
REPORT DOCUMENTATION PAGE _OM.___,_,

Hmt 0"b HI~w y. ft 1 4. k" . VA =M 4 Z f~lto 09W atlk o/nl ftlon w Wl Ro sm ftln Olfteradd
a w 'ol"f*frN " w m m " " %cf ' w wm " "*

1a~. , l11111 Nl 111111111111 11111111111111 -kT 3.R PR-Y EA DD T SC0VE -V
A Final: 09 Jan 1991 to 01 March 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Tartan Inc., Tartan Ada VMS/1 750A, Version 4.0, VAXstation 3200 (Host) to Texas
Instruments STL(Target), 90121311.11119

6. AUTHOR(S)
IABG-AVF C
Ottobrunn, Federal Republic of Germany 1 71L E CT E 1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(, j. 8. PERFORMING ORGANIZATION
IABG-AVF, Industrieanlagen-Betriebsgeselschaft CI REPORT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 078
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Departi'rnt of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-30'1
11. SUPPLEMENTARY NOTES-

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Tartan Inc., Tartan Ada VMS/1 750A, Version 4.0, Ottonbrunn, Germany, VAXstation 3200 (Host) to Texas Instruments
STL (Target_. ACVC 1.11.

91-03864

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICE_____

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIIMIL-STD-1815A, AJPO. 16. PRICE COOE

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Si. 239-128

03

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on December 13, 1990.

Compiler Name and Version: Tartan Ada VMS/1750A Version 4.0

Host Computer System: VAXstation 3200 VMS 5.2

Target Computer System: Texas Instruments STL VHSIC 1750A

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
90121311.11119 is awarded tc, Tartan Inc. This certificate expires on
1 March, 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Ada Vri a 0yo Organization Dvso ia .

Dire tor, o puter & Software Engineering Division
Institute or Defense Analyses oTx" O Il
Alexandria VA 22311 VTill

________________ ltribt lon f

'-(da cint Program Office .Distribution/

Dr. John Solomond, Director
Department of Defense . 1jAval and/er
Washington DC 20301 DIst I Special

AVF Control Number: IABG-VSR 078

9 January, 1991

== based on TEMPLATE Version 90-08-15 ==

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 90121311.11119
Tartan Inc.

Tartan Ada VMS/1750A Version 4.0
VAXstation 3200 => Texas Instruments STL

VMS 5.2 VHSIC 1750A

Prepared By:
IABG, ABT. ITE

DECLARATION OF CONFORMANCE

Customer: Tartan, inc.

Certificate Awardee: Tartan, Inc.

Ada Validation Facility: LABG

ACVC Version: 11

Ada Implementation:

Ada Compiler Name and Version: Tartan Ada VMS/1750A Version 4.0

Host Compiler System: VAXstation 3200 VMS 5.2

Target* Computer System: Texas Instruments STL VHSIC 1750A

Declarat on:

[/we] the undersigned, declare that [I/we] have no knowledge of delbDceate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed above.

CustomerSignuDate:
Customer Signature

TABLE OF CONTENTS

t..HAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 A.'VC TEST CLASSES 1-2
1. DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to ;he Ada
Validation Procedures (Pro90] against the Ada Standard [Ada83] using the

current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current

ACVC User's Guide [UG89].

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552) . The results of this validation apply
only to the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and co-nplete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of

this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service

5285 Port Royal Road
.pr4ngfield VA 22161

Questions reg'r .ng this report or the validation test results should be
directed tc t.he .VF which performed this validation or to:

Ada Validation Organization

Institute for Defense Analyses
1301 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Proqramming LanquaQe,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro90) Ada Comoiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes-,
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRTl3,
and the procedure CHECKFILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK_FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. hre operation of REPORT and CHECKFILE is checked by a set of
executable -ests. If these units ace not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In sonte tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and implementation-
dependent characteristics. The modifications required for this
implementation are described in Section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see Section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and EUG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or

user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

Conformity Fulfillment by a product, process or service of all

requirements specified.

1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an agreemnenc

with an AVF which specifies the. terms and conditions for r.

services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity

Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed

System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation. I

Operating Software that controls the execution of programs and that
System provides services such as resotrce allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.

Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming langua'e and of issuing a certificate for
this implementation.'

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is November 21, 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45E51A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B ADlBO8A BDlB02B BDlB06A BD2AO2A
CD2A2lE CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2Bl5C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE1411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations requiring more

digits than SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)

C35706F..Y (20 tests) C35707F..Y (20 tests)

C35708F..Y (20 tests) C35802F..Z (21 tests)

C45241F Y (20 tests) C45321F..Y (20 tests)

C45421F..Y (20 tests) C45521F..Z (21 tests)

C45524F..Z (21 tests) C45621F..Z (21 tests)

C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORTINTEGER:

C35404B B36105C C45231B C45304B C45411B

C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or SHORTINTEGER.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a name
other than FLOAT, LONGFLOAT, or SHORTFLOAT.

A35801E checks that FLOAT'FIRST. .FLOAT'LAST may be used as a range constraint
in a floating-point type declaration; for this implementation, that range
exceeds the range of safe numbers of the largest predefined floating-point
type and must be rejected. (see 2.3.)

C45531M. .P (4 tests) and C45532M. .P (4 tests) check fixed-point operations
for types that require a SYSTEM.MAXMANTISSA of 47 or greater; for this
implementation, there is no such type.

C45536A, C46013B, C4603iB, C46033B, and C46034B contain 'SMALL
representation clauses which are not powers of two or ten.

C45624A and C45624B are not applicable as MACHINEOVERFLOWS is TRUE for
floating-point types.

D64005G is inapplicable because this implementation does not support nesting
17 levels of recursive procedure calls.

B86001Y checks for a predefined fixed-point type other than DURATION.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

2-2

IMPLEMENTATION D.EPENDENCIES

CA2009A, CA2009C. .D (2 tests) , CA2009F and BC3009C instantiate generic units
before their bodies are compiled; this implementation creates a dependence on
generic units as allowed by AI-00408 & AI-00506 such that the compilation of
the generic unit bodies makes the instantiating units obsolete. (see 2.3.)

CD2A53A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten type'small; this implementation does not support
decimal smalls. (see 2.3.)

CD2A84A, CD2A84E, CD2A84I. .J (2 tc-sts), and CD2A840 use representation
clauses specifyinq non-default sizes for access types.

CD2B15B checks that STORAGE_-ERROR is raised when the storage size specified
for a collection is too small to hold a single value of the designated type;
this implementation allocates more space than what the length clause
specified, as allowed by AI-00558.

