
automatically.

Currently the major area in which algorithmic methods and decisions replace a heuris-
tic approach and promise full automation is the adaptive finite element method or-more
generally-adaptive computational methods. The term "adaptive computational methods"
has become increasingly familiar in the modern computational mechanics literature as more
analysts and engineers realize the great potential of the concepts underlying these methods.
Adaptive methods, which are numerical schemes which automatically adjust themselves to
improve solutions, include a wide variety of techniques. The more important of these are
adaptive mesh refinement, adaptive adjustment of time steps in transient problems, adaptive
load stepping in quasistatic nonlinear problems, or adaptive selection of implicit and explicit
zones in transient analysis. An extensive survey on adaptive computational methods was
recently compiled by Oden and Demkowicz [52] and Noor and Babugka [51]. The reader is
directed to these works for detailed information.

The first work on adaptive finite element methods was presented in 1971 by Oliveira
and Arantes [58] which discussed grid optimization by minimizing the energy by optimal
node distribution. This type of approach-node redistribution-is the basis for the moving
mesh adaptive methods (r-methods) developed for both solid mechanics problems and flow
analysis [26,38,40,48,49,50,81].

Other adaptive finite element methods currently in use include:

e h-refinement based on a local refinement of the mesh without changing the order of
interpolation [27,52,54,55]

e p-enrichment, in which the order of interpolation is increased locally to improve accu-
racy [25,71,72,73,83]

* h-p-method, in which both the mesh and the order of interpolation are adapted to
minimize the error [4,29,30,53,61]

7



I
I The mot advanced method--and the most difficui to appby-is the A-p adaptive methodL

Te advantiap of this approa& is that while the com tional FE's can provide only
I algebraic rates o covegence, an adaptive k-p method can result in exponential rates o(

am yemce. It bould be noted that the selection of k-refinement or p-enrichment is a diffi-
calt issue and the selection cfan optimal sequence of refinements is still under development.

IA significant amout of progress in this dkecion was recently made by researchers at the

C mpuaional Mechanics Company, Inc-, see references [29,30,53,61).
An alternative to a purely algorithmic approach to grid adaption is the use of heuristic

knowledge to select h-refinement or p-enrichment. In this spirit, an expert system-like

approach was developed by Babuika and Rank [6). It is expected that the best results will

be obtained from a combination of algorithmic and heuristic artificial intelligence approaches.

Adaptive mesh refinement is only one example of automated decision-making in the
I process of finite element analysis. Another important adaptive procedure is adaptive time

step selection in the solution of time-dependent problems. The selection of a time step is

usually based on deep knowledge, namely precise error estimators. Such estimators, based
on the Courant-Friedrichs-Levy number, are extensively used in the solution of flow problems

[54]. Similar procedures in solid mechanics, based on a truncation error analysis, were applied

I by Kumar, Majoria and Mukhurjee [41], Bass and Oden [10], azrd more recently by Thornton,

Oden, Tworzydlo and Youn [74].

Yet another approach to adaptive computational methods or smart algorithms is repre-

sented by imlicit/explicit methods based on adaptive decomposition of the computational
domain into implicit and explicit zones in order to maximize the efficiency and reliability of

the computations. Such methods were recently developed for computational fluid dynamics

problems by Tworzydlo, Oden, and Thornton [79].

The second major direction of research in the area of automated computational mechan-
ics is the application of artificial intelligence to resolve decision-making problems. The field

of artificial intelligence is, of course, not new. It has, however, only been recently that the
developments in computer architecture have made the tools of artificial intelligence more

practical, more widely available, and more user friendly. During the current decade, the idea

I of Knowledge-Based Expert System (KBES) has developed from mere theory to practical

and integrated complex decision-making systems. Today there are numerous private com-

panies and government agencies utilizing expert systems to solve decision-making problems
in various fields of research, business, and defense.

It was in 1978 that the first steps were taken by Bennett, Creary, Englemore, and Melosh

I [12] at Stanford University toward forming an expert system for engineering design. The

expert system was called "SACON" (Structural Analysis CONsultant) and could make intel-

ligent decisions regarding forming the input model for a large finite element analysis program

8



I cald MARC. MARC was a Sexible program capabe of handling varous types of analysis
tedniques, material properties and geometries. SACON could make decisions about the

I inpu parameters required by MARC for any specific design. This deision-making capabil-
ity was generally mastered by an average engineer after working with MARC for about a
year. Thus, SACON acted as an intelligent front end to the MARC program and advised

I inexperienced users about the best modeling approaches and the various parameter values
required by MARC as input. The SACON had a knowledge base of about 170 IFTHEN
rules which was controlled by the backward chaining EMYCIN inference engine.

SACON was a prototype and an operational version was never developed. The concept
of expert systems initially did not seem feasible as the development and running cost were

I not economical and there were few computers at the time on which a program like SACON
could work. In the 1980's, as the microcomputer and computer work stations developedH and became more easily available, the idea of expert systems was reconsidered. At the same
time, research began focusing on automating several processes which required decision-
making. In the field of computational mechanics, the first area to be studied in this regard
was automatic mesh generation. In order to exploit this new technology, it was required that

expert systems or other AI tools be able to interact directly with cxisting CAD software and
I transform the generated models into a coarse mesh compatible with the FEM program. The

various techniques of computer based geometric/graphical modeling currently in use are:

* wireframe modeling

0 surface modeling

1 solid modeling

The only technique out of these which can provide sufficient geometric knowledge about
the physical model to the- mesh generator, is solid modeling. Information available from
wireframe models or surface models is not complete enough to be useful for fully automated

i mesh generators. Even solid models are limited due to the fact that feature description,
such as that of holes, cavities, and other such discontinuities, is not sufficiently elaborate,
even in the most sophisticated CAD programs. This causes CAD programs to fall short of

I independently providing the desired input for fully automated mesh generators. It is here
that the expert systems or other AI tools are required to fill the knowledge gap.3 In 1985 Fenves [32] (Carnegie-Mellon University) outlined a framework for what he called
a knowledge-based finite element analysis assistant. He has illustrated the need for the in-

I telligent interface of CAD and finite element analysis programs so that the available human
expertise can be combined in a single software package and therefore reduce the time nec-
essary for mastering the full design process. Fenves also concluded that the application of
knowledge-engineering in this area has become a necessity.
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I
SIn 1986 Gregory and Shepard [341 (Rensselaer Polytednic Institute) developed a know-

ledge-based system known as FAGS (Flexible Automated Conversion System). FAGS had
I the capability of interacting with various CAD programs and FEA solvers through specific

translators. It could take the geometric specificatios of various airframe components pro-
vided by the CAD program and was able to generate from this data a coarse mesh to be
input to the finite element solver.

Cagan and Genberg [19 (University of California, Berkeley, 1987) also developed an
I expert system in this area. The expert system was called PLASHTRAN (PLates And SHells

STRuctural ANalysis) and acted as an advisor and learning aid to the users of a large finite
element analysis package called NASTRAN. For ease of development, only two-dimensional
elements were considered. The knowledge framework was created in an object-oriented
environment known as LOOPS (Lisp Object-Oriented Programming System). The inference

I engine used was a data-driven forward chaining type, allowing the expert system to follow
the logic of the user rather than the user having to follow the logic of the shell, as it is for
the more rigid systems based on strictly backware-chaining shells.

Blacker, Mitchiner, Phillips and Lin [14] (Sandia National Laboratories) have also pro-
duced an automated two-dimensional quadrilateral mesh generator using a transfinite map-

I ping algorithm for generation of the elements. It is based on a set of higher-order primitive
decomposition algorithms. The decision-making is integrated into the process by using a
Knowledge-Based System built around Common LISP and the KEE (Knowledge Engineer-
ing Environment) shell. The program has thus been named AMEKS (Automated MEshing
Knowledge System). AMEKS uses a recursive strategy to successively remove meshable

I primitives, exhaustively decomposing the initial region. Likely dissections are attempted
until an acceptable primitive is produced. The strategy is repeated on the remaining regions.
The decomposition is completed when a dissection results in two acceptable primitives. The
mesh is then algorithmically produced for the decomposed regions. This program can han-
dle both straight and curved two-dimensional geometries but cannot handle subfeatures like

* holes or other such discontinuities.

The trend of applying tools of artificial intelligence to automate various stages of deci-
sion-making in engineering design has gained further momentum and several research efforts

have been made in this area. Some of these are mentioned here and several others are listed
in a comprehensive bibliography.

The work of Chen and Hajela [22] (1989) has produced the expert system OPSYN (OP-
timum SYNthesis). This system has the capabilities of finite element modeling, optimum
design modeling and selection and calculation of optimization strategies. The knowledge
base provided for finite element modeling contains rules for selection of node location and
numbering and for generating the initial mesh. Rules pertaining to mesh refinement, element
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selection and element distortion elimination have been- developed as well. The knowledge
is represented in the form of IF, THEN rules and its application is controlled by an infer-I ence engine (INFER) capable of both forward and backward chaining. OPSYN goes a step
further than most other expert systems by implementing a knowledge acquisition mode. h
this mode, specific problems are presented to experts to solve interactively. The method of

I solution or the decision made by the experts are stored in a file inthe form of IF, THEN state-
meats with confidence levels specified. These can then be used by the knowledge engineer
to formulate new rules.

An-Nashif and Powell [3] (University of California, Berkeley, 1988-89) have also worked
in this area of research in conjunction with the automated modeling of frame structures.3 They use a system of "components" and "connections" for defining the basic structure. This
structure is then transformed into the analysis model which is defined in terms of nodes,

I elements, and boundary conditions. The strategy defined here has yet to be implemented in
the form of a working knowledge-based system, but it seems to lend itself quite favorably to
object-oriented programming.

3. Sapidis and Perucchio [66] (University of Rochester, 1989) have worked in the area of
producing finite element meshes automatically from solid models. They have analyzed and

I evaluated the algorithms dealing with element extraction, domain triangularizaiion, and
recursive spatial decomposition. ! review of some existing expert systems, which integrate
the decision-making knowledge with these algorithms to produce various levels of automation3in mesh generation, is also carried out. The authors conclude that, although significant
progress has been made in the field of automatic mesh generation, no system exists which
can be considered fully automated.

Another approach to the decision-making problem has been established by Ohsuga [57]
(University of Tokyo, 1989). He presents the idea that the CAD programs themselves should
be made "intelligent" so that they can perform tasks other than that of pure drafting. Ohsuga
argues that the current CAD programs lack the sophistication, flexibility, and innovationI required for automated design synthesis. He also argues that the traditional artificial intel-

ligence tools, like rule-based expert systems or object-oriented programming alone, are also
insufficient to handle. the intricacies of automated design synthesis. As a solution to these

_I problems, he presents KAUS (Knowledge Acquisition and Utilization System), an intelligent

CAD environment based on a knowledge representation language developed especially for
I this purpose. KAUS, though not yet fully developed, still shows great flexibility in the design

synthesis [441 process and may prove to be one of the forerunners in the intelligent CAD

environments of the future.

From the study presented above one can conclude that practically all reported efforts
toward automation of the design process have focused on tne first stage of design, namely
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I understanding of the physical problem and construction of the numerical model, in particular
the finite element mesh. No successful efforts were reported of the application of expert

I systems. at further stages of the design, in particular in the control of the performance of the
finite element procedure or in the analysis of numerical results and possible redesign of the
analysis model.

Another general observation is that most of the systems or concepts developed so far were
implemented as stand-alone advisory pieces of software, not integrated with other elements

I of the design environment. One of the reasons for this situation was that until -recently
most of the knowledge engineering applications were developed using the LISP language,
which makes coupling of expert systems with computer languages used in numerical analyses

I (FORTRAN, PASCAL, C or others) extremely difficult.

Further difficulties in practical applications of the systems reported so far is due to
the extremely arduous and complex development and management of a realistic knowledge
base, with the number of rules exceeding several hundred. Losing control over the size
of the knowledge base is a trap which can ensnare even the most experienced experts if3caution is not exercised. Such efforts can easily cause the spectre of conflicting rules and
uncontrolled linking of knowledge to haunt the developer. A possible solution to this problem
is specialization by development of smaller, specialized expert systems or segmentation of

I larger knowledge-based systems and encapsulation of knowledge. This approach was actually
used in the present work.

I The general conclusion of this survey is tfiat the concepts of tools for making automated
decisions in the design process are presently emerging in the engineering community. While

Ii still very limited in the degree of automation, generality and realistic capabilities, these efforts
indicate that the need for such systems exists and that intelligent design environments will
be developed in the future.

It should be noted that a fully automated system which can take the user completely out
of the loop (especially for a complex and conceptual task such as design synthesis), is stillI far from reality and a thing of the future. Even if this is made possible by advances in fields
such as neural networks (or other such tools which may be devised in the years to come),
the question will-remain: can a machine ever be as innovative as the human mind?

*| 3 Decision Making and Knowledge Flow in the Engi-
neering Design Process

1i The process of engineering design is oriented toward the construction of a physical system
to perform specified functions. The complete design process involves considerable technical

'I
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I
S effort. As well as the analysis of cost, timing, manufacturing, etc. In this presentation we

will focus primarily on the technical aspect of the design process. The technical objective
-of design is to produce a model of a:product which will perform specified functions under
m.: certain conditions, usually for a specified time.

The general overview of consecutive logical stages of the design process is-presented in Fig.
3.1. The process begins with the identification of physical problems and design objectives
and-usually after several modifications-yields a model of a product performing specificI functions and satisfying design criteria.

During the design process, knowledge about the model is enriched, modified, and used
at further stages of the design. In Fig. 3.1, the total knowledge accumulated during the
process is stored in the-common data base, called the blackboard (this name corresponds,
to.the-generic way of handling knowledge, known as blackboarding). This idealization-does
not necessarily mean that blackboarding is the only or the best way of storing knowledge
in practical applications. The various components of the chart of Fig. 3.1 use, modify,
and constantly update the information stored on the blackboard. In the following sections,
consecutive stages of the design process will be briefly discussed and evaluated.

The primary goal of this analysis is to identify the decisions made at different stages of
the design process, the knowledge base used to make these decisions, and the criteria used

to make-correct choices. For each of the stages of analysis, we try to identify possible tools
(types of software) that can be used toward automation of the design.

3.1 Understanding of a Physical Problem

At this-introductory stage of design, all distinctive features of a structure are identified andE the principal design objectives are specified. The structure is logically decomposed into
simpler units and their basic mechanical features are identified. The general class of loads
is recognized and the importance of possible environmental, chemical, electromagnetic, and
other influences is assessed. Different design objectives are specified, such as the functions
to be performed by the structure, required life time, desired reliability under random loads,
and interaction with other structures.

This stage of design is the basis for the selection of the mathematical model of the
stru6ture. As a result of this introductory analysis, decisions are made as to whether a
simplified form of the governing equations is to be applied or whether a more complete set
of equations is required.

The decisions made at this stage of the analysis are mostly heuristic, based on the de-
signer's expertise or previous experience. Until recently, this stage of design was performed
solely by a designer or group of experts. Recently attempts have been made toward devel-
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oping expert systems supporting the user at this- stage (see the literature survey in Section
2). Specialized exper systems for specific applications can be developed, such as an ex-
pert.system. for the structural design of airplane-wings. These systems can be grouped and
interactively used for the introductory evaluation of complex structures.

The- general knowledge of the system, accumulated at this stage, is the basis for the
[Iformulation of geometrical and mathematical models at further stages of the-analysis.

I 3.2 Mathematical Model, of the. Structure

Once the essential features of a physical model have been established, the mathematical
model of the structure is constructed. Formally, this mear, that a boundary value problem
or initial boundary problem is formulated in a certain domain. Practically, it means that
the equations are selected to represent the geometry and deformation of the structure, the
properties of the material, boundary conditions, loads, constraints (such as contact with
other structural members), and other effects. This stage involves two functionally different
actions:

@ defin. . n of the domain S, i.e., the geometric shape of the structure,

* selection of the mathematical formulation which best represents the physical behavior

-of the structure.

The above distinction is important from the application point of view, because signifi-
cantly different tools will be used- to aid the designer at these tasks. For the definibion of
the shape of the structure, a CAD-type solid modeling software is probably best suited.

The progress in this area is advancing rapidly and there is a large variety of CAD pro-
grams currently available, and most are equipped with excellent user interfaces and graphic
capabilities.

The selection of the mathematical model is more difficult and requires considerable the-
oretical background. The choice of the actual model depends on several factors, some of
them highly quantifiable, others somewhat heuristic. A more detailed discussion of these
issues and a presentation of possible systematic approaches to the selection of a mathemat-
ical model are presented in Section 6.1. Here we only note that the practical automatic
selection of a mathematical model requires application of a powerful expert system, capable
of combining heuristic information with analytical evaluations according to the theoretical
estimates.
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3.3 Discretization of the Model

Most tomputational-methods used today, parti-ularly -the finite element method, are based
on-an approximation of the-original problem by a problem formulated in the finite-dimen-
sional space. -In geometrical terms- this requires discretization of the domain into a mesh of
nodes and elements, as well as discretization of&boundary conditions and loads. These tasks
were traditionally performed by the users of finite element codes. Considerable expertise was

required to design a proper mesh, in particular, to concentrate nodes in expectedareas of high
gradients of thesolttion. Recently, several CAD programs have emerged that automatically
perform discretization of the domain with the use of an automatic mesh generator. Still, in
such a system, the designer must specify thecoverall characteristics and density of a finite
element mesh.

As indicated in the literature survey (Section 2), several recent research efforts were di-
rected toward-application of knowledge-based expert systems to automate the discretization
process. Although these efforts are certainly of great importance, it is our belief that the
application of, adaptive computational methods will make one of the most complex comfpo-
nents of such an expert system-obsolete. With the application-of adaptive mesh refinement,
there is no need for the user to anticipate the nature of final solution oi- to concentrate nodes
in certain subdomains. The initial mesh should merely represent the basic geometry of the
domain, and the-adaptive mesh refinement procedure, based on sharp error estimates, will
yield a final mesh more adequate to the problem than even the most experienced expert
could generate.

In conclusion, the automated generation of an initial discretized model will involve the
application of CAD software, combined with a knowledge-based system and-for flexibility-
a graphic user interface.

3.4 Selection of Computational Methods and Strategies

The general purpose finite element codes available today offer a wide spectrum of compu-
tational strategies for the solution of various problems. For a given problem, the user must
select a specific method, as well as the size of the time step in time-dependent problems, the

size of the load step in nonlinear problems, etc. This selection is usually based on general
guidelines and the previous experience of the user. Unfortunately, in most areas of com-
putational mechanics, there exists no unique, universal, or absolutely best computational
strategy. For example, in computational fluid dynamics, there is a variety of finite element
algorithms-Taylor-Galerkin, Runge-Kutta, SUPG, least squares-that are all adequate and
yet none has proven to be generally superior to the others. Thus, proper selection of the
algorithm for a specific problem can yield better results, often with less computational ef-
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ort. Ts es-opecially important in nonlinear or time-dependent problems, because it often
means the difference between a convergent or divergent process. In this case, the presence

6fan experienced -user is~crucial in the applications of today's computational systems.

Apparently, the automatic selection, of a proper computational strategy can readily be
acbieved-with the application of expert systems. Indeed, some introductory attempts toward
building such systems-were already presented in the literature (see Section 2). It should be
noted .that the systems that have been. developed (for example SACON [12]) are stand-
alone programs, requiring considerable input from the user. In an integrated approach, as
presented in Fig. 3.1; most of the information used at this stage should, instead, be drawn
from the -knowledge base developed at earlier stages of the design process.

There is, however, one additional important aspect of the automatic selection of a com-
putational strategy. As all engineers familiar with nonlinear problems know, it takes tensor even. hundreds, of solved problems-both convergent and divergent----to develop a certain

"feel" forthe proper selection of a computational strategy, load sequence, size of the load

step, etc. Therefore, it 'would be extremely beneficial to use, at this stage, software with
knowledge acquisition possibilities. Such a system could automatically gain experience from
previous applications and use it in future analyses of problems with similar characteristics.

3.5 Numerical Analysis of the Discretized Model

The discrete model of the structure being designed is usually analyzed by the finite element

method (or any other numerical method). This stage of the design process usually, amounts to
massive algebraic computations. In the-majority of finite element codes, it is assumed that all
decisions and choices have already been made and the program follows a prescribed procedure
to produce final results or, quite frequently, give error messages or just stop execution.
This approach often leads, especially in the case of advanced nonlinear applications, to
considerable problems for the user and wasted computational effort because:

* if an-error occurs, there is usually no suggestion as to how to fix it,

* if the nonlinear process or any iterative procedure diverges, there is neither an cxpla-
nation to the user about possible reasons, nor suggestions as to how to modify the data
(or change the strategy) in order to achieve convergence,

* if the time step in a time-dependent process is too large, there is no indication of a
large error (or even instability) provided to the user,

a after the final results are obtained, there is no aid provided for the user to estimate
the reliability of the results, the relevance of the user-defined mesh, etc.,
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f * often a-full cycle of expensive computational needs to be executed just to learn that
the results arenot acceptable and the data needs to-be modified.

I The general conclusion is that with today's finite element codes the user has very little
,guidance as- to. ways of handling errors, divergence, instability, or how to assess the quality3 of the-results produced.

The solution. to-this-problem isthe automation of the finite element analysis by the appli-
cation of adaptive computational procedures as well as utilizing the knowledge-based expertI systems to automatically handle computational difficulties. Thus, adaptive computational
methods ate very attractive in this context, because they offer the possibility of:

I automatically mrking decisions or choices previously made by the user and requiring
a considerable level of expertise,

U*minimizing the. computational effort necessary to obtain -high quality results, and

- automatically controlling the quality of results by means-of error analysis.

The specific types of adaptive computational techniques currently being developed for theI,; finite element method include:

~-* * adaptive mesh refinement

* adaptive selection of time steps intransient problems

I * adaptive selection of load steps innonlinear problems

* adaptive application of implicit/explicit algorithms in time-dependent problems

Adaptive methods present a very natural step toward the automatic design process because
they inherently include automatic decision making in the process ,of numerical analysis.

These decisions are, in general, both algo:ithmic, based on error estimates, as well as heuris-
tic, based on general- guidelines and experience. Therefore, a fully automated adaptive pro-
cedure will require coupling of the finite element analysis program and a knowledge-based
intelligent system.

Although adaptive techniques can, in general, provide automatic control of the solution
process, there exist situations, e.g., in the case of erroneous input data, that the errors,

*instabilities, divergence, or other computational difficulties do occur during the analysis. In
the fully automated process such situations should be detected, signalled to the user, and
some measures toward fixing the problem should be suggested. A typical example of such a
situation is in the analysis of a strongly nonlinear problem, say the rolling of a tire, where

18



I
I the conmmco ea Newtm Irdm - ormady paramd a-d a s sesitive to sm h

parameters as sdctim d the lad slep, bad sme t pmalI paranase. mae n um tios,

An efetiwe kaowed- Md sytmsoud be capaWl o( acmslateg the kmowedp
of the authorof cbe pram or tie epuiea!ed - aed ofr guidance to UtM' S, -. -
engnr or even tabe over the coataul d the progrm to achiev scmfuu con"uti.
In the moist advanced situation, an jatelligent, snstm sbiuld autoatically build its e

I experience based on successful and unsuccesful eiecutiow or the C010-

i 3.6 Generalized Post-Processing

The final solution of the numerical simulation is often obtained in the form of tables of nodal
I values of the basic unknowns of the problem: e.g. displacements in the solid maechanks

problems. This solution is usually post-processed in order to present the remits in a nwe
comprehensive form or to caculate new functions of interest to the user. Typial functions
of post-processing modules are:

I. calculation of auxiliarv funciions (strains, stresses) derived from ihe piima;- solution,.

2. use- of special post-processing techniques to obtain results of higher accuracy than the
primary solution,

3. estimation of solution errors, and

I 4. presentation of results in the form of plots, diagrams, tables. etc.

I The above tasks are basically algorithmic. However, advanced programs usually offer several
possibilities for performing these tasks and the selection of the method is expected from the
user. This is especially true for items two and three, since a variety of algorithms, each of
different quality and computational cost, is available for advanced post-processing or error
estimation (see references [7,8,9,115,16,60,84]).

