; PO] S T
piaiass 202 TID mpTeinote

dens 3il] be in 333ck aad mmR o] DRO0S
shite* -

% TLECTE
, JULL 2 533 D
NON-ALGORITHMIC ISSUES

IN AUTOMATED c
COMPUTATIONAL MECHANICS

W. W. Tworzydlo, J. T. Oden, J. M. Bass, J. Combs, S. Sheikh

F49620
T™R-89-C-0015

USAF, AFSC
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
BOLLING AFB, DC

TR-91-09
April 30, 1991

THE COMPUTATIONAL MECHANICS CO., INC.
\ LAMAR CREST TOWERS
\ 7701 NORTH LAMAR, SUITE 200
I e AUSTIN, TEXAS 78752
EETRETTION SeAtnET \ (512) 467-0618

, \ e

PRESIR Y i<]
I\pprc’.’ef} jor paaca TR0

COMCO

91-04789
L

g1 7 11 O8F¥F

==

N < T distributien unlinitdl)
WA) Mlliinciessified) _
f L1 REPORT MURSENTS) S MOMSORNG CAGANZATION SEFORT MUMSENS)
TR-91-09 jes—
SnatE OF FERFOR ~ L 6. OFACE SYMBOL | %o MAME OF . -
. Computational Mechanics Co.] & wwiale < P N PR
© com— ! 0
SERESS Iy, Stam. and 2 Cade) 7. ASDRESS (R, ' j
7701 Morth Lamar, Suite 200 12000ml-8ereet ""l., 4.
Austin, TX 78752 - Ballageniili-2R200-4399 o .
s’ MAME OF RIMDING /SPOMIORNG 80 OFFICE SYMBOL || 9. PROCUREMENT MSTEUMENT IDENTIRCATION MUMSER cy
- GRGAEIATION - y .
Sic. ADOSESS (Cay, Scate. ang 29 Codle) -

<« Sashington DC 20322-6448

—

1. TINLE finchle Seawity Campiicasion)
. Non-Algorithmic Issues

in Automated Computational Mechanics ! L‘_)

f Jc Tc mt Jo Ho hss, Jo ml s. Sﬁikh
6. TRME COVERED DATE OF REFORT (Year, Adansh, Doy)
raom 3/1/89 vo 2/28/9

Actil 30, 190]

1S. PAGE COUNT
123

8. SUBJECT TERMS (Continue an severse if aecessary and identify by block aumber)

finite element method, automated design, knowledge
engineering, expert systems, computational mechanics

19. ASSTRACT (Continue en reverse ¥ necessacy and identify by bleck number)

The general goal of the project was to study the feasibility of the development of an autamatic enwirament for
ergineering désign of aerospace struchives, in particular for their amlysis by the finite elavent method. OF

In the first phaee cf wrk, the types of kuilehe and decisions involved in the design process were studied, and
procedures; knowledye-based expert. systems, newral networks, knowledge acy-isition systems, etc. The main thrust
of research in the project was foosad cn the developrent and extension of conoepts related to autarated camputational
m,mxwwmmmm,mmwmm,mm
ronitoring and quality assurance for the finite element analysis. These methods were implemented in an autarated
mlpmiamewkumt,msedmﬁﬂlmplimofhpahﬁwﬁmwdmﬂmanﬁmemm
technology. Several exanples of autamted decision meking in finite element analysis prove the feasibility and
great practical potential of autamted enviroments for design of aerospace strctires. Based on studies performed

inﬂxeproject,dixectiasofpﬁ-z

research apd develogment. in this area were identified.

20, DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
8 UNCLASSIFIEDAUNUIMITED d;’mt AS RPT. DTIC USERS (o] (_Zﬂ.—,/}'-]
3. NAME OF RESPONSIBLE INDIVIDUAL 22D, TELEPHONE (include Area Code) | 22¢. OFFICE SYMSOL
Spencer: W, Fh.D. (202) 767-6962 AFoSR LN A

DD Form 1473, JUN 86

Previous editions are obsolete. SECUNITY CLASSIFICATION OF THIS PAGE

—_ =

— - - Y [y ~

NON-ALGORITHMIC ISSUES
IN AUTOMATED _
COMPUTATIONAL MECHANICS

FINAL REPORT

W. W. Tworzydlo, J. T. Oden, J. M. Bass, J. Combs, S. Sheikh

F49620
TR-89-C-0015

USAF, AFSC

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

4

COMCO

|

BOLLING AFB, DC

TR-91-09
April 30, 1991

J 4
tm:nas.ol l‘or
5T CREAT
l pYIC T3 O

O

, Unaanonved
i Justification

Br
msz,rit?ut lon/

Availsbiiity Codes
P\vni‘lﬂandlor
Dist Sveeisl

\)\,\ L s

THE COMPUTATIONAL MECHANICS CO., INC.

LAMAR CREST TOWERS

7701 NORTH LAMAR, SUITE 200

, TEXAS 78752
(512) 467-0618

N

Contents

1 Introduction’ i 1
1.1 Summary of Objectivesof theProject 1
12 ResearchSummary 2
13 Personmel . . . _ 4
14 Presentationsand Publications 5
15 OutlineoftheReport. 5

2 Literature Survey 6

3 Decision Making and Enowledge Flow in the Engineering Design Process 12

3.1 Understanding of = Physical Problem _...... 13
32 Mathematical Model of the Structure _ _...... 15
3.3 Discretizationofthe Model, 16
3.4 Selection of Computational Methods and Strategies 16
3.5 Numerical Analysis of the Discretized Model_.. i7
3.6 Generalized Post-Processing 19
3.7 Verification cf the Finite Element Solution and Modification of the Model . . 20
38 Accumulationof Experience 20
4 Types of Knowledge in the Engineering Design Process 21
41 DeepKnowledge -. 22
42 ShallowKnowledge 25
5 Review of Computer Tools for Automated Computational Mechanics 26
5.1 Algorithmic Procedures and Data Processing 27
5.2 Object-Oriented Programming 27
5.3 Expert Systems and Knowledge Engineering 30
54 Knowledge Acquisition e e e e e e 33
55 Neural Networks 34

6 Methods, Concepts, and Algorithms for Automated Computational Me-

—
¢

— "
\

/ -

1

chanics 36
6.1 Selection of 2 Mathematical Model_...._....... 36
6.1.1 Asymptotic Analysis of a Family of Elasticity Problems 37

" 612 Hierarchical Models in Structural Mechanics 41
62 Adaptive Computational Techniques 43
6.2.1 Error Estimation and Adaptive Mesh Refinements 45
622 Adaptive Timestepping Techniques 56

6.2.3 Performance Monitoring and Control of Computational Procedures . 59
6.24 Adaptive Selection of Implicit and Explicit Time Integration Schemes 63

6.3 Generalized Postprocessing_....... 69
6:3.1 Essential Characteristics of an Arbitrary Function 70
6.3.2 Postprocessing in Solid Mechanies 75

6.4 Automatic Verification of Numerical Results _..._... 81

A General Computational Environment for Automated Structural Analy-

sis 82
7.1 Computational Environment—Functional Structure 83
72 Computational Environment—A General Data Structure 36

Design, Implementation and Examples of a Coupled FEM~KE Environ-

ment 90
81 Imtroduction 90
8.2 An Automated PHLEX-NEXPERT OBJECT Computational Environment . 90
8.3 Automated Strategy Selection and Performance Monitoring 92
8.3.1 Selection of Computational Methods 92
8.3.2 Performance Monitoring and Control 95
833 Examples 97
8.4 Adaptive Mesh Refinement 101
8.5 Adaptive Selection of Implicit and Explicit Zones 101
8.6 Automated Verification of Finite Element Results 108
8.6.1 Examples of Automated Verification of Results 112

i

- K - - - ~
'
v) >

A An Adaptive h-p Finite Element Method for Two-Dimensional Problems128

Al ThehpDati'Structureo oueeeeeenn.. 129
- A1l Nodesand Degreesof Freedom 129
Al2 Commectivity e 130
Al3 The TreeInformation. 130
A.l4 Natural OrderofElements 131
A2 Mesh Modification Algorithms 131
A21 p-Enrichments and p-Unenrichments 1.1
A22 hRefinements, 134
A23 h-Unrefinements 136
A3 ALinear Problem Solution 136
A3.1 Constrained Approximation 136
A.3.2 Element Level Revisited - Modified Element.Stiffness Matrix and Load
Vector e e 141
A33 AnExample. e 142

Solution of Large Deformation Elasticity Problems by the k-p Finite Ele-

ment Method . 152
B.1 Problem Formulation 152
B.2 Variational Formulation 155
B.3 Approximate Problem 155
B.4 Solution by Newton’s Method e e 156

Listings of Knowledge Bases for Coupled PHLEX—NEXPEi?.T Environ-

ment 160
C.1 Strategy Selection Knowledge Base [160
C.2 Performance Control Knowledge Base 162
C.3 Result Verification Knowledge Base 167

' 1

AL

List of Figure's

31 Simplified fiowchart of the engineering design process. S
51 Neurons and connectionsin neural network.

6.4 Classification of constitutive models in structqral mechanics.
6.5 Possible ways of enrichinganelement. _....._.

. 6.6 Modification of the mesh caused by subdivision of a constrained element. . .

6.7 Possible ways of subdividing an element and removing the constrained nodes.

6.8 Adaptive timestepping algorithm for viscoelastoplastic evolution problems. .

6.9 Adaptive timestepping in thermo-viscoplastic analysis: (a) temperature his-
tory, (b) stress history, and (c) timestep history.

6.10 Curve fitting for error history in nonlinear problems:
6.11 Reduction of the cost of computations due to implicit/explicit procedure. . .
6.12 A pattern function for detection of stress concentrations.

6.13 Application of neural network to recognition of patterns in the spatial distri-
bution of function f(z}. L

6.14 Deformationofasolidbody.
7.1 The general automated computational environment—functional structures .
7:2 General types of data in the design based on the finite element method. . . .
7.3 Typical structure of a blackboarding data storage.
8.1 A general scheme of the coupled PHLEX-NEXPERT OBJECT environment.
8.2 Computer screen with PHLEX and NEXPERT windows.
8.3 Testing knowledge bases in the interactivemode.

8.4 A general structure of the Performance Monitor expert system..

8.5 An h-p finite element mesh for the wiper blade analysis. Shade intensity

represents the order of approximation. e e e e e e e e

8.6 A copy of the echo of the nonlinear analysis of the wiper blade (only a few
load steps are shown). b e e e e e e e

8.7 Deformed configuration of a wiper blade with stress intensity contours. .

iv

60
62
68
72

100

. . .)
. . . 5 o
. N E

- - - M - - -\ - - - - - - - - . + 8

. . D - .
. \ J
fyra

. .
\

88 A finite element mesh for the wrench analysis. Shade intensity represents the

orderofapproximation. 102
8.9 Stress contours for the wrench problem obtained at the initial mesh. 103
8.10 Error distribution for the wrench problem obtained at the initial mesh. . . . 104
8.11 Adapted finite element mesh for the wrench analysis. 105

8.12 Stress contours for the wrench problem obtained at the adapted mesh.. . . . 106
8.13 Error distribution for the wrench problem obtained at the adapted mesh. . . 107
8.14 Automatically seiected implicit and explicit zones for the flat plate viscous flow.109
8.15 Density contours for the flat plate viscousflow. 110
8.16 A general structure of the verification expert system. 111
8.17 Deformed configuration and warning message in the case of insufficient supports.113
8.18 Deformed configuration and- warning message in the case of large rotations

caused by excessiveloads. 114
8.19 Stress contours and warning message in the case of violation of elastic stress
Imits. e e e e 115
8.20 Echo of the session with too comprehensive a mathematical model requested
bytheuser. 116
A.l The natural order of elements: 4, 5, 12, 13, 14, 16, 17, 18, 19, 7, 8, 9, 10, 20,
21,22, 23, 3. .. e e e e e e e 132
A2 pEnorichments e 133
A3 h-Refinement 135
A.4 Example of the unconstrained, discontinuous approximation. 139
A.5 Concept of the subparametricelement. 145
A6 The constraints coefficients for the sixth order of approximation. The unfilled
coefficients are zero. e e 150
A.7 Iliustration of the constraints for the subparametric elements. 151

B.1 Reference and current coordinate systems for a body experiencing deformation.153

B.2 Solution process of large deformation elasticitil problems by Newton’s method. 159

-
l i
l'

. .
LI

.

EANN

1 Introduction

The Finite Element Method-(FEM) has been used in the analysis of structural designs for
about two decades now. The field of computational mechanics has come to rely heavily on
this technique, and gradually the FEM is becoming the most popular analysis procedure
within various fields of design. This design and analysis procedure can be clearly divided

- into two types of processes. The first type involves performing large scale algorithmic com-

putations and data processing. The second type of process involves decision-making which
requires perception, intelligence, knowledge, and reasoning power.

This second type of process involving decision-making is traditionally performed by engi-
neers who are expected to master the expertise necessary to-effectively use the finite element
software in the design process. Many computer aids like CAD software, graphic interfaces
and on-séreen data displays have helped to reduce the involvement of human designers by
providing decision making data in an easily accessible form. Still, the involvement of a hu-
man expert in the decision-making process represents a major part of the time and effort of
performing analysis and design for the following reasons:

e the scarcity of experts available to make correct and ‘quick decisions
o the expense, in time and dollars, of training new experts

o the decision-making process itself, which is often routine and trivial, yet time-consum-
ing

To overcome these problems, several research efforts are currently underway attempting to
formalize decision-making criteria and-to develop intelligent automated software to supple-
ment the human designer. This report summarizes. research performed in this direction at
the Computational Mechanics Company, Inc.

1.1 Summary of Objectives of the Project

The primary goal of this project was to study the feasibility of automation of the decision-
making process in both the mathemati.al methods (so-called deep knowledge) and artificial
intelligence tasks (shallow knowledge) in the engineering design process. In particular, this
study focused on automated numerical analysis and design by an advanced h-p adaptive
version of the Finite Element Method. In this process, complex decisions are being made,
to date primarily by the engineer, concerning:

¢ the mathematical model of the structure

A »
s

vy
LI

- [
v . s N . . L .
- i B \ ‘ B
z - - ¥
. .

o representation.of material properties

o selection of a computational method and strategy

e optimal mesh design

¢ optimal time step, load step, etc., selection

¢ hanidling of computational difficulties (divergence, zero pivots, etc.)
o verification of the reliability of finite element results

e modification of the model in order to'satisfy design objectives

o optimization of the design

Until recently, most of the above decisions were made by the designer and required consid-
erable expertise in structural mechanics and numerical analysis.

The objective of this research éffort was to study the feasibility of automating the deci-
sion making process in computational mechanics by means of novel algorithmic procedures
(adaptive mesh refinement, adaptive time stepping), and by application of new computer
technologies, designed' to automatically handle nonalgorithmic decisions based on heuristics,
experiencé, and human expertise.

1.2 Research Summary

The first year of the effort was devoted to assessing the current siate-of-the-art in decision
making software, evaluation of logical steps in the engineering design process, evaluation
of possible tools (software) that can be used toward automation of this process, and the
formulation of a general computational environment for coupling a finite element analysis
with knowledge-based systems. Simultaneously, continuous progress on the theoretical basis
for complex decisions involved in k-p adaptive finite elements was being made.

In the second year of the project the effort was focused on a detailed formulation of criteria
and methods of automation of selected aspects of computational mechanics. Moreover,
the concepts formulated in the project were verified by practical application of knowledge
engineering software (Expert Systems) in the h-p adaptive finite element analysis. This
effort, which was beyond the original statement of work, has proven to provide a great
gain in efficiency, reliability, and ease of use that can be achieved by coupling knowledge
engineering with classical methods of computational mechanics.

The particular "asks completed in the project are listed below:

N R . B

. An extensive literature survey was undertaken to assess the state-of-the-art in auto-

mated decision making, in paiticular with respect to applications in the engineering
design process. The study indicated that some introductory efforts had-been performed
toward automating the selection of a structural model and computational strategies.
Prior to this project, however, no complex integrated effort has been presented which.
automates the whole design process. In particular, no efforts have been reported on
interactive coupling of finite element programs and knowledge-based systems.

. The general, logical structure of the engineering design process was. examined. The

basic objective was to identify consecutive logical stages of this process as well as
decisions made and knowledge used and generated at each stage. Possible methods
and software necessary to automate consecutive stages were identified. The general
conclusion was that full automation requires a synchronized process in both algorithmic
and heuristic procedures.

. An evaluation of the types of knowledge used in the engineering design process was

performed. Thisincludes, in particular, “deep” and “shallow” knowledge.

. Evaluation of possible computer tools and software for handling deep and shallow

knowledge in the engineering design of aerospace structures was performed. This in-
cludes algorithmic procedures, expert systems, object-oriented programming, knowl-
edge acquisition, and neural networks.

. A detailed study and development of methods, co. nepts, and algorithms related to the

automation of the design process was performed. The issues addressed included:

o selection of a mathernatical model for given situations
e selection of computational methods and strategies
o design of optimal discretizations

o development of adaptive computational imethods for maximum effectiveness and
robustness

e verification of acceptability of final results

. Further progress toward an automatic mesh refinement procedure in the adaptive k-

p finite element method was achieved. Moreove:, a procedure for the solution of non-
linear problems, with large deformations and contact constraints, was formulated and
implemented. This procedure was automated by the application of knowledge-based
expert systems.

ERd

- - B - = - . . ~ S et me A B e
~ .
N I’ ¥

10.

11.

12.

. A general computational environment for the interactive coupling of finite element pro-

grams and knowledge-based expert systems was formulated. This formulation includes
the specification of functional elements of the integrated system as well as general data
types and the data structure involved.

. An extensive search and evaluation was performed on artificial intelligence software

available today, its capabilities and the direction of evolution. This study indicates
that simple rule-based expert systems are being replaced with much more powerful
systems with object-oriented capabilities and even knowledge acquisition capabilities.

. A direct coupling of the A-p adaptive finite element code with the Expert System soft-

ware “Nexpert Object” was implemented. This implementation enables direct commu-
nication between the two technologies, so that heuristic-decisions in the finite element
analysis can be automatically handled by the knowledge engineering software.

Several advisory expert systems were implemented in the above coupled environment
to automatically handle selected decisions in the finite element analysis. These include:

e automated selection of computational strategies
¢ monitoring and control of performance of the finite element computations.

o automatic verification of the mathematical model and finite element results

Representative examples illustrating performance of the coupled finite element-expert
system environment were solved.

Based on the results of the project, further possibilities of automation of the design of
aerospace structures were identified.

1.3 Personnel

The research effort was performed during the course of this project was provided by a highly
specialized team of COMCO researchers. In particular, the Principal Investigator in the
first year of the project was Dr. Jon Bass, Vice President of Science and Engineering at
COMCO. In the second year of the project the Principal Investigator was Dr. W. Wojtek
Tworzydlo, Senior Research Engineer and Manager of Advanced Projects Group I. Professor
J. T. Oden, President and Senior Scientist of COMCO, was project supervisor. Assisting at
different stages of the project were the following Graduate Research Engineers: Chris Berry,
Olivier Hardy, Shakhil Sheikh, Tim Westermann, and Shibu Vadaketh.

During the course of the project, considerable help in issues related to object-oriented
programming and knowledge engineering was obtained from a consultant, Jackie Combs, a
specialist at the Artificial Intelligence Center at Lockheed.

4

1.4 Presentations and Publications

The research performed in the project was presenied at the Sth Aasual AFOSR. Forus on
Space Structures, held in Indialantic, Flosida, Juse 18-20, 1990.

Certains aspects of this effort, samely intesactive coupling of the adaplive finile clement
code PHLEX with the expert system software NEXPERT OBJECT, were presesied in the
form of a press release at AUTOFACT 1990.

Currently a paper summarizing the efiort and estitled “Toward an Aulomaied Eaviron-
ment in Computational Mechasics™ is being prepared for publication.

1.5 Outline of the Report

This report presents the results of the literature survey, theoreiical study, and praciical
design and implementation of an automated environment for engineering design by the finite
element method. The report is divided into several sections discussing various aspecis of the
effort.

The first few sections present results of the literature survey and a theoretical siudy of
issues relating to automated decision making in corputational mechanics. In pariicular,
Section 2 presents an updated survey of literature related to the project. Seciion 3 then
provides a detailed analysis of the engineering design process with particular emphasis on
choices and decisions made at consecutive stages of the design. In Section 4 different types
of knowledge used in the engineering design are identified. This analysis is the basis for the
evaluation of computer tools (languages and hardware) that can be effective in representing
and using these types of knowledge (Section 5). In Section 6 is a more detailed discussion of
methods, concepts, and algorithms for automated computational mechanics. This includss
established numerical techniques, novel theories and algorithms as well as heuristic rules and
facts.

The studies presented in Sections 2 through 6 are the basis for the layout and design of
the general computational environment for automated design of aerospace structures by the
adaptive finite element method. In particular, a general outline of the various components
(pieces of software) of this environment and the general data siructure are discussed in
Section 7. In Section 8 a practical design and implementation of selected object-oriented
expert systems is presented in detail. Several numerical examples are provided which prove
the feasibility and illustrate the effectiveness of concepts developed in the project. This
section is followed by conclusions and a list of references.

Parallel with the above studies a continuous effort is underway at COMCO toward op-
timizing the h-p adaptive finite clement method. The basic formulation of this method and

l
J

an aigorithm for tailoring it to the solution of sonlinear problems is preses’ed in Appeadices
A and B. Detailed Estings of knowledge bases implemenied and tested in this project are
compiled i Appeadix C.

2 Literature Survey

As the first task in this project, an extensive Eierature survey was conducted to areate 2 com-
pecheansive background concerning the currest state-of the-art in various fields of knowledge
which form a part of, or are a supplement to, the decision-making area of computational
mechanics. It was noted that there are three major stages in the process of design and anal-
ysis in which extensive decision-making is required. These stages of decision-making are, in
fact, responsible for most of the human inieraction necessary during the entire process. The:
first stage is the modeling stage. At this stage ihe physical design has to be transformed into
a model which the computer can understand and on which numerical analysis can be per-
formed. Since most of the physical systems cannot be taken directly as the model on which
the analysis is to be pezformed. several decisions are required so that the mathematical and
numesical models represent the actual system as accurately as possible. This physical model
musi then be input in the form of a finiie element mesh which is supplied or generated by
the user. This task often requires a great deal of experience and knowledge.

The second major task requiring expertise is the numerical analysis of the modei. This
involves several complex decisions, in particular mesh design. selection of computational
strategy, and choice of corresponding parameters, such as time step, load step, etc. It
also involves decisions made when computational difficulties are encountered, for example,
divergence of iterative method, unstable behavior of the solution, etc. Decisions made at this
stage require both a solid theoretical background and considerable computational experience.

The third major task involving complex decisions is analyzing the results of the numerical
analysis. At this stage, several decisions, such as acceptance or rejection of the design, must
be made. If flaws are found in the design, remedial measures should be suggested and
appropriate changes made to the initial design before the analysis process can be repeated.

Design and analysis is an iterative process that may require several iterations to achieve

. afinal product. During some of the iterations the changes required are trivial, while others

may require a great deal of expertise. To achieve an automated design process, it is necessary
to automate each of the three stages mentioned above.

It is of importance to note that there are two basic type; of knowledge and decisions
made in the design process:

e algorithmic knowledge and corresponding procedures

6

-

o heuristic knowledge and.decisions

A detailed discussion of these two .ypes of knowledge is presented in Section 4. Here it is
important to note that in the engincering design process there is a very strong interaction
between algorithmic and heuristic ki ~wledge and that in the automated environment they
cannot be treated separately. Moteover, duc to the continuous progress in science, some
heuristic decisions become precise enough to be treated algorithmically, usually with better
reliability, efficiency, and with the possibility of full automation. Thus, our literature survey
has focused on the most advanced algorithmic methods useful in the automation of the
design process as well as on the heuristic knowledge and software designed to handle it
automatically.

Currently the major area in which algorithmic methods and decisions replace a heuris-
tic approach and promise full automation is the adaptive finite element method or—more
generally—adaptive computational methods. The term “adaptive computational methods”
has become increasingly familiar in the modern computational mechanics literature as more
analysts and engineers realize the great potential of the concepts underlying these methods.
Adaptive methods, which are numerical schemes which automatically adjust themselves to
improve solutions, include a wide variety of techniques. The more important of these are
adaptive mesh refinement, adaptive adjustment of time steps in transient problems, adaptive
load stepping in quasistatic nonlinear problems, or adaptive selection of implicit and explicit
zones in transient analysis. An extensive survey on adaptive computational methods was
recently compiled by Oden and Demkowicz [52] and Noor and Babuska [51]. The reader is
directed to these works for detailed information.

The first work on adaptive finite element methods was presented in 1971 by Oliveira
and Arantes [58] which discussed grid optimization by minimizing the energy by optimal
node distribution. This type of approach—node redistribution—is the basis for the moving
mesh adaptive methods (r-methods) developed for both solid mechanics problems and flow
analysis [26,38,40,48,49,50,81].

Other adaptive finite element methods currently in use include:

e h-refinement based on a local refinement of the mesh without changing the order of
interpolation (27,52,54,55]

o p-enrichment, in which the order of interpolation is increased locally to improve accu-
racy (25,71,72,73,83]

e h-p-method, in which both the mesh and the order of interpolation are adapted to
minimize the error [4,29,30,53,61]

The most advanced method—and the most difficult to apply—is the A-p adaptive method.
The advantage of this approach is that, while the conventional FEM’s can provide only
algebraic rates of convergence, an adaptive A-p method can result in exponential rates of
convergence. It should be noted that the selection of h-refinement or p-enrichment is a diffi-
cult issue and the selection of an optimal sequence of refinements is still under development.
A significant amount of progress in this direction was recently made by researchers at the
Computational Mechanics Company, Inc., see references [29,30,53.61).

An alternative to a purely algorithmic approach to grid adaption is the use of heurnistic
knowledge to select h-refinement or p-enrichment. In this spirit, an expert system-like
approach was developed by Babuska and Rank [6]. It is expected that the best results will
be obtained from a combination of algorithmic and heunistic artificial intelligence approaches.

Adaptive mesh refinement is only one example of automated decision-making in the
process of finite element analysis. Another important adaptive procedure is adaptive time
step selection in the solution of time-dependent problems. The selection of a time step is
usually based on deep knowledge, namely precise error estimators. Such estimators, based
on the Courant-Friedrichs-Levy number, are extensively used in the solution of flow problems
[54]). Similar procedures in solid mechanics, based on a truncation error analysis, were applied
by Kumar, Majoria and Mukhurjee [1}, Bass and Oden [10], a1:d more recently by Thornion,
Oden, Tworzydlo and Youn {74].

Yet another approach to adaptive computational methods or smart algorithms is repre-
sented by imlicit/explicit methods based on adaptive decomposition of the computational
domain into implicit and explicit zones in order to maximize the efficiency and reliability of
the computations. Such methods were recently developed for computational fluid dynamics
problems by Tworzydlo, Oden, and Thornton {79].

The second major direction of research in the area of automated computational mechan-
ics is the application of artificial intelligence to resolve decision-making problems. The field
of artificial intelligence is, of course, not new. It has, however, only been recently that the
developments in computer architecture have made the tools of artificial intelligence more
practical, more widely available, and more user friendly. During the current decade, the idea
of Knowledge-Based Expert System (KBES) has developed from mere theory to practical
and integrated complex decision-making systems. Today there are numerous private com-
panies and government agencies utilizing expert systems to solve decision-making problems
in various fields of research, business, and defense.

It was in 1978 that the first steps were taken by Bennett, Creary, Englemore, and Melosh
[12] at Stanford University toward forming an expert system for engineering design. The
expert system was called “SACON” (Structural Analysis CONsultant) and could make intel-
ligent decisions regarding forming the input model for a large finite element analysis program

called MARC. MARC was a flexible program capable of handling various types of analysis
techniques, material properties and geometries. SACON could make decisions about the
input parameters required by MARC for any specific design. This decision-making capabil-
ity was generally mastered by an average engineer afier working with MARC for about a
year. Thus, SACON acted as an intelligent front end to the MARC program and advised
inexperienced users about the best modeling approaches and the various parameter values
required by MARC as input. The SACON had a knowledge base of about 170 JF,THEN
rules which was controlled by the backward chaining EMYCIN inference engine.

SACON was a prototype and an operational version was never developed. The concept
of expert systems initially did not seem feasible as the development and running cost were
not economical and there were few computers at the time on which a program like SACON
could work. In the 1980’s, as the microcomputer and computer work stations developed
and became more easily available, the idea of expert systems was reconsidered. At the same
time, research began focusing on automating several processes which required decision-
making. In the field of computational mechanics, the first area to be studied in this regard
was automatic mesh generation. In order to exploit this new technology, it was required that
expert systems or other Al tools be able to interact directly with cxisting CAD software and
transform the generated models into a coarse mesh compatible with the FEM program. The
various techniques of computer based geometric/graphical modeling currently in use are:

o wireframe modeling
e surface modeling

¢ solid modeling

The only technique out of these which can provide sufficient geometric knowledge about
the physical model to the- mesh generator, ic solid modeling. Information available from
wireframe models or surface models is not complete enough to be useful for fully automated
mesh generators. Even solid models are limited due to the fact that feature description,
such as that of holes, cavities, and other such discontinuities, is not sufficiently elaborate,
even in the most sophisticated CAD programs. This causes CAD programs to fall short of
independently providing the desired input for fully automated mesh generators. It is here
that the expert systems or other Al tools are required to fill the knowledge gap.

In 1985 Fenves [32] (Carnegie-Mellon University) outlined a framework for what he called
a knowledge-based finite element analysis assistant. He has illustrated the need for the in-
telligent interface of CAD and finite element analysis programs so that the available human
expertise can be combined in a single software package and therefore reduce the time nec-
essary for mastering the full design process. Fenves also concluded that the application of
knowledge-engineering in this area has become a necessity.

9

In 1986 Gregory and Shepard [34] (Rensselaer Polytechnic Institute) developed a know-
ledge-based system known as FACS (Flexible Automated Conversion System). FACS had
the capability of interacting with various CAD programs and FEA solvers through specific
translators. It could take the geometric specifications of various airframe components pro-
vided by the CAD program and was able to generate from this data a coarse mesh to be
input to the finite element solver.

Cagan and Genberg [19] (University of California, Berkeley, 1987) also developed an
expert system in this area. The expert system was called PLASHTRAN (PLates And SHells
STRuctural ANalysis) and acted as an advisor and learning aid to the users of a large finite
element analysis package called NASTRAN. For ease of development, only two-dimensional
clements were considered. The knowledge framework was created in an object-oriented
environment known as LOOPS (Lisp Object-Oriented Programming System). The inference
engine used was a data-driven forward chaining type, allowing the expert system to follow
the logic of the user rather than the user having to follow the logic of the shell, as it is for
the more rigid systems based on strictly backward—chaining shells.

Blacker, Mitchiner, Phillips and Lin [14] (Sandia National Laboratories) have also pro-
duced an automated two-dimensional quadrilateral mesh generator using a transfinite map-
ping algorithm for generation of the elements. It is based on a set of higher-order primitive
decomposition algorithms. The decision-making is integrated into the process by using a
Knowledge-Based System built around Common LISP and the KEE (Knowledge Engineer-
ing Environment) shell. The program has thus been named AMEKS (Automated MEshing
Knowledge System). AMEKS uses a recursive strategy to successively remove meshable
primitives, exhaustively decomposing the initial region. Likely dissections are attempted
until an acceptable primitive is produced. The strategy is repeated on the remaining regions.
The decomposition is completed when a dissection results in two acceptable primitives. The
mesh is then algorithmically produced for the decomposed regions. This program can han-
dle both straight and curved two-dimensional geometries but cannot handle subfeatures like
holes or other such discontinuities.

The trend of applying tools of artificial intelligence to automate various stages of deci-
sion-making in engineering design has gained further momentum and several research efforts
have been made in this area. Some of these are mentioned here and several others are listed
in a comprehensive bibliography.

The work of Chen and Hajela [22] (1989) has produced the expert system OPSYN (OP-
timum SYNthesis). This system has the capabilities of finite element modeling, optimum
design modeling and selection and calculation of optimization strategies. The knowledge
base provided for finite element modeling contains rules for selection of node location and
numbering and for generating the initial mesh. Rules pertaining to mesh refinement, element

10

selection and element distortion elimination have been developed as well. The knowledge
is represented in the form of IF, THEN rules and its application is controlled by an infer-
ence engine (INFER) capable of both forward and backward chaining. OPSYN goes a step
further than most other expert systems by implementing a knowledge acquisition mode. In
this mode, specific problems are presented to experts to solve interactively. The method of
solution or the decision made by the experts are stored in a file in the form of IF, THEN state-
ments with confidence levels specified. These can then be used by the knowledge engineer
to formulate new rules.

An-Nashif and Powell [3] (University of California, Berkeley, 1988-89) have also worked
in this area of research in conjunction with the automated modeling of frame structures.
They use a system of “components” and “connections” for defining the basic structure. This
structure is then transformed into the analysis model which is defined in terms of nodes,
elements, and boundary conditions. The strategy defined here has yet to be implemented in
the form of a working knowledge-based system, but it seems to lend itself quite favorably to
object-oriented programming.

