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ABSTRACT

An Expert system for Shipboard
Obscuration Prediction (AESOP), an
Artificial Intelligence (AI) approach to
forecasting maritime visibility obscura-
tions, has been designed, developed, and

tested. AESOP is rule-based, using
backward chaining. The current version,
AESOP 2.1, has 290 rules and has been

designed in terms of nowcasts (0-1 hr) and
forecasts (1-6 hr). An extensive explana-
tion feature allows the user to understand
the reasoning process behind a particular
forecast. AESOP has been evaluated
against 100 independent test cases, in
which clear, hazy, or foggy conditions are
predicted. The overall performance of
AESOP is 68% correct. This value
indicates considerable forecast skill when
compared to 36t for random chance. When
the distinction between clear and haze is
ignored, the expert system correctly
forecasts 79% of the "Fog"/"No fog"
situations.

1. Introduction

For ships at sea, a visibility re-
striction poses just as serious an
obstruction to movement as it does over
lard or in the air. 1In military opera-
tions, ship movement often occurs simulta-
necusly with aircraft flights, as is the
case with aircraft carriers. For this
reason, and because ship operations can be
moved from one location to another to take
advantage of more favorable weather condi-
tions, the accurate prediction of maritime
visibility has been, and continues to be,
an important problem for the Navy.

The Navy is developing a shipboard,
environmental diagnosis/forecast system
called the Tactical Environmental Support
System (TESS). Among the several purposes
of TESS is the concept of bringing automa-
tion and advanced analysis capabilities to
the Navy shipboard oceanographer/meteorol-
ogist, primarily on aircraft carriers and
other large ships.

NOARL contribution no. 90:073:401.
Approved for public release; distribution
is unlimited.
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Expert systems (ES) have been pro-
posed for TESS problems requiring exper-
tise in a well-defined domain, including
the forecasting of visibility obscurations
{(e.g. fog and haze.) The specific goal is
to develop a system that provides a mari-
time obscuration forecast that follows a
reasoning process similar to that of
expert, human forecasters.

The purpose of this paper is to
summarize the rationale and method that
has gone into the 2 1/2-year development
of the Navy ES for forecasting obscura-
tions at sea. The reader is referred to
Peak and Tag {1] for a more complete
description of the system design and
development. In this paper a new, inde-
pendent test of the system’s performance
not yet completed at the time of publica-
tion of Peak and Tag [1] will be
presented.

2. Expert system approach

The field of Artificial Intelligence
(AI) includes a number of techniques for
solving problems that involve reasoning
about data and reaching conclusions.
Expert Systems have emerged as one of the
applications of AI technology to real-
world problems. ESs are AI computer
programs that perform inference processes
based on a collection of expertise and a
set of known facts about the situation at
hand. This procedure may be based on both
formal knowledge and heuristics, and the
problem-solving procedure may differ for
various sets of input data.

The TESS requirement is that the
obscuration expert system predict fog and
haze for any maritime location between
70°N and 70°s. visibility obscuration due
to precipitation is not a designated
function of the system. The ES is intend-
ed to be run onboard Navy ships using data
available from local measurements, TESS
data fields and satellite images.

There are several advantages to the
use of an ES for the prediction of such
obscuration phenomena. The prediction of
obscuration events such as fog and haze is
a very difficult problem requiring the
interpretation of many types of data.
Since fog may form by several processes
{2), there is no pre-defined algorithm for
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its prediction. Thus, the ES approach is
useful because an ES can be made to in-
clude expertise on how to approach the
forecast problem based on the situation at
hand. The expertise to forecast maritime
foy is a rare commodity. Since Havy
forecasters tend to serve relatively short
duty tours at sea, they may rot have the
time to develop an expert level . f skill.
By encoding available forecast kiowledge
into an ES, rare expertise can be dissemi-
nated to the fleet.

The ES developed in this project has
been named AESOP (An Expert-system for
Shipboard Obscuration Prediction). The
main source of expertise for this study
was a secries of research reports (e.g.
{3,4)) from the Calspan Corporation de-
tailing the results of maritime fog stud-
ies during 1972-1983. 1In addition, one of
the participants in these studies, C. W.
Rogers, has acted as a consultant expert
to provide input in the development of the
AESOP rule base.

3. The AESOP systenm

In this section the design of RESOP
will be summarized. A complete descrip-
tion of AESOP is presented in Peak and Tag

(1y.

A human expert uses a complicated
reasoning process to forecast maritime
obscurations. Typically one must follow
multiple lines of reasoning using many
different types of data. AESOP has been
designed to evaluate forecast situations
in a fashion similar to that of expert
human forecasters.

