
REPORT DOCUMENTATION PAGE FOnApW .Povd

r" urd" wima~~e lst or any oittior asped of thi coaifcn f hEriaticn.hr audi m eto for to" his burwden. to Wet ii

mn A D owb 2 3 3 1 imn Davis Higway. Suke 1204,." on VA222 402.4M and to Uw Office di Itnadon and Pagulawy Aake, Office of

1. A 'T DATE 3 EOTTP N AE OEE

4 TI. --- ,~u ouoii LI: 5. FUNDING NUMBERS

Tartan Inc., Tartan Ada VMS/960MC, Version 4.0, VAXstation 3100 (Host) to Intel
ICE960/25 on an VMS 5.2 (Target), 90121211 .11120

6. AUTHOR(S)

IABG-AVFT IOttobrunn, Federal Republic of Germany

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) N-1 --- JL lJ 1t, 8. PERFORMING ORGANIZATION

IABG-AVF, Industrieanlagen-Betriebsgeselschaft itRPRTNME
Dept. SZT/ Einsteinstrasse 20 0
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY
9 SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States 'lepartment of Defense
Pentagon, RmjE1 14
'Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Tartan Inc., Tartan Ada VMS/960MC, Version 4.0, Ottobrunn, Germany, VAXstation 3100 (Host) to Intel ICE960/25 on an
VMS .2 (Target), ACVC 1. 11.

91-03865

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.___PRICE __CODE_

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 6 RIECO

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED IUNCLASSI FED IUNCLASSIFIED _________

NSN 7540-01-280.550 Standard Form 298. (Rev. 2-89)
Prescribed by ANSI Std. 239-128

0 c-14

Certificate Information

The following Ada implementation was tested and determined to pass ACV'-
1.11. Testing was completed on December 12, 1990.

Compiler Name and Version: Tartan Ada VMS/960 version 4.0

H-ost Computer System: VAXstation 3100 VMS 5.2

Target Computer System: Intel ICE960/25 on an Intel
EXV80960MC board

See Section 3. for any additional information about the testing
environment.

As a result of this validation effort, validation Certificate
90121211.11120 is awarded to Tartan Inc. This certificate expires on
1 March, 1993.

This report has been reviewed and is approved.

J,& j -A L
IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

D, Dietr,I omputer & Software Engineering Division Ad**S2I14 w

Institute for Defense Analyses !' II
Alexandria VA 14231- -0TU

Justif-eto -

Ada Joint Program Office i! ti /
Dr. John Solomond, Director .Av~llabilitT, Codes
Department of Defense . veil anad/er
Washington DC 20301 Di st SPsoiel

AVF Control Number: IABG-VSR 079
9 January, 1991

== based on TEMPLATE Version 90-08-15 ==

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 90121211.11120
Tartan Inc.

Tartan Ada VMS/960MC Version 4.0

VAXstation 3100 => Intel ICE960/25 on an

VMS 5.2 Intel EXV80960MC board

Prepared By:

IABG, ABT. ITE

DECLARATION OF CONFORMANCE

Customer: Tartan, l,.

Certificate Awardee: Tartan, Inc.

Ada Validation Facility: IA

ACVC Version: 1. 1

Ada Implementation:

Ada Compiler Name and Version: Tartan Ada VMS/960MC Version 4.0

Host Compiler System: VAXstation 3100 VMS 5.2

Target Computer System: Intel 1CE960/25 on an Intel ,EXV80960MC Board

Declaration:

[I/we] the undersigned, declare that [1/we] have no knowledge of deliberate deviations from the
Ada Language Standard i.fNSI/MIL-STD-1815A ISO 8652-1987 in the implene 1tation listed above.

(~ ~~~__ _ __ _ Date: 'i .
Customer Signature

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1 2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTA2ION DEPENDENCIES

2.1 WITHDR..AWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

TNTRODUCTION

The Ada implementation described above was tested according to. the Ada
Validation Procedures [Pro90) against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552) . The results of this validation apply
only to the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Question5 regarding this report or the validation test results should be
direzted to the AVF which performea this validation cr to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-!.

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada ProqramminQ LanQuage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Comniler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Comoiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compileL
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECKFILE is used to check the contents of
text fil.es written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
exe'ntable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada St-andard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

:n some tests of the ACVC, cercain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and implementation-
dependent characteristics. The modifications required for this
implementation are described in Section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see Section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and (UG89J).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.

Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and

System associated software, that uses common storage for all or part
of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic

operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

Conformity Fulfillment by a product, process or service of all
requirements specified.

1-3

INTRODUCTION

Customer An individual or corpoiate entity who enters into an agreement
with an AVF which specifies the terms and condition, for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementacion for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformec
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating

systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programmir languaye and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use cf the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is November 21, 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C9,116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B ADlB08A BDlB02B BD1B06A BD2AO2A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant

for a given-Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by !SO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 159 tests have floating-point type declarations requiring more

digits than SYSTEM.MAXDIGITS:

C241130..Y (11 tests) C357050. .Y (11 tests)
C357060..Y (11 tests) C357070. .Y (11 tests)
C357080..Y (11 tests) C358020. .Z (12 tests)
C1 ,2410..Y (11 tests) C453210. .Y (11 tests)
C454210..Y (11 tests) C455210. .Z (12 tests)
C455240..Z (12 tests) C456210. .Z (12 tests)
C456410..Y (11 tests) C460120. .Z (12 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT.

C45531M. .P (4 tests) and C45532M,.P (4 tests) check fixed-point ooerations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, there is no such type.

C45536A, C46013B, C46031B, C46033B, and C46034B contain 'SMALL
representation clauses which are not powers of two or ten.

C45624A and C45624B are not applicable as MACHINEOVERFLOWS is TRUE for
floating-point types.

B86001Y checks for a predefined fixed-point type other than DURATION.

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C instantiate generic units
before their bodies are compiled; this implementation creates a dependence on
generic units as allowed by AI-00408 & AI-00506 such that the compilation of
the generic unit bodies makes the instantiating units obsolete. (see 2.3.)

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A53A checks operations of a fixed-point type for which a length clause
specifies a poweL-of-ten type'small; this implementation does not support

decimal smalls. (see 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

CD2B15B checks that STORAGE ERROR is raised when the storage size specified
for a collection is too small to hold a single value of the designated type;
this implementation allocates more space than what the length clause
specified, as allowed by AI-00558.

The following 264 tests check for sequential, text, and direct access files:

CE2102A..C (3) CE2102G. .H (2) CE2102K CE2102N. .Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)

2-2

IMPLEMENTATION DEPENDENCIES

CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)

CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A

CE2204A..D (4) CE2205A CE2206A CE2208B

CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G

CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B

CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)

CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)

CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)

CE3107B CE3108A..B (2) CE3109A CE311A
CE3111A..B (2) CE3111D..E (2, CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)

CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A

CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)

CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B and CE3107A require NAMEERROR to be raised when an attempt
is made to create a file with an illegal name; this implementation does not

support external files and so raises USEERROR, (see 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see Section 1.3) were required for 114 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way

expected by the original tests.

B22003A B24007A B24009A B25002B B32201A B33204A

B33205A B35701A B36171A B36201A B37101A B37102A
B37201A B37202A B37203A B37302A B38003A B38003B

B38008A B38008B B38009A B38009B B38103A B38103B

B38103C B38103D B38103E B43202C B44002A B48002A

B48002B B48002D B48002E B48002G B48003E B49003A

B49005A B49006A B49006B B49007A B49007B B49009A

B4AO10C B54A20A B54A25A B58002A B58002B B59001A

B5900!C B590011 B62006C B67001A B67001B B67001C
B67001D B74103E B74104A B74307B B83EOlA B83EO1B

B85007C B85008G B85008H B91004A B91005A B95003A
B95007B B95031A B95074E BC1002A BC1109A BC1109C

2-3

IMPLEMENTATION DEPENDENCIES

BCl206A BC2001E BC3005B BD2AO6A BD2BO3A BD2DO3A

BD4003A BD4006A BD800jA

E28002B was graded inapplicable by Evaluation and Test Modification as

directed by the AVO. This test checks that pragmis may have unresolvable

arguments, and it includes a check that pragma LIST has the required effect;

but for this implementation, pragma LIST has no effect if the compilation

results in errors or warnings, which is the case when the test is processed

without modification. This test was also processed with the pragmas at lines

46, 58, 70 and 71 commented out so that pragma LIST had effect.

Tests C45524A..N (14 tests) were graded passed by Test Modification as

directed by the AVO. These tests expect that a repeated division will result

in zero; but the standard only requires that the result lie in the smallest

safe interval. Thus, the tests were modified to check that the result was

within the smallest safe interval by addi-g the following code after line

141; the modified tests were passed:

ELSIF VAL <= F'SAFE SMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

C83030C and C86007A were graded passed by Test Modification as directed by

the AVO. These tests were modified by inserting "PRAGMA ELABORATE (REPORT);"

before the package declarations at lines 13 and 11, respectively. Without the

pragma, the packages may be elaborated prior to package report's body, and

thus the packages' calls to function Report. IdentInt at lines 14 and 13,

respectively, will raise PROGRAMERROR.

B83EOlB was graded passed by Evaluation Modification as directed by the AVO.