The post-processing stage is important in the design process for yet another reason: it
provides information basic for the acceptance or rejection of the solution and for modification

i of the input data in order to obtain a satisfactory solution. New methods of postprocessing
designed to specifically serve this purpose were designed in this project and are discussed in

Section 6.3.

I
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S k dea system In particular an expert system can make sore that the error of
the solution is within prescribed tolrance that maimun stress does not exceed limits, that

I dIplacements re not too larM e1c. Moreover, the system should be prepared to suggest
possile solutions in the case of violatio of certain design criteria or even take over the
control and do the neceary modifications.

I A special case of modification of the modd is the situation, when the objective of the
design process is optimization toward minimum weight, maximum strength. or some other

I gal. The basic approach to optimization is to perturb control variables so as to minimize the
goal function., with the model still satisfying basi design criteria. A %ariety of algoridhmic

I optimization techniques exist that can be applied at this stage. The knowledge-based expert
system can be used at this siage for the selection of the optimization method, as well as
interact with the algorithmic method in more complex casesI
3.8 Accumulation of Experience

IIJ The human designer gains new experience from every design or analysis performed. Th,
experience is used in the next design task, especially if the features of the new problemIresemble characteristics of problems solved before. This accumulated experience constitutes
a designer's professional expertise and differentiates an experienced engineer from a novice.

-- The professional experience is somewhat intuitive and rather difficult to transfer, especially
since not all engineers are willing to share it 'free This remark pertains in particular to
the effective use of a finite element program or other software.

In this context, it would be very useful to have the possibility of using specially designed
software to automatically save the experience of each design session and use it in futureI_ applications. New emerging types of software with certain learning capabilities are discussed
in Section 5. The two most promising kinds of such systems are:

e knowledge-acquiring expert systems

* neural networks

I
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Nte that evm with the automaik learning capabilities available it will be difficult to
Ia* a, compact set of meatial uomatiom abmt each solved problem to be saved as
an Mop"eren for future use (saving all the static and active knowledge from each ses-
sie would' not be feasible). Apart from these difficultws the practical payoff of learning
capabilitmi wil be norumm

4 Types of Knowledge in the Engineering Design Pro-
I: cess

* Engineering design and analysis can be viewed as the process of building a more and more
broad- and precise knowledge about the structure being designed. The engineer begins the

I design, with certain general ideas about the structure and a list of design objectives and
criteria. During the design process engineering skills are applied to build and accumulate
more precise knowledge about the svstem. The final product of the design proccss is the
specific shape and material of the structure, as well as information concerning the possible
distribution of stresses, plastic zones. and even an estimated number of load cycles the
structure can sustain.

The knowledge used and accumulated in this design process can be divided into two
classes:

o Static knowledge, representing all the information about the system analyzed, such as
physical structure, material constants, corresponding finite element mesh, and, after
solving the problem, displacements, stresses, discretization errors, etc.

* Active knowledge, including physical laws, mathematical equations, and heuristic rules
used in the design process.

For automated decision making, the representation and handling of active knowledge is
very important. Depending on the form and precision of the rules, the active knowledge can
be divided into two groups:

* deep knowledge, represented in the form of precise physical laws, mathematical formu-
las, and computational algorithms,

* shallow knowledge in the form of heuristic rules pertaining to the problem and resulting
from some general observations, experience, and even intuition.

It should be emphasized that this distinction is somewhat arbitraxy and that the division
line is never fixed. In particular, in the evolution process of science and technology one can
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I obuve the transfer of somie rules from the class of shallow knowledge to deep knowledge. For
example, until recently the selection of a good mesh for the finite element method was an art,

I requiring considerable experience and intuition. However, the development of methods of
adaptive mesh refinement, based on precise error estimates, replaces this intuitive approach
and makes the selection of a mesh a robust, reliable and automatic process.3 In today's computational systems the deep knowledge is usually represented by the formu-
lae and algorithms coded in the program, while the designer is supposed to furnish heuristic,

I shallow knowledge and creative thinking. In the automated approach to computational me-
chanics not only the algorithmic part, but also the shallow knowledge should be handled by
the program, so that the engineer can concentrate on creative thinking.

Toward this end, both aforementioned types of knowledge will be analyzed in the following
sections. Particular attention will be paid to the possible numerical representation of each

I type of knowledge and effective interactions of both types in the engineering design process.

I 4.1 Deep Knowledge

Deep knowledge is-in the context of the design process-aknowledge that can be preciselyI specified in a closed form of mathematical formulas or computational algorithms. This
knowledge is usually derived from objective laws of physics, mathematical theorems, or
numerical analysis theory.

A typical example of deep knowledge is a constitutive relation for a linearly elastic ma-
terial: 

T=CE 
(4.1)

where T is a stress tensor, E is a strain tensor, and C is a fourth order elasticity tensor.
Another example of deep knowledge is the Jacobi iterative procedure for the linear system
of equations:

Au = b (4.2)

where u is the solution vector, A is the coefficient matrix, and b is the right-hand side vector.
The basic operation of the Jacobi iterative procedure for this system is defined by:

u n+ 1 = D-I(D - A)u".+ D-lb (4.3)

where u, Un1 are consecutive guesses for the solution u, and D is the diagonal of the matrix
A. A considerable amount of deep knowledge is implied in (4.3), including convergence and3 stability theorems, estimates on the number of operations, etc.

It is important to note that, although these examples of deep knowledge are indeed
very precise, the selection of the piece of deep knowledge to be used is often heuristic,

22

I



I
U based on shallow knowledge. For example, the decision to apply Hookes constitutive law

to describe the behavior of a material is often based on experience, general guidelines, and
even e3gineering intuition. Similarly, there exists a variety of solvers for linear systems of

equations and the selection of the solver for a given application, is still based on general
guidelines or even personal preference.

With the automation of the design process as the ultimate goal, it is important to note

that deep knowledge is -usually algorithmic and often amounts to massive numerical com-
-- putations. The algorithmic languages such FORTRAN, PASCAL, or C, are believed to be

suited best for these applications and are commonly used today.

The wide variety of deep knowledge used in the engineering design process includes
all areas of technical science, in particular mathematics, structural mechanics, materials
science, fluid mechanics, chemistry, numerical analysis, and many others. Most of this
knowledgeis well established, documented in books and scientific papers, and implemented

in various engineering programs. There exists, however, a "frontier" in many of these areas,
where new models, methods, and algorithms are being developed. The knowledge for these

methods is often not yet complete, and is-in the present state-augmented or completed
by heuristic information. Moreover, many "deep knowledge" methods feature conditional
applicability, stability, and convergence, and thus require additional expert knowledge to be
used effectively.

In the fully automated design environment, the application of these models and methods
requires coupling of algorithmic deep knowledge and heuristic, expert type shallow knowl-
edge. This is especially true in the area of computational methods, where new methods and

* techniques are developed continually.

The area of adaptive computational methods has been one field that has experienced
substantial attention in recent years, particularly with regards to:

@ adaptive mesh refinement

I * adaptive selection of time steps in transient problems

e eadaptive selection of load steps in nonlinear problems

* adaptive application of implicit/explicit algorithms in time-dependent analysis

I Adaptive techniques are especially interesting in the context of the automation of the design
process because:

9 They greatly reduce the computational effort necessary to obtain final results and, at
the same time, provide control of the quality of results.
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I
I . They eliminate a number of decisions, which in traditional versions of finite element

codes are expected from the user and require considerable theoretical background and

experience. Therefore, adaptive techniques are, "by definition", oriented toward au-

tomation of the design process and automated decision making.

- They inherently include decision making in the process of numerical analysis. Although
-- the ultimate goal for an adaptive package is a purely algorithmic approach, in the

present state, a considerable amount of heuristic knowledge and decisions is required.
It can be expected that even in the most advanced forms of these algorithms, heuristic
knowledge provided by expert systems will be needed for the best performance.

I Practical application of adaptive methods with feedback from knowledge-based systems
is one of the most challenging problems of both computational mechanics and artificial

I intelligence, since it requires interactive coupling of sophisticated algorithmic software and
knowledge-based systems.

In the present project, the most advanced version of adaptive mesh refinement, namely,Ithe h-p adaptive finite element method was used. This method, applying simultaneously
h mesh refinement and polynomial enrichment, gives rates of convergence exceeding the

I performance of other simpler refinement techniques. Although the method is still under
development, significant progress has been made by COMCO engineers toward a fully au-
tomated h-p version, with operational h-p data structures, error estimates and equation

solvers. A brief overview of the h-p method is presented in Appendix A and more detailed
information can be found in references [29,30,53,61].

In a fully automated environment for engineering design and numerical analysis, a new
family of deep knowledge will be necessary. As it is well known, basic results produced
by finite element or finite difference programs are in the form of long tables of numbers,

representing nodal displacements, stresses, etc. No expert system, or, for that matter, human
expert, can effectively examine these data and decide whether the results are acceptable or3 a modification of the initial model is necessary. Therefore, methods are required to extract
essential information from the massive set of data produced by these codes. The simplest

I pieces of this essential information are, for example, maximum or effective stress, maximum
strain, maximum deflection, etc. In addition, information concerning the distribution of
stresses, localization of the highest stresses, range of plastic zones, etc., is also necessary.
In programs oriented toward interaction with human experts, graphical presentation of the
results is most commonly used. However, for an expert system interacting with a finite
element code, this graphical information is unnecessary. Instead, a limited amount of data

should be provided to represent essential information about th solution. This issue is
addressed in Sections 6.3 and 6.4.
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I 4.2 Shallow Knowledge

I Decision making is a complex process which, until recently, was confined to the domain
of human capabilities only. Two key factors in making any decision have imposed these

restrictions:

e domain knowledge

e thought process

"Domain knowledge" is the-knowledge and experience about the area in which the deci-
sion is to be made. This can consist of a list of pertinent facts, methods, and their resultant
outcome. Since the majority of this knowledge cannot be presented in the form of precise
mathematical statements and theorems, this type of knowledge is often identified by the
name of "shallow knowledge" (as opposed to "deep" procedural knowledge).

"Thought process" consists of reasoning or, more generally, the application of available
knowledge in an intelligent fashion to reach a feasible decision.

In the engineering design process the "shallow knowledge" and related decisions are used
I at virtually all stages: beginning from the understanding of the physical problem until the fi-

nal acceptance of the devised model. If we restrict our attention to the stages associated with
the numerical analysis, the particular decisions based primarily on the shallow knowledge
include (at the current state of the engineering science):

9 Selection of the mathematical model of the structure (e.g., beam versus plate, elasticity
I versus elastoplasticity, etc.).

e Construction of the initial finite element mesh.

* Selection of the computational strategy, for example, specific method time integration
(e.g., backward difference versus Crank-Nicholson), or methods of solution of nonlinear

problems, extraction of eigenvalues, etc.

* Handling of computational difficulties and errors, for example a divergent nonlinear

iterative procedure or zero pivots in the linear system of equations.

e Acceptance or rejection of the finite element solution and of the final designed model.

The shallow knowledge is also used to some extent in rather algorithmic stages of the

I finite element analysis, for example:

e Adaptive mesh refinement (selection of error criteria, refinement/unrefinement in spe-
cific areas, etc.).
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o Adaptive implicit/explicit method or other zonal methods.

o Mathematical post-processing of finite element results, namely the calculation of higher-
quality results (e.g., stresses) from the basic solution or the estimation of errors of the
final solution.

It should be noted that shallow knowledge is seldom used in the "pure" form. Usually
it is associated with elements of deep knowledge. For example a change of the constitu-
tive model from linearly -elastic to elastoplastic is based on information (stresses, strains)
obtained from algorithmic -procedures. This means that a fully automated environment for
engineering design should allow for a very close coupling and integration of the software
handling algorithmic and heuristic knowledge. It is our belief that the lack of such coupling
was one-of the reasons for rather limited success and application of stand-alone advisory

I systems developed previously for engineering application (e.g., SACON, PLASHTRAN). Ef-
fective interactive coupling of finite element procedures with knowledge engineering is one
of the major achievements of this effort.

5 Review of Computer Tools for Automated Compu-
I tational Mechanics

Development of an automated environment for engineering design will require the combina-
tion of a variety of computer tools and the development of appropriate interfaces between

I them.

On a similar basis, as to the types of knowledge, these computer tools can be divided
*into two general groups:

* Procedural software, designed to effectively implement deep, algorithmic knowledge,

* and

0 "intelligent" software, designed to manage shallow, heuristic knowledge.

I For decades these two major groups have been developing separately with very little
interaction. As a result, the methodologies, computer languages, and even hardware used in
these groups are very different. However, in recent years successful efforts have been made
to narrow the gap between the two groups and to enable a closer coupling of various pieces
of software. Such a procedure will be developed in this project. Before discussing details of
this procedure, we will briefly review the major characteristics of computer tools belonging
to the two aforementioned groups.

I
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5.1 Algorithmic Procedures and Data Processing

Processing deep, procedural- knowledge ,usually amounts -to massive algebraic computationsIfollowing the user-selected algorithm. Typical examples, of such applications include:

a i= design

* mesh generation

e engineering analysis by the finite element method or other methods

! post-processing of the results (including graphic presentation)

There exists a variety of software programs available for each of these applications, in
particular for the finite element analysis. (A detailed presentation of this software is be-

yond the scope of this report.) In this project a finite element code, based on the most
advanced h-p adaptive version of the finite element method, was used. This code is a typical
representative of a large group of engineering analysis codes, in the sense that:

i e It was developed in the FORTRAN language, traditionally used for large-scale algo-

rithmic operations for engineering applications.

i * It is devised to run on computers with relatively large computational power, from
advanced workstations to supercomputers (however, even PC versions with limited
capabilities are available).

Recently there exists a tendency, in particular in the development of pre- and post-
processors with graphic capabilities, to use other, more powerful and versatile languages,
in particular C. This is also a language usually used in the development of CAD or solid
modeling software.I
5.2 Object-Oriented Programming

I Object-oriented programming (OOP) [47] methodology was considered in this project for
several reasons. In addition to the general benefits of code modularity and reuse that OOP
provides, OOP capabilities also enable us to represent the data in a format that is amenable
to both algorithmic computations and heuristic reasoning. We are also able to use the OOP
data to model a particular engineering problem at different levels of abstraction (e.g., the

engineer interacts with the data at the physical object level, whereas the finite element model
is composed of the very small numerical of the objects).

I
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In computer systems developed using traditional procedural languages the focus of the
system's analysis, design, and development is on the functionality of the project. In OOP
the focus is on classes and objects. One would describe a traditional procedural program as

a set of functions applied to arguments:
fC y)

* gXx)

In OOP the emphasis is; on the objects:
I Send the object x the message to perform operation g.

Even in rule-based systems where the basis of the conceptual model is on IF THEN rules,
when the rules are-reasoning over objects, the focus of attention in the analysis, design, and
development of the rule-based system is still on the objects. In other words, for all things
object-oriented, the conceptual framework of the system is the object model.

The four major elements in the object model are: abstraction, encapsulation, modularity,
and hierarchy. These elements provide the expressive power needed to define the model of a
complex real-world problem.

Abstraction is one of the fundamental ways human beings cope with complexity. In this
way we are able to capture the core characteristics of an object that distinguish it from other
objects. The set of core characteristics of an object describes its properties and behavior.
An abstraction captures the outside view of an object, and it serves to separate the object

I model from its implementation.

The concept of encapsulation is complementary to the concept of abstraction. Whereas
abstraction places the focus on the overview (outside view) of an object, encapsulation

enables the developer to place a wall around the code that implements the object and at the
same time provide access to information about the current state and behavior of the object.
One can think of an object class as having two parts: an interface and an implementation.
The interface is equivalent to a class's outside view. It consists of the abstract behavior
common to instances of the class. The implementation is equivalent to a class's internal

1 view and comprises the data format used to maintain the current state information of the
object as well as the mechanisms that exhibit the behavior of the object. Encapsulation

I allows the developer to hide from the user all of the details of an object and at the same
time provide user-access to all the essential characteristics of the object.

I Modularization is the act of decomposing a complex problem into individual, manage-
able components. Partitioning a large complex program creates a number of well-defined,
documented boundaries within the program. This enables us to view the program from

I various levels of abstraction. At the highest level the model may be a set of objects with
each object representing a module. At a lower level of abstraction the module itself is the
model consisting of a hierarchy of classes and their objects. Modularity not only assists in
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* the development of a system, it impacts the entire system life cycle., A system that has
* been decomposed into a set of cohesive and loosely coupled modules is more amenable to

extension and maintenance.

m The three object model elements previously described-abstraction, encapsulation, and
modularity--all assist in reducing the complexity of a large system, but this is still not
enough. By identifying that a set of abstractions forms a hierarchy we greatly simplify the
model. The'two most important hierarchies in a complex system are its classification (kind
of) structure and' its assembly (part of) structure.

The classification structure provides the inheritance capability, an essential element in
object-oriented systems. Basically, inheritance defines therelationship that exists when one

class shares -the structure -and behavior of one or more other classes. A subclass usually
extends or redefines the structure and behavior of its superclasses.

Whereas classification structures denote generalization and specialization relationships,
assembly structures describe aggregation relationships. For example, a car is made up of a

collection of sub-objects: a motor, wheels, body, suspension system, etc. These assembly

I hierarchies can be viewed as different levels of abstraction, which is described earlier in this
report.

I These two types of structures form the basisfor two important properties of OOP: reuse
and object focus. Inheritance provides for reuse (e.g., the operation to compute the speed of
an object in a two-dimensional plane needs to be defined at the most general object class)

and object focus (e.g., one can reason about all instances of the class SHIP in the domain, or
focus on the instances of the subclass SUBMARINE). In much the same way the assembly

* structure allows for reuse (e.g., the code for describing the current state of a WHEEL that is

part of a CAR assembly could be the same as for the WHEEL of an AIRPLANE assembly)
and object focus (e.g., different interfaces to the object in question could view it as a singleI entity or a composite structure).

Using these four elements of OOP we have provided the engineer, who works with real-

world physical objects, an environment in which he can declaratively model the objects in

his or her problem space and the objects will retain their identify in the solution space. In
other words, although various portions of the system model the characteristics of analysis

differently (e.g., the entities of the h-p finite element method are very small finite elements
of the objects in the model), the results of the analysis are posted in the same form as the

engineer's description.

For example, the kernel hierarchies in the Engineering Design Environment might consist
I of one of the two superclasses MATERIAL and STRUCTURE, STEEL defined as a subclass

of MATERIAL, BEAM and COLUMN defined as subclasses of STRUCTURE, STEEL-

BEAM defined as a subclass of both STEEL and BEAM, and STEEL-COLUMN defined as
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Sa subclass, of 'both STEEL and- C OLUMN. Using the concept of element strutture,(part of)
.the engineer could assemble an instanceof the class BRACKET comprised of two.instances

of the class STEEL-COLUMN and one instance-of the class STEEL-BEAM.
In the context of an Automated Design Environment the Object Oriented Progranrining

-provides avery natural and well defined way of representing structural objects, finite elementI entities, and: even humans -(experts) involved in the design process.

I 5.3 Expert Systems and Knowledge Engineering

'In contrast to algorithmic procedures, computer tools for -handling shallow knowledge took

considerably longer to develop. However, three decades of research in the area of knowledge
engineering or "artificial intelligence" have resulted in the development of effective methods
and tools for handling shallow knowledge and simulating human reasoning and the learning
processes. Presently the best known and widely implemented tools for simulating the human
expertise are expert systems.,

Expert systems are software packages utilizing expert knowledge coded into rules to find
solutions to problems which cannot be solved algorithmically, or in which the algorithmic
procedure can lead to a blind search. Expert systems are usually composed of three sections:
a "fact base" which contains active knowledge presented in the form of rules, the "inference
base" which also contains active knowledge presented in the form of rules, and the "inference

engine" which applies rules to generate new facts and arrive at required conclusions. The
most popular modes of operation of the inference engine are "forward chaining", "backward

I chaining", and their combinations [17,37].

The first generation of expert systems could be characterized as a rule-based advisory
I systems for various applications. A good example is one of the first expert systems to gain

acknowledgement is MYCIN. MYCIN has a backward chaining inference engine and a knowl-
edge base consisting of rules for determining the best combination of antibiotic medication to
be prescribed for a patient with a viral infection. In the field of engineering applications the
corresponding expert system is SACON [12]. These first expert systems usually consisted

* of a few hundred IF THEN rules with fact bases stored in the form of simple statements,
e.g., "The speed of the car is 100 mph." This simple form of the knowledge base limited the
flexibility of expert systems and made the development of larger systems (with more than a
few hundred rules) practically impossible. An additional disadvantage of these systems was
the fact that they were usually developed in one of the dialects of the LISP computer lan-

* guage, requiring specialized (and expensive) computers which were in general incompatible
with languages traditionally used in algorithmic operations. Due to the above reasons, the
expert systems of this first generation never gained real popularity.
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Recent years, however, have brought several major advances to the field of artificial
inteigence,which allow practical development of-powerful expert systems with the capability
of3~terting with other programs. These advances include:

I The introduction of general purpose "shells" (expert system development tools) that
can beused to create "user defined" expert systems for arbitrary applications.

* The application-of more conventional languages (C, PROLOG, etc.) rather than LISP
in the development.of expert system software.

* The use.ofknowledge bases with a more-convenient structure than rules, e.g., semantic
networks, frames, or variations of object-oriented programming.

The general purpose shells are the pieces of software designed to serve as the expert system

building tools for generic applications: the expert system developer uses shell commands to
build the knowledge base, while the actual user utilizes the expert system to make decisions.

I Presently there exists a variety of expert system shells available on the market, with different
capabilities and prices ranging from a few hundred dollars to about $50,000. Some of the
most popular systems will be reviewed further in this section.I As mentioned before,.the first expert systems were developed in the LISP language, which
indeed is a very powerful language for knowledge engineering, but unfortunately requires
rather expensive LISP machines and is difficult to couple with other languages. These
inconveniences were the reason that most of the currently marketed expert system shells are

I developed in one or more flexible languages, like C or PROLOG. Especially the C language
(or its object-oriented versions, C++ or CLIPS) is very popular, because it is highly portable
and, more importantly, it is a mechanism for direct interaction of expert systems with

S programs developed in other languages such as PASCAL or FORTRAN.

Another significant advance in knowledge engineering is the improved structure of knowl-Hedge bases. Such techniques as semantic networks [17,31], blackboarding [37,75], or object-
oriented capabilities enable relatively easy construction of large and versatile expert systems.

As mentioned before, there exists a variety of expert system shells available on the market.

A brief summary of some of the most popular software is compiled below. The information
provided here is based on various sources and is only for the purpose of providing a general

* orientation.

ART-IM is the expert system shell developed by the Inference Corp. It was

developed in the C language, runs on workstations and powerful PCs,
and can be integrated with programs written in other conventional
languages (FORTRAN, PASCAL, etc.). The inference engine is based
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on forward. chaining, The shell has object-oriented capabilities and
allows for application of certainty factors in rules (as opposed to sim-
pie TRUE. or FALSE statements).

C PERNICUS is the set of software tools for developing expert systems, developed
by Teknowledge. It is written in the C language and can be integrated

with other applications. The inference engine supports forward chain-
ing, backward chaining, nonmonotonic reasoning, etc. Certainty fac-

t: tors for rules-are allowed. The system also supports object-oriented
programming.

I EXSYS' is the expert system developed by Exsys, Inc. It is a relatively simple
rule-based system, developed in the C language. It runs on work-
stations and PCs and can be integrated with programs written in
other conventional languages (FORTRAN, PASCAL, etc.). The in-

ference engine has both forward and backward chaining capabilities.
I Certainty factors for xules can also be used.

GOLDWORKS II is the expert system shell developed by Goldhill Computers, Inc. It

runs on. workstations and powerful PCs and can be integrated with
programs written in C or equipped with an Application Program-
ming Interface (API). The inference engine has forward and backward
chaining capabilities, goal-directed chaining and other options. The
knowledge base supports rules, frames, and object-oriented capabili-

ties. Certainty factors for rules can be used.