The problem-solving paradigm for
AESOP is a consultation session in which
the user of the program, a Navy meteorolo-
gist, answers questions about various
atmospheric parameters such as tempera-
ture, dewpoint, sea surface temperature,
etc. Once AESOP has acquired enough
information about the current condition of
the atmosphere, it applies the expertise
contained in its knowledge base to draw
conclusions about the future condition of
the atmosphere with regard to visibility
obscuration.

The knowledge and expertise in AESOP
are stored as a series of IF-THEN rules.
These rules contain the basic knowledge
concerning the relationships of facts
about the problem domain. These rules are
the major component of the ES, and they
form the basis for the formal reasoning
process that the system uses to solve
problems.

AESOP is implemented in the Prolog
language on an IBM-compatible personal
computer. The current version, AESOP 2.1,
hag 290 rules. AESOP has been dd ‘igned to
reason in terms of nowcasts and 1...ecasts.
The AESOP nowcasts are for the 0-1 h time
frame, while the AESOP [orecasts apply to
the 1-6 h time frame. This approach is

used to differentiate between situations
where a change in the atmospheric obscura-
tion condition is imminent, and those
where the condition change requires more
time to occur.

Since one of the goals of AESOP is to
disseminate rare expertise, the predic-
tions are accompanied by a synopsis of the
physical reasoning used in arriving at the
prediction. AESOP also includes an exten-
sive explanation feature. The user is
able to step through the reasoning proc-
ess, during which AESOP reveals the logic
by which its conclusions were made and
also the reasons that alternative conclu-
sions were not made. Thus, it effectively
tells the user why a certain obscuration
is expected, why other obscurations are
not expected, and what data were uscd tc
make these conclusions.

The major components of the AESOP
expert system (Fig. 1) include the Knowl-
edge Base (containing both the Working
Memory and the Rule Base), the Fact Acqui-
sition System, the Explanatory Interface,
the Inference Engine and the User Inter-
face. The User Interface makes communica-
tion between the user and AESOP possible.
The Fact Acquisition System systematically
makes inquiries to the user concerning
atmospheric parameters (e.g. temperature,
wind speed, etc.) and records this infor-
mation as facts in the Working Memory.

The Inference Engine applies rules of
logic to infer new facts {rom the existing
facts. The Rule Base contains the static
knowledge previously obtained from the
expert sources in the fcrm of rules of
logic. The Working Memory contains the
facts that describe what is known about a
particular problem. When the program
starts, the Working Memory is empty. The
dynamic knowledge obtained from the user
via the Fact Acquisition System is stored
in the Working Memory. As intermediate
conclusions are made via the Inference
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Figure 1. Major components of the AESOP
expert system. Arrows indicate data flow.




Engine, the system stores this new knowl-
edge in the Working Mermory. Finally, the
Explanatory Interface allows the user to
step through the many logical paths used
by AESOP to arrive at its forecasts.

The Prolog language is designed to
use backward chaining [5] to try to verify
previously specified goals. 1In AESOP,
these goals are specified based on the
current state of the atmosphere with
regard to visibllity-obscuring phenomena.
There are three mutually-exclusive atmos-
pheric states that AESOP diagnoses: Fog is
present; Haze is present; and No Obscura-
tion is piasent. The initial state of the
atmospherc is one of these three, and the
forecast future state will also be one of
these three possibilities (Table 1). The
connectiluns between the nrescn+ npnd future
states are various meteorological process-
es. These connections have been designat-
ed as the following state-change opera-
tors: 1) Fog will form, 2) Fog will
dissipate, 3) Fog will persist, 4) Haze
will form, 5) Haze will dissipate, 6) Haze
will persist, and 7) It will stay clear.
AESOP is designed to analyze the likeli-
hood of these state changes based on
observed meteorological parameters.

For any given initial state, only
three of these state-change operators may
apply (Table 1). The AESOP Inference
Engine uses the current obscuration and a
set of lists similar to Table 1 to deter-
mine which three state-changes to test.
These three state changes are then desig-
nated as the goals of the ES. This ini-
tial limitation of the number of goals
accomplishes a heuristic reduction of the
search space.

Table 1. Current and future atmospheric
obscuration states. The three possible
future states and the corresponding state-
change operators are indicated for each
initial state.