Sapidis and Perucchio [66] (University of Rochester, 1989) have worked in the area of
producing finite element meshes automatically from solid models. They have analyzed and
evaluated the algorithms dealing with element extraction, domain triangularization, and
recursive spatial decomposition. A review of some existing expert systems, which integrate
the decision-making knowledge with these algorithms to produce various levels of automation
in mesh generation, is also carried out. The authors conclude that, although significant
progress has been made in the field of automatic mesh generation, no system exists which
can be considered fully automated.

Another approach to the decision-making problem has been established by Ohsuga. [57]
(University of Tokyo, 1989). He presents the idea that the CAD programs themselves should
be made “intelligent” so that they can perform tasks other than that of pure drafting. Ohsuga
argues that the current CAD programs lack the sophistication, flexibility, and innovation
required for automated design synthesis. He also argues that the traditional artificial intel-
ligence tools, like rule-based expert systems or object-oriented programming alone, are also
insufficient to handle the intricacies of automated design synthesis. As a solution to these
problems, he presents KAUS (Knowledge Acquisition and Utilization System), an intelligent
CAD environment based on a knowledge representation language developed especially for
this purpose. KAUS, though not yet fully developed, still shows great flexibility in the design
synthesis [44] process and may prove to be one of the forerunners in the intelligent CAD
environments of the future.

From the study presented above one can conclude that practically all reported efforts
toward automation of the design process have focused on tne first stage of design, namely

11

N - - - - - ‘ -

L amad

DRSNS 2 a2 T > 2 et o e 2t iy SR AR 34 vy LA g

understanding of the physical problem and construction of the numerical model, in particuiar
the finite element mesh. No successful efforts were reported of the application of expert
systems at further stages of the design, in particular in the control of the performance of the
finite element procedure or in the analysis of numerical results and possible redesign of the
analysis model.

Another general observation is that most of the systems or concepts developed so far were
implemented as stand-alone advisory pieces of software, not integrated with other elements
of the design environment. One of the reasons for this situation was that until recently
most of the knowledge engineering applications were developed using the LISP language,

which makes coupling of expert systems with computer languages used in numerical analyses
(FORTRAN, PASCAL, C or others) extremely difficult.

Further difficulties in practical applications of the systems reported so far is due to
the extremely arduous and complex development and management of a realistic knowledge
base, with the number of rules exceeding several hundred. Losing control over the size
of the knowledge base is a trap which can ensnare even the most experienced experts if
caution is not exercised. Such efforts can easily cause the spectre of conflicting rules and
uncontrolled linking of knowledge to haunt the developer. A possible solution to this problem
is specialization by development of smaller, specialized expert systems or segmentation of
larger knowledge-based systems and encapsulation of knowledge. This approach was actually
used in the present work.

The general conclusion of this survey is that the concepts of tools for making automated
decisions in the design process are presently emerging in the engineering community. While
still very limited in the degree of automation, generality and realistic capabilities, these efforts
indicate that the need for such systems exists and that intelligent design environments will
be developed in the future.

It should be noted that a fully automated system which can take the user completely out
of the loop (especially for a complex and conceptual task such as design synthesis), is still
far from reality and a thing of the future. Even if this is made possible by advances in fields
such as neural networks (or other such tools which may be devised in the years to come),
the question will remain: can a machine ever be as innovative as the human mind?

3 Decision Making and Knowledge Flow in the Engi-
neering Design Process

The process of engineering design is oriented toward the construction of a physical system
to perform specified functions. The complete design process involves considerable technical

12

= =
N

.
. . . * L L . .
- - - - E ' '
,

effort. as well as the analysis of cost, timing, manufacturing, etc. In this presentation we
will focus primarily on the technical aspect of the design process. The technical objective
of design is to produce a model of a:product which will perform specified functions under
certain conditions, usually for a specified time.

The general overview of consecutive logical stages of the design process is presented in Fig.

"3.1. The process begins with the identification of physical problems and design objectives

and=—usually after several modifications—yields a model of a product performing specific
functions and satisfying design criteria.

During the design process, knowledge about the model is enriched, modified, and used
at further stages of the design. In Fig. 3.1, the total knowledge accumulated during the
process is stored in:the -common data base, called the blackboard (this name corresponds.
to: the generic way of handling knowledge, known as blackboarding). This idealization-does
not necessarily mean that blackboarding is the only or the best way of storing knowledge
in practical applications. The various components of the chart of Fig. 3.1 use, modify,
and constantly update the information stored on the blackboard. In the following sections,
consecutive stages of the design. process will be briefly discussed and evaluated.

The primary goal of this analysis is to identify the decisions made at different stages of
the design process, the knowledge base used to -make these decisions, and the criteria used
to-make-correct choices. For each of the stages of analysis, we try to identify possible tools
(types of software) that can be used toward automation of the design.

3.1 Understanding of a Physical Problem

At this-introductory stage of design, all distinctive features of a structure are identified and
the principal design objectives are specified. The structure is logically decomposed into
simpler units and their basic mechanical features are identified. The general class of loads
is recognized and the importance of possible environmental, chemical, electromagnetic, and
other influences is assessed. Different design objectives are specified, such as the functions
to. be performed by the structure, required life time, desired reliability under random loads,
and interaction with other structures.

This stage of design is the basis for the selection of the mathematical model of the
structure. As a result of this introductory analysis, decisions are made as to whether a
simplified form of the governing equations is to be applied or whether a more complete set
of equations is required.

The decisions made at this stage of the analysis are mostly heuristic, based on the de-
signer’s expertise or previous experience. Until recently, this stage of design was performed
solely by a designer or group of experts. Recently attempts have been made toward devel-

13

UNDERSTANDING OF THE
PHYSICAL PROBLEM

5

 CONSTRUCT MATHEMATICAL .

MODEL:

- Strucrural elements (connections) |g— ——

- Boundary Conditons

a

INITIAL DISCRETIZATION:
~ Grid generation.

- Discretizauon of Loads habhEELETEY o

~ Disczedzadon of boundary
Conditions '

—

SELECTION OF:

- Methods ~ Load steps. e = === c == o p

- Suategies
- Time sters

v

|BLOWS-UP <—

SOLUTION OF THE DISCRETIZED
MODEL:
~ Estimate e:tors
- Refinements -
~ Adaptive time steps
~ Adapuve load steps
~ Adapc sxrategies
(implicit/explicit, etc.}

1

\ 4

POST-PROCESSING

- Emrors
- Calculate secondary variables

4

Unacceotable

VERIFICATION Acceptable

- Check ervors
- Check required parameters

RE-CONSTRUCTION OF Optimal | VARIATION IN MODEL
PROBLEM SPECIFICATIONS

- Leads. .-

- Exmract required variables, [----- -
information, resuits

)

..-.'-’ .

..... Pl

g ®© » O W KW O » O @

FOR OPTIMIZATION ~ f————rnee !

Non.Ootimal

SELECT RESULTS FOR STORAGE
LEARNING, ETC.

a"

14

oping expert systems supporting the user at this stage (see the literature survey in Section
- 2). Specialized expert systems for specific applications can be developed, such as an ex-
pert systém for the structural design of airplane wings. These systems can be grouped and
~ interactively used for the introductory evaluation of complex structures.

The general knowledge of the system, accumulated at this stage, is the basis for the
formulation of geometfical and mathematical models at further stages of the analysis.

3.2 Mathematical Model of the Structure

Once the essential features of a physical model have been estabiished, the mathematical
model of the structure is constructed. Formally, this mear . that a boundary value problem
or initial boundary problem is formulated in a certain doimain. Practically, it means that
the equations are selected to represent the geometry and deformation of the structure, the
properties of the material, boundary conditions, loads, constraints {such as contact with
~ otherstructural members), and other effects. This stage involves two functionally different
actions:

¢ defin. . n of the domain £, i.e., the geometric shape of the structure,

e selection of the mathematical formulation which best represents the physical behavior
-of the structure.

The above distinction is important from the application point of view, because signifi-
cantly different tools will be used: to aid the designer at these tasks. For the definition of
the sha.pe of the structure, a CAD-type solid modeling software is probably best suited.
The progress in this area is advancing rapidly and there is a large variety of CAD pro-
grams currently available, and most are equipped with excellent user interfaces and graphic
capabilities.

The selection of the mathematical model is more difficult and requires considerable the-
oretical background. The choice of the actual model depends on several factors, some of
them highly quantifiable, 6thers somewhat heuristic. A more detailed discussion of these
issues and a presentation of possiblé systematic approaches to the selection of a mathemat-
ical model are presented in Section 6.1. Here we only note that the practical automatic
selection of a mathematical model requires application of a powerful expert system, capable
of combining heuristic information with analytical evaluations according to the theoretical
estimates.

15

3.3 Dis,creti,zéition of the Model

Most computational methods used today, particularly the finite element method, are based
on"an approximation of the-original problem by a problem formulated in the finite-dimen-
sional space. -In géometrical terms- this requires discretization of the domain into a mesh of
nodes and elements, as well as discretization of boundary conditions and loads. These tasks
- were traditionally performed by the users of finite element codes. Considerable expertise was
réquired to design a proper mesh, in particular, to concentrate nodes in expected areas of high
gradients of the solition. Recently, several CAD programs have emerged that automatically
perform discretization of the domain with the use of an automatic mesh generator. Still, in
_ such a system, the designer must specify the-overall characteristics and density of a finite
element mesh.

As indicated in the literature survey (Section 2), several recent research efforts were di-
fected toward application of knowledge-based expert systems to automate the discretization
process. Although these efforts afe certainly of great importance, it is our belief that the
application of adaptive computational methods will make one of the most complex compo-
nents of such an expert system-obsolete. With the application-of adaptive mesh refinement,
there is no need for the user to anticipate the nature of final solution or to concentrate nodes
in certain subdomains. The initial mesh should merely represent the basic geometry of the
domain, and the.adaptive mesh refinement procedure, based on sharp error estimates, will
yield a final mesh more adequate to the problem than even the most experienced expert
could generate.

In ¢onclusion, the automated generation of an initial discretized model will involve the
application of CAD software, combined with a knowledge-based system and—for flexibility—
a graphic user interface.

3.4 Selection of Computational Methods and Strategies

The general purpose finite element codes available today offer a wide spectrum of compu-
tational strategies for the solution of various problems. For a given problem, the user must
select a specific method, as well as the size of the time step in time~dependent problems, the
size of the load step in nonlinear problems, etc. This selection is usually based on general
guidelines and the previous experience of the user. Unfortunately, in most areas of com-
putational mechanics, there exists no unique, universal, or absolutely best computational
strategy. For example, in computational fluid dynamics, there is a variety of finite element
algorithms—Taylor-Galerkin, Runge-Kutta, SUPG, least squares—that are all adequate and
yet none has proven to be generally superior to the others. Thus, proper selection of the
algorithm for a specific problem can yield better results, often with less computational ef-

16

_fort. This is especially important in nonlinear or time-dependent problems, because it often
means-the differéence between a convergent or divergent process. In this case, the presence
of an e;gperieﬁged -user is:crucial in the applications of today’s computational systems.

Apparently, the automatic selection. of a proper computational strategy can readily be
achieved with the application of expert systems. Indeed, some introductory attempts toward
building such systems-were already: presented in the literature (see Section 2). It should be
noted: that the systems that have been.developed (for example SACON [12]) are stand-
alone programs, requiring considerable input from the user. In an integrated approach, as
presented in Fig. 3.1, most of the information used at this stage should, instead, be drawn
from the knowledge base developed at earlier stages of the design process.

_ There is, however, one additional Vimportant aspect of the automatic selection of a com-
putational strategy. As all engineers. familiar with nonlinear problems know, it takes tens

~ or even hundreds- of solved problems—both convergent and divergent—to develcp a certain

“feel” for-the proper selection of a computational strategy, load sequence, size of the load
step, etc. Therefore, it would be extremely beneficial to use, at this stage, software with
knowledge acquisition possibilities. Such a system could automatically gain experience from

previous. applications and use it in future analyses of problems with similar characteristics.

3.5 Numerical Analysis of the Discretized Model

The discrete model of the structure being designed is usually analyzed by the finite element
method (or any other numerical method). This stage of the design process usually amounts to
massive algebraic computations. In the-majority of finite element codes, it is assumed that all
decisions and choices have already been made and the program follows a prescribed procedure
to produce final results or, quite frequently, give error messages or just stop execution.
This approach often leads, especially in the casé of advanced nonlinear applications, to
.considerable problems for the user and wasted computational effort because:

e if an .efror occurs, there is usually no suggestion as to how to fix it,

o if the nonlinear process or any iterative procedure diverges, there is neither an- cxpla-
nation to the user about possible reasons, nor suggestions as to how to modify the data
(or change the strategy) in order to achieve convergence,

o if the time step in a time-dependent process is too large, there is no indication of a
large error (or even instability) provided to the user,

o after the final results are obtained, there is no aid provided for the user to estimate
the reliability of the results, the relevance of the user-defined mesh, etc.,

17

= N N v ’ ~ . . - «\
- -“ - - - (- '- L ’
" . . 4

o often a-full éycie- of expensive computational needs to be executed just to learn that
‘the results are'not acceptable and the data needsto-be modified.

<

The general conclusion is that with today’s finite element codes the user has very little

wguidance as to. ways of handling errors, divergence, instability, or how to assess the quality
of theresults prodiiced.

The solution to-this-problem is the automation of the finite element analysis by the appli-
cation of adaptive computational procedures as well as utilizing the knowledge-based expert
systems to automatically handle computational difficulties. Thus, adaptive computational
methods are very attractive in this context, because they offer the possibility of:

o automatically making decisions or choices previously made by the user and requiring
a considerable level of expertise,

o,Aminimizi‘ng the computational effort necessary to obtain high quality results, and

_ -e automatically -controlling the quality of results by means-of error analysis.

The specific types of adaptive computational techniques currently being developed for the
finite g:lement method include:

¢ adaptive mesh refinement
¢ adaptive selection of time steps in-transient problems
e adaptive selection of load steps in:nonlinear problems

¢ adaptive application of implicit/explicit algorithms in time-dependent problems

Adaptive methods present a very natural step toward the automatic design process because
they inherently include automatic decision making in the process .of numerical analysis.
These decisions are, in general, both algo.ithmic, based on error estimates, as well as heuris-
tic, based-on general guidelines and experience. Therefore, a fully automated adaptive pro-
cedure will require coupling of the finite element analysis program and a knowledge-based
intelligent system.

Although adaptive techniqties can, in general, provide automatic control of the solution
process, there exist situations, e.g., in the case of erroneous input data, that the errors,
instabilities, divergence, or other computational difficulties do occur during the analysis. In
the fully automated process such situations should be detected, signalled to the user, and
some measures toward fixing the problem should be suggested. A typical example of such a
situation is in the analysis of a strongly nonlinear problem, say the rolling of a tire, where

18

the convergence of a Newion procedure is nol secessasily guarasieed and is seasiiive {o such
parameters as seleciion of the load siep, load sequence, pesally parameier, mesh disioriion,
etc

An effective knowledge-based sysiem should be capable of accumulaiing the knowledge
of the author of the program or the experienced user and offer guidasce o the inexperienced
engineer or even take over the conirol of the program lo achieve successful computaiions.
In the most advanced siiuaiion, an intelligent sysiem should aniomaiically build iis cwn
experience based on successful and unsuccessful execniions of ihe code.

3.6 Generalized Post—Processing

‘The final solution of the numerical simulation is ofien obiained in the forin of iables of nodal
values of the basic unknowns of the problem. c.g . displacemenis in ibe solid meckanics
problems. This soluiion is usually posi-processed in order to present ibe resulis in 2 moce
comprehensive form or to calculate new functions of interesi io the user. Typical functions
of post-processing modules are:

1. calculation of auxiliary funciions (sirains, siresses) derived from ihe piimary solution,

2. use of special posi-processing techniques to obiain resulis of higher accuracy ihan the
primary solution,

3. estimation of solution errors, and

4. presentation of results in the form of plots. diagrams, tables. eic.

The above tasks are basically algorithmic. However, advanced programs usually offer several
possibilities for performing these tasks and the selection of the method is expected from the
user. This is especially true for items two and three, since a variety of algorithms, each of
different quality and computational cost, is available for advanced post-processing or error
estimation (see references [7,8.9.15,16,60.84]).

The post-processing stage is important in the design process for yet another reason: ii
provides information basic for the acceptance or rejection of the solution and for modification
of the input data in order to obtain a satisfactory solution. New methods of postprocessing

designed to specifically serve this purpose were designed in thxs project and are discussed in
Section 6.3.

19

3.7 Verification of the Finite Element Solution and Modification
of the Mode!

The results oblained afier the first pass thromgh the finite clement solver are very seldom
satisfactory. Usually modification of the data is required, either to obiain beiter quaiity of
the solution or to modify the model in order to satisfy specific design criteria and objectives.
While the satisfaction of general design objectives usuzlly involves considerable creative
thinking and requires buman inveniion, some basic criieria can be seadily verified by ihe
knowledge-based system. In particular, an expert system can make sure that ihe error of
the solution is within prescribed folerance, that maximum siress does not exceed limits, that
displacemenis are not too large, etc. Moreover, the system should be prepared to suggesi
possible soluiions in the case of violation of ceriain design aiteria or even take over ithe

A spedial case of modification of the model is the situation, when the objeciive of the
design process is oplimization toward minimum weighi. maximum sirength. or some other
goal. The basic approach io opiimization is to periurb control variables so as to minimize the
goal function, with the model still satisfring basic design coteria. A variely of algorithmic
optimizaiion iechniques exist that can be applied at this stage. The knowiedge-based experi
sysiem can be used at this stage for ihe selection of ihe opiimization method, as well as
interact with the algorithmic method in more complex cases.

3.8 Accumulation of Experience

The human designer gains new experience from every design or analysis performed. Th':
experience is used in the next design task, especially if the features of the new problem
resemble characteristics of problems solved before. This accumulated experience constitutes
a designer’s professional expertise and differentiates an experienced engineer from a novice.
The professional experience is somewhat intuitive and rather difficult to transfer, especially
since not all engineers are willing to share it “free.® This remark pertains in particular to
the effeciive use of a finite element program or other software.

In this context, it would be very useful to have the possibility of using specially designed
software to automatically save the experience of each design session and use it in future
applications. New emerging types of software with certain learning capabilities are discussed
in Section 5. The two most promising kinds of such systems are:

¢ knowledge-acquiring expert systems

e neural networks

; .(’ -
N

- o

| l

K * - - . - ER) ~ g - 2
. - N . . .
J 4 T
K r

Note that even with the automatic leaming capabilities available it will be difficult to
specify a- compact set of essential information about each solved problem to be saved as
an “experience” for future use (saving all the static and active knowledge from each ses-
sion would not be feasible). Apart from these difficulties, the practical payoff of learning

4 Types of Knowledge in the Engineering Design Pro-
cess

Eagineering design and analysis can be viewed as the process of building a more and more
broad and precise knowledge about the structure being designed. The engineer begins the
design with cerfain general ideas about the structure and a list of design objectives and
criteria. During the design process engineering skills are applied to build and accumulate
more precise knowledge aboui the system. The final product of the design process is the
specific shape and material of the structure, as well as information concerning the possible
distribution of stresses. plastic zones. and even an estimated number of load cycles the
structure can sustain.

The knowledge used and accumulated in this design process can be divided into two
classes:

o Static knowledge, representing all the information about the system analyzed, such as
physical structure, material constants, corresponding finite elemeat mesh, and, after
solving the problem, displacements, stresses, discretization errors, etc.

o Active knowledge, including physical laws, mathematical equations, and heuristic rules
used in the design process.

For automated decision making, the representation and handling of active knowledge is
very important. Depending on the form and precision of the rules, the active knowledge can
be divided into two groups:

o deep knowledge, represented in the form of precise physical laws, mathematical formu-
las, and computational algorithms,

s shallow knowledge in the form of heuristic rules pertaining to the problem and resulting
from some general observations, experience, and even intuition.

It should be emphasized that this distinction is somewhat arbitrary and that the division
line is never fixed. In particular, in the evolution process of science and technology one can

21

observe the transfer of some rules from the class of shallow knowledge to deep knowledge. For
example, until recently the selection of a good mesh for the finite element method was an art,
requiring considerable experience and intuition. However, the development of methods of
adaptive mesh refinement, based on precise error estimates, replaces this intuitive approach
and makes the selection of a mesh a robust, reliable and automeatic process.

In today’s computational systems the deep knowledge is usually represented by the formu-
lae and algorithms coded in the program, while the designer is supposed to furnish heuristic,
shallow knowledge and creative thinking. In the automated approach to computational me-
chanics not only the algorithmic part, but also the shallow knowledge should be handled by
the program, so that the engineer can concentrate on creative thinking.

Toward this end, both aforementioned types of knowledge will be analyzed in the following
sections. Particular attention will be paid to the possible numerical representation of each
type of knowledge and effective interactions of both types in the engineering design process.

4.1 Deep Knowledge

Deep knowledge is—in the context of the design process—a knowledge that can be precisely
specified in a closed form of mathematical formulas or computational algorithms. This
knowledge is usually derived from objective laws of physics, mathematical theorems, or
numerical analysis theory.

A typical example of deep knowledge is a constitutive relation for a linearly elastic ma-
terial:

T =CE (4.1)

where T is a stress tensor, E is a strain tensor, and C is a fourth order elasticity tensor.
Another example of deep knciwwledge is the Jacobi iterative procedure for the linear system
of equations:

Au="b (4.2)

where u is the solution vector, A is the coefficient matrix, and b is the right-hand side vector.
The basic operation of the Jacobi iterative procedure for this system is defined by:

w1 = D7Y(D — A)u™+ D% (4.3)

where u™, u™*! are consecutive guesses for the solution u, and D is the diagonal of the matrix
A. A considerable amount of deep knowledge is implied in (4.3), including convergence and
stability theorems, estimates on the number of operations, etc.

It is important to note that, although these examples of deep knowledge are indeed
very precise, the selection of the piece of deep knowledge to be used is often heuristic,

22

‘based on shallow knowledge. For example, the decision to apply Hooke’s constitutive law
to describe the behavior of a material is often based on experience, general guidelines, and
even eagineering intuition. Similarly, there exists a variety of solvers for linear systems of
equations and the selection of the solver for a given application. is still based on general

_guidelines or even personal preference:

With the automation of the design process as the ultimate goal, it is important to note
that deep knowledge is -usually algorithmic and often amounts to massive numerical com-
putations. The algorithmic languages such FORTRAN, PASCAL, or C, are believed to be
suited best for these applications and are commonly used today.

The wide variety of deep knowledge used in the engineering design process includes
all areas of technical science, in particular mathematics, structural mechanics, materials
science, fluid mechanics, chemistry, numerical analysis, and many otheis. Most of this
knowledge is well established, documented in books and scientific papers, and implemented
in various engineering programs. There exists, however, a “frontier” in many of these areas,
where new models, methods, and algorithms are being developed. The knowledge for these
methods is often not yet complete, and is—in the present state—augmented or completed
by heuristic information. Moreover, many “deep knowledge” methods feature conditional
applicability, stability, and convergence, and thus require additional expert knowledge to be
used effectively.

In the fully automated design environment, the application of these models and methods
requires coupling of algorithmic deep knowledge and heuristic, expert type shallow knowl-
edge. This is especially true in the area of computational methods, where new methods and
techniques are developed continually.

The area of adaptive computational methods has been one field that has experienced
substantial attention in recent years, particularly with regards to:

e adaptive mesh refinement
¢ adaptive selection of time steps in transient problems
¢ adaptive selection of load steps in nonlinear problems

e adaptive application of implicit/explicit algorithms in time-dependent analysis

Adaptive techniques are especially interesting in the context of the automation of the design
process because:]

e They greatly reduce the computational effort necessary to obtain final results and, at
the same time, provide control of the quality of results.

23

o They eliminate a number of decisions, which in traditional versions of finite element
codes are expected from the user and require considerable theoretical background and
experience. Therefore, adaptive techniques are, “by definition”, oriented toward au-
tomation of the design process and automated decision making.

o They inherently include decision making in the process of numerical analysis. Although
the ultimate goal for an adaptive package is a purely algorithmic approach, in the
present state, a considerable amount of heuristic knowledge and decisions is required.
It can be expected that even in the most advanced forms of these algorithms, heuristic
knowledge provided by expert systems will be needed for the best performance.

Practical application of adaptive methods with feedback from knowledge-based systems
is one of the most challenging problems of both computational mechanics and artificial

intelligence, since it requires interactive coupling of sophisticated algorithmic software and

knowledge-based systems.

In the present project, the most advanced version of adaptive mesh refinement, namely,
the h-p adaptive finite element method was used. This method, applying simultaneously
h mesh refinement and polynomial enrichment, gives rates of convergence exceeding the
performance of other simpler refinement techniques. Although the method is still under
development, significant progress has been made by COMCO engineers toward a fully au-
tomated h-p version, with operational h-p data structures, error estimates and equation
solvers. A brief overview of the A-p method is presented in Appendix A and more detailed
information can be found in references [29,30,53,61}.

In a fully automated environment for engineering design and numerical analysis, a new
family of deep knowledge will be necessary. As it is well known, basic results produced
by finite element or finite difference programs are in the form of long tables of numbers,
representing nodal displacements, stresses, etc. No expert system, or, for that matter, human
expert, can effectively examine these data and decide whether the results are acceptable or
a modification of the initial model is necessary. Therefore, methods are required to extract
essential information from the massive set of data produced by these codes. The simplest
pieces of this essential information are, for example, maximum or effective stress, maximum
strain, maximum deflection, etc. In addition, information concerning the distribution of
stresses, localization of the highest stresses, range of plastic zones, etc., is also necessary.
In programs oriented toward interaction with human experts, graphical presentation of the
results is most commonly used. However, for an expert system interacting with a finite
element code, this graphical information is unnecessary. Instead, a limited amount of data
should be provided to represent essential information about thz solution. This issue is
addressed in Sections 6.3 and 6.4.

24

mE TN B BN N B B IR D B B B T BN D B B

4.2 Shallow Knowledge

Decision making is a complex process which, until recently, was confined to the domain
of human capabilities only. Two key factors in making any decision have imposed these
restrictions:

¢ domain knowledge

o thought process

“Domain knowledge” is the-knowledge and experience about the area in which the deci-
sion is to be made. This can consist of a list of pertinent facts, methods, and their resultant
outcome. Since the majority of this knowledge cannot be presented in the form of precise
mathematical statements and theorems, this type of knowledge is often identified by the
name of “shallow knowledge” (as opposed to “deep” procedural knowledge).

“Thought process” consists of reasoning or, more generally, the application of available
knowledge in an intelligent fashion to reach a feasible decision.

In-the engineering design process the “shallow knowledge” and related decisions are used
at virtually all stages: beginning from the understanding of the physical problem until the fi-
nal acceptance of the devised model. If we restrict our attention to the stages associated with
the numerical analysis, the particular decisions based primarily on the shallow knowledge
include (at the current state of the engineering science):

o Selection of the mathematical model of the structure (e.g., beam versus plate, elasticity
versus elastoplasticity, etc.).

e Construction of the initial finite element mesh.

o Selection of the computational strategy, for example, specific method time integration
(e.g., backward difference versus Crank-Nicholson), or methods of solution of nonlinear
problems, extraction of eigenvalues, etc.

¢ Handling of computational difficulties and errors, for example a divergent nonlinear
iterative procedure or zero pivots in the linear system of equations.

o Acceptance or rejection of the finite element solution and of the final designed model.

The shallow knowledge is also used to some extent in rather algorithmic stages of the
finite element analysis, for example:

¢ Adaptive mesh refinement (selection of error criteria, refinement/unrefinement in spe-
cific areas, efc.).

25

‘

o Adaptive implicit/explicit method or other zonal methods.

o Mathematical post-processing of finite element results, namely the calculation of highér—
quality results-(e.g., stresses) from the basic solution or the estimation of errors of the
final solution.

It should be noted that shallow knowledge is seldom used in the “pure” form. Usually
it is associated with elements of deep knowledge. For example a change of the constitu-
tive model from linearly -elastic to elastoplastic is based on information (stresses, strains)
obtained from algorithmic procedures. This means that a fully automated environment for
engineering design should allow for a very close coupling and integration of the software
handling algorithmic and heuristic knowledge. It is our belief that the lack of such coupling
was one-of the reasons for rather limited success and application of stand-alone advisory
systems developed previously for engineering application (e.g., SACON, PLASHTRAN). Ef-
fective interactive coupling of finite element procedures with knowledge engineering is one
of the major achievements of this effort.

5 Review of Computer Tools for Automated Compu-
tational Mechanics

Development of an automated environment for engineering design will require the combina-
tion of a variety of computer tools and the development of appropriate interfaces between
them.

On a similar basis, as to the types of knowledge, these computer tools can be divided
into two general groups:

¢ Procedural software, designed to effectively implement deep, algorithmic knowledge,
and

e “intelligent” software, designed to manage shallow, heuristic knowledge.

For decades these two major groups have been developing separately with very little
interaction. As a result, the methodologies, computer languages, and even hardware used in
these groups are very different. However, in recent years successful efforts have been made
to narrow the gap between the two groups and to enable a closer coupling of various pieces
of software. Such a procedure will be developed in this project. Before discussing details of
this procedure, we will briefly review the major characteristics of computer tools belonging
to the two aforementioned groups.

26

Y [
d

B N N BN BN R B DD G B B B B G B B B &

5.1 Algorithmic Procedures and Data Processing

Processing deep, procedural knowledge usually amounts-to massive algebraic computations
following the user—selected algorithm. Typical examples of such applications include:

e CAD design
¢ mesh generation

e engineering analysis by the finite element method or other methods

e post-processing of the results (including graphic presentation)

There exists a variety of software programs available for each of these applications, in
particular for the finite element analysis. (A detailed presentation of this software is be-
yond the scope of this report.) In this project a finite element code, based on the most
advanced h-p adaptive version of the finite element method, was used. This code is a typical
representative of a large group of engineering analysis codes, in the sense that:

o It was developed in the FORTRAN iunguage, traditionally used for large-scale algo-
rithmic operations for engineering applications.

o It is devised to run on computers with relatively large computational power, from
advanced workstations to supercomputers (however, even PC versions with limited
capabilities are available).

Recently there exists a tendency, in particular in the development of pre- and post-
processors with graphic capabilities, to use other, more powerful and versatile languages,
in particular C. This is also a language usually used in the development of CAD or solid
modeling software.

5.2 Object—Oriented Programming

Object-oriented programming (OOP) [47] methodology was considered in this project for
several reasons. In addition to the general benefits of code modularity and reuse that OOP
provides, OOP capabilities also enable us to represent the data in a format that is amenable
to both algorithmic computations and heuristic reasoning. We are also able to use the OOP
data to model a particular engineering problem at different levels of abstraction (e.g., the
engineer interacts with the data at the physical object level, whereas the finite eizment model
is composed of the very small numerical of the objects).

27

In: computer systems &eveloped" using traditional procedural languages the focus of the

system’s analysis, design, and development is on the functionality of the project. In OOP

the focus is-on classes and objects. One would describe a traditional procedural program as
a set of functions applied to arguments:

f(zy)
9(=)
In OOP the emphasis is:-on the objects:
Send the object.z the messagé to perform operation g.

Even in rule-based systems where the basis of the conceptual model is on TF THEN rules,
when the rules are reasoning over objects, the focus of attention in the analysis, design, and
development of the rule-based system is still on the objects. In other words, for all things
object-oriented, the conceptual framework of the system is the object model.

The four major elements in the object model are: abstraction, encapsulation, modularity,
and hierarchy. These elements provide the expressive power needed to define the model of a
complex real-world problem.

Abstraction is one of the fundamental ways human beings cope with complexity. In this
way we are able to capture the core characteristics of an object that distinguish it from other
objects. The set of core characteristics of an object describes its properties and behavior.
An abstraction captures the outside view of an object, and it serves to separate the object
model from its implementation,

The concept of encapsulation is complementary to the concept of abstraction. Whereas
abstraction places the focus on the overview (outside view) of an object, encapsulation
enables the developer to place a wall around the code that implements the object and at the
same time provide access to information about the current state and behavior of the object.
One can think of an object class as having two parts: an interface and an implementation.
The interface is equivalent to a class’s outside view. It consists of the abstract behavior
common to instances of the class. The implementation is equivalent to a class’s internal
view and comprises the data format used to maintain the current state information of the
object as well as the mechanisms that exhibit the behavior of the object. Encapsulation
allows the developer to hide from the user all of the details of an object and at the same
time provide user-access to all the essential characteristics of the object.

Modularization is the act of decomposing a complex problem into individual, manage-
able components. Partitioning a large complex program creates a number of well-defined,
documented boundaries within the program. This enables us to view the program from
various levels of abstraction. At the highest level the model may be a set of objects with
each object representing a module. At a lower level of abstraction the module itself is the
model consisting of a hierarchy of classes and their objects. Modularity not only assists in

28

X , . , , N PN
> A *

- the devélopment of a system, it impacts the entire system life cycle. A system that has

been decomposéd into a set of cohesive and loosely coupled modules is more amenable to
extension .and maintenance.

The three object model elements previously described—abstraction, encapsulation, and
modularity—all assist in reducing the complexity of a large system, but this is still not
enough. By identifying that a set of abstractions forms a hierarchy we greatly simplify the

‘model. The two most important hierarchies in a complex system are its classification (kind

of) structure and'its assembly (part of) structure.

The classification structure provides the inheritance capability, an essential element in
object-oriented systems. Basically, inheritance defines the relationship that exists when one
class shares the structure and behavior of one or more other classes. A subclass usually
extends or redefines the structure and behavior of its superclasses.