KAPPA is the expert system shell developed by Megaknowledge, Inc. (cur-

rently owned by Intellicorp). It was written in C, runs on powerful

PCs, and can be integrated with programs written in other conven-
tional languages (FORTRAN, PASCAL, etc.). The inference engine

has both forward and backward chaining capabilities, as well as more

advanced options, like a goal-driven approach. The knowledge base

has object-oriented capabilities.

MERCURY is the knowledge base environment developed by Artificial Intelli-

I gence Technologies, Inc. The inference engine has both forward and
backward chaining capabilities and their combinations. The knowl-

* edge base includes rule-based and object-oriented programming. The
expert systems developed can be integrated with other software, in
particular with data bases, etc.
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1st-CLASS FUSION is am expert system software dedoed by Ist-Clas Expat Systemrs
Inc. It rm on PCs and DEC VAX. t can be integrated with other
softward (dBASE LOTUS) or prgams written in C or PASCAL

The inference amuehas both forward and backward hia-ui- capa-.bilities. Knowledge reresestation is xile-based but also ofers an
interesting eanyple-based option.

I The above list represents only a frhation of the total nmber of exwt systen software
currently available for generic applicatms. Even this bIef review clearly shows that the

expert system technology has established its position as the primary tool for knowledge
engineering-

5.4 Knowledge Acquisition

I One of the primary and most difficult tasks in building expert systems is constructing the
actual knowledge bases. In most of today's expert systems this amounts to formulating rules

i of the IF - THEN - ELSE format. These rules are introduced into the system using the
language specific to a given expert system tooL In practice this requires direct cooperation

of a knowledge engineer with the actual expert or, alternatively, training this expert in
effective interaction with the expert system software. With this approach, the capabilities
of.an expert system never exceed the common knowledge of human experts involved in the

creation of a knowledge base.

There exist, however, new developments in the area of knowledge acquisition, which
I promise more flexible behavior of expert systems. In the simplest case, it is possible to

construct rules from examples provided by the human expert. Such an option is available,
for example, in the 1st-CLASS Expert system shell. In a moregeneral scenario, it is possible
to create new rules from previously solved examples. For example, in the process of structural
optimization of a certain class of aerospace structures, previously solved problems can be
used to improve the optimization procedure for new examples.
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Figure 5.1: Neurons and connedics in neural network.

Automation of this learning capabifiq- will require intelligent dassification of examples
and extraction of essential facts relevant to the problem under consideration. It can be
expected that in the near future such capabilities will be available as extensions to the existing
kn3wledge enginering softwarie. Then the performance of expert systems will actually be

I i n during their application and may eventually exceed the capabilities of human

I 5.5 Neural Networks

I Neural networks represent.a very special application of knowledge engineering. They consist
of simulated neurons connected together in a way simulating, in a very simplified way, the

i connections in human brains. Therefore, the kinds of problems that neural networks can
solve are also those that people can do well, ;7 particular:

e association,

* pattern recognition,

I e qualitative evaluation, and

e learning.

The concept of a neural network is presented graphically in Fig. 5.1. Each neuron has
several input connections and output conncetions. The input connections are both excitatory
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Figure 5.2: A three-layered neural network.

Iand, inhibitory.. The response of the neuron to the stimulations is defined by the activation

ifunction, which balances stimulations from all inputs (several different formulas are available)
to produce the output. In more complex cases the activation function also uses the previous
state of the neuron.

1In practical applications the neurons and connections are constructed in a certainora

nized fashion. For example, in the popular type of feed-forward network there exist three
I layers of neurons: input layer, hidden layer and output layer (Fig. 5.2). Moreover, the actual

implementations may be hardware-based (with hardware elements representing each neuron
and connection) or implemented as a computer iimulation.

I Because of their structure, the neural networks can produce certain reactions (output) to

different combinations of input stimuli-for example, select from a predefined set a pattern
I closest to an incomplete input pattern. A more detailed discussion of these capabilities can

be found in references [1,5,20,21,421.
i An important feature of most neural nets is that their responses are not predefined.

Instead, a learing mechanism is involved. A network has to be trained to properly adjust
weighing factors in activation functions. There are two basic kinds of training, namely:

I * supervised training, and

I * unsupervised training.

In supervised training the weighing functions are adjusted by comparison of the network
I output with ideal results for a certain predefined set of examples. This is usually done
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I
I by the application of the so-called Delta learning rule [421. In unsupervised training the

connections are adjusted by solving a variety of examples with no predefined results. TheI learning algorithm in -this- case is usually based on variations of Hebb's rule, which actually
represents a theoretical model of biological associative memory [42].

:In the context of automated computational mechanics, the neural networks can- be used

1. Identify patterns in solution processes, design applications, optimization processes,
etc. This information can be used to improve the efficiency of solving new examples
by utilizing patterns detected on examples previously solved.

2. Reconstruct proper parameters in incomplete data bases, input decks, etc.

It seems -that at the present time the possibilities of practical application of neural net-
works in automated computational mechanics are rather limited. This is due to the still

I rather experimental nature of neural networks, limited complexity of problems (patterns)
that can be handled by today's neural nets as well as the difficulties in the direct interaction
of algorithmic programs with neural network technology.

It should be noted, however, that neural network technology is currently being coupled
with expert systems software-for example, the recently announced coupling of NEXPERT

I OBJECT expert system shell with NESTOR neural network. Therefore, once the finite ele-
ment methodology is effectively interfaced with expert system software, it will automatically
benefit from further progress in knowledge engineering, including neural network technology.

6 Methods, Concepts, and Algorithms for Automated
I Computational Mechanics

In this section we will discuss methods, concepts, and algorithms related to automation of
the design processes outlined in Section 3. In particular, a critical look at existing methods
and some new concepts of automated computational mechanics will be presented. Several of

these developments were used in the implementation of an automated, coupled finite element
expert system environment (Sections 7 and 8).

6.1 Selection of a Mathematical Model

- The selection of the mathematical model of the structure requires considerable theoretical
background and experience. The choice of the actual model depends on several factors,
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some of them highly quantifiable, others somewhat heuristic. The principal groups of factors
affecting the selection of a mathematical model are:

I 1. The actual data of the problem, namely the shape of the structure, the types of ma-
terials, loads, supports, interactions with the environment and other structures, time
scales, etc.

2. The specific aspects of behavior that the -designer feels will influence the final product.

3. The actual theoretical, technical, and computational capabilities available to the de-
signer.

Until very recently, the above decisions were primarily heuristic. For example, a typical
decision whether a structural member should be represented as a shell or modeled as a
solid body was based on a simple estimate of the proportion of its dimensions. Only after
complete analysis could the experienced engineer examine results and possibly modify the
model (for example, concentration of stress in corners of a shell indicates a need for a full
three-dimensional-model). There exists, however, a considerable theoretical potential toward

more precise a priori identification of a proper mathematical model.

In this section we discuss two possible systematic approaches to this problem, namely:

e asymptotic theories, dealing with the selection of a general model (solid, plate, shell,
etc.), and

'1 * hierarchical methods for systematic construction of mathematical models of increasing
accuracy.I

,6.1.1 Asymptotic Analysis of a Family of Elasticity Problems

The methods of asymptotic analysis are an attempt to provide a rigorous approach to con-
structing mathematical models of solid structures. This theory has been applied to certainj linear problems in elasticity and structural mechanics [23,24] and, in general, should be ap-
plicable to a broader class of problems in solid mechanics. In this section we will discuss an
application of asymptotic analysis to determine whether a solid body, presented in Fig. 6.3,

can-be-modeled by beam theory orshould be modeled as a three-dimensional solid.

Let e denote an arbitrary positive parameter (for asymptotic expansion) and consider
a three-dimensional body fl' made up of a homogeneous isotropic linear elastic material.
(The role of the expansion parameter will become apparent subsequently.) The body under
consideration is assumed, for purposes of the discussion, to be a beam-like structure with two
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'I Figure 6.3: A three-dimensional solid body.
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dimensions much smaller than the third. The material from which the body W is constructed
has a modulus of elasticity E" and PoissOn's ratio Vc. We denote by ff(xc) (resp. gf(x')) the
i-th component of the-volume (resp. surface) density of applied body forces (resp. surface

tractions) at point x" E f1 (resp. x' E F), and we introduce the following function spaces:

56 = {v = (vi) [W1(fl,)] 3 :j x' x v'=O0in re},

= [L2 (fl)] =(q~)-E [L2(p,)] 9 :i=i}

Here V' is the space of motions. of finite energy with no allowable rigid rotations and Z', is the
space of stress (strain) tensors. We equip these spaces with the usual norms. Mathematically,
the constitutive law is characterized by the symmetric automorphism A': , -' defined

I :by: y 'A' _1+v V rr '5.
Yi = x) +, XAi3 EC X PAP

* where
wh ere 9 9 = (Cd) E V : (ii }j

Then the Hellinger-Reissner formulation of the three-dimensional elaticity problem for the
weakly clamped beam (other boundary conditions shall be considered later) is the following:

I I Find (o', uc) E Z' x Vc, (a stress-displacement pair) such that

e(Aa');iCj Qj E ij (u)¢ = , VCe E F, (6.1)

where -t5 is the strain tensor:

4(VV) I (O&evjc+ Oj4), V v' E

Here and below we reproduce the formulations of Trabucho and Viafio [78]. As a consequence
of a result of Brezzi [181, for mixed formulations, and by using Korn's inequality the existence

of a unique solution of problem (6.1) is guaranteed.

I The dependence of (al, uc) on the parameter e, related to the size of the cross section, i:
rather complex. In order to study its behavior when e becomes small, we shall use a change
of variable technique in such a way that e shows up in the governiing equations in an explicit
form. The specific change of variable considered here is the one proposed in Bermudez-Viafio

[13] and is analogous to the one of Ciarlet-Destuynder [23].
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I
We shall now consider the following function spaces:

V v(Vi)E[H( )]3jvjz V 0on P6}

I equipped with the usual norms.
Moreover, we shall assume that the elasticitycoefficients do not vary with e, that is:

E = E; V, = v; 6O.

3 We shall also denote, by A° the following symmetric automorphism defined on the -space

I (A ) -+v vY ~ CO = 0 = -E- -' k Xt'6A8'

For any (a,,C) E E x E, and any v E V we define the following virtual work forms for the
Hellinger-Reissner principle:

ao (a,)= aL33733

3a 2 (0o, 0'30 ( 30 V - 03(j +~ a. + 33E
a4 (a, () = j (A r) P

3 b(C~~v) = ji'i(v)

3 V foo v i- f i tvigv.

With this notation in mind, the following result may be shown:

Theorem [Trabucho and Viaiio [78], p. 307]: Let (a(e), u(c)) E E' x V be the stress-
displacement pair obtained from the solution (ao, u') E Ee x VP of (6.1), then (a(e), u(c))3 is the unique solution of the following problem:

Find (a(e), u(c)) E E x V, such that:j ao(o(6),() + 2a2(0(6), ) + 4a4(0(6),() + b((,u(e)) =0, V ¢ E ZJ

3b(oje), v) Fo(v), V v EV.
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:j
I i'Following.a standard technique for variational problems with small parameters (see Lions
U [44]), -we shall suppose that we may write, at least formally,

((0), u()).= (°,u°)'+ f1(o 2,,u2 ) + f4 (o4, u4 ) + (7(e), W(C))

where (7(c),W(e)) -+ 0 as e 0, in an appropriate space. Identifying the coefficients with3":i the same powers in e, we may characterize the terms (a2Pu2P), p = 0,1,2 as the
the following system of 'equations valid 'for all C E E and all v E V:

m { a0(o,)) +b(,U°)=O (6.2)

_b(a 0, v) =Fo(v)

{ ao(o 2,() + b((,u 2)=-a 2(o0 ,()

'3 b(.2,v) = 0

ii ifao(o,,) + bQ(,u 4)=--a 2 (0. 2 ,C) - a4(CFO,)(63 (6.3)
1 b(o4,v) - 0

A main result of this type of exercise, not immediately apparent from (6.2) and (6.3),3 is that component of the expansion that becomes relevant (mathematically well posed with

a nontrivial solution) is data dependent. That is, by identifying the data in the problem

the theory appropriate for the problem at hand falls out automatically from the asymptotic3 formula. In other words, if the boundary conditions and loading data and geometry of n
suggest that this structure can be adequately treated as a thin elastic plate or a thin elasticE shell, then it is be possible to automatically determine this from a simple analysis of the
data itself.

I 6.1.2 Hierarchical Models in Structural Mechanics

For a typical problem in structural mechanics, there usually exist a variety of mathematical
models representing the mechanical behavior of the structure.. As a general rule, more
comprehensive models are usually mathematically more complicated and computationally

I more expensive. Therefore one of the essential tasks in computational mechanics is the

selection of an appropriate model by balancing two criteria: reliability and effectiveness.

These criteria are defined by Bathe, et al. [11] by the introduction of a very comprehen-
sive mathematical model, i.e., a model that fully (or rather to the best of our knowledge)

represents the system under consideration. The mathematical model selected is reliable if
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the response predicted is within a selected level of accuracy, measured with respect to the
response of 'the very comprehensive mathematical model. The model is. effective if it yields'

the-required, response at-rniinium cost.

Unf6rtunately, there exist no single 'consecutive hierarchy of models in solid mechanics.
Even if one restricts'the considerations to purely mechanical behavior (no thermal, electro-

,:1i magnetic, chemical effects, etc.), there exist several distinct aspects or classes in which some
kind of sequentialhierarchy can be established.

I The first, hierarchy is related to the geometric model of the structure. Here the hierarchy
W. is defined by the number of constraints and assumptions introduced with respect to fully

three-dimensional behavior. In general this hierarchy includes:

* Very Athin one-dimensional models (cables)

U * one-dimensional beam-type models with such subclasses as

'ft - Bernoulli beams

- Timoshenko beams

3 -generic curved beams, etc,

* very thin two-dimensional models (membranes)

* two-dimensional shell or plate models, with such subclasses as

- Kirchhoff plates (shells)

- Reissner-Mindlin plates, etc,

3 * fully three-dimensional models

In general, the simplified models in this group xs duce the number of dimensions and
unknowns in the problem by introduction of additional assumptions (constraints) regarding
the behavior of the model, usually at the cost of increating the mathematical complexity of

I the equations. For example, in Kirchhoff plate theory, it is assumed that the fiber normal
to the plate surface remains normal and inextensible during deformation. Then it suffices to
consider only a two-dimensional model with one unknown, namely normal deflection of the
plate (or three displacements for shells). The Reissner-Mindlin plate model is a higher-order

model than Kirchhoff, but at the cost of introducing an additional variable, namely an in-
plane twist. Further upgrades of these models can be obtained by introducing rotations of the
normal fiber and its extensions as independent variables. Note that the above classification
is further complicated by the introduction of intermediate classes such as shallow shells, for

* example.
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The second essential aspect defining the hierarchy of mathematical, models is the kine-
matideffiition or the deformation of the body. There are three basic categories in this

S clas, namely:'

* infinitesimal deformation theory, defined by linear differential equations,I * .0 l!arge rotation, s filstrain theory, and

,,fully nonlinear large.rotation theory,

For selected structural types such as shells, this division may include additional interme-
diate classes such as large deflection/small rotation theory, etc.

A chart representing a general hierarchy of constitutive models is presented in Fig. 6.4.
Although this general hierarchy is relatively simple, establishing a hierarchy of mathematical
formulations is much more difficult, because there usually exist several different mathematical
representations for the same constitutive behavior. A good example is the theory of plasticity,
where there exists a variety, of'formulations based on different principles, different selection
of yield criteria, etc.

The value of a hierarchical approach in the selection of the mathematical model of the
structure is that it provides a systematic way of selecting the model by examining the essen-
tial features of the physical problem. Moreover, this approach is very useful in the verification

and, refinement of the mathematical model after solving the problem by a numerical method.
This approach, is discussed in more detail in Section 6.4.

6.2 Adaptive Computational Techniques

By adaptive computational techniques we mean a class of computational methods that adapt
their parameters to changing characteristics of the solution during the solution during the
solution process. These techniques include:

adaptivemesh techniques,

3 adaptive time stepping in time-dependent problems,

o adaptive selection of load steps in nonlinear problems, and

I adaptive selection of implicit and explicit zones and other zonal methods.

Most of these methods are based on solid mathematical foundations and are implemented
in an algorithmic fashion. These techniques have received a great deal of attention from re-
searchers in recent years. However, in virtually all these techniques certain heuristic knowl-
edge is necessary for maximum performance and reliability in practical applications.
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u Constitutive Models, (Continuum)

iiVISCOELASTO-PLASTIC

+ continuum damage
+ fracture
+ fatigue

VISCO-ELASTIC ELASTO-PLASTIC
+ f+ continuum damage
+ fracture + fracture
+ fatigue + fatigue

I

VISCOUS ELASTIC PERF-PLASTIC

(fluids) + fracture + cont. damageI_ + fatigue

I
Figure 6.4: Classification of constitutive models in structural mechanics.
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* In this section we present the -theoretical background and methodology of several adap-
UtiVe coinputational ieth6ds developed and implemented at The Computational Mechanics

Company, Inc. Some practical applications and numerical results will be discussed in Section
: 8.

iI 6.2.1 Error Estimation and Adaptive Mesh Refinements

Adaptive mesh refinement, based on rigorous error estimates, enables resolution of a basic3 " question of-modern computational mechanics:. what is the accuracy of the numerical solution?
Equivalently, how good are the an ,wers? Answers-to these questions are crucial in the design

3 of mathematically sound adaptive schemes: to systematically reduce error by adaptively
Uchanging mesh sizes or spectral orders of approximations, one must obviously have some

means to judge the distribution of error in a numerical solution.3i In this section, we will outline some of the most important results related to error estima-
tion and adaptive techniques for-h-p finite element methods. Detailsof their derivations and
proofs can, be found in references [29,30]. The theoretical background of h-p finite element
methodologies and associated data structures is summarized in Appendix A.

There are, in general, several classes of error estimators for the h-p finite element method,
including:

1. Element Residual Methods. Here the residual in a numerical solution (the function
defining the measure of how much the approximate solution fails to satisfy the governing
differential equations and boundary conditions) is computed over each element and used3 as data in special local (elementwise) BVPs for the local error eh.

2. Duality Methods. These methods, valid for self-adjoint elliptic problems, use the du-

I ality theory of convex optimization to derive upper and lower bounds of the element
errors.

1 3. Subdomain Residual Methods. Here the local BVB for the error in a given element is
formulated over a patch of elements surrounding this element.

I 4. Interpolation Methods. These methods use the interpolation theory of finite elements
in Sobolev norms to produce rapid (and sometimes crude) estimates of the local error

* over individual elements.

5. Post-Processing Methods. Here an estimate of the error is obtained by comparing a

post-processed version of the approximate solution with the approximate solution.

I
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We will pre$ent basic results related to these error estimators for the following model
U problem. Consider a bounded domain fl C A2 with boundary r = Ofl consisting of two

disjoint portions -r,, and t on which a function u = u(XI, X2) u(z) is sought; i.e., we wish
.3 to

Findu E + V such that3 ~ ~B(u,v)'=L(v) VvE'V(64

where V is the space of admissible functions,

-V = {v -E H'(fl)v = 0 a.e. on r

I andB(-,-) and L(.).are the bilinear and linear forms,

3I' B: VxV-+

B(u,.v) = j(aVu Vv + buv)dx

L: V -+4

L(v) = infvdx + jrvds

Here Vo is any H 1 (n) function with the property that its trace yi'o on 1'u coincides with a
prescribed function u0 ; v =,0 in the definition of'V is understood in the sense of its trace on
an, and the coefficients a = a(x) and b = b(x) satisfy, for any x E 2,

3 0 < a a(x) <', 0 < b < b(x) b

where a, U, b, and b are constants. Throughout the following developments, C shall denote3. a generic positive constant independent of the finite element mesh, unless specifically noted
otherwise. In exceptional cases, special' notations for constants shall be used. Additionally,

i problem (6.4) is equivalent to the following minimization problem,

Find u E Vo + V such that 1
J(u) < J(w) V w E o + V

where J: H' (Q) -+ R is the total potential energy functional defined by

AV) - B(v, v) - L(v) (6.5)'I
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U An i , - Clatis am etimuate is a nbrdmtycep aid rathea nde estimate wUic can
e.fetiv*I be an san kd~caW~ for adaptive mob~ Ad~ For as asbksary h-p mesh
it hu the fam

P .3(+ I n - 4 k~p~ u (66)
Whee = in? +I ) A 4is th Amt dmd Iiiitopobe (6-4).

Residual Errr Esieaute

the outon Msor- teacu

Iis sufficientlywl estimated byteerror betwenu and th ouin o nihdmesh V
Em = u - um

I ~The energy norm of this ermo can be estimated M30 by

U Here C is a constant dependent on the order of approi ation. It can be assumed to be

equal to 1-0for p= I and l.25for p> 1. pKis alocal element error contribution which is
a solution of a local problem

3Find jpK E JMI(K) such that

IBK (PK. vA) = J 'VAd + j [[a"U I -

+ KnFr( 8K) I d

V Vi, E Mlh(K)

where rh is a local element residual, lv) denotes the jump in v across the interelementI boundary, n is the outward normal to the element boundary, and Mlh(Kf) is the space of
bubble functions defined over element K. For details on the derivation of this error estimator,
see reference (30]. It is of importance to note that, although the fine mesh solution is formally

* used in the derivation of the residual estimator, the problem is never solved on the final mesh.

The only time consuming operation is the calculation and accumulation of local, elementwise
contributions to the error indicator.
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Camdf the bouaday vhine prolM= (6 4) with energy delard by equabmo (6-5). Introduc-
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I {E eL() div S E L( )}
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w a de ,k lloin dual problem

Find ? E IC such that

J.r) = sup Cj- J'(s)

whee J(s) the ,mplmenferg eneiWfusdio

JO(s) sj[~ - s + b- ( f + iv 5)2J dX (6Ji)

-An a pff/erio error estmnator is based on the fact that the solutions of both the primal
and the dual problem satisfy the relationship:

J(u) = inf J(v) = sup J(s) =J(T)
Z*V SEQ

Then it can be shown that:

Iliu - u llf < 2J(u,) - 2J"(ri)

and
II - -1,11f - 2J(uh) - 2J'(rj)

Thus, the errors in both the primal and the dual approximation are each bounded in their re-
spective global energy norms by the difference of the approximate primal and complementary
energies.

A direct calculation and Green's formula reveal that

2J(uh) - 2J*(r.,) = j (a- (rh - aVu) 2 + b- (fI +div rh - hu)) d

Suppose that fl is given a partition Qh of finite elements over which primal and dual ap-
proximations are calculated. Then, for element K E Qh, we take as the local error indicator

0= f (a- (rh aVuh)2 + b-' (f + div rh - bUh)2)
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Subdoinain-Residual Methods

Subdomain residual methods employ the gmeal ideas of residual methods to calculate local
arnro indicators by covering the domain 11 with subdomains fl, and constructed by the
selection of a patch of elements around dement i. For each patch, we introduce a local
projection problem:

Find ft# E Hol(fl) such that /

B (*,v) = B (ehv) V E HO(A) (6.8)

Moreover, we have the estimate that:

IIle&il- C ( ii2)

Notice that the right hand side in the local projection problem (6.8) is a function of the
finite element residual:

B (ek, v) = fvdx - B (h, v)

Representing the contribution of the i-th subdomain fli to the global estimate in the form
of a sum over the elements constituting the patch

KCnil

we introduce for each element K a set of up to four indices identifying its linear degrees-of-

freedom and, consequently, the patches fli containing the element:

or(K) = {iIK C fRi}

We can then rewrite the estimate in the form
1

Illehilll C K
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where the element error indicators OK are defined as

4K II9041C

Thus, in -order to calculate the error indicator for an element K, one has to identify the

subdomains containing the element, solve the local subdomain problem (6.8) for each of the
subdomains, calculate the element contribution to each of the I11,i112, and sum them up
over the subdomains.

The local projection problem in practice is solved using a higher order approximation.

A Posteriori Error Estimator Based on the Interpolation Error Estimates

The interpolation error estimate may be used as an a posteriori error estimate, provided the
second-order derivatives needed to evaliate the seminorm on the right hand side of (6.6) are
calculated using the finite element solution and some kind of postprocessing. This type of
error approximation has two attractive features:

(a) The interpolation is a local quantity defined for individual elements.