The following 264 tests check for sequential, text, and direct access files:

CE2102A. .C (3) CE21O2G. .H (2) CE2102K CE2lO2N. .Y (12)
CE2lO3C. .D (2) CE2104A. .D (4) CE2lO5A. .B (2) CE2106A. .B (2)
CE21O7A. .H (8) CE2107L CE2lO8A. .H (8) CE2lO9A. .C (3)
CE21IIOA. .D (4) CE2lllA.I. (9) CE2115A. .B (2) CE2l2OA. .B (2)
CE22OlA. .C (3) EE22OlD. .E (2) CE22OlF. .N (9) CE2203A
CE2204A. .D (4) CE2205A CE2206A CE2208B
CE24OlA. .C (3) EE2401D CE24OlE. .F (2) EE24OlG
CE24O1H. .L (5) CE2403A CE2404A. .B (2) CE2405B
CE2406A CE2407A. .B (2) CE2408A. .8 (2) CE2409A. .8 (2)
CE241OA. .B (2) CE2411A CE31O2A. .C (3) CE31O2F. .1 (3)
CE31O2J. .K (2) CE3103A CE31O4A. .C (3) CE3lO6A. .B (2)
CE3107B CE31O8A. .8 (2) CE3109A CE3110A
CE3111A. .B (2) CE312.1D. .E (2) CE31l2A. .D (4) CE3114A. .B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C. .D (2) CE3403A. .C (3)
CE3403E. .F (2) CE3404B. .D (3) CE3405A EE3405B
CE3405C. .D (2) CE3406A. .D (4) CE3407A. .C (3) CE3408A. .C (3)
CE3409A CE3409C. .E (3) EE34O9r CE3410A
CE341OC. .E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A. .C (3) CE3414A
CE3602A. .D (4) CE3603A CE3604A. .B (2) CE36OSA. .E (5)
C!3EO6A. .8 (2) CE3704A. .F (6) CE3704M. .0 (3) CE37O5A,.E (5)
CE3706D CE37OEF. .G (2) CE3804A. .P (16) CE38OSA. .B (2)
CE3806A. .8 (2) CE3806D. .E (2) CE3806G. .H (2) CE3904A. .B (2)
CE3905A. .C (3) CE3905L CE3906A. .C (3) CE39OEE. .F (2)

CE2103A, CE2103B and CE3107A require NAME_-ERROR to be raised when an attempt
is made to create a file with an illegal name; this implementation does not
support external files and so raises USEERROR. (see 2.3.)

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see Section 1.3) were required for 103 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24007A B24009A B25002B B32201A B33204A
B33205A B35701A B36171A B36201A B37101A B37102A
B37201A B37202A B37203A B37302A B38003A B38003B
B38008A B38008B B38009A B38009B B38103A B38103B
B38103C B38103D B38103E B43202C B44002A B48002A
B48002B B48002D B48002E 548002G B48003E B49003A
B49005A B49006A B49006B B49007A B49007B B49009A
E4AO10C B54A20A B54A25A B58002A B58002B B59001A
B59001C B590011 B62006C B67001A B67001B B67001C
B67001D B74103E B74104A B74307B B83EO1A B83E01B
B85007C B85008G B85008H B91004A B91005A B95003A
B95007B B95031A B95074E BC1002A BC1109A BC1109C
BC1206A BC2001E BC3005B BD2AO6A BD2BO3A BD2DO3A
BD4003A BD4006A BD8003A

E2"8002B was graded inapplic.tble by Evaluation and Test Modification as
directed by the AVO. This test checks that pragmas may have unresolvable
arguments, and it includes a check that pragma LIST has the required effect;
but for this implementation, pragma LIST has no effect if the compilation
results in errors or warnings, which is the case when the test is processed
without modification. This test was also processed with the pragmas at lines
46, 58, 70 and 71 commented out so that pragma LIST had effect.

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO; the compiler rejects the use of the range FLOAT'FIRST..FLOAT'LASTas the
range constraint of a floating-point type declaration because the bounds lie
outside of the range of safe numbers (cf. LRM 3.5.7(12)).

Tests C45524A..E (5 tests) were graded passed by Test Modification as
directed by the AVO. These tests expect that a repeated division will result
in zero; but the standard only requires that the result lie in the smallest
safe interval. Thus, the tests were modified to check that the result was
within the smallest safe interval by adding the following code after line
141; the modified tests were passed:

ELSIF VAL <= F'SAFESMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

C83030C and C86007A were graded passed by Test Modification as directed by
the AVO. These tests were modified by inserting "PRAGMA ELABORATE (REPORT);"
before the package declarations at lines 13 and 11, respectively. Without the
pragma, the packages may be elaborated prior to package report's body, and
thus the packages' calls to function Report. IdentInt at lines 14 and 13,
respectively, will raise PROGRAMERROR.

2-4

IMPLEMENTATION DEPENDENCIES

B83E01B was graded passed by Evaluation Modification as directed by the AVO,

This test checks that a generic subprogram's formal parameter names (i e.

both generic and subprogram formal parameter names) must be distinct; the

duplicated names within the generic declarations are marked as errors,

whereas their recurrences in the subprogram bodies are marked as "optional"

errors--except for the case at line 122, which is marked as an error. This
implementation does not additionally flag the errors in the bodies and thus

the expected error at line 122 is not flagged. The AVO ruled that the

implementation's behavior was acceptable and that the test need not be split

(such a split would simply duplicate the da-e in B83EOlA at line 15).

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C were graded iftapplicable

by Evaluation Modification an directed by the AVO. These tests instantiate

generic units before those units' bodies are compiled; this implementation

creates dependences as allowed by AI-00408 & AI-00506 such that the

compilation of the generic unit bodies makes the instantiating units

obsolete, and the objectives of these tests cannot be met.

BC3204C and BC3205D were graded passed by Processing Modification as directed

by the AVO. These tests check that instantiations of generic units with

unconstrained types as generic actual parameters are illegal if the generic

bodies contain uses of the types that require a constraint. However, the

generic bodies are compiled after the units that contain the instantiations,

and this implementation creates a dependence of the instantiating units on

the generic units as allowed by AI-00408 & AI-00506 such that the compilation

of the generic bodies makes the instantiating units obsolete--no errors are

detected. The processing of these tests was modified by compiling the

seperate files in the following order (to allow re-compilation of obsolete

units), and all intended errors were then detected by the compiler:

BC3204C: CO, Cl, C2, C3M, C4, C5, C6, C3M

BC3205D: DO, D2, DIM

BC3204D and BC3205C were graded passed by Test Modification as di.ected by

the AVO. These tests are similar to BC3204C and BC3205D above, except that

all compilation units are contained in a single compilation. For these two

tests, a copy of the main procedure (which later units make obsolete) was

appended to the tests; all expected errors were then detected.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the

AVO. The test contains a specification of a power-of-ten value as small for

a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal

smalls may be omitted.

2-5

IMPLEMENTATION DEPENDENCIES

AD9001B and AD9004A were graded passed by Processing Modification as directed

oy the AVO. These tests check that various subprograms may be intexfaced to

external routines (and hence have no Ada bodies) . This implementation

requires that a file specification exists for the foreign subprogram bodies.

The following command was issued to the Librarian to inform it that the

foreign bodies will be supplied at link time (as the bodies are not actually

needed by the program, this command alone is sufficient:

ALl7> interface/system AD9004A

CE2103A, CE2103B and CE3107A were graded inapplicable by Evaluation

Modification as directed by the AVO. The tests abort with an unhandled

exception when USEERROR is raised on the attempt to create an external file.

This is acceptable behavior because this implementation does not support

external files (cf. AI-00332).

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see*,

Mr Ron Duursma

Director of Ada Products

Tartan Inc.

300, Oxford Drive,
Monroeville, PA 15146,

USA.

Tel. (412) 856-3600

For a point of contact for sales information about this Ada implementation

system, see:

Mr Bill Geese

Director of Sales

Tartan Inc.
300, Oxford Drive,

Monr:eville, PA 15146,

USA.