Current State: No Obscuration
Future States State-Change Uperators
No Obscuration It will stay clear
Haze Haze will form
Fog Fog will form

Current State: laze
Future States State-Change Operators
No Obscuration Haze will dissipate
Haze Haze will persist
Fog Foy will form

Current State: Fog
Future States State-Change Operators
o Obscuration Fog will dissipate
Haze Haze will form
Fog Fog will persist

As AESOP evaluates each potential
goal state, a probability of its occur-
rence is assigned. In general, the goal
state with the highest probability is
chosen to be the AESOP forecast. However,
since fog is the most severe type of
visibility ohscuration, whenever the
probability of its ocrcurrence is greater
than 50%, AESOP selects fog as its fore-
cast even if the probability of haze is
larger.

"Semantic nets" (5] represent a
knowledge domain by a graphic collection
of nodes and links where the nodes repre-
sert objects or concepts and the links
represent relationships between the ob-
jects or concepts. Knowledge in AESOP is
represented by rules. A set of rules may
be represented in an “inference nec,’”
which is a special type of semantic net-
work using only the IF-THEN logic rela-
tion. Thus, portions of the AESOP rule
base may be presented in graphic form.

The inference net depicting the rules
that determine the likelihood of forecast
(1-6 hr) fog formation is presented in
Figure 2. The nodes (boxes) in Figure 2
represent goals and subgoals. Dashed
links are defined here as "OR" links
because the goal to which they lead suc-
ceeds when any one of the OR-links pro-
ceeds from a true subgoal. All of the
solid AND-links must proceed from true
subgoals before the subgoal to which they
lead succeeds. This inference net depicts
the rule

IF Fog forms by the Taylor process

OR Fog forms by the stratus-lowering
process

OR There is advection of existing fog

THEN "Fog will form" 1is forecast.

Similarly, the rule

IF The marine layer is primed for fog

AND The marine layer is cooled from
below to dewpoint

AND The predominant flow is from warmer

to colder water
THEN Fog forms by the Taylor process

is also depicted. Thus, the inference net
in Figure 2 reveals the fog formation
rules and their interdependence.

The major subgoals in Figure 2 are
the different formation processes for
Taylor and stratus-lowering fog, and for
advection of existing fog. AESOP attempts
to verify the goal "Fog will form”™ by
chaining backward through the subgoals
“Fog forms by the Taylor process," "Fog

forms by the stratus-lowering process” and
"There is advection of existing fog."

Each of these subgoals must itself be
verified by determining the truth of the
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Figure 2. Inference network depicting the
AESOP rules for the forecast goal "Fog
will form."™ Dashed lines are OR-links and
solid lines are AND-links. Nodes which
have no link leading to them are verified
based on user-input data in the Working
Memory. Backward chaining progresses from
top to bottom whereas inferences are made
from the bottom to the top.

subgoals upon which it depends. The
search for a solution proceeds down the
net until there are no further branches.
At this point, the last subgoal must be
verified by the appropriate data values
(not shown} previously input by the user
via the Fact Acquisition System.

Similar inference nets (not shown)
may be constructed from the AESOP rules
for fog dissipation, and those for haze
formation and dissipation. A complete set
of the AESOP 2.} inference nets is pre-
sented in Peak [6}.

The explanatory interface in many ESs
is little more than a procedure to list
rules that were used to reach a goal. The
AESOP explanation feature is expanded to
include explanatory text that reveals Llhe
motivations behind the different lines of
reasoning, the physical causes and effects
underlying the obscuration forecasts, the
data values used and why the data are
jmportant. Another major difference in
MESOP’s explanation feature is that it
reveals not only the lines of reasoning
that succeed but also those that fail.

The advantage in this approach is that a
user may be just as interested in why
AESOP did not forecast an obscuration that
he may have thought to be likely, as he is
interested in why AESOP did forecast an
event he thought would not happen.

AESOP does this complete evaluation
by tc¢sting every possible line of reason-
ing to the fullest, regardless of the
success or failure to meet the logical
requirements of each rule. In most ESs,
a particular chain of reasoning (e.g. a
path from the data to a goal on an infer-
ence net) is tested only to the point
where one of the subgoals fails. At this
point, the system backtracks and tries a
different path until eventually a complete
path is found. AESOP, however, was de-
signed to record its paths continually in
the Working Memory, keeping track of the
success or failure of the data to meet the
requirements of each subgoal. Thus, the
AESOP Inference Engine attempts to satisfy
all of the paths between the data and the
goals. Even when a subgoal fails, the
remainder of the path is still tested.

The difference is that the path record in
the Working Memory is flagged as not
satisfying the subgoal. The explanatory
text that is generated by successful
subgoals is different from that generated
when a subgoal fails. Thus, a complete
explanation of all lines of reasoning is
available.

