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Lamb and creeping waves around submerged spherical shells
resonantly excited by sound scattering. II: Further applications

G.C. Gaunaurd
Navai Surface #arfare Center, White Oak Lab(Code R42), Silver Spring, Maryland 209J3-5000

M.F. Werby
Naoval Ocean & Asmospheric Research Lab (Code 221), Numerical Modelling Division, Stennis Space Center,
Mississippi 39524

{Received 4 September 1989; revised 7 September 1990; accepted 16 November 1990)

The scattering of plane sound waves from an air-filled steel spherical shell submerged in water
in the freguency band 0<k,a< 500 is studied. This analysis is based on a methodology [Ayres
et al., Int. J. Solids Struct. 23, 937-946 (1987) and G. Gaunaurd and M. F. Werby, J. Acoust.
Soc. Am. 82, 20212033 (1987) ] proposed that uses the exact three-dimensional equations of
dyvnamic elasticity to describe the shell motions and to predict its sonar scattering cross section.
This approach is valid at all frequencies, for shells of any thickness, of any (constant)
curvature, and it accounts for their fluid-loaded condition. The methodology is used to predict
the cross sections, which are later interpreted on the basis of the various resonance features
that munifest themselves in the frequency response. The spectral locations of these resonances
depend on the various types of elastic waves propagating along the shell, or in the surrounding
fluid. The exact plots are geneiated for the phase (c,) velocities of these (Lamb) waves always

accounting for the curvature and fluid-loading effects present on the shell, without appeals to
plaie waves or theories. Some of the dispersion plots were generated using the Donnell shell-
theory approximation, which seems tc yield accurate results up to the coincidence frequency.
Aside from the broad resonance lobe present at the coincidence frequency, there is anoth¢r
high-frequency resonance lobe. due to a thickness-resonance effect, which was also predicted
and displayed. A partial-wave analysis of the resonance response curve for a thin sheil, around
its coincidence frequency, serves to identify the origins of the various types of observed
resonance features and to relate them to the elastic and acoustic waves that propagate along
the shell or the outer fluid. Many computer-generated graphs are displayed to illustrate the

above points.
PAYS numbers: 43.30.F1, 43.30.Gv, 43.40.Qi

INTRODUCTION

The study of the reflection and scattering of sound
waves from submerged elastic shells « .nstitutes a problem
area not only very rich in scientific and technica! challenges
but also of crucial importance to our employer in view of its
connection with the sensing and the identification of sub-
merged scatterers. Work on this subject started proliferating
in the early 1960s,' and over the vears it has included
bare'? and coated® shells of spherical'-* and cylindrical®
geometries, among others.

The methodology that we will use here to generate our
predictions and interpretations is a three-dimensional elasti-
city approach that first appeared® ® in 1987. We will consid-
er Ref. 6 as the first part of this work, hence, its almost
identical title. We have worked on this subject over the
years,’"!® using either classical approaches or specific reso-
nance techniques particularly useful in the (broad) reso-
nance region of submerged elastic structures. We have sum-
marized many of our findings®'° in reviews that extensively
cite the truly large number of contributions to this important
area, from all over the world. Of particular importance are a
series of monographs''-'® and papers'™'? that deal with
Rayleigh and Lamb waves. It has become undisputed over
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the years that as sound waves impinge on elastic scatterers,
the returned echoes have features that depend on the type of
elastic waves that get excited on the scatterer. For either an
elastic half-space or for an elastic layer of finite thickness, the
basic waves are, respectively. the Rayleigh and the (various
tynes of) Lamb'' waves. For convex solid (or hollow) elas-
tic t odies immersed in fluids these waves have retained their
names ior the flat case. but have been generalized'>"” to
account for the nonvanishing body curvature. It is in this
context that these names are currently used. In spite of the
fact that exact three-dimensional descriptors of the shell mo-
tions are available,>*>® the tendency to explain features in the
sonar cross sections of submerged shells in terms ot (loaded
or unloaded) flat plate waves or theories, still seems to con-
tinue. We use the predictions of our approach;>¢ (i) to ex-
plain a variety of new features that have emerged, and (ii) to
compare them in some instances to the results obtained from
the above mentioned simpler models.