(b) The interpolation error is problem-independent; it depends only on u and the
interpolation properties of finite element meshes.

The constant on the right hand side of (6.6) is often set to unity and a local error indicator
is assumed in the form

hK
PKIUI2jc

These error indicators provide an estimate of the local behavior of the interpolation error.

The global quantity
2

is rather meaningless, unless precise estimates of the neglected constants are available.

A Posteriori Error Estimator Based on Postprocessing

Perhaps the most straightforward approach toward estimating the error a posteriori is to
replace the exact solution u and its derivatives with some pcstprocessed values calculated
using data to the problem as well as the finite element solution Uh. The postprocessed

solution should then exhibit superior accuracy and convergence properties over the finite
element solution itself.
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For instance, an error estimator. (indicator) for an element K, based on the energy norm,
-may be of the form

WK J [ ) +b '~u)2] dX

where Vu and ii are the postprocessed values of the gradient Vuh and solution uK.

There are a number of ways of calculating the postprocessed values of uh, perhaps the
best known being the use of extraction formulas, discussed in reference [7]. Here we will only
mention that good postprocessing is computationally expensive, and error estimators based

on postprocessing are used for final verification of the quality of the results, rather than as
error indicators for mesh refinement.

h-p Adaptive Mesh Refinement

The error estimators discussed in this section may be used as a basis for adaptive mesh
refinement strategy. In the case of h-p meshes, the optimal mesh refinement, even with
properly calculated error indicators, is a difficult problem. The primary question is: h-
refinement or p-enrichment? Additional difficulties also result from the unrefinement option,
the selection of the version of p-refinement, etc.

In this section we will present a summary of an h-p adaptive refinement strategy developed
recently at COMCO. A more detailed discussion, including the theoretical background, can
be found in reference [61].

We begin by introducing the distribution of mesh sizes and spectral orders over fh,

characterized by functions h and p:

h(xI,x 2 ) = hK (XIX 2) e K

.p(Xl3X2 ) = PK (XIX 2 ) E K I

the error indicator OK for element K will depend on hK and PK and is represented by a local
error density 'PK = WOK(h, p) : 0K = fK WK(h,p)dx. Thus, an indication of the total error
over S1 is given by the functional

J(h,p)= KE gK(h,p)dx
KEQh

Next, let n/ denote the total number of degrees of freedom of element K. We introduce a
degree-of-freedom density n = n(h, p) so that the total number of degrees of freedom M is
given by

M jn(h,p)dx !
n(h,p)IK = nK
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-. The optimal mesh for a fixed number M = M0 degrees of freedom will be defined by the

h,p-distribution-(h*,p*) such that

J(he)= mn J(h,p)

=I,

To resolve this problem using the method of Lagrange multipliers, we introduce the
U Lagrangian,

L(h, p; A)= J(h, p) - A ( n(h, p)dz - Mo),

*x and arrive at the optimality conditions

cb IK = A = const.I dn P= 4_fl5t.j

dpK I A const.
dn h,=ot.

In practical applications these principles are implemented in the form of a simple refine-

ment strategy: perform refinemen, for which the anticipated decrease of the error per new

degree -of freedom are as large as possible.

According to this principle, the algorithm for h-p refinements is as follows:

1. For all elements in an initial mesh, compute the anticipated decreases of errors for all

of the refinements which may actually occur.

2. For every element evaluate AMp/Anp, AOh/Anh. (For interpolation errors, use theI procedure outlined below.)

Set AO/An = max(AMp/Anp, AOh/Anh) and store the larger of these two

quantities.

3. Scan the mesh and identify the largest value of AO/An in the mesh: (AO/An)ma.

4. Create a list of elements for which AO/An > al. (AO/An)m.

5. Perform refinements of elements on the list. The type of refinements corresponds to

information stored in item 2.

* 6. Update the solution: solve the problem on the new mesh.

7. Estimate the global error J = Ek 0k. If J < a2 , stop, ofherwise go to 1.

The calculation of AOp/An and AOh/An for interpolation error indicators may be

obtained using the following procedure:
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Figure 6.5: Possible ways of enriching an element.
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I
I

Figure 6.6: Modification of the mesh caused by subdivision of a constrained element.
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(a) Subdivisions:

=2'=16 possibi-lities

0 -Constrained Node

-Active Node

(b) Removing constrained nodes:

F

=3 possibilities

Figure 6.7: Possible ways of subdividing an element and removing the constrained nodes.
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2.1 Subroutine f6r determiningAOp/Anp.

(a) Evaluate new orders. of nodes of a given element Ki and its neighbors

(b) Compute ADp using errors for Ki and its neighbors in the situations shown
in Fig. 6.5.

(c) Determinethe number of the new degrees of freedom Anp and compute AOp/
Aflp.

2.2 Subroutine for determining AOh/Anh:

(a) Evaluate the sequence of elements that must be subdivided due to refining
the given element Ki and the "two-to-one" rule (see Fig. 6.6).

(b) Determine elements with disappearing constrained nodes (Fig. 6.6).

(c) Compute AOh using errors for all the subdividing elements found in (a) and

elements listed in (b); appropriate situations from Fig. 6.7 must be consid-
ered.

(d) Count the number of new degrees of freedom Anh and compute AOh/Anh.

In practical applications, this algorithm can be augmented by some rather heuristic rules,
such as:

* In boundary layers in viscous flows the p-refinement is recommended with a possible

anisotropic distribution of p (higher p in the direction normal to the wall).

@ In regions with low regularity of the solution, such as shocks, the polynomial level
should be kept rather low and h-refinement is preferred.

Rules of this type can be effectively implemented in the expert system, which will be
combined with the above aigorithmic procedure to produce strategies of maximum robustness
and efficiency.

6.2.2 Adaptive Timestepping Techniques

Time-dependent problems are usually solved by time marching techniques, where the time
domain is discretized into a number of steps t1 , t 2,... , t, and the solution proceeds by the'

solution of a sequence of incremental problems. In the simplest algorithms the time step
interval is kept constant throughout the whole computational process. The actual value of
the time step At is estimated from stability requirements, accuracy expectations, or other
heuristic estimates. In most practical applications, a fixed time step leads to relatively
inefficient solutions and adaptive adjustements of At are very desirable.
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hIn this section we wil present an adaptive time-stepping technique implemented forI thermo-viscoplastic structural analysis governed by the Bodner-Partom constitutive equa-
tiois. 'The details of thisformulation can be found in reference [74]. Here we will' focus onI the issue of adaptive 'time-stepping.

The variable time step algorithm is a modified Euler scheme using a truncation error
criterion to, adjust the time step.

For simplicity, consider the single ordinary differential equation,

Sf(y, t) (6.9)

The solution is advanced using a predictor-corrector scheme. The predictor phase consists
of an Euler step: P

yt+,t =,lt + At~h (6.10)IP
Y +At = f (Yt+A t) (6.11)

Anerror indicator E is then computed from

E l= t A - (6.12)
2[y At

The error indicator is next compared with a preset-error criterion and if the criterion is met,U'the 'time step is sufficiently small enough to proceed to the corrector stage. Otherwise, the
predictor phase for Eqs. (6.10)-(6.11) is repeated with a smaller time step. For the Bodner-
Partom evolution equations the control variables used to calculate the error indicator were
the components of a stress tensor aoj, state variables Zi, and plastic work Wp, with the
maximum of these selected as the error.

The corrector phase is the modified Newton scheme,

I avg = (t+ p )/
C~+At = Yt + Atavg

A flowchart depicting the adaptive scheme is shown in Fig. 6.8. The flowchart shows how the
time step is either reduced or increased depending on the error indicator, Eq. (6.12). The
flowchart shows that the time step is reduced or increased by a factor of two. This approach
is effective, but an alternate scheme also has been used where .the new time step is based on
the error E. In this scheme

I
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Figure 6.8: Adaptive timestepping algorithm for viscoelastoplastic evolution problems.
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where , i/E.. Error tolerances E x and Emin are specified by the user, typicalI valies being E. ='0.05, Ek= 0.0005. In practical implementations, it is possible to use
Ian expert:system to adjust the time step in an even more efficient fashion.

'The effectivity of an adaptive timestepping algorithm is clearly illustrated by the example
of a'viscoplastic bar-subjected to thermal loads. The details of this example are discussed

*l elsewhere [74]. Here we will present only the calculated evolution of temperature and stress
(Fig. 6.9a andb) and focus on the evolution of the adaptive time step and comparison with
a fixed time step algorithm. In the fixed time step, algorithm, 1200 time steps of, .,ize 0.001I l sec. were used. The variable time step algorithm, shown in Fig. 6.8, was then implemented
and the -problem was resolved. Figure 6.9 shows the history of the variable time step and

I indicates that the new analysis required only 213 steps-a substantial savings. The figure
shows that in the "flat" part of the stress response a large time-step was used, but near t = 0
and again at t = 0.5 sec. when the stress is changing rapidly, small time steps are needed to
capture the response accurately.

6.2.3 Performance Monitoring and Control of Computational Procedures

Computational procedures used in advanced numerical analysis usually exhibit a different
performance and reliability level for different problem classes. This, is true primarily for
advanced, time-dependent and nonlinear problems, where characteristics of the solution,
sta'bility, and conditioning strongly affect the performance of the method.

It is not unusual for the analyst to have to closely watch the performance of various
methods, adjust parameters during the solution process, restart the solution or even repeat

the computations with a different selection of parameters. It appears that automation of
these processes should:

i* improve the performance of advanced codes when used by inexperienced users, and

* release experienced analysts from the responsibility of closely monitoring the numerical

processes and adjusting the parameters.

In this section we focus on the automation of rather heuristic tasks, namely the moni-
toring of the convergence of certain iterative methods. As a particular example we consider
nonlinear algorithms, based on Newton's method, which are notorious for poor convergence
in many practical problems and for high sensitivity to various parameters of the system. For
these problems an automated approach was developed and implemented which simulates the
performance of an experienced analyst in monitoring the convergence of these methods.

Consider a quasi-static nonlinear problem defined by the system of algebraic equations:

* L(u) = F(t)
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Figure 6.9: Adaptive timestepping in thermo-viscoplastic analysis: (a),temperature history,
(b) stress history, and (c) time step history.
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whm a is tbe solutio wctor t is a load paam-sae (qasi- sai time and L and Rare
let hand a riht hand tors rspetiuly. This qpe of equatiom is Agained fi0 dhe
fiite teant &isarelization of nonlinea boundary-value probemv. The problem is usually
solved by cxisidering a f load parametem t .r. For eacii new load the
nonlinear probla is solved by an Aiterave poad

K(wj)S6u,) =FQr) - L(*w)

In the automation of this process an expert system can Up used to adjust tlw solution
sequence, the load parameter, and the number of iterations according to the pedormance of
the method.

-Assume that at time step r the code peformed m iterations, where m is the sser of
the user-prescribed limit and the number necessary for convr gence. The error ralues (in an
appropriate norm) at consecutive iterat'ions we , e . . If the error e. is below the
prescribed tolerance, the process is considered to be converged and the code proceeds to the
next load value. The expert system will adjust the load step according to a simple heuristic
formula:

At(.+.) = At (m,/m)

where mo0 is an optimum number of iterations per time step (usually .5 or 6). The difficulties
arise when the iterative process is not convergent. Typical existing implementations will
terminate the computations in this case or, even worse, continue computations to produce
nonconverged, useless answers. The automated approach developed in this project is based
on the afplication of an expert system to make decisions regarding the continuation of the
computations.

A starting point for the expert system is an analysis of trends in the behavior of the
error at consecutive iterations. First, the error history is converted to a logarithmic zcale,
so that error histories corresponding to a power-type convergence appear as straight lines
with different slopes. Then a curve fitting based on a second-order weighted minimization
method [45] is performed to estimate the behavior of the error (see Fig. 6.10). The weight
factor used here is the largest for the last iteration e,,, and diminishes for preceding iterations
according to the formula:

Wi= m'/(m~,, + M - i)

The behavior of' the process is estimated by monitoring the slope of the error curve at the
last iteration: (deldi)(i=). According to this behavior, decisions are being made concerning
the iterative process. The details of the corresponding rules can be found in the listing of
the expert system in Appendix C-1. Here it suffices to note that:
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p ~1. If the slope is negative (dmnsigerrthen the expert system decides to continue
t sHowe , if tli situation is repeated several times with noo r e, the-
cue is cassifed as hopeless and teed as divergent. A warning is issued to the user.

l N the slope is dose to zero (the method stagnates) or positive (the method diverges),
then the results of the iterative proe are discarded, the solution backs off to the
last step, and the load increment is reduced by a factor of two. If this procedure
repeats several times with no success, the whole process is terminated and a warning
is issued to the user with identification of probable reasons of nonconvergence and

possible remedies.

.I The above description outlines basic ideas of monitoring the performance of nonlinear pr,-
cesses. The actual expert system has several additional rules. Some of them check for
divergence caused by problems in other parts of the code (say poor conditioning in the
frontal solver), others verify non-reasonable combinations of user defined parameters, etc.
Details can be found in the listing of the expert system in Appendix C.2.

This relatively simple procedure has been found to be very effective in practical applica-
tions and has provided essential savings of both computational time and the time of human

i analysts. Several examples are discussed in Section 8. The above approach can also be
used for monitoring the performance of other iterative techniqus, such as iterative solvers
for linear systems of equations, Riks method, etc.I
6.2.4 Adaptive Selection of Implicit and Explicit Time Integration Schemes

I One of the recently explored types of adaptive techniques is an adaptive selection of implicit
and explicit time integration schemes. The basic idea is to combine the robust, uncondition-
ally stable implicit schemes with the relatively inexpensive explicit schemes to achieve the
maximum effectiveness at the minimum computational cost.

Such a fully adaptive implicit/explicit techniqe was developed at COMCO for the solution
of compressible viscous flows. These flows are governed by Navier-Stokes equations [54,55,79]
of the form:

+ fi = 4iV

where u is the vector of conservation variables, it = Ou/6t, F are inviscid (convective)
flux vectors, and F1 are viscous flux vectors. Indices i in the above formula refer to axes
of a Cartesian coordinate system, a comma denotes partial.differentiation and the sum-
mation convention is applied. The components of vectors u, Ffi, and F v are given in
two-dimensional case by:

Su = {p, pv,pv2i pe}T= {p, m, m2 ,E} "



n+ pt¢

I +
n (E+p)vi

I [rL + w ]

where p is the fluid density, p is the pressure, v, are velocity components, e is a total energy
per unit mass, aj1 are stress components, and qi are components of a. heat flux vector.

Convective fluxes are functions of the conservation variables only:

IFfi= lf'(u)
so that inviscid Jacobians are defined by:

Ai = alpi
Ou

Viscous fluxes depend on both conservation variables and their gradients:

and the corresponding Jacobians are defined by

IP aF

For these equations, a general family of implicit one-sfep methods was developed [791
leading to the incremental equation to be solved at each time step:

AU + oAt - YAt + + (P u),] +

At2I - (1 2 - (A'Aj-.du4.,

-At (FYP- - Fic-) + (1 - 2oAt2  n(6.13)

+ (c - -y)O(, k)O (At2 ) + (1 - 2c.)O(, k)O (At 2) +0 (At 3 )
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The above equation is combined with the appropriate boundary conditions to form a bound-
ary-value problem over the domain fl. The incremental solution at consecutive time steps

are accumulated to formulate a solution of the time-dependent problem.

Formula (6.13) is a linear equation for the increment Au. The formulation in general is

implicit, except when a = .8 = - = 0, in which case theexplicit scheme is recovered. The
interpretation of different implicitness parameters-is as follows:

a - represents implicitness of the advective terms,

f8 - represents implicitness of the viscous terms,

7 - represents implicitness of the second order terms.

The variational formulation of the problem is obtained by introducing the space of test
functions:

V = { = (v1,v2 ... vm) s.t vi E H'(fl) and vi = 0 on rDi} (6.14)

where M is the number of conservation variables, H1(..) is the usual Sobolev space of func-
tions with derivatives in L2(fl), and rFi is the boundary with specified Dirichlet boundary
conditions for variable uj. After multiplication of the incremental equation (6.13) by an
arbitrary test function v$(z) E V, integrating over the domain .and application of the
divergence theorem, the following weak formulation of the problem is obtained:

Find Au E Vs.t. V E V:

J(Au- v - cAtA'Au -v, + 7 AtR Auj-v,j

+ yAtPe Au -v, + (1 - 2a)- A,- A A z u,!2
.^(ct tnjA!'Au -yAtniRjAu 4 .

- -AtnPAu -v - (1 - 2a)p3A-nA."Auj .v)dS

I - At 2prn) n Cn

= (At (Ffn -FY) - (1 - 2or)- 2AF~7v~d

+ (-Atni (F~n - Fy +(1n At2  v)dSA2 2 -?J

I The above variational equation is the basis for a standard finite element discretization of
the problem. The implicit/explicit approach is introduced by partitioning the computational
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I
domain into two subregions 110) and WE) such that:

WE) n flt(l = r~r , nl(E u l 0 -- n

H It is convenient to assume that the interface between the two regions coincides with the
element boundaries.

It can easily be observed that the differential equations to be solved on the two subregions

are different due to different implicitness parameters applied in each zone: a(),fV), y(') in
the implicit zone and a(E),fp(E),-(s) = 0 in the explicit zone . Therefore, the variational

I formulation (6.15), based on the assumption of constant implicitness parameters, cannot be
applied to the domain 11. Instead, it must be applied separately to-each subdomain with
additional continuation conditions across the interface. These conditions represent continuity
of the solution and satisfaction of the conservation laws across the interface and are of the
form:

U(E) =-U)

I = on rE. (6.16)

* - - F$(I)vJ
= Fn

m where index n refers to the outward normal for the corresonding region (n (E) = -n(,)). The
continuity requirement also pertains to the test function, so that v(E) = v ) = v. Note
that for general weak solutions of Euler equations thesolution u need not be continuous
across the interface. However, for regularized problems and nnite element interpolation, the

I continuity of u is actually satisfied.

If the variational statement is formulated for this problem, then in addition to interior
integrals for each subdomain and regular boundary integrals, jump integrals across the inter-

face appear in the formulation. These additional interface terms appearing on the right-hand
side are of the form:

j {At [F$,f)Cn + F$(E)Cn] . V, + At [F,~n+ F(E)Vn]

+ At2 [(I. - 2a(')) AM IF (I)Cn + (I - 2ce(E)) A(E)Fp()Cn] d

On the left-hand side of the variational formulation additional interface terms are of the
I form:

j {At [a(I)AF1)C + (E)AF(nE)C].v- AT [y(I)AFI)V - ,I(E)AF(E)V] V

At 2
[(I - 2a(1)#(1)A(1)AF(1)C + (i - 2a(E)fp(E)A(E)AF ( )C1 , V ds
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In order to enforce interface conditions, the values of consecutive terms in the above formulas
should be prescribed using equation (6.16).

An important issue for the automation of implicit/explicit procedures is the actual se-

lection of implicit/explicit zones. The basic criterion is simple: for a given time step all

nodes which violate the stability criterion for the explicit scheme should be treated with

I the implicit scheme. According to this criterion, several options for an automatic adaptive

selection of implicit/explicit zones were implemented, such as a user-prescribed time step,
,a user-prescribed CFL number, or a prescribed percentage of implicit elements. These rel-
atively simple options are described in reference [79]. Here we will focus on the "smartest"
fully automatic version, based on the minimization of the cost of computations.

In this option, the time step and the implicit/explicit subzones are selected to minimize
the cost of advancing the solution in time (say one time unit). The algorithm is based on

I the fact that, for an increased time step, an increasing number of elements must be analyzed
*with the (expensive) implicit algorithm. The typical situation is presented in Fig. 6.11,

which shows for different time steps the relative number of nodes that must be treated with
the implicit scheme (to preserve stability). On the abscissa, the AtFE denotes the longest
time step allowable for the fully explicit scheme (with certain safety factors). AtF, denotes

I the shortest time step requiring a fully implicit procedure. The relative number of implicit
nodes increases as a step function from zero for At < AtFE to one for At > tFI. Now
assume that the ratio r of the computational cost of processing one implicit node to the
cost of processing one explicit node is given. This ratio can be estimated relatively well
by comparing the calculation time of element matrices and adding, for implicit nodes, a
correction for the solution of the system of equations. Then the reduction of the cost of
advancing the solution in time with the implicit/explicit scheme, as compared to the fully
explicit scheme, is given by the formula:

HI R(At) =AtFE (n(E) + rn('))

U Typical plots of the function R(At) are presented in Fig. 6.11. Shown here are the two cases:

the case of a small difference between fully explicit and fully implicit time steps-an almost
I uniform mesh the case of a large difference between fully explicit and fully implicit time

steps. Note that in either case, restrictions on the length of the time step should be applied,
for example, from the maximum CFL condition. Otherwise the cheapest procedure would

* always be to reach the final time with one implicit step.

From the plots in Fig. 6.11, the following observation caii be made: for an essentially
uniform mesh, the mixed implicit/explicit procedure does not provide savings of the com-

putational cost-either a fully implicit or fully explicit scheme is the cheapest depending
on the time step restriction. On the other hand, for very diverse mesh sizes the mixed
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Figure 6.11: Reduction of the cost of computations due to implicit/explicit procedure.
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* procedure provides considerable savings. This means that the effectiveness of the mixed
implicit/explicit scheme will be the best for large-scale computations with both very large
and very small elements present in the domain. In the practical implementation of this

_I method, the approximation of the function R(At) is automatically estimated for a given
mesh. Then, the time step corresponding to the smallest R(At) is selected automatically
(subject to additional constraints, in particular the CFLm. constraint).

The above implicit/explicit procedure results in a system of equations

(M + K(I)) AU =R

where the stiffness matrix K has non-zero entries only for degrees of freedom in the implicit
zone or for nodes with penalty-enforced boundary conditions. The cost minimization option
has been implemented in the adaptive finite element code. Selected numerical examples of
automated implicit/explicit procedures will be presented in Section S.I It should be noted here that in addition to the above criteria, based purely on stability
analysis, some other criteria for application of implicit schemes can be applied. For example,
within boundary layers the implicit scheme may be preferred, because it provides faster
convergence of the boundary fluxes. Even more complicated issues arise in boundary layer-
shock interaction problems, when adaptive implicit/explicit schemes need to be combined
with adaptive application of artificial dissipation, etc. At the current state of knowledge in
the computational fluid dynamics rules related to these problems are rather heuristic and can3 best be handled by an appropriate expert system. Therefore the ultimate adaptive implicit/
explicit solver should combine smart algorithms with heuristic knowledge represented by
expert systems and other knowledge engineering techniques.

I 6.3 Generalized Postprocessing

The final solution of the finite element method is often obtained in the form of tables of nodal
values of the basic unknowns of the problems, e.g., displacements in the solid mechanics

problems. This solution is usually postprocessed in order to present the results in a more
comprehensive form or to calculate new functions of interest to the user. Typical functions3 of postprocessing modules are:

1. calculation of auxiliary functions (strains, stresses) derived from the primary solution,

2. use of special postprocessing techniques to obtain results of higher accuracy than the

I primary solution,

3. estimation of solution errors, and
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4. presentation of results in the form of plots, diagrams, tables, etc.

The above tasks are basically algorithmic. However, advanced programs usually offer several
i possibilities for performing these tasks and the selection of the method is expected from the

user. This is especially true for items two and three, since a variety of algorithms, each of
different quality and computational cost, is available for advanced postprocessing or error
estimation (see references [7,8,9,15,16,60,84]).

The postprocessing stage is important in the design process for yet another reason; it
provides information necessary for the acceptance or rejection of the solution and for modi-
fication-of the input data in order to obtain a satisfactory solution.

A fully automated version of a design process should allow the knowledge-based system
to make decisions concerning the acceptability of the results and to modify the model if
necessary. The question then arises as to the best ways to extract essential information
about the solution in a form acceptable to the knowledge-based system. In today's finite
element -codes, oriented toward interaction with the user, a graphical display of results is
preferred. This graphical information is, however, unavailable to the expert system. Instead,
a limited number of compact pieces-.of information should be produced, possibly in the form
of numbers or short statements.,

I In this section we present studies related to this problem. First we study methods of
extracting essential characteristics of a generic function f(x), in particular the information

I related to its distribution within the domain fl. Then we apply these considerations to typ-
ical, parameters of computational solid mechanics, such as displacements, rotations, strains,
stresses, etc.