Whereas classification structures denote generalization and specialization relationships,
assembly structures describe aggregation relationships. For example, a car is made up of a
collection of sub-objects: a motor, wheels, body, suspension system, etc. These assembly
hierarchies can be viewed as different levels of abstraction, which is described earlier in this
report,

These two types of structures form the basis for two important properties of OOP: reuse
and object focus. Inheritance provides for reuse (e.g., the operation to compute the speed of
an object in a two-dimensional plane needs to be defined at the most general object class)
and object focus (e.g., one can reason about all instances of the class SHIP in the domain, or
focus on the instances of the subclass SUBMARINE). In much the same way the assembly
structure allows for reuse (e.g., the code for describing the current state of a WHEEL that is
part of a CAR assembly could be the same as for the WHEEL of an AIRPLANE assembly)
and object focus (e.g., different interfaces to the object in question could view it as a single
entity or a composite structure).

Using these four elements of OOP we have provided the engineer, who works with real-
world physical objects, an environment in which he can declaratively model the objects in
his or her problem space and the objects will retain their identify in the solution space. In
other words, although various portions of the system model the characteristics of analysis
differently (e.g., the entities of the k-p finite element method are very small finite elements
of the objects in the model), the results of the analysis are posted in the same form as the
engineer’s description. '

For example, the kernel hierarchies in the Engineering Design Environment might consist
of one of the two superclasses MATERIAL and STRUCTURE, STEEL defined as a subclass
of MATERIAL, BEAM and COLUMN defined as subclasses of STRUCTURE, STEEL-
BEAM defined as a subclass of both STEEL and BEAM, and STEEL-COLUMN defined as

29

- N
. .. L. A
. N A . v ;
B N .o

.
'

a subclass of‘boi;h STEEL and COLUMN. Using the concept of element structure (part of)
the engineer coulfi»,a‘.s'semb,le an instance-of the class BRACKET comprised of two.instances
of the class STEEL-COLUMN and- one instance-of the class STEEL-BEAM.

In the context of an Automated Design Environment the Object Oriented Programming
provides a very natural and well defined way of representing structural objects, finite element
entitiés, and even hurmans (experts) involved in the design process.

5.3 'Expert Systems and Knowledge Engineering

In contrast to algorithmic procedures, computer tools for handling shallow knowledge took
considerably longer to develop. However, three decades of research in the area of knowledge
engineering or “artificial intelligence” have resulted in the development of effective methods
and tools for handling shallow knowledge and simulating human reasoning and the learning
processes. Presently the best known and widely implemented tools for simulating the human
expertise are expert systems,

Expert systems are software packages utilizing expert knowledge coded into rules.to find
solutions to problems which cannot be solved algofithmically, or in which the algorithmic
procedure can lead to a blind search. Expert systems are usually composed of three sections:
a “fact base” which contains active knowledge presented in the form of rules, the “inference
base” which also contains active knowledge presented in the form of rules, and the “inference
engine” which applies rules to generate new facts and arrive at required conclusions. The
most popular modes of operation of the inference engine are “forward chaining”, “backward
chaining”, and their combinations [17,37).

The first generation of expert systems could be characterized as a rule-based advisory
systems for various applications. A good example is one of the first expert systems to gain
acknowledgement is MYCIN. MYCIN has a backward chaining inference engine and a knowl-
edge base consisting of rules for determining the best combination of antibiotic medication to
be prescribed for a patient with a viral infection. In the field of engineering applications the
corresponding expert system is SACON [12]. These first expert systems usually consisted
of a few hundred IF THEN rules with fact bases stored in the form of simple statements,
e.g., “The speed of the car is 100 mph.” This simple form of the knowledge base limited the
flexibility of expert systems and made the development of larger systems (with more than a
few hundred rules) practically impossible. An additional disadvantage of these systems was
the fact that they were usually developed in one of the dialects of the LISP computer lan-
guage, requiring specialized (and expensive) computers which were in general incompatible
with languages traditionally used in algorithmic operations. Due to the above reasons, the
expert systems of this first generation never gained real popularity.

30

s ~ 7
L]
| 1"‘ a
’I |
;l
L l
v

.,;',«‘Recent yea.rs, however, have brought several major advances to the field of artificial

mtelhgence, which allow practical development of powerful expert systems with the capability
o mteractmg with other programs. These advances mclude

. “I«’hé introduction of general purpose “shells” (expert system development tools) that
can be-used to create “user defined” expert systems for arbitrary applications.

¢ The application-of more conventional languages (C, PROLOG, etc.) rather than LISP
in the development-of expert system software.

¢ The use.of knowledge bases with a more-convenient structure than rules, e.g., semantic
networks, frames, or variations of object-oriented programming.

The general purpose shells are the pieces of software designed to serve as the expert system
building tools for generic applications: the expert system developer uses shell commands to
build the knowledge base, while the actual user utilizes the expert system to make decisions.
Preseritly there exists a variety of expert system shells available on the market, with different
capabilities and prices ranging from a few hundred dollars to about $50,000. Some of the
most popular systems will be reviewed further in this section.

As mentioned before, the first expert systems were developed in the LISP language, which
indeed is a very powerful language for knowledge engineering, but unfortunately requires
rather expensive LISP machines and is difficult to couple with other languages. These
inconveniences were the reason that most of the currently marketed expert system shells are
developed in:one or more flexible languages, like C or PROLOG. Especially the C language
(or its object-oriented versions, C++ or CLIPS) is very popular, because it is highly portable
and, more importantly, it is a mechanism for direct interaction of expert systems with
programs developed in other languages such as PASCAL or FORTRAN.

Another significant advance in knowledge engineering is the improved structure of knowl-
edge bases. Such techniques as semantic networks [17,31], blackboarding [37,75], or object-
oriented capabilities enable relatively easy construction of large and versatile expert systems.

As mentioned before, there exists a variety of expert system shells available on the market.
A brief summary of some of the most popular software is compiled below. The information
provided here is based on various sources and is only for the purpose of providing a general
orientation.

ART-IM is the expert system shell developed by the Inference Corp. It was
developed in the C language, runs on workstations and powerful PCs,

and can be integrated with programs written in other conventional
languages (FORTRAN, PASCAL, etc.). The inference engine is based

31

7 . D 2 v - B 0 N - - - e - 0 S S - B .~ R H R
. I L, - PR .
g P ranli o
N v
. b
N N -

GQPERNICUS

EXSYS.

GOLDWORKS II

KAPPA

MERCURY

oni forward. chaining. The shell has object—oriented capabilities and
allows for a.pplica.tion of certainty factors in rules (as opposed to sim-

" ple TRUE or FALSE statements).

is the set ofsoftware tools for developing expert systems, developed
by Teknowledge. It is written in the C language and can be integrated
with other-applications. The inferénce engine supports forward chain-
ing, backward chaining, nonmonotonic reasoning, etc. Certainty. fac-
tors for rules are allowed. The system also supports object-oriented
programming.

is the expert system developed by Exsys, Inc. It is a relatively simple
rule-based system, developed in the C language. It runs on work-
stations and PCs and can be integrated with programs written in
other conventional languages (FORTRAN, PASCAL, etc.). The in-
ference engine has both forward and backward chaining capabilities.
Certainty factors for rules can also be used.

is the expert system shell developed by Goldhill Computers, Inc. It
runs on: workstations and powerful PCs and can be integrated with
programs written in C or equipped with an Application Program-
ming Interface (API). The inference engine has forward and backward
chaining capabilities, goal-directed chaining and other options. The
knowledge base supports rules, frames, and object-oriented capabili-
ties. Certainty factors for rules can be used.

is the expert system shell developed by Megaknowledge, Inc. (cur-
rently owned by Intellicorp). It was written in C, runs on powerful
PCs, and can be integrated with programs written in other conven-
tional languages (FORTRAN, PASCAL, etc.). The inference engine
has both forward and backward chaining capabilities, as well as more
advanced options, like a goal-driven approach. The knowledge base
has object-oriented capabilities.

is the knowledge base environment developed by Artificial Intelli-
gence Technologies, Inc. The inference engine has both forward and
backward chaining capabilities and their combinations. The knowl-
edge base includes rule-based and object-oriented programming. The
expert systems developed can be integrated with other software, in
particular with data bases, etc.

32

| l

NEXPERT OBJECT is the expert sysiem shell developed by Newros Data Inc. It was writ-
tea in C language, ruas os the majority of worksiations and powerful
PCs, and can be inlegraled with programs wriliea in other conven-
tional Janguages (FORTRAN, PASCAL, eic.). The inference engine
has both forward and backward chaiming capabililies, aad the knowl-
edge base bas object-oriesied capabilitics. Interesiingly. NEXPERT
shell can be cowpled with NESTOR. newral neiwork with paitern

” bt

1st-CLASS FUSION is an expert system software developed by 1st-Class Expert Sysiems,
Inc. It runs on PCs and DEC VAX. Kt can be integrated with other
softward (dBASE. LOTUS) or programs writien in C or PASCAL.
The inference engine has boih forward and backward chaining capa-
bilities. Knowledge represeniaiion is rule-based but also offers an
interesting example-based opiion.

The above list represenis only a fraction of the total zumber of experi sysiem sofiware
currently available for generic applications. Even this brief review clearly shows that the
expert system technology has established its position as the primary iool for knowledge
engineering.

5.4 Knowledge Acquisition

One of the primary and most difficult tasks in building expert systems is constructing the
actual knowledge bases. In most of today’s expert systems this amounts to formulating rules
of the IF — THEN - ELSE format. These rules are introduced into the system using the
language specific to a givén expert system tool. In practice this requires direct cooperation
of a knowledge engineer with the actual expert or, alternatively, training this expert in
effective interaction with the expert system software. With this approach, the capabilitics
of.an expert system never exceed the common knowledge of human experts involved in the
creation of a knowledge base.

_There exist, however, new developments in the area of knowledge acquisition, which
promise more flexible behavior of expert systems. In the simplest case, it is possible to
construct rules from examples provided by the human expert. Such an option is available,
for example, in the 1st—-CLASS Expert system shell. In a more general scenario, it is possible
to create new rules from previously solved examples. For example, in the process of structural
op-imization of a certain class of aerospace structures, previously solved problems can be
used to improve the optimization procedure for new examples.

33

Figure 5.1 Neurons and conneciions in neural network.

Automation of this learning capability will require intelligent classification of examples
and extraction of essential facts relevant to ihe problem under consideration. It can be
expecied that in the near future such capabilities will be available as extensions to the existing
knowledge engineering sofiware. Then the performance of expert systems will actually be
improving during their application and may eventually exceed the capabilities of human
experts.

5.5 Neural Networks

Neural networks represent a very special application of knowledge engineering. They consist
of simulated neurons connected together in a way simulating, in a very simplified way, the
connections in human brains. Therefore, ihe kinds of problems that neural networks can
solve are also those that people can do well, iz particular:

e assocation,

e pattern recognition,

e qualitative evaluation, and
e learning.

The concept of a neural network is presented graphically in Fig. 5.1. Each neuron has
several input connections and output conncetions. The input connections are both excitatory

34

- S G . I Gh B D 0GR R TR T B GE h Bh G e

Ry Eoum—
F ~
. .

‘

OUTPUT LAYER

Figure 5.2: A three-layered neural network.

“and inhibitory. The response of the ne:ron to the stimulations is defined by the activation

function, which balances stimulations from all inputs (several different formulas are available)
to produce the output. In more complex cases the activation function also uses the previous
state of the neuron.

In practical applications the neurons and connections are constructed in a certain orga-
nized fashion. For example, in the popular type of feed—forward network there exist three
layers of neurons: input layer, hidden layer and output layer (Fig. 5.2). Moreover, the actual
implementations may be hardware-based (with hardware elements representing each neuron
and connection) or implemented as a computer simulatica.

Because of their structure, the neural networks can produce certain reactions (output) to
different combinations of input stimuli—for example, select from a predefined set a pattern
closest to an incomplete input pattern. A more detailed discussion of these capabilities can
be found in references [1,5,20,21,42].

An important feature of most neural nets is that their responses are not predefined.
Instead, a learning mechanism is involved. A network has to be trained to properly adjust
weighing factors in activation functions. There are two basic kinds of training, namely:

e supervised training, and

¢ unsupervised training.

In supervised training the weighing functions are adjusted by comparison of the network
output with ideal results for a certain predefined set of examples. This is usually done

35

by the application of the so—called Delta learning rule [42]. In unsupervised training the
connections are adjusted by solving a variety of examples with no predefined results. The
learning algorithm in this case is usually based on variations of Hebb’s rule, which actually
represents a theoretical model of biological associative memory [42).

In the context of automated computational mechanics, the neural networks can be used
to:

1. Identify -patterns in solution processes, design applications, optimization processes,
etc. This information can be used to improve the efficiency of solving new examples
by utilizing patterns detected on examples previously solved.

2. Reconstruct proper parameters in incomplete data bases, input decks, etc.

It seems that at the present time the possibilities of practical application of neural net-
works in automated computational mechanics are rather limited. This is due to the still
rather experimental nature of neural networks, limited complexity of problems (patterns)
that can be handled by today’s neural nets as well as the difficulties in the direct interaction
of algorithmic programs with neural netwark technology. -

It should be noted, however, that neural network technology is currently being coupled
with expert systems software—for example, the recently announced coupling of NEXPERT
OBJECT expert system shell with NESTOR neural network. Therefore, once the finite ele-
ment methodology is effectively interfaced with expert system software, it will automatically
benefit from further progress in knowledge engineering, including neural network technology.

6 Methods, Concepts, and Algorithms for Automated
Computational Mechanics

In this section we will discuss methods, concepts, and algorithms related to automation of
the design processes outlined in Section 3. In particular, a critical look at existing methods
and some new concepts of automated computational mechanics will be presented. Several of
these developments were used in the implementation of an automated, coupled finite element
expert system environment (Sections 7 and 8).

6.1 Selection of a Mathematical Model

The selection of the mathematical model of the structure requires considerable theoretical
background and experience. The choice of the actual model depends on several factors,

36

- - ‘- -

some of them highly quantifiable, others somewhat heuristic. The principal groups of factors
affecting the selection of a mathématical model are:

1. The actual data of the problem, namely the shape of the structure, the types of ma-
terials, loads, supports, interactions with the environment and other structures, time
scales, etc.

2. The specific aspects of behavior that the designer feels will influence the final product.

3. The actual theoretical, technical, and computational capabilities available to the de-
signer.

Until very r‘ecently, the above decisions were primarily heuristic. For example, a typical
decision whether a structural member should be represented as a shell or modeled as a
solid body was based on a simple estimate of the proportion of its dimensions. Only after
complete analysis could the experienced engineer examine results and possibly modify the
model (for example, concentration of stress in corners of a shell indicates a need for a full
three-dimensional model). There exists, however, a considerable theoretical potential toward
more precise a priori identification of a proper mathematical model.

In this section we discuss two possible systematic approaches to this problem, namely:

e asymptotic theories, dealing with the selection of a general model (solid, plate, shell,
etc.), and

e hierarchical methods for systematic construction of mathematical models of increasing
accuracy.

6.1.1 Asymptotic Analysis of a Family of Elasticity Problems

The methods of asymptotic analysis are an attempt to provide a rigorous approach to con-
structing mathematical models of solid structures. This theory has been applied to certain
linear problems in elasticity and structural mechanics [23,24] and, in general, should be ap-
plicable to a broader class of problems in solid mechanics. In this section we will discuss an
application of asymptotic analysis to determine whether a solid body, presented in Fig. 6.3,
can'be-modeled by beam theory or-should be modeled as a three-dimensional ‘solid.

Let ¢ denote an arbitrary positive parameter (for asymptotic expansion) and consider
a three-dimensional body ¢ made up of a homogeneous isotropic linear elastic material.
(The role of the expansion parameter will become apparent subsequently.) The body under
consideration is assumed, for purposes of the discussion, to be a beam-like structure with two

37

| L
.- - - - -‘ ' ‘
» N
N - ey M

o
B R - -

Figure 6.3: A three-dimensional solid body.

38

a1

N - . B . [ot N
A 2| v

dimensions much smaller than the third. The material from which the body ¢ is constructed

has a modulus of elasticity £¢ and Poisson’s ratio »*. We denote by ff(z¢) (resp. g§(z°)) the

i-th component of the-volume (resp. surface) density of applied body forces (résp. surface
tractions) at point z¢ € Q¢ (resp. z¢ € I'S), and we introduce the following function spaces:

Ve = {v‘:(vf)e [HI(Q‘)]:;:/‘)(x‘xv‘:Oin 1‘3},

B, = [(9‘)]3 = {C = ()€ [1? (Q‘)]Q:C,-,- = C;,-}

Here V¢ is the space of motions.of finite energy with no allowable rigid rotations and ¢ is the
space of stress (strain) tensors. We equip these spaces with the usual norms. Mathematically,
the constitutive law is characterized by the symmetric automorphism A¢ : B2 — R?, defined

by:

¢ 14 v V¢
Yij:(A‘”)ij’:_Xij"ﬁ

Ee pr&ii ’

where

B ={(=(Gy) €8 : Gy = (i
Then the Hellinger-Reissner formulation of the three-dimensional elaticity problem for the
weakly clamped beam (other boundary conditions shall be considered later) is the following:

[Find (0¢,u¢) € B¢ x V¢, (a stress-displacement pair) such that
{ /QE(ACUC‘);,' A /Q e (u) ¢G5 =0, V(* € X, (6.1)

Joeotnty)= [lestt [ot vote Vs

\

where ~f; is the strain tensor:
€ €\ 1 66 (4 ac € V [VC
7;5(”)—§(ivj+ jvi), v €

Here and below we reproduce the formulations of Trabucho and Viafio [78]. As a consequence
of a result of Brezzi 18], for mixed formulations, and by using Korn’s inequality the existence
of a unique solution of problem’(6.1) is guaranteed.

The dependence of (o¢,u¢) on the parameter ¢, related to the size of the cross section, is
rather complex. In order to study its behavior when € becomes small, we shall use a change
of variable technique in such a way that ¢ shows up in the governing equations in an explicit
form. The specific change of variable considered here is the one proposed in Bermudez-Viafio
(18] and is analogous to the one of Ciarlet-Destuynder [23].

39

y. 2 LN :
. . .
.
!

~ We shall now consider the following function spaces:
- =f.} 1 on]3 . — — .
vV = {v (w)e [H (Q)] ./ﬂv /Qa:xv OonI‘o}
» = [@)
equipped with the usual norms.
Moreover, we shall assume that the elasticity coefficients do not vary with ¢, that is:

E‘=FE; v =v;Ve>0.

We shall also denote by A° the following symmetric automorphism defined on the -space
-R‘: = {(¢ — (Cap). €R’: (B = (oo}
_1+v

Yos = (AQz)aﬂ ==

v
Xctﬁ - "E" qu5aﬁ

For any (0,{) € £ X T and any v € V we define the following virtual work forms for the
Hellinger-Reissner ptinciple: :

1
ao(o‘, C): "E.‘/Q 033733

az(0,() = /Q [V(l _,;L ») o38(3p — % (033Cus + ffuuﬁsa)]

‘14(0') O = /s_; (Aoa) of Cozﬂ
b(6,0) = = [Gti(o)

Jo(v) = —/ﬂf?v; _/ru glu;.

With this notation in mind, the following result may be shown:

Theorem [Trabucho and ViaRo [78], p. 307} Let (o(c), u(c)) € T x V be the stress
displacement pair obtained from the solution (0%, u¢) € ¢ x V¢ of (6.1), then (o(e), u(e))
is the unique solution of the following problem:

Find (o(¢) , u(e)) € & x V, such that:
ao(0(€),¢) + €*az(a(e),) + e'as(o(e),) + b(¢,u(e)) =0, V¢ € T
b(o(e),v) = Fo(v), Vv € V

40

. - N B - , A NI . S
E . s . N
. . PR
A = - , " = >y ' PR :

Following a standard technique for variational problems with small parameters (see Lions
[44]), we shall suppose that we may write, at least formally,.

(o(&)s u(9)) = (6% 1) + (0% 1) + (0%, u4) + (1(6), w(¢))

where (n(e),w(€)) — 0 as € = 0, in an appropriate space. Identifying the coefficients with

the same ‘powers in.¢, we may characterize the terms (0%u®), p = 0,1,2 as the solution of
the following system of equations valid for all { € X and allv € V:

(200 + 46~ -
Yo% v) = Fov)
{GO(UZ,C) + b((,u?) = —ay(0", ()
blo?v) = 0
{a0(04,<) + b((,u4)=—02(0'2,()—&4(0'0,4') (63)
blot,v) = 0

A main result of this type of exercise, not immediately apparent from (6.2) and (6.3),
is that component of the expansion that becomes relevant (mathematically well posed with
a nontrivial solution) is data dependent. That is, by identifying the data in the problem
the theory appropriate for the problem at hand falls out automatically from the asymptotic
formula. In other words, if the boundary conditions and loading data and geometry of Q
suggest that this structure can be adequately treated as a thin elastic plate or a thin elastic
shell, then it is be possible to automatically determine this from a simple analysis of the
data itself.

6.1.2 Hierarchical Models in Structural Mechanics

For a typical problem in structural mechanics, there usually exist a variety of mathematical
models representing the mechanical behavior of the structure. As a general rule, more
comprehensive models are usually mathematically more complicated and computationally
more expensive. Therefore one of the essential tasks in computational mechanics is the
selection of an appropriate model by balancing two criteria: reliability and effectiveness.

These criteria are defined by Bathe, et al. [11] by the introduction of a very comprehen-
sive mathematical model, i.e., a model that fully (or rather to the best of our knowledge)
represents the system under consideration. The mathematical model selected is reliable if

41

, ,_~ 4 | T Ca— T Praraans. T T 3 R e T
.o . RN L
. - N o RO P Lt iomaom R
. . . R B !
R N . N o : - .
g N - . . . 4§ 5 o . s .
. o 3 o = . S S by Kaprans
. N ¥
s
A

SN N

‘j:he'r,gspénse predicted is within a selected level of accuracy, measured with respect to the
~ response. Qf’th_e’»‘ery comprehensive mathematical model. The model is. effective if it yields
‘the requiréd response at.minimum cost.

Uhfdrtunately, there exist no single consecutive hierarchy of models in solid mechanics.

‘Even if orie restricts. the considefations to purely mechanical behavior (no thermal, electro-

magnetic, chemical effects, etc.), there exist several distinct aspects or classes in which some

- kind of sequential-hierarchy can be.established.

The first hierarchy-is related to the geometric model of thestructure. Here the hierarchy
is defined by the number of constraints and assumptions introduced with respect to fully
three-dimensional behavior. In general this hierarchy includes:

o Verythin one-dimensional models (cables)
¢ one-dimensional beam-type models ‘with such subclasses as

— Bernoulli béams
— Timoshenko beams

— generic curved beams, etc.
e very thin two-dimensional models (membranes)
¢ two-dimensional shell or plate models, with such subclasses as

— Kirchhoff plates (shells)

— Reissner-Mindlin plates, etc,

o fully three-dimensional models

In general, the simplified models in this group reduce the number of dimensions and
unknowns in the problem by introduction of additional assumptions (constraints) regarding
the behavior of the model, usually at the cost of increating the mathematical complexity of
the equations. For example, in Kirchhoff plate theory, it is assumed that the fiber normai
to the plate surface remains normal and inextensible during deformation. Then it suffices to
consider only a two-dimensional model with one unknown, namely normal deflection of the
plate (or three displacements for shells). The Reissner-Mindlin plate model is a higher-order
model than Kirchhoff, but at the cost of introducing an additional variable, namely an in-
plane twist. Further upgrades of these models can be obtained by introducing rotations of the
normal fiber and its extensions as independent variables. Note that the above classification
is further complicated by the introduction of intermediate classes such as shallow shells, for
example.

42

- - - - ‘-f - .-: - i :
P B P - e S R ranard .
- < .
B . .
. . \ ot

N Il O I N I e

YI

~ Thesecond essential aspect defining the hierarchy of mathematical models is the kine-
© thati¢-definition of the deformation of the body. There are three basic categories in this

class;. namely::
@ infinitesimal deformation theory, defined by linear 'differ'entia.l ‘equations,
o large rotation, small-strain theoty, and ’

o fully nonlinear large-rotation theory,

For selected structural typés such as shells, this division may include additional interme-
diate classes such as large deflection/small rotation theory, etc.

A chart representing a general hierarchy of constitutive models is presented in Fig, 6.4
Although this general hierarchy is relatively simple, establishing a hierarchy of mathematical
formulations is much mote difficult, because there usually exist several different mathematical
representations for the same constitutive behavior. A good example is the theory of plasticity,
where there exists a variety-of formulations based on different principles, different selection
of yield criteria, etc.

The value of a hierarchical approach in the selection of the mathematical model of the
structure is that it provides a systematic way of sélecting the model by examining the essen-
tial features of the physical problem. Moreover, this approach is very useful in the verification
and refinement of the mathematical model after solving the problem by a numerical method.
This approach.is discussed in more detail in Section 6.4.

6.2 Adaptive Computational Techniques

By adaptive computational techniques we mean a class of computational methods that adapt
their parameters to changing characteristics of the solution during the solution during the
solution process. These techniques include:

o adaptive mesh techniques,

o adaptive time stepping in time-dependent problems,

o. adaptive selection of load steps in nonlinear problems, and

e adaptive selection of implicit and explicit zones and other zonal methods.

Most of these methods are based on solid mathematical foundations and are implemented
in an algorithmic fashion. These techniques have received a great deal of attention from re-
searchers in recent years. However, in virtually all these techniques certain heuristic knowl-
edge is necessary for maximum performance and reliability in practical applications.

43

3 . ST NN by
- : - ‘-3 b

N : ’
. [} - : I
> g N 7 — . e

-

Constitutive Models (Continuum)

I VISCO-ELASTO-PLASTIC |

+ continuiim damage
+ fracture
+ fatigue

VISCO-ELASTIC

ELASTO-PLASTIC
£ + continuum damage
f frap fure + fracture
+ fatigue -+ fatigue
VISCOUS_ | ELASTIC PERF.—PLASTIC
(fluids) + fracture + cont. damage
+ fatigue

Figure 6.4: Classification of constitutive models in structural mechanics.

44

R

- - - B e e EEREECIRE Y YA sas o aa e AT mod e e s mEy o RSN
N L. L L . Jee e RN et fPTi L e -
- -A -.' -!l - :-‘ -‘ ‘-K(V ‘- .
g . — e R I —— o

. .
- N ¢
i *

- - - - - - 3- - - ‘-'

~

4
Pt

In this séction we prese‘ht the theoretical background and methodology of several adap-

tive coinputational methods developed and implemented at The Computational Mechanics

ijrﬁpany,‘finé. Sdme, practical applications and numerical results will be discussed in Section
8.

6:2.1 Error Estimation and Adaptive Mesh Refinements

- Adaptive-mesh refinement, based on rigorous error ‘estimates, enables resolution of a basic

question of thodern computational méchanics: what is the accuracy of the numerical solution?
Equivalently, how good are the answers? Answers to these questions are crucial in the design
of mathematically sound adaptive schemes: to systematically reduce error by adaptively
changing mesh sizes or spectral orders of approximations, one must obviously have some
means to judge the distribution of error in a numerical solution.

In this section, we will outline some of the most important results related to error estima-
tion and adaptive techniques for-k-p finite element methods. Details-of their derivations and
proofs can be found in references [29,30]. The theoretical background of A-p finite element
methodologies and associated data structures is summarized in Appendix A.

There are, in general, several classes of error estimators for the A-p finite element method,
including:

1. Element Residual Methods. Here the residual in a numerical solution (the function
defining the measure of how much the approximate solution fails to satisfy the governing
differential equations and boundary conditions) is computed over each element and used
as data in special local (elementwise) BVPs for the local error ej.

2. Duality Methods. These methods, valid for sélf-adjoint elliptic problems, use the du-
ality theory of convex optimization to derive upper and lower bounds of the element
€rrors.

3. Subdomain Residual Methods. Here the local BVB for the error in a given element is
formulated over a patch of elements surrounding this element.

4. Interpolation Methods. These methods use the interpolation theory of finite elements
in Sobolev norms to produce rapid (and sometimes crude) estimates of the local error
over individual elements.

5. Post-Processing Methods. Here an estimate of the error is obtained by comparing a
post—processed version of the approximate solution with the approximate solution.

45

- - = 0 ‘ - - D) EE N e
- o * vy R
1 - . * .
.
~ D . h ~ Py ~ . .
v
- B

We will present basic results related to these error estimators for the following model
probléem: Consider a bounded domain Q C B? with boundary T' = 99 consisting of two
disjoint portions I, and T'; on which a function u = u(z,,z,) = u(=) is sought; i.e., we wish
to

Findu €T+ V such that
- (6:4)

B(u,v)=L(v) YveV
where V is the space of admissible functions,
V= ‘{v € HY{(Q)jv =0 a.e. on I‘u}
and .B(-,-) and L(-)-are the bilinear and linear forms,
B:VxV—R
B(u,v) = /9 (aVu - Vv + buv)dz
L:V-oR
L(v) = /{;f‘vda} -+ /F‘ guds

Here % is any H'(f2) function with the property that its trace %o on I', coincides with a
prescribed function ug; v =.0 in the definition of V' is understood in the sense of its trace on
09, and the coefficients a = a(2) and b = b(x) satisfy, for any = € 9,

0<a<a(z)<q 0<b<bz) <D

where g, @, b, and b are constants. Throughout the following developments, C shall denote
a generic positive constant independent of the finite element mesh, unless specifically noted
otherwise. In exceptional cases, special notations for constants shall be used. Additionally,
problem (6.4) is equivalent to the following minimization probler,

Find u € %y 4+ V such that
J(u) < J(w) VweT+V

where J: H(Q) — R is the total potential energy functional defined by

J(v) = = B(v,v) = L{v) - (6.5)

DO}

46

- l

A Prieri Interpolation Ervor Eslimele
An interpolation error estimaie is a relatively cheap and rather crude estimaie, which can
efectively be used as an indicaior for adapiive mesh refisement. For an arbiirary &-p mesh

it has the form:
k-2l <oV F ehx (65)
where g = min (p+ 1,7) and o is the fisite element solution to problem (6.4).

Residual Error Estiamie

The idea of a residual error estimaior is based on the assumpiion thai the aciual error of
the solution ug:
Cy=u—uyg

is sufficiently well estimated by the error beiween x5 and ihe soluiion on enriched mesh u;

Eg =uy —uy

The energy norm of this error can be estimated {30) by

HEsfll < c{g; uwm}'

Here C is a constant dependent on the order of approximation. It can be assumed io be
equal to 1.0 for p =1 and 1.25 for p > 1. ¢ is a local element error contribution which is
a solution of a local problem:

Find ox € Ma(K) such that
1
c\PK = AUadz 4 - i A
Bx (¢x,va) /Kr vdz + s, 2[K” vads

au,,)]
o, la o) e

/

a

Vs € Mz(K)

where 1 is a local element residual, fv] denotes the jump in v across the interelement
boundary, n is the outward normal to the element boundary, and Mx(K) is the space of
bubble functions defined over element K. For details on the derivation of this error estimator,
see reference [30]. It is of importance to note that, although thé fine mesh solution is formally
used in the derivation of the residual estimator, the problem is never solved on the final mesh.
The only time consuming operation is the calculation and accumulation of local, elementwise
contributions to the error indicator.

s

47

Erver Estimator Base on Duadlity Theory

Coasider the boundary value problem (6.4) with energy defined by equation (6.5). Iniroduc-
ing the space
Q= {s e I’(N)]divs e L’(ﬂ)}

and the set
K'={se€Q|s-n=gonT,}

we can define the following dual problem

Find r € K~ such that

I (r)=sup g J(s) }
where J-(s) the complementary encrgy funciion

J(s)= % /ﬁ E “ls- s+ 5[+ div s)| dx (6.7)

An e posteriori error esiimaior is based on the fact that the solutions of both the primal
and the dual problem satisfy the relationship:

J(u) = 22%;,]\1;) = qugJ'(s) =J(r)
Then it can be shown thai:

e — uallff < 2J(ux) —2J7(ra)

#*

and
llir — 74llF < 2J(us) — 2J°(r4)

Thus, the errors in both the primal and the dual approximation are each bounded in their re-
speciive global energy norms by the difference of the approximate primal and complementary
energies.

A direct calculation and Green’s formula reveal that
2] (us) — 2J"(rs) = /ﬂ (7 (s — aVus) + 57 (f + div 4 — bus)’) dz

Suppose that Q is given a partition Q;, of finite ‘elements over which primal and dual ap-
proximations are calculated. Then, for element K € @y, we take as the local error indicator

0% = /K (a"l (rn — aVu)® 4+ 7! (f + divry — buh)z) dz

48

! 1

~

Bl N N BN Il Ea

In general, for linear elbptic boundary-value problems, the quantities fx give remarkably
good estimates of the Jocal esror in the energy or complementary energy over each finite
clement. Globally, we always have

e — m.IIF}S T &
liir — =g KeQs
Subdomain-Residual Methods

Subdomain residual methods employ the general ideas of residual methods to calculate local
error indicators by covering the domain S} with subdomains §);, and constructed by the
selection of a patch of elemenis around element 2. For each patch, we introduce a local
projection problem:

(6:8)
B (¥;,v) = B(ex, v} Vv € H} D)

Moreover, we have the estimate that:

Find ¥; € H}(S%:) such that }

N 3
ummsc@imwﬂ

i=1

Notice that the right hand side in the local projection problem (6.8) is a function of the
finite element residual:

B(ex,v) = /ﬂ.- fvdz — B (uy,v)

Representing the contribution of the i-th subdomain €; to the global estimate in the form
of a sum over the elements constituting the patch

Ml = > Illselll

Kc$;

we introduce for each element K a set of up to four indices identifying its linear degrees-of-
freedom and, consequently, the patches §; containing the element:

o(K) = {i|K c Q;}

We can then rewrite the estimate in the form

e < ¢ (S %)

CY

7

49

¥ E E EFEFEFEEEETE

{
w

where the element error indicators 0x are defined as

0= 3 lleslllk
i€s(K)
Thus, in order to calculate. the error indicator for an element K, one has to identify the
subdomains containing the element, solve the local subdomain problem (6.8) for each of the
subdomains, calculate the element contribution to each of the |[|o;]|[*, and sum them up
over the subdomains.