This test checks that a generic subprogram's formal parameter names (i.e.

both generic and subprogram formal parameter names) viust be distinct; the

duplicated names within the generic declarations are marked as errors,

whereas their recurrences in the subprogram bodies are marked as "optional"

errors--except for the case at line 122, which is marked as an error. This

implementation does not additionally flag the errors in the bodies and thus

the expected error at line 122 is not flagged. The AVO ruled that the

implementation's behavior was acceptable and that the test need not be split

(such a split would simply duplicate the case in B83EOlA at line 15).

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C were graded inapplicable

by Evaluation Modification as directed by the AVO. These tests instantiate

generic units before those units' bodies are compiled; this implementation

creates dependences as allowed by AI-00408 & AI-00506 such that the

compilation of the generic unit bodies makes the instantiating units

obsolete, and the objectives of these tests cannot be met.

2-4

IMPLEMENTATION DEPENDENCIES

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contain uses of the types that require a constraint. However, the
generic bodies are compiled after the units that contain the instantiations,
and this implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 & AI-00506 such that the compilation
of the generic bodies makes the instantiating units obsolete--no errors are
detected. The processing of these tests was modified by compiling the
seperate files in the following order (to allow re-compilation of obsolete
units), and all intended errors were then detected by the compiler:

BC3204C: CO, Cl, C2, C3M, C4, C5, C6, C3M

BC3205D: DO, D2, DIM

BC3204D and BC3205C were graded passed by Test Modification as directed by
the AVO. These tests are similar to BC3204C and BC3205D above, except that
all compilation units are contained in a single compilation. For these two
tests, a copy of the main procedure (which later units make obsolete) was
appended to the tests; all expected errors were then detected.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-ten value as small for
a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
smalls may be omitted.

AD9001B and AD9004A were graded passed by Processing Modification as directed
by the AVO. These tests check that various subprograms may be interfaced to
external routines (and hence have no Ada bodies). This implementation
requires that a file specification exists for the foreign subprogram bodies.
The following command was issued to the Librarian to inform it that the
foreign bodies will be supplied at link time (as the bodies are not actually
needed by the program, this command alone is sufficient:

AL960> interface/system AD9004A

CE2103A, CE2i03B and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USEERROR is raised on the attempt to create an external file.
This is acceptable behavior because this implementation does not support
external f.les (cf. AI-00332).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementacion system, see:

Mr Ron Duursma
Director of Ada Products

Tartan Inc.
300, Oxford Drive,
Monroeville, PA 15146,
USA.
Tel. (412) 856-3600

For a point of contact for sales information about this Ada implementation
system, see:

Mr Bill Geese
Director of Sales

Tartan Inc.
300, Oxford Drive,
Monroeville, PA 15146,
USA.
Tel. (412) 856-3600

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC (Pro90].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was

obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3628

b) Total Number of Withdrawn Tests 83

c) Processed Inapplicable Tests 36

d) Non-Processed I/O Tests 264

e) Non-Processed Floating-Point

Precision Tests 159

f) Total Number of Inapplicable Tests 459 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

The above number of I/O tests were not processed because this implementation
does not support a file system. The above number of floating-point tests were
not processed because they used floating-point precision exceeding that

supported by the implementation. When this compiler was tested, the tests
listed in Section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in Section 2.1 had been withdrawn because of test
errors. The AVF determined that 459 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 159 executable tests that use floating-point precision
exceeding that supported by the implementation and 264 executable tests that
use file operations not supported by the implementation. In addition, the
modified tests mentioned in Section. 2.3 were also processed.

A Magnetic Tape Reel containing the customized test suite (see Section 1.3)
was taken on-site by the validation team for processing. The contents of the

tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of

tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as

appropriate. The executable images were transferred to the target computer
system by the cornmunications link, an RS232 interface, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also' indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFORMATION

options used for compilingf

/replace forces the compiler to accept an attempt to compile a unit
imported from another library which is normally prohibited.

/nosive source suppresses the creation of a registered copy of the source
code in the library directory for use by the REMAKE and MAKE
subcommands.

/list=always forces a listing to be produced, default is to only produce
a listing when an error occurs.

No explicit Linker options were used.

Test output, compiler and linker listings, and job logs were captured on
Magnetic Tape Reel and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed

here as Ada string aggregates, where "V"I represents the maximum input-line

length.

Macro Parameter Macro Value

SBIGIDI (1..V-I => 'A', V => '1')

$BIGID2 (. .V-1 => 'A', V => '2')

-BIGiD3 (1..V/2 => 'A') & '3' &
(1..V-l-V/2 => 'A')

SBIGID4 (1..V/2 => 'A') & '4' &
(1..V-!-V/2 => 'A')

SBIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (1..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (I..V-1-V/2 => 'A') & 'I' & '"'

$BLANKS (1..V-20 => '

$MAXLENINT BASED LITERAL
"2:" & (l..V-5 => '0') & "I1:"

SMAXLENREALBASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRING LITERAL '"' & (1..V-2 => 'A') & '"'

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respe'-.tive values.

Macro Parameter Macro Value

SMAXINLEN 240

SACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483646

$DEFAULT MEMSIZE 2097152

$DEFAULTSTORUNIT 8

SDEFAULTSY3 -NAME 1960MC

$DELTADOC 2#1.0#E-31

SENTRYADDRESS SYSTEM.ADDRESS' (16#0000_00C8#)

$ENTRYADDRESS1 SYSTEM.ADDRESS' (16#0000_00C9#)

SENTRYADDRESS2 SYSTEM.ADDRESS' (16#0000_0OCA#)

$FIELDLAST 20

$FILETERMINATOR J

SFIXEDNAME NOSUCHTYPE

$FLOATNAME EXTENDEDFLOAT

$FORNSTRING i$

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"I

$GREATERTHANDURATION

100_000.0

$GREATERTHANDURATION-2-ASELAST

1oo0ooo000.0

$GREATERTHA?4_FLOATBASELAST

1. 80141E+38

SGREATERTHANFLOATSAFELARGE

1.OE+38

A-2

MACRO PARAMETERS

$GREATERTHANSHORTFLOATSAFELARGE
1. OE+38

$HIGH-PRIORITY 17

S ILLEGALEXTERNALFILENAME1

ILLEGALEXTERNALFILENAME1

$ILLEGALEXTERNALFILENAME2

ILLEGALEXTERNALFILENAME2

$ INAPPROPRIATE LINE LENGTH

-1.

S INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMAI "PRAGMA INCLUDE ("A28006D1 .TST")"

$INCLUDEPRAGMA2 "PRAGMA INCLUDE ("B28006F1.TST")'

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

SINTEGERLASTPLUS_1 2147483648

$INTERFACELANGUAGE UseCall

SLESSTHANDURATION -100_000.0

$LESSTHANDURATIONBASEFIRST

-100_000_000.0

SLINETERMINATOR I

SLOWPRIORITY 2

$MACHINECODESTATEMENT

TwoFormat' (MOV, (Reg_Lit,5), (Reg,R5));

SMACHINECODETYPE Mnemonic

$MAhNTISSA DOC 31

S$4AXDIGITS 18

SMAXINT 9223372036854775807

SMAXINTPLUS_1 9223372036854775808

$MIN INT -9223372036854775808

A-- 3

MACRO PARAMETERS

$NAME BYTEINTE'SER

$NA14ELIST I960MC

$NAMESPECIFICATIONi DUA2: EACVC11. 960MC.TESTBEDJX212OA. ;l

SNAMESPECIFICATION2 DUA2: (ACVC11.96OMC.TESTBED)X2120B. ;2

$NAMESPECIFICATION3 DUA2: (ACVC11.960MC.TESTBED]X3119A.;1

SNEGBASF.DINT 16#FFFFFFFFFFFFFFFE#

$NEWMEMSIZE 20S 7152

$NEWSTORUNIT 8

SNEWSYSNAME 1960MC

$PAGETERMINATOR r

SRECORDDEFINITION record Operation: Mnemonic;

Operand_-1: Operand; Operand-2: Operand;

end record;

$RECORDNAME TwoFormat

STASKSIZE 32

$TASKSTORAGESIZE 4096

$TICK 0.015625

$VARIABLEADDRESS SYSTEM.ADDRESS' (16*0000_1000*)

$VARIABLEADDRESS1 SYSTEM.ADDRESS' (16*0000_1004#)

SVARIABLE -ADDRESS2 SYSTEM.ADDRESS' (16*0000_1008*)

$YOURPRAGMA NOSUCHPRAGMA

A- 4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer, Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-1

Compilation switches for Tartan Ada VMS 960.

/960MC Invoke the 80960MC-targeted cross compiler.
This qualifier is mandatory to invoke the
80960MC-targeted compiler.

/CALLS[=option] Controls the type of calls generated by the
compiler through the option supplied. The
available options are:

SHORT Generate all short calls in the
compiled code. Inappropriate use
of this switch will cause a failure
at link time.

LONG Generate all long calls in the
compiled code.

MIXED Generate short calls within ap-
plication code and long calls from
applications to runtime routines.
This option is the default.

/DEBUG
/NODEBUG [default] Controls whether debugging information is

included in the object code file. It is not
necessary for all object modules to include
debugging information to obtain a linkable,
image, but use of this qualifier is
encouraged for all compilations. No
significant execution-time penalty is in-
curred with this qualifier.

/ERRORLIMIT=n Stop compilation and produce a listing after
n errors are encountered, where n is in the
range 0..255. The default value for n is
255. The /ERRORLIMIT qualifier cannot be
negated.

/FIXUP=[option) When package MACHINECODE is used, controls
whether the compiler attempts to alter
operand address modes when those address
modes are used incorrectly. The available
options are:

QUIET The compiler attempts to generate
extra instructions to fix incorrect
address modes in the array ag-
gregates operand field.