6.3.1 Essential Characteristics of an Arbitrary Function

I Suppose that within a certain domain fl defined is a function f(x): such that f n2 -4 R.
At this point we will not specify any special assumptions about the regularity of f.

The most natural parameters characterizing the function f include its minimum, maxi-
mum and average values, defined as:

I fnmax = max f()XEQ

I| = minf(x)
XEfQ

1 fa_ - f(X)d x
Jdx
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Other paranieters of interest include the locations f fIr, corresponding to mini-

mum and maximum values, respectively. Moreover, it is often useful to know the percentage
of the domai*, where f is greater than a prescribed threshold value fT. This area is defined
a s : d w

A= j-

jdx

where x = {, s.t. f(z)>_ fT}. The above parameters can easily be extracted from the
finite element data,

A more complex problem arises if onewants to-represent a distribution of the function
within the domain f; for example to detect concentrations of high values in certain regions,
periodic nature of f, etc. For periodic and quasi-random functions, spectral analysis may
be used to characterize the distribution of f(x). For detecting other special characteristics
of f the following procedure is proposed:

First, define a class of functions

T = {t(x) , s.t. t(x) exhibits behavior of interest}

For example, in order to detect a local concentration of f(x) of the type similar to the crack
.,tip stress field (Fig 6.12), one can define t(x) as:

t(a) = a (6.17)

where ao is anintensity factor and r is the distance from the concentration point (in order to
formally satisfy integrability criteria, t(x) may be truncated- at certain high levels). For'the
sake of clarity we assume here that the function t can be presented as a linear combination
of certain primitive functions: m

t() -Zaiti()
i=1

The next step is to select from the class T the function i(x) which is, in some sense, nearest
to f(x). If we define the error function:

e(X) = f( ) - t(X)

then the problem is to find T(x) which minimizes the L2 norm of the error or, more conve-
niently, its square:

I1e1I = 1f - II2 =2j [f(m) - t(x)]2 dx

Since the primitive functions t,(x) are predefined, this is equivalent to a simple finite-
dimensional problem:
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Figure 6.12: A pattern function for detection of stress concentrations.
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Find.- = (U,2, ., ) inF - such that:

II-II2 = min ie112

By standard arguments .of variational analysis the solution to this problem is defined by the
I system of equations:

O '0 i= 1,.,m (6.18)

which can be presented in the form:

Aijaj =bi i=1,.,r

U where

Aij = jti(x)tj(x)dx

3i = jf(x)t(x)dx

I The above integrals are well defined if f(x) and' all t (x) are in (L2( 2))Nv , where N is the
dimension of the ,euclidean space (N = 1, 2, or 3).

Once the function t(x) is found, the proximity of f(x) -to the class T can be estimated
by analy~ing the relative error coefficient:

Et= Hell

Note that this method can be eXtended to a more general form of t(x), such as nonlinear

combinations of primitive functions and coefficients ai, differentiable with respect to aj. For
example, the class of singular solutions (6.17) can be made more general by introducing the3 arbitrary coordinates of the concentration point a,, a 2, to give:

aZ03 ~~(xi ai)2 + (X2 - a2)2

Then the system of equations (6.18) becomes nonlinear and can be solved by the NewtonU method. Note that the solution to (6.18) need not be unique in this case and may correspond
to the local minimizer of the error norm.

In practical applications, the above analysis can be performed for several classes of test
functions, each of them representing a certain specific behavior of f, such as pointwise stress
concentrations, boundary layers, and other patterns.
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Figure 6.13: Application of neural network to recognition of patterns in the spatial distribu-
tion of function f(x).
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I
IA quatiwly diSeat method of de g special fatures of the didzibution of the

function f(z) in the dowain 11 can be de doed usixg the pattans m-ahg capabil tiesIf neural ntwedm pmeet iL Section 4 An idearlim of such an application of nural
networks is down in Fi 6.13.

The input laye of the ndwk recev pointi values of x(z) in points dAstnibu
within the domain . The msectim neuroans in the output JaY correspond to the types
of distibution which are of interest to the user. The network after reeiving the input
values, fires the output neurode (or sewera neurodes) cormsponding to the actual behavior

exhibited bv the fucion (z). The intensity of the output corresponds to the intensity of
the corrdation between z), =d pattn represented by the output neuron.

I 6.3.2 Postprocessing in Solid Mechanics

I In -this section we will focus on postprocessing of finite element results in solid mechanics.
We mean here the postprocessing for the purpose of application of knowledge engineering,

I namely the extraction of several values representing the most important characteristics of
the solution. (Mlost of the formulas presented here were actually implemented in the expert

system discussed in ,ection S.)

Nceo that, in the spirit of hierarchical models discussed before, verification of the finite
element results should be performed using the most comprehensive mathematical mode!

I available. This is because it is rather unreliable to qualitatively vetify the results obtained
with a simplified, mathematical theory using the same mathematical theory. The verification
will be more reliable if it is performed from the more general standpoint. For example, if

i the finite element results are obtained using the infinitesimal deformation theory, it makes

sense to use large deformation theory for verifications. Note that there is no excessive
i computational cost involved, because thc comprehensive theory is used for the postprocessing

only, not for the solu,i-n of the problem.

i Displacements

We are interested in the deformation of a material continuum, which at a certain initial timeI - 0 occupies an initial configuration Bo, which is formally identified with the reference

S-iguration BR. The reference configuratioi is parametrized by the reference Cartesian3oordinate system {X,.} with base IK,K = 1.2 (see Fig. 6.14).

The reference coordinates XI identify particles of a continuum in the sense that by
particle X we mean the particle which in the reference configuration has a position defined

by vector X.
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Figure 6.14: Deformation of a solid body.
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I
IAt amrbibm timet > 0 the coatinum occopvs a defwmd c gra-a u Bc, with new

poMiu f patds refer1 to the Cartesian coordinate systam {zk) with base 4, k = 1,2.
I L is fcamuumimt without restricting-the generality of the description, to identify coordinate
systm {zk) and {XxK) The notion o( systemw {XK) and {xk) represents a typical nota-
tion onvuti of lag deformation iinemat (s references 36,46J) in which upper cue
siWs and iniw r r to tie reference -i uk lower caw synmbls wd idices
refr to the Cmvex ca,,wtiu ,

Motion of the continuum is described by the rdation

:9 = Xi(xI, ) >0

-I and the information about local deformation in the neighborhood of a particle X is presented
by the deformation gradient tensor F with components:

i Fj = 741

I where a comma denotes partial differentation.

Displacements of a material continuum are defined as
,,(x) = M - x

i For the verification of the results we are primarily interested in the magnitude of displace-
ments, defined pointwise as

Iu(x)! = qu,(x)u(X)

i For such a defined magnitude of displacements the usual minimum, maximum, and av-
erage values can be calculated using the formulas from the previous section. In the case of
dynamic problems, similar calculations can be applied to velocity and acceleration fields.

i Strains

In large deformaLion theory the components of the Green-Saint Venante strain tensor are
i defined as:

E --" i (,j + uj.I +U k,j) i=i"J,jJ

3 If the deformation is infinitesimal, these components converge to the linearized strain

measures:
Ci= (iuj + U1 )

Note, however, th- .t if the deformations are large, the familiar interpretation of the strain

measures as extensions of material fibers and changes of angles between fibers is not valid
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Ii
anymore. To del physically meaniuaul measums o strain the actual stretches of fibers
need tobecaculated

11-L E (6.19)

1n practice we are ully interested in maximum and minimunm stretch in the body. These
values can be calculated pointwise by application of formula (6.19) to the engenvalues of
the strain tensor E. These values can further be used to analyze the distribution of strains
within the domain fl, as described above-

Rotations

The rotations of a continuum are defined by the rotation tensor, obtained from the polar
decomposition of the deformation gradient F:

F=RU

I where U is a symmetric positive definite stretch tensor and R is the rotation tensor. The
method of calculating the components of R from the components of F is straightforward
and can be found in many references. See for example [36,461. The finite rotation tensor R
can be more intuitively represented by introduction of the rotation a3is e3 and the rotation
angle w:

I R= e3 0e3 +cosw(el ®el +e 2 0e 2 ) -sinw(ei 0e 2 - e 2 0 el)

Here e3 is the eigenvector corresponding to the (only) real eigenvalue of R and el, e2 are se-
lected to form an orthogonal triad. The rotation about the axis e3 is conveniently represented
by the rotation vector:

S2= sinw e3

The parameter w can be directly interpreted as the rotation angle (in radians). In the case
of plane problems the rotation axis e3 is normal to the plane and W represents the in-plane
rotation. The distribution of the rotation angle w(a) in the domain fl can be analyzed using
the generic methods introduced in Section 6.3.2.

In the case of infinitesimal deformations, the infinitesimal rotation vector is defined as:
i 1

w curl u (6.20)

The magnitude w of the rotation vector has the same interpretation here as in the case of
large deformations. However, the formula (6.20) is valid only for small rotations (order of
few degrees). Therefore it is sufficient only for verification of occurrence of larger rotations,I but cannot be used to estimate the magnitude of rotations if they are actually large.
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I
3 Rigid Body Rotations

One of the purpose of automatic verfifcation of numerical results is to detect rigid body
Itype modes of def'matio, which may occur due to insufficient supports or insufficient con-

nections between the structural elements. The displament and rotation analysis described
i above can be used to detect the rigid body mode by checking the distribution of these pa-

rameters throughout the domain l. However, application of this approach to rotations has
several disadvantages, namely:

* it is rather computationally expensive, especially in the large deformation version, and

e the pointwise rotations are calculated as the combination of derivatives of the displace-
ments. It is well known that the derivatives of finite element solutions are discontin-
uous across element boundaries, unless relatively expensive additional postprocessing
is used. Therefore it mav'be difficult to filter the rigid body mode from the noise
generated by the approximation error.

I That is why an alternative approach to extracting rigid body modes was considered, which
is based on the postprocessing of displacements rather than their derivatives. This approach
is based on representation of the rigid body motion in the form:

*Z) = U +RrM

where R is a rotation tensor, u. is a displacement of the reference point o (say the center
of mass), and r = z - o. For the actual displacement field u(x) one can define the L' error

.norm between the rigid body motion and the motion of the continuum as:

3 11~Ie112 = ua)-(U0 + Rr(Z))]2 dfl(.1IUX (6.21)
By the minimization of the norm one can find the rigid body translation and rotation.

In fact, the displacement of the reference point u0 is immediately found as the pointwise
value of the displacement. Thus, for plane problems, the only unknown in this problem is3 the rotation angle w. This angle can be found from a standard minimization procedure

OB

or after substitution:

OR

I
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i This is a single nolinear equation for w, which can be solved by a Newton procedure:

ke&W = '

Here k is a single coefficient, diculated as:I 18= °z- [1-] + 1=(=) - (,,o + I.,)] -'-- ,.df

I and 1 is a residital:I .I/ {[..c) -(.+ r -& idl
The integrals in the above formulas can be calculated using standard finite element

integration. The matrices , , and -- are defined for two-dimensional problems as:

cosw -sinwI R--~

"sinw cosw

* OR snw -cosw
a,, cosw f.-sinw

I2R OR

I The departure of the actual displacement field from the rigid body mode can be estimated
by the calculation of the error norm in (6.21). In practical applications the extraction of the
rigid body mode should be performed for structural elements (subregions of P) rather than
for the whole domain.

U Stresses

3 In the verification of stresses we are primarily interested in the actual stress state on a
deformed body, represented by the Cauchy stress tensor:

I T--ije ei

In many finite element computations, especially in large deformation elasticity, a second
Piola-Kirchhoff stress tensor is used, defined as:

3 T' = trise 0 ej
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I The components-of this tensor, although convenient for the solution of the problem, have
basically no direct physical interpretation. Therefore for verification purposes they must be
tnsformed to the Cauchy form, using the formula-

T = _ P__
s det F

I* Since the full stress tensor in general has six independent components, it is convenient to
introduce a single measure of stress intensity level, such as the stress intensity factor, defined

O as:

where J2 is the second invariant of the stress deviator. Equivalently, principal stresses
or other parameters can be used for verification. The distribution of the stress intensityI throughout the domain fl can be analyzed using methods found in Section 6.3.2 and then
furnished to the verification expert system for checking and evaluation.

I 6.4 Automatic Verification of Numerical Results

I In an automated environment for engineering design the results obtained with the finite ele-
ment method or other numerical techniques should be automatically verified for consistency
with the mathematical formulation (:jn particular assumptions), satisfaction of various design

I criteria, errors introduced by the discretization, etc. Here we assume that the approximation
error has been taken care of by the adaptive mesh refinement procedure, so that the error
associated with numerical modeling is below certain prescribed threshold value. Still, the

solution may be incorrect due to:

e incorrect selection of the mathematical model,

e incorrect specification of boundary conditions, such as insufficient support, excessive

* loads, etc.,

* incorrect selection of material properties, and

* other modeling errors.

The information obtained from generalized postprocessing can be used to automatically
verify the finite element results and possibly automatically modify the model in case there

is a violation of certain verification criteria. The automated verification of the results is
performed by their comparison with the assumptions of the mathematical model, basic design
criteria, or existing database related to the problem being solved (we will not discuss here
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the detailed verification criteria). The expert system implemented for this purpose in this
project is presented in detail in Section 8.

The results of automated verification of the numerical solution can be used as the basisI for automated modification of the structure or the mathematical model in order to satisfy
the design-criteria. In general, the decisions involved here will be very complex and strongly

I dependent on the characteristics of the class of problems to be solved. As an example,
consider the situations when the constitutive model used in the analysis is linear and the

I value of stress calculated exceeds the plastic yield limit. In such a situation there are at least
three possible solutions:

1. If plastic deformations are acceptable in the structure being designed, change theIconstitutive equations to elasto -plastic and repeat the analysis.

2. If plastic deformations are not acceptable, but there exists a variety of materials from
which to choose, switch to the material with better mechanical properties.

3. If there is no possibility of selecting better material, try to redefine the shape of the
I model.

Clearly the selection of a particular solution depends strongly on the specific design
considered. In specialized applications the expert system should be able to automatically
make appropriate selections. However, in more general applications it will be very difficult toI reasonably choose the correct solution. That is why in the verification system implemented
in this project the possible reasons of violation of the design criteria are presented to the

I user together with possible (and available) methods for fixing the problem. However, it is
up to the user to select the actual approach. The details of this procedure are discussed in

Section 8.

7 A General Computational Environment for Auto-
mated Structural Analysis

I Development of a computational environment for automated structural design is a complex
task, requiring a combination and integration of various-functionally very different-pieces

of software. At the present state of the software "market" this includes:

o CAD and solid modeling programs

I o Finite element mesh generators

Io Finite element analysis programs
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e Post-processors

. Knowledge-based expert systems

I Other elements (spreadsheets, knowledge acquisition, neural networks, etc.)

* The -first step in the design of the automated design environment is the general layout
of basic components, taking into account both their functional characteristics and the data
types accessed-by each component. In the following two sections a general structure of the
proposed environment will be discussed.

I 7.1 Computational Environment-Functional Structure

The basic role of the components of the automated design environment is to aid or replace
the human designer at consecutive stages of the design process, as -presented in Section 3,
Fig. 3.1. Therefore, the general functional structure of this environment is somewhat similar
to the flow chart of the design process. This general structure is presented in Fig. 7.1, where
the consecutive blocks indicate separate elements (pieces of software or their combinations)
that are supposed to aid- or replace engineers in their work.

I The first stage of the analysis, namely -the general comprehension of the physical problem
and:the objectives of the-design, is generally performed by the designer (although some help
from an intelligent system may be used at this stage). The next step is the construction of
the genera- structural model, including identification of various structural elements, loads,

I supports, etc. At this stage, the assistance of CAD programs and an intelligent advisor
(KBE$) is. -recommended. It is of importance to note that this advisorT should definitely
possess elements of the object oriented approach (OOP) to provide a natural classificationH and identification of elements of the structure. The third step of the design is the construction

of the mathematical model of the problem. The structure will be viewed as a certain domainI with prescribed equations, boundary conditions (both supports and applied tractions) and

interface conditions for various structural elements (subdomains). At this stage, the level
of mathematical complexity of the model will be decided, for example, the use of large
deformation or small deformation theory, application of beam or solid body formulation, etc.

The aid to the designer at this stage should be provided by an expert system (KBES).with
object-oriented capabi!ios. Note that the knowledge basis of this system will include-in
the general case-bQth heuristic knowledge and more precise estimates based on appropriate
theories discussed in Section 6.1. Therefore this system should be capable of performing

basic algebraic operations.

In the general situation a simplified analytical analysis of the introductory design may be

performed at the first pass through the design process, in order to avoid an expensive finite

83I
Il .



Pz~dbmUnderszanding
USER + KCBES

Srucail Model 1
CAD + KBES + OOP__

Mathematical Model 13 kBES + OOP

nialDiscrete Model1
CD+ IES HGENI

I Strategy Selectio 1
KB3ESJ

Performance Monitor NiclAnalysis 4-0 Adaptive Methods

KBES FEM* KBES

Synthesis of Structural
Resulis

POST +OOP

I Verification of Structure

IMES +OOP

I Figure 7.1: The general automated computational environment-functional struictures
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element analysis of models that are far off the appropriate design. Here we will assume for
simplicity that after-the construction of the structural model the full finite element analysis
is performed. Therefore the next stage of the design includes generation of the discrete mesh

for the structure (or, more formally, for the domainof the mathematical model). At this
stage a combination of CAD software with mesh generation programs can he used. It is also
possible to use a small advisory intelligent system or intelligent CAD environment [57].

it should be noted that, if the finite element software is equipped with adaptive capa-
I bilities (as is the case in this project), the role of the initial mesh is merely to provide an

adequate representation of the shape of the domain (the mesh will be adjusted to the charac-
teristics of the solution during the solution process). Without these adaptive capabilities the
initial mesh generation is an extremely difficult task, because the characteristics of the-final

solution must be guessed a priori to provide mesh concentration in regions of high gradients
of the solution and other critical zones.

After the generation of the initial mesh, the solution of the problem by the finite element
method is performed. However, most of today's large finite element codes offer a selection of
strategies for the solution of the -problem-for example various methods of time integration,
eigenvalue extraction, or the solution of the linear system of-equations. Usually the -election

I of the method best suited for the particular example depends on the characteristic , of the
problem, for example the number of nodes, types of loads, etc. In complex, nonlinear
problems, selection of the proper strategy is often crucial for the achievement of the final
solution to the problem. In general, a considerable expertise and experience is required
at this stage and the application of a com-etent expert system is very desirable. It is not
necessary for this system to have object-oriented capabilities but,-on the other hand, learning
and knowledge acquisition capabilitiles will be very useful.

The central element of the analysis process is the solution of the discrete model by
the finite element method. Usually, finite element codes are viewed as "black boxes" with
virtually no decisions to be made after the initiation of the program. However, this is
not necessarily true, especially if the adaptive or "smart" methods are being used and if the

problems solved are characterized by strong nonlinearities. Some of the examples of problems
that require decision making (including heuristic decisions) during the finite element analysis

* include:

** Solution of strongly nonlinear or time-dependent problems.

9 Application of iterative procedures (e.g., for the solution of linear systems of equations).

I * Adaptive mesh refinement.

* Adaptive zonal methods (e.g., implicit/explicit algorithms)
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On the chart of Fig. 6.1 the decision-making modules of the finite element analysis are
represented:by two Knowledge-Based Expert Systems:

1. A ,perfornance monitor KBES ,is responsible for monitoring the behavior of various
iterative procedures (e.g., Newton method for nonlinear problems, Jacobi conjugate
gradient method for linear system of equations, etc.) and taking appropriate actions

if any computational problems occur.

2. A discrete model modification monitor KBES is responsible forproviding additional
intelligent support for Adaptive mesh refinement, zonal methods, and other methods
oriented-on achieving high quality results. It should be noted that these methods are

usually quite precise-and algorithmic in nature, yet some heuristic knowledge is usually

necessary to handle nontrivial cases and improve the overall performance.

In more general cases other advisory expert systems may be used. Usually it is not necessary
for these=systems to have object-oriented capabilities but, similarly as in the case of strategy
selection, learning and knowledge acquisition capabilities are very desirable.

Once a high-quality finite element solution has been obtained, the results of the analysis
have to -be evaluated in~the context of compliance with structural design criteria, like maxi-
mum deflection, maximum stress, safety coefficients, etc. This task can be performed by the
structural evaluation KBES with object-oriented capabilities. Note that prior to application
of such a system the essential information about the solution must be extracted from the
massive finite element data. This task is performed by the specialized post-processing mod-
ule (with strongly recommended object-oriented capabilities for natural representation of
structural objects). Depending on the decision reached at this stage of structural evaluation,
the model may be accepted or-rejected. If the model orthe solution is rejected, usually some
modifications to the structural or mathematical model are recommended-and implemented,
and the next loop of design is performed.

The chart discussed here presents only the general types of software used in the automated
computational environment and the flow, of control between these modules. For practical
applications the generic structure of the- data (knowledge) needs to be formulated and the
protocol of the exchange of information between different modules needs to be established.

These issues. will be discussed in the next section.

7.2 Computational Environment-A General Data Structure

The amount of data and information processed in the engineering design process is enormous.
The data structure devised to handle this information should satisfy two basic criteria of
somewhat contradictory nature, namely:
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e, easy access of every functional component to every essential piece of information, and

encapsulation of knowledge, reducing to the necessary minimum the length of the
information- search pattern.

In order to facilitate satisfaction of these criteria it is of importance to observe that there
are three basic groups of data (static knowledge) -that are of different types and that can be
effectively separated from one another. These are:

1 1. Information about the structure analyzed; models, loads, structural response, etc.

2. The finite element data concerning nodes, elements, integration points, values of the
solution in these points, etc.

* 3. Informationabout performance of various strategies, e.g., histories of error tolerances
in nonlinear problems, counters of time steps, measures of convergence of iterative

processes, etc.

It is essential for 'the effective operation of the data structure that neither the designer
-nor the expert systems dealing with structural design should.interact with the massive finite

U element data. The essential information about the.-tructural elements (like maximum stress)-
should be derived from the finite element information by the post-processing module andIonly then evaluated by 'the designer or the specialized expert system. According to this
remark, the general structure of the data should be of the type presented in Fig. 7.2. The
figure also shows the consecutive functional components of the system (defined in Fig. 7.1)'I and the information accessed by these components.

After the general division of data into groups, the question arises: How should the data
(static knowledge) be organized in each of these groups? The possible answers to these
questions differ depending on the actual type of information. For finite element data a
traditional way of storing the information is in the form of vectors and arrays. Depending
on the specific application it can actually be implemented in, the form of full vectors reserved
in the memory, pointer lists, linked lists, or tree structures. Another option is based on the

3 concepts of object-oriented programming.

As for the structural information, the question of the optimal data structure is more3 difficult due to a considerable diversity of structural forms, interfaces, loads, etc. Apparently

the two options that arc generic and flexible enough to handle this information are:

I . * The blackboarding technique, and

* The object-based data structure.
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Figure 7-3: Typi structur of a blackboagding data storage-

l- n  The blackboarding technique [37,751 is based on the simple concept that all the pieces of

i information are written to the =blackboard7 (which is actualy a data storage system) and

are available upon request to all the members of the session called knowledge sources (pieces

of software in our case). The participating knowledge sources (see Fig. 7.3) ma, be veryI diverse, but they use the same protocol in the communication with the blackboard. Thus the

information stored in the blackboard-is available to all the sources and users of knowledge-

The basic problem in the blackboard approach is the management of the blackboard itself

if large amounts of information are processed.