The local projection problem in practice is solved using a higher order approximation.

A Posteriori Error Estimator Based on the Interpolation Error Estimates

The interpolation error estimate may be used as an a posteriori error estimate, provided the
second-order derivatives needed to evaluate the seminorm on the right hand side of (6.6) are
calculated using the finite element solution and some kind of postprocessing. This type of
error approximation has two attractive features:

() The interpolation is a local quantity defined for individual elements.

(b) The interpolation error is problem-independent; it depends only on u and the
interpolation properties of finite element meshes.

The constant on the right hand side of (6.6) is often set to unity and a local error indicator

is assumed in the form A
K
P =_—Ju
X fu]
These error indicators provide an estimate of the local behavior of the interpolation error.

The global quantity

1

(o)

is rather meaningless, unless precise estimates of the neglected constants are available.

A Posteriori Error Estimator Based on Postprocessing

Perhaps the most straightforward approach toward estimating the error a posteriori is to
replace the exact solution v and its derivatives with some postprocessed values calculated
using data to the problem as well as the finite element solution u;. The postprocessed
solution should then exhibit superior accuracy and convergence properties over the finite
element solution itself.

50

i
i
s
i
_
!
r.
3

For instance, an error estimato: (indicator) for an element K, based on the energy norm,

may be of the form

(p;{ = L [a (61’1 - VHh)z + b(ﬁ - u;,)z] dz
where Vu and i are the postprocessed values of the gradient Vu; and solution u.

There are a2 number of ways of calculating the postprocessed values of uy, perhaps the
best known being the use of eztraction formulas, discussed in reference [7]. Here we will only
mention that good postprocessing is computationally expensive, and error estimators based
on postprocessing are used for final verification of the quality of the results, rather than as
error indicators for mesh refinement.

h-p Adaptive Meésh Refinement

The error estimators- discussed in this section may be used as a basis for adaptive mesh
refinement strategy. In the case of h-p meshes, the optimal mesh refinement, even with
properly calculated error indicators, is a difficult problem. The primary question is: k-
refinement or p-enrichment? Additional difficulties also result from the unrefinement option,
the selection of the version of p-refinement, etc.

In this section we will present a summary of an h-p adaptive refinement strategy developed
recently at COMCO. A more detailed discussion, including the theoretical background, can
be found in reference [61].

We begin by introducing the distribution of mesh sizes and spectral orders over (1,
characterized by functions b and p:

h(z1,22) = hg (21,22) € K}
p(Ez2) = pr (31,72) € K

the error indicator Ok for element K will depend on hg and px and is represented by a local
error density wx = @k (h,p) : 0 = [x @K (h,p)dz. Thus, an indication of the total error
over {) is given by the functional

J(hp)=) stOK(h,p)dw

Ke@sn

Next, let ng denote the total number of degrees of freedom of element K. We introduce a
degree-of-freedom density n = n(h,p) so that the total number of degrees of freedom M is

given by
M=/Qn(h,p)da: }
n(h,p)l]{ =ng

o1

The optimal mesh for a fixed number M = M, degrees of freedom will be defined by the
h, p-distribution-(k*, p*).such that
’ J(b,p7) = min J(h,p)
Jorras

.—MG

To resolve this problem using the method of Lagrange multipliers, we introduce the
Lagrangiaa,

L(k,p;)= J(h,p) — A (/n n(h, p)dz — Mo)_
and arrivé at the optimality conditions

dex

) = A = const.

n p=const.

d

-—;fﬁ =) = const.
n h=const.

In practical applications these principles are implemented in the form of a simple refine-
ment strategy: perform refinémenl. for which the anticipated decrease of the error per new
degree -of freedom are as large as-possible.

According to this principle, the algorithm for A-p refinements is as follows:

1. For all elements in an initial mesh, compute the anticipated decreases of errors for all
of the refinements which may actually occur.

o

For every element evaluate Af,/An,, Afy/An,. (For interpolation errors, use the
procedure outlined below.)

Set A8/An = max(Af,/An,, Ay [/Any) and store the larger of these two
quantities.

3. Scan the mesh and identify the largest value of A/An in the mesh: (Af/An)nax.
4. Create a list of elements for which A8/An > a; - (AG/An)max-

5. Perform refinements of elements on the list. The type of refinements corresponds to
information stored in item 2.

6. Update the solution: solve the problem on the new mesh.

7. Estimate the global error J = ¥ x 0x. If J < v, stop, otherwise go to 1.

The calculation of Af8,/An and Af,/An for interpolation error indicators may be
obtained using the following procedure:

52

« v e P T I R LR T e R L R YL ST P b

D,

[
e il

pt+1

J

p+1

3+1

p*t1

By

—— e |

+
ptl

=2%=32 possibilities

Figure 6.5: Possible ways of enriching an element.

ptl

¢

X T P A rrErrE .

-

1----.-...----.---.q.
]
feeccecccccasmesesaven

.
+
1]
1]
4
Jdo e |

—_ — SUBDIVIDED ELEMENT

0 CONSTRAINED NODE
@

ACTIVE NODE CREATED FROM A CONSTSRAINED NODE

DOMAIN AFFECTED BY THE REFINEMENT

Figure 6.6: Modification of the mesh caused by subdivision of a constrained element.

54

. X N . . T T x - LR
e B :
g d , S~ = .

E S N EE EE am Eae

(2) Subdivisions:

5 - ’ - n N , 0
=9%=16 possibilities

Q ~-Constrained Node

e -Active Node

(b) Removing constrained nodes:

d——e *« 3

=3 possibilities

Figure 6.7: Possible ways of subdividing an element and removing the constrained nodes.

55

2.1 Subroutine for determining A,/ An,.
(a) Evaluate néw orders. of nodés of a given element K; and its neighbors:
(b) Compute A, using errors for K; and its neighbors in the situations shown
in Fig. 6.5.
(¢) Determine-the number of the new degrees of freedom An, and compute A6,/
An,.
2.2 Subroutine for determining A6, /Any:
(a) Evaluate the sequence of elements that must be subdivided due to refining
the given element K; and the “two-to-one” rule (see Fig. 6.6).
(b) Determine elements with disappearing constrained nodes (Fig. 6.6).

(c) Compute Af), using errors for all the subdividing elements found in (a) and
elements listed in (b); appropriate situations from Fig. 6.7 must be consid-
ered.

(d) Count the number of new degrees of freedom An;, and compute Afy/Any.

In practical applications, this algorithm can be augmented by some rather heuristic rules,
such as:

¢ In boundary layers in viscous flows the p-refinement is recommended with a possible
anisotropic distribution of p (higher p in the direction normal to the wall).

¢ In regions with low regularity of the solution, such as shocks, the polynomial level
should be kept rather low and A-refinement is preferred.

Rules of this type can be effectively implemented in the expert system, which will be
combined with the above algorithmic procedure to produce strategies of maximum robustness
and efficiency.

6.2.2 Adaptive Timestepping Techniques

Time-dependent problems are usually solved by time marching techniques, where the time
domain is discretized into a number of steps t,1,...,%,, and the solution proceeds by the’
solution of a sequence of incremental problems. In the simplest algorithms the time step
interval is kept constant throughout the whole computational process. The actual value of
the time step At is estimated from stability requirements, accuracy expectations, or other
heuristic estimates. In most practical applications, a fixed time step leads to relatively
inefficient solutions and adaptive adjustements of At are very desirable.

56

‘I

S

- - - > - ~ R R - R -~ T LRI
- - - - - - - - o - -
k. ' - - - i ° i
: ! § ,- .
;. n . " . — o o

'In this section we will present an adaptive time-stepping technique impleménted for

- thermo-viscoplastic structural analysis governed by the Bodner-Partom constitutive equa-

tions. ‘The details of this. formulation can be found in reference [74]. Here we will focus on
the issue of adaptive time-stepping. '

The variable time step algorithm is a modified Euler scheme using a truncation error
criterion to-adjust the time step.

For simplicity, consider the single ordinary differential equation,

y= f(y) t) (69)

The solution is advanced using a predictor-corrector scheme. The predictor phase consists
of an Euler step:
Yheas = + Dty (6.10)

yZ-At =f (yf,_m,t + At) (6.11)
An-error indicator F is then computed from
_ At (=)

2 Iwa{-AtI

(6.12)

The error indicator is next compared with a preset.error criterion and if the criterion is met,
the time step is sufficiently small enough to proceed to the corrector stage. Otherwise, the
predictor phase for Eqs. (6.10)-(6.11) is repeated with a smaller time step. For the Bodner-
Partom evolution equations the control variables used to calculate the error indicator were
the components of a stress tensor o;;, state variables Z;, and plastic work W,, with the
maximum of these selected as the error.

The corrector phase is the modified Newton scheme,
yavg = (yt + gt}-,}-At) /2

gtc-'i-At =Yt + At?)avg

A flowchart depicting the adaptive scheme is shown in Fig. 6.8. The flowchart shows how the
time step is either reduced or increased depending on the error indicator, Eq. (6.12). The
flowchart shows that the time step is reduced or increased by a factor of two. This approach
is effective, but an alternate scheme also has been used where the new time step is based on

the error E. In this scheme
Eopt

E

At = At

a7

g

Grard
e ﬂ:»PRﬁDIZfOﬁ A 3l
3
ERROR =E
v
_._YES {\ NO
v . 3
»At=A't”/2 ' CORRECTOR 'i’a'vg' yi:At

&

4 = 2%Ar

NO LAST

at

4

YES

Figure 6.8: Adaptive timestepping algorithm for viscoelastoplastic evolution problems.

68

; P - B N . - . ' N N
) ¢ “
. . . . L. R P
o E b - v > o et raaueas R e
* C ’ :
‘ e

. - FETa— - - - S e s L 1 RS . Y Aertan ean s s - ——are
- . 5. s N . P
. g e s L 5 B bty N
- . 5
.

: ‘ vithr_é:Eg, =\/ E mE m Error tolerances Ep,, and Eyy, are specified by the user, typical
- valiés being Epax ='0.05, Epin = 0.0005. In practical implementations, it is possible to use

an expert.system to adjust-the time-step in an even more efficient fashion.

‘The effectivity: of an adaptive timestepping algorithm is clearly illustrated by the example

"of a viscoplastic bar'subjected to thermal loads. The details of this example are discussed
elsewhere [74]. Here we will present only the calculated evolution of temperature and stress

(Fig. 6.9a-and b) and focus on the evolution of the adaptive time step and comparison with
a fixed time step algorithm. In the fixed time step. algorithm, 1200 time steps of size 0.001
sec. were used. The variable time:step- algorithm, shown in Fig. 6.8, was then implemented
and the problem was resolved. Figure 6.9 shows the history of the variable time stép and
indicates that the new analysis required only 213 steps—a substantial savings. The figure

shows that in the “flat” part of the stress response a large time-step was used, but near ¢ = 0

and again at ¢t = 0.5 sec. when tlie stress is changing rapidly, small time steps are needed to
capture the response accurately.

6.2.3 Performance Monitoring and Control of Computational Procedures

Computational procedures used in advanced numerical analysis usually exhibit a different
performance and reliability level for different problem classes. This is true primarily for
advanced, time-dependent and nonlinear problems, where characteristics of the solution,
stability, and conditioning strongly affect the performance of the method.

It is not unusual for the analyst to have to closely watch the performance of various
methods, adjust parameters during the solution process, restart the solution or even repeat
the computations with a.different selection of parameters. It appears that automation of
these processes should:

e improve the performance of advanced codes when used by inexperienced users, and

o release experienced analysts from the responsibility of closely monitoring the numerical
processes and adjusting the parameters.

In this section we focus on the automation of rather heuristic tasks, namely the moni-
toring of the convergence of certain iterative methods. As a particular example we consider
nonlinear algorithms, based on Newton’s method, which are notorious for poor convergence
in many practical problems and for high sensitivity to various parameters of the system. For
these problems an automated approach was developed and implemented which simulates the
performance of an experienced analyst in monitoring the convergence of these methods.

Consider a quasi-static nonlinear problem defined by the system of algebraic equations:

L(u) = F(t)

59

TEMPERATURE (R):
180Q] . -

(a) Temperature history

‘eoo}.L
0 5 0 _
TIME (sec)
STRESS (MPa)
600. T
(b) Stress history:
0 —
1.0 TIME (sec)
-600. +
DT (sec)
014
(c) Adaptive time step history
J _ FIXED DT __ |
o 5 1.0
TIME (sec)

FIXED - 1200 STEPS, ADAPTIVE -213 STEPS

Figure 6.9: Adaptive timestepping in thermo-viscoplastic analysis: (a) temperature history,
(b) stress history, and (c) time step history.

60

where u is the solution vecior, 1 is 2 load parameier (quasi-static iime), and L and R are
left hband and right hand vectors, respeciively. This ixpe of equaiion is obiained from the
finite element discreiization of nonlinear boundary-value problems. The problem is usually
solved by considering 2 sequence of Joad parameters £, £3,... . *. For each new load the
nonlinear problem is solved by an iteraiive procedure:

K(w)ugn = F(C)— Lx)
Ypen) = % bugs

In the auiomation of this process. an experi system can be used to adjust the soluiion
sequence, the load parameier, and the number of iierations according to the performance of
the method.

Assume that at iime siep £* the code performed m jieraiions, where m is the fesser of
the user-prescribed limit and the number necessary for convergence. The ervor values (in an
appropriate norm) at consecuiive iteraiions are €:.¢s.....€x- If the emor e, is below ihe
prescribed tolerance, the process is considered io be converged and the code proceeds to the
next load value. The experi syvsiem will adjusi the load step according o a simple heurisiic
formula:

Af(.,-,;) =At (m,,,/m)

where m,,, is an opt:mum number of iterations per time step (usually 5 or 6). The difficuliies
arise when the iterative process is not convergeni. Tvpical exisiing implementations wiil
terminate the compuiations in this case or, evea worse. continue computations io produce
nonconverged, useless answers. The automated approach developed in this project is based
on the agplication of an expert system to make decisions regarding the continuation of the
computations.

A starting point for the expert system is an analysis of trends in the behavior of the
error at consecutive iterations. First, the error history is converted to a logarithmic scale,
so that error histories corresponding to a power-type convergence appear as straight lines
with different slopes. Then a curve fitting based on a second-order weighted minimization
method [45] is performed to estimate the behavior of the error (see Fig. 6.10). The weight
factor used here is the largest for the last iterztion e,, and diminishes for preceding iterations
according to the formula:

w; = Myt [(Mppe + M — 7)

The behavior of the process is estimated by monitoring the slope of the error curve at the
last iteration: (de/di)i—m). According to this behavior, decisions are being made concerning
the iterative process. The details of the corresponding rules can be found in the listing of
the expert system in Appendix C.1. Here it suffices to note that:

61

A
[J
._._~4\
° o~
\O
[]
\.
~
N
'
N\ o
\
\
\
®
-
T 1T T T T T T 1T 1™ .
1 2 3 4 5 6 1 8 9 10 |Ilernon

Figure 6.10: Curve fitting for error history in nonlinear problems.

62

o Eh A e T 3 o o T —— n - K 4 v g L3 &2 1 Ci s .] LA B - > v a2

.y

_

e

Cameana) n AR e L AR &

b CBNS s JE C-Tae tan kb ChC . A i s LSRR Laeta 3 Chi e Jam 3 " - Lraas)

1. If the slope is negative (diminishing error), then the expert system decides to continue
itrations. However, if this situation is repeated several times with no convergence, the:
case is classified as hopeless and treated as divergent. A warning is issued to the user.

2. Jf the slope is dose to zero (the method stagnates) or positive (the method diverges),
then the results of the iterative process are discarded, the solution backs off to the
last step, and the load increment is reduced by a factor of two. If this procedure
repeats several times with no_success, the whole process is terminated and a warning
is issued to the user with identification of probable reasons of nonconvergence and
possible remedies.

The above description outlines basic ideas of monitoring the performance of nonlinear nrs-
cesses. The actual expert system has several additional rules. Some of them check for
divergence caused by problems in other paris of the code {say poor conditioning in the
frontal solver), others verify non-reasonable combinations of user defined parameters, eic.
Details can be found in the listing of the expert system in Appendix C2.

This relatively simple procedure has been found to be very effective in practical applica-
tions and has provided essential savings of both computational time and the time of human
analysis. Several examples are discussed in Section 8. The above approach can also be
used for monitoring the performance of other iterative techniqus, such as iterative solvers
for linear systems of equations, Riks method, etc.

6.2.4 Adaptive Selection of Implicit and Explicit Time Integration Schemes

One of the recently explored types of adaptive techniques is an adaptive selection of implicit
and explicit time integration schemes. The basic idea is to combine the robust, uncondition-
ally stable implicit schemes with the relatively inexpensive explicit schemes to achieve the
maximum effectiveness at the minimum computational cost.

Such a fully adaptive implicit/explicit techniqe was developed at COMCO for the solution
of compressible viscous flows. These flows are governed by Navier-Stokes equations [54,55,79)
of the form:

w+ Fe; = FY;

where u is the vector of conservation variables, & = du/dt, FS are inviscid (convective)
flux vectors, and F? are viscous flux vectors. Indices i in the above formula refer to axes
of a Cartesian coordinate system, a comma denotes pa:tial.differentiation and the sum-
mation convention is applied. The components of vectors %, F¢, and F? are given in
two-dimensional case by:

u= {p: PV, pU2, pe}T = {P, my, My, E}T

c
S

UmOmi + ¢]
where p is the fluid density, p is the pressure, v; are velocity components, e is a total energy
per unit mass, o;; are stress components, and ¢; are components of a heat flux vector.

Convective fluxes are functions of the conservation variables only:
FE = F¥(a)
so that inviscid Jacobians are defined by:
' IFS

™y

Viscous fluxes depend on both conservation variables and tfheir gradients:
F Y =F, Y (uz u.i)
and the corresponding Jacobians are defined by

OFY
P: = ou
oFY
Rij - 3u J

For these equations, a general family of implicit one-step methods was developed [79]
leading to the incremental equation to be solved at each time step:

Au + oAt(A]Au); —yAt | R Au;) + (P;Au);| +
i J j

A oo
- (1- 2a)ﬂ7 (A,- A Au,,-)’i_
(6.13)

= At(FlF- FC")+(1-2a) (A;‘Fi’,:)ﬂ:

+ (e —7)0(, K)O (AL) + (1 — 20)0(p, K)O (AL2) + O (A#)

64

‘l
a'
ll
(l

The above equation is combined with the appropriate boundary conditions to form a bound-
ary-value problem over the domain). The incremental solution at consecutive time steps
are accumulated to formulate a solution of the time-dependent problem.

Formula (6.13) is a linear equation for the increment Au. The formulation in general is
implicit, except when @ = # = v = 0, in which case the explicit scheme is recovered. The
interpretation of different implicitness parameters is as follows:

a — represents implicitness of the advective terms,
P — represents implicitness of the viscous terms,

v — represents implicitness of the second order terms.

The vanational formulation of the problem is obtained by introducing the space of test
functions:
V = {v=(v1,v2-..vx) st. v; € H'(Q) and v; = 0 on T'p;} (6.14)

where M is the number of conservation variables, H!(9) is the usual Sobolev space of func-
tions with derivatives in L?(f2), and I'p; is the boundary with specified Dirichlet boundary
conditions for variable u;. After multiplication of the incremental equation (6.13) by an
arbitrary test function v(z) € V, integrating over the domain © and application of the
divergence theorem, the following weak formulation of-the problem is obtained:

Find AueVst.VveV:
/ (Au-v—aAtATAu-v; +YALR;Au; - v;
2
n At2 N oAT
+yAtP?Au-v;+ (1 - "a)ﬂ—A AT Au ;- v;)d
+ /an (cAtn; AT Au - v — yAtn;R;; Auj - v
(6.15)
—9Atn; P;Au-v — (1 — 2a)ﬁ n,A"A"Au - v)dS
2
= /n (At (F,-C" - F}’“) ‘v —(1- 2a)A—tA"FC" v,3)dQ)
+ / (—Atn; (FE*— FY™) v+ (1 - 2a) AL ATFS? - 0)dS

The above variational equation is the basis for a standard finite element discretization of
the problem. The implicit/explicit approach is introduced by partitioning the computational

65

domain into two subregions (D and Q(E) such that:
QE N = Tz, QE Yy =

It is convenient to assume that the interface between the two regions coincides with the
element boundaries.

It can easily be observed that the differential equations to be solved on the two subregions
are different due to different implicitness parameters applied in each zone: afD, (0 (D in
the implicit zone and afE), B(E) 4(E) = 0 in the explicit zone . Therefore, the variational
formulation (6.15), based on the assumption of constant implicitness parameters, cannot be
applied to the domain 2. Instead, it must be applied separately to-each subdomain with
additional continuation conditions across the interface. These conditions represent continuity
of the solution and satisfaction of the conservation laws across the interface and are of the
form:

wB = D
FEC _ pe
4B _ 40 > on I'g; (6.16)
FPY = FV |
where index n refers to the outward normal for the corresonding region (n(€) = —n{)). The

continuity requirement also pertains to the test function, so that v(E) = () = . Note
that for general weak solutions of Euler equations the solution « need not be continuous
across the interface. However, for regularized problems anc finite element interpolation, the
continuity of u is actually satisfied. '

If the variational statement is formulated for this problem, then in addition to interior
integrals for each subdomain and regular boundary integrals, jump integrals across the inter-
face appear in the formulation. These additional interface terms appearing on the right-hand
side are of the form:

/P {_ At [Fg)cn + FgE)Cn] v+ At [FOVn F’(‘E)Vn] -
IE

+55[(1-2a) AL + (1 209) AP FE] - o s

On the left-hand side of the variational formulation additional interface terms are of the
form:

At laDAFIDC o ((BIAFEIC] . 4y — AT [WNDAFDV _ (YA REWV] . 4
. N P AFY, T |y by v b
1E
2
—ATt [(1 —2D)BDADAFLC + (i — 20BN BE) AP AFLDC] - 'v} ds

66

In order to enforce interface conditions, the values of consecutive terms in the above formulas
should be prescribed using equation (6.16).

An important issue for the automation of implicit/explicit procedures is the actual se-
lection of implicit/explicit zones. The basic criterion is simple: for a given time step all
nodes which violate the stability criterion for the explicit scheme should be treated with
the implicit scheme. According to this criterion, several options for an automatic adaptive
selection of implicit/explicit zones were implemented, such as a user-prescribed time step,
a user-prescribed CFL number, or a prescribed percentage of implicit elements. These rel-
atively simple options are described in reférence [79]. Here we will focus on the “smartest”
fully automatic version, based on the minimization of the cost of computations.

In this option, the time step and the implicit/explicit subzones are selected to minimize
the cost of advancing the solution in time (say one time unit). The algorithm is based on
the fact that, for an increased time step, an increasing number of elements must be analyzed
with the (expensive) implicit algorithm. The typical situation is presented in Fig. 6.11,
which shows for different time steps the relative number of nodes that must be treated with
the implicit scheine (to preserve stability). On the abscissa, the Atrg denotes the longest
time step allowable for the fully explicit scheme (with certain safety factors). Atp; denotes
the shortest time step requiring a fully implicit procedure. The relative number of implicit
nodes increases as a step function from zero for At < Atpg to one for At > tp;. Now
assume that the ratio r of the computational cost of processing one implicit node to the
cost of processing one explicit node is given. This ratio can be estimated relatively well
by comparing the calculation time of element matrices and adding, for implicit nodes, a
correction for the solution of the system of equations. Then the reduction of the cost of
advancing the solution in time with the implicit/explicit scheme, as compared to the fully
explicit scheme, is given by the formula:

R(AY) = E5FE (1) 4 pn)
Typical plots of the function R(At) are presented in Fig. 6.11. Shown here are the two cases:
the case of a small difference between fully explicit and fully implicit time steps—an almost
uniform mesh the case of a large difference between fully explicit and fully implicit time
steps. Note that in either case, restrictions on the length of the time step should be applied,
for example, from the maximum CFL condition. Otherwise the cheapest procedure would
always be to reach the final time with one implicit step.

From the plots in Fig. 6.11, the following observation can be made: for an essentially
uniform mesh, the mixed implicit/explicit procedure does not provide savings of the com-
putational cost—either a fully implicit or fully explicit scheme is the cheapest depending
on the time step restriction. On the other hand, for very diverse mesh sizes the mixed

67

:l 7

I
!
!
I

3
T

1 —
1

ATee AT

b)

AT(CFLmax)

68

; A nm=N
{ | N
jl 1T
ATFE aT ATFI
(fully explicit) (fully implicit)
a)

|
l
l
!
[

AT

- ——

!
I
1

P

ATge

AT (CFLmax)

c)

AT

Figure 6.11: Reduction of the cost of computations due to implicit/explicit procedure.

'l
| '
. -~

procedure provides considerable savings. This means that the effectiveness of the mixed
implicit/explicit scheme will be the best for large-scale computations with both very large
and very small elements present in the domain. In the practical implementation of this
method, the approximation of the function R(At) is automatically estimated for a given
mesh. Then, the time step corresponding to the smallest R(At) is selected automatically
(subject to additional constraints, in particular the CFLm.x constraint).

The above implicit/explicit procedure results in a system of equations
(M+K") AU =R

where the stiffness matrix K has non-zero entries only for degrees of freedom in the implicit
zone or for nodes with penalty-enforced boundary conditions. The cost minimization option
has been implemented in the adaptive finite element code. Selected numerical examples of
automated implicit/explicit procedures will be presented in Section 8.

It should be noted here that in addition to the above criteria, based purely on stability
analysis, some other criteria for application of implicit schemes can be applied. For example,
within boundary layers the implicit scheme may be preferred, because it provides faster
convergence of the boundary fluxes. Even more complicated.issues arise in boundary layer—
shock interaction problems, when adaptive implicit/explicit schemes need to be combined
with adaptive application of artificial dissipation, etc. At the current state of knowledge in
the computational fluid dynamics rules related to these problems are rather heuristic and can
best be handled by an appropriate expert system. Therefore the ultimate adaptive implicit/
explicit solver should combine smart algorithms with heuristic knowledge represented by
expert systems and other knowledge engineering techniques.

6.3 Generalized Postprocessing

The final solution of the finite element method is often obtained in the form of tables of nodal
values of the basic unknowns of the problems, e.g., displacements in the solid mechanics
problems. This solution is usually postprocessed in order to present the results in a more
comprehensive form or to calculate new functions of interest to the user. Typical functions
of postprocessing modules are:

1. calculation of auxiliary functions (strains, stresses) derived from the primary solution,

2. use of special postprocessing techniques to obtain results of higher accuracy than the
primary solution,

3. estimation of solution errors, and

69

4. presentation of results in the form of plots, diagrams, tables, etc.

The above tasks are basically algorithmic. However, advanced programs usually offer several
possibilities for performing these tasks and the selection of the method is expected from the
user. This i éspecially true for items two and three, since a variety of algorithms, each of
different quality and computational cost, is available for advanced postprocessing or error
estimation (see references [7,8,9,15,16,60,84]).

The postprocessing stage is important in the design process for yet another reason: it
provides information necessary for the acceptance or rejection of the solution and for modi-
fication-of the input data in order to obtain a satisfactory solution.

A fully automated version of a design process should allow the knowledge-based system
to make decisions concerning the acceptability of the results and to modify the model if
necessary. The question then arises as to the best ways to extract essential information
about the solution in a form acceptable to the knowledge-based system. In today’s finite
element -codes, oriented toward interaction with the user, a graphical display of results is
preferred. This graphical information is, however, unavailable to the expert system. Instead,
a limited number of compact pieces.of information should be produced, possibly in the form
of numbers or short statements..

In this section we present studies related to this problem. First we study methods of
extracting essential characteristics of a generic function f(z), in particular the information
related to its distribution within the domain Q. Then we apply these considerations to typ-
ical' parameters of computational solid mechanics, such as displacements, rotations, strains,
stresses, etc.

6.3.1 Essential Characteristics of an Arbitrary Function

Suppose that within a certain domain § defined is a function f(«): such that f : Q@ — R.
At this point we will not specify any special assumptions about the regularity of f.

The most natural parameters characterizing the function f include its minimum, maxi-
mum and average values, defined as:

frlnax = r%ggf(m)

fmin = Imnf(w)

Te

fae = Jyf @y
/Q dz

70

s xwn

- s

A}

Other paranieters of interest include the locations s min, 2 max corresponding to mini-
mum and maximum values, respectively. Moreover, it is often useful to know the percentage
of the domain, where f is greater than a prescribed threshold value fr. This area is defined

as:
A=/r’z_d:c

/ﬂda:

where ﬁ = {=, s.t. f(z) "2 fr}. The above parameters can easily be extracted from the
finite element data.

A: more complex problem arises if one wants torepresent a distribution of the function
within the domain €, for example to detect concentrations of high values in certain regions,
periodic nature of f, etc. For periodic and quasi-random functions, spectral analysis may
be used to characterize the distribution of f(«). For detecting other special characteristics
of f the following procedure is proposed:

First, define a class of functions
T = {t(x) , s.t. t(x) exhibits behavior of interest}

For example, in order to detect a local concentration of f(z) of the type similar to the crack

 tip stress.field (Fig 6.12), one can define ¢(x) as:

a
Hz) = — 6.17
(=) 7 (6.17)
where ao is an intensity factor and r is the distance from the concentration point (in order to
formally satisfy integrability criteria, ¢{(z) may be truncated at certain high levels). For the
sake of clarity we assume here that the function ¢ can be presented as a linear combination
of certain primitive functions:

t(a:) = il a,-t,-(a:)

The next step is to select from the class T' the function #(2) which is, in some sense, nearest
to f(x). If we define the error function:

e(®) = f(x) - ()

then the problem is to find #(«) which minimizes the L? norm of the error or, more conve-
niently, its square:

el = I =41 = [[f(@) =)] do

Since the primitive functions ¢,(z) are predefined, this is equivalent to a simple finite-
dimensional problem:

71

X

- - - - - - - ' !
.

.1

t(x)

— — o —
\

Figure 6.12: A pattern function for detection of stress concentrations.

12

P)

. .. N
B ¥
) \ '

TR T Tl TUTog gt
v

-

Find @ = (;,a,...,8n) i0 B™ such that:

— . . 2
lEl]* = min, [le]

ack™

By standard arguments of variational analysis the solution to this problem is defined by the

system of equations:

el _ :
—a?—-O z—l,...,m (618)
which:can be presénted in the form:

A,-,-aj =‘b,' i=1,...,m

where

A = /Qt,-(w)tj(d:)da:

b;

/9 f(@)t(z)dz

The above integrals are well defined if f(z) and all #;(z) are in (L*(Q))", where N is the
dimension of the euclidean space (N = 1,2, or 3).

Once the function t(«) is found, the proximity of f(z) to the class T' can be estimated
by analyzing the relative error coefficient:

llel

€y = ==

120

Note that this method can be extended to a more general form of #(z), such as nonlinear
combinations of primitive functions and coefficients a;, differentiable with respect to a;. For
example, the class of singular solutions (6.17) can be made more general by introducing the
arbitrary coordinates of the concentration point a, as, to give:

t(x) = - 40
(=) \/($1—01)2+($2-az)2

Then the system of equations (6.18) becomes nonlinear and can be solved by the Newton
method. Note that the solution to (6.18) need not be unique in this case and may correspond
to the local minimizer of the error norm.

In practical applications, the above analysis can be performed for several classes of test
functions, each of them representing a certain specific behavior of f, such as pointwise stress
concentrations, boundary layers, and other patterns.

13

INPUT—pointwise values of

L. 0 U U O

Neural Network
OUTPUT
O O O
concentr. concentr. homogeneous periodic point
at top at bottom concentration

Figure 6.13: Application of neural network to recognition of patterns in the spatial distribu-
tion of function f(z).

74

R Y R D R I R e R I o R e T PR

) n
' . N .
¥

A qualitatively different method of detecling special features of the distribution of the
function f(x) in the domain {2 can be developed using the paifern maiching capabilities
of neural netwerks presented ir. Section 4. An idealization of such an apphcation of neural
networks is shown in Fig. 6.13.

The input layer of the neiwork receives poiniwise values of f(x) in points.disiributed
within the domain 2. The consecuti=e neurons in the output layer correspond to the fypes
of distribution which are of inferest to the user. The neiwork, afier receiving the inpui
values, fires the outpui neurode (or severa! neurodes) corresnonding to the actual behavior
exhibited by the function f(x). The iniensity of ihe ouipui corresponds to the iniensiiy of
the correlaiion between f(x} a=d ik~ patiern represented by the ouiput neuron.