1. THEORETICAL BACKGROUND

The complete clzssical and RST formulation required
for the study of the acoustic echoes scattered from air-filled
elastic shells in water has bezn given in Refs. 5 and 6 for bare
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sphefical shells, in Ref. 3 for viscoelastically coated spherical
shells, in Refs. 4 and 18 for bare cylindrical shells, and in Ref.
19 for vis~oelastically coated cylindrical stells. The essen-
tials of this formulation arc contained in the form function,
which is given by the expression

7. @01 =| 3 f6x)]

n=s0

i i Q@u+1A4,P, (cos8y), (1)

IX nem0

where x = k,a, and the coefficients 4, for the bace, air-
filled, spherical sh:ll in water, are given by the ratios of two
6% 6 determinants B, and D, viz,,

A,(x) =B,(x)/D,(x), )

where the elements of these determinants are given in Refs. 5
and 6. The outer (or inner) radius of the shell is a (or b).

There are many ways to proceed from here on. Some of
these are enumerated below,

(i) Generaticn of the backscattering or monostatic form
Junction: We compute and/or display: | f_ (6 = 7,x)]| vs x.
Here we use P, (cos ) = (= 1)".

(ii) Isolation of the resonances—spectrogram: Here we
compute and/or display | f,_ (8 = 7,x) — f%7(0 = 7,x)|
vs x. The quantity £ (7,x) is as’in Eq. (1) but with 4,
replaced by A4 (%7, where .1 (%7, for most metai shells in
water, is the rigid one, given by: 4 %" = —j! (x)/k "' (x).
‘We have often denoted these plots of isolated resonances as
the “residual responses” since these residuals constitute
what is left of the form function after the suitable back-
grounds have been suppressed.

(ii1) The angular scattering pattern at a fixed frequency:
We generateand display | /. (6, x =x,)|vs8.1fx, isnota
resonance (i.e., a real root of the real characteristic equatinn
F 7 '(x) =Re[z$"(x)] ~"), then the resuiting plot will be
complicated and uninformative. If x, is a (real) resonance,
then the associated plot displays simplifying and informative
features.®?

(iv) The (bistatic) angular scattering pattern at a fixed
JSrequency, after background subtraction: The pertinent
quantity here is

1. (6, x=x0) = [%(6, x =) vs 6.

The quantity /**7(f.x,) is as in Eq. (1), but with
x = x, = fixed, and 4,, replaced by 4 {**”, as in (ii). What
was done above for the summed form function | f_ (6,x)]
can also be done for the partial waves contained within it
{viz,, | f,(6,x)], for n =0, 1, 2, ...}. This type of partial-
wave analysis is very useful and informative.

(v) Generation of the backscattered partial waves: Here
we compute and display | f,(6 =mx)|vsx,forn=0, 1,2,
. . Again, P, (cos ) = ( — 1)".

(vi) Resonance isolation within each mode or partial
wave of index n: Here we compute and display
| £, (8= mx) — f1%7(6 = 7,x)| vs x in the backscattering

direction 7, forn =0, 1,2, ... . Here f %" (,x) is asin (ii),’

with « replaced by the index n.
(vii) The (bistatic) angular pattern of a single mode n at
fixed frequency: The pertinent quantity is | £, (6, x =x,)|
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vs 6, for each value,n = 0, 1, 2, ....