Another attractive concept of the structure of static knowledge (and, for that matter,I also of active knowledge methods) is the object based approach discussed in Section 5.
This approach is based on the abstract data theory, in which it is not essential how the

I information is actually stored; the essential fact is who (what object) is responsible for
providing this information. The information is actually requested by objects from other

objects without concern about the actual type of storage used. Within this system the

I information is encapsulated within defined classes of objects, and at the same time the whole

body of information is available to all objects. Due to numerous conceptual and practical

I advantages of this kind of knowledge structure, most of the recently developed advanced
expert system shells (reviewed in Section 5) usually provide object-oriented capabilities. In

this work, the object-oriented approach was used. A more detailed discussion and design of

3 object-oriented approaches to knowledge engineering in automated computational mechanics

- will be discussed in the next section.

I
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S-8 Design, Implementation and Examples of a Cou-
pled FEM-KE Environment

& Introduction

--T Amo the practical feasibilityoftecnet eopdithsrjcafulculd
-fiite ekment-knowlede eginee"ig i t w sin and i ona -

I3 .ardascale. This implementation combines adaptive methods, smart algorithms, expert
systems, and other engineering tools to provide maximum reliabiliht robustness and ease of
me of the finite elewnt softwam Note that this effort-is beyond the original statement Of

The implementation presented here is based on the i-p adaptive finite element code
PHLEX and the expert system .shell NEXPERT OBJECT. It is important to note here
that the previous report only presented an introductory general design of the evironment

Sconsidered in this section. This design was based on general concepts of object oriented
programming, data manaement, and knowledge engineering. In the practical implementa-
tion discussed here-some of these concepts hve been changed, primarily due to functionalU limitations of the expert system software used in this project (not all generic concepts were
available in this particular implementation). However, the general idea and practical func-
tionality have not changed.

8.2 An Automated PHLEX-NEXPERT OBJECT Computation-
* al Environment

The automated environment for finite element analysis is based on full coupling of two

different computer tools: an algorithmic finite element code PHLEX and an expert system
shell NEXPERT OBJECT.

I The PHLEX code developed at COMCO represents a new generation of the finite element
software, based on h-p adaptive methods, error estimators and refinement strategies. The

I program is designed to achieve maximum reliability and quality of results at a minimum
computational cost. This is achieved by implementation of rigorous error estimates, adaptive
refinement strategies and smart algorithms.

3 NEXPERT OBJECT is a generic expert system shell developed by Neuron Data, Inc.
and designed for customized construction of powerful expert systems for generic applications.

I The shell is equipped with object oriented capabilities (data representation) and a versatile
inference engine.

3 The coupled finite element-knowledge engineering environment is based on direct inter-
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I I

Figure 8.1: A general scheme of the coupled PHLEX-NEXPERT OBJECT environment.

action of the finite element program with the expert system. Within this environment, the
* algorithmic code can request advice from the Ixpert system or, onversely, the inference

engine can activate algorithmic procedures. The general scheme of this coupled environment

is presented in Fig. 8.1.3 The actual executable code includes both finite element procedures and knowledge engi-
neering software. These two programs communicate through a well-defined interface. Most

I of the finite element software was written in FORTRAN, and the expert system shell was
written in C. Therefore the actual interface includes an additional translator designed to
handle language differences. The data for the finite element code (mesh data, loads, etc.) is

* stored in separate data files or is provided by the user during execution. The actual expert
knowledge, represented in the form of classes, objects and rules, is stored in separate knowl-

* edge bases. This enables easy substitution of the expert information for different applications
of the software.

Both the finite element software and the expert system shell operate in the interactive
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graphic mode based on a windoring system A-sample copy Of the-computer screen during
the development o knowledge bases is presented in Fig. 8.2- The figure shows both the
PELEX window (hrge, central position) and severi windo of the expert system shelL
Within this i it is possible to -develop and test the knowledge bases when the
expert system is called by the finite -element program. Such a situation is presented in
Fig. 8.3, which shows an additional rule network window with graphical presentation ofIrules and the current status of the inference engine. This graphical interface facilitates the
development of knowledge bases.I Once the development of knowledge bases has been completed, the expert system graphi-
cal interface is deactivated anid the expert system runs in the background. This is the version

I: that can be delivered to the user of the system.

Within this generic environment, several expert systems were implemented to assist the
finite element program in-automated performance of consecutive stages of the analysis. A
more detailed presentation of implementation and performance of some of these systems isI discussed in the following sections.

8.3 Automated Strategy Selection and Performance Monitoring

Advanced finite element programs are usually equipped with a variety of computational
strategies for the-solution of the problem. The performance of these methods depends upon
various parameters of the problem under consideration. Therefore selection of the most
appropriate method is a complex and rather heuristic task, very difficult for an inexperienced
user. During the execution, many computational methods need to be closely monitored
and have certain parameters adjusted in order to assure stability, convergence, and good
performance. A typical example is the solution of strongly nonlinear problems by Newton-
type methods.

In this section we present a research-scale implementation of expert systems devised to
automatically select computational strategies and to monitor the performance of these strate-
gies during the solution process. This implementation is based on the concepts discussed in

I Section 6.

8.3.1 Selection of Computational Methods

An expert system was implemented to automatically select the type of solver for the linear
system of equations resulting from the finite element discretization. The system selects
automatically either the frontal or the iterative solver. This selection is based on simple
criteria, such as the number of degrees of freedom and the ordering of the elements. The

I
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*II : listing of objects and rules of thisexpert. syste is presented in Appendix-C1.

The automated selection 6f the solver is activatediby the user's command:

SSOLVERNUTOMATIG

S issued-o the finite element program.

83.2 Performance Monitoring and Control

A performance monitor expert system is designed to monitor -the performance of various
-sections of the finite element code, inform the user about occurring abnormalities (divergence,
zero pivots, slow convergence, etc.) and to- suggest or perform appropriate measures to fixI the problem. The importance of such an-inelligent advisor is especially pronounced in
large finite element programs for nonlinear or time-dependent problems, witiha multitude
of methods available for the solution- of linear systems of equations, eigenvalue extraction,.fl-etc.-

The general structure of an automated performance monitor-is presented in Fig. 8.4.I This is an, advisory system to the finite element code which is used for the solution of
nonlinear or time-dependent .problems, with a-selection of either a direct (frontal) solveror
an-iterative solver-for the linear system of equations. The structure here utilizes the concepts
of object oriented programming- to represent specialized knowledge of several experts. The

m actual concept presented in Fig. 8.4 represents, in an object oriented fashion, the following
* situation:

Image a finite element code running on the computer and printing to the screen
an echo of the performanceof various methods used in the code (execution times,
numbers of iterations, -error tolerances, etc.). In front of this screen there sits a

m number of "experts", each of them specializing in a different method. In partic-
ular there is a specialist on nonlinear problems, a specialist on iterative solvers,
and others. -Each expert analyzes the information pertaining to his discipline

-m and derives conclusions concerning the performance of the code (and methods of
fixing possible problems). The information and suggestions provided by each ex-

m pert are analyzed by the supervisor (general performance monitor) which makes
fa final decision concerning continuation of the computations, change of strategy,

or termination of the computations in "hopeless" cases.'

The classes presented in Fig 8.4 represent formally the human experts. Note that interme-
diate classes are introduced in this scheme to capture methods common to more than one
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* expet. For example, the method of convergence checking for nonlinear problems is very
-: similar to the onvergence dieck used for iterative solvers. Therefore this common method

isrepresented by-a genera "'convergence monitors" class.I In this project only one-expert system Was actually implemented and-tested, -namely the
nonlinear monitor expert system. The-principles of operatiou are discussed in Section'6. The
listingofobjects and rules of'this system is presented in Appendix B2. The expert system
is activated at each oad step after completing a prescribed number of iterations (sufficient
to-estimate trends in error histories). The decisions-of -the expert 'system are used, to control
the solutibn process.and obtain a converged solution at minimum cost.

The automated performance.monitoring option is activated by simply specifying AUTO-
MATICon 'the -list of commands for thefinite element nonlinear analysis.

.1 8.3.3 Examples

* To Illustrate-the practical performance of the strategy selection and performance monitoring'fl expert systems we present a numerical analysis of a windshield wiper blade in contact with a
rigid surface. The deformation of the blade is described by a large deformation theory. This

!i theory, combined with unilateral. contact conditions,:leads to a strongly nonlinear problem.

This problem was solved on a mesh with both h and p refinements, (Fig. 8.5) and
a nonlinear Newton procedure with incremental loading was used. The increasing load
was controlled by a quasistatic time and corresponded to pressing the blade against the
windshield.

A copy of the echo of. the solution process is presented in Fig. 8.6. The frontal solver
was automatically selected for this relatively small problem. Then, at the first load step,
the Newton procedure did not converge within the prescribed number of iterations. Still,

the error history suggested that the process was actually convergent, therefore the expert
system decided 'to perform a few additional iterations in u, 'er to obtain full convergence.
However, these additional iterations did not fully succeed. After this situation had occurred
several times, the expert system concluded that it didn't make sense to continue iterations.

I The computations were backed to the last converged solution (initial guess in this case)
and repeated with a smaller time increment. After a few further adjustments, a sequence of
convergent iterations was reached and the final solution was obtained (only a few of the initial
iterations and the final iteration are shown in Fig. 8.6). The final deformed configuration
with stress intensity contours is presented in Fig. 8.7. Note that if a user-prescribed fixed
load step was used, a large number of small steps was required to obtain convergence or the

process diverged.

The above example presents the most typical result of the application of the perfor-
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PROJECT: wiper MESH

5

* Figure 8.5: An h-p finite -'ement mesh for the wiper blade analysis. Shade intensity repre-

sents the order of approximation.
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EPET:_ SOLVER'SELECTE- FRONTALj NONLINEAR -PROCESS:'
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ITERATION: ERROR: 1.OOE0
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ITERATION: 4- ERROR:, 4.20841E-02

ITERATION. 5 ERROR: 1.70250E-01
ITERATx~IN ERROR: 8.15674E-03
ITERATION: 7 ERROR: 5.84537t-0?
ITERATION: 8, ERROR: 2..93982E-02
ITRATION: 9 ERROR: 1.54566E-02
ITERATION: 10 ERROR: 6.95750E-63-

WARNING': NO, CONVERGENCE. AFTER' 1'0 'ITERATIONS
EXPERT'DECISION CONTINUE ITERATION4S.

ITERATION: 11 ERROR: 4-.0524ME-63
ITERATION! 12, ERROR: 8.26685iE;04
ITERATION: 13 ERROR-: 4.98021E-03'

EXPERT DECIS'ION:- CONTINUE- ITETON
ITERATION: 14 ERROR: 3.61173E-0
ITERATIO.0N:- 15 ERROR: 2.29691E-03
ITERATION: '16 ERROR:, 5.19300E"03'

WARNING: NO-CONVERGENCE AFTER '16 ITERATIONS

EXPET~k DECISION: BACK'OFF, ADJUST -DT AND RETRY

CURENTTIM - '.00 000E-01 DT =2.5000000E-01

ITERATION: 1 ERROR: 1.OOOOOE+00
iTE)lATION; 2 ERROR:, 3.39861E-012
'ITERATION: 3' ERROR: 5.77968E-. 02
ITERATION : 4 ERROR: 2.2843AE-02'
ITERATION: 5 ERROR:, 3.76144E-02
ITERATION: 6 ERROR: 1.80416E-02
ITERATION: 7 ERROR: 7.42925E-03
ITERATION,: 8 ERROR:, 1.27399E-02
ITRATION: 9 ERROR: 1.58.09E-02
tTERATION; 10 ERROR: 6.42318E-03

WARNING: NO' CONVERGENCE AFTER 10 ITERATIONS
EXkPERT DECISION: BACK 'OFF, ADJUST'DT A.ND RETRY

CURRENT TIME =1.25000O0E-01 DT =1.2500000E-01

ITERATION: 1 ERROR: 1.OOOOOE+00
ITERATION:L 2 ERROR: 2.14857E-02
ITERATION: 3 ERROR: 7.79365E-04
ITERATION: 4 ERROR: 1.28068E-05

CONVERGENCE OBTAINED AFTER 4 ITERAT IONS
EXPERT DECISION: ADJUST DT AND CONTINUE

CURRENT TIME = 2.OOOOOOOE+00 DT = 2.8835625E-02

ITERATION: 1 ERROR: 1.19598E-02
ITERATION: 2 ERROR: 2.79259E-05

CONVERGENCE OBTAINED AFTER 2 ITERATIONS

REACHED TIME STOP -2.00000005+00

Figure 8.6: A copy of the echo of the nonlinear analysis of the wiper blade (only a. few load
steps are shown).

99



I -

J7

0.11 -

- 0,05'

-0.01

" WARNING FROM THE VERIFICATION EXPERT SYSTEM

My analysis indicates that in your finite element analysis you are using

constitutive equations valid only for small strains, while the strains reach

level requiring large strain theory.

3 It is advised that you choose appropriate constitutive equations or

change the model to reduce the strain level.I

Figure 8.7: Deformed configuration of a wiper blade with stress intensity contours.
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8.4 Adaptive Mesh Refinement

The adaptive mesh refinement procedure is desined to auomnatkal adjust the finite e-I i ment discretization in irder to reduce the solution error at minimum cwL In this section
an example of the k-p adaptive mesh refinement will be presented This Procedure =as
discussed in Section 6A.1.

As a particular test problem an example of the finite element anahsis of a wrench was
selected. The finite element mesh for this tool is presented in Fig. 8S. The length of the

I wrench is about 120mm and the material properties ae the Young modulus E = 210 GPan

Poisson's ratio v = 0.3, and the elastic limit stress oE =10 MfF.. The interaction with the

bolt or the nut head was modeled by appropriate displacement boundary conditions on the

hex head and the torque was imposed-b a distributed normal load on the handle.

The solution of this problem on the initial mesh in Fig. S.S gives the stress disiribution

I presented in Fig. 8.9. Due to the stress concentration in the hex head zone the error
in this zone is much larger than elsewhere in the domain fl and reaches a evel up to 16

percent (see Fig. 8.10). To reduce the error level the h-p adaptive procedure was actiated-

The adaptive procedure was purely algorithmic and no expert system assistance was used.

The final refined mesh is presented in Fig. 8.11. The contours of stress intensity and

elementwise error indicators are presented in Figs. 8.12 and 8.13, respectively. For the sake
-of comparison, the contouring ranges for error and stress plots were the same as for the
initial mesh. Note that the maximum-local error dropped below three percent, while the
maximum value of stress intensity was much higher than for the original mesh (this is due
to stress concentrations on the hex head).

This simple example illustrates the powerful h-p adaptive mesh refinement capability.

In more, complex situations, an additional expert system will be used to assist the basic

refinement procedure.

I 8.5 Adaptive Selection of Implicit and Explicit Zones

The adaptive implicit/explicit method, discussed in Section. 6.3.4, will be illustrated on
I the example of the Mach 3 viscous flow about the flat plate at Reynolds number equal

1000. The detailed problem statement for this classic example can be found in reference
[79]. This problem was solved with an implicit/explicit algorithm combined with adaptive
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Figure 8.8: A finite element mesh for the wrench analysis. Shade intensity represents the
I order of approximation.
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Figure 8.9: Stress contours for the wrench problem obtained at the initial nieshi.
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I Figure 8.10: Error distribution for the wrench p)roblemn obtained at thle initial mesh.

104l



I
I
I
I

it
I
I
I
I
I
I
I
I
I t ~ j 1 jj 7  4 5 6 7 8

I 1

I
Figure 8.11: Adapted finite element mesh for the wrench analysis.
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mesh refinement. The selection of the implicit and explicit zones was based on the cost
inimization. The criterion for the application of an implicit algorithm was a stability

limitation of an explicit version. For the mesh- presented in Fig. 8.14, the procedure, based
on cost minimization, chose a time step about 20 times larger than the admissible time step
for the-fully explicit version. This was achievedby automatically selecting -about 75 percent
of the elements as implicit (1646 out of 2155). These implicit elements were clustered-around
the plate tip and in the boundary layer--see Fig. 8.14. The computational cost of reaching
the steady-state solution was reduced by a factor of 2, as compared with the fully explicit
algorithm.

The contours of density obtained for this problem are presented in Fig. 8.15. Note that,
similarly-as for-adaptive mesh refinement, an expert system assistance can be used in more
complex situations to improve the performance of the adaptiveiimplicit/explicit procedure.

8.6 Automated Verification of Finite Element Results

The verification expert system-is designed.-to automatically assure compliance of the finite
element results with the basic design criteria, with the limitationsof the mathematical model,
etc. It is assumed that the approximation error has been reduced below a prescribed limit
by the-adaptive procedure an& it is not of concern here.

The verification expert system is based on concepts discussed in Section 6. A general
I: structure of-the system is presented in Fig 8.16. A single object "versolid" represents for-

mally a human expert working on the problem. It has several slots representing necessary
-information as well as associated rules representingthe active expert knowledge. The actual
solid objects are members of a class "solids." In this version only two-dimensional solid ob-
jects are considered. In general, additional classes of three-dimensional solids, plates, shells,
' beams, and other structural elements may be considered. The listing of classes, objects and
rules of the verification expert system is presented in Appendix B3.

The automated verification is activated by selecting the command VERIFY in the post-
processing menu of the finite element code. At the beginning of the verification session

* the class of solids is empty. Then, during the session, objects of this class are dynamically
I generated. These objects correspond to components of the structure. For each solid object

the postprocessing of displacements, stress, strain, and other parameters is performed using
I methods developed in Section 6. The results of this postprocessing are the basis for the

verification session of the expert system. In the cases of violation of the design criteria, im-
* proper selection of the mathematical model or other modeling errors, a relevant message is
- issued to the user together with suggested ways of fixing the problem. For more specialized

applications, provisions can be made to automatically implement the necessary changes.

1
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Figure 8.15: Density contours for the flat plate viscous flow.
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i Figure 8.16: A general structure of the verification expert system.



8.6.- Examples of Automated Verification of Results

-The operational priiciples of the verification expert system-will be illustrated in the example
of the wrench :analysis, introduced in, the previous section. The process- of finite element
solution6f this.problem will be'simuated here, including various modeling errors introduced
'by the user. For simplicity, no adaptive mesh refinement was used inrthe examples presented.

Case f. Inufiient Suipporfts

In: the first run a common situation of improperly specified boundary conditions was
simulated. In particular, no Dirichlet boundary conditions-were specified, so that the wrench

S was subject.t6 very large displacements and rotations. This situation was detected by the
large displacement and rigid motion modules, and the expert system issued an appropriate

mnessage to the user. The deformed configuration and the message issued by the expert
system are presented in Fig. 817.

Vase 2; -Excessive Loads

In this case the, supports were properly defined, but the user specified excessive value
of the traction load, so that the deformation of the wrench was large, see Fig. 3.18. This

violate& the assumptions of infinitesimal deformation theory in terias of both kinematics and
constitutive equations. Thus this-analysis resulted in two error messages, presented in Fig.
8.18. Note that -the:expert system properly concluded that the large rotation in this caseI~was not rigid and was not caused by insufficieiit supports.

.Case 3: Elastic Limit Exceeded

The- loads specified in this case did not cause excessive deformations, yet were large

jm enough to causeviolation of the specified stress limits. However, the high stress occurs only in
a small fraction of the domain, presented in Fig. 8.19. In general, these local concentrations
may be essential for the design or can be caused by a relatively crude modeling of the actual
shape (e.g., sharp corners introduced by the discretization). The expert system detected this

*. stress concentration and issued the message to the user, accompanied by the list of possible
Usolutions to this problem (Fig. 8.19).

Note that in more specific applications the conclusions of the expert system can be more

I specific and even an automated correction of the problem cc -I be implemented.

Case 4: Correct a Result

After reducing the load level on the handle, the deformation and stresses in the wrench
were within the bounds of the infinitesimal deformation theory and below the prescribed

* stress limits. No warning messages were issued.

Case 5: Too Comprehensive a Theory Used

I Here the situation was simulated when the user selected too comprehensive a mathe-
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PROJECT: wrenchl DISPLACEMENTS

I
I

I !! WARNING FROM THE VERIFICATION EXPERT SYSTEM !

My analysis indicates that the structure or it's part undergoes
excessive displacements and rotations. This is most probably

I caused by:

- lack of proper support (boundary conditions)
I - missing connections between different parts

Unless you really accept the solution with such displacements and
I rotations, please examine and modify your data.

S Figure 8.17: Deformed configuration and warning message in the case of insufficient supports,

I113

U



!WARNING FROM THE VERIFICATION EXPERT SYSTEM !

My analysis indicates that in your fiidte element solution you are
using infinitesimal deformation theory, while the large deformation
theory is needed. This can lead to erroneus results.
Please switch to large displacement theory or, if yod do not expect
large displacements in your solution, check and modify:

- material properties
- boundary conditions (loads)
- model geometry

P! WARNING FROM THE VERIFICATION EXPER'I SYSTEM !

My analysis indicates that in your finite element analysis you
are using constitutive equations valid only for small strains, while
the strains reach level requiring large strain theory.

It is advised that you choose appropriate constitutive equations
or changre the model to reduce the strain level.

F~igure 8.18: Deformed configuration and warning lmebssgc Iii the (,e l' Lu(,g iotati(Als
caused by excessive loads. 1,



II I3

-0.075 0.375 0.825 .

I !! WARNING FROM THE VERIFICATION EXPERT SYSTEM !

My analysis indicates that in the finite element analysis you arc
using elastic type constitutive equations, but the stresses exceed
elastic limiL

However, these stresses occurr in less than 10 % of the area.
Therefore you may chose to ignore them if this is a rather crude
analysis. If not, then please:

1) modify the geometry of the model to avoid stress
concentrations (e.g. round-off the comers) or

1) modify the model to reduce stress levels or
2) choose elasto-plastic constitutive theory

(currently not available).

I
Figure 8.19: Stress contours and warnnJg message iM lie ase of ',ioi,,ti.ll (,f 4ulM . t rt'.-.s
limits.
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~'ERJ FROmYAN-ME

NONILKELAR PROCESS:
1TERATJoxi I ERROR: IXDOE4X
nutEATION 2 ERROR:- 235496E46
ffTERATIO)X 3 ERROR: 1J 743E-05

CONERGENCE OBTAINED-AFIER 3 ITEATIO!ZS

I FINISHED NONLLNTEAR PROCESS

H! MNESSAGE FROM THE %ERIFICTION EXPERT SYSTEM!!

ihis is a con=a 2Wt saffe avprowh. yoU May %-Mt to use a simpkfrI ~ ~~d omveiaiionaliv chieane ininiiesimaI defoimion diboy

Sessi Fiished
* end

I Figure 8.20: Echo of the session with too comprehensive a mathematical model requested
by. the user.

I matical model for the problem, which could effectively be solved using simpler theories, In

particular, the wrench problem (Case 4) was analyzed using a large deformation theory and a
nonlinear solution algorithm. This required more expensi%e computations than in the simple

linear case. Thus the expert system issued a message to the user sufgesting the possibility
of switching to a simpler theory- The ec-ho of this computational ssinis presenhi'r in Fig.I 8.20.
Cace 6: Incorrect Combination of Mathematical Theorie-s

The last case considered here corresponds to a wiper blade analysis, discussed in Section

8.3. In this example, the kinematic theory was properly se!ected to be a large deformation
theory. However, the constitutive equations were assumed to be linear, described by Hiooke'sI law. Since the strains in the blade were actually large, application of Hooke's law was
incorrect. Thus a warning message was issued by the expert system. This message is shownEat the bottom of Fig. 8.7.
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Note that the exped system checked whether the deformations were actually large- If the
strains ure within the range of small strains, the combination of linear constitutive theory
with large deformation kinematics would have been accepted.

9 Conclusions

Tle theoretical analysis , literature surrey, general design, and numerical tests performed
in the project suggest that efforts toward automatic decision making in computational me-
chanics are definitely feasible and promise great payoff in practical applications. Once im-
plemented and operational, the automated version will greatly improve quality, reliability,
and time effiiency of the design by providing:

" Guidance for the inexperienced engineer through the maze of engineering software,
computational procedures and parameters.

" Assistance to the experienced designer in the selection of mathematical models, com-
putational strategies, verification of the design, and iterative modification of the model.

" Automatic control of the quality of the computational results, in particular keeping
the error within the prescribed limit.

* Minimizing the computational effort necessary to obtain good quality results by auto-
mated designing of an optimal mesh, optimal time step, load step, etc.

" Automated handling of computational difficulties (divergence, instability) based on the
expertise of the program developer and experienced user.