WARN The compiler attempts to generate
extra instructions to fix incorrect
address modes. A warning message
is issued if such a ''fixup'' is

2

required.
NONE The compiler does not attempt to

fix any machine code insertion that
has incorrect address modes. An
error message is issued for any
machine code insertion that is
incorrect.

WheD no form of this qualifier is supplied in
the co-and line, the default condition is
/FIXUP=QUIET. For more infoimation on
machine code insertions, refer to section
5.10 of this manual.

/LIBRARY=ibrary-name Specifies the library into which the file is
to be compiled. The compiler reads any
ADALIB. INI files in the default directory.

/LIST [=option]
/NOLIST Controls whether a listing file is produced.

If produced, the file has the source file
name and a .LIS .-tension. The available
options are:

ALWAYS Always produce a listing
file

NEVER Never produce a listing
file, equi'xalent to /NOLIST

ERROR Produce a listing file only
if a compilation error or
warning occurs

When no form of this qualifier is supplied in
the comand line, the default condition is
/LIST=ERROR. When the LIS11 qualifier is
supplied without an option, the default
option is ALWAYS.

/MACHINECODE [=option]
Controls whether the compiler produces an
assembly code file in addition to an object
file, which is always generated. The
assembly code file is not intended to be
input to an assembler, but serves as
documentation only. The available options
are:

NONE Do not produce an
assembly code file.

INTERLEAVE Produce an assembly
code file which in-
terleaves source code
with the machine code
(see Section 4.5.4).

3

Ada source appears as
assembly language
comments.

NOINTERLEAVE Produce an assembly
code file without
interleaving.

When no form of this qualifier is supplied in
the command line, the default option is NONE.
Specifying the MACHINE CODE qualifier without
an option is equivalent to supplying
/MACHINECODE=NOINTERLEAVE.

/NOENUMIMAGE Causes the compiler to omit data segments
with the text of enumeration literals. This
text is normally produced for exported
enumeration types in order to support the
text attributes ('IMAGE, 'VALUE and 'WIDTH).
You should use /NOENUMIMAGE only when you can
guarantee that no unit that will import the
enumeration type will use any of its text
attributes. However, if you are compiling a
unit with an enumeration type that is not
visible to other compilation units, this
qualifier is not needed. The compiler can
recognize when the text attributes are not
used and will not generate the supporting
strings .The /NOENUMIMAGE qualifier cannot be
negated.

/OPT-n Controls the level of optimization performed
by the compiler, requested by n. The /OPT
qualifier cannot be negated. The optimiza-
tion levels available are:

n = 0 Minimum - Performs context
determination, constant
folding, algebraic manipula-
tion, and short circuit
analysis. Inlines are not
expanded.

n = 1 Low - Performs level 0
optimizations plus common
subexpression elimination
and equivalence propagation
within basic blocks. It
also optimizes evaluation
order. Inlines are not
expanded.

n = 2 Best tradeoff for space/time
- the default level. Per-
forms level . optimizations
plus flow analysis which is

4

used for comon subexpres-
sion elimination and equiv-
alence propagation across
basic blocks. It also
performs invariant expres-
sion hoisting, dead code
elimination, and assignment
killing. Level 2 also
performs lifetime analysis
to improve register alloca-
tion. It also performs
inline expansion of sub-'
program calls indicated by
Pragma INLINE, if possible.

n =3 Time - Performs level 2
optimizations plus inline
expansion of subprogram
calls which the optimizer
decides are profitable to
expand (from an execution
time perspective). Other
optimizations which improve
execution time at a cost to
image size are performed
only at this level.

n = 4 Space - Performs those
optimizations which usutlly
produce the smallest code,
often at the expense of
speed. This optimization
level may not always produce
the smallest code, however,
another level may produce
smaller code under certain
conditions.

/PHASES
/NOPHASES [default] Controls whether the compiler announces each

phase of processing as it occurs. These
phases indicate progress of the compilation.
If there is an error in compilation, the
error message will direct users to a specific
location as opposed to the more general
/PHASES.

/RECOMPILESYSTEM Causes the compiler to accept non-Ada input,
necessary to replace package SYSTEM. This
qualifier should not be used for compiling
user-defined packages containing illegal
code. Changes of package SYSTEM must fully
conform to the requirements stated in ARM 4-5
13.7 and 13.7.1, and must not change the

5

given definition of type ADDRESS, in order to
preserve validatability of the Ada system.

/REFINE
/NOREFINE [default] Controls whether the compiler, when compiling

a library unit, determines whether the unit
is a refinement of its previous verrion and,
if so, does not make dependent units
obsolete. The default is /NOREFINE.

/REPLACE Forces the compiler to accept an attempt to
compile a unit imported from another library
which is normally prohibited.

/SAVESOURCE [default]
/NOSAVE_SOURCE Suppresses the creation of a registered copy

of the source code in the library directory
for use by the REMAKE and MAKE subcommands to
AL960.

/SUPPRESS[=(option, ...)]
Suppresses the specific checks identified by
the options supplied. The parentheses may be
omitted if only one option is supplied. If
contradictory options are specified (e.g.
/SUPPRESS= (NONE, OVERFLOWCHECK), the options
that are given last will override previous
ones. The absence of the /SUPPRESS qualifier
on the cound line is equivalent to
/SUPPRESS=NONE.

The available options are:

ALL Suppress all
checks. This
is the default
if the
qualifier is
supplied with
no option.

ACCESS_CHECK As spo- " ied in
the Ad. LRM,
Section 11.7.

CONSTRAINTCHECK Equivalent c5
(ACCESS-CHECK,
INDEX CHECK,
DISCRIMINANT_CHECK,
LENGTHCHECK,
RANGE_C HECK).

DISCRIMIZANTCHECK As specified in

6

the Ada LRM,
Section 11.7.

DIMSION CHECK Because the
80960MC detects
division by
zero, code for
this purpose is
not generated
by the com-
piler. There-
fore, this
qualifier has
no effect.

ELABORATIONCHECK As specified in
the Ada LRM,
Section 11.7.

INDEXCHECK As specified in
the Ada LRM,
Section 11 7.

LENGTHCHECK As specified in
the Ada LRM,
Section 11.7.

NONE No checks are
suppressed.
This is the
default if the
qualifier is
not supplied on
the command
line.

OVERFLOW CHECK Because the
80960MC detects
overflow, code
for this pur-
pose is not
generated by
the compiler.
Therefore, this
qualifier has
no effect.

RANGE-CHECK As specified in
the Ada LRM,
Section 11.7.

STORAGECHECK As specified in
the Ada LRM,
Section 11.7.
Suppresses only
stack checks in
generated code,

7

not the checks
made'by the
allocator as a
result of a new
operation.

/SYNTAXONLY Parses a unit and reports syntax errors, then
stops compilation without entering a unit in
the library.

/WARNINGS (default]
/NOWARNINGS Controls whether the warning messages

generated by the compiler are displayed to
the user at the terminal and in a listing
file, if produced. While supresc'ng warning
messages also halts display of informational
messages, it does not suppress Error,
FatalError.

/WAITSTATES=n Defines the memory waitstates of the target
for the compiler. The default value is 0.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,

are provided by the customer. Unless specifically noted otherwise,

references in this appendix are to linker documentation and not to this

report.

B-2

Linker switches for VMS hosted Tartan Ada compilers.

COMMAND QUALIFIERS

This section describes the command qualifiers available to a user who directly
invokes the linker. The qualifier names can be abbreviated to unique
prefixes; the first letter is sufficent for all cuurent qualifier names. The
qualifier names are not case sensitive.

/CONTROL=file The specified file contains linker control conmands.
Only one such file may be specified, but it can
include other files using the CONTROL command. Every
invocation of the linker must specify a control file.

/OUTPUT=file The specified file is the name of the first output
object file. The module name for this file will be
null. Only one output file may be specified in this
manner. Additional output files may be specified in
the linker control file.

/ALLOCATIONS Produce a link map showing the section allocations.

/UNUSEDSECTIONS Produce a link map showing the unused sections.

/SYMBOLS Produce a link map showing global and external
symbols.

/RESOLVEMODULES This causes the linker to not perform unused section
elimination. Specifying this option will generally
make your program larger, since unreferenced data
within object files will not be eliminated. Refer to
Sections RESOLVE CMD and USEPROCESSING for infor-
mation on the way that unused section elimination
works.

/MAP Produce a link map containing all information except
the unused section listings.

Note that several listing options are permitted. This is because link maps
for real systems can become rather large, and writing them consumes a
significant : raction of the total link time. Options specifying the contents
of the link map can be combined, in which case the resulting map will contain
all the information specified by any of the switches. The name of the file
containing the link map is specified by the LIST comand in the linker control
file. If your control file does not specify a name and you request a listing,
the listing will be written to the default output stream.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-

dependent pragmas, to certain machine-dependent conventions as mentioned in

Chapter 13 of the Ada Standard, and to certain allowed restrictions on

representation clauses. The implementation-dependent characteristics of this

Ada implementation, as described in this Appendix, are provided by the

customer. Unless specifically noted otherwise, references in this Appendix

are to compiler documentation and not to this report. Implementation-

specific portions of the package STANDARD, which are not a part of Appendix

F, are:

package STANDARD is

type BYTEINTEGER is range -128 .. 127;

type SHORTINTEGER is range -32768 .. 32767;

type INTEGER is range -2147483648 .. 2147483647;

type LONG-INTEGER is range -9223372036854775808 . 9223372036854775807;

type FLOAT . is digits 6 range
-2#i.!Iiiiiiiiiiiiiiiiiiili#e126 .. 2#I.iiiiiiiiiii1iiiii1iiiii#e126;

type LONGFLOAT is digits 15 range
-2#!.l!l11l1l1l1llllllllilliillllllillllllll1l!!ll1#e1022 .