Tel. (412) 856-3600

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized tess suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, "he Ada Implementation fails the ACVC (Pro90].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
cbtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3472
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 66
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of In. plicable Tests 615 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

The above number of I/O tests were not processed because this implementation
does not support a file system. The above number of floating-point tests were
not processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in Section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in Section 2.1 had been withdrawn because of test
errors. The AVF determined that 615 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 285 executable tests that use floating-point precision
exceeding that supported by the implementation and 264 executable tests that
use file operations not supported by the implementation. In addition, the
modified tests mentioned in Section 2.3 were also processed.

A Magne-ic Tape Reel containing the customized test suite (see Section 1.3)
was taken on-site by the validation team for processing. The contents of the
tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Tne tests were compiled and linked on the host computer system, as
approoriate. The executable images were transferred to the target computer
system by the communications link, an RS232 interface, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of

the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFORMATION

options used for compiling:

/replace forces the compiler to accept an attempt to compile a unit
imported from another library which is normally prohibited.

/nosave-source suppresses the creation of a registered copy of the source
code in the library directory for use by the REMAKE and MAKE
subcommands.

/list=always forces a listing to be produced, default is to only produce
a listing when an error occurs.

No explicit Linker options were used.

Test output, compiler and linker listings, and job logs were captured on
Magnetic Tape Reel and archived at the AVF. The listings examined on-site by

the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG893. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms cf the maximum input-line length, which is
the value for $MAX_-IN_-LEN--also listed here. These values are expressed
here as Ada string aggregates, w~here "Vt represents the maximum input-line
length.

Macro Parameter Macro Value

$BTG_IDi (1. .V-l => 'A', V => '1')

$BIG_1D2 (1. .V-l => 'A', V => '2')

$BIGID3 ('L..V/2 => 'A') & '3' &
(1. .V-1-V/2 => 'A')

$BIG_1D4 (1. .V/2 => 'A') & '4' &
(1. .V-l-V12 => 'A')

$BIGINTLIT (1. .V-3 => '0') & "298"1

$BIGREALLIT (1. .V-5 => '0') & "1690.0"1

$BIGSTRINGI'" & (I V/2 => 'A') & roll

$BIG_STRING2 ''& (l..V-1-V/2 => 'A') & '1' & Il

$BLANKS (1..V-20 =>'

$MAX LEN INTBASEDLITERAL

$MAX L-EN REALBASED_-LITERAL
"116:"1 & (1. .V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL "CCCCCCCCIOCCCCCCCC2000CCCCCC3OCCCCCCCC4OC
CCCCCCC5OCCCCCCC60CCCCCCCC7OCCCCCCCC8OCCCCCCCC9OCCCCCCC100CCCC
CCC11OCCCCCc2OCCCCCCC11OCCCCCCC14OCCCCCCC150CCCCCCCl6OCCCCCCC
170 CCCCCC18 OCCCCCCC1.9OCCCCCCC200CCCCCCC21OCCCCCCC22OCCCCCCC23O
CCCCC23 8"

A-1.

MACRO PARAMETERS

The follo~iing table lists all of the other macro parameters and their

respective values.

Macro Parameter Macro Value

$MAXINLEN 240

$ACCSIZE 16

$ALIGNMENT 1

SCOUNTLAST 32766

$DEFAULT MEM SIZE 65536

SDEFAULTSTORUNIT 16

SDEFAULTSYSNAME MILSTD_1750A

SDELTADOC 2#1.0#E-31

$ENTRYADDRESS SYSTEM.ADDRESS' (16#0000_OOOD#)

SENTRY ADDRESS1 SYSTEM.ADDRESS' (16#0000_OOOE#)

SENTRYADDRESS2 SYSTEM.ADDRESS' (16#0000_OOOF#)

$FIELDLAST 20

$FILE-TERMINATOR f'

SFIXEDNAME NOSUCHTYPE

$F'LOATNAME NOSUCHTYPE

$RMSTRINGoff I

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"I

$GREATERTHANDURATION
100_000.0

$GREATER THANDURATIONBASELAST

131_073.0

SGREATERTHA-NFLOATBASELAST
1. 80141E4-38

$GREATERTHANFLOATSAFELARGE

1. 7014111E+38

A-2

MACRO PARAMETERS

SGREATERTHANSH0RIFLOATSAFELARGE
1 .7014111E+38

$HIGHPRIORITY 200

$ ILL-EGALEXTERNALFILEINAME1

ILLEGALEXTERNALFILENAMEl

SILLEGALEXTERNALFILENAME2

ILLEGALEXTERNALFILENAME2

$ INAPPROPRIATEL NELENGTH

-1

S INAPPROPRIATEPAGELENGTH
-1

SINCLUDEPRAGMAl "PRAGMA INCLUDE ("A28006D1.TST")"

$INCLUDEPRAGMA2 "PRAGMA INCLUDE ("B28006Fl.TST")'

SINTEGERFIRST -32768

$INTEGER-LAST 32767

SINTEGERLASTPLUS_1 32768

$ INTERFACELANGUAGE CLink

S$'SSIHANDURA.TION -100_000.0

SLESSTHANDURATIONBASEFIRST

-131_073.0

$LINE TERMINATOR I

$LOWPRIORITY 10

$MACHINECODESTATEMENT

Two Opnds' (LR, (R-am,RO), (R-am,Rl));

SMACHINECODE TYPE InstructicnMnemonic

SMANTISSA-DOC 31

$MAXDIGITS 9

$M.X INT2147483647

$MAXINTPLUS 1 2147483648

$MIN INT -2147483648

A-3

MACRO PARAMETERS

$NAME NOSUCHTYPEAVAILABLE

SNAMETLIST MILSTD_1750A

$NAMESPECIFICATIONi DUA2: (ACVC11.1750A.TESTBED]X2120A. ;1

$NAMESPECIFICATION2 DUA2: [.CV11.1750A.TESTBED)X2120B. ;2

SNAME SPECIFICATION3 DUA2: (ACVC11.1750A.TESTBEDJX3119A.;l

$NEGBASEDINT 16#FFFFFFFE#

SNEWMEMSIZE 1048576

SNEWSTORUNIT 16

SNEWSYSNAME MILSTD_1750A

SPAGETERMINATOR f

$RECORDDEFINITION record operation: InstructilonMnemonic;

Operand -1: Operand; Operand-2: Operand;

end record;

SRECORD NAME Two Opnds

STASKSiZE 16

$TASKSTORAGESIZE 1024

STICK 0.0001

$VARIABLEADDRESS SYSTEM.ADDRESS' (16*0000_0004*)

$VARIABLEADORESSi SYSTEM.ADDRESS' (16*0000_0005#)

$VARIABLEADDRESS2 SYSTEM.ADDRESS' (16*0000_0006*)

SYOURPRAGMA NOSUCHPRAGMA

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-i

Compilation swtiches for Tardan Ada VMS 1750A.

/1750A Invoke the cross compiler targeted to MIL-STD-1750A
computer. This qualifier is mandatory to invoke the
1750A-targeted compiler.

/CROSS-REFERENCE
/NOCROSS_REFERENCE [default]

Controls wuather the compiler generates cross-
reference information in the object code file to be
used by the TXREF tool (see Section 4.6). This
qualifier may be used only with the Tartan Tool Set.