* Automatic learning capabilities, with the system's own experience growing with the
number of solved problems.

'he research performed in the project proves that developing an automated design en-

vironment is feasible and that it requires a combination oi various computer tools and tech-
niques, such as algorithmic procedures, CAD, computer graphics, and knowledge engineer-
ing. In particular, our work has shown that the techniques of knowledge engineering such
as expert systems, are mature enough to be effectively used in automated computational
mechanics. Nevertheless, it is our opinion that the potential of these systems should not
be overestimated and that methods based on rigorous mathematical foundations and well
defined procedures should be used whenever possible. Only in areas where such a precise
knowledge does not exist or is not complete, a heuristic approach based on expericnce aud
expertise should be used.
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- It is essential that this heuristic knowledge in the automated environment is handled by
II appropriate tools of knowledge engineering, such as expert systems. Although it is possible

to implement the expert rules in the form of classical if-then-else statements in the executable
code, there are many arguments for application of expert system software for this purpose.

The most important of these arguments are listed below.

3 1. The implementation of rules in the form of if-then-else statements is formally possible,
but it becomes extremely complex and time consuming for larger knowledge bases (say
hundreds of rules). Moreover, maintenance and update of these rules is very difficult.

2. Today's advanced inference engines can navigate through the network of objects and3 rules in a more efficient fashion than the sequential approach of the if-then-else type.
In particular, the same knowledge (rule) can be used for different purposes, depending

* on the current application of the expert system (induction, diagnostics, etc.).

3. In the knowledge engineering approach, the expert knowledge is stored in separate
knowledge bases, rather than being hardwired into the code. This enables easy de-
velopment and use of custom tailored expertise for different applications of the same
generic software.

I 4. With new emerging techniques of artificial intelligence it can be expected that the
automated environments using the knowledge engineering software will automatically

benefit from the progress in this field and from new capabilities, such as knowledge
acquisition, self-learning, etc.

9.1 Directions of Future Work

I The research performed during this project can be viewed as a feasibility study and proof

of concept for the development of an automated environment in computational mechanics.

Although the numerical implementations developed here were proven to be very useful and

effective in practice, the development of the ultimate, fully automated environment for en-
gineering design will require further intensive research. The basic directions of this research3 should include:

1. Further development of a rigorous mathematical background and heuristic knowlede

for the automated selection of mathematical models of physical phenomena.

2. Automated generation of finite element models, to include full interaction of CAD
modeling, mesh generation, and finite element software.

I
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3. Continuous development and improvement of adaptive computational techniques and
smart algorithms. This includes, in particular, h-p adaptive finite element methods,

-- error estimation, adaptive time-sepping, adaptive zonal methods, etc.

4. Further work on automated assessment of the quality of numerical results and auto-

mated model verification.

5. Automated structural optimization, including a combination of algorithmic optimiza-
tion methods with knowledge based support for qualitative changes in the design.

6. Development of an automated environment supporting a full cycle of the engineering

design process, to include model generation by CAD and solid modeling, automated

discretization, automated finite element analysis, computer aided manufacturing and
I automated cost analysis.

7. Continuous study of new computer technologies and methodologies, and their potential

I in the automated engineering design.

I
I
I
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* APPENDIX A

U A An Adaptive h-p Finite Element Method for Two-
Dimensional Problems

In this section we briefly present a system supporting simultaneous h-p refinements for an
* IAdaptive Finite Element Method (AFEM) for two-dimensional problems of solid mechanics.

This system offers the possibility of application of automatic decision making to obtain an
optimal finite element mesh distribution and control of the error of the solution. These

3I adaptive strategies, based on data structure presented here, are discussed in Section 6.2.

To represent the basic ideas of the h-p adaptive finite element method, consider a system
* of linear equations:

Find Uh E Xh such that (A.1)II a(Uh, Vh) = L(Vh) Vvh EXh

where

I * Xh = Xhx... xXh (n times), with Xh being a finite element space corresponding to
an adaptively changing irregular FE mesh consisting of quadrilaterals of locally varying3 size and order of approximation,

* a(., .) is a bilinear form defined on Xh x Xh,

1 e L(.) is a linear form defined on Xh.

Note the fact that the same approximation is used for each component of uh = (uh',.. .,Uh).

The bilinear form a(., .) is assumed to have the following form

n 1UKOVL+±2Z 9UK CLUVd
a(u,v) ,l aL X + E bKLJ-X-l v L + CKLUKVL dx

K,L=I ',~j=l i=1 (A.2)

+ +
K,: dKLUKVL ds
K,L=l

I and the linear functional L(v) takes the form

(v) = Z fKVK KZg-- dx
K=1 =(A.3)

n

+ ] hKVK ds
K =1
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UHere 9 OFisatwo-ienioa domuin (r laed i dpacie nithits FE ap - =ic)
with bounday M Cofkit X;L. 91CL, CwL, djrL, fx. rK hrj am g;i= functiomedUin fl or the bounday Offl, respecti*cI

Let us notice at this point that the apifnions for both the sdtion lw& and the ftedt

- function tijk are the same. This in particular implies that the essential -ondz camdifions
must be coded in using the penalty methodL

This presentation consists of thre ma*o paubs. In the -oxn section we describe theEbzsic data structure. Section -A-9 discusses the mesh - fiaion azgurithms wh&l Section
A.3 is devoted to a detailed presentation of the notion of the oid.-aied apprownatiom.

U A.1 The h-p Data Structure

IWe shall adopt the followig assumptions-

*The original mesh is (topologicafly) a portion of a reg War, rectangular mesh. In par-3 ticular all nodes in the mesh are regular and everm element has up to four neig-hbors
- - (elements a-ljacent to the boundary have les neighborTs)

*Every element may have up to nine nodes: four vertices. four mnidpoints of' the element
edges and a central node- The geometry of the element is uniquely pres-cribed by theg. coordinates of these nodes.

e During a refinement/unrefinement process. irregu-lar meshes of order 1 are acce. ted.

3 * There may be many degrees of freedom associated with one node

I A.1.1 Nodes and Degrees of Freedom

Node coordinates are stored in the standard way in an array

XNODE(24.

ISince, every element may have up to 9 nodes, it is assumed that by using these nodes, the
element can be deformed resulting in the subparametric deformation spanned by, at most,

biquadratic functions.

The variable number of degrees of freedom associated with a node suggests that we must3store all values of degrees of freedom in a sequential mode. This is done by using two arrays:

e A real array U(-) storing the degrees of freedom, and
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e an intee aryNADRES ()stoing aadirss ffa dgmo frdmsoepnn
to ode.

I Motre pmdly,, if L = NADRESt!NODE) then U(L) contains the %-Aue of the 5at~ degree of
firdo citeqadngto node itbe NOD&~ During the rcmU the nnwof dtgrees of fedmcorresponding to a node may be changed, the node mar

he deded, or a new node may appear. Thus, an amount of storage acted for degrees ofI freedom cresoding to a node mst v2zy in the progm..

U A-L.2 Connectivity

To represeat, ckenti connectiw5ities. we introduce the ar

1 NODES(9:

Iwhich contains for every aciire element up to nine nicknoames of the form

INICKNAM-%E = NODE * 100 -1. NORDER

Iwhere NODE is the node number and NORDER stands for the order of approximation
associated with the node. When an element is h refined, its -first-born son takes on its place
in NODES, while only the next three sons are assigned a new allocation in the arrav.

IA..1.3 The '[free Information

IWe store the tree information in a condensed, family-like fashion. f NRELEI denotes the
number of the elements in the inital mesh, the integer array

USN(RLI
Iis introduced with each refined element of the initial mesh containing the number of the first-

born son. Since the next three sons tak-.. on the next three consequtive numbers, NSONS
array allowvs us to determine all sons for the elements of the initial mesh.

I Whenever an element is refined, a famifly is being created- We store information about
the families in the integer array N R E5
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For aK-th family, NREE(1K) contains the number of the 'father', and the next four entries
are xeserved for first-born sons of the sons of the father shortly the first-born grandsons of theP.athe. When elements are being refined oi/y the new families are created in a consequtire

manner- If however, unrefinemnts take place, some of the familes are deleted and new
families take the place (and number) of the first free family entry-

A.1-4 Natural Order of Elements

Since new elements are created in a rather random way, and non-active elements preserve
their numbers, the natural question arises. 'How can one place all the active elements in
order?' In the code we propose the so-called natural order of dements based on the initial
mesh numbering and the tree information. Instead of defining the order formally we present
in Fig. A.1 a typical tree-structure for an initial mesh consisting of three elements. The
arrows indicate the natural order of elements. Of course. the non-active elements are dropped
in the order.

Let us finally mention that, if the elements in the initial mesh are well numbered then
the natural order of elements guarantees, at least up to a certain extent, a minimal band
width in the global stiffness matrix.

A.2 Mesh Modification Algorithms

A.2.1 p-Enrichments and p-Unenrichments

Two typical situations are depicted in Fig. A.2 If the modified element is of first order, new
nodes are simply added with a number of degrees of freedom corresponding to the required
order of approximation. In the case of a -big' neighbor, the new node is added as a midpoint
of the big neighbor edge (geometrically it coincides with one of the vertices of the element,
comp. top drawing in Fig. A.2) and as a result of the constrained approximation the new
shape functions are added to three elements simultaneously: the element, the 'big' neighbor
and the neighbor (of the same size) sharing the same edge with the big element. As a result
of a higher order of approximation of a neighbor, the element may already have some nodes
corresponding to the higher order of approximation. In such a case these nodes are only
modified and the new necessary nodes are added.

A decrease of the order of approximation is done in exactly reversed order. The nodes
are modified or deleted.
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I Figure A.1: The natural order of elements: 4, 5, 12, 13, 14, 16, 17, 18, 19, 7, 8, 9, 10, 20, 21,

22, 23, 3.
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- A.2.2 h-Refinements

0ftly 1-irregulat mehes- are accepted in h-refinement. This is equivalent to saying that an3 eiement may not have more than two neighbors on a side. The rule is enforced by the
folloWing stnple algorithm:

I "4Sot 1=1, NELA(I) = NEL
10 4 Determine up to eight neighbors of NELA(I) (at most two at a side)

. FOR each side of NELA(I)
. IF there is ony one neighbor on the side,

3n. say NEIG, THEN.
* determine neighbors of NEIG

e IF NEIG has two neighbors on the side common3 with NELA(I) THEN

- I=I+1, NELA(I) = NEIG
n GO TO 10

ENDIF
ENDIF

i" ENDFOR
* Break element NELA(I) into four sons

m * I = -1

* IF (I.EQ.0) THEN STOP ELSE GO TO 10.

Typical situations of an element refinement are shown in Fig. A.3. When the element is

of the first order, new nodes must be generated:

a on the element side, if the side is shared with two smaller neighbors,

* in the middle of the element.

Notice that on the sides shared with one element only due to enforced continuity, no new
nodes are added and the local degrees of freedom become constrained. If a higher order node

i exists on a side of the element, the node is split into three nodes, one node of the first order
and two of the same order as the split node. If the element itself is of a higher order its3 central node is split into 9 nodes:

* four central nodes

I e four midpoints of new elements common edges and

I • one node of the first order occupying the geometrical position of the original node.
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A.2.3 h-Unrefinements

The-essential difference between the h-refinements and h-unrefinements is the conditionality
of unrefinements. When required, the h-refinement of an element is always done and as a
result of the enforced '1-irregularity rule' the element neighbors may be refined first. In order
to unrefine a previously refined element the following conditions must be met:

1. the unrefined element may not have more than two neighbors on a side,

2. the four 'sons' central nodes and four boundary nodes, generated formerly, must be of
the same order.

If two boundary nodes of higher order, belonging to the same side of the father element,
have different order, the same (maximum) order is enforced.

A.3 A Linear Problem Solution

We consider an abstract linear problem in the form

Find Uh E Xh such thatI (A.4)
ah(Uh, Vh) = Lh(Vh) VVh E Xh

where Xh is a FE space corresponding to the existing mesh and ah(',") and Lh(') are FE

approximations to the bilinear and linear forms defined in the Introduction.

The FE approximation is assumed to be continuous, i.e., Xh is a subspace of functions
continuous on ?.

A.3.1 Constrained Approximation

We assume that domain Q can be represented as a union of quadrilateral or triangular finite

elements Ke, e = ... , M. More precisely,

M
- UKe (A.5)

e=i

where

intKI n intKf = 0 for e # f
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I" p injition on the element level.

S 'Let K be a finite element with the corresponding space of shape functions

Xh(K).

S The element degrees of freedom NK, as usual, are viewed as linear functionals defined on
Xh(!). We assume that the set of degrees of freedom

I {i,K Xh(K) -4RIi E NK} (A.6)

- is Xh(Kf)-unisolvcnt. This in particular, implies that

10 pi,K, i _E NK are linearly independent

2* EiiiAK, i E NK is a dual space to Xh(K)

The shape functions XI,K are defined as a dual basis to coi,K, i.e.,

< Oi,K, Xj,K >= ij ij E NK (A.7)

and the FE approximation Uh within the element K is sought in the form

Uh UhXi,K
iENi<

where u, = i,K(Uh).

In what follows we restrict ourselves to Lagrange and Hermite-type of degrees of freedom
only. In other words, we assume that each of the functionals Vi is of the form

u --+DkXu( I,.., k=O0, 1,... (A.8)

where D u denotes the k-th order differential of u evaluated at point x (as usual, D~u =

u(x)). Vectors k,..., at this point denote arbitrary vectors in 2. Thus, every degree of
freedom can be identified with a point x and k vectors 1,. k

Construction of the unconstrained finite element space Xh.

We introduce the following formal definition of the unconstrained finite element space Xh:

Xh - {Uh :2- IuhlKEXh(K) Vx
such that: VK,(Uh/K) = (PK,(Uh/Kf)

for every two elements KeandKf
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and degrees of freedom VK,: Xh(K,) -+ R, (A.9)

p Kf Xh(Kf) -R such that wK. and CPK!
;I are defined .through the same common point x

and vectors .. •,..

* '(A.10)

Example. Consider a mesh of three rectangular Q2 elements with standard Lagrange
*! ! degrees of freedom. As shown in Fig. A.4. As one can see a function Uh E Xh need not
*a to be continuous. This is due to the presence of two irregular nodes A and B. At node A,

'for instance, associated with a degree of freedom for element K 2, from the point of view
: 2*. of element K 2 function Uh can take on an arbitrary value, while at the same point A , but

treated as a point from element If,, the value of Uh is determined uniquely by values at
points C, D and E. In order to make the approximation continuous the value of uh at A
from the side of '2 must be forced to be equal to the value of Uh at A from the side of K1,
which is equivalent to the elimination of the degree of freedom associated with point A by
S enforcing the constraint

uh(A) = auh(C) + Puh(D) + -yuh(E) (A.1l)

with proper coefficients a, fi and -,.

Global degrees of freedom

*Due to the construction of the space Xh we can introduce the global degrees of freedom
identified by points (nodes) x and vectors 1,..., k. Formally, for every such point x and
vectors we define the linear functional 4 on Xh

D:X -, (Uh) = CPK(6 h1K), (A.12)

I where K is an element with the corresponding degree of freedom identified with point x and
vectors ,... k. Note that due to the definition of Xh the global degrees of freedom are

I* well defined.

The unconstrained base functions

The unconstrained base functions , are introduced as a dual basis to the space of the global
degrees of freedom, i.e.,

j, = (A.13)

I Note that ai may be discontinuous.
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:I Construction of the constrained finite element space Xh

I At this moment, somewhat arbitrary, we classify all global degrees of freedom into two

'subsets:

- the set N" of active degrees of freedom and

, the set NC of constrained degrees of freedom

We assume that for each constrained degree of freedom 1i, i E N', there exists a set 1(i)
of corresponding active degrees of freedom, 1(i) C N, and a vector Pj,j E 1(i) such that

thefolloWing equality holds

Ci(Uh)= E RjDJj(Uh) (A.14)I .iEI(i)

We introduce now the constrained finite element space Xh as

1Xh ={Uh E h IC(Uh) =E Rigj (D Uh) V iENc} (A. 15)
j~I(i)

I Assuming that the constraints are linearly independent we obtain the simple fact that
Xh is dual to the space spanned by active degrees of freedom only. As usual, we define the

base functions e,j E Na as a dual basis to the set of active degrees of freedom:

e1 E Xh , ((Di, e1 ) = 5iS ij E Na (A.16)

Though, at this point the choice of constrained degrees of freedom is arbitrary, we im-

plicitly assume that with the proper choice of constraints the resulting finite element space

Xh consists of continuous functions only (compare the example).

I Relation between unconstrained and constrained base f unctions

Let uh be an arbitrary function from Xh. Then Uh must be of the following form

Uh E UAe + E Uje1
iENa jENC

iENa jEN kEI(j)

I Introducing for every i E N' the set

* S(i) = {j E NIiI()}
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I:we rewrite Uft. in the -form.
Uh = tF Z ~+Z ZUkRikei

iEN6  kENa jES(k)

uj + 3ES(t)i)

I .: (A.17)

IWecamta functions

IES(i)fl.form.the dual, basis to functionals (Di, i E N. Indeed

( j, j)= (4j, ) + E Rki j,&k)= 8j since S(i) C N'1.11 kES(i)

Calculation of the global load vector and stiffness matrix

H / Substituting (A.18) into both sides of (A.4) we get the formulas for the loaded vector and
stiffness matrix.

Lh(ei) = Lh(Fi) + E RkiLh(&k) (A.19)
kES(i)

ah(eie 1) ah(Fij)

+ Rka(F, aj)
IES(i)

+r Rjah (Fi, 91)

+ E Risja~a,)i

kES(i) IES(j) 
(A.20)

A.3.2 Element Level Revisited - Modified Element Stiffness Matrix and Load
Vector

Consider an element K. Let NC(K) and NC(K) denote active and constrained degrees of

freedom. Assuming that, as usual, the load vector and stiffness matrix are calculated by

summing up the contributions of all elements, i.e.,

Lh(Uh) = E Lh,K(UhIK) (A.21)

* K
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aid, ah(uh, Vh) = Z ahK(Uh/K, VhIK) (A.22)

K

we-arrive at the practical question, 'How does one calculate the contributions to the global
'load, vector and stiffness matrix from element K?'

We introduce:

-the usual element load vector

"bi,K = Lh,K(Xi,K) i E N ' u NC (A.23)

' * and the element stiffness matrix

aiK = ah,K(Xi,K, Xj,K) ij E Na U N¥c (A.24)

e the set of associated active degrees of freedom

N(K) = Na(K) U U I(j) (A.25)
- iENc(K)

Notice that the two sets on the right-hand side of (A.25) need not be disjoint.

e ethe element contribution to the global load vector (modified element load vector)

bi,K = Lh,K(ei/K) i E N(K) (A.26)

* the element contribution to the global stiffness matrix (modified element stiffness ma-
trix)

aij,K = ah,K(eI, ej/K) i,j E N(K) (A.27)

I A.3.3 An Example

Definition of the hierarchical square QP master element

Setting fk = [-1,1] x [-1,11 we define the space of shape functions as

Xh(K) = QP(Kf) (A.28)

where QP denotes the space of polynomials up to p-th order with respect to each of the
variables separately.

The degrees of freedom are defined as follows: function values at four vertices:
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tangetial desiratives (up to a nwltipfiattie ) up to p-thc " awih be
midpoints of t-z four edges:

Ia -L

itI& ([ - 0.1!) k= 2.....P

mixed order derivatives associated with the central node

I- 13- 0 .0) k. = 2: ... p (A)0

I One can easily see that the space of the shape functions QP(k) is a tensor product
of P (-. 1) with itself and the degrees of freedom just introduced are simply the tensor

I products of the degrees of freedom for the I-D element. More precisely, if u E QP then u is
of the form

U(X- Y) '?;=XWv

where vk. wk E P?(-I 1). then each of the degrees of freedom can be representd in the
* form

( : .) = u( ~ 0 . ( ,tt)

= UIpi(Vk) - I'j(Wk)

This in particular implies that the corresponding shape functions can be identified with the
i tensor products of 1-D shape functions which are of the form

I Xi(x)Xj(y) i,j = 0,1,...,p (A.31)

For ij = 0, 1 we get the usual bilinear element with four nodal degrees of freedom.

1
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I.

I Master elment of an enriched order

iLe K be the &de= of the p-order. By adding addibtial shape functions correponding
to thme (p+1-)th orde 1, topffier with the coesonig degrees of freedom, we get a well

dfned fimite, eemet whose spce of shape ucikes includes mcwe than QP- In particular,
I by adding all the additiol degrees of freedom corresponding to the (p+ 1)th order, we pan

to the demet QP' xwflidnifoiwg the existing shape functions and degrees of freedom.
EquIt2lenilh we can stadz with an dement 0O1' and eliminate some degrees of freedom

I p3sing to an uncompleteelement of a lower order.

I Subparametric hierarchical elements

Consider the master dement of (possibly) an uncomplete order p. Even thou-h p can be
I arbirarily large, the element may be only Q'-complete, which means that some of the nodes

may be nmssing. An example of such an element is presented in Fig. A.6. An arbitrary
I location of the seven nodes in the plane (z, y) determine uniquely a map T from the master

element into R, the components of T belonging to the uncom'piele ,' space. More precisely.
i" - 1 . are the regular shape fiuncions for the nine nodes bj-uzd.atic, elteneh'..

E then
|9

T4-. A)= a-(.i. ~)(.32)Iwith the assumption that a, = !(a 2 - a-) and a, = 4(a3 + 0.

We have the classical definition of the subparametric element

K = T(K) (A.33)

I with the space of test functions defined as

Xh(K) = {u = fi -T-Ifi E XA(K)} (A.34)

and the degrees of freedom

I < P.u >=< 0, fi > where u = i o T- ' (A.35)

Interpretation of the degrees of freedom

3 The degrees of freedom associated with vertices are simply the function values evaluated
at these points. The degrees of freedom associated with the midpoints of element edges

I and central nodes are more complicated. It follows from definition (A.3-1) that they may be
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interpreted as certain linear combinations of directional derivatives. The form of directionalI or mixed derivatives appropriate for the master element is preserved only if the map T is
linear.

To be precise, all the definitions discussed in the previous section should be generalized to
include-the case of degrees of freedom defined as linear combinations of the Hermite degrees
of freedom. We leave it for the reader as a simple exercise.

Constraints in the one dimensional case

We choose the scaling factors A,, in (A.28) in such a way that the corresponding shape
functions for the 1-D master element have the following form

X1
1 ~ X = 1-)

IP -p~ I p =2,4,61 ...XP f,() - f p =3,5,7,.- (.6

I In order to derive the explicit formula for the constraints coefficients R,3 (compare
(A.14)), we consider three 1-dimensional elements: the master element (-1,1) and two el-
ements (-1,0) and (1,0). Assume that all degrees of freedom for the 'big' element are active.
The question is: what are the values the degrees of freedom for the small elements to be
taken on so the functions spanned on the two small elements will exactly coincide with shape

I! functions of the big element.

From the fact that (A.29) is a dual basis to (A.37) we get

V(P)= 1-p!- 1 p = 2,3,... (A.37)

I and therefore AP 
= p!

The transformation map from (-1,1) onto (-1,0) is of the form

1 + (A.38)
2 2

I with its inverse = 2x + 1.

This yields the following formulas for the shape functions IXp,p = 0,1,2,... For the
* (left-hand side) element (-1,0) (compare definition (A.35)).

xo(X) = -x
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X,(x) = X+1

Uxp(X) = 1 -(2x + 1)P p 2,4,6,...

iI 'x(X) = (2x+1)P-(2x+i) p=3,5,7...
(A.39)

I and the corresponding formulas for the degrees of freedom (compare (A.36))

<'oU > = u(-1)

<1 W,,u > = u(O)
1 u -1)

2Pp! dxP(2

ii (A.40)

Now let u(x)(x = ( for the master element) be any function spanned by the shape
I functions on (-1,1), i.e. k

u(x) = q(u)xq() (A.41)
q=O

In order to represent u(x) for x E (-1, 0) in terms of the shape functions on (-1,0) we
I have to calculate the value of the degrees of freedom (A.41). We get

k
<1 = cpo(u)<' oxo>+ECpq(U)<, Poxq)

q=1

I = < cpo,U >

< I ,U > - O(U) <l V1,Xo > +WI(U) <1 1,X1)

k I+ E Wq M <' I. xq >
q=2

I =1 1
= -2 < Po,u > +-2 < V1, U > + -E Rql < Oq, U >

where 'Rq = < 1,Xq > q2

I ifqis even

0 otherwise

I
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Ikaad for p 2

k<I(PU WO(U)<Ip,O>+Ej~q(U)<,VPp,q>
q=1

1:111
where

1Rqp = < ITP, Xq >

01J for p
- 1 (- 1)P+q q! (A.43)

(D =q orq
2( P 2 p!(q -p)!