2#1.!.IiiiiiiiiiilllAiiiliiiiiiilliiiii!!I!II#ei022;

type EXTENDEDFLOAT is digits 18 range
-2#I.Iili-Iilliiliii1ii1i11iIII1i1iI1i1li'iIliliiIIliIli!IIliiIIliI#e16382 .

2#!.*!ii!I1II1i_!!iii!!iiiiiiiiiiiiiiiiiiiiiiiiiiii!Iii1.11iiiiiliiii#e16382;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

..........

end STANDARD;

C-I

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to the LRM which is Military Standard, Ada Programming
Language, ANSI/MIL-STD-1815A (American National Standards Institute, Inc., February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas
This section summarizes the effects of and restrictions on predefined pragmas.

* Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHECKEDDEALLOCATION will be reused by the allocation of new
objects.

* Pragna ELABORATE is supported.

* Pragma INLINE is supported.
* Pragma INTERFACE is supported. A particular Ada calling sequence is associated with a subprogram

whose implementation is provided in the form of an object code module. LanguageName may be
either useCall or Use Bal as described in Section 5.1.2.2. Any other LanguageName will be
accepted, but ignored, and the default, UseCall will be used.

* Pragma LIST is supported but has the intended effect only if the command qualifier LIST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Pragma MEMORYSIZE is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

* Pragma OPTIMIZE is supported, but on a subprogram basis only. It does not affect code at the block
level.

" Pragma PACK is supported.

" Pragma PAGE is supported but has the intended effect only if the command qualifier LIST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

" Pragma PRIORITY is supported.
" Pragma STORAGEUNIT is accepted but no value other than that specified in Package SYSTEM (Section

5.3) is allowed.

" Pragma SHARED is not supported. No warning is issued if it is supplied.

" Pragma SUPPRESS is supported.

" Pragma SYSTEM-NAME is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

USER MANUAL FOR TARTAN ADA VMS 960

5.1.2. Implementation-Defined Pragmas
Implementation-d-tfined pragmas provided by Tartan are described in the following sections.

5.12.1. Pragma LINKAGENAME

The pragma LINKAGE NAME associates an Ada entity with a string that is meaningful externally; e.g., to a
linkage editor. It takes the form

pragma LINKAGENAME (Ada-simple-name, string-constant)
The Ada-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a runtime representation; e.g., a subprogram, exception or object. It may not be a named number or
string constant. The pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

This pragma has no effect when applied to a library subprogram or to a renames declaration; in the latter case,
no warning message is given.

When determining the maximum allowable length for the external linkage name, keuep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name hae5 fewer significant characters than the lower limit of other tools that need to process
the name (e.g., 40 in the case of the Tartan Linker).

5.1.2.2. Pragma FOREIGNBODY

In addition to Pragma INTERFACE, Tartan Ada supplies Pragma FOREIGNBODY as a way to access
subprograms in other languages.

Unlike Pragma INTERFACE, Pragma FOREIGNBODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

Some restrictions on Pragma FOREIGNBODY that are not applicable to Pragma INTERFACE are:

" Pragma FOREIGNBODY must appear in a non-generic library package.
" All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
" Types may not be declared in such a package.

Use of the pragma FOREIGN BODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. I- order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the AL960 FOREIGN command described
in sections 3.3.3 and 13.5.5. The pragma is of the form:

pragma FOREIGN._BODY (Languagename C, elaboration routine name])
The parameter Language name is a string intended to allow the compiler to identify the calling convention used
by the foreign module (but this functionality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reentrant.

The optional elaboration routinename string argument is a linkage name identifying a routine to initialize
the package. The routine specified as the elaboration routine name, which will be called for the elaboration of
this package body, must be a gloual routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior to any declarations within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

APPENDIX F TO MIL-STD-1815A

The foreigr body is entirely responsible for initializing objects declared in a package utilizing pragma
FOREIGNBODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

Pragma LINKAGENAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names.

In the following example, we want to call a function plmn which computes polynomials and is written in C.
package MATH FUNCTIONS is

pragma FOREIGN BODY ("C");
function POLYNOMIAL (X: INTEGER) return INTEGER;

--Ada spec matching the C routine
pragma LINKAGENAME (POLYNOMIAL, "plmn");

--Force compiler to use name "plmn" when referring to this
-- function

end MATHFUNCTIONS;

with MATH FUNCTIONS; use MATHFUNCTIONS;
procedure MAIN is

X:INTEGER :-- POLYNOMIAL(i0);
-- Will generate a call to "plmn"

begin ...
end MAIN;

To compile, link and run the above program, you do the following steps:

1. Compile MATH_FUNCTIONS

2. Compile MAIN

3. Obtain an object module (e.g. math. TOF) containing the compiled code for plmn.
4. Issue the command

AL960 FOREIGNBODY math-functions MATH.TOF

5. Issue the command

AL960 LINK MAIN

Without Step 4, an attempt to link will produce an error message informing you of a missing package body for
MATHFUNCTIONS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command AL960 FOREIGN (see
Sections 3.3.3 and 13.5.5) to use an Ada body from another library. The Ada body from another library must
have been compiled under an identical specification. The pragma LINKAGE NAME must have been applied to
all entities declared in the specification. The only way to specify the linkname for the elaboration routine of an
Ada body is with the pragma FOREIGNBODY.

5.1.2.3. Pragma INTERFACE

The pragma INTERFACE associates a particular Tartan Ada calling sequence with a subprogram whose
implementation is provided in the form of an object code module.

The form of the pragma is:
pragma INTERFACE (Language-Name, SubprogramName)

USER MANUAL FOR TARTAN ADA VMS 960

Language Name may be either UseCall or UseBal as described in Section 5.1.2.2. Any other
Language Name will be accepted, but ignored, and the default, UseCall will be used.

While the BAL calling convention is faster than the standard calling convention, be aware that BAL must be
used carefully. In particular, when a routine is called with BAL:

* No new stack frame is allocated. This means that the called routine must not change the stack pointer, or
must at least ensure that the stack pointer is restored before the routine returns.

* No new local registers are allocated.

* The called routine must return via a bx (reg) instruction. The BAL instruction will automatically store
the return address in register g14.

* If a called routine has more than 12 words worth of parameters, the compiler will store the argument block
pointer in g14. Since the BAL instruction will place the return address in g14, the called routine could
find that its argument block pointer has been trashed.

Please see Chapter 6 for a complete list of BAL calling convention restiictions.

5.2. IMPLEMENTA TION-DEPENDENT ATTRIBUTES
No implementation-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM
The parameter values specified for the 80960MC in package SYSTEM [LRM 13.7.1 and Appendix C] are:

package SYSTEM is
type ADDRESS is new Integer;
type NAME is (1960MC);

SYSTEM NAME : constant name :- 1960MC;
STORAGE UNIT : constant : 8;
MEMORYSIZE : constant 2_097_152;

MAXINT : constant 9_223_372_036_854_775_807;
MININT : constant := -MAXINT - 1;

MAXDIGITS : constant := 18;

MAXMANTISSA : constant 31;
FINE DELTA : constant 2#1.0#e-31;
TICK : constant 0.015625;
subtype PRIORITY is INTEGER range 2 .. 17;
DEFAULT PRIORITY constant PRIORITY := PRIORITY'FIRST;
RUNTIME ERROR exception;

end SYSTEM;

5.4. RFSTRICTIONS ON REPRESENTATION CLAUSES
The following sections explain the basic restrictions for representation specifications followed by additional

restrictions applying to specific kinds of clauses.

5.4.1. Basic Restriction
The basic restriction on representation specifications [LRM 13.1] is that they may be given only for types

declared in terms of a type definition, excluding a generic typedefinition (LRM 12.1) and a
privatetypedefinition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler, an error message is issued.

APPENDIX F TO MIL-STD-1815A

Further restrictions are explained in the following :;ections. Any representation clauses violating those restric-
tions cause compilation to stop and a diagnostic message to be issued.

5.4.2. Length Clauses

Length clauses [LRM 13.2] are, in general, supported. For details, refer to the following sections.

5.4.2.1. Size Specifications for Types

The rules and restrictions for size specifications applied to types of various classes are described below.

The following principle rules apply:

L. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example

type MyEnum is (A,B);
for Myenum' size use 1;
V,W: My_enum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V,W: Myenum;

end record;
pragma Pack(rec);
0: rec; -- will occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing take place
automatically and are transparent to the user.

* Adjacent bits to an object that is a component of a composite object, but whose size is
non-referable, may be affected by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational sizes in different contexts.

Note: A size specification cannot be used to force a certain size in value operations of the type; for
example

type my_int is range 0..65535;
for my_ant'size use 16; -- o.k.
A,B: my-int;

.A + B... -- this operation will generally be
-- executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In contrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

USER MANUAL FOR TARTAN ADA VMS 960

type MY INT is range 0..2**15-1;
for MY INT'SIZE use 16; -- (1)
subtype SMALL MY INT is MYINT range 0..255;
type R is record

X: SMALLMYINT;

end record;

the component R. X will occupy 16 bits. In the absence of the length clause at (1), R. X may be
represented in 8 bits.