(viii) The angular scattering pattern of modal reson-
ances: In this case, we generate and display
[ £2(8, x=x4) —f157(0, x=x,)| vs 6, for =0, 1, 2,
... Here %7 (mr,x,) is as in (ii), with « replaced by the
index n. If the fixed x,, is the/ th resonance within the mode ,
(viz., x,,;), then the plot wili be proportional to the angular
pattern of a Legendre polynomial |P, (cos 8){, and will
have 2n lobes of different sizes. In the cylindrical case, this
plot is proportional to [cos n@ |, and it still has 2# lobes now
of equal sizes. Such a plot resembles a “daisy” or a “rosetta.”
It is a rhodonea of 21 petals. .

It is often instructive to generate and dispiay calcula-
tions versus the modal index n, for fixed values of 8 and/or x.
A number of relevant cases are as follows.

(ix) The response surface: Here we compute the isolated
resonances obtained after the subtraction of the appropriate
background, and display them versus n and x, in an isomet-
ric view. The calculation is done in the backscattering direc-
tion @@=+ and the pertinent display s
| f. (8 =mx) — f28(0 = 7x)|, versus n and x. This
could also be generated in other directions.'

(x) The spectrogram versus mode order n, at fixed fre-
quencies: Here we generate and  display
| f. (6= mx = xy) — % (7,x,)| vs n. The frequency x,
can be chosen to be a resonance frequency x,,; of the body, or
not. This is a slice of the response surface in item (ix) at
X = X,. Analogously, the spectrogram in item (ii) is a slice
cfthe response surfacein item (ix) at each integer valueof n.

(xi) Theisolated mcdal “residuals” displayed versus n at
Jfixed frequencies: This is analogous to item (x) but for each
partial wave or mode n. We generate and display
| £, (6 = mxo) ~F8(8 = 7,x4 )| vs n, at fixed x,, in the
backscattered direction @ = 7. Here, x,, can be a body reso-
nance, X, or not. This plot shows the strength with which
each mode n contributes 0 the resulting residual, at each
chosen frequency x,.

(xii) The modal backgrounds in mode-order space n:
These often informative plots show | (%7 (8 = 7,x,)| vs 1,
at various fixed x = x,,. Clearly, items (xi) and (xii) can be
used to displas the separation of “backgrounds” and “reson-
ances” in the mcde-order domain n. Asa companion toitem
(vi), | fi%7(0 = 7 .x)| can also be displayed versus x for
n=20, 1,2, ... and ther such a display, together with item
fvi), exhibits the separation of “backgrounds” and “reson-
ances” in the frequency domain, which is standard since the
eariy days of the development of the RST.5'°

We have always distinguished the complex eigenfre-
quencies x,,;, roots of D, (%) =0 in the complex X plane,
from the real resonances x,,;, which are roots of 12al charac-
terishic equations, which in this case are of the type:
F 7 '(x) =Re[z}"(x)] ~'. Itisat these rescnances x,, that
peaks and/or dips appear in the plots of the form functions
versus the real variable x, and that exactly i 4 1/2 wave-
lengths fit the shell's circumference. It is common to also
consider an alternative representation in the complex fre-
quency plane %, and display the complex ::zenfrequency
there. Both representations have their advantages. The com-
plex eigenfrequencies of a metal shell in water tend to split
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into two great groups. One big set, clustered just beneath the
Re % axis, is associated with the elastic composition of the
body. The other large set, arranged in concentric quasise-
mielliptical loci, ~nd located deeper into the lower half of the
% plane, is associated with the body shape. To obtain these
eigenfrequencies (which approximately have the resonances
as real parts) one only needs to solve an equation such 2s
D, (x) = 0 fou its roots X, and it is obvious that this can
alviays be done w:ithout ever having to subtract *‘back-
grounds” as one must do if we leok at the frequency depen-
dence of the form function after the subtraction of the back-
ground [cf. (ii) ]. The point hereis that once the resonances
are found by either approach (viz., either subtracting the
appropriate background, or without ever having to talk
about backgrounds by solving for the roots of a characteris-
tic equation), they can be used to construct dispersion plots
for the phase or group velocities of the (surface) elastic
waves that the resonances generate around the scatterer. If
we obtain the roots of D, (x) = 0in the (complex) X pine,
then their real parts turn out to be close to the resonances,
and their imaginary parts, to their widths. If the resonances
are isolated by means of the spectrogram in item (ii), then
their widths can be read from the plot. We repeat that the
resonances thus found, exactly coincide with the real roots
x,, of the (real) characteristic = equation
F7'(x)=Re[z{"(x)] "' The fact that tne Re X, are
only approximately equal to the x,,; does not imply arbitrari-
ness in the way the x,,; are determined.