We apply the same procedure for the 'right-hand side' element (0,1) getting the following:

the transformation from (-1, 1) onto (0, 1)

x 1+ (A.44)

with its inverse = 2x - 1.

the shape functions rXP, p = 0, 1,2,...

i TXo~v) = 1-x
rx(x) = x

r TX(X) = j 1- (2x - 1)P p even 
(A.45)r xP(x) = (2x -1)P - (2x -1) p odd

3 the degrees of freedom rpP

< r WO, u > = u(O)

i <r lu > u(1)

i 1 dPu 1

(A.46)I
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the eonstraihts

-m < Wo, u>=i <WO, u> +2 < Wol,U > +E rRqo < oq, u >

I WherZe

rR gohe r1 ifqiseven
rRq° = 0 otherwise

<rW1I U >__< Wl, u >

and for p > 2
k

. < p, U >= Rq < Vq, u >
q=2

'I where

rRqp = <r (q,Xq >

0(q for q<p

I An example of the two arrays 1Rqp, rRqp, q, p = 0,..., 5 is presented in Fig. A.7.

I Constraints for the subparametric elements

Since the shape functions for the 2-D master element are defined as tensor products of the
1-D functions the results for the 1-D case hold exactly in the same form in the 2-D situation,
with the only difference being that the calculated constraint equations have to be appliedU to the proper degrees of freedom (compare Fig. A.8). It follows from the definition of
the subparametric elements that the constraints coefficients are exactly the same even when
the elements have curved boundaries. This follows from the fact that the shape functions'

behavior in a subparametric element on a part of its boundary depends exclusively upon the
deformation of the part of the boundary, and therefore, any relation defined for the shape3 functions in the generic situation (on a master element) carries out immediately to the case
of two 'small' elements sharing an edge with a 'big' element as long as the deformation of

I the edge is identical in all three elements. The situation is illustrated in Fig. A.8.

1
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'112

1 1

I.- 1 /2

i Rqp 0 -3/8 1/8

1 6/16 -4/16 1/16

0 -10/32 10/32 -5/32 1/32

1 15/64 -20/64 15/64 -6/64 1/64

1/2

1/2 1

1 1/4

r Rqp 0 3/8 1/8

1 6/16 4/16 1/16

0 10/32 10/32 5/32 1/32

I 1 15/64 20/64 15/64 6/64 1/64

I
I

Figure A.6: The constraints coefficients for the sixth order of-approximation. The unfilled3 coefficients are zero.
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Figure A.7: Illustration of the constraints for the subbarametric elements.
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A
* APPENDIX B

B Solution of Large Deformation Elasticity Problems
by the h-p Finite Element Method

I In order to demonstrate the techniques of artificial intelligence, we shall apply some of these
concepts to the problems of elasticity involving large deformations. This class of problems
was selected because its inherent nonlinearities allow solutions that depend upon the manner
in which loads are applied. A conventional approach will be taken for these problems wherein
the body to be studied is at first in an undeformed state called a reference configuration.
Loads are then applied in a certain order and their magnitudes are increased until the desired
loading configuration is obtained. The final deformed state of the body often depends upon
the manner and rate in which these loads are introduced and so their aplication is a practical
way to implement techniques of artificial intelligence. Namely, artificial intelligence methods
will be used to select the loading manner so that an acceptable solution is obtained, preferably

with a minimum of effort. Unacceptable configurations and/or solutions would be detected
during the solution process and corrected using an intelligent decision making system.I
B.1 Problem Formulation

I Elasticity problems are typically formulated with respect to two possible coordinate systems:
a referential system associated with the undeformed configuration of the body and a current

I system reflecting the position of a deformed body. Figure B.1 shows a body in the two
systems and denotes quantities with respect to the reference configuration by capital letters

* and quantities with respect to the current configuration by lower case letters.

1
I
I
I
I
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I IiUX2 nl B
x

Current System

X

Reference System

Figure B.I: Reference and current coordinate systems for a body experiencing deformation.

I For simplicity, we shall always take the current coordinate sys: o coincide with the
reference configuration (thus using a total Lagrangian description). il order to reinforce the

I idea that all quantities are with respect to the reference system, capital letters will be used
in almost all index notation.

I1 Strain:

Since finite strains are admissible, Green's strain tensor will be used:

Ei= 1 (uIJ + UJI + UK,IUK,J)

where the displacements uj represent the changes in location of particles in the body.

I U1 = XI - XI

* Stress:

The second Piola-Kirchhoff stress tensor will be used in the stress/strain law according to:

TIJ = T (EKL)

Notice that this stress tensor is related to the Cauchy stress tensor by:

TIj = det(F)FTiF-'Tij
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w-here-F is'the deformation gradient

its inverse= XI,i

I Equilibrim equations:

In Lagrangian coordinates, the equations of equilibrium can be written as:

Sj, j + fi = 0

where Sij is the first Piola-Kirchhoff stress tensor and fi is the body force referred to the

area in the reference configuration.

In terms of the second Piola-Kirchhoff tensor, these equations become:

(TIJFJK),I + fK = 0

where, by virtue of the choice of coordinate systems:

FJK = FjK = Xj,K = 8JK + UJ,K

I Thus, in terms of stress and displacement the equilibrium equations can be written:

[(8IK + UIK) TKJ], + fh = 0

Notice that even if a linear relationship between stress and strain is used, the equations are
still nonlinear with respect to the displacements due to the mixed derivative terms in the

strain tensor.

* Boundary conditions:

Suitable boundary conditions for this problem might include prescribed displacements (with
respect to the reference configuration) on a portion FD of the domain boundary

ul = i i on PD

and prescribed tractions on the remaining portion P of the boundary

SjjNj = tI on rt

or:

TIj (SJK + UJK) NK = tJ

where Nj is the normal to the boundary on the reference configuration and tj is a prescribed

surface traction also with respect to the reference configuration.
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B.2 Variational Formulation

Multiplying the equilibrium equations by a test function, integrating the result over the
p'roblem domain (in the reference configuration) and applying Green's identity, we arrive at

the variational formulation

I j T1j8E1 jdf j v~dn + j jT~vo

-where the variation of Eij on v is denoted SEIj where

I EIJ (SIK + UI,K) V,

*The above formulation corresponds directly to the principle of virtual work (merely replace
the test function vj by a virtual displacement 8up). Furthermore, this formulation is nonlinear
since T1j is a nonlinear function of u and in general, the body force fI and surface tractions
t1 may depend upon u.

At this point, our problem may be stated in terms of the variational formulation accordingI to:
Find u E H such that the variational formulation is satisfied for all v E V.

In this case, our space of trial functions consists of }N
H {w E [H()]: w=fuonFD

and the space of test functions

V{v E [H1(n)]: v=OonrD

where in both spaces N is the dimension of the problem.I
B.3 Approximate Problem

I The spaces of the variational problem can be restricted to finite element subspaces of H and
V according to:

UI = Uia.a E Hh C H
I M I

M

vI = T V V O EVhCV

where u¢c is the degree-of-freedom for the J-th component of u associated with the shape
function ¢ and M is the total number of shape functions per component.
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, - Substituting these expressions for the finite element trial and test functions into the
Variational formulation, we obtain:

5 j TIJBIJKLVKbO,,Ldfl fjvj.7b.dI

+ IT tivtoakdP

where BIJKL =(651K + U1,67kbI,K)6JL and represents the nonlinear geometric matrix:

BIJKL -- OUK L

I This formulation can be written as the set of equations

3 fJTKjBKJILCY,LdO = jfiObdn

I+ 'TiOf

where we have an equation for each combination of component I and shape function a.

B.4 Solution by Newton's Method

I Although a varitional form of the finite element problem has been obtained, it must be
linearized before a solution can be computed. In order to accomplish this, a simple iterative3 technique based upon Newton's method shall be employed.

First we write the system of nonlinear equations as the functional

'I,. = I,. (ujp) = Lir. - Ricr = 0

where Lia and RI, are the left and right hand sides of our nonlinear equations:

Lia . TKJBKJIL)c.,LdQ
* and f

Ri. = jo,,cdQ +ftibcdr

* Thus our problem may be stated:

Find a set of degrees of freedom, uj such that

lic (uj6) = 0

156

!
!I



for eyery f I and m

Expanding I. in a laylor sars about a partiaular gum i j

I,i ( I4 + - I,_ . (4c) + 4.. ( )

i Notice that if the loads associated with the problem are changing in time that It, s Za a
function of time. We assume, however, that all timt l am k o- at.
that time is u ant since we are concerned only with a final steady-state so utiom
Namely. this formulation is quasis-tatic in the sense that at an indimaed moment in time.
the values of any time-dependent loads are known and a steady-sate solution is sougL

Truncating the Taylor series after the first term and setting the left hand side equal to
zero. we obtain the iterative scheme

I = -I (160)

-where Kl,,ap is the tangent stiffness matrix defined according to:

U = OKicr (U =
OUJO

For the case where only Lia is a function of uj, the tangent stiffness matrix may be written:

j aI /oo

since
I(-) _ (-) Ou s -

E Expanding the derivative:

Ki.o = CMvpQBpQjsBMNIL¢VOSV&,.Ldf

+ j TMNGMNILJST,S50,.LdQ.

where: TNCMNPQ =- OTM

M~pQ
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II
is ufuall a temow of t e pa t osas and

GUNXILJS =BMS

simpll~ to:
i Gu,,,,Li$ = kx"LbjufSf

Using this s itetions are pezformed until

DeC4 < zd

Band
I The converged iterate can then be used as the first guess for ahe new loading configuration at

the nee, moment in time- This process is then repeated until a conveiged solution is obtainedU for the final loading confiiguration. A flow chart in Fig. B.2 summarizes the solution process.

I
I
I
I
I
I
I
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U
*APPENDIX C

* C Listings of Knowledge Bases for Coupled PHLEX-
NEXPERT Environment

I This appendix summarizes listings of knowledge bases developed in the project for an au-

tomated PHLEX-NEXPERT environment, discussed in Section 8. These listings follow the

actual structure of NEXPERT's knowledge base files. For simplicity, some of the items not

necessary for the presentation of the basic concepts have been left out.

Each listing presents a definition of classes and objects (including name and slots).

metaslots associated with selected slots and rules. Each rule has a left hand side in theIform of conditions. a boolean hypothesis and a right hand side. which defines additional ac-

tions associated with this rule. A more detailed explanation of these concepts can be found

in the NEXPERT OBJECT manual (proprietary document of Neuron Data, Inc.).I
C.1 Strategy Selection Knowledge Base

I This simple expert system selects the type of solver for the finite element analysis. The

solvers presently available are frontal and iterative. The list of objects and rules is presented
* below.

Objects

(OBJECr= Code
(PROPERTIES=

frontaLsolver
itemrative_solver
ndofs
ordering)

(OBJECT= Itslv
(PROPERTIES=

accel
eps
freq
ifgs
maxit
print

)

(OBJECT= solver
(PROPERTIES=

ndof.maxfrnt
ndof..optrfmt
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3 Meta-slots

3 (SLOTr= Code~ordering
QmnFPAL=- 0)

3 (SLOT= solvcrandofmax _flux
(SOURCES--:3 Retrieve Ckbases/solvermup"))

(SumT solvermriofopt flux
(SOURCES--

(Retrieve Ckbases/solvermnx))

Rules

(RULE-- front-smallnel

I< (Code-rldofs-solvermndoC~opt fln) (0))

(HYPO= Codefronta1_.solver)

(PS-(Let (Codeireratve solver) (FALSE))

U(RULE-- frontgood-ord
(LHS=

(< (Codeaidofs-soiver.ndoLmaxjfmr) (0))
(<-- (Code.ordering) (2))

(HYPO= Code.frontalsolver)
(RHS--

(Let (Code.iterarive..solver) (FALSE))

(RULE-- Iterative*1 (LHS=
(No (Code.frontaLsolver))

(HYPO= Code.irerative...solver)

(Retrieve ("kbases/solver.nxp)
(FIELDS="Itslv.accel","Islv.eps","Itslvifrcq",\

) Isvig""tl~ai""tl~rn'
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3C.2 Performance Control Knowledge Base

This expert system monitors the performance of computations, in particular of Newton-type3iterative procedures for nonlinear problems. A general structure of this system is presented

in Section 8.3.2.
Objects

(OBJECT= Code
(PROPERTIES--

delt
deltnew

ernew
ertol
miter
mimnew
niter

3(OBJECT= User
(PROPERTIES--

nintyp

(OBJECT= Noni
(PROPERTIEZ

c inverged
converges
convype
decided
decision
divjsolprob
diverges
ertolmi
ertolmx
fixederrol
mbacked
mitadd
mitnax
nbacked
need_back~off
optniter
reset
reseted
stagnates

(OBJECT= SolverI (PROPERTIES=
problem
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Meta-slots

(SLOTr= Usermuntyp
FROMFr7=Specify type of contrl of nonlinear problem:";
(SOURCES--

(AskQuestion (User.ntyp) (NOTKNOWN))

(SLOT= NonLerwolmi
(SOURCES--

(Retrieve C'kasesffonldamnp")
(RumTime Value (l.Oe-6)

(SLOT= Nonl.erzoknx
(SOURCES--

(Retrieve ("kbases/honldatnxp")
(Runlime Value (0.01))

(SLOT= Nonlmbacked
(SOURCES--

(Retrieve ("kbases/honldat~np")
(Runlime Value (4))

(SLOT= Nonlmitadd
(SOURCES--

(Retrieve ("kbases/nonldatnxp")
(RunTime Value (3))

(SLOT= Nonl.mitmax
(SOURCES=

(Retrieve ("kbases/honldat~nxp")
(RunTime Value (20))

(SLOT- Nonl.nbacked
(INITVAL=- 0)

(SLOT= Nonl.optniter
(SOURCES=

(Retrieve ('kbaseshonldat.nxp')
(RunTimeValue (6))
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(SLOTr= NoaLreset
(CACTONS=-

(Reset (Nontdecided))
(Reset (Nonafixedertol))
(Reset (NonLdivsolprob))
(Reset (NonLreseted))
(Do (Codemriter) (Codemnew))
(Do (Code.deltat) (Codedeltrew))
(Do (Code errol) (Codexerew))

(SLOT= Solver.problem
(SOUJRCES--

(Runlime Value (NOTKNOWN))

Rules

(RULE-- Nonlrjeseted
(LHS=

(Yes (Nonlreset))

(HYO= NonLreseted)
(RHS=

(Reset (Nonil.reset))

I(RULE--Nr ovre
(LHS=

(Is (Nonl.convtype) ("converges"))I (fYPO= Nonliconverges)

U (RULE-- Too-imanyback
(LHS=

(Yes (Nonl.need back. off))
(> (NorI.nbacked-NonI.mbacked) (0))I )(HYPO= Nonl.decided)

(RHS=
(Let (NonI.decision) ('terminate"))
(Show (kbases/stopnonl.txft)

164



(RULE-- Noni-converged
(LHS=-

(Yes (NonLconverged))

(HYO= NoniLdecided)
(RHS--

(Lt (NonLdecision) ("conttime"))
(Do (Code.deltat,*NonLopmiter/Codenier) (Codedeltnew))
(Strategy (@EXHWRD--FALSE;))
(Do (0) (NonLnbacked))

(RULE-- Noilback _off

(IS (Yes (Nonkneedbackoff))
(<-- (Nondnbacked-Nonrnbacked) (0))

(HYPO- 'NoriLdecided)(RS-
(Let (Nonldecision) ("back..off'))
(Do (Nanlnbacked+l) (Nonl-nbacked))

(RULE=- Noanalysis
INFCAT=20;
(LHS=

(IsNot (User.runtyp) ("automatic"))
(Is (User.runtyp) ("algorithm"))I )(HYPO= Nonl.decided)

(RHS=
(Let (Nonl.decision) ("]Lrefuse"))
(Strategy (EXHBWRD--FALSE;))

3(RULE-- Extend-miter
(LHS=

(Yes (Nonliconverges))
(No (NonI.canverged))
(<= (Code.miter+Nonl.mitadd-Nonl.mithnax) (0))

(HYPO= NonLdecided)
(RHS=

(Let (Nonl.decision) ("contiter"))
(Do (Codemiter+Nonlrnitadd) (Code.mirnew))

1(RULE-- Noni-div-due-to-solver
(LHS=

(Yes (NonI.diverges))
(Yes (Solver.problem))

(HiYPO= Nonddiv..solprob)
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I (RULE-- NoniLdiverges
(LHS--

(IS (NonLconvtype) ("diverges"))

U (HYPO=- NonLdiverges)

(RUJLE-- Checlcerrolxni
(LHS=

(Yes (Nonl.converges))
(Yes (Nonl.stagnates))

(< (Code.ertol-Nonl.ertolmi) (0))
(1 (Code.error-Nonl.ertolmi) (0))

(HYPO= Nonifixedertol)
(RHS--I(Show ("kbases/fixertolmi.txt")

(Do (Noni.errolmi) (Code.ertnew))

(RULE-- back -offstagn
(LHS=

(Yes (Nonl.stagnates))
(No (Nonl.converged))

(HYPO;= NonI.need-back-.oft)
(RHS=

(Do (Code.deltat/2.0) (Code.deltnew))

3 (RULE-- back-off div
(LHS=

(Yes (Nonl.diverges))
(No (Nonl.converged))U ~(HYPO= Nonl.need..ack.off)

(RHS=
(Do (Code.deltatt2.0) (Code.deltnew))

(RULE-- Nonl-stagnates

(H= (Is (Nonl.convtype) ("stagnates"))

(HYO= Nonl.stagnates)

(RULE-- Change~sonvergence
(LHS=I(Yes (Noni.converges))

(No (Nonl.converged))
(> (Code.miter+NonI.mitadd-Ndnl.mitmnax) (0))

(HYPO= Nonistagnates)
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I
C.3 Result Verification Knowledge Base

This expert system performs the verification of the final results, in particular the correctness
* of the mathematical model, the satisfaction of basic design criteria, etc. A general structure

of this system is presented in Section 8.6.
Classes and Objects

(CLASS=solids
(PROPERTIES=

ar._eps90
arstrgO
dimmax
dimmin

dispmax
dispmin
disnmax
epsmax
epsmaxabs

finrotmax
finrotinin
largejigidrot
largerot
mattype
rotavg

rotmax
rotmin
rotrigid
small..displ
smallrot
str _eff

strlimel
strmax
strmaxabs
strmin
theory-disp
theory-mat
theory.strain

(OBJECT= solid-generator
(PROPERTIES=

n
new.solid

(OBJECT= Versolid
(PROPERTIES=

areasmall
disrbig
disrsmall
epssmall
rotdifsml
rotsmall
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3 Meta--slots

(SLOT= solld-generatormn
(ITm/AL 1)

(SLOT= Versolid.areasmall
(SOURCES=;* (Retrieve ("kbases/verdatmnp")

(RunTime Value (0.05))

(SLOT= Versolid.disrbig
(SOURCES=

(Retrieve ("kbaseslverdat.nxp")
(RunTime Value (5.0))

3 (SLOT= Versolid.disrsmall
(SOURCES=

(Retrieve ("kbases/verdatmnp')
(RunTime Value (0.05))

(SLOT= Versolid.epssmallI (SORCS(Retrieve ("kbases/verdatmnp")
(RunTime Value (0.05))

(SLOT= Versolid.rotdifsml
(SOURCES=

(RunTime Value (3.0))

(SLOT= Versolid.rotsmall
(SOURCES=

(Retrieve ("kbases/verdatmnp")

(RunTime Value (6.0))
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3 Rules

(RULE=- excess.Aispl

(LHS=
(>= ((IsolidsI) .disrmnax-Versolid.disrbig) (0O0)

(HYPO= lesiv.displ)

(RULE=- large - idipl
(LHS=

(> (<Isofldsl>.dotismia-Versolld.dissmall) (0.0))

(HYPO= largej...dpl) xst

I (RULE= large..ii.ot
(LHS=

I> (<Isolidsl>.rorigid-Versolid.rotsmal) (0.0))

(HYPO= large.rdjot.exis)I (RHS=
(Let (<Isolidsl>..argejii.rot) (TRUE))

(LHS=
(s (<Isofidsl>.rmattyersolid ol)) (.)

(HYPO= moneypjesolved)
(LHS=

I (RHS=(Let (<dsolidsI>.theory_..sti) ("e lastic")) n")

(Let (<!solidsl>.theory-s.ma) ('e lastic"))"
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I(R ULE--ho-rsle

(Is (<Isolidsb..mattype) ("Hooke"))

(HYPO= matqy.resolved)<I ~ ~~~~(slds>Ser=..tan (mlsr)

(Let (<Isolidsl>.theory_.Mat) ("elastic"))(LtIIodI.hoy.5ri)(salsn)
(RULE-- mayjargestrainsU (LHS=

(> (<Isoldsl>.epsmaxabs-Versolid.epssmall) (0.0))
(<= (.dsolidsI>.epsmaxabs*0.9-Versolid.epssmall) (0.0))
(IsNot (<Isolidsl>.theory..strain) ('large-strn"))
(<= (.czsoidsl>.ar..eps9-Versofld.areasmal) (0.0))

(HYPO= mayjarge..surains)

(RULE= may.smalldispl
(LHS=

(IsNot (<dsolidsl>.theory-.disp) ("smalLdisp"))
(< ((Isolidsl).epsmaxabs-Versolid.epssmall) (0.0))
(< ((Isolidsl).rotmnax-Versolid.rotsmal) (0.0)
(< ((Isofidsi).disrm ax- Versolid. disrsm all) (0.0))

(HYPO= may..smalU-disp)IRS
(Show ("kbases/may..smdis.txt)

(RULE= need -large..disp2
(LHS=

(> (<IsolidsI>.epsm axabs*0. 9-Versolid.epssm all) (0.0))
) I~t (Iois>teryds)(Ireip)

(HYPO= needjarge.disp)

(RULE= needjarge.displ
(LHS=

(> (<IsofldsI>.epsmaxabs-Versolid.epssrnal) (0.0))
(IsNot (<Isolidsl>.theory..disp) ("large..disp"))

(> (<Isolidsl>.ar eps9O-Versolid.areasmall) (0.0))

(HYPO= need...arge-disp)
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(Yes (<Nv sUP)=

MOOL = =-4-PS7=

:1yp- need lrg: -S rn)

:1 > (<sts~m-iVmdaS21 (0-0))
(> d-sobdsb>.rOmmflO 2SC<!Soids>-roWm ) (0-0))

C~e (excessive...ispl))

("Y1- poss-:o-.sppon)

(Show Ckbascslno.supprd.xt)

(RULE-- poss nio_supportr

CLSI( (<Iso~idst>.rotmin-Vcrsoidtsmal) (0.0)
C> (4Isoidsi>.roqmin0.25*dsolidst>.rnmax) (0-0))
(No (excessivcj-dep1))

1 (HPO=possji,...suppont)
(RHS=

(Show ("kbasesjo...suppr.axt")
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(Yes (cWj=-t-=i))

(Yes (~~)
IC(No (VSV - a- w a n))

WES=

(RUlE shx -e:4d_!ba'.

(Yes (rxejd !gig Gins))
(-%o (po SsospSIPOr))

(JiYPO= slow-rxeedIm)e

(RHS=
(LE(Sno CkdgnrgatoxCw~) (AS)

) Crt~jc 'oi~oi~eeaon)(sldDIgnrtrnl (odeao~)
I(o _sfdc
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I tuLE= S0)z

(Ye (0ejIwd)

(<- (RHMz

I(IS
(LHS

fflypO= Ss-rsjonge)
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