Size specifications for access types must coincide with the default size chosen by the compiler for the type.

Size specifications are not supported for floating-point types or task types.

5.42.2. Size Specification for Scalar Types

The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in
the range of the values of the type). For numeric types with negative values the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus

type myint is range 100..101;

requires at least 7 bits, although it has only two values, while

type my_nt is range -101..-100;

requires 8 bits to account for the sign bit.

A size specification for a real type does not affect the accuracy of operations on the type. Such influence
should be exerted via the accuracy._definition of the type (LRM 3.5.7, 3.5.9).

A size specification for a scalar type may not specify a size larger than the largest operation size supported by
the target architecture for the respective class of values of the type.

5.42.3. Size Specifwationfor Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy. Any alignment constraints on the component type (see Section 5.4.7) must be met.

The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5.42.4. Size Specification for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types, nor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record or contain relative offsets of components within a
record layout for record components of dynamic size. These implementation-dependent components cannot be
named or sized by the user.

APPENDIX F TO MIL-STD-1815A

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragnm PACK.

5.4.2.5. Specification of Collection Sizes
The specificat 3n of a collection size causes the collection to be allocated with the specified size. It is

expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGEERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. No matter what the requested
object size, the allocator must allocate a minimum of 2 words per object. This lower limit is necessary for
administrative overhead in the allocator. For example, a request of 5 words results in an allocation of 5 words; a
request of 1 word results in an allocation of 2 words.

Furthermore, the allocator must round non-word sized requests up to the nearest word. For example, a
request of 11 bytes is rounded up to 12 bytes (3 words).

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGEERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

5.4.2.6. Specification of Task Activation Size

The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

If the storage specified for a task activation (T' Storage_.Size) is not a multiple of 4096 (one page), the
compiler allocates the next higher multiple of 4096, as permitted by the language.

Any attempt to exceed the activation size during execution causes a STORAGEERROR exception to be
raised. Unlike collections, there is no extension of task activations.

5.4.2.7. Specification of' SMALL
Only powers of 2 are allowed for 'SMALL.

The length of the representation may be affected by this specification. If a size specification is also given for
the type, the size specification takes precedence; the specification of ' SMALL must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses

For enumeration representation clauses [LRM 13.3], the following restrictions apply:

" The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified encodings is costly at run time.

" Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumeration type.

USER MANUAL FOR TARTAN ADA VMS 960

5.4.4. Record Representation Clauses
The alignment clause of record representation clauses [LRM 13.4] is observed.
Static objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the

minimum alignment of the record type, unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is already more stringent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are d-cribed by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses;
no attempt is made to utilize gaps left by the user-provided allocation.

5.4.5. Address clauses
Address clauses [LRM 13.5] are supported with the following restrictions:

" When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
accepted but meaningless. Please refer to section 8.10 for details on how address clauses relate to linking;
refer to section 12.2 for an example.

" Address clauses applied to local packages are not supported by Tartan Ada. Address clauses applied to
library packages are prohibited by the syntax; therefore, an address clause can be applied to a package only
if it is a body stub.

* Address clauses applied to subprograms and tasks are implemented according to Pie LRM rules. When
applied to an entry, the specified value identifies an interruipt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt. Refer to section 10.2.7 for more
details. A specified address must be an Ada static expression.

" Address clauses specify virtual, not physical, addresses.
" When specifying absolute addresses, please note that the compiler will treat addresses as an I14TEGER

type. ThL. means that specifications of addresses may raise arithmetic overflow errors; i.e., addresses must
be in the range INTEGER' FIRST. . INTEGER' LAST. To represent an address greater than
INTEGER' LAST, use the neL-,ted radix-complement of the desired address. For example, to express
address 16#C00_0 00, specify instead -16#4000_000.

5.4.6. Pragma PACK
Pragma PACK [LRM 13.1] is supported. For details, refer to the following sections.

5.4.6.1. Pragma PACK for Arrays
If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,

refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If, in addition, a length clause is applied to

APPENDIX F TO MIL-STD-1815A

1. The array type, the pragma has no effect, since such a length clause already uniquely determines the array
packing method.

2. The component type, the array is packed dei ily, observing the component's length clause. Note that the
component length clause may have the effect of preventing the cc .piler froni packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

5.4.6.2. The Predefined Type String

Package STANDARD applies Pragma PACK to the type string.

Hr-vever, when applied to character arrays, this pragma cannot be used to achieve denser packing than is the
default for the target 4 characters per 32-bit word.

5.d.6.3. Pragma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should b-. noted that the default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there an nultiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types
Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-

tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically, restric-
tions exist that make extraction of values that crr certain address boundaries very expensive, especially in
contexts involving array indexing. Permitting daL tayouts that require such complicated extractions may impact
code qual;y on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

No object of scalar type including components or subcomponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object's value to be performed by two
or more extractions.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

USER MANUAL FOR TARTAN ADA VMS 960

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES
Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task

entries. Tartan Ada implements the address clause
for TOENTRY use at intlD;

by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of intID is both machine and compiler dependent.

The Ada runtimes provide interrupts that may be associated with task entries. These interrupts are of type
System.Address in the ranges 8..243, 252..255, 264..499, and 508..511. Refer to section 10.2.7 for further
explanation. If the argument is outside those ranges, the compiler will report an error.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS
Tartan supports UNCHECKED CONVERSION with a restriction that requires the sizes of both source and

target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will be truncated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKEDCONVERS ION are made inline automatically.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supplies the predefined input/output packages DIRECT_10, SEQUENTIAL_ 10, TEXTio, and

LOW._LEVELIO as required by LRM Chapter 14. However, since 80960MC processor is used in embedded
applications lacking both standard I/O devices and file systems, the functionality of DIRECTIO,
SEQUENTIAL.iO, and TEXTIO is limited.

DIRECT IO and SEQUENTIAL 10 raise USEERROR if a file open or file access is attempted. TEXT 10
is supported to CURRENTOUTPUT and from CURRENTINPUT. A routine that takes explicit file names raises
USE_ERROR. LOW LEVELIO for 80960MC processor provides an interface by which the user may read and
write from memory mapped devices. In both the SENDCONTROL and RECEIVECONTROL procedures, the
device parameter specifies a device address while the data parameter is a byte, halfword, word, or doubleword of
data transferred.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Program
Any Ada library subprogram unit may be designated the main program for purposes of linking (using the

AL960 LINK command) provided that the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for termination as other tasks [described in
LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

5.9.2. Implementation of Generic Units
All instantiations of generic units, except the predefined generic UNCHECKED CONVERSION and

UNCHECKEDDEALLOCATION subprograms, are implemented by code duplications. No attempt at sharing
code by multiple instantiations is made in this release of Tartan Ada.

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will casue any units that
instantiated this generic unit to become obsolete.

APPENDDC F TO M1-SD-1815A

5.9.3. Attributes of Type Duration
The type DURATION is defined with the following characteristics:

Attribute Value

DURATION' DELTA 0.0001 sec

DURATION' SMALL 0.00061 sec

DURATION' FIRST -86400.0 sec

DURATION' LAST 86400.0 sec

5.9.4. Values of Integer Attributes
Tartan Ada supports the predefined integer type INTEGER. The range bounds of the predefined type

INTEGER are:

INTEGER' FIRST is -2*31
INTEGER' LAST is 2*31-1

LONG INTEGER' FIRST is -2**63
LONGINTEGER' LAST is 2*63-1

SHORT INTEGER' FIRST is -2"'15
SHORTINTEIGER' LAST is 2"'15-1
BYTE INTEGER' FIRST is -128

BYTEINTEGER' LAST iS 127

The range bounds for subtypes declared in package TEXTIO are:

COUNT' FIRST is 0
COUNT' LAST is INTEGER' LAST - 1

POSITIVE CO3NT' FIRST is I
POSITIVECOUNT' LAST is INTEGER' LAST- 1

FIELD' FIRST is 0

F TLD' LAST is 20

The range bounds for subtypes declared in packages DIRECT.10 are:

COUNT' FIRST is 0
COUNT' LAST is INTEGER' LAST

POSITIVE COUNT' FIRST is 1
POSITIVECOUNT' LAST iS COUNT' LAST

5.9.5. Ordinal Types

Ordinal types are supported via a separate package, which is included with the standard packages. Package
OrdinalSupport provides support for unsigned arithmetic, including functions which convert between
Integer and Ordinal types, and a complete set of Ordinal arithmetic operations. The specification of package
OrdinalSupport may be found in the appendix.

USER MANUAL FOR TARTAN ADA VMS 960

5.9.6. Values of Floating-Point Attributes
Tartan Ada supports the predefincd floating-point types FLOAT, LONGFLOAT, and EXTENDED-FLOAT.