(xiii) Dispersion curves for the phase velocities ¢§ of the
surface waves: They are found from the x,,, by the relation:
ey =x/(n+ 1/2).

(xiv) Dispersion curves for the group velocities ¢’ of the
surface waves: They are found from:
c{®/c, = 1/Re[dn,(x)/dx], wherec, is the sound-speed in
the outer medium. Analogous expressions exist’ for the
phase and group attenuation “constants” for the waves re-
volving around the scatterer.

(xv) Kesules in vacuum versus fluid-loaded results: All
the results discussed above are usually found with the exact
formulation in Refs. 5 and 6, which accounts for the influ-
ence of the outer and inner fluids. A formulation for shells in
a vacuum could be extracted from the above formulation
simply by setting p, = Oand p, = 0. This would imply that
the elements d,,, dy, and 4T (of Ref. 6) vanish. Such a
result would be unrelated to a scattering situation and would
be useful only to describe the vibration of unloaded elastic
bodies. In this case, it follows that

A, (x) =4 (x)
__ da(x)
T RW(x) xd1
i"e~%cosx (n=024,.)
— e~ "sinx (n=135,..).

These shell results account for the precise curvature of the

(3)

shell in a natural way, whether it is fluid loaded orin a vacu- -

um. It is obvious that if someshell feature such asa branch of
a dispersion plot for a phase velocity were to be displayed
accounting for, and then ignoring, the fluid-loading effects,
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the resulting curves would differ. The two curves would then
exhibit a discontinuous “kink” at the poirt where'the fluid-*
loading condition changes.

(xvi) Zero-curvature results: There have been attempts
at interpreiing features in the scattering cross sections of
shells by means of results derived for flat plates. Such at-
teripts may have been motivated by a desire to see how a
simpler n.odel could explain a more complex situation that it
was not originally meant to explain. It is also conceivable
that they may have been due to the difficulty involved in
implementing the more general formulation. At hizh-fre-
quencies, it is possible to estimate the phase velocities for a
shell (fluid loaded or in vacuum ) by their valucs obtained for
a plate, by means of the conversion:

27 _(Mow_

x=k,az-—— . (4)
¢ 1—b/a

This relation converted the frequency-thickness products at
which certain modes (or branches) occurred in a flat plate,
to the k,a values for which “corresponding” effects were
present for shells. It is at high frequencies that the shell <ize
becomes large compared to a wavelength, and that curvature
effects become negligible. The approximation in Eq. (4) fails
at low frequencies. The present implementation of shell for-
mulations (cf., Refs. 5 and 6), is valid at all frequencies, and
thus, it brings out the features present in all spectral regions.

In what follows, we will always use our shell formula-
tion (Refs. 5 and 6). It will always account for exterior/in-
terior fluid-loading effects, as well as for the precise shell
curvatures. The snell deformations are described by the (ex-
act) three-dimensional equations of elasticity-—as opposed
to the many existir.g *shell theory” approximations—and it
will nowhere need estimates based on flat-plate theories or
effects. Hence, our results will be valid for all shell thick-
nesses, curvatures, and in all frequency bands, whether there
is fluid Joading or not.