/DEBUG
/NODEBUG [default] Controls whether debugging information is included in

the object code file. It is not necessary for all
object modules to include debugging information to
obtain a linkable image, but use of this qualifier is
eacouraged for all compilations. No significant
execution-time penalty is incurred with this
qualifier.

/ERRORLIMIT=n Stop compilation and produce a listing after n errors
are encountered, where n is in the range 0..255. The
default value for n is 255. The /ERROR LIMIT
qualifier cannot be negated.

/FIXUP[=option] When package MACHINECODE is used, controls whether
the compiler attempts to alter operand address modes
when those address modes are used incorrectly. The
available options are:

QUIET The compiler attempts to generate
extra instruction" to fix incorrect
address modes in the array ag-
gregates operand field.

WARN The compiler attempts to generate
extra instructions to fix incorrect
address modes. A warning message is
issued if such a ''fixup'' is
required.

NONE The comp,6ler does not attempt to fix
any machine code insertion that has
incorrect address modes. An error
message is issued for any machine
code insertion that is incorrect.

When no form of this qualifier is supplied in the
co and line, the default condition is /FIXUP=QUIET.
For =ore information on machine code insertions,

2

refer to Section 5.10 of this manual.

/LIBRARY=library-name Specifies the library into which the file is to be
compiled. The compiler reads any ADALIB.INI files in
the default directory.

/LIST [=option]
/NOLIST Controls whether a listing file is produced. If

produced, the file has the source file name and a
.LIS extension. The available options are:

ALWAYS Always produce a listing file
NEVER Never produce a listing file,

equivalent to /NOLIST
ERROR Produce a listing file only if a

compilation error or warning occurs

When no form of this qualifier is supplied in the
command line, the default condition is /LIST=ERROR.
When the LIST qualifier is supplied without an
option, the default option is ALWAYS.

/MACHINECODE [=option]
Controls whether the compiler produces an assembly
code file in addition to an object file, which is
always generated. The assembly code file is not
intended to be input to an assembler, but serves as
documentation only. The available options are:

NONE Do not produce an assembly
code file.

INTERLEAVE Produce an assembly code file
which interleaves source code
with the machine code (see
Section 4.5.4). Ada source
appears as assembly language
comnnts.

NOINTERLEAVE Produce an assembly code file
without interleaving.

When no form of this qualifier is supplied in the
command line, the default option is NONE. Specifying
the MACHINECODE qualifier without an option is
equivalent to supplying /MACHINECODE=NOINTERLEAVE.

/NODOUBLESTORE Causes the compiler to emit two single store
instructions instead of a single double store
instruction.

/NOENUMIMAGE Causes the compiler to omit data segments with the
text of enumeration literals. This text is normally
produced for exported enumeration types in order to
support the text attributes ('IMAGE, 'VALUE and

3

'WIDTH). You should use /NOENUMIMRGE only when you
can guarantee that no unit that will import the
enumeration type will use any of its text attributes.
However, if you are compiling a unit with an
enumeration type that is not visible to other
compilation units, this qualifier is not needed. The
compiler can recognize when the text attributes are
not used and will not generate the supporting
strings. This qualifier is intended to reduce the
size of execution images for embedded systems. The
/NOENUMIMAGE qualifier cannot be negated.

/OPT=n Controls the level of optimization performed by the
compiler, requested by n. The /OPT qualifier cannot
be negated. The optimization levels available are:

n = 0 Minimum - Performs context deter-
mination, constant folding, al-
gebraic manipulation, and short
circuit analysis. Inlines are not
expanded.

n = 1 Low - Performs level 0 optimizations
plus common subexpression elimina-
tion and equivalence propagation
within basic blocks. It also
optimizes evaluation order. Inlines
are not expanded.

n - 2 Best tradeoff for space/time - the
default level. Performs level 1
optimizations plus flow analysis
which is used for common subexpres-
sion elimination and equivalence
propagation across basic blocks. It
also performs invariant expression
hoisting, dead code elimination, and
assignment killing. Level 2 also
performs lifetime analysis to im-
prove register allocation. It also
performs inline expansion of sub-
program calls indicated by Pragma
INLINE, if possible.

n = 3 Time - Performs level 2 optimiza-
tions plus inline expansion of
subprogram calls which the optimizer
decides are profitable to expand
(from an execution time perspec-
tive). Other optimizations which
improve execution time at a cost to
image size are performed only at
this level.

4

/PHASES
/NOPHASES [default] Controls whether the compiler announces each phase of

processing as it occurs. These phases indicate
progress of the compilation. If there is an error in
compilation, the error message will direct users to a
specific location as opposed to the more general
/PH&SES.

/REFINE
/NOREFINE [default] Controls whether the compiler, when compiling a

library unit, determines whether the unit is a
refinement of its previous version and, if so, does
not make dependent units obsolete. The default is
/NOREFINE.

/REPLACE Forces the compiler to accept an attempt to compile a
unit imported from another library which is normally
prohibited.

/SAVESOURCE [default]
/NOSAVESOURCE Suppresses the creation of a registered copy of the

source code in the library directory for use by the
REMAKE and MAKE subcomnands to AL17.

/SUPPRESS[=(option, ...)]
Suppresses the specific checks, identified by the
options supplied. The parentheses may be omitted if
omly one option is supplied. The /SUPPRESS qualiil1.r
has the same effect as a global pragma SUPPRESS
applied to the source file. If the source program
also contains a pragma SUPPRESS, then a given check
is suppressed if either the pragma or the qualifier
specifies it; that is, the effect of a pragma
SUPPRESS cannot be negated with the cosmmand line
qualifier. The /SUPPRESS qualifier cannot be
negated.

The available options are:

ALL Suppress all checks.
This is the default if
the qualifier is sup-
plied with no option.

ACCESSCHECK As specified in " Ada
LRM, Section 11.,.

CONSTRAINT-CHECK Equivalent of
(ACCESS CHECK,
INDEXCHECK,
DISCIEMINANT CHECK,
LENGTH CHECK,
RANGE-CHECK).

5

DISCRIMINANT CHECK As specified in the Ada
LRM, Section 11.7.

DIVISIONCHECK Will suppress compile-
time checks for divi-
sion by zero, but the
hardware aoes not per-
mit efficient runtime
checks, so none are
done..

ELABORATIONCHECK As specified in the Ada
LRM, Section 11.7.

INDEXCHECK As specified in the Ada
LRM, Section 11.7.

LENGTHCHECK As specified in the Ada
LRM, Section 11.7.

NONE No checks are
suppressed.

This is the
default if the
qualifier is
not supplied on
the command
line.

OVERFLOWCHECK Will suppress compile-
time checks for over-
flow, but the hardware
does not permit ef-
ficient runtime checks,
so none are done.

RANGE CHECK As specified in the Ada
LR, Section 11.7.

STORAGE CHECK As specified in the Ada
LRM, Section 11.7.
Suppresses only stack
checks in generated
code, not the checks
made by the allocator
as a result of a new
operation.

/SYNTAXONLY Parses a unit and reports syntax errors, then stops
compilation without entering a unit in the library.

/WARNINGS [default]
/NOWARNINGS Controls whether the warning messages generated by

the compiler are displayed to the user at the

6

terminal and in.&a listing file, if produced. While
supressing warning massages also halts display of
informational mossages, it does not suppress Error,
FatalError.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

* Linker switches for VMS hosted Tartan Ada compilers.