Attribute Value for FLOAT

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0. 1000_000#E4
approximately 9.536743E-07

SMALL 16#0.8000_000#E-21
approximately 2.58494E-26

LARGE 16#0.FFFF_F80#E+21
approximately 1.93428E+25

SAFE EMAX 126

SAFE SMALL 16#0.2000_OOO#E-31
approximately 5.87747E-39

SAFE LARGE 16#0.3FFF_.FEO#E+32
approximately 8.50706+37

FIRST -16#0.7FFFFFC#E+32
approximately -1.70141E+38

LAST 16#0.7FFF FFC#E+32
approximately 1.70141E+38

MACHINERADIX 2

MACHINEMANTISSA 24

MACHINEEMAX 126

MACHINEEMIN -126

MACHINEROUNDS TRUE

MACHINEOVERFLOWS TRUE

APPENDIX F TO MEL-STD-1815A

Attribute Value for LONG FLOAT

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 16#0.4000_0000_0000_000#E-12
approximately 8.8817841970013E-16

SMALL 16#0.8000_0000_0000_000#E-51
approximately 1.9446922743316E-62

LARGE 16#0.FFFF_FFFFFFFF_EOO#E+51
approximately 2.5711008708143E+61

SAFE EMAX 1022

.SAFESMALL 160.2000_0000_0000_000#E-255
approximately 1.1125369292536-308

SAFELARGE 16#0.3FFFFFFFFFFF_F80#E+256
approximately 4.4942328371557E+307

FIRST -16#0.7FFF_FFFF_FFFF_FE#E+256
approximately -8.988465674312E+307

LAST 16#0.7FFFFFFyFFFFFE0#E+256
approximately 8.9884656743115E+307

MACHINERADIX 2

MACHINEMANTISSA 51

MACHINEEMAX 1022

MACHINEEMIN -1022

MACHINEROUNDS TRUE

MACHINEOVERFLOWS TRUE

USER MANUAL FOR TARTAN ADA VMS 960

Attribute Value for EXTENDED FLOAT

DIGITS 18

MANTISSA 61

EMAX 244

EPSILON 16#0.1000_0000_0000_0000_O#E-14
approximately 8.67361737988403547E- 19

SMALL 16#0.8000_0000_000_L0000_0OE-61
approximately 1.76868732008334226E-74

LARGE 16#0.FFFFFFFFF....FFF80#E+61
approximately 2.82695530364541493E+73

SAFE EMAX 16382

SAFESMALL 16#0.2000_0000_0-0000O_0#E-4096
approximately 1.68105157155604675E-4932

SAFELARGE 16#0.3FFFFFFFFFFF_FFFF_0#E+4096
approximately 2.97432873839307941E+4931

FIRST -16#0.7FFF_FFFF_FFFF_FFFF_8#E+4096
approximately -5.94865747678615883E+4931

LAST 16#0.7FFFFFFFFFFF_FFFF_.8#E+4096
approximately 5.94865747678615883E+4931

MACHINERADIX 2

MACHINEMANTISSA 63

MACHINE EMAX 16382

MACHINEEMIN -16382

MACHINEROUNDS TRUE

MACHINEOVERFLOWS TRUE

APPENDIX F TO MIL-STD-1815A

5.10. SUPPORT FOR PACKAGE MACHINE_CODE
Package MACHINE CODE provides the programmer with an interface through which to request the genera-

ton of any instruction that is available on the 80960. The Tartan Ada VMS 960 implementation of package
MACHINE CODE is similar to that described in Section 13.8 of the Ada LRM, with several added features. Refer
to appendix A of this manual for the specification for package MACHINECODE.

5.10.1. Basic Information
As required by LRM, Section 13.8, a routine which contains machine code inserts may not have any other

kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

5.10.2. Instructions
A machine code insert has the form TYPEMARK' RECORDAGGREGATE, where the type must be one of the

records defined in package MACHINECODE. Package MACHINECODE defines four types of records. Each
has an opcode and zero to 3 operands. These records are adequate for the expression of all instructions provided
by the 80960.

5.10.3. Operands
An operand consists of a record aggregate which holds all the information to specify it to the compiler. All

operands nave an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the instruction being generated.

5.10.3.1. Address Modes

Each operand in a machine code insert must have an Address Mode Name. The address modes provided in
package MACHINECODE provide access to all address modes supported by the 80960.

In addition, package MACHINE CODE supplies the address modes Symbolic Address and
Symbolic_ Value which allow the user to refer to Ada objects by specifying Object' ADDRESS as the value
for the operand. Any Ada object which has the 'ADDRESS attribute may be used in a symbolic operand.
SymbolicAddress should be used when the operand is a true address (that is, a branch target or the source
of an LDA instruction). Symbolic_Value should be used when the operand is actually a value (that is, one of
the source operands of an ADD instruction).

When an Ada object is used as a source operand in an instruction (that is, one from which a value is read), the
compiler will generate code which fetches the value of the Ada object. When an Ada object is used as the
destination operand of an instruction, the compiler will generate code which uses the address of the Ada object as
the destination of the instruction. See section 5.10.10 for further details.

5.10.4. Examples
The Tartan Ada VMS 960 implementation of package MACHINECODE makes it possible to specify

both simple machine code inserts such as
twofor.nat' (MOV, (Reg-Lit, 5), (Reg, R5))

and more complex inserts such as

three format' (MULI,
(SymbolicValue, ArrayVar(X, Y, 27)'ADDRESS),
(Lit, 123456),
(Symbolic-Address, Parameterl'ADDRESS))

In the first example, the compiler will emit the instruction mov 5, r5. In the second example, the compiler
will first emit whatever instructions are needed to form the address of ArrayVar (X, Y, 27), load the
value found at that address into a register, load 123456 into a register, and then emit the muLl instruction. If
Parameter 1 is not found in a reeister. the comnoiler will vut the result of the multiolication in a temporarv

USER MANUAL FOR TARTAN ADA VMS 960

register and then store it to Parameter_ ' ADDRESS. Note that the destination operand of the MULI instruc-
non is given as a Symbolic._Address. This holds true for all destination operands. The various error checks
specified in the LRM will be performed on all compiler-generated code unless they are suppressed by the
programmer (either through pragma SUPPRESS, or through command qualifiers).

5.10.5. Incorrect Operands
Under some circumstances, the compiler attempts to correct incorrect operands. Three modes of operation

are supplied for package MACHINE CODE: /FIXUP=NONE, /FIXUP=WARN, and /FIXUP=QUIET. These
modes of operation determine whether corrections are attempted and how much information about the necessary
corrections is provided to the user. /FIXUP=QUIET is the default.

In /FIXUP=NONE mode, the specification of incorrect operands for an instruction is considered to be a fatal
error. In this mode, the compiler will not generate any extra instructions to help you to make a machine code
insertion. Note that it is still legal to use 'ADDRESS constructs as long as the object which is used meets the
requirements of the instruction.

In /FIXUP=QUIET mode, if you specify incorrect operands for an instruction, the compiler will do its best
to fix up the machine code to provide the desired effect. For example, although it is illegal to use a memory
address as the destination of an ADD instruction, the compiler will accept it and try to generate correct code. In
this case, the compiler will allocate a temporary register to use as the destination of the ADD, and then store horn
that register to the desired location in memory.

In /FIXUP=WARN mode, the compiler will also do its best to correct any incorrect operands for an instruc-
tion. However, a warning message is issued stating that the machine code insert required additional machine
instructions to make its operands legal.

The compiler will always emit the instruction named in the machine code insert -- even if it was necessary to
fix up all of its operands. In extreme cases this can lead to surprising code sequences. Consider, for example, the
machine code insert

TwoFormat' (MOV, (Reg_Ind, GO), (Reg_IndDisp, GI, 128))
The MOV instruction requires two registers, but both operands are memory addresses. The compiler will generate
a code sequence like

id (gO), g12
mov g12, g13
st g13, 128(gl)

Note that the MOV instruction is generated even though a LD ST combination would have been sufficient. As a
result of always emitting the instruction specified by the programmer, the compiler will never optimize away
instructions which it does not understand (such as SENDSERV), unless they are unreachable by ordinary control
flow.

5.10.6. Assumptions Made in Correcting Operands
When compiling in /Fixup= [WARN, QUIET] modes, the compiler attempts to emit additional code to

move "the right bits" from an incorrect operand to a place which is a legal operand for the requested instruction.
The compiler makes certain basic assumptions when performing these fixups. This section explains the assump-
tions the compiler makes and their implications for the generated code. Note that if you want a correction which
is different from that performed by the compiler, you must make explicit machine-code insertions to perform
it.

For source operands:

" SymbolicAddress means that the address specified by the 'ADDRESS expression is used as the
source bits. When the Ada object specified by the 'ADDRESS instruction is bound to a register, this will
cause a compile-time error message because it is not possible to "take the address" of a register.

" Symbolic_Value means that the value found at the address specified by the 'ADDRESS expression will
be' used as the source hits An Ada object which is bound to a register is correct here. because the contents

APPENDIX FTO MIL-STD-1815A

* Label indicates that the address of the label will be used as the source bits.

" Any other non-register means that the value found at the address specified by the operand will be used as
the source bits.

For destination operands:

" Symbolic _Address means that the desired destination for the operation is the address specified by the
'ADDRESS expression. An Ada object which is bound to a register is correct here;. a register is a legal
destination on the 960.

* Symbolic-Value means that the desired destination for the operations is found by fetching 32 bits from
the address specified by the ' ADDRESS expression, and storing the result to the address represented by the
fetched bits. This is equivalent to applying one extra indirection to the address used in the
Symbolic-Address case.

" All other operands are interpreted as directly specifying the destination for the operation.

Table 5-1 below describes the correction attempted for each possible instruction-operation combination. The
actions shown in the table have the following meanings:

Load to Register 1 The operand given represents a memory location, but the instruction requires a register.
The operand is used as a source. The compiler wil load from the operand to a tem-
porary register.

Load to Register 2 The operand given represents a register, but the instruction requires a memory location.
The operand is a destination. The compiler will store the result value to a scratch
memory location, and then load it into the specified register.

Store to Memory 1 The operand given represents a register, but the instruction requires a memory location.
The operand is a source. The compiler will store the value to a scratch memory location
so that it will be in the proper place for the instruction.

Store to Memory 2 The operand given represents a memory location, but the instruction requires a register.
The operand is a destination. The compiler will allocate a scratch register, use that as
the destination for the instruction, and then store the result value to the specified
memory address.

Store to Memory 3 The operand given is not the address (.! a label. The operand will be stored to a scratch
memory location, and then used as the indirect branch target.

Error 1 The only incorrect operand for the source of an LDA is a register. It is not possible to
take the address of a register on the 960.

Error 2 The operand must be a Label' Address.

lnst Opndl Opnd2 Opnd3
addo, addi, addc, addr,
addrl Load to Register 1 Load to Register I Store to Memory 2

alterbit Load to Register 1 Load to Register I Store to Memory 2

and, andnot Load to Register I Load to Register I Store to Memory 2

atadd Load to Register 1 Load to Register 1 Store to Memory 2

atanr, atanrl Load to Register 1 Load to Register I Store to Memory 2

atmc'd Load to Register I Load to Register I Store to Memory 2

Table 5-1: Machine-Code Fixup Operations

USER MANUAL FOR TARTAN ADA VMS 960

Inst Opndl Opnd2 Opnd3

b Error 2

bx Store to Memory 3

bal Error 2

balx Store to Memory 3

bbc, bbs Load to Register I Load to Register I Error 2

BRANCH IF Error 2

call Error 2

calls Load to Register 1

calix Store to Memory 3

chkbit Load to Register I Load tr Register 1

classr, classrl Load to Register 1

cibit Load to Register 1 Load to Register 1 Store to Memory 2

cmpi, cmpo Load to Register 1 Load to Register 1

cmpdeci, cmpdeco Load to Register 1 Load to Register 1 Store to Memory 2

cmpinci, cmpinco Load to Register 1 Load to Register 1 Store to Memory 2

cmpor, cmporl Load to Register 1 Load to Register 1

cmpr, cmprl Load to Register 1 Load to Register I

cmpstr Load to Register 1 Load to Register 1 Load to Register 1

COMPARE AND
BRANCH Load to Register I Load to Register I Error 2

concmpi, concmpo Load to Register 1 Load to Register I

condrec Load to Register I Load to Register I

condwait Load to Register 1

cosr, cosrl Load to Register I Store to Memory 2

cpyrsre, cpysre Load to Register 1 Load to Register I Store to Memory 2

Load to Register 1 (64
cvtilr bits) Store to Memory 2

cvtir Load to Register I Store to Memory 2

cvtri Load to Register I Store to Memory 2

Store to Memory 2 (64
cvtril Load to Register 1 bits)

cvtzri Load to Register 1 Store to Memory 2

Store to Memory 2 (64
cvtzril Load to Register 1 bits)

daddc Load to Register 1 Load to Register I Store to Memory 2

divo, divi, divr, divrl Load to Register 1 Load to Register 1 Store to Memory 2

APPENDIX F TO MIL-STD-1815A

Inst Opndl Opnd2 Opnd3

dmovt Load to Register I Store to Memory 2

dsubc Load to Register I Load to Register I Store to Memory 2

Load to Register 1 (64 Store to Memory 2 (64
ediv Load to Register I Bits) bits)

Store to Memory 2 (64
emul Load to Register 1 Load to Register 1 bits)

expr, exprl Load to Register 1 Store to Memory 2

extract Load to Register 1 Load to Register 1 Store to Memory 2

FAULT IF

fill Load to Register I Load to Register I Load to Register 1

flushreg

fmark

inspacc Load to Register I Store to Memory 2

LOAD Store to Memory I Store to Memory 2

Ida Error 1 Store to Memory 2

ldphy Load to Register 1 Store to Memory 2

ldtime Store to Memory 2

logbnr, logbnrl Load to Register 1 Store to Memory 2

logepr, logeprl Load to Register I Store to Memory 2

logr, logrl Load to Register I Store to Memory 2

mark

modac Load to Register I Load to Register I Store to Memory 2

moc," Load to Register 1 Load to Register I Store to Memory 2

modify Load to Register 1 Load to Register 1 Store to Memory 2

modpc Load to Register I Load to Register I Store to Memory 2

modtc Load to Register I Load to Register I Store to Memory 2

MOVE Load to Register I Store to Memory 2

movqstr, movstr Load to Register I Load to Register I Load to Register I

mulo, mull, mulr,
muil Load to Register 1 Load to Register 1 Store to Memory 2

nand Load to Register I Load to Register I Store to Memory 2

nor Load to Register I Load to Register I Store to Memory 2

not Load to Register I Store to Memory 2

notand Load to Register I Load to Register I Store to Memory 2

notbit Load to Register 1 Load to Register 1 Store to Memory 2

Talle S.1: MachineCode Fixup Operations

USER MANUAL FOR TARTAN ADA VMS 960

Inst Opndl Opnd2 Opad3

notor Load to Register 1 Load to Register 1 Store to Memory 2

or, ornot Load to Register 1 Load to Register I Store to Memory 2

recieve Load to Register I Load to Register 1

remo, remi, remr,
remrl Load to Register I Load to Register I Store to Memory 2

resumprcs Load to Register 1

ret

rotate Load to Register 1 Load to Register 1 Store to Memory 2

roundr, roundri Load to Register 1 Store to Memory 2

saveprcs

scaler, scalerl Load to Register 1 Load to Register I Store to Memory 2

scanbit Load to Register 1 Store to Memory 2

scanbyte Load to Register 1 Load to Register 1

schedprcs Load to Register I

send Load to Register I Load to Register I Load to Register I

sendserv Load to Register 1

setbit Load to Register I Load to Register 1 Store to Memory 2

SHIFT Load to Register 1 Load to Register 1 Store to Memory 2

signal Load to Register 1

sinr, sinrl Load to Register I Store to Memory 2

spanbit Load to Register I Store to Memory 2

sqrt, sqrtrl Load to Register 1 Store to Memory 2

STORE Load to Register 1 Load To Register 2

subo, subi, subc, subr,
subrl Load to Register I Load to Register 1 Store to Memory 2

syncf

synld Load to Register 1 Store to Memory 2

synmov, synmovl, syn-
movq Load To Register 1 Load to Register 1

tanr, tanrI Load to Register 1 Store to Memory 2

TEST Store to Memory 2

wait Load to Reg I

xnor, xor Load to Register I Load to Register 1 Store to Memory 2 .

Table 5-1: Machine..Code Fixup Operations

APPENDIX F TO MIL.STD-1815A

5.10.7. Register Usage
Since the compiler may need to allocate registers as temporary storage in machine code routines, there are

some restrictions placed on your register usage. The compiler will automatically free all the registers which
would be volatile across a call for your use (that is, gO..g7, g13, and g14). If you reference any other register, the
compiler will reserve it for your use until the end of the machine code routine. The compiler will not save the
register automatically. This means that the first reference to a register which is not volatile across calls should be
an instruction which saves its value in a safe place. The value of the register should be restored at the end of the
machine code routine. This rule will help ensure correct operation of your machine code insert even if it is inline
expanded in another routine.

The compiler may need several registers to generate code for operand fixups in machine code inserts. If you
use all the registers, fixups will not be possible. If a fixup is needed, the compiler may require up to three
registers to guarantee success. In general, when more registers are available to the compiler it is able to generate
better code.

5.10.8. Inline Expansion
Routines which contain machine code inserts may be inline expanded into the bodies of other routines. This

may happen under programmer control through the use of pragma INLINE, or at Optimization IUvel 3 when the
compiler selects that optimization as an appropriate action for the given situation. The compiler will treat the
machine code insert as though it was a call; volatile registers will be saved and restored around it, etc.

5.10.9. Unsafe Assumptions

There are a variety of assumptions which should not be made when writing machine code inserts. Violation
of these assumptions may result in the generation of code which does not assemble or which may not function
correctly.

" Do not assume that a machine code insert routine has its own set of local registers. This may not be true if
the routine is inline expanded into another routine. Explicitly save and restore any registers which are not
volatile across calls. If you wish to guarantee that a routine will never be inline expanded, you should use
an Ada separate body for the routine and make sure that there is no pragma INLINE for it.

" Do not attempL to move multiple Ada objects with a single long instruction such as MOVL or STT.
Although the objects may be contiguous under the current circumstances, there is no guarantee that later
changes will permit them to remain contiguous. If the objects are parameters, it is v'rtualy certain that
they will not be contiguous if the routine is inline expanded into the body of another routine. In the case of
locals, globals, and own variables, the compiler does not guarantee that objects which are declared tex-
tually "next" to each other will be contiguous in memory. If the source code is changed such that it
declares additional objects, this may change the storage allocation such that objects which were previously
adjacent are no longer adjacent.

" The compiler will not generate call site code for you if you emit a call instruction. You must save and
restore any volatile registers which currently have values in them, etc. If the routine you call has out
parameters, a large function return result, or an unconstrained result, it is your responsibility to emit the
necessary instructions to deal with these constructs as the compiler expects. In other words, when you emit
a call, you must follow the linkage conventions of the routine you are calling. For further details on call
site code, see Sections 6.4, 6.5 and 6.6.