In conncction to the fluid-loading effects, it has been
repeatedly'® stated that the dispersion curve for the zeroth-
order antisymmetric Lamb wave, 4, propagating in a
spherical shell in a fluid starts to be excited for ¢, 3¢, . For
¢, <¢, there seems to be no 4, branch, and what seems to
exist then is a section of the dispersion curve corresponding
to the “fluid-loaded” case, sometimes called the 4 branch.
This segment seems to be a discontinuous or disjointed ex-
tension of the A, curve toward the low-frequency end of the
spectrum. See below.

In connection to curvature effects it also follows that at
low frequencies not only are there resonance effects due to
the 4,, 4, and S, waves, but also to an additional curvature
wave. This curvature wave is missed if plate theory app: oxi-
mations are used to predict resonance locations. This wave
causes the breathing mode vibration of the shell, and it is the
shell counterpart of the interface wave respunsible for the
giant (monopole, # = 0) resonance™ of an air bubble in wa-
ter. For a shell, this resonance is not giant but just large, and
it consists of about half a dozen multipole modal compo-
nents (as can beseen in Fig. 3) orits enlargements. (See the
discussion of Fig. 3, below.) Hence, at low frequencies, the
general exact three-dimensional shell formulation presented
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in Refs. 5 and 6, and implemented here, is the only tool that
can accurately examine arbitrary fluid-loading, curvature,
and resonance cffects in any frequency band of the form
functions of submerged shells.

1I. NUMERICAL RESULTS AND DISCUSSION

A partial analysis of figures analogous to Figs. 1-3 has
already appeared®®'®2%2 in various earlier works. The
complete picture that emerges from in-depth studies of these
results follows in very abridged form, below. With the excep-
tion of our own work,>*® the form functions have always
been analyzed in relative narrow bands not exceeding &, a
values of 100. We have now eatended these bands up to
k,a = 500, which allows us to see some effects never before
published, or even noticed.

Figure 1 shows the form function of an air-filled steel
shell immersed in water. The relative shell thickness is
h/a=5%. The properties of steel are: ¢, =35.95X 10°
cm/s, ¢, = 3.24X10° em/s, p, = 7.7 g/em’, and those of
water are ¢, = 1.4825%10° cm/s, p, = 1 g/cm>. The prop-
erties of the internal air are: p; = 0.0012 g/cm* and c;
= 0.344 X 10° cm/s. Figure 2 displays the residual response
obtained by subtracting the rigid background over the entire
spectrum, for the same shell in water in the band
0<k,a<500. Figure 3 (top) exhibits the form function of a
steel shell of the same properties as before but of thickness
kh/a=2.5%, in the band 0<k,a<100. The bottom plot
shows the residual response resulting when we subtract the
rigid background throughout the entire spectrum. Dips in
the upper plot become resonance peaks in the bottom plot.
These curves are obtained by the procedures labeled (i) and
(i) in Sec. I, and the (exact) metnodology of Refs. 5 and 6.

Consider Fig. 3 {or a steel shell of relative thickness
t=h /a = 2.5%. There is a clearly visible region of “strona
flexures,”® or “bump,” that starts to develop at x~1 ~ ', or
in this case, for x=~40. The empirical condition xr~1 is a
rule of thumb that has emerged from observation of many
cases.®'S (See, for example, Fig. 4 and its discussion below,
for a1 = 5% shell, or Figs. 1-7 of Ref. 6.) It has its origin in
the standard coincidence®® condition ¢® =¢, for the 4,
wave. The frequency x, for which ¢” = ¢, (see, for example,
the dispersion plot for 4, in Fig. 4), seems to always be such
that xt ~ 1. This condition depends, ir general, on material
parameters through a proportionality constant C (viz,,
Cx1~1), but for steel C=0.8, and thus. it still follows that
xt~ 1. Thus, as a rule, the region of strong flexures begins to
appear at the coincidence frequency. In addition there are
resonance peaks spaced at regular but rather broad intervals
throughout the whole spectrum except around the coinci-
dence®'#192! freqnency. Their separation can be read from
Fig. 3 tobe Ax~3.5 and they aredue to the S, wave, which is
the only one having its effects felt over the whole spectrum.®
Then, near coinc.dence (viz., 40<k,a<70), the spacing of
the observable resonances becomes smaller (i.e., we read
Ax~1.2) and nearly uniform. These more closely spaced
and narrower spikes are due to the A, wave, which is almost
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FIG. 1. Form function | /| as obtained from Eq (1) for a spherical, air-
filled steel shell of relative thickuness i /a=1 — b /a = 5%, immersed in wa-
ter in the (nondimensional) frequency band 0<k; a<500.