6.3.2 Postprocessing in Solid Mechanics

In this section we will focus on postprocessing of finiie element resulis in solid mechanics.
We mean here the posiprocessing for the purpose of application of knowledge engineering,
namely the exiraciion of several vaiues representing the most important characteristics of
the solution. {Xost of the formulias presenied here were actuaily implemented in the expert
system discussed in Seciion §.)

Noic that, in the spirit of hierarchical models discussed before, verification of the finiie
element resulis should be performed using the most comprehensive maikematical model
available. This is becausc it is rather unreliable to qualitatively verify the zesults obtained
with a simplified mathematical theory using the same mathematical thecry. The verification
will be more reliable if it is performed from the more general standpoint. For example, if
the finite element results are obtained using the infinitesimal deformation theory, it makes
sense to use large deformation theocy for verifications. Note that there is no excessive
computational cost involved, because tk= comprehensive theory is used for the postprocessing
only, not for the soluti~n of the problem.

Displacements

We are interested in the deformation of a material continuum, which at a certain initial time
* = 0 occupies an initial configuration By, which is formally identified with the reference
¢ . Sguration Br. The reference configuration is parametrized by the reference Cartesian
wordinate system {X:} with base Ix, K =1,2 {see Fig. 6.14).

The reference coordinates X; identify particles of a continuum in the sense that by
particle X we mean the particle which in the reference configuration has a position defined
by vecter X.

7

I SSSShEEEEEEEEEEEEEEEEEHEHEEEEEH=EEEEEEEEEH=EEE””>”>EEEEEEHHEHEEEES eSO

. O .

' \) . : g

. P 3
1 - - - - - - -’ - - - \-(N

) \ : ~ A — ana
| y :
. . .
.
’ . , . .
. n

o7

2 <L, »

$ X, .x,,0,(t=0)

LS IT SR Sy v davyd
5 5 Y Y e
LSS LTSS
S T i e W U Y —
P IR
0 Y T e N Y N Y
Y PR SIS NI 4
I

X, :X1,04(t=0)

Figure 6.14: Deformation of a solid body.

76

: #
R B B e

o~

At an arbitrary time £ > 0 the continuum occupies a deformed configuration B;, with new
positions of particles referred to the Cartesian coordinate system {2} with base iz, k=1,2.
It is convenient, without restricting the generality of the description, to identify coordinate
systems {z:} and {Xx}. The notion of systems {Xx} and {x:} represents a typical nota-
tion convention of large deformation kinematics (see references [36,46]) in which zpper case

A synhbudu&mmfertaﬁcn]mmw-ﬁguﬂw-,dﬂcburmcqmbhadu&w

refer o the currexi configuration.
Motion of the continuum is described by the relation

and the information about local deformation in the neighborhood of a particle X is presented
by the deformation gradient tensor F with components:

F;J =g

where 2 comma denotes partial differentation.

Displacements of a material continuum are defined as
yWX)=2—-X

For the verification of the results we are primanly interested in the magnitude of displace-

ments, defined pointwise as
[u(X)] = /ui(X)ui(X)

For such a defined magnitude of displacements the usual minimum, maximum, and av-
erage values can be calculated using the formulas from the previous section. In the case of
dynamic problems, similar calculations can be applied to velocity and acceleration fields.

Strains

In large deformaiion theory the components of the Green-Saint Venante strain tensor are
defined as:

1 .. .
Epy = 2 (43,0 + uj,1 + ug,ru,7) i=i=Jyj=J

If the deformation is infinitesimal, these components converge to the linearized strain
measures:

1
& = 5 (uis +)

Note, however, that if the deformations are large, the familiar interpretation of the strain
measures as extensions of material fibers and changes of angles between fibers is not valid

7

AR TS L & =E E e

t
]
t

anymore. To define physically meaningful measures of strain, the actual stretches of fibers

need to be calculated: L
! ; ! =Eu+1-1 (6.19)
4

In practice we are usually interested in maximum and minimum siretch in the body. These
values can be calculated pointwise by application of formula (6.19) to the engenvalues of
the strain tensor E. These values can further be used to analyze the distribution of strains
within the domain), as described above.

Rotations

The rotations of a continuum are defined by the rotation tensor, obtained from the polar
decomposition.of the deformation gradient F-

F=RU

where U is a symmetric positive definiie streich tensor and R is the rotation tensor. The
method of calculating the components of R from the components of F is straightforward
and can be found in many references. See for example [36,46]. The finite rotation tensor R
can be more intuitively represented by introduction of the rotation axis e; and the rotation
angle w:

R=e3@e;3+cosw(e; Qe +e;Qe)—sinw(e; @e,— e @ ey)

Here e3 is the eigenvector corresponding to the (only) real eigenvalue of R and e, e; are se-
lected to form an orthogonal triad. The rotation about the axis e; is conveniently represented
by the rotation vector:

2 =sinw e3

The parameter w can be directly interpreted as the rotation angle (in radians). In the case
of plane problems the rotation axis e; is normal to the plane and w represents the in—plane
rotation. The distribution of the rotation angle w(z) in the domain 2 can be analyzed using
the generic methods introduced in Section 6.3.2.

In the case of infinitesimal deformations, the infinitesimal rotation vector is defined as:

O] =

curl u (6.20)

W=

The magnitude w of the rotation vector has the same interpretation here as in the case of
large deformations. However, the formula (6.20) is valid only for small rotations (order of
few degrees). Therefore it is sufficient only for verification of occurrence of larger rotations,
but cannot be used to estimate the magnitude of rotations if they are actually large.

78

| ' «
i

. «

'

Rigid Body Rotations

One of the purposes of automatic verification of numerical results is to detect rigid body
type modes of deformation, which may occur due to insufficient supports or insufficient con-
nections between the structural elements. The displacement and rotation analysis described
above can be used to detect the rigid body mode by checking the distribution of these pa-
rameters throughout the domain §). However, application of this approach to rotations has
several disadvantages, namely:

e it is rather computationally expensive, especially in the large deformation version, and

o the pointwise rotations are calculated as the combination of derivatives of the displace-
ments. It is well known that the derivatives of finite element solutions are discontin-
uous across element boundaries, unless relatively expensive additional postprocessing
is used. Therefore it may-be difficult to filter the rigid body mode from the noise
generated by the approximation error.

That is why an alternative approach to exiracting rigid body modes was considered, which
is based on the postprocessing of displacements rather than their derivatives. This-approach
is based on representation of the rigid body motion in the form:

u(z) = u, + Rr(z)

where R is a rotation tensor, u, is a displacement of the reference point o (say the center
of mass), and r = & — 0. For the actual displacement field u{z) one can define the L? error
norm between the rigid body motion and the motion of the continuum as:

el = B=5 [[u(=) (v + Re(e))d0 (6:21)

By the minimization of the norm one can find the rigid body translation and rotation.
In fact, the displacement of the reference point ug is immediately found as the pointwise
value of the displacement. Thus, for plane problems, the only unknown in this problem is
the rotation angle w. This angle can be found from a standard minimization procedure

0B

= =0

Ow

or after substitution:

[u(z) — (v + Rr())] Q—Izr(z) d=0
Q Ow

79

This is a single nonlinear equation for w, which can be solved by a Newton procedure:

PAw = 1*
S = 4 A

Here & is a single coefficient calculated as:
k“=/n{ ‘%Rf]-[%T]Jr[u(z)—(uﬁnr)]-%r}m
and 1 is a residual:
1-=—/n{[u(z)—(uo+Rf)]v%—I-:-r}dQ

The integrals in the above formulas can be calculated using standard finite element
integration. The matrices R, %, and %R- are defined for two-dimensional problems as:

coOsSw —Ssinw
< R —

Sinw cosw

R [—sinw —cosw
0w cosw —sinw
PR

%z - B

The departure of the actual displacement field from the rigid body mode can be estimated
by the calculation of the error norm in (6.21). In practical applications the extraction of the
rigid body mode should be performed for structural elements (subregions of Q) rather than
for the whole domain.

Stresses

In the verification of stresses we are primarily interested in the actual stress state on a
deformed body, represented by the Cauchy stress tensor:

T =1te;Qe;

In many finite element computations, especially in large deformation elasticity, a second
Piola-Kirchhoff stress tensor is used, defined as:

~

T=1erQ®ey

80

0
1/
' '

The o'pmpbnentstof this tensor, although convenient for the solution of the problem, have
basically no direct physical interpretation. Therefore for verification purposes they must be
transformed to.the Cauchy form, using the formula:

_ 1 pmrr

=3 FFTF

Since the fuill stress tensor in general has six independent components, it is convenient to

introduce:a single measure of stress intensity level, such as the stress intensity factor, defined
as:

g; = 3]2

wheré J, is the second invariant of the stress deviator. Equivalently, principal stresses
or other parameters can be used for verification. The distribution of the stress intensity
throughout the domain € can be analyzed using methods found in Section 6.3.2 and then
furnished to the verification expert system for checking and evaluation.

i

6.4 Automatic Verification of Numerical Results

In an automated environment for engineering design the results obtained with the finite ele-
ment meéihod or other numerical techniques should be automatically verified for consistency
with the mathematical formulation (in particular assumptions), satisfaction of various design
criteria, errors introduced by the discretization, etc. Here we assume that the approximation
error has been taken: care of by the adaptive mesh refinement procedure, so that the error
associated with numerical modeling is below’ certain prescribed threshold value. Still, the
solution may be incorrect due to:

e incorrect selection of the mathematical model,

e incorrect specification of boundary conditions, such as insufficient support, excessive
loads, etc.,

e incorrect selection of material properties, and

e other modeling errors.

The information obtained from generalized postprocessing can be used to automatically
verify the finite element results and possibly automatically modify the model in case there
is a violation of certain verification criteria. The automated verification of the results is
performed by their comparison with the assumptions of the mathematical model, basic design
criteria, or existing database related to the problem being solved (we will not discuss here

81

|-—--'-- '

: V - -
' B - R T o
‘

the detailed verification criteria). The expert system implemented for this purpose in this
project is presented in detail in Section 8.

The results of automated verification of the numerical solution can beé used-as the basis
for automated modification of the structure or the mathematical model in order to satisfy
the design criteria. In general, the decisions involved here will be very complex and strongly
dependent on the characteristics of the class of problems to be solved. As an example,
consider the situations when the constitutive model used in the analysis is linear and the
value of stress calculated exceeds the plastic yield limit. In such a situation there are at least
three possible solutions:

1. If plastic deformations are acceptable in the structure being designed, change the
constitutive equations to elasto-plastic and repeat the analysis.

2. If plastic deformations are not acceptable, but there exists a variety of materials from
which to choose, switch to the material with better mechanical properties.

3. If there is no possibility of selecting better material, try to redefine the shape of the

model.

Clearly the selection of a particular solution depends strongly on the specific design
considered. In specialized applications the expert system should be able to automatically
make appropriate selections. However, in more general applications it will be very difficult to
reasonably choose the correct solution. That is why in the verification system implemented
in this project the possible reasons of violation of the design criteria are presented to the
user together with possible (and available) methods for fixing the problem. However, it is
up to the user to select the actual approach. The details of this procedure are discussed in
Section 8.

7 A General Computational Environment for Auto-
mated Structural Analysis

Development of a computational environment for automated structural design is a complex
task, requiring a combination and integration of various—functionally very different—pieces
of software. At the present state of the software “market” this includes:

¢ CAD and solid modeling programs
¢ Finite element mesh generators

¢ Finite element analysis programs

82

't
'

G Il = B E =

i
’ l
»

o Post-processors
e Knowledge-based expert systems

e Other elements (spreadsheets, knowledge acquisition, neural networks, etc.)

The fitst step in the design of the automated design environment is the general layout
of basic components, taking into account both their functional characteristics and the data
types accessed-by each component. In the following two sections a general structure of the
proposed environment will be discussed.

7.1 Computational Environment—Functional Structure

The basic role of the components of the automated design environment is to aid or replace
the human designer at consecutive stages of the design process, as presented in Section 3,
Fig. 3.1. Therefore, tke general functional structure of this environment is somewhat similar
to the flow chart of the design process. This general structure is presented in Fig. 7.1, where
the consecutive blocks indicate separate elements (pieces of software or their combinations)
that are supposed to aid- or replace éngineers ir: their work:

The first stage of the analysis, namely the general comprehension of the physical problem
and ‘the objectives of the design, is generally performed by the designer (although some help
from an intelligent system may be used at this stage). The next step is the construction of
the general- structural model, including identification of various structural elements, loads,
supports, etc. At this stage, the assistance of CAD programs and an intelligent advisor
(KBES) is recommended. It is of importance to note that this advisor should definitely
possess elements of the object oriented approach (OOP) to provide a natural classification
and identification of elements of the structure. The third step of the design is the construction
of the mathematical model of the problem. The structure will be viewed as a certain domain
with prescribed equations, boundary conditions (both supports and applied tractions) and
interface conditions for various structural elements (subdomains). At this stage, the level
of mathematical complexity of the model will be decided, for example, the use of large
deformation or small deformation theory, application of beam or solid body formulation, etc.
The aid to the designer at this stage should be provided by an expert system (KBES)-with
object-oriented capabilitics. Note that the knowledge basis of this system will include—in
the general case—both heuristic knowledge and more precise estimates based on appropriate
theories discussed in Section 6.1. Therefore this system should be capable of performing
basic .algebraic operations.

In the general situation a simplified analytical analysis of the introductory design may be
performed at the first pass through the design process, in order to avoid an expensive finite

83

J-' -,
\

. Problem Understanding
USER + KBES

f

Strucural Model
CAD + KBES + OOP

Mathematical Model
KBES + 00P

1

Inidal Discrete Model
CAD + MESHGEN
" |
|
Y
Strategy Selection
KBES

$

Performance Monitdr . Numerical Analysis ‘ Adaptive Methods
KBES FEM KBES

'

Synthesis of Structural '
Results

POST + OOP

¢

Verification of Structure
KBES + O0P

Y

I

Figure 7.1: The general automated computational environment—functional structures

84

O‘I |
"
v I
l\

N . . N P

o
¢

element analysis of models that are far off the appropriate design. Here we will assume for
simplicity that after the construction of the structural model the full finite element analysis
is performed. Therefore the next stage of the design includes generation of the discrete mesh
for the structure (or, more formally, for the domain-of the mathematical model). At this

stage a combination of CAD software with mesh generation programs can be used. It is also

possible to use a small advisory intelligent system or intelligent CAD environment [57].

It should be noted that, if the finite element software is equipped with adaptive capa-
bilities (as is the case in this project), the role of the initial mesh is merely to provide an
adequate representation of the shape of the domain (the mesh will be adjusted to the charac-
teristics of the solution during the solution process). Without these adaptive capabilities the
initial mesh generation.is an extremely difficult task, because the characteristics of the-final
solution must be guessed a priori to provide mesh concentration in regions of high gradients
of the solution and other critical zones.

Afterthe generation of the initial mesh, the solution of the problem by the finite element
method is performed. However, most of today’s large finite element codes offer a selection of
strategies for the solution of the:problem—for example various methods of time integration,
eigenvalue extraction, or the solution of the linear system of-equations. Usually the selection
of the method best suited for the particular example depends on the characteristics. of the
problem, for example the number of nodes, types of loads, etc. In complex, nonlinear
problems, selection of the proper strategy is often crucial for the achievement of the final
solution to the problem. In general, a considerable expertise and experience is required
at this stage and the applications of a comgstent expert system is very desirable. It is not
necessary for this system to have object-oriented capabilities but,.on the other hand, learning
and knowledge acquisition capabilities will be very useful.

The central element of the analysis process is the solution of the discrete model by
the finite element method. Usually, finite element codes are viewed as “black boxes” with
virtually no decisions to be made after the initiation of the program. However, this is
not necessarily true, especially if the adaptive or “smart” methods are being used and if the
problems solved are characterized by strong nonlinearities. Some of the examples of problems
that require decision making (including heuristic decisions) during the finite element analysis
include:

e Solution of strongly nonlinear or time-dependent problems.
e Application of iterative procedures (e.g., for the solution of linear systems of equations).
¢ Adaptive mesh refinement.

¢ Adaptive zonal methods (e.g., implicit/explicit algorithms)

85

On the chart of Fxg 6.1 the decision-making modules of the finite element analysis are

' representéd by two Knowledge-Based Expert Systems:

1. A performance monitor KBES is responsible for inonitoring the behavior of various
iterative procedures (e.g., Newton method for nonlinear problems, Jacobi conjugate
- gradiént method for linear system of equations, etc.) and taking appropriate actions
if any computational problems occur.

2. A discrete model modification monitor KBES is responsible for providing additional
intelligent support for adaptive mesh refinement, zonal methods, and other methods
orientéd-on achieving high quality results. It should be noted that these methods are

“usually quite precise-and algorithmic in natire, yet some heuristic knowledge is usually
necessary to handle nontrivial cases and improve the overall performance.

In more general cases other advisory expert systems may be used. Usually it is not necessary
for these:systems to have object-oriented capabilities but, similarly as in the case of strategy
selection, learning-and knowledge acquisition -capabilities are very desirable.

Once a high—quality finite element solution has been obtained, the results of the analysis
have to be evaluated in-the context of compliance with strﬁctural-design criteria, like maxi-
mum. defléction, maximum stress, safety coefficients, etc. This task can be performed by the
structural evaluation KBES with object-oriented capabilities. Note that prior to application
of such a system the essential information about the solution must be extracted from the
massive finite element data. This task is performed by the specialized post-processing mod-
ule (with strongly recommended object-oriented capabilities for natural representation of
structural objects). Depending on the decision reached at this stage of structural evaluation,
the model may be accepted orrejected. If the model orthe solution is rejected, usually some
modifications to the structural or mathematical model are recommended-and implemented,
and the next loop of design is performed.

The chart discussed here presents only the general types of software used in the automated
computational environment and the flow. of control between these modules. For practical
applications the generic structure of the data (knowledge) needs to be formulated and the
protocol of the exchangé of information between different modules needs to be established.
These issues. will be discussed in the next section.

7.2 Computational Environment—A General Data Structure

The amount of data and information processed in the engineering design process is enormous.
The data structure devised to handle this information should satisfy two basic criteria of
somewhat contradictory nature, namely:

86

_ o easy access:of every functional component to every essential piece of information, and

- encapsulation of knowledge, reducing to the necessary minimum the length of the
information search pattern.

In order to facilitate satisfaction of these criteria it is of importance to observe that there
are three basic groups of data (static knowledge) that are of different types and that can be
effectively separated .from one another. These are:

1. Information about the structure analyzed, models, loads, structural response, etc.

2. The finite element data concerning nodes, elements, integration points, values of the
_solution in these points, etc.

3. Information about performance of various strategies, e.g., histories of error tolerances
in nonlinear problems, counters of time steps, measures of convergence of iterative
processes,-étc.

It is essential for the effective operation of the data .structure that neither the designer
nor the expert systems dealing with structural design should.interact with the massive finite
element data. The essential information about the.structural elements (like maximum stress).
should be derived from the finite element information by the post-processing module and
only then evaluated by the designer or the specialized expert systém. According to this
remark, the general structure of the data should be of the type presented in Fig. 7.2. The
figure also shows the consecutive functional components of the system (defined in Fig. 7.1)
and. the information accessed by these components.

After the general division of data into groups, the question arises: How should the data
(static knowledge) be organized in each of these groups? The possible answers to these
questions differ depending on the actual type of information. For finite element data a
traditional way of storing the information is in the form of vectors and arrays. Depending
on the specific application it can actually be implemented in, the form of full vectors reserved
in the - memory, pointer lists, linked lists, or tree structures. Another option is based on the
concepts of object-oriented programming.

As for the structural information, the question of the optimal data structure is more
difficult due to a considerable diversity of structural forms, interfaces, loads, etc. Apparently
the two options that arc generic and flexible enough to handle this information are:

¢ The blackboarding technique, and

o The object-based data structure.

87

. 0 {
N ' AR
R :
A

IR A A L A

STRUCTURAL | P
DATA : — stwructaal KBES

- struc. elems '

- loads -

- math. models

- strains - - struct. verif. KBES

Stresses.

praa M e e TR ~ = a ~ 5 AL Lt A A ~ T REEREY
. - . N . o e N . ,

ST‘RATEGYY strategy KBES
DATA -

- smategies

= convergence

performance KBES

- exec. time

FINITE ELEMENT
DATA
- nodes

R

Adapdve KBES

- elements

- integr. points

R

- refinements

{ - "€ITors

s i
- suesses
- strains

Figure 7.2: General types of data in the design based on the finite element method.

i A R A

88

Seuxe Sewsce Sousce
,‘ -
o
Y Y

CONTROL SYSTEM

BLACKBOARD

Figure 7.3: Typical struciure of a blackboarding data storage.

 The blackboarding technique [37,75] is based on the simple concept that ali the pieces of

information are written to the “blackboard™ (which is aciually a data siorage system) and
are available upon request to all the members of the session called knowledge sources (pieces
of software in our case). The participating knowledge sources (see Fig. 7.3) may be very
diverse, but they use the same protocol in the communication with the blackboard. Thus the
information stored in the blackboard:is available to all the scurces and users of knowledze.
The basic problem in the blackboard approach is the management of the blackboard itself
if large amounts of information are processed.

Another attractive concept of the structure of static knowledge (and, for that matter,
also of active knowledge methods) is the object based approach discussed in Section 5.
This approach is based on the abstract data theory, in which i is not essential how the
information is actually stored; the essential fact is who (what object) is responsible for
providing this information. The information is actually requested by objects from other
objects without concern about the actual type of storage used. Within this system the
information is encapsulated within defined classes of objects, and at the same time the whole
body of information is available to all objects. Due to numerous conceptual and practical
advantages of this kind of knowledge structure, most of the recently developed advanced
expert system shells (reviewed in Section 5) usually provide object-oriented capabilities. In
this work, the object-oriented approach was used. A more detailed discussion and design of
object-oriented approaches to knowledge engineering in automated computational mechanics
will be discussed in the next section.

89

a®&

¥

v " ~ s ~ . T ’ T T < m T T g = N
. . N 5
. B N X 3 PR

- - ‘- - - -h ' ' ' ' ¢ *
|
! '

. ‘ 4
« ! N

- 8 Deslgn, Implementation and Examples of a Cou-

pled FEM—KE Environment

,3,1 Introduction
_—Tosbowthepud:alfasbihtyoftheconcepts developed in this project, = fullv coupled

finite elémesi-knowledge engineering environment was designed and implemented on a re-

_ search.scale. This implementation combines adaptive methods, smart algorithms, expert

systems. and other engineering tools to provide maximum reliability, robustness and ease of
use of the finite element sofiware. Note that this effort is beyond the original statement of

S ' “ N

‘The implementation presented here is based on the h-p adaptive finiie element code
PHLEX and the expert system shell NEXPERT OBJECT. It is imporiant o note here
that the previous report only presented an iniroductory general design of the environment
considered in this section. This design was based on general concepts of object oriented
programming, data-management, and knowledge engineering. In the practical implementa-
tion discussed here some of these concepts have been changed, primarily due to functional
limitations of the expert system software used in this project (not all generic concepts were
availabie in this particular implementation). However, the general idea and-practical fuac-
tionality have not changed.

8.2 An Automated PHLEX-NEXPERT OBJECT Computation-
al Environment

The automated enviroﬁment for finite element analysis is based on full coupling of two
different computer tools: an algorithmic finite element code PHLEX and an expert system
shell NEXPERT OBJECT.

The PHLEX code developed at COMCO represents a new generation of the finite element
software, based on h-p adaptive methods, error estimators and refinement strategies. The
program is designed to achieve maximum reliability and quality of results at a minimum
computational cost. This is achieved by implementation of ngorous error estimates, adaptive
refinement strategies and smart algorithms.

NEXPERT OBJECT is a generic expert system shell developed by Neuron Data, Inc.
and designed for customized construction of powerful expert systems for generic applications.
The shell is equipped with object oriented capabilities (data representation) and a versatile
inference engine.

The coupled finite element-knowledge engineering environment is based on direct inter-

90

1

e ettt g .|
: EXECUTABLE CODE :
I I
- :
. 1 OBIECT ;
] n]
] a8)]
r- Aw‘— - =
FEM daz i B“ASESiOLEDGE
| -
- nodes smategy
- 2lements selecion 1

Figure 8.1: A general scheme of the coupled PHLEX-NEXPERT OBJECT environment.

action of the finite element program with the expert system. Within this environment, the
algorithmic code can request advice from the expert system or, conversely, the inference
engine can activate algorithmic procedures. The general scheme of this coupled environment
is presented in Fig. 8.1.

The actual executable code includes both finite element procedures and knowledge engi-
neering software. These two programs communicate through a well-defined interface. Most
of the finite element software was written in FORTRAN, and the expert system shell was
written in C. Therefore the actual interface includes an additional translator designed to
handle language differences. The data for the finite element code (mesh data, loads, etc.) is
stored in separate data files or is provided by the user during execution. The actual expert
knowledge, represented in the form of classes, objects and rules, is stored in separate knowl-
edge bases. This enables easy substitution of the expert information for different applications
of the software.

Both the finite element software and the expert system she]l operate in the interactive

91

-

« A S R 1

graphic mode based on 2 windowing systém. A sample copy of the computer screen during
the developmeni of knowledge bases is presented in Fig. 82. The figure shows both the
PHLEX window (large, central position) and severs windows of the expert sysiem shell.
Within this environment it is possible to develop and test the knowledge bases when the
expert system is called by the finite element program. Suck a situation is presented in
Fig. 8.3, which shows an additional rule network window with graphical presentation of
rules and the current status of the inference engine. This graphical interface facilitaies the
development of knowledge bases.

Once the development of knowledge bases has been compieted, the expert system graphi-

cal interface is deactivated aud the expert system runs in the background. This is the version
that can be delivered to the user of the system.

Within this generic environment, several expert systems were implemented to assist the
finite element -program in-automated performance of consecutive stages of the analysis. A
moré detailed presentation of implementation and performance of some of these systems is

iscussed in the following sections.

8.3 Automated Strategy Selection and Performance Monitoring

Advanced finite element programs are usually equipped with a variety of computational
strateégies for the solution of the problem. The performance of these methods depends upon
various parameters of the problem under consideration. Therefore selection of the most
appropriate méthod is a complex and rather heuristic task, very difficult for an inexperienced
user. During the execution, many computational methods need to be closely monitored
and have certain parameters adjusted in order to assure stability, convergence, and good
performance. A typical example is the solution of strongly nonlinear problems by Newton-
type methods.

In this section we present a research-scale implementation of expert systems devised to
automatically select computational strategies and to monitor the performance of these strate-
gies during the solution process. This implementation is based on the concepts discussed in
Section 6.

8.3.1 Selection of Computational Methods

An expert system was implemented to automatically select the type of solver for the linear
system of equations resulting from the finiie element discretization. The system selects
automatically either the frontal or the iterative solver. This selection is based on simple
criteria, such as the number of degrees of freedom and the ordering of the elements. The

92

B

¥

.‘
,-

B

.
-‘

s I
. .,y
‘- -»

Ml B EE I R B TS EE e

el . drcsavd 38 et 1o Sree

‘Img: senl_decisionse set to T

conttsme” in rulc

ol _convergrdind) R
Mol decssson 12 set Co
<ontisnr

Senwice of Sonl_optaster 18
Setrieve frem “dhoses/nenidet.
~p” OTYPU:000P:

Beteseve: & crlin scoved. &
doto vetrseved -
Senl_crtelas 33 set to 0,00
onl_ evtolns 33 set o 001
Mol _obocted 33 set to 3
anl cetond 38 set to 3
Nonl mitnes s8 set to 20
Nonl optmiter 13 set t2 6

o MAL Meni_bech_of ¢ 1953
"
1) there §8 evidonee of
Jnred_back_of
21 Sanl rbech ed-tan] ..
whacted 13 less than or

bole Mol _corwergediod) 58
fared,

Wonl . drcided 13 already
banan o5 trwe

BAR Y L8 DVIIF W €

240

=20

ITERATION:
TTERATION:

COMVERGENCE OBTAINED AFTER

4
-4

ERROR
ERROR

6.21806€-04
8.65437€-06
5 ITERATIONS

L2-PROJECTION
MINe~12,06401
MAX=S18:32251

e ma by

0|

Figure 8.2: Computer screen with PHLEX and NEXPERT windows.

93

Sl

. I
-‘

i e e e
“wt ow Hrmwsssverat
Cog wp Fasntoe
Porr [mwsssnmmnt

Sust

Tevte 34 48 st
¥.30 35 13 vet te false
. 'c-l stacnstor 58 set to Falte

e 38 19 set 'y False

Houmlinora b _oli<13 30t to
? oJse .
* g set 15

Yes 413 Wonl moed bscb ol (W,
"OI.DM‘M tem| odoarbrd r"l‘..

~ foregrs 12 et to Falze . 63 Mol et tion Ttrimsnate™ P~
. oz ez et to false v w3 1e1 = P FPTIUE 00NLE -1
Jciitie snlperd 43 ot to -

2.

1 Wier runtow T2 nlt-ﬂll"""\\\

. o, -w.-..-. =1, u-fus-")-v:}
"'tl.vo(-’ MM T s P

Meer rontons Jolbat “anfemeter”

e W] Cornlige 3E
n emle

1€ocr0r), treed,
s et to h-e

~af eewn

vh Teme

Yes (1) Ment.cawerged /.,

. ; X WS T esee Tes10) t (1) Yeni.decision 'cmnln'\/ 5,
B B ..
: e Nl romtuar 85 fvmirtr/t-a.nlrer (1> Coy 3
Jrrmerges” 2:5trategy ADOMURDFALSES (/- -
Thon y

2308 0 (1) Nenl.nbacked,
Trare 13 evinerve of Moni,
s erges

Taver (13 Tead oo Lotk GHT Y

Honl rdesbed Thal mtsee Lok 43 0'?
A1) Pl ebee 158wy Tloacd nf QY
ol sosbons boelv] (1D lh-l.-aw$~|!),

:‘,, ————fez (1) Honl.crnverges P,
wes, gy
W elariomerges 4% alresty e (1} Bonl, comvrrge
voeanr AT Llue

“ iatie gnlervh 18 cegected
o) lheerges 525 regeitad
el tow b uif e

Versstesy

t (1) Bl decizion “cemtite” Do
settond mitackd (1) Cono.mitome

T.%ongrston 17 regected
Heeodortol 1g rejected
st*ieted 11 Conl jined

Ve 1wl receredtol) gy

*rr.ﬁ (‘gg— 3o *t-‘-lﬁ',;

n 31 Yeme musiog boorb (03 9_

<78 the arialerssn l-o.l'“

,.lll Henl ot nff o) Do~

(]
olbaid st akfolanl mitmae <y 09 ..vlll Cetemt miter (e7) ?/

kg

F=

EIHANRRL L LS M -

{1 Nen(.decided

94

Figure 8.3: Testing knowledge bases in the interactive mode.

B

IR

- - ~ Yoo . - oL, Vo e . Wt - N T, - k)
N V. .
, , s N . PN ™ . } N
> N + . M
M el ¥ U
— e : ! . o o ra . !
. . -

. -
}

L

"

W

lnt;ng of objects-and rules of tlnsexpertsystem is presented in Appendix-C1.
Ihe;ntbm@téd_;}el@&ion of 'fhe splv}qr is activated: by the user’s.command:

SOLVER,AUTOMATIC
issued to the finite element.program.
8.3.2 Performance Monitoring and Control

A performance monitor expert systéem is designed to monitor ‘the performance of various

$ections of the finite element code, inform the user about occurring abnormalities {divergence,
zero pivots, slow convergence, etc.) and to suggest or pérform appropriate meéasures to fix
the problem. The importance of such an infelligent advisor is.especially pronounced in

large finite element programs for nonlinear or time-dependent problems, with a multitude
of methods. available for the solution- of lifiear systems-of equations, eigenvalue extraction,

:etc.. -

«

The . genéral structure of an automatedperformance monitor-is presented in Fig. 8.4.
This is an. advisory system t6 the finite element code which is used for the solution of
nonlinear or time-dependent probleéms, with a-seléction of either a direct (frontal) solver or
aniterative solver for thelinear-system of equations. The structure here utilizes the concepts
of object oriented programming to represént specialized knowledge .of several experts. The
actual concept presented in Fig. 8.4 represents, in an object oriented fashion, the following
situation: ’

Image a finité element code running on the computer and printing to the screen
an echo of the performance of various methods used in the code (execution times,
numbers of iterations, error tolerances, etc.). In front of this screen there sits a
number of “experts”, each of them specializing in a different method. In partic-
ular theré is a specialist on nonlinear problems, a specialist on iterative solvers,
and others. Fach expert analyzes the information pertaining to bis discipline
and derives.conclusions concerning the performance of the code (and methods of
fixing possible problems). The information and suggestions provided by each ex-
pert are analyzed by the supervisor (general performance monitor) which makes
a final decision concerning continuation of the computations, change of strategy,
or termination of the computations in “hopeless” cases.”

The classes presented in Fig 8.4 represent formally the human experts. Note that interme-
diate classes are introduced in this scheme to capture methods common to more than one

95

ROOT
PERFORMANCE | | CONVERGENCE | M%%ES
- MONITOR - : MONITORS. : ,
_F . Y | S
| NONLINEAR | | ITERATIVE | | FRONTAL
1 CONVERGENCE{ | SOLVER SOLVER
'MONITOR | MONITOR MONITOR

Figure 8.4: A general structure of the Performance Monitor expert system.