COMMAD QUALIFIERS

This section describes the co -and qualifiers available to a user who directly
invokes the linker. The qualifier names can be abbreviated to unique
prefixes; the first letter is sufficent for all current qualifier names. The
qualifier names are not case sensitive.

/CONTROL=file The specified file contains linker control commands.
Only one such file may be specified, but it can
include other files using the CONTROL command. Every
invocation of the linker must specify a control file.

/OUTPUT=file The specified file is the name of the first output
object file. The module name for this file will be
null. Only one output file may be specified in this
manner. Additional output files may be specified in
the linker control file.

/ALLOCATIONS Produce a link map showing the section allocations.

/UNUSEDSECTIONS Produce a link map showing the unused sections.

/SYMBOLS Produce a link map showing global and external
symbols.

/RESOLVEMODULES This causes the linker to not perform unused section
elimination. Specifying this option will generally
make your program larger, since unreferenced data
within object files will not be eliminated. Refer to
Sections RESOLVECMD and USEPROCESSING for infor-
mation on the way that unused section elimination
works.

/MAP Produce a link map containing all information except
the unused section listings.

Note that several listing options are permitted. This is because link maps
for real systems can become rather large, and writing them consumes a
significant fraction of the total link time. Options specifying the contents
of the link map can be combined, in which case the resulting map will contain
all the information specified by any of the switches. The name of the file
containing tne link map is specified by the LIST command in the linker control
file. If your control file does not specify a name and you request a listing,
the listing will be written to the default output stream.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
Chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of this
Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this Appendix
are to compiler documentation and not to this report. The package STANDARD is
presented in this implementation's Appendix F on page 5-11.

C-i

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to the LRM which is Military Standard, Ada Programming
Language, ANSI/MIL-STD-1815A (American National Standards Institute, Inc., February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas
This section summarizes the effects of and restrictions on predefined pragmas.

" Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHECKED.DEALLOCATION will be reused by the allocation of new
objects.

" Pragma ELABORATE is supported.

" Pragma INLINE is supported..

" Pragma INTERFACE is supported. It if assumed that the foreign code interfaced adheres to Tartan Ada
calling conventions as well as Tartan Ada parameter passing mechanisrs. A,:y other Language-Name
will be accepted, but ignored, and the default will be used.

* Pragma LIST is supported but has the intended effect only if th. command qualifier LIST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Pragna MEMORYSIZE is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

" Pragma OPTIMIZE is supported except when at the outer level (that is, in a package specification or
body).

" Pragma PACK is supported.

" Pragma PAGE is supported but has the intended effect only if the command qualifier LIST-ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

" Pragmna PRIORITY is supported.

" Pragma STORAGEUNIT is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

" Pragma SHARED is not supported. No warning is issued if it is supplied.

" Pragma SUPPRESS is supported.

" Pragma SYSTEMNAME is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

5-1

USER MA{AL FOR TARTAN ADA VMS 1750A

5.1.2.1. Pragma LINKAGENAME

The pragma LINKAGE NAME associates an Ada entity with a string that is meaningful externally; e.g., to a
linkage editor. It takes the form

pragma LINKAGENAME (Ada-simple-name, string-constant)
The Ada-simple-name must be the name of an Ada entity declared in k package specification. This entity must be
one that has a runtime representation; e.g., a subprogram, exception or object. It may not be a named number or
string constant. The pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

This pragma has no effect when applied to a library subprogram or to a renames declaration; in the latter case,
no warning message is given.

When determining the maximum allowable length for the external linkage name, keep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name has 5 fewer significant characters than the lower limit of other tools that need to process
the name (e.g., 40 in the case of the Tartan Linker).

5.1.22. Pragma FOREIGNBODY

In addition to Pragma INTERFACE, Tartan Ada supplies Pragma FOREIGNBODY as a way to access
subprograms in other languages.

Unlike Pragma INTERFACE, Pragma FOREIGNBODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

Some restrictions on Pragma FOREIGNBODY that are not applicable to Pragma INTERFACE are:

" Pragma FOREIGNBODY must appear in a non-generic library package.
" All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
• Types may not be declared in such a package.

Use of the pragma FOREIGNBODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the AL17 FOREIGN command described
in sections 3.3.3 and 9.5.5. The pragma is of the form:

pragma FOREIGNBODY (Languagename C, elaboration routine name])

The parameter Language name is a string intended to allow the compiler to identify the calling convention used
by the foreign module (but this funcuonality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reentrant.

The optional elaboration routine name string argument is a linkage name identifying a routine to initialize
the package. The routine specified as the elaboration routine name, which will be called for the elaboration of
this package body, must be a global routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be gi ien prior to any declarat'ons within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

The foreign body is entirely responsible for initializing objects declared in a package utilizing pragma
FOREIGNBODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

APPENDIX F TO MIL-TD-IS15A

Pragma LINKAGENAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that "Iere are no conflicting link names. If pragma LINKAGE._NAME is
not used, the cross-reference qualifier, /CROSS_REFERENCE, (see Section 4.2) should be used when invoking
the compiler and the resulung cross-reference table of linknames inspected to identify the linknames assigned by
the compiler and determine that there are no conflicting linknames (see also Section 4.6). In the following
example, we want to call a function pixrn which computes polynomials and is written in assembler.

package MATH FUNCTIONS is
pragma FOREIGN BODY ("assembler");
function POLYNOMIAL (X: INTEGER) return INTEGER;

--Ada spec matching the assembler routine
pragma LINKAGENAME (POLYNOMIAL, "plmn");

--Force compiler to use name "plmn" when referring to this
-- function

end MATHFUNCTIONS;

with MATH FUNCTIONS; use MATHFUNCTIONS;
procedure MAIN is
X:INTEGER :- POLYNOMIAL(10);

-- Will generate a call to "plmn"
begin ...

end MAIN;

To compile, link and run the above program, you do the following steps:

1. Compile MATHFUNCTIONS

2. Compile MAIN

3. Obtain an object module (e.g. math. TOF) containing the compiled code for plmn, converted to Tartan
Object File Format (TOFF) using the its to tof f utility (See Object File Udlities, Chapter 4)

4. Issue the command

ALl7 FOREIGNBODY math-functions MATH.TOF

5. Issue the command

AL17 LINK MAIN

Without Step 4, an attempt to link will produce an error message informing you of a missing package body for
MATH FUNCTIONS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada b,,dy without recompiling the specification.

The user can either compile an Ada body into the library, or use the command AL17 FOREIGN (see
Sections 3.3.3 and 9.5.5) to use an Ada body from another library. The Ada body from another library must have
been compiled under an identical specification. The pragma LINKAGE NAME must have been applied to all
entities declared in the specification. The only way to specify the linkname for the elaboration routine of an Ada
body is with the pragma FOREIGNBODY.

5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES

No implementation-dependent attributes are currently supported.