One disadvantage of this approach is
that it may take a long time to traverse
all of the branches of a large rule base.
Hiowever, the AESOP rule base is not exces-
sively large, plus the search space has
been further reduced by the use of meta-
rules.

The Explanatory Interface is a rou-
tine that steps through these path records
in the Working Memory. The path records
are stored in tree form with nodes con-
taining a description of the subgoal, the
explanatory text, and pointers to the
node’'s parent and successor nodes. The
Explanatory Interface displays this infor-
mation and allows the user to traverse the
tree to discover the cause and effect of
each subgoal.




The current form of explanation
provides the most detailed window on the
reasoning process available in ES technol-
ogy. AESOP also includes an explanation
summary to reveal a simple overview of the
reasoning behind the forecast chuice.

This less detailed general expla: ition
acccmpanies the initial AESOP fo...cast.
The user can still optionally chuose to
delve into the detailed explanation when
the more complete line of reasoning is
desired.

4. System performance

A cowplete AESOP forecast takes only
about 2 min of real time to execute. Most
of that time is spent responding to the
queries of the Fact Acquisition System.

An example of an AESOP forecast display is
presented in Fiqure 3. 1In this case, fog
is forecast to occur with a probability of
90%. From the summary explanation of the
reasoning process, the user can determine
that the fog is expected to form via the
stratu--lowering process. The forecasts
for all three potential obscurations are
listed next for comparison. Finally, an
options list gives .he user several
choices of what to do next. First, he may
want to see the 0-1 h nowcast. The second
option is to traverse the complete expla-
nation tree so that the reasoning behind
any of the expected or not expected proc-
esses is revealed. AESOP also includes a
feature by which one or more of the data
values previously input by the user can be
modified and a new forecast generated.
This feature enhances the role of the
system as a training tool because the user
can compare what happens under slightly
different conditions. Finally, the user
can run a completely new case or exit from
the forecast mode altogether.

In this section, the AESOP forecast
skill is evaluated for 100 maritime obscu-
ration situations. The test data are
taken from various weather ships stationed
in the North Pacific and North Atlantic
during 1971-1974. Because fog is an
infrequent phenomenon, the selection of
cases for the independent sample was not
made randomly. Instead, available ship
data were scanned to find situations where
fog and haze were forming, persisting, or
dissipating. The cases were not selected
on the basis of their being unusual nor
overly simple; the only consideration was
whether fog or haze was involved either
initially or at +6 h. No cases were
included that were clear at both the
initial time and at +6 h.

Contingency tables (e.g., Table 2)
are used to compare the +6 h forecasts to
the actual obscuration state. The columns
represent the actual +6 h obscuration
states while the rows are the AESOP +6 h
forecasts. If the cases were all correct-
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Figure 3. Example AESOP forecast display.

ly forecast, only the dicaonal values
(bold numbere) would be nuuc-re. bince
the extent of obscuration severily ranges
from fog to haze to clear in Table 2, the
incorrect forecasts above the diagonal
indicate overforecasts, because a more
severe visibility obstruction is forecast
than actually occurs. Similarly, those
cases below the diagonal are underfore-
casts.

The results of the AESOP 2.1 runs on
the 100 independent sample cases are
presente? in Table 2. The initially fog
cases (Table 2a) are correctly forecast
59% of the time. If persistence were
used, only 16 forecasts (35%) would be
correct so that the AESOP forecasts do
seem to indicate skill.

The contingency table for the 31
initially haze cases is presented in Table
2b. AESOP correctly forecasts 68% cor-
rect. If persistence were used, only 26%
wculd be correct. Notice that on these
cases, there is no overforecast or under-
forecast bias (Table 2b).

The AESOP performance on the initial-
ly clear cases (Table 2c) is excellent,
with 87% correct. One should not use
persistence as a comparison here because
this set was deliberately chosen not to
include cases that were clear at +6 h.

When all 100 cases are considered
together (Table 2d), AESOP forecasts 68%
correct. For the same reason, persistence
can not be used as a comparison method
here. There is no strong tendency to
overforecast (14 cases) or to underfore-
cast (18 cases) the independent sample
cases. The random simulations described
in the next section indicate that a purely
random forecast would result in only 36%
correct for these cases.