96

@

expeit. Fo1f -example, the method of convergence checking for nonlinear problems is very
similar to the convergence check used for iterative solvers. Therefore this common method
is-Tepresented by-a general “convergénce monitois™ class.

[

o 1IN this project only one- expert system was actually implémented and tested ‘namely the
nonlineat monitor expert system. The: principles of operation are discussed.in Section'6. The
) Héting,qf ‘objects and rules of this systém is presented in Appendix B2. The expert system
is activated at each load-step after- completing a prescribed number of iterations (sufficient
to-estimate trends in-error histories). The decisions-of .the éxpert system are used. to control
the solution proceéss.and obtain d converged solution at minimum: cost.
The automated performance monitoring option is activated by simply specifying AUTO-
MATIC on the list of commands for the:ﬁr‘xitg élement nonlinear analysis.

8.3:3 Exarﬁplés

[}

To-llustrate the practical performance of the strategy selection and performance monitoring
expert systéms we present a numerical analysis of a windshield wiper blade in contact with a
rigid surface. The deformatﬂi‘on of the blade is described by a large deformation theory. This
theory, combined with unilateral contact conditions,.Jeads to a strongly nonlinear problem.

This problem was solved on a mesh with both & and p refinements (Fig. 8.5) and
a nonlinear Newton procedure with incremental loading was used. The increasing load
was controlled by a quasistatic time and corresponded to pressing the blade against the
windshield:

A copy of the echo of the solution process is presented in Fig. 8.6. The frontal solver
was automatically selected for this relatively smail problem. Then, at the first load step,
the Newton procedure did not converge within the _prescribed number of iterations. Still,
the error history suggested that the process was actuallv convergent, therefore the expert
system decided to perform a few additional iterations in v. _er to obtain full convergence.
However, these additional iterations did not fully succeed. After this situation had occurred
several times, the expert system concluded that it didn’t make sense to continue iterations.
The computations were backed to the last converged solution (initial guess in this case)
.and repeated with a smaller time increment. After a few further adjustments, a sequence of
convergent iterations was reached and the final solution was obtained (only a few of the initial
iterations and the final iteration are shown in Fig. 8.6). The final deformed configuration
with stress intensity contours is presented in Fig. 8.7. Note that if a user-prescribed fixed
load step was used, a large number of small steps. was required to obtain convergence or the
process diverged.

The above example presents the most typical result of the application of the perfor-

97

. 7 = R Iy > " ; > e N TER T ™ " ——— e,
. N - - S . . - s - - <L . P N Ve s
pam : - Cam s s A by] v o e 3
\

-

- -
I
P
-

.

.
| -
7

A A 134”7/7/:4'4 2

ik i

////%r T

7 7

a4 1 g Z ’.%.4?7 ,h

SRTPITIPN v i

N ¥ 5.5:: %’ ;’:.? N '/,"”.', B R o Y A
F1%.

49 e A 4 s i e 7 g
A Nl Al v s
A R s oh
N R b
155

W
3

et
o

"
s s 5:23’/”-' 2,

3
A
&

oy M ORI ity A
BRANTINL LN NL) R
ORI L VTR T I8 TN R
Xt AR AR S g
i e 720 N R PRV 2 afr i J
AN s R N . by IR
6 SN T SRS T b2
YR NI T h AW SNE
A A
%
4
J
, 5 R
a9 -
4 %
,'5 ~
P A2
2
122

™

Pt
Koo
ETRNTY
MR

WA

Figure 8.5: An k-p finite ~'ement mesh for the wiper blade analysis. Shade intensity repre-
sents the order of approximation.

98

“v\-" o - h -‘ o

o EXPE“T sonvza SELECTED FRONTAL

. . 'NONLINEAR PROCESS:

-

CURRENT TIME = 5. 00000003—01 DT = S5.0000000E-01

ITERATION: 1 ERROR: 1:00000E+00 s
ITERATION;: 2 - ‘ERROR: 6.85089E-02
ITERATION: 3 ERROR: 9:00390E-02
. 5 ITERATION: 4 ERROR: 4:.20841E-02
o . o - ITERATION: 5 ERROR: 1.70250E-01
i ITERATION: 6 ERROR: 8.15674E-03
’) : ITERATION: 7 ERROR: 5.84537E-02
’ - - ITERATION: 8 ERROR: 2.93982E-02
ITERATION: 9 ERROR: 1.54566E-02

ITERATION' 10 ERROR' 6. 95750E~03-
WARNING‘ NO CONVERGENCE AFTER 10- ITERATIONS
EXPERT DECISION: CONTINUE ITERATIONS.

ITERATION: 11 ERROR: 4. 05248E ~03

ITERATION: 12 ERROR 8. 20585E-04

ITERATION: 13 ERROR: 4. 98021E—03
‘WARNING -NO- CONVERGENCE AFTER 13 ITERATIONS

EXPERT DECISTON: CONTINUE. ITERATIONS

ITERATION: 14 ERROR: 3.61173E= =03

ITERATION' x5 ERROR: 2.29691E-03

ITERATION 16 ERROR: 5.19300E-03
WARNING‘ NO CONVERGENCE AFTER 16 ITERATIONS

EXPERT DECISION: BA(E, T
CURRENT TIME = 2,5000000E-01 DT = .2.5000000E-01
ITERATION: 1 ERROR: 1.00000E+00
ITEMVATION: 2 ERROR: 3.39861E-02
ITERATION: 3 ERROR: 5.77968E=02
ITERATION: 4 ERROR: 2.28434E-02
ITERATION: 5 ERROR: 3.76144E-02
ITERATION: 6 ERROR: 1.80416E-02
ITERATION: 7 ERROR: 7.42925E-03
ITERATION: 8 ERROR: 1.,27399E-02
ITERATION: 9 ERROR: 1.58.09E-02
ITERATION: 10 ERROR: 6.42318E-03
WARNING: NO- CONVERGENCE AFTER 10 ITERATIONS
EXPERT DECISION; BACK OFF, ADJUST DT AND RETRY
CURRENT TIME = 1.2500000E~-01 DT = 1.2500000E-01
ITERATION: ERROR: 1.00000E+00

1
ITERATION: 2 ERROR: 2.14857E-02
ITERATION: 3 ERROR: 7.79365E-04
ITERATION: 4 ERROR: 1.28068E-05 |,

CONVERGENCE OBTAINED AFTER 4 ITERATIONS
ERT DECISION: ADJUST DT NT E

« CURRENT TIME = 2,0000000E+00 DT = 2,8835625E-02
ITERATION: 1 ERROR: 1.19598E~02
ITERATION: 2 ERROR: 2.79259E-05
CONVERGENCE OBTAINED AFTER 2 ITERATIONS

REACHED TIME STOP = 2.0000000E+00

Figure 8.6: A copy of the echo of the nonlinear analysis of the wiper blade (only a few load
steps are shown).

99

s rnemm sy »
A,
AL

’Q)“vf"f'h
W0 < A
R S T S e B

h
s

S aac

e
[

t! WARNING FROM THE VERIFICATION EXPERT SYSTEM !!

My analysis indicates that in your finite element analysis you are using
constitutive equations valid only for small strains, while the strains reach

level requiring large strain theory.

It is advised that you choose appropriate constitutive equations or
change the model to reduce the strain level.

Figure 8.7: Deformed configuration of a wiper blade with stress intensity contours.

100

i ‘ . ,)
- I I N IR N EE BN R R 0 BE BN BN B R D B e
. ,

mance monitor expert system. Besides the features illustrated bere, ihe sysiem is equipped
with bifurcation deteciion rules, proleciion from erroneous user daia, and ciber addiiional

8.4 Adaptive Mesh Refinement

The adaptive mesh refinement procedure is designed o automaiically adjust the finite ele-
ment discretization in order io reduce the solution error ai minimam cost. In thic section
an example of the h-p adapiive mesh refinementi will be presenied. This procedure was
discussed in Section 6.4.1.

As a particular test problem an example of the finiie element analysis of 2 wrench was
selected. The finite element mesh for this tool is presenied in Fig. 8.8. The length of the
wrench is aboui 120mm and the maierial properties are the Young modulus E = 210 G P,
Poisson’s ratio » = 0.3, and the elastic limit stress o = 10 MPa. The interaction with the

‘bolt or the nut head was modeled by appropriate displacement boundary conditions on ihe

hex head and the torque was imposed by a distributed normal load on the bardle.

The solution of this problem on the iniiial mesh in Fig. 8.8 gives the siress disiribution
presented in Fig. 8.9. Due to the stress concentration in the hex head zone, the error
in this zone is much larger than elsewhere in the domain © and reaches 2 level up to 16
percent (see Fig. 8.10). To reduce the error ievel the h-p adaptive procedure was activaied.
The adaptive procedure was purely algorithmic and no expert system assistance was used.
The final refined mesh is presented in Fig. $.11. The contours of siress intensiiy a2ad
elementwise error indicators are presented in Figs. 8.12 and 8§.13, respeciively. For the sake

-of comparison, the contouring ranges for error and stress plots were ihe same as for the

initial mesh. Note that the maximum-local error dropped below three percent, while the
maximum value of stress intensity was much higher than for the original mesh (this is due
to stress concentrations on the hex head).

This simple example illustrates the powerful h-p adaptive mesh refinement capability.
In more complex situations, an additional expert system will be used to assist the basic
refinement procedure.

8.5 Adaptive Selection of Implicit and Explicit Zones

The adaptive implicit/explicit method, discussed in Section. 6.3.4, will be illustrated on
the example of the Mach 3 viscous flow about the flat plate at Reynolds number equal
1000. The detailed problem statement for this classic example can be found in reference
[79). This problem was solved with an implicit/explicit algorithm combined with adaptive

101

MESH

102

100.

t

A finite element mesh for the wrench analysis. Shade intensity represents the

wrench0

roxima

PROJECT:
order of app

Figure 8.8

,
. 0 U R T Y D I B O D G In EE G BE T I e Ea.
> :

- N N TN R ~ o~
P . R - By + <
: v ' B
\ s : ~ L A

! : ’, AR A

p . e P Ramncecr
N .
N ! -

- - -,
- ' i

-10 64.4 138.8 225.6 300

Figure 8.9: Stress contours for the wrench problem obtained at the initial mesh.

R N G EE IE aE R BE EE .

103

|

' ' 1 > s -

0 0.0375 0.075 0.125 0.1

o
[a)}
1o]
[3)]

Figure 8.10: Error distribution for the wrench problem obtained at the initial mesh.

104

105

Figure 8.11: Adapted finite element mesh for the wrench analysis.

= I I lA .I l l :l l

DEALEY

2 . ¥ 2 a0 oy v =y (I 0 oy eaid L N A ars Tree > 1 O R DA gl kS T 5% A ke
i . B o . } .
. s .

USRS S A Y

Ea i

SOLE T e N 2o et e 2

41’, J ».ﬁ‘ﬁt/ Yt

A 25
4 58
mpss B

-10 65,15151

}’%~ ;nc‘
ENNNNENEE |

140,3030 224.8484 300

Figure 8.12: Stress contours for the wrench problem obtained at the adapted mesh.

106

BN ST
N P s
. e

0 0.034821 0,08125 0.127678 0.1625

Fiéure 8.13: Error distribution for the wrench problem obtained at the adapted mesh.

107

.
;
!l
:
:
l‘
)
sI
4
3

DA
E
!
.
'
|

mesh refinement. The selection of the implicit and explicit zones was based on the cost
minimization. The criterion for the application of an implicit algorithm was a stability
limitation of an explicit version. For the mesh presented in Fig. 8.14, the procedure, based
on cost minimization, chose a time step about-20 times larger than the admissible time step

for the fully explicit version. This was achiéved by automatically seleciing-about 75 percent

of the elémnents as-imiplicit (1646 out of 2155). These implicit elements were clusiered-arourid
the plate tip-and in the boundary layer—see Fig. 8.14. The computational cost of reaching
the steady-state solution was reduced by a factor of 2, as compared with the fully explicit

-algorithm.

The contours of density obtained for this problem are presented-in Fig. 8.15. Note that,
similarly -as for adaptive mesh refinement, an expert system assistance can be used in more
compleéx situations to improve the performance of the adaptive implicit/explicit procedure.

8.6 Automated Verification of Finite Element Results

The verification expert system.is designed.to. automatically assure compliance of the finite
élement results with the basic design criteria, with the limitations of the mathematical model,

ete. It is assumed that the approximation error has been reduced below a prescribed limit

by the-adaptive procedure and it is not of concern here.

The verification .expert system is based on concepts discussed in Section €. A general
structure of the system is presented in Fig 8.16. A single object “versolid” represents for-
mally a human expert working on the problem. It has several slots representing necessary

information as well as associated rules representing the active expert knowledge. The actual

solid objects are members of a class “solids.” In this version only two-dimensional solid ob-
jects are considered. In general, additional classes of thrée-dimensional solids, plates, shells,

‘beams, and other structural elements may be considered. The listing of classes, objects and

rules of the verification expert system is presented in Appendix B3.

The automated verification is activated by selecting the command VERIFY in the post-
processing menu of the finite element code. At the beginning of the verification session
the class of solids is empty. Then, during the session, objects of this class are dynamically
generated. These objects correspond to components of the structure. For each solid object
the postprocessing of displacements, stress, strain, and other parameters is performed using
methods developed in Section 6. The results of this postprocessing are the basis for the
verification session of the expert system. In the cases of violation of the design criteria, im-
proper selection of the mathematical model or other modeling errors, a relevant message is
issued to the user together with suggested ways of fixing the problem. For more specialized
applications, provisions can be made to automatically implement the necessary changes.

108

B RN .4\,
‘, s v o

.

v N

. ‘

< 7

,

) R
i i .“(;%"
, [t

N . =
-

. = : A

A aF

- implicit
[| explicit

Figure 8.14: Automatically selected implicit and explicit zones for the flat plate viscous flow.

109

\I -
'l
"
3
xl

ean O Y TR o T
PR i ‘e LT U YT
! .
. . . K N ,
Rarfarand " il - = n
f ¢ -
.) . .

. I TErr—

e e,
Ji- :-
¥ s >

2

\ _,,,4 n
. b A

. . ore
.

-~

- - - ‘
z - - »
s T N
P ‘ N d - -
PR 3
- N . o - -
b bt —
/:l' o “
) N -
T . <
"~ C
] -
by .07
"
:l - v
N - “ -

DENSITY

CONTAURS MIN = 0.608 +00 MAX = 0.226 +0l INTERVAL= 0.868 -01

Figure 8.15: Density contours for the flat plate viscous flow.

110

- t S SRS
L . St e » o
. [“ At
B |
. < "
T EEraa > vl s
[N s . .
. . . .
s .
. NI o Vo

i

M
ol

. L . p R B
.
: ,

v,

A

o -

; -
‘
l v
Rt y
. I’.
.

| ®oor

 Class:

Structural
Elements

~ Object | /

| Verexpert. 1 Class:

] [sotids |

Class:
Plates

I solidl |

[solid2

“ so‘lfd3

platel

1 plate2 |

LT late3 |

Figure 8.16: A general structure of the verification expert system.

111

NS TEEEEEEEN

ot 1 . \
. S S 4 e w . L .)y N
N N . N N yobos B i
- N ‘-" “- - Vo :
. - . —— — .
" . N % + . . s
’ |
A ot R fl
.

! ¢

g v I i g g Y EEr I M LU e Yon L T
. NP B LRV -
. - . d
B N N E I TN I BN B S B EE O Em

’ E * c e "

« ‘ .
‘
i

N R

"

- 8.6:1 ‘Exgmplés of Automated Verification of Results

~Theé operational priﬁcipiés of the verification ’éxpért systéem-will be illustrated in the example
_-of the wrénch -analysis, intfoduced in the previous section. The procéss of finite element

solution.of this .,pr;oblem will be simulated here, including various modeling errors introduced

by the user. Forsimplicity, no adaptive mesh refinement was used in.the examples presented.
.Casé I: Inf_suﬁ&;ieni Supports -

In the fifst run a cornmon situation of improperly specified boundary conditions was
simulated: In particular, no.Dirichlet boundary conditions were specified, so that the wrench

" was subjéct.to very laige displacements and rotations. This situation was detected by the
large displacemént and-rigid motion modules, and the expett system issued an appropriaté

tnessage to the user. The deformed configuration and the message issued by the expert

system aré presented in Fig. 8.17.

- Case 2; Ficessive Loads

In this case the supports were properly defined, but the user specified excessive value

‘of the traction load, o that the deformation of the wrench was large, see Fig. 3.18. This

violated:the assumptions of infinitesimal deformation theory in terius of both kinematics and
constitutive equations. Thus this-analysis resulted in two error messages, presented in Fig.
8.18. Note-that the:expert system properly concluded that the large rotation in this case
was not rigid and was not caused by insufficient supports.

-Case 3: Elastic Limit Exceeded

The- loads specified in this case did not cause excessive deformations, yet were large

~ enough to cause violation of the specified stress limits. However, the high stress occurs only in

a-small fraction of the domain, presented in Fig. 8.19. In general, these local concentrations
may be essential for the design or can be caused by a relatively crude modeling of the actual
shape (e.g., sharp corners introduced by the discretization). The expert system detected this
stress concentration and issued the message to the user, accompanied by the list of possible
solutions to this problem (Fig. 8.19).

Note that in more specific applications the conclusions of the expert system can be more
specific and even an automated correction of the problem cc1 be implemented.

Case 4: Correct a Result

After reducing the load level on the handle, the deformation and stresses in the wrench
were within the bounds of the infinitesimal deformation theory and below the prescribed
stress limits. No warning messages were issued.

Case §: Too Comprehensive a Theory Used

Here the situation was simulated when the user selected too comprehensive a mathe-

112

st e e e

PROJECT: wrenchl DISPLACEMENTS

! WARNING FROM THE VERIFICATION EXPERT SYSTEM !
My analysis indicates that the structure or it’s part undergoes
excessive displacements and rotations. This is most probably
caused by:

- lack of proper support (boundary conditions)
- missing connections between different parts

Unless you really accept the solution with such displacements and
rotations, please examine and modify your data.

Figure 8.17: Deformed configuration and warning message in the case of insufficient supports.

113

’ - ”- Y

- ﬂ-‘

!! WARNING FROM THE VERIFICATION EXPERT SYSTEM !!

J

My analysis indicates that in your finite element solution you are
using infinitesimal deformation theory, while the large deformation
theory is needed. This canlead to erroneus results.

Please switch to large displacement theory or, if yoa do not expect
large displacements in your solution, check and modify:

- material propertics
- boundary conditions (loads)
- model gecometry

!' WARNING FROM THE VERIFICATION EXPERT SYSTEM !!
My analysis indicates that in your finite element analysis you
are using constitutive equations valid only for small strains, while

the strains reach level requiring large strain theory.

It is advised that you choose appropriate constitutive cquations
or change the model to reduce the strain level.

A 3 . . . + .
Figure 8.18: Deformed configuration and warning message in the case of laige 1otations
caused by excessive loads.

——

1

i f

Raadde b S o 4

| |

-0.075 0.375 ¢.825

[y
5
:-\

o)

11 WARNING FROM THE VERIFICATION EXPERT SYSTEM

My analysis indicates that in the finitc element analysis you arc
using clastic type constitutive equations, but the stresses exceed
elastic limit.

However, these stresses occurr in Iess than 10 % of the arca.
Therefore you may chose to ignore them if this is a rather crude
analysis. If not, then please:

1) modify the geometry of the model to avoid stress
concentrations (c.g. round-off the comers) or

1) modify the model to reduce stress levels or

2) choose clasto-plastic constitutive theory
(currently not available).

Figure 8.19: Stress contours and warning message in the «ase of violation of elastic stress
limits.

ENTER: PROJECT_NAME

wrenchd

salve

NONLINEAR PROCESS:
ITERATION: 1 ERROR: 1. G0OCCE=00
ITERATION: 2 ERROR:23534%6E-03
ITERATION- 3 ERROR: L77H4SE-05
CONVERGENCE OBTAINED AFTER I ITERATIONS

FINISHED NONLINEAR PROCESS
end
post
werify

2 MESSAGE FROM THE VERIFICATION EXPERT SYSTEM ¢

My analysis indicates that you are using a large deformation
incory whitle the deformations 2=e in fact infinitesimal. Alihough
this is 2 comrect and safe approech, you may w2t 10 use 2 sSimpier
and compuzztion2ily cixezper infinitesimal deformaiion thesry.
Session finished
end

Figure 8.20: Echo of the session with too comprekensive 2 mathematical model requested
by ihe user.

maiical model for the problem, which could effectively be solved using simpler theories. In
particular, the wrench problem (Case 1) was analyzed using a large deformation theory and a
nonlinear solution algorithm. This required more expensive computations than in the simpie
linear case. Thus the expert system issued a mcssage to the user suggesiing the possibility
of switching to a simpler theory. The echo of this computational session is presented in Fig.
8.20.

Case 6: Incorrect Combination of Mathemalical Theories

The last case considered here corresponds to a wiper blade analysis, discussed in Section
8.3. In this example, the kinematic theory was properly selected to be a large deformation
theory. However, the constitutive equations were assumed to be linear, described by Hooke's
law. Since the strains in the blade were actually large, application of Hooke's law was
incorrect. Thus a warning message was issued by the expert system. This message is shown
at the bottom of Fig. 8.7.

116

Note that tke expert sysiem checked whether the deformaiions were actually large. If the
strains were within the range of small strains, the combination of linear constitutive theory
with large deformation kinematics would have been accepied.

9 Conclusions

The theoreiical analysis, literziure survey, geseral design, and numerical tests performed
in the project suggest that efforts toward automaiic decision making in computational me-
chanics are definifely feasible and promise great pavoff in practical zpplications. Once im-
plemented and operational, the automated version will greatly improve quality, reliability,
and time efficiency of the design by providing:

e Guidamce for the inexperienced engineer through the maze of engineering software,
computaiional procedures and parameters.

s Assistance ig the experienced designer in the selection of mathematical models, com-
putational sirategies, verification of the design, and iterative modification of the model.

e Automatie control of the quality of the computational results, in particular keeping
the error within the prescribed limii.

¢ Minimizing the computational effort necessary to obtain good quality results by auto-
mated designing of an optimal mesh, optimal time step, load step, etc.

¢ Automated handling of computational difficulties (divergence, instability) based on the
expertise of the program developer and experienced user.

o Automatic learning capabilities, with the system’s own experience growing with the
number of solved problems.

The research performed in the project proves that developing an automated design en-
vironment is feasible and that it requires a combination oi various computer tools and tech-
niques, such as algorithmic procedures, CAD, computer graphics, and knowledge engineer-
ing. In particular, our work has shown that the techniques of knowledge engineering such
as expert systems, are mature enough to be effectively used in automated computational
mechanics. Nevertheless, it is our opinion that the potential of these systems should not
be overestimated and that methods based on rigorous mathematical foundations and well
defined procedures should be used whenever possible. Only in areas where such a precise

knowledge does not exist or is not complete, a heuristic approach based on experience and
expertise should be used.

Y P) e N 3 . S oo o
* R : '

s «

N ¢ 5
N : AR

It is essential that this heuristic knowledge in the automated environment is handled by
appropriate tools of knowledge engineering, such as expert systems. Although it is possible
to implement the expert rules in the form of classical if-then-else statements in the executable
code, there are many arguments for application of expert system software for this purpose.
The most important of these arguments are listed below.

1. The implementation of rules in the form of if-then-else statements is formally possible,
but it becomes extremely complex and time consuming for larger knowledge bases (say
hundreds of rules). Moreover, maintenance and update of these rules is very difficult.

2. Today’s advanced inference engines can navigate through the network of objects and
rules in a more efficient fashion than the sequential approach of the if-then-else type.
In particular, the same knowledge (rule) can be used for different purposes, depending
on the current application of the expert system (induction, diagnostics, etc.).

3. In the knowledge engineering approach, the expert knowledge is stored in separate
knowledge bases, rather than being hardwired into the code. This enables easy de-
velopment and use of custom tailored expertise for different applications of the same
generic software.

4. With new emerging techniques of artificial intelligence it can be expected that the
automated environments using the knowledge engineering software will automatically
benefit from the progress in this field and from new capabilities, such as knowledge
acquisition, self-learning, etc.

9.1 Directions of Future Work

The research performed during this project can be viewed as a feasibility study and proof
of concept for the development of an automated environment in computational mechanics.
Although the numerical implementations developed here were proven to be very useful and
effective in practice, the development of the ultimate, fully automated environment for en-
gineering design will require further intensive research. The basic directions of this research
should include:

1. Further development of a rigorous mathematical background and heuristic knowlede
for the automated selection of mathematical models of physical phenomena.

2. Automated generation of finite element models, to include full interaction of CAD
modeling, mesh generation, and finite element software.

118

N A
. 5
f

-
;

3.

Continuous development and improvement of adaptive computational techniques and
smart algorithms. This includes, in particular, h-p adaptive finite element methods,
error estimation, adaptive time-sepping, adaptive zonal methods, etc.

Further work on automated assessment of the quality of numerical results and auto-
mated model verification.

Automated structural optimization, including a combination of algorithmic optimiza-
tion methods with knowledge based support for qualitative changes in the design.

Development of an automated environment supporting a full cycle of the engineering
design process, to include model generation by CAD and solid modeling, automated
discretization, automated finite element analysis, computer aided manufacturing and
automated cost analysis.

Continuous study of new computer technologies and methodologies, and their potential
in the automated engineering design.

119

| ' “ .

10

10.

11.

12.

References

Anderson, J. A., “Data Representation in Neural Networks,” Al Ezpert, 6, pp. 30-37,
1990.

Andrews, A. E., “Progress and Challenges in the Application of Artificial Intelligence
to Computational Fluid Dynamics,” AIAA Journal, Vol. 26, No. 1, pp. 40-46, 1988.

An-Nashif, H., and Powell, G. H., “A Strategy for Automated Modeling of Frame
Structures,” Engineering With Compuiters, 5, pp. 1-12, 1989.

Babuska, I., Gui, W., and Szabo, B., “Performance of the %, p, and h-p Versions of the
Finite Element Method,” Preprint, 1984.

Bayley, D., and Thompson, D., “How to Develop Neural Network Applications,” Al
Ezpert, €, pp. 38-47, 1990.

Babuska, 1., and Rank, E., “An Expert-System-Like Feedback Approach in Ap-Version
of the Finite Element Method,” TN BN-1048, Institute for Physical Science and Tech-
nology, Lab. for Numerical Analysis, University of Maryland, 1986.

Babuska, I., and Miller, A., “The Prst-Processing Approach in the Finile Element
Method—Part 1: Calculation of Displacements, Stresses, and Other Higher Derivatives
of Displacements,” Int. J. Numer. Methods Eng., 20, pp. 1085-1109, 1984.

Babuska, I., and Miller, A., “The Post-Processing Approach in the Finite Element
Method—Part 2: The Calculation of Stress Intensity Factors,” Int. J. Numer. Methods
Fng., 20, pp. 1111-1129, 1984.

Babuska, I., and Miller, A., “The Post-Processing Approach in the Finite Element
Method—Part 3: A Posteriori Error Estimates and Adaptive Mesh Selection,” Int. J.
Numer. Methods Eng., 20, pp. 2311-2324, 1984.

Bass, J. M., and Oden, J. T., “Adaptive Finite Element Methods for a Class of Evo-
lution Problems in Viscoplasticity,” Int. J. Engng. Sci., 25 6, pp. 623-653, 1987.

Bathe, K. J., Lee, N., and Bucalem, M. L., “On the Use of Hierarchical Models in
Engineering Analysis,” Proc. of the Workshop on Reliability in Comp. Mech., Austin,
Texas, pp. 5-27, October 1989, Ed. J. T. Oden, Elsevier, NY, 1990.

Bennett, J., Creary, L., Englemore, R., and Melosh, R., “A Knowledge-Based Consul-
tant for Structural Analysis,” Tech. Report STAN-CS-78-699, Stanford University,
September, 1978.

120

' .- -‘
v v 5

13.

14.

15.

17.

18.

19.

21.

22.

23.

24.

25.

Bermudez-Viafio, J. M., “Une Justification des Equations de la Thermo-Elasticité
des Poutres a Section Variable par des Méthodes Asymptotiques,” RAIRO Analyse
Numérique, 18, pp. 347-376, 1984.

Blacker, T. D., Mitchiner, J. L., Phillips, L. R., and Lin, Y. T., “Knowledge System
Approach to Automated Two-Dimensional Quadrilateral Mesh Generation,” Computer
in Engineering, Vol. 2, 1988.

Bramble, J. H., and Schatz, A. H., “Higher Order Accuracy by Averaging in the Finite
Element Methods,” Math. Comp., 31, pp. 94-111, 1977.

. Brauchli, H. J., and Oden, J. T., “Conjugate Approximation Functions in Finite Ele-

ment Analysis,” Journal of Applied Mathematics, April, 1971.

Braun, R., “Expert System Tools for Knowledge Analysis,” Al Expert, October 1989,
pp- 22-29.

Brezzi, F., “On the existence, Uniqueness and Approximatio of Saddle-Point Problems
A:ising from Lagrangian Multipliers,” RAIIRO Analyse Numérique, Sér. Rouge - 1,
pp. 129-151, 1974.

Cagan, J., and Genberg, V., “PLASHTRAN: An Expert Consultant on Two-Dimen-
sional Finite Element Modeling Techniques,” Engineering With Computers, 2, pp.
199-208, 1987.

. Caudill, M., “Using Neural Nets: Diagnostic Expert Nets,” Al Ezpert, 7, pp. 43-47,

1990.

Caudill, M., “Using Neural Nets, Part 2: Fuzzy Decisions,” Al Expert, April 1990, pp.
59-64.

Chen, J. L., and Haleja, P., “OPSYN: A CAD Based Expert System for Optimum
Structural Synthesis,” Engineering Optimization, Vol. 14, pp. 267-286, 1989.

Ciarlet, P. G., and Destuynder, P., “A Justification of the Two-Dimensional Linear
Plate Model,” J. Mécanique, Vol. 18, pp. 315-344, 1979.

Ciarlet, P. G., “Plates and Junctions in Elastic Multi-Structures, An Asymptotic Anal-
ysis,” Springer-Verlag, 1990. .

Craig, A. W., Zhu, J. A., and Zienkiewicz, O. D., “A Posteriori Error Estimation
Methods Using Hierarchical Finite Element Bases,” Inst. Num. Meth. Eng., C/R/
483/84.

121

LA VORI S T NN Y
" .

{
3

.
' N Y
:r- Lo
AR e -

o H
NN .

T ——— EEan s et v rar —— T— ——— - ™ — o T L M N R L SN} e T N A N A R T
. PR L . TR o
L . N Y
e . > - ” ered et}
"
) o Ve
‘

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

Demkowicz, L., “Some Remarks on Moving Finite Element Methods,” Computer Meth-

-ods App. Mech. and Eng., Vol. 46, pp. 339-349, 1984.

Demkowicz, L., Oden, J. T., and Devloo, P., “An h-Type Mesh Refinement Strategy
Based on a Minimization of Interpolation Error,” Comp. Meth. Appl. Mech. and
Eng., Vol. 53, pp. 67-89, 1985.

Demkowicz, L., and Oden, J. T., “A Review of Local Mesh Refinement Techniques
and Corresponding Data Structures in h-Type Adaptive Finite Element Methods,”
TICOM Report, 88-2, Austin, 1988.

Demkowicz, L., Oden, J. T., Rachowicz, W., and Hardy, O., “Toward a Universal
h-p Adaptive Finite Element Solver,” TICOM Report, The University of Texas at
Austin, 1989.

Dembkowicz, L., Oden, J. T., Rachowicz, W., and Hardy, O., “Toward a Universal
h-p Adaptive Finite Element Strategy, Part I: Constrained Approximation and Data
Structure,” Comp. Meth. Appl. Mech. Engng., 77, pp. 79-112, 1989.

Farouki, R. T., and Hinds, J. K., “An Hierarchy of Geometric Forms,” IEEE Computer
Graphics and Applications 5 No. 5, pp.51-78, May, 1985.

Fenves, S. J., “A Framework for a Knowledge-Based Finite Element Assistant,” ASME,
Special Publication AD-10, New York, 1985.

Foley, J. D., and Van Dam, A., “Fundamentals of Interactive Computer Graphics,”
Addison Wesley, Reading, MA, 1982.

Gregory, B. L., and Shephard, M. S., “Design of a Knowledge-Based System to Con-
vert Airframe Geometric Models o Structural Models,” Expert Systems in Civil
Engineering, ASCE, New York, 1986.

Guan, J., and Ohsuga, S., “An Intelligent Man-Machine System Based on KAUS for
Designing Feedback Control Systems,” in Artificial Intelligence in Engineering
Design, J. S. Gero (ed.), Elsevier Science Pub. Co., 1988.

Gurtin, M. E., “An Introduction to Continuum Mechanics,” Academic Press, 1981.

Harvey, J. J., “Expert Systems: an Introduction: Int. J. Comp. in Technology, Vol,
1, Nos. 1 and 2, pp. 53-50. '

Herbst, B. M., Mitchell, A. R., and Schoombie, S. W., “A Moving Petrov-Galerkin
Method for Transport Equations,” Int. J. Numer. Meth. Eng., 18 pp. 1321-1336,
1982.