nondispersive, has lower speed (cf. Fig. 4), and has effects
that begin to be felt at coincidence.>® We also note some
low-frequency resonance features at k, a~ 3, which are due
to the nonzero curvature of the shell. For the case of very
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.

thin shells, these resonance features merge to produce the
(monopole) breathing mode of an air bubble in water, which
becomes stronger and eventually giant, the thinner the shell
becomes. Figures | and 2 also reveal a high-{requency fea-
ture (viz., k, a-~240) that had gone unnou.ced in the past for
shells of this thickness since it appears for £,a > 100—a re-
gion na( investigated much in the past. For thinner shells,
such a broad resonance occurs at even higher frequencies
(viz., at k,a~480 for t = 2.5%; cf. Fig. 9), as we will sce
later.

Once we have obtained the resonance locations, we can
use them to construct dispersion plots for the phase veloc-
ities of the propagating (Lamb) waves. Resonance Jocations
can be read from Fig. 2 or 3 (bottom), or even from Figs. 1
and 3 (top), since in these instances the resonances are quite
noticeable even before isolating them by background sub-
traction. As we mentioned in Sec. I, item (xii), resonance
locations can also be obtained by solving for the (real)
roots of characteristic equations such as F'(x)
=Re[z{"(x)] ", and then substituting them into the
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well-known relation given in item (xiii) of Section I. This
alternative procedure does not require background subtrac-
tion, but is more computationally intensive. In either case,
the result of the analysis for a ¢ = 5% steel shell in water in
the band, U<~ .a <50, is shown in Fig. 4 (top). A detail of
this plot in the low-frequeacy region (dw hed rectangle; is
shown in Fig. 4 (vottom). This figure contains much infor-
mation as we wiii see below. As memioned in item (xvi),
there have been atteinrts at interpreting the form-function
features of shells in terms of “corresponding’ results for flat
plates. Consider the often-quotad Fig. 26 ol Brekhovskikh's
book (Ref. 12) which displays the dispersion plots for the
phase velocities of symmetric S§; nd antisymmetric 4;
(j=0,1,2...) Lamb waves »n an aluminum plate in vacuum.
Brekhovskikh attributes this figure to Schoch?* who in turn
attrib tes it to Firestone.?®* We have recalculated it for a
tungsten carbide plate (Fig. 4, Ref. 5). Many authors have
generated it for various metals.'’!>'“** That figure shows
that at low frequencies, the 4, branch tends to zero and the
S, curve approaches a small constant value slightly below
the value ¢, /c,, . Figure 4 is the counterpart of that old plot,
now for air-filled steel spherical shells in water. In the band
0 <k, a <500, five branches enter the picture, namely 4y, 4, ,
and 5, S, and S,. For shells, both the 4, and the S,
branches attain very high ¢ values at the low-frequency end
of the plot. Having Fig. 4, it is no longer necessary to use flat-
plate results (such as Fig. 26 of Ref. 12) to physically inter-
pret resonance features in the backscattering cross sections
of fiuid-loaded elastic shells. In fact, Fig. 4, which corre-
sponds to the exact solution for a shell treated by three-di-
mensional elastodynamics, differs substantially at low fre-
quencies from the equivalent (standard) results
obtained'"? from plate theories. According to the relation
in Sec. I (xiii), the phase velocities