5.3

USER MANUAL FOR TARTAN ADA VMS 1750A

5.3. SPECIFICATION OF THE PACKAGE SYSTEM
The parameter values specified for MIL-STD-1750A in package SYSTEM [LRM 13.7.1 and Annex C] are:

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (MIL STD 1750A);
SYSTEM NAME conStint NAME := MILSTD_1750A;
STORAGE UNIT constant := 16;
MEMORYSIZE constant : 65536;
MAX -NT constant : 2_147_483_647;
MIN INT constant : -MAX INT - 1;
MAXDIGITS constant :, 9;
MAX MANTISSA : constant :- 31;
FINE DELTA : constant := 2#1.0#e-31;
TICK : constant := 0.0001;
subtype PRIORITY is INTEGER range 10 .. 200;
DEFAULTPRIORITY : constant PRIORITY : PRIORITY'FIRST;
RUNTIMEERROR : exception;

end SYSTEM;

5.4. RESTRICTIONS ON REPRESENTATION CLA USES
The following sections explain the basic restrictions for representation specifications followed by additional

restrictions applying to specific kinds of clauses.

5.4.1. Basic Restriction
The basic restriction on representation specifications [LRM 13.1] is that they may be given only for types

declared in terms of a type definition, excluding a generictypedefinition (LRM 12.1) and a
private typedefinition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler, an error message is issued.

Further restrictions are explained in the following sections. Any representation clauses violating those restric-
tions cause compilation to stop and a diagnostic message to be issued.

5.4.2. Length Clauses
Length clauses [LRM 13.2] are, in general, supported. For details, refer to the following sections.

5.4.2.1. Size Specifwations for Types

The rules and restrictions for size specifications applied t" types of various classes are described below.

The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with rugard to feasibility:

An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example

APPENDIX FTO MIL-STD-l815A

type MyEnum is (A, B);
for Myenum'size use 1;
V,W: My_enum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V,W: Myenum;

end record;
pragma Pack(rec);
0: rec; -- will occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing take place
automatically and are transparent to the user.

* Adjacent bits to an object that is a component of a composite object, but whose size is
non-refeable, may be affected by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational sizes in different contexts.

Note: A size specification cannot be used to forcp a certain size in value operations of the type; for
example

type my-int is range 0..65535;
for my int'size use 16; -- o.k.
A,B: myint;

.A + B... -- this operation will generally be
-- executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In contrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

type MY INT is range 0..2**15-1;
for MY _NT'SIZE use 16; -- (1)
subtype SMALLMYINT is MYINT range 0..255;
type R is record

X: SMALLMYINT;

end record;

the component R.X will occupy 16 bits. In the absence of the length clause at (1), R.X may be
represented in 8 bits.

Size specifications for access types must coincide with the default size chosen by the complier for the type.

Size specifications are not supported for floating-point types or task types.

No useful effect can be achieved by using size specifications for these types.

5.42.2. Size Specification for Scalar Types
The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in

the range of the values of the type). For numeric types with negative values the number of bits must a- -ount for
the sign biL No skewing of the representation is attempted. Thus

type my int is range 100..101;
requires at least 7 bits, although it has only two values, while

USER MANUAL FOR TARTAN ADA VMS 1750A

type my_int is range -101..-100;
requires 8 bits to account for the sign bit.

A size specification for a real type does not affect the accuracy of operations on the type. Such influence
should be exerted via the accuracy_definition of the type (LRM 3.5.7, 3.5.9).

A size specification for a scalar type may not specify a size larger than the largest operation size supported by
the target architerture for the respective class of values of the type.

5.4.2.3. Size Specifiwation for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy. Any alignment constraints on the component type (see Section 5.4.7) must be met.

Arrays with component size less than or equal to 16 bits are densely packed. No pad or unused bits exist
between components. Arrays with component size greater than 16 bits are padded up to the next 16-bit bound-
ary. The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5.4.2.4. Size Specification for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types, nor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record or contain relative offsets of components within a
record layout for record components of dynamic size. These implementation-dependent components cannot be
named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.4.2.5. Specification of Collection Sizes
The specification of a collection size causes the collection to be allocated with the specified size. It is

expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGE ERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. No matter what the requested
object size, the allocator must allocate a minimum of 2 words per object. This lower limit is necessary for
administrative overhead in the allocator. For example, a request of 5 words results in an allocation of 5 words; i
request of 1 word results in an allocation of 2 words.

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGEERROR is raised only when the available target memory is exhausted. If a collection size of
zero is sp'ecified, no access collection is allocated.

APPENDIX FTO MIL-STD-1815A

5.42.6. SpecTication of Task Acivaton Size
The specification of a task activation size causes the task activation to be allocated with the specified size. It

is expressed in storage units; refer to package SYSTEM for the meaning of storage units.
Any attempt to exceed the activation size during execution causes a STORAGEERROR exception to be

raised. Unlike collections, there is no extension of task activations.

5.42.7. Specification of' SMALL

Only powers of 2 are allowed for 'SMALL.
The length of the representation may be affected by this specification. If a size specification is also given for

the type, the size specification takes precedence; the specification of 'SMALL must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses
For enumeration representation clauses [LRM 13.31, the following restrictions apply:

" The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified enccdings is costly at run time.

" Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumeration type.

5.4.4. Record Representation Clauses
The alignment clause of record representation clauses [LRM 13.4] is observed.

Static objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the
minimum alignment of the record type, unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is already more stringent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses;
no attempt is made to utilize gaps left by the user-provided allocatioi.

5.4.5. Address clauses
Address clauses [LRM 13.5] are supported with the following restrictions:

When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
meaningless. Address clauses applied to local packages are not supported by Tartan Ada. Address clauses
applied to library packages are prohibited by the syntax; therefore, an address clause can be applied to a
package only if it is a body stub.

USER MANUAL FOR TARTAN ADA VMS 1750A

" Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value ideatifies an interrupt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry ind the interrupt.

* A specified address must be an Ada static expression.

5.4.6. Pragma PACK
Pragma PACK [LRM 13.1] is supported. For details, refer to the following sections.

5.4.6.1. Pragma PACK for Arrays
If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,

refer to the explanation of size specifications for arrays (Section 5.4.23).

If, in addition, a length clause is applied to

1. The array type, the pragma has no effect, since such a length clause already uniqudy determines the array
packing method.

2. The component type, the array is packed de- ,v, observing the component's length clause. Note that the
component length clause may have the ettect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

5.4.6.2. The Predefined Type Sring
Package STANDARD applies Pragma PACK to the type string.

However, when applied to character arrays, this pragma cannot be used to achieve denser packing than is the
default for the target: I character per 16-bit word.

5.4.6.3. Pragma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is comp.t'ble with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that the default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignmentfor Types
Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-

tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically, restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in
contexts involving array indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

APPENDDc PTO MIL-TD-1815A

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

No object of scalar type including components or subc, 1ponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object's vmae to be performed by two
or more extractions.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS
The only implementation-dependent components allocated by Tartan Ada in records contain dope information

for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES
Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task

entries. Tartan Ada implements the address clause
for TOENTRY use at intID;

by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of intID is both machine and compiler dependent.

The Ada/1750A runtimes provide 16 interrupts that may be associated with task entries. These interrupts are
identified by an integer in the range 0.. 15. The intID argument of an address clai,e is interpreted as follows:

" If the argument is in the range 0..15, a full support interrupt association is made between the interrupt
specified by the argument and the task entry.

" If the argument is in the range 16..31, a fast interrupt association is made between the interrupt number
(argument-16) and the task entry.

" If the argument is outside the range 0..31, the program is erroneous.