122

wa o« 1o v awhaogex ¥R
NN S - L
¢ YRS
o P O
: Uy
: v
3

- - L R D - RE) o
- — - - - ‘- - - - 1- - — - '— _» —, ‘-[

39.

40.

41.

42.

43.
44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

Herbst, B. M., Mitchell, A. R., and Schoombie, S. W., “Equidistributing Principles
in Moving Finite Element Methods,” J. Comp. and Appl. Math., Vol. 9, No. 4, pp.
377-389, 1983.

Kaminski, J. S., Clitherow, P. A., and Stuk, G. J., “Integrating Expert Systems with
Conventional Applications,” Computers in Engineering, Vol. 1, pp. 225-229, 1988.

Kumar, V., Majaria, M., and Mukherjee, S., “Numerical Integration of Some Consti-
tutive Models of Inelastic Deformation,” J. Engrg. Mat. and Tech., 102 pp. 92-96,
1980.

Lawrence, J. J., “Untangling Neural Nets,” Dr. Dobb’s Journal, 163, pp. 38-44, 1990.
Lerner, E. J., “Computers that Learn,” Aerospace America, June 1988, pp. 32-40.

Lions, J. L., “Perturbations Singuliéres dans les Probléms aux Limites et en Contrée
Optimal,” Lect. Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin, 1973.

Liszka, T., and Orkisz, J., “The Finite Difference Method at Arbitrary Irregular Grids
and its Applications in Applied Mechanics,” Comp. and Struct., 11, pp. 83-95, 1980.

Malvern, L. E., “Introduction to the Mechauics of a Continuous Medium,” Prentice-
Hall, 1969.

Meyer, B., Object—Oriented Software Construction, Prentice Hall, 1988.

Miller, K., “Recent Results on Finite Element Methods With Moving Nodes,” ARFEC,
Lisbon, 1984.

Miller, K., and Miller, R. N., “Moving Finite Elements, 1,” SIAM Journal of Numerical
Analysis, Vol. 18, No. 6, 1981.

Muleller, A. C., and Carey, G. F., “Continously Deforming Finite Element Methods,”
Int. J. Num. Meths. Eng., Vol. 21, Nos. 11, 12, pp. 2099-2130, 1985.

Noor, A. K., and Babuska, 1., “Quality Assessment and Control of Finite Element
Solutions, Finite Element in Analysis and Design,” 1986 (to appear).

Oden, J. T., and Demkowicz, L., “Adaptive Finite Element Methods for Complex
Problems in Solid and Fluid Mechanics,” Computational Mechanics, ITT, Bombay,
India, 1985. '

Oden, J. T., Demkowicz, L., Rachowicz, W., and Westermann, T. A., “Toward a Uni-
versal h-p Adaptive Finite Element Strategy, Part II: A Posterior: Error Estimation,”
Comp. Meth. Appl. Mech. Engng., 77, pp. 113-180, 1989.

123

g ~. Sl s e ew B A T
4
v

94.

55.

56.

57.

38.

59.

60.

61.

62.

63.

64.

65.

Oden, J. T., Strouboulis, T., and Devloo, P., “Adaptive Finite Element Methods for
Compressible Flow Problems,” Finite Element Methods in Compressible Flow,
Edited by T. E. Tezduyar, AMD Monograph, 1986.

Oden, J. T., Demkowicz, L., Strouboulis, T., and Devloo, P., “Adaptive Methods
for Problems in Solid and Fluid Mechanics,” Accuracy Estimates and Adaptive
Refinements in Refinement Element Computations, Edited by Babuska, et al.,
John Wiley and Sons, Ltd., Chichester, 1986.

Oden, J. T., and Demkowicz, L., “Survey of Adaptive Computational Methods in
State-of-the-Art Surveys in Computational Mechanics,” ASME (to appear).

Ohsuga, S., “Towards Intelligent CAD Systems,” Computer-Aided Design, Vol. 21,
No. 5, pp. 315-337, June, 1989.

Oliveira, E. R., Arantes, “Optimization of Finite Element Solutions,” Proc. of the
Third Conf. on Matrix Methods in Struct. Mech., Wright-Patterson AFB, Ohio,
October, 1971.

Powell, G. H., and An-Nashif, H., “Automated Modeling for Structural Analysis,”
Engineering With Computers, 4, pp. 173,-183, 1988.

Rachowicz, W., “An Evolution and Comparison of Post-Processing Methods for Finite
Element Solution of Elliptic Boundary-Value Problems,” TICOM Report 87-11, The
University of Texas at Austin, 1987.

Rachowicz, W., Oden, J. T., and Demkowicz, L., “Toward a Universal h-p Adaptive
Finite Element Strategy, Part III: Design of h-p Meshes,” Comp. Meth. Appl. Mech.
Engng., 77, pp. 181-212, 1989.

Rehak, D. R., “Artificial Intelligence Based Techniques for Finite Element Program
Development,” Reliability of Methods for Engineering Analysis, Swansea, U.K.,
Pineridge Press, pp. 515-532, 1986.

Requicha, A. A. G., and Voelcker, H. B., “Solid Modeling: A Historical Summary and
Contemporary Assessment,” IEEE Computer Graphics and Applications 2, No. 2, pp.
9-24, 1982.

Requicha, A. A. G., and Voelcker, H. B., “Solid Modeling: Current Status and Research
Directions,” IEEE Computer Graphics and Applications 3, No. 7, pp. 25-37, 1983.

Rogers, D. F., and Adams, J. A., “Geometric Modeling—Ten Years On,” CAD Group
Document No. 103, University of Cambridge, Computer Laboratory, Cambridge, U.K.

124

. R K DR

-‘ -‘ T
g Cet, W

P »

. I3

. N

.1 A

5

S v S sae e v O oA

- 66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

1.

Sapidis, N., and Perruchio, R., “Advanced Techniques for Automatic Finite Element
Meshing From Solid Models,” CAD, Butterworths, Vol. 21, No. 4, pp. 248-253, May,
1989.

Shephard, M. S., Yerry, M. A., “Toward Automated Finite Element Modeling,” Finite
Elements Anal. Des., 2, pp. 143-160, 1986.

Shephard, M. S., “Approaches to the Automatic Generation and Control of Finite
Element Meshes,” Appl. Mech. Rev., 41, pp. 169-185, 1988.

Shephard, M. S., Korngolg, E. V., and Wentorf, R., “Design Systems Supporting Engi-
neering Idealization,” in Geometric Modeling for Product Engineering, North-
Holland, Amsterdam, pp. 279-300, 1990.

Smithers, T., “Al Based Design Versus Geometry Based Design, or Why Design Cannot
be Supported by Geometry Alone,” Computer Aided Design, Vol. 21, No. 3, April,
1989.

Szabo, B. A., “Mesh Design for the p-Version of the Finite Element Method,” Comp.
Meths. Appl. Mech. Engrg., Vol. 55, Nos. 1, 2, 1986.

Szabo, B. A., Basu, P. K., and Rossow, M. P., “Adaptive Finite Element Analysis
Based on p-Convergence,” NASA Conf. Pub. 2059, pp. 43-50, 1978.

Szabo, B. A., and Babuska, 1., “Stress Approximations by the h- and p-Versions of
the Finite Element Method,” Report WU/CCM-82/1, Center for Computational
Mechanics, Washington University, March, 1982.

Thornton, E. A., Oden, J. T., Tworzydlo, W. W., and Youn, S. K., “Thermo-Visco-
plastic Analysis of Hypersonic Structures Subjected to Severe Aerodynamic Heating,”
Journ. of Aircraft, 27, 9, pp. 826-836, 1990.

Thornbrugh, A. L., “Organizing Multiple Expert Systems: A Blackboard-Based Ex-
ecutive Application,” in Knowledge Based Expert Systems for Engineering, eds. D.
Sciram and R. A. Adey, Computational Mechanics Publications, 1987.

Tong, S. S., “Design of Aerodynamic Bodies Using Artificial Intelligence/Expert Sys-
tem Technique,” AIAA Paper 85-0112, Jan., 1985.

Tong, S. S., “Coupling Artificial Intelligence and Numerical Computation for Engi-
neering Design,” ATAA Paper 86-0242, Jan., 1986.

125

b

R
-”‘
Rioara

. - ~ - i, v‘-‘ B
- - - - - " ’ .) R -
. « ’ N N 13 .

8.

79.

80.

81.

82.

83.

84.

PEN /S

Trabucho, L., and Viafio, J. M., “Derivation of Generalized Models for Linear Elastic
Beams by Asymptotic Methods,” Applications of Multiple Scaling in Mechanics, Edited
by P. G. Ciarlet and E. Sanchez-Palencia, Masson, Paris, pp. 302-315, 1987.

Tworzydlo, W. W., Oden, J. T., and Thornton, E. A., “Adaptive Implicit/Explicit
Finite Element Method for Compressible Viscous Flows,” submitted to Comp. Meth.
Appl. Mech. Engng., 1991.

Tworzydlo, W. W., Oden, J. T., and Bass, J. M., “Non-Algorithmic Issues in Compu-
tational Mechanics,” Annual Technical Report, AFOSR Contract F49620-89-C-0015,
April 1990.

Wathen, A. J., Baine, M. J., and Morton, K. W., “Moving Finite Element Meth-
ods for the Solution of Evolutionary Equations in One and Two Space Dimensions,”

MAFELAP, 1984.

Weiler, K. J., “Topological Structures for Geometric Modeling,” Ph.D. Thesis, TR
86039, Troy, New York, Center for Interactive Computer Graphics, RPI, 1986.

Zienkiewicz, O. C., and Craig, A. W., “Adaptive Mesh Refinement and A Posteri-
ori Error Estimation for the p-Version of the Finite Element Method,” iu Adaptive
Computational Methods for Partial Differential Equations, Ed. 1. Babuska,
et al., STAM Publications, Philadelphia, PA, 1983.

Zlamal, M., “Superconvergence and Reduced Integration in the Finite Element Meth-
od,” Math. Comp., 32, pp. 663-685, 1978.

126

APPENDICES
127

. Cer e S e L Lo .. ,
3 - - ¥ 2 NN
5 .2] ‘
N 0 L. " - . . < = ' ' l
NG e R b - ~ N x o
T R L I R T R O T L R S R R R S T S B AR o - .- -~ - -

3

Y v tv e & DR L) TOATUNPNV NReATs NS T e TR Yy
- s . o s . Nl el

g pars : P aase pare ey A

%

.

APPENDIX A

A An Adaptive h-p Finite Element Method for Two—
Dimensional Problems

~ In this section we briefly present a system supporting simultaneous h-p refinements for an

Adaptive Finite Element Method (AFEM) for two-dimensional problems of solid mechanics.
This system offers the possibility of application of automatic decision making to obtain an
optimal finite element mesh distribution and control of the error of the solution. These
adaptive strategies, based on data structure presented here, are discussed in Section 6.2.

To represent the basic ideas of the h-p adaptive finite element method, consider a system
of linear equations:

{ Find u; € X, such that (A1)

a(up,vp) = L(vy) Yo, € Xy

. where

¢ X; =Xiz...2X, (n times), with X, being a finite element space corresponding to
an adaptively changing irregular FE mesh consisting of quadrilaterals of locally varying
size and order of approximation,

e a(-,+) is a bilinear form defined on X x X,

¢ L(-) is a linear form defined on X.

Note the fact that the same approximation is used for each component of uy = (ug,;. . -, Un,)-
The bilinear form a(-, -) is assumed to have the following form

L 8uK 8vL 6u
lJ’ 1 ¢ " d
a(u,v) = /n) { > 52: B, szL Ber KoL + exrugvr § de

K,L=1 {1,j=1 =1 (A 2)
+ / Z dgrugvy ds
€ K,L=1
and the linear functional L(v) takes the form
v
L(v) = /Q {vaK'*'Zgz{ K}
= (A.3)

/Q i hKvK ds

K=1

128

;
o
SN BEN NN W IE N EE BN SN B EE EE EN R EE .

Here @ C I is a two-dimensional domain (replaced i practice with its FE approximation)
with boundary 9. Coefliderts a2,, ¥y, car, dxcr, i, §ic Ry ave given functions specified
in © or the boundazy 3¥), respeciively.

Let us notice at this point that the approximations for both the solution u; 2od the tesi
function v, are the same. This in pariicelar implies that the essential boundary condiftons
must be coded in using the penaity method.

‘This presentation consists of three major pazis. In the following section we desaribe the
basic daia struciure. Seciion A2 discusses the mesh modificaiion 2lgosithms while Section
A3 is devoted fo a detailed presentaiion of the notion of the consizained 2pproamaiion.

A.1 The h-p Data Structure

e shall adopi the following assumpiions:

e The originzl mesh is (topologicaily) a poriion of 2 regular, recizngular mesh. In par-
ticular all podes in ike mesh are regular and every element has up to four neighbors
(elements adjacent to the boundary have less neighbors).

e Every element may have up fo nine nodes: four veriices, four midpoinis of ihe element
edges and a central node. The geomeirv of ihe element is uniguely prescribed by the
coordinates of these nodes.

e During a refinement/unrefinement process, irregular meshes of order 1 are accepied.

e There may be many degrees of freedom associzied with one node.

A.1.1 Nodes and Degrees of Freedom

Node coordinates are stored in the standard way in an array
XNODE(2.-)

Since, every element may have up to 9 nodes, it is assumed that by using these nodes, the
element can be deformed resulting in the subparametric deformation spanned by, at most,
biquadratic functions.

The variable number of degrees of freedom associated with a node suggests that we must
store all values of degrees of freedom in a sequential mode. This is done by using two arrays:

o A real array U(-) storing the degrees of freedom, and

129

e an integer 2ray NADRES {-) storing addresses of fisst degrees of freedom comresponding
to node.

More precisely, if L. = NADRES/NODE) then U(L) contains the value of the first degree of
freedom correspording {0 node number NODE. During the refinement [unrefinement process,
the nember of degrees of freedom corresponding to 2 mode may be changed, the node may
be deleted, or 2 new node mayv zppear. Thes, an amount of siorage allocafed for degrees of
freedom corresponding fo 2 node must vary in the program.

A.1.2 Connectivity
To represent element connectivifies, we introduce the array
NODES(9. -}
which conizias for every ecéire element up fo nine nicknemes of the form
NICKNAME = NODE * 160 + NORDER
where NODE is the node pumber a2nd NORDER stands for the order of approximation

associzied with the node. When an element is h refined, iis “firsi-born” son t2kes on its place
in NODES, while oaly the nexi three sons are assigned 2 new zllocaiion in the array.

A.1.3 The Tree Information

We store the tree information in 2 condensed, family-like fashion. If NRELEI denotes the
aumber of the elements in the inital mesh, the integer array

NSONS(NRELEI)

is introduced with each refined element of the initial mesh containing the number of the first-
born son. Since the next three sons tak. on the next three consequtive numbers, NSONS
array allows us to determine all sons for the elements of the initial mesh.

Whenever an element is refined, a family is being created. We store information about
the families in the integer array ’

NTREE(5, -)

130

For a K-th family, NTREE(1,K) contains the number of the ‘father’, and the next four entries
are reserved for firsi-born sons of the sons of the father, shortly the first-born grandsons of the
“fathez”. When elements are being refined only the ncw families are creited in a consequtive
manner. If however, unrefinemenis take place, some of the families are deleted and new
families take the place (and number) of the first free family entry.

A.1.4 Natural Order of Elements

Since new elements are created ic: a rather random way, and non-active elements preserve
their numbers, the natural question arises, “‘How can one place all the active elements in
order? In the code we proposeé the so-called natural order of elements based on the initial
mesh numbering and the tree information. Instead of defining the order formally we present
in Fig. A.1 a typical iree-structure for an initial mesh consisting of three elements. The
arrows indicate the natural order of elements. Of course, the non-active elements are dropped
in the order.

Let us finally mention that, if the elements in the iniiial mesh are well numbered then

the natural order of elements guarantees, at least up to a certain extent, a minimal band
width in the global stiffness matrix.

A.2 Mesh Modification Algorithms

A.2.1 p-Enrichments and p-Unenrichments

Two typical situations are depicted in Fig. A.2 If the modified element is of first order, new
nodes are simply added with a number of degrees of freedom. correspondiag to the required
order of approximation. In the case of a ‘big’ neighbor, the new node is added as a midpoint
of the big neighbor edge (geometrically it coincides with one of the vertices of the element,
comp. top drawing in Fig. A.2) and as a result of the constrained approximation the new
shape functions are added to three elements simultaneously: the element, the ‘big’ neighbor
and the neighbor (of the same size) sharing the same edge with the big element. As a result
of a higher order of approximation of a neighbor, the element may already have some nodes
corresponding to the higher order of approximation. In such a case these nodes are only
modified and the new necessary nodes are added.

A decrease of the order of approximation is done in exactly reversed order. The nodes
are modified or deleted.)

131

g g n N v n . T —— O — ereern T T T
| . T ™y
. 5 . - o P . ot . . . N
- - - -) : « ‘
) K s : . v
g ey e S] ' s ' h .

16>17>18—>19

Figure A.1: The natural order of elements: 4, 5, 12, 13, 14, 16; 17,18,19, 7,8, 9, 10, 20, 21,
22, 23, 3.

132

Figure A.2: p-Enrichments

133

2 KR 3
) ! R
1 oaa haee s
l-"
W ey N
s oy \
N '

T et s e T e SN, e R g
B) . o . : { \ .
. L. s - Ve v Vo 5. o e
1 : ¥ " f “ N . B
] : . v N .
g e I PrETeraEy Nt acmend et
. '
. ' N

A.2:2 h-Refinements

Oﬁly 1:irrégular meshes-are accepted in h-refinement. This is equivalent to saying that an

i,eiémcnt may not have more than two neighbors on a side. The rule is enforced by the
A fbﬁbwing;si_fnplé algorithm:

'Set I=1, NELA(I) = NEL

"~ 10 e Déterrine up to eight neighbors of NELA(I) (at most two at a side)

¢ FOR each side of NELA(I)
o IF there is ony one neighbor on the side,
say NEIG, THEN.
e determine neighbors of NEIG
¢ IF NEIG has two neighbors on the side common
with NELA(I) THEN
e I=I+1, NELA(I) = NEIG
e GO TO 10
ENDIF
ENDIF
ENDFOR
o Break element NELA(J) into four sons
ol=1I1
e [F (1.LEQ.0) THEN STOP ELSE GO TO 10.

Typical situations of an element refinement are shown in Fig. A.3. When the element is
of the first order, new nodes must be generated:

¢ on the element side, if the side is shared with two smaller neighbors,

¢ in the middle of the element.

Notice that on the sides shared with one element only due to enforced continuity, no new
nodes are added and the local degrees of freedom become constrained. If a higher order node
exists on a side of the element, the node is split into three nodes, one node of the first order
and two of the same order as the split node. If the element itself is of a higher order its
central node is split into 9 nodes:

e four central nodes
e four midpoints of new elements common edges and

e one node of the first order occupying the geometrical position of the original node.

134

Figure A.3: h-Refinement
135

+_ - -+._. T

I . . ‘ .
. . .
» \ N ' N P \
N [T TN EOR 1 e . TR v <4 ~ .
e » ¥ - . < 4
A LRI : 1 Y . .
5 ,l. -: . ; — - 3 N
o Ry . N v 3
T I N T A SR T NI TRV W wee e s RS S NPT

- oy

D g O g ~

»in

o o e A S e i e

e = e ik ifaaa S . S Sn = L T T RAEIR LI T
. Yl N .- v LR “ oA e oo - .. ~

A.2.3 h-Unrefinements

Thé essential difference between the h-refinements and A-unrefinements is the conditionality
of unrefinements. When required, the h-refinement of an element is always done and as a
result of the enforced ‘1-irregularity rule’ the element neighbors may be refined first. In order
to unrefine a previously refined element the following conditions must be met:

1. the unrefined element may not have more than two neighbors on a side,

2. the four ‘sons’ central nodes and four boundary nodes, generated formerly, must be of
the same order.

If two boundary nodes of higher order, belonging to the same side of the father element,
have different order, the same (maximum) order is enforced.

A.3 A Linear Problem Solution

We consider an abstract linear problem in the form

Find u, € X}, such that
(A4)
ah(uh,vh) = Lh(vh) Yo, € X,

where X, is a FE space corresponding to the existing mesh and ax(-,-) and L,(-) are FE
approximations to the bilinear and linear forms defined in the Introduction.

The FE approximation is assumed to be continuous, i.e., X} is a subspace of functions
continuous on 0.

A.3.1 Constrained Approximation

We assume that domain § can be represented as a union of quadrilateral or triangular finite
elements K.,e = 1,..., M. More precisely,

Cx

Q = K. . (A5)

®
1]
—

where

intK, NintK; =0 for e # f

136

3 I S - -"

Qs e R O RIigants G SOl ks (s a 5

N R t‘ AN
3 o A

'] B
e el
Y N &
. . P a3

. e
. . . M
I A I}
h LR

v U T
Ny - s) - .
Vot . .

R * - S g T Sl DACEMEAS L e s
. , P 5 <N <00 H
- “ ? e N ' - . - <,
- * - o Eama Eaneaars Eransce N

' Approzzmatzon on the elément level.

Lét K be a finite element with the corresponding space of shape functions

Xn(K).

'T,lle"elemént degrees of freedom N, as usual, are viewed as linear functionals defined on
Xi(KY). We assume that the set of degrees of freedom

{‘Pi,K : Xh(I{) -—)th € NK} (A6)

8. X (K)-unisolvent. This in particular, implies that

1° ¢; ik, € Nk are linearly independent

2° @;Ry;.x,i € Nk is a dual space to X;(K)

- The shape functions x;x are defined as a dual basis to ¢; k, i.e.,

< @ik XK >= 6;j i,j € Ng (A.T)

and the FE approximation u; within the element K is sought in the form

Up= D UpXiK
iE€Ny

where u} = ¢; x(us).

In what follows we restrict ourselves to Lagrange and Hermite-type of degrees of freedom
only. In other words, we assume that each of the functionals ¢; is of the form

o+ u— Dhu(&y,..., &) k=0,1,... (A.8)

where D%u denotes the k-th order differential of u evaluated at point @ (as usual, DQu =
u(z)). Vectors &,,...,&, at this point denote arbitrary vectors in B®. Thus, every degree of
freedom can be identified with a point = and k vectors &,,...,&;.

Construction of the unconstrained finite element space X,

We introduce the following formal definition of the unconstrained finite element space X:

X, = {uh :Q > Rlurlx € Xn(K) Vz

such that: ok, (un/k.) = ¢, (ur/k,)
for every two elements K.andK;

137

p IR
{ s 4
N § ¥

Exec S 5
v - . - ¢

; . and degrees of freedom ¢y, : X;(K.) — B, (A.9)
;. ¢x; + Xn(Ks) — B such that gk, and ¢x,

) o are defined -through the same common point @

and vectors §5,..., ﬁk}

(A.10)

[

Example. Consider a mesh of three rectangular Q? elements with standard Lagrange
-degrees of freedom. As shown in Fig. A.4. As one can see a function u; € Xh need not
to be continuous. This is due to the presence of two irregular nodes A and B. At node A,
for instance, associated with a degree of freedom for element K, from the point of view
‘of element K, function u, can take on an arbitrary value, while at the same point A , but
treated as a point from element K, the value of u; is determined uniquely by values at
points C, D and E. In order to make the approximation continuous the value of uy at A
from the side of K, must be forced to be equal to the value of up at A from the side of K,
which is equivalent to the elimination of the degree of freedom associated with point A by
-enforcing the constraint

RSN BEp RN

up(A) = aup(C) + Bun(D) + yur(E) (A.11)

with proper coefficients «, § and 7.

Global degrees of freedom

Due to the construction of the space X we can introduce the global degrees of freedom
identified by points (nodes) = and vectors &,,...,&,. Formally, for every such point = and
vectors &, ...,&, we define the linear functional ® on X,

0. Yh ——>R,<I>(uh) = (PK("«h/K)) (A12)

where K is an element with the corresponding degree of freedom identified with point and
vectors &;,...,&,. Note that due to the definition of X} the global degrees of freedom are
well defined.

The unconstrained base functions

The unconstrained base functions €, are introduced as a dual basis to the space of the global
degrees of freedom, i.e.,

(®;,8) = 6; (A.13)

Note that € may be discontinuous.

138

e

lv |

g8

- v
T

PR
"

- FPN
N N
jl‘ '
’rl

i .

"

.

o I

L

>

: |‘

| l

\

9

! l

T o ot

patey
TR
¥ H
T A
baraae- ol N
N
<

e g - e e mar T — - T - LY ors
. . , c s ol oo [
, | . : ¢ . : R N
P e C perys Bevaresss P pex gl Rrvg aared
R P A
t N - 14 -
N v ~ ,

MLl b,

o

T s

P

e
L

Figure A.4: Example of the unconstrained, discontinuous approximation.

139

. e RN
<l . aorran ke, ay Areact v, et
N v, M
"-‘ }‘- L M o
RN CNITR ematay AR T A T N \‘l
N PN 27
PN f ;

o % '3

= - EEEE PR R S E S] EEEEER e
. L. Cw " s .- . -, PRI .,
R 4 N EEN
. H R - t
- - > S o puseer el
R i B
: .

Construction of the constrained finite element space X,

‘At this moment, somewhat arbitrary, we classify all global degrees of freedom into two
subsets:

e the set N° of active degrees of freedom and

e the set N¢ of constrained degrees of freedom

We assume that for each constrained degree of freedom ®;, ¢ € N¢, there exists a set I(¢)
of corresponding active degrees of freedom, I(¢) C N¢, and a vector Ri;,j € I(¢) such that
the following equality holds

®i(un) = D Rij®;(un) (A.14)
jel(i)
We introduce now the constrained finite element space X as
Xy = {uh € Xh |‘I>,(uh) = 2 R,-J-<I>J-(uh) Vi€g Nc} (A15)
jel(i)

Assuming that the constraints are linearly independent we obtain the simple fact that
X} is dual to the space spanned by active degrees of freedom only. As usual, we define the
base functions e;,j € N° as a dual basis to the set of active degrees of freedom:

e € X, (<I>,-,e,-) = 05 1,7 € N® (A.16)

Though, at this point the choice of constrained degrees of freedom is arbitrary, we im-
plicitly assume that with the proper choice of constraints the resulting finite element space
X}, consists of continuous functions only (compare the example).

Relation between unconstrained and constrained base f unctions

Let u;, be an arbitrary function from Xj;. Then uj must be of the following form

up =y wEi+ Y uE

1eNa JENC
= D uw&+) D, Rpwd
ieNe jeN< kel(s) :

Introducing for every ¢ € N°® the set
S@E) ={jieNliel()}

140

R A S
N ’ bt I

g " T E e e ST R I 3 e LT S RN YA \,V,-
: . RIS ST TN

} B .. s PN ae e VTR e "y .« Sna~ dasts . R RN
i - - ’ o Cot Lo Mol [
. ; ! o M A
g e Pr— Demmrec Ry N S e se S Y ez P4y K
- - 5 ~ R N e

.) . NS

. . ~ _ ‘\\ A

0 . .
- L S LN RN

1

© -ierewrité up. in the form

un o= YowE+ Y Y wRié;

iENe k€ENa jeS(k)
= Z U; (e,+ Z R,e,)
{ENa j€S()
(A.17)
We:claimzthat functions
e; =6+ Z Rj;gj 1€ N° (A18)
Jj€S()

form-the dual basis to functionals ®;,7 € N°. Indeed
(®j,e:) = (8;,&) + D> Rui(®j,&) = &; since S(5) C N°
keS(i)

Calculation of the global load vector and stiffness matrix

Substituting (A.18) into both sides of (A.4) we get the formulas for the loaded vector and
stiffness matrix.

Lh(e,-) = Lh(g,') + Z Rk,'Lh(Ek) (A.19)
keS(i)

an(eire;) = an(&;, &)

+ Y Ruan(éx, &)

kes(i)

+ Y Rijan(€,@)
les(j)

+ > > RuRian(&, &)
keS(i) 1€S()

(A.20)

A.3.2 Element Level Revisited — Modified Element Stiffness Matrix and Load
Vector

Consider an element K. Let N*(K) and N°(K) denote active and constrained degrees of
freedom. Assuming that, as usual, the load vector and stiffness matrix are calculated by
summing up the contributions of all elements, i.e.,

Up) = ; Ly x(un/k) (A.21)

141

RS U SoNA . P R . e - - . T e AL X SER IR Y £ 1l e R VA R Y

Cun S T T

AT
iy

2

-»
. —_—
v

e O T Y L

e A

S s
"-;‘
e -
1 ! . N
B N N
o

N
K!

by

. s < R
: P S R Nt
“ L v A

. . - 3

N N H

9- - 4-

— p P v -

and.

an(un,vh) = Y anx(us/x,vh/k) (A22)
K

we-arrive at the practical question, ‘How does one calculate the contributions to the global
‘load: veétor and stiffhess matrix from element K7’

We -introduce:

- the usual element load vector

o~

bik = Lnx(xix) t¢€N°UN° (A.23)
¢ .and the element stiffness matrix
Gijx = anx(Xik, Xjk) ©J € N*UN® (A.24)

o the set of associated active degrees of freedom

NE)=N(K)u | I() (A.25)
JENS(K)

Notice that the two sets on the right-hand side of (A.25) need not be disjoint.

(
o the element contribution to the global load vector (modified element load vector)

bi,K = Lh,K(e;/K) 1€ N(I() (A.26)

o the element contribution to the global stiffness matrix (modified element stiffness ma-
trix)
sk = an(ei/x,¢i/x) 15 € N(K) (A.27)

A.3.3 An Example
Definition of the hierarchical square Q» master element
Setting K = [~1,1] x [~1,1] we define the space of shape functions as

Xi(K) = Qr(K) . (A.28)

where QF denotes the space of polynornials up to p-th order with respect to each of the
variables separately.

The degrees of freedom are defined as follows: function values at four vertices:

142

u{—1, 1), w2, 1), ufd, 1), =(—0.3) (A29)
tangential derivatives (up to 2 rmltipEcaiive constant) up to p-th order associated wilh the

midpoints of tkz four edges:
- ~1) E=2....
Az az‘(o l) Sr-e2P
A;‘—fi(w) T

"a“‘(o) E=2..p
_,3‘:1

mixed order dernvatives associzied with ihe cenirzl node

555ty

1_1 ._!
Vi i

0.9) El=2...p (A30)

One can easily see that the space of ke shape funciions QP(K) is 2 tensor produci
of PP(—1.1) with itself and ihe degrees of ireedom just iniroduced are simply the iensor
products of the degrees of ireedom for the 1-D elemeni. More precisely, if u € Q? then u is
of the form

u(x,y) = Zu‘ vz(z)w:(y)

where v, w; € P?(—1,1), then each of the degrees of freedom can be represented in the
form

(0: @;)(u) = u*(; @ ;) (ve Bw:)
k
=Y ufei(ve) - o;(we)
k

This in particular implies that the corresponding shape functions can be identified with the
tensor products of 1-D shape functions which are of the form

Xi(I)Xj(y) Z,] = 0111'-'117 (A31)

For ¢,j = 0,1 we get the usual bilinear element with four nodal degrees of freedom.

Master element of an enriched order

Let K be the dlement of the p-order. By adding additional shape funciions coszesponding
to the (p+1}th order, together with the corresponding degrees of freedom, we get 2 well
defined fimite element whose space of shape funciions indudes more than 7. In pariicular,
by adding il the 2dditional degrees of freedom comrespoading to the (p+ 1)th order, we pass
{o the element QFF? withon! modifying the exisiing shape funciions and degrees of freedom.
Eguivaleatly, we can siari with zn clement O7%! and eliminate some degrees of freedom
passing fo 2o uncompleie element of 2 lower order.

Subparameiric hierarchical elements

Consider the master element of (possibly) 2n vancompleie ozder p. Even though p can be
arbiirerily lerge, ihe element may be only QF-compleie, which mezns that some of the nodes
mey be missing. An example of such 2n element is presenied in Fig. AS6. Ap arbitrery
locaiion of the seven nodes in the plene (z,y) deiermine uniguely 2 map T from the master
element into B, the components of T belongiag io the uncomplete Q° space. More precisely,

if 5,2 = 1.....9 are the regular shape funciions for ihe nine nodes biguadraiic element,
then .
T(I, y) = zaip:'(zz y) ("\‘32)
i=1

with the assumption that a5 = {(a» + azj 2nd a; = Y(a; + ay).

We have the classical definition of the subparametric elemeni
K = T(K) (A.33)
with the space of test funciions defined as
Xu(K)= {u=a-T " € Xo(K)} (A.34)
and the degrees of freedom

<pu>=<p,ii> whereu=aoT™! (A-35)

Interpretation of the degrees of freedom

The degrees of freedom associated with vertices aie simply the function values evaluated
at these points. The degrees of freedom associated with the midpoints of element edges
and central nodes are more complicated. It follows from definition (A.34) that they may be

144

Pal
A¥
N
a_:k
ze
s ~
) z.
~ O &
z 3_ a.,
£ z

D

Figure A.5: Concept of the subparametric element.

145

DR S AL M T DL AL I M

AT TR I T T R EMTA TRRI O TR

C

. X . L Lo \
. .
PN .

interpreted as certain linear combinations of directional derivatives. The form of directional

-or mixed derivatives appropriate for the master element is preserved only if the map T is

Iinear.

To bgprecise, all the definitions discussed in the previous section should be generalized to
include the case of degrees of freedom defined as linear combinations cf the Hermite degrees
of freedom. We leave it for the reader as a simple exercise.