It is useful to consider the forecast
skill in a "Fog"/"No fog" sense so that
the more important fog forecast situations
are emphasized by excluding the less
important haze situations. AESOP correct-
ly forecasts 79% of these cases. The
nearly 80% skill of these AESOP 2.1 fore-
casts is highly encouraging. The random

simulations described in the next section




Table 2. Contingency tables for AESOP Z.1i
+6 h forecasts (Fcst) (rows) vs. +6 h
actual obscuration states {(columns) for
cases with the initial condition: a. fog
(F), b. haze (H), c. clear (), d. all
cases, e. fog/no fog. Bold values on
diagonal indicate number of correct fore-
casts. Tot indicates total of rows or
columns, % indicates percent correct.

INITIALLY FOG CASES:

o

Actual
F| H| C | Tot )
F 10| o0f 61| 16 63
’.‘ e et  ——m am = -
CoH 3 10| 31| 16 63
N
t C 30 4] 1] 14 50
Tot 16 | 14 | 16 | 46
t 63 71 44 s9
b. INITIALLY HAZE CASES:
Actual
F| H C| Tot %
F 13 ] r | 2| 16 81
P e
c H 1] 5| 2| 8 63
8 e e
t C 2| 21 3| 7 43
Tot 16 | 8 | 7| 31
) 81 63 43 68

c. INITIALLY CLERR CASES:

Actual
F H| Cc| Tot &
F 13| o} o} 13 100
F —wcccecccccccmcccmcc—————
c H o} 7] o} 7 100
§ e e m—————
t C 3] o) o] 3 ]
Tot 16 | 7} o0 | 23
Y 81 100 0 87
d ALL CASES:
Actual
F}] H| €| Tot %
F 36| 1| 8] 45 80
F crmeccccccacccccemcaee
c H 4 ] 22| s} 31 71
§ e
t C 8| 61 10| 24 42
Tot 48 | 29 | 23 | 100 68
% 75 76 43
e. FOG/NO FOG:
Actual
F | NF | Tot %
F 36 )] 9| 45 80
F oo
c NF 12 | 43 | 55 78

% 75 83 79

indicate that a purely random forecast
would result in approximately S0% correct
for these cases.

5. Monte Carlo Significance Tests

In an attempt to measure the signifi-
cance of these statistics, Monte Carlo
simulations have been used (e.g., Peak and
Tag, 1989). The method is to use the
probability of occuricnce of the three
obscuration states in Table 2d, and the
probability of AESOP forecasts for the
three states from the same table. A
randem number generator based on these
probabilities selects a random obscuration
state and a random forecast of that state.
The process is repeated 100 times to
similate the AESOP forecasts for a test
sample the same size as the independent
sample. The reason this simulation can
measure the significance level is that it
is known that the percent correct is
achieved purely by chance. If a random
percent correct could have occurred by
chance, it is less likely that the demon-
strated AESOP performance is due to skill.

The random experiment was repeated
50,000 times, which is arbitrarily chosen
to be enough trials to generate a distri-
bution of the random forecast skill. Of
the 50,000 trials, the 68 correct achieved
in the Table 2d results is never accom-
plished. The highest random skill level
is 57 correct. Thus, it is virtwnally
assured, at least in a statistical sense,
that the AESOP results are due to forecast
skill.

6. Summary and conclusions

An Expert system for Shipboard
Obscuration Prediction (AESOP) has been
developed over the past 2 1/2 years to
provide an Artificial Intelligence
approach to short-term forecasting of fog
and haze. 1In this report, the latest
version (2.1) is described and an evalua-
tion of the system on an independent data
set is made.

In a 100~-case independent sample
test, AESOP is correct 68% of the time.
This value compares favorably with the 36%
correct due to random forecasts based on
the same sample characteristics.

When the distinction between haze and
clear is removed, AESOP correctly
forecasts 79% of the "Fog"/"No fog”
situations. This level is considerably
higher than the approximately 50% correct
from random selection. Since persistence
of initially clear conditions was
deliberately omitted from the sample, a
persistence comparison is not possible.




The independent sample results show a
slight decrease in performance from the
dependent sample results in {1]. This
decrease may be an indication that the
rule base has been "tailored” to handle
cases with the characteristics of the
dependent sample because any deficiencies
in the rule base concerning those situa-
tions have shown up during earlier depend-
ent sample testing. Also, the independent
sample includes cases from the N. Pacific.
There may be sume situations unique to
that region that are not handled by the
rule base which was developed using only
N. Atlant . data.

Tl 1.SOP forecast performance is due
to fo.. ast skill, as evidenced by the
Monte « .. lo simulations. The independent

sample resulls demonstrate considerable
forecast skill for very difficult fore-
casting situations. AESOP should prove to
be a valuable forecast guidance and train-~
ing tool for the shipboard meteorclogist.
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