" Do not assume that the 'ADDRESS on Symbolic Address or SymbolicValue operands means
that you are getting an ADDRESS to operate on. The Address- or Value-ness of an operand is determined
by your choice of SymbolicAddress or Symbolic-Value. This means that to add the comems of
x to r3, you should write

ThreeFormat' (ADDI, (SymbolicValue, X'ADDRESS),
(Reg, R3), (Reg, R3));

1,,, tr% qdt thP M,.414,,e f V tf, A Vr,, VhC,,,1,4 1,,"
4

tP

USER MANUAL FOR TARTAN ADA VMS 960

ThreeFormat' (ADDI, (SymbolicAddress, X'ADDRESS),
(Reg, R3), (Reg, R3));

The compiler will not prevent you from writing register r3 (which is used to hold the address of the current
exception handler). This provides you the opportunity to make a custom exception handler. Be aware,
however, that there is considerable danger in doing so. Knowledge of the details on the structure of
exception handlers will help; see the Tartan Ada Runtime Implementor's Guide.

5.10.10. Limitations

" When specifying absolute addresses in machine..code inserts, please note that the compiler will treat
addresses as an INTEGER type. This means that specifications of addresses may raise arithmetic overflow
errors; i.e., addresses must be in the range INTEGER' FIRST.. INTEGER' LAST. To represent an
address greater than INTEGER' LAST, use the negated radix-complement of the desired address. For
example, to express address 16#COOO_000, specify instead -16#4000_000.

" The current impl.mentation of the compiler is unable to fully support automatic fixup of certain kinds of
operands. In particular, the compiler assumes that the size of a data object is the same a' the number of
bits which is operated on by the instruction chosen in the machine code insert. This means that the insert

ThreeFormat' (ADDO, (SymbolicValue, ByteVariable'ADDRESS),
(Reg, RO), (Reg, RI))

will not generate correct code when Byte Variable is bound to memory. The compiler will assume
that ByteVariable is 32 bits, when in fact it is only 8, and will emit an LD instruction to load the
value of Byte Variable into a register. If, on the other hand, Byte-Variable was bound to a
register the insertion will fur ,tion properly, as no fixup is needed.

o The compiler generates incorrect code when the BAL and BALX instructions are used with symbolic
operands which are not of the form Routine' ADDRESS. To get the effect of an unconditional branch,
use the B or BX instructions instead.

e Note that the use of X' ADDRESS in a machine code insert does not guarantee that x will be bound to
menaory. This is a result of the use of' ADDRESS to provide a "typeless" method for naming Ada objects
in machine code inserts. For example, it is legal to say to (SymboicValue, X'ADDRESS) in an
insert even when X is a formal parameter of the machine code routine (and is thus found in a register).

5.10.11. Example
package mtest is
type arytype is array(l..4) of integer;

procedure inline into me;
ena mtest;

wi-n machine-code;
use machine code;
package body mtest is

ownva. : integer :=-1;

procedure machtest(x, y, z: in integer; ary: in out arytype) is
begin

-- The next instruction is only OK if this routine is not INLINED.
-- If the routine is inlined; there is no guarantee that parm X will
-- be either A) in an even numbered register, or B) "next to" parm
-- Y. If the programmer uses an instruction like MOVLp here, he is
-- assuming too much about the generaed code; his program is
-- erroneous. On the other hand, the use of x'ADDRESS does guarantee
-- that the instruction will use X even when this routine is inline

APPENDIX F TO MIL-STD-I815A

TwoFormaz' (MOVL, (Symbolic_Value, x'ADDRESS), (Reg, G6);
Two .ormat' (MOV, (SymbolicValue, x'ADDRESS), (Reg, G6));
TwoFormat' (MOV, (Symbolic-Value, y'ADDRESS), (Reg, G7));
TwoFormat' (MOV, (SymbolicValue, z'ADDRESS), (Reg, G8));
ThreeFormat' (ADDI, (Symbolic_Value, x'ADDRESS), (Reg, G8), (Reg, Gl));

ThreeFormat' (MULI,
(Reg, G7),
(SymbolicValue, y'ADDRESS),
(Reg, G12));

-Note the use of a complicated Ada object i this instruction.
TwoFormat' (ST,

(Reg, G12),
(SymbolicAddress, azy(l)ADDRESS))

-In this instruction, note that ary(1)ADDRESS is NOT kept in a
-recister and is thus NOT a legal source for XORp. That's OK,
-because the compiler can fix it up for the user.

Three Format' (XORi, (Symbolic -Value, ary(l)'ADDRESS),
(SymbolicValue, aryMI)ADDRESS), (Reg, G12));

TwoFormat' (ST,
(Reg, G12),
(SymbolicAddress, ary(3)'ADDRESS));

Two Format' (ST,
(Reg, G12),
(SymbolicAddress, ary(x) 'ADFrPZSS));

TwoFormat' (ST,
(Reg, GO),
(SymbolicAddress, own var'ADDRESS));

TwoFormat' (LDA,
(SymbolicValue, own-var'ADDRESS),
(Reg, G147);

One -Format' (CALLX, (Symbolic-Address, inline into me'ADDRESS));
end mach test;
oragma inline(nach-test);

procedure mtestl(first, second, third: in integer; fourth: out ary type) is
begin

-Note the use of fourth(1)'ADDRESS as the destination of the MOV
-instruction. The compiler will understand that the user "really
-wanted" something moved to fourth(1)'ADDRESS, and will make sure
-that the b-Its get there. The compiler does NOT assume that it
-- knows enough to second guess the user's choice of instructions.
-we generate the MOV, followed by a store to memory.

Two Format' (MOV,
(Symbolic Value, First'Address),
(Symbolic-Address, fourth(l) ADDRESS));

end mtesti;

procedure inline-into me is
array!l ary_type := (1, 2, 3, 4);

begi-n
if arrayl(3) >= 0 then

-note Chat mach-test is inline expanded
mach test(22, 41, arrayl(4), arrayl);

else
-- but mtest is not at Op=2 (No praoimp inline)
mtestl(1,, 2, 3, arrayl);

USER MANUAL FOR TARTAN ADA VMS 960

en~d inllne lntc-me;

end mtest;

APPENDIX PTO MIL-STD-1915A

Assembly code output:
0 Generated from USER0l: [SMITH]MTEST.ADB;l
by TARTAN Ada Compiler VMS 80960MC, Version Pre-Release

.data

.align 2
ADA.OWN: .space 4

.al-4gn 2
ADA.GIOBAL: .space 1

.globl xxmtest~inline -into-me$QO

.globl xxmtest$declare

.globl xxmtest~body

.seto own varSOO,ADA.OWN,O
.g'iobl xxmtestSinline into meSgotoSOO

.seco xxmtest$irnline_ir., o me~gotoSOO,ADA.GLOBAL,O

.text

.align 4

xxmtest~inline into '5me$OO:
mov -O,r3

st sp,40(sp)
ida 40(sp),sp
st gl2,1OO(fp)
Ida .Ll9,r3

mov 1,g13 # line 74

st gl3,80(fp)
mov 2,g13
st g13,84(fp)
mov 3,gl3
st g13,88(fp)
mov 4,gl3
st gl3,92(fp)
ldq 80(fp),g4
stq g4,64(fp)
ld 72(fp),gl3 # line 76

cmpi.bg O,gl3, .L17 ne7
id 76(fp),gI3 7

M ov 22,r4
addo 31,10,r5
Mov g!3,rE

'a 64(fp),r8B
rmovi r4,g6

Irv r4,g6
mov r5,g7

ov r6,98
addi r4,g8,gl
mull g7,r5,gl2
st gl2,96(fp)
Id 96(fp),g!3

t g13, (r8)
Id 4(r8),r
xor gl3,r7,g12
st gl2,8(rB)
subi l,r4,g13 *line 46

cro o13.3

USER MANUAL FOR TARTAN ADA VMS 960

fa,.tc
st g12,-4(r8) [r4*4!,

st gO,ADA.OWN,
da ADA.0WN,g14

calix xxmtest~inline into meSOO
o .LI9 # line 76

.L!-7: mov !,go # line 81

mov 2,c'
mov 3,g2
aa 64(ffp),g3

oai rntest'lSOO

'd 100(fp),gl2

ret

f Total tytes of code in the above routine =216

.align 4

mach-testS0C:
mov C,r3

st sp 8 (sp)
audo 8,spsp
st g12,68(fp)

.-a L2!,r3

.movi gO,g6
mov gO,g6
mov gi, g7

mov g2,g8
addi gC'g8,gl
mull- g7,gi,g22
st gl2,r,4(fp)
id 64(fp),gl3
st g13, (g3)

Id 4(g3),g5
xor gl3,gS,g12

st g!2,8(g3)
subi i,gO,gl3 *line 46

C.mpo g13,3

st aq2 2,-4 (c3)igO'41
st go, ADA.OWN
ca A"DA.0WN,g14

ca-..x xxmtestSinline into meCZO

68(fp),g2

ret

*Total oytes of code 4-n the acove routine =124

.alian 4

mv g-4,g4
Mov 0,914

mov q0,g13
st g13, (g3)

APPENDX F TO MIL-STD-1815A

Total oytes of code in the above routine = 20

.align 4

xxmtestSdeclare:

stob g!4,ADA.GLOBAL

ret

* Total bytes of code in the aoove routine = 12

.align 4

xxmtestSbody:

not 0,g13 # line 5

st g3,ADA.OWN
mov l,g13
stob g13,ADA.GLOBAL

ret

Total bytes of coce in the above routine = 28

.text

.align 2
*align 2

Total bytes of code = 400
Total bytes of data = 5