For the difference between full support and fast interrupt handling, refer to Section 8.5.6.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS
Tartan supports UNCHECKEDCONVERSION with a restriction that requires the sizes of both source and

target types to be known at compi time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will be truncated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKEDCONVERSION are made inline automaticall"

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supplies the predefined input/output packages DIRECT_10, SEQUENTIAL_10, TEXT 10, Pnd

LOW LEVELIO as required by LRM Chapter 14. However, since MIL-STD-1750A is used in embedded
applications lacking both standard 1/0 devices and file systems, the functionality of DIRECT_IO,
SEQUENTIALIO, and TEXTIO is limited.

DIRECT IO and SEQUENTIAL._0 raise USEERROR if a file open or file access is attempt d. TEXTIO
is supported to CURRENT-OUTPUT and from CURRENTINPUT. A routine that takes explicit fde names raises
USEERROR. LOWLEVELIO for MIL-STD-1750A provides an interface by which the user may execute XIO
operations. In both the SEND CONTROL and RECEIVECONTROL prucedures, the device parameter specifies
an XIO address while the data parameter is the single word of data transferred.

The specification for package LOWLEVELIO is as follows:

USER MANUAL FOR TARTAN ADA VMS 1750A

package LOWLEVELIO is

-- The parameters to SENDCONTROL and RECEIVECONTROL are:

-- device : XIO command field as defined in section 5.1
-- of MIL-STD-1750a.
-- data : An integer value read or written depending
-- upon the XIO command used. Some do neither.

-- SEND CONTROL and RECEIVE control do exactly the same thing.
-- The existance of both of them, each with an "in out" parameter
-- for data, is at the insistence of the LRM.

procedure SEND CONTROL(device : integer; data : in out integer);
procedure RECEIVE_CONTROL(device : integer; data : in out integer);

end LOWLEVELIO;

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Program
Any Ada library subprogram unit may be designated the main program for purposes of linking (using the

AL17 LINK command) provided that the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for termination as other tasks [described in
LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminateL
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

5.9.2. Implementation of Generic Units
All instantiations of generic units, except the predefined generic UNCHECKED CONVERSION and

UNCHECKED DEALLOCATION subprograms, are implemented by code duplications. No attempt at sharing
code by multiple instantiations is made in this release of Tartan Ada.

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will casue any units that
instantiated this generic unit to become obsolete.

5.9.3. Implementation-Defined Characteristics in Package STANDARD
The implementation-dependent characteristics for MIL-STD-1750A in package STANDARD [Annex C are:

package STANDARD is

tyip INTEGER is range -32768 .. 32767;type FLOAT is digits 6 range -16#0.8000 00#E+32 .. 16#0.7FFFFF#E+32;

type LONGINTEGER is range -2147483648 .. 2147483647;
type LONG FLOAT is digits 9 range -16#0.80000000_00#E+32

16#0.7FFF FFFF FF#E+32 ;
type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

-- DURATION'SMALL - 2#1.0#E-14

end STANDARD;

APPENDX F TO M.L-STD-1 815A

5.9.4. Attributes of Type Duration
The type DURATION is defined with the following characteristics:

Attribute Value

DURATION' DELTA 0.0001 sec

DURATION' SMALL 6.103516E-5 sec

DURATION' FIRST -86400.0 sec

DURATION' LAST 86400.0 sec

5.9.5. Values of Integer Attributes
Tartan Ada supports the predefined integer types INTEGER and LONGINTEGER.

The range bounds of the predefined type INTEGER are:

INTEGER' FIRST = -2**15
INTEGER' LAST = 2**15-1

The range bounds of the predefined type LONGINTEGER are:

.LONG INTEGER' FIRST = -2*31
LONGINTEGER' LAST = 2**31-1

The range bounds for subtypes declared in package TEXTIO are:

COUNT' FIRST = 0
COUNT' LAST = INTEGER' LAST - I

POSITIVE COUNT' FIRST = 1
POSITIVECOUNT' LAST = INTEGER' LAST - I

FIELD' FIRST = 0
FIELD' LAST = 20

USER MANUAL FOR TARTAN ADA VMS 1750A

The range bounds for subtypes declared in packages DIRECTIO are:

COUNT' FIRST = 0
COUNT' LAST = INTEGER' LAST/ELEMENTTYPE' SIZE

POSITIVECOUNT' FIRST = 1
POSITIVECOUNT' LAST = COUNT' LAST

5.9.6. Values of Floating-Point Attributes

Attribute Value for FLOAT

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000_000#E-4
approximately 9.53674E-07

SMALL 16#0.8000_000#E-21
approximately 2.58494E-26

LARGE 16#0.FFFFF80#E+21
approximately 1.93428E+25

SAFEEMAX 127

SAFESMALL 16#0.1000_000#E-31
approximately .2.93874E-39

SAFELARGE 160.7FFFFC0#E+32
approximately 1.70141E+38

FIRST -16#0.8000_)00#E+32
approximately -1.70141E+38

LAST 16#0.7FFF_FFO#E+32
approximately 1.70141E+38

MACHINERADIX 2
MACHINEMANTISSA 23
MACHINEEMAX 127
MACHINEEMIN -128
MACHINEROUNDS TRUE
MACHINEOVERFLOWS TRUE

APPENDIX F TO MIL-STD-1815A

Attribute Value for LONG FLOAT

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON 16#0.4000_0000_00#E-7
approximately 9.3132257461548E-10

SMALL 16#0.8000_0000_00#E-31
approximately 2.3509887016445E-38

LARGE 16#0.FFFF_FFFE_00#E+31
approximately 2.1267647922655E+37

SAFEEMAX 127

SAFESMALL 16#0. 100000_00#E-31
approximately 2.9387358770557E-39

SAFELARGE 16#0.7FFF_FFFF_00#E+32
approximately 1.7014118338124E+38

FIRST -16#0.8000_0000_00#E+32
approximately -1.7014118346016E+38

LAST 16#0.7FFF_FFFF FF#E+32
approximately 1.7014118346047E+38

MACHINE RADIX 2
MACHINE MANTISSA 39
MACHINEEMAX 127
MACHINEEMIN -128
MACHINEROUNDS TRUE
MACHINEOVERFLOWS TRUE

USER MANUAL FOR TARTAN ADA VMS 1750A

5.10. SUPPORT FOR PACKAGE MACHINE_CODE
Package MACHINECODE provides an interface through which a user may request the generation of 1750A

assembly instructions. The Tartan implementation of package MACHINECODE is similar to that described in
section 13.8 of the Ada LRM, with several added features. Refer to appendix A of this manual for the
specification for package MACHINECODE.

5.10.1. Basic Information
As required by LRM, Section 13.8, a routine which contains machine code inserts may not have any other

kind of statement, and may not contain an exception handier. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

5.10.2. Instructions

A machine code insert has the form TYPEMARK' RECORDAGGREGATE, where the type must be one of the
records defined in package MACHINECODE. Package MACHINECODE defines three types of records. Each
has an opcode and zero, one or two operands. These records allow for the expression of the entire 1750A
Assembly language.

5.10.3. Operands and Address Modes

An operand consists of a record aggregate which contains the information needed to specify the correspond-
ing Assembly instruction for generation by the compiler,

Each operand in a machine code insert must have an Address Mode Name. The address modes specified in
package MACHINECODE are sufficient to provide all address modes supported by the 1750A Assembly lan-
guage.