Constraints in the one dimensional case

We choose the scaling factors A, in (A.28) in such a way that the corresponding shape
functions for the 1-D master element have the following form

X = 5(1-6)
1
X1 = §(1+§)
—~1 p=2,4,6,...
xp(€) = {g_£§=&iz“. (A.36)

In order to derive the explicit formula for the constraints coefficients R;, (compare
(A.14)), we consider three 1-dimensional elements: the master element (-1,1) and two el-
ements (-1,0) and (1,0). Assume that all degrees of freedom for the ‘big’ element are active.
The question is: what are the values the degrees of freedom for the small elements to be
taken on so the functions spanned on the two small elements will exactly coincide with shape
functions of the big element.

From the fact that (A.29) is a dual basis to (A.37) we get

1
SQP(XP) = —/\—'p' -1 p= 23 3) R (A'37)
p

and therefore A, = p!

The transformation map from (-1,1) onto (-1,0) is of the form

T=—=+=¢ (A.38)

with its inverse £ = 2z + 1.

This yields the following formulas for the shape functions p»p = 0,1,2,... For the
(left-hand side) element (-1,0) (compare definition (A.35)).

'XO(X) = -z

146

‘ l

ha(X)

= z+1
(X) = 1—(2z+1F p=2,4,6,...
Y%(X) = @z+1P-(2z+1) p=3,57,...
(A-39)
and the corresponding formulas for the degrees of freedom (compare (A.36))
< @o,u> = u(-1)
<onu> = u(0)
i _ 1 dPu 1
S = pldw (-3)
(A.40)

Now let u(z)(z = € for the master element) be any function spanned by the shape
functions on (-1,1), i.e.

k
w(z) =) o(u)xq(<) (A41)

9=0

In order to represent u(z) for = € (—1,0) in terms of the shape functions on (-1,0) we
have to calculate the value of the degrees of freedom (A.41). We get

k
<l w1,Uu > = QDQ(U) <I ©o, Xo >+ Z‘Pq(u) <l ®o, X‘l)
9=1

= <o, u >

< pL,u> = o(u) < ©1, X0 > +p1(u) < $1,X1)

k
+ Y py(u) < oy, xg >

q=2

1 1 k
= §<(po,u>+§<<pl,u>+2 qul <@g, u >

q=2
where 'R, = < V1, Xq >
1 if qiseven

_ { (A1)

0 otherwise

147

Emcr
.

= o LT I a— T w T BRI IO ECaaae
. v . . N . W .y DA s
. N ' ' N R s
N S . ?
3 v S 3 rararaad] S

.and for p >2

where

k
<ppu> = o(u) < gpx0 >+ 3 0, (1) <t 0, x, >

q9=1

k
= 0+ 'Rp < pgyu>

g=1

Iqu = < Pps Xq >
0 for g<p

(=1 ¢

(A.43)

1
— {9 —
9 (p) - 9

pl(g —p)!

forg>p

We apply the same procedure for the ‘right-hand side’ element (0,1) getting the following:
the transformation from (~1,1) onto (0,1)

with its inverse £ = 2z — 1.

1 1
T = 5 + 56
the shape functions "x,,p =0,1,2,...
"xo(z) = 1~z
xilz) = =
1—-(2z-1)

"X(z) = {

the degrees of freedom ",

< gou> = u(0)

<"pnpu> = u(l)

1 dPu,l

5)

< ppu> = 2,,—‘,0!5(

148

(A.44)

even
P (A.45)

(2z-1»—-(2z~1) podd

(A.46)

thé constrdints

‘ll
P
.. .

‘ A" ‘

N l

. >

1 1 k
<" o, u >= 5 < (o, U > +§ < 1,u > +E quo < Pgy U >
q=2
S ‘Where
l "R = 1 if qiseven
ST ® 7 10 otherwise
<"1, u >=< 1, u>
and forp > 2
k
< Ppu>=Y . "Rep < g, u>
q=2
where

"Ryp = < pgXq >

{0 for ¢g<p
w(3) for ¢>p

An example of the two arrays 'R,,, "Ry, ¢,p=0,...,5 is presented in Fig. A.7,

Constraints for the subparametric elements

Since the shape functions for the 2-D master element are defined as tensor products of the
1-D functions the results for the 1-D case hold exactly in the same form in the 2-D situation,
with the only difference being that the calculated constraint equations have to be applied
to the proper degrees of freedom (compare Fig. A.8). It follows from the definition of
the subparametric elements that the constraints coefficients are ezactly the same even when
the elements have curved boundaries. This follows from the fact that the shape functions’
behavior in a subparametric element on a part of its boundary depends exclusively upon the
deformation of the part of the boundary, and therefore, any relation defined for the shape
functions in the generic situation (on a master element) carries out immediately to the case
of two ‘small’ elements sharing an edge with a ‘big’ element as long as the deformation of
the edge is identical in all three elements. The situation is illustrated in Fig. A.8.

149

T —

" .t)(.
{ B &

S re,

Vv e

. [
+ 3
Diecemmreamed!

Vi

RN N -
PR L. i ,lt*

1 . IPE] g FCa [reumay

o
v

¥

Figure A.6: The constraints coefficients for the sixth order of -approximation. The unfilled

coefficients are zero.

1/2

1/2

1/4
—-3/8 1/8
6/16 —4/16
-~10/32 10/32
15/64 —20/64
1/4
3/8 1/8
6/16 4/16
10/32 10/32
15/64 20/64

150

1/16

5/32

15/64

1/32

—~6/64

1/32

6/64

1/64

1/64

R R S e S T
f B

T o — " " R -ty RIS =
B - RN § <. R . . L e
- - - - -. - ‘- '- - l ‘-‘
. 4
- Eama y o, T
. f e N
¢ NN

2 v .

:
N ' R
rqm vl >
. ' .
R . "

+

Figure A.7: llustration of the constraints for the subparametric elements.

151

T - TR e e e T e
Ve e .ot e - YAy TN
-;‘ ‘-\~ ‘-
Para—— R L o
Tt ’
s
n
R

T T g T e s R
. . <,

APPENDIX B

- B Solution of Large Deformation Elasticity Problems

by the h-p Finite Element Method

In order to demonstrate the techniques of artificial intelligence, we shall apply some of these
concepts to the problems of elasticity involving large deformations. This class of problems
was selected because its inherent nornlinearities allow solutions that depend upon the manner
in which loads are applied. A conventional approach will be taken for these problems wherein
the body to be studied is at first in an undeformed state called a reference configuration.
Loads are then applied in a certain order and their magnitudes are increased until the desired
loading configuration is obtained. The final deformed state of the body often depends upon
the manner and rate in which these loads are introduced and so their aplication is a practical
way to implement techniques of artificial intelligence. Namely, artificial intelligence methods
will be used to select the loading manner so that an acceptable solution is obtained, preferably
with a minimum of effort. Unacceptable configurations and/or solutions would be detected
during the solution process and corrected using an intelligent decision making system.

B.1 Problem Formulation

Elasticity problems are typically formulated with respect to two possible coordinate systems:
a referential system associated with the undeformed configuration of the body and a current
system reflecting the position of a deformed body. Figure B.1 shows a body in the two
systems and denotes quantities with respect to the reference configuration by capital letters
and quantities with respect to the current configuration by lower case letters.

152

R PO LS oy R L B v T

~ e P ———t PO —— VI
[amarey frcywrs) Gert at e

IQFEEyrcy

wae o, :eve. vhoeeaida W
. o 1 . .

' -N ,-{;: !- "~
< Y PR A
paccerr U Ve e It
. F T ST s
N v AL R N,

3 , N DA

A K Fa AR)
R e N Pl

A . EE A 3

§
~

Current System

i

X

Reference System

Figure B.1: Reference and current coordinate systems for a body experiencing deformation.

For simplicity, we shall always take the current coordinate sys: o coincide with the
reference configuration (thus using a total Lagrangian description). . order to reinforce the
idea that all quantities are with respect to the reference system, capital letters will be used
in almost all index notation.

Strain:
Since finite strains are admissible, Green’s strain tensor will be used:

Ery = - (urg +ugr + ug ruk,s)
where the displacements u; represent the changes in location of particles in the body.

ur =z — X

Stress:
The second Piola-Kirchhoff stress tensor will be used in the stress/strain law according to:

T1y = T1y (Fxi)

Notice that this stress tensor is related to the Cauchy stress tensor by:
Try = det(F)F F5}'T;

153

,,,,,,,,,

Jed
~ ks
.
N
H

Sees AT T EEERGCEEEEE R ¥ Ay vz Sy
. - - A . . >
~ .4 we o e TR “‘,«; vt ae
?] o7
3 .
~ * s % 3o
. M . AR 20
— Spvorre-act OB s v <A v,
3 . 5
7o

S whereF is:the deformation gradient

Fr=uz;

" . and its inverse:

Fit = X,

‘Equilibriu'm equations:

In Lagrangian coordinates, the equations of equilibrium can be written as:

Spg+fr=0

where Sy is the first Piola-Kirchhoff stress tensor and f; is the body force referred to the
area in the reference configuration.

In terms of the second Piola-Kirchhoff tensor, these equations become:
(TrsFik) ;+ fx =0
where, by virtue of the choice of coordinate systems:
Fik = Fig = zj,x = 05k + ujk
Thus, in terms of stress and displacement the equilibrium equations can be written:
(615 +urx)Tka) ; + f1=0

Notice that even if a linear relationship between stress and strain is used, the equations are
still nonlinear with respect to the displacements due to the mixed derivative terms in the
strain tensor.

Boundary conditions:

Suitable boundary conditions for this problem might include prescribed displacements (with
respect to the reference configuration) on a portion I'p of the domain boundary
ur=1uron'p
and prescribed tractions on the remaining portion 'z of the boundary
SiyNy=t;on T

or:
Ty (bsk +usk) Nk =t

where Ny is the normal to the boundary on the reference configuration and #; is a prescribed
surface traction also with respect to the reference configuration.

154

R R
v
.

¢ ~ N A

N RS v

-P !
o

S
NI

,,,,,

\«‘ N * A \x '
Iy Clien
4 v s-i"
. §:
o Ry
oL

AR e A A T
N NI
P [R .
s - » -
_— e < - s ’

‘B.2 Variational Formulation

}Multiply’ing‘ the equilibrium equations by a test function, integrating the result over the
.problem domain (in the reference configuration) and applying Green’s identity, we arrive at

the variational formulation
,/QTIJ&EIJdQ = ./Q fI’UIdQ + '/I"T t[vIdI‘

where the variation of Fry on v is denoted § K1y where

8E1y = (61x + urk) vk,g

The above formulation corresponds directly to the principle of virtual work (merely replace
the test function vy by a virtual displacement duy). Furthermore, this formulation is nonlinear
since Ty is a nonlinear function of u and in general, the body force f; and surface tractions
t; may depend upon u.

At this point, our problem may be stated in terms of the variational formulation according
to:

Find v € H such that the variational formulation is satisfied for all v € V.

In this case, our space of trial functions consists of
H={w€ [HI(Q)]N : w='&onl"p}
and the space of test functions
V= {v € [HI(Q)]N : v=0o0n FD}

where in both spaces N is the dimension of the problem.

B.3 Approximate Problem

The spaces of the variational problem can be restricted to finite element subspaces of H and
V according to:

M
ur = Y upde €EHCH

a=1

M
v = Zvla¢aevhcv

a=1

where uj, is the degree-of-freedom for the I-th component of u associated with the shape
function ¥, and M is the total number of shape functions per component.

155

ARy

~

SIS
"-' T
rowaaer NI

L e,
o .
A

ki PN i ¥

S

-l N
.

, Substituﬁing these expressions for the finite element trial and test functions into the
variational formulation, we obtain:

TR

/0 T13BrikivkaPerd) = _/9 fIvIa¢adQ

+ /FT 1016 dl

TR TR TR,

T

C

where Byjkr = (81x + vi1p¥p,x)és1 and represents the nonlinear geometric matrix:

0F
Brkr = 3 I

A

UK,L

il b R n

This formulation can be written as the set of equations

/Q TxiBr e, rd = /Q frad

TR

+ jQTtI¢adn

where we have an equation for each combination of component I and shape function a.

B.4 Solution by Newton’s Method

T T R

Although a varitional form of the finite element problem has been obtained, it must be
linearized before a solution can be computed. In order to accomplish this, a simple iterative
technique based upon Newton’s method shall be employed.

TR

T

First we write the systern of nonlinear equations as the functional

Ite = Ita (ugp) = Lig — Rio =0

IO

where Ly, and Ry, are the left and right hand sides of our nonlinear equations:

Lio = /Q TxiBrsrrtha,1dQ

and

Rm=4ﬁ%m+éjﬁdr

Thus our problem may be stated:

Find a set of degrees of freedom, u ;3 such that

I[a (qu) = 0

R

156

i e

AR AR St e [b e e S b S S L T M e 0 i
; ,
E N N I B B e
‘
4

P PR e aas - o e ome PR - ey R Y N PRl P g S T

N TN W In NN N N O ..

:
-l U N N N aE ..

for every combination of I and a.
Expanding Iy, in a aylor series about a pasticular guess i,
Ilc (‘u_kvg‘i'A“f]ﬁ) IIc (“55 + J@%&i) T ee-

Notice that if the loads associaied with the problem zre changing in fime that Fp, isalso 2
function of time. We assume, however, that 2l {ime-dependent loads 2re known or 2t least
that fime is unimporiant since we are concerned only with 2 final steady—stafe solution.
Namely, this formulaiion is guasisiatic in the sense that 2t an indicaved moment im fime,
the values of 2ny {ime-dependent loads are known and 2 sicady—state solution is sought.

Truncaiicg the Tayvlor series afier the firsi term and setfing the lefi band side equal to
zero, we obiain the iterative scheme

el _ & . <

where K}, ;5 is the tangent siifiness mairix defined according to:

aly, (ujg)

e
K Iedg = (lu_15

For the case where only Ly, is 2 function of u 3, the iangent siiffiness mairix may be written:

K;, g = / (Tll xBay .\’IL) 1ba,!:vdp

Ty one Buserr) 0a otb, 1d0
23N DMN Vg3 s, Al
/Qauj (N {3 IL) 8S5%a L

since .
o) _ 80) dws _ 30)
au_m 8u_,5 6u13 8u,,5

Expanding the derivative:
Kipyg = /ﬂ CrarnpoBpoisBarniLtp,sa d

+ /n TmnGuNiLisPp,sPa,Ld).

where: oT
MN

aEpQ

Cunpg =

157

is usually 2 tezsor of material dependent constanis and

c _ OBsxs1
MNILIS =
15

simplifies to:

Grexrss = Expbisésy

Using this scheme, iterafions are pesformed until
and
1 I (‘5155) <Zg

The converged iterzie can then be used 2s the first guess for ihe new loading configuration at
the nexi momeni in time. This process is then repeated uniil 2 coaverged soletion is obtained
for tke finzl loading configuraiion. A flow chari in Fig. B.2 summanzes the solution process.

158

Sex Etial Uriform Sokss
e =0)="Us
Y
— in=lng 41
F1=f=), n=1de=i)
Y
Sec oiyfin) =g 1)
| J
Use viifia) o caiculze:
i 0z |a——o

L]
- -

Ctls Oiis

Tsew. By ji 2 Gowg

Y
Asseble: Kia, liefehy)
L
Y
Soive: Kiy3duy = -Tefely
- ' - -
| Updaie: ui3! = ufy + aufy

Y

Is: Sufa Ig,(u}a)l <g?

andfor: iAu}BI < g?
Y l :
es Y No

| Another time-step desired? |
Yes No

Solution
Complete

Figure B.2: Solution process of large deformation elasticity problems by Newton’s method.

APPENDIX C

C Listings of Knowledge Bases for Coupled PHLEX -
NEXPERT Environment

This 2ppendix summarizes listings of knowledge bases developed in the project for an au-
tomaied PHLEX-NEXPERT environment, discussed in Section 8. These listings follow the
actual structure of NEXPERT’s knowledge base files. For simplicity, some of the items not
pecessary for the presentation of the basic concepis have been left out.

Each listing presents a definition of classes and objects (including name and slots),
metaslots associated with selected slois and rules. Each rule has a left hand side in the
form of condiiions, 2 boolean hypothesis and a right hand side, which defines additional ac-
tions associated with this rule. A more detailed explanation of these concepis can be found
in the NEXPERT OBJECT manual (proprietary document of Neuron Data, Inc.).

C.1 Strategy Selection Knowledge Base

This simple expert system selects the type of solver for the finiie element analysis. The
solvers presently available are frontal and iterative. The list of objects and rules is presented
below.

Objects
(OBJECT= Code
(PROPERTIES=

frontal_solver
iterative_solver
ndofs

ordering

)

(OBJECT= Itslv
(PROPERTIES=
accel
eps
freq
ifgs
maxit
pnnt

)

(OBJECT= solver
(PROPERTIES=
ndof_max_fmt
ndof_opt_fmt

160

- v Y g y En e T o, - © hEd b BN E3

Meta—slots

(SLOT= Code.ordering
(NITVAL= 0)

)
(SLOT= solverndof max_fmt

(SOURCES=

y {Regieve (kbesesfsolver.nxp™)
)
(SLOT= solver.ndof_opt _frat

(SOURCES=

y (Retrieve ("kbases/solver.nxp™))
)

Rules

(RULE= front_small_nel

(LHS=
< {Code.ndofs-solver.ndof_opt_frat)
)
(HYPO= Code.frontal_solver)
(RHS=
(Let (Code.iterative_solver) (FALSE))
)
)
(RULE= front_good_ord
(LHS=
(< (Code.ndofs-solver.ndof_max_fmt)
(<= (Code.ordering) (2))
)
(HYPO= Code.frontal_solver)
RHS=
(Let (Code.iterative_solver) (FALSE))
)
)
(RULE= lterative
(LHS=
No (Code.frontal_solver))
)
(HYPO= Code.iterative_solver)
(RHS=
(Retrieve ("kbases/solver.nxp”)”
(FIELDS="ltslv.accel", " ltslv.eps","Itslv.freq"\
"Ttsiv.ifgs”,"Itslv.maxit","Itslv.print”)
)
)

161

o)

V)

C.2 Performance Control Knowledge Base

This expert system monitors the performance of computations, in particular of Newton-type
iterative procedures for nonlinear problems. A general structure of this system is presented
in Section 8.3.2.

Objects

(OBJECT= Code
{(PROPERTIES=

deltat
delmew
error
ermew
ertol
miter
mimew
niter

(OBJECT= User
(PROPERTIES=

runtyp
)

(OBJECT= Noni

(PROPERTIES=
converged
converges
convtype
decided
decision
div_solprob
diverges
ertolmi
ertolmx
fixedertol
mbacked
mitadd
mitmax
nbacked
need_back_off
optniter
reset
reseted
stagnates

)

(OBJECT= Solver
(PROPERTIES=
problem
)

162

(SLOT= Userruntyp

PROMPT="Specify type of control of nonlinear problem:";
(NOTKNOWN))

(SOURCES=
{AskQuestion
)

)

(SLOT= NonlLertolmi
(SOURCES=
(Retrieve
(RunTimeValue

)

(SLOT= Nonl.emnolmx
(SOURCES=
(Retrieve
(RunTimeValue

)

(SLOT= Nonl.mbacked
(SOURCES=
(Retrieve
(RunTimeValue

)

(SLOT= Nonl.mitadd
(SOURCES=
(Retrieve
(RunTimeValue

)

(SLOT= Nonl.mimmax
(SOURCES=
(Retrieve
(RunTimeValue

)

(SLOT= Nonl.nbacked
(INITVAL= 0)
)

(SLOT= Nonl.optniter
(SOURCES=
(Retrieve
(RunTime Value

Meta-slots

(User.suntyp)

("kbases/monldatnxp”)
(1.0e-06))

("kbases/monldat.nxp™)
(0.01))

("kbases/monldat.nxp™)
)

("kbases/nonldat.nxp”)
3»

("kbases/nonldat.nxp™)
(20))

("kbases/nonlidat.nxp”)
©)

163

T T T — T Caaa I Ty
- — - - - - . . . ‘
' ‘) A o kY

(SLOT= NonLreset

(CACTIONS=
(Reset (Nonl.decided))
(Reset (Nonl.fixedertol))
(Reset (NonlLdiv_solprob))
(Reset (Nonl.reseted))
®o (Code.miter) (Code.mitnew))
(Do (Code.deltat) (Code.deltnew))
, (Do (Code.crtol) (Code.ermew))
)
(SLOT= Solver.problem
(SOURCES=
(RunTimeValue ~(NOTKNOWN))
)
)

Rules

(RULE= Nonl_reseted
(LHS=
(Yes (Nonl.reset))

)
(HYPO= Nonl.reseted)
(RHS=
(Reset (Nonl.reset))
)

(RULE= Nonl_converges
(LHS=
(s (Nonl.convtype) (“converges™))

)
(HYPO= Nonl.converges)
)

(RULE= Too_many_back

(LHS=
(Yes (Nonl.need_back_off)) .
¢ (Nonl.nbacked-Nonl.mbacked) (V)]
)
(HYPO= Nonl.decided)
(RHS= :
(Let (Nonl.decision) ("terminate™))
(Show ("kbases/stopnonll.txt")
)

164

13

B

N A

(RULE= Nonl_converged
(Yes (Nonlconverged))

)
(HYPO= Nonl.decided)
RHS=
(Let (Nonldecision) (“conttime™))
Do (Code.deltat*Nonl.optniter/Code.niter) (Code.deltnew))
(Strategy (@EXHBWRD=FALSE;))
(Do © (Nonl.nbacked))
)
)
(RULE= Noni_back_off
(LHS=
(Yes (Nonl.need_back_off))
(<= (Noni.nbacked-Nonl.mbacked) o)
)
(HYPO= Nonl.decided)
(RHS=
(Let (Nonl.decision) ("back_off"))
(Do (Nonl.nbacked+1) (NonlLnbacked))
)
)
(RULE= No_analysis
INFCAT=20;
(LHS=
(IsNot (User.runtyp) ("automatic"))
(s (User.runtyp) ("algorithm"))
)
(HYPO= Nonl.decided)
(RHS=
(Let (Nonl.decision) ("I_refuse™))
(Strategy (EXHBWRD=FALSE))
)
)
(RULE= Extend_miter
(LHS=
(Yes (Nonl.converges))
MNo (Nonl.converged))
(<= (Code.miter+Nonl.mitadd-Nonl.mitmax) (1))
)
(HYPO= Nonl.decided)
(RHS=
(Let (Nonl.decision) ("contiter")) .
®o (Code.miter+Nonl.mitadd) (Code.mimew))
)
)
(RULE= Nonl_div_due_to_solver
(LHS=
(Yes (Nonl.diverges))
(Yes (Solver.problem))
)
(HYPO= Nonl.div_solprob)
(RHS=
(Show ("kbases/nonldivsol.txt™)
)

0 o A EE— TR LD
1 2 1 3 N

(RULE= Nonl_diverges

LHS=
, (s (NonLconvtype) ("diverges™)) ,
(HYPO= Nonldiverges)
)
(RULE= Check_emtolmi
(LHS=
(Yes (Nonl.converges))
(Yes (Nonl.stagnates))
< (Code.ertol-Nonl.ertolmi) ()]
(< (Code.error-Nonl.ertolmi) ©o»
)
(HYPO= Nonl fixedertol)
RHS=
(Show ("kbases/fixertolmi.txt")
Do (Nonl.ertolmi) (Code.ertnew))
)
)
(RULE= back_off_stagn
LHS=
(Yes (Nonl.stagnates))
MNo (Nonl.converged))
)
(HYPO= Nonlneed_back_off)
(RHS=
Do (Code.deltat/2.0) (Code.deltnew))
)
)
(RULE= back_off_div
(LHS=
(Yes (Nonl.diverges))
(No (Nonl.converged))
)
(HYPO= Nonl.need_back_off)
(RHS=
®o (Code.deltat/2.0) (Code.deltnew))
)
)
(RULE= Nonl_stagnates
LHS=
(s (Nonl.convtype) ("stagnates™))
)
(HYPO= Nonl.stagnates)
)
(RULE= Change_convergence
LHS=
(Yes (Nonl.converges))
Mo (Nonl.converged))
c (Code.miter+Nonl.mitadd-Nonl.mitmax) 0)
)
(HYPO= Nonl.stagnates)
)

166

;

o n 3 L m s 0 T
. . ~
e

-

C.3 Result Verification Knowledge Base

This expert system performs the verification of the final results, in particular the correctness
of the mathematical model, the satisfaction of basic design criteria, etc. A general structure
of this system is presented in Section 8.6.

Classes and Objects

(CLASS=solids

(PROPERTIES=
ar_eps90
ar_str90
dimmax
dimmin
dispmax
dispmin
disrmax
epsmax
epsmaxabs
finrotmax
finrotmin
large_rigid_rot
large_rot
mattype
rotavg
rotmax
rotmin
rotrigid
small_displ
small_rot
str_eff
strlimel
strmax
strmaxabs
strmin
theory_disp
theory_mat
theory_strain

(OBJECT= solid_generator
(PROPERTIES=
n
new_solid

)

(OBJECT= Versolid
(PROPERTIES=
areasmail
distbig
disrsmail
epssmall
rotdifsml
rotsmall

167

. g v PR EYC R THTEN IR A vy - RIS
v d 4
~ \
\ . . “ i
- i k
1
b

Meta—slots

(SLOT= solid_generator.n

(INITVAL= 1)
)
(SLOT= Versolid.areasmall
(SOURCES=
(Retrieve
(RunTimeValue
)
)
(SLOT= Versolid.distbig
(SOURCES=
(Retrieve
RunTimeValue
)
)
(SLOT= Versolid.disrsmall
(SOURCES=
(Retrieve
(RunTimeValue
)
)
(SLOT= Versolid.epssmail
(SOURCES=
(Retrieve
(RunTimeValue
)
)
(SLOT= Versolid.rotdifsml
(SOURCES=
(Retrieve
(RunTimeValue
)
)
(SLOT= Versolid.rotsmall
(SOURCES=
(Retrieve
(RunTimeValue
)
)
168

("kbasesfverdat.nxp")
(0.05))

("kbasesfverdat.nxp")
(5.0))

("kbasesfverdat.nxp")
(0.05))

("kbases/verdat.nxp")
0.05))

("kbases/verdat.nxp")
(3.09)

("kbasesfverdat.nxp")
(6.0)

At W
!-\) :-‘
: :

d P v s g - " "

Rules
(RULE= excess_displ
(LHS=
C= ({Isolidsl}.disrmax-Versolid.disrbig) 0.0
)
(HYPO= excessive_displ)
)
(RULE= large_displ
(LHS=
¢ (<Isolidsl>.distmax-Versolid.disrsmail) 0.0)
)
(HYPO= large_displ)
)
(RULE= large_rigid_rot
(LHS=
(Yes (large_rot_exist))
(Yes - (<isolidsl>.large_rot))
] (<Isolidsl>.rotrigid- Versolid.rotsmall) ©0.0»
€3 (ABS(<Isolidsl>.rotmax-<Isolidst>.rotmin)-Versolid.rotdifsml)
)
(HYPO= large_rigid_rot_exist)
(RHS=
Let (<Isolidsl>.large_rigid_rot) (TRUE))
)
)
(RULE= large_rot
(LHS=
> (<Isolidsi>.rotmax-Versolid.rotsmall) 0.0
)
HYPO= large_rot_exist)
RHS=
(Let (<IsolidsI>.large_rot) (TRUE))
)
)
(RULE= mooney_resolved
(LHS=
ds (<Isolids!>.mattype) ("MonRiv"))
)
(HYPO= mattype_resolved)
(RHS=
(Let (<Isolidsi>.theory_mat) ("elastic"))
(Let (<Isolidsi>.theory_strain) ("large_stin"))
)
)
169

(0.0))

S

A R
-‘ \)-‘A

* EREEEEEEEE - St ove 07 © .

(RULE= hook_resolved

INFCAT=10;
(LHS=
ds (<Isolidst>.mattype) ("Hooke™)
)
(-IYPO= mattype_resolved)
RHS=
(Let (<Isolidsl>.theory_mat) ("elastic"))
(Let (<Isolidsi>.theory_strain) ("small_stm"))
)
)
(RULE= may_large_strains
(LHS=
o (<Isolidsl>.epsmaxabs- Versolid.epssmall)
(<= (<Isolidsi>.epsmaxabs*0.9-Versolid.epssmall)
(IsNot (<Isolidsl>.theory_strain) ("large_strn"))
(<= (<Isolidst>.ar_eps90-Versolid.areasmall)
(HYPO= may_large_strains)
)
(RULE= may_smail_displ
(LHS=
(IsNot (<Isolidsl>.theory_disp) ("small_disp"))
(< ({!solids!}.epsmaxabs-Versolid.epssmall)
< ({!solids!}.rotmax-Versolid.rotsmall) 0.0
< ({!solidst}.disrmax-Versolid.disrsmall) (0.0))
)
(HYPO= may_small_disp)
(RHS=
(Show ("kbases/may_smdis.txt")
)
)
(RULE= need_large_disp2
(LHS=
e (<lIsolids!>.epsmaxabs*0.9-Versolid.epssmall)
(IsNot (<lcolidsl>.theory_disp) ("large_disp"))
)
(HYPO= need_large_disp)
)
(RULE= need_large_displ
(LHS=
e (<Isolidsl>.epsmaxabs- Versolid.epssmail)
(sNot (<Isolidsl>.theory_disp) ("large_disp"))
¢ (<Isolidst>.ar_eps90-Versolid.areasmall)
)
(HYPO= need_large_disp)
)

170

(0.0»
(0.0)

(0.0»

(0.0)

(0.0

0.0»
(0.0

; . (RULE= need Jasge. dEsp
: @LHS=)
. (Yes GQxge_mot_exis)
- ‘ (Yes (<Isointst> tempe roch)
: e (ABSKIsainds®> roemax~<lsofidd>. rearem)-Yensolind ronE fswF)
- , (Nt (<solafs> ey i) (ixps &™)
' @EYPO= meze_Frpe E53)
)
‘ ' RULE= need fzmpe sopns®
- gue=
) {(Yes {=xmrpe_resofved))
o o (<Isobids>> epsurvshe* Q- Versoind eoarralh) @Sy
- l (isNot (<fsofEds™>.hesqy 520) Ciasze_som™))
A |)
, MYFO= peed farpe iyztn)
: l RUILE= peed Izrpe coraingd
s (LHS=
: (Yes (mzaype_resolved))
; (g (<scEdsD epsnaxzis-Verssid eomsmnt) {0.9)
: l (sNot (<sofigsd theory «irzin) (lzrze_som™))
. C {<solidsd 21 ensB0-Versoli 5t {0.0)
)
' , (HYPO= need largs syeins)
(RULE= £OSS_10, _suppcsind
- l ¢ (<Isolidsb>somin-Versolid roismail) ©0.0))
- ¢ {<!solids> rotmin-0.25*<!solidsD>.romax) ©0)
’ (Yes {excessive_displ))
)
3 l (HIYPO= poss_70_suppon)
(Show (kbases/no_supprd.oxt”)
.)
|)
; (RULE= poss_no_supporr
" {LHS=
l ¢ (<Isolidsb>.rotmin- Versolid.rotsmall) 0.5))
: (62 (<isolidst>.retmin-0.25*<lsolidst>.retmax) 0.0)
. No (excessive_displ))
3)
l (HYPO= poss_n)_support)
, (RHS=
: (Show ("kbascs/no_suppr.ixt”)
)
1)
: E 171

L-—--------

RULE= poss_no_sxpponi
ass=

«< (isafdsl) mor=in-Versoid roestea)
(Yes {excessive dospi))

)
(EYPO= poss_mo_suppods)
RES=
Stow (ibases/oo_soppd oxx’)
)
RULE= stow_ay Pomses

QES=
(Yes (oay Jepe smins))
o (poss_o0_seppon))

)
GIYPO= soow_may, laxrns)

, Soow (oesesfmey Inm
)

RULE= sow_peced lzes &G

@is=

(Yes (ceed lapz Gisp))
) No (zoss_oo_scppoR))
(HYPO= show_nesd_lasge cisp)

RES=
)

(Show (Txbasesfmeed lrgdisai)

)

(RULE= show_need_tsim
(LHS=
(Yes {peed_large_strains))
No {poss_no_suppon))

)
(HYPO= show_need_Isum)
(RHS=
{(Show ("xbases/need_lstnixt™)

)

(RULE= new_solid
(LHS=
(Yes (solid_generator.new_solid))

)

(HYPO-= solid_gener. >d)

(RHS=
(Let (solid_generator.new_solid)
(CreatcObject (’solid"\solid_generator.n\)

(FALSE))

(IsolidsT))

(Do (solid_generator.n+1) (solid __gencrator.n))

172

g . g v X FHEES , % g S er ey <.

(EYPO= szs_maxiangs)
RES=] .
Show (Cxbasesisxr_mzyingeaxt’)
)
)
QRULE= scs_tocfarze
QLHS=
(Yes (zzmype_resoived))
s (<IsoEds> thesry) (&zsic™))
¢ (<'soEds> sarmaxat il srfiome])
(o4 (<soEgs> 2790 Vemsoiid arezenzt)
o (poss_£0_sp505i))
)
{(HYFPO= sirs_tooizrze)
(RES=
(Stow (Tkbesesfsz_tooirgerxt”)
)
)

173

(0.0)
0.5)

(©.0)
(€.0)