Package MACHINECODE also supplies two additional address modes: SymbolicAddress and
Symbolic Value which can be used to access Ada objects. Symbolic-Address and Symbolic_Value
are implemented by using the object's name in conjunction with the Ada IADDRESS attribute. Any Ada object
which has the attribute 'ADDRESS may be used in these two addressing modes. However,
SymbolicAddress should be used when the operand is a true address such as a branch target, while
Symbolic-Value should be used when the operand is ment to be a numerical value, such as within Immediate
addressing modes.

When an Ada object is used as a source operand in an instruction, the compiler generates code which fetches
the value of the Ada object. When an Ada object is used as the destination operand of an instruction, the
compiler generates code which uses the address of the Ada object as the destination for the instruction.

5.10.4. Examples
The Tartan implementation of package MACHINECODE makes it possible to specify both simple machine

code inserts such as
TwoOpnds'(LR, (Ram,RO), (Ram, Ri))

or more complex inserts such as

TwoOpnds'(AIM, (Ram,RO),(SymbolicAddress, ArrayVar(X, Y, 27)'ADDRESS));

In the first example, the compiler emits the instruction LR RO, R1. In the second example, the compiler first
emits whatever instructions are needed to form the address of Array.Var (X, Y, 27) and then emits the
AIM instruction. The variouserror checks specified in the LRM will be performed on all compiler-generated
code unless they are suppressed by the . rogrammer (either through pragnma SUPPRESS, or through command
line switches).

APPENDIX F TO MIL-STD-181SA

5.10.5. Incorrect Operands
Three modes of operation are supplied for package MACHINECODE: /FIXUP=NONE, /FIXUP=WARN,

and /FIXUP-QUIET.

In /FIXUP=NONE mode, the compiler does not attempt to fix any mistakes that the programmer may have
made in writing machine code inserts. The compiler simply issues error messages to flag the illegal code and
creates a corresponding listing file. The most common errors are illegal register and addressing mode uses in the
operand field of the array aggregate.

In /FIXUP=QUIET mode, if incorrect addressing modes are chosen by the user in the array aggregates
operand field, in most cases the compiler will be able to emit code that correcte the mistake by adding extra
instructions or modifying the given instructions to create correct assembly code.

For example, although it is illegal to use a memory address as the source operand for an AR instruction, in
FIXUP-QUIET mode the compiler generates semantically correct code which tries to create the desired effect by
adding new instructions in which user code

TwoOpnds' (AR, (R_am,R3), (D_am,OBJECT'ADDRESS));

Produced output:
L RO, OBJECTADDRESS
AR R3,RO

No warnings are issued to inform the user that substitutions have been made or that RO has been used.

Another example is the use of address mode "Direct" which requires a type system. address. When the
user specifies a register, the following user code

TwoOpnds' (A, (Ram, RI), (R_am,R2));
produces output

STB R14,0
A R1,0,R14

Here the value of register R2 has been stored onto the program stack and then referenced as a memory location,
which satisfies the requirement that an address be used as the source operand for the ADD instruction.

In /FIXUP=Warn mode, the compiler does its best to fix any incorrect operands for an instruction but also
issues a warning message stating that the machine code insert required additional machine instructions to satisfy
the 1750 Assembly language requirements.

5.10.6. Register Usage
Since the compiler may need to allocate registers as temporary storage in machine code routines, there are

some restrictions placed on register usage; the compiler automatically frees all of the registers which are volatile
across calls for your use (that is, RO, R1, R2, R3). In most instances if you reference any other registers, the
compiler reserves them for your use until the end of the machine code routine. However, bear in mind that the
compiler does not save the registers automatically if the routine is inline expanded. This means that the first
reference to a register which is not volatile across calls should be an instruction which saves the register's
contents to insure that the value is not overwritten and can later be restored at the end of the routine (by the user).
This rule will help ensure correct operation of your machine code inserts even if it is inlne expanded by another
routine (and possibly another "zser).

As a result of freeing all volatile registers for the user, any parameters which were passed in registers are
moved to either a non volatile register or to memory. References to Parameter' Address in machine code
inserts will then produce code that access these register or memory locations. This means that there is a
possiblity of invalidating the value of some 'Address expressions if the non volatile register to which the value
is bound, is referenced as a destination in some later machine code insert. In this case, any subsequent references
to the 'Address expression will cause the compiler to issue a warning message to this effect. In /FIXtP
mode the compiler uses registers to effect thefixup. If you use all fifteen registers, fixups will not be possible. In
general, when more registers are available to the compiler it is better able to generate efficient code.

USER MANUAL FOR TARTAN ADA VMS 1750A

5.10.7. Inline Expansion
Routines which contain machine code inserts may be inline expanded into the bodies of other routines. This

may happen under programmer control through the use of pragma INLINE, or at Optimization Level 3 when the
compiler selects that optimization as an appropriate action for the given situation. The compiler will at the
machine code insert as though it was a call; volatile registers will be saved and restored around the inline
expansion as would be done for a call.

5.10.8. Unsafe Assumptions
The following assumptions should not be made when writing machine code inserts. Violation of these

assumptions may result in the generation of code which does not assemble or code that does not produce
expected results.

" Do not assume that a machine code insert routine has its own set of local registers, for if the routine is
inline expanded into another routine the local registers might not have been saved. Explicitly save and
restore any registers Which are not volatile across calls, that is, any register other than RO, RI, R2, or R3.

" If you wish to guarantee that a routine will never be inline expanded, you should use an Ada separate body
for the routine and make sure that there is no pragna INLINE for it.

" Do not attempt to move multiple Ada objects with a single instruction such as MOV . Although the objects
may be contiguous under the current circumstances, there is no guarantee that later changes will permit
them to remain contiguous. If the objects are parameters, it is virtually certain that they will not be
contiguous if the routine is inline expanded into the body of another routine. In the case of locals, globals,
and own variables, the compiler does not guarantee that objects which are declared textually "next" to
each other will be contiguous in memory. If the source code is changed such that it declares additional
objects, this may change the storage allocation so that objects which were previously adjacent are no longer
adjacent.

" The compiler will not automatically generate call site code for you if you emit a call instruction, if you emit
a call, you are also expected to emit the linkage conventions of the routine you are calling. If the routine
you call has out parameters, a large function return result, or an unconstrained result, it is the respon-
sibility of the programmer to emit the necessary instructions to deal with these constructs in a manner that
is consistent with the calling conventions of the compiler.

" It should not always -be assumed that the 'ADDRESS attribute will produce an operable ADDRESS.
Whether the attribute is used as an address or a value will be determined by the address mode chosen, (
Symbol1c_Address or SymbolicValue).

" The compiler will not prevent you from writing register RI, which is used to hold the address of the current
exception handler. This provides you the opportunity to make a custom exception handler. However, be
aware that there may be considerable danger in doing so. Details of the exception handling convention can
be found in Tartan Ada Runtime Implementor's Guide.

5.10.9. Limitations
The current implementation of the compiler is unable to fully support automatic fixup of certain kinds of

operands. In particular, the compiler assumes that the size of a data object is the same as the number of bits
which is operated on by the instruction chosen in the machine code insert.

Note that the use of X' ADDRESS in a machine code insert does not guarantee that x will be bound to
memory. This is a result of the use of ' ADDRESF to provide a "typeless" method for naming Ada objects in
machine code inserts. For example, it is legal to :ay (Symbolc_Value, X'ADDRESS) in an insert even
when x is found in a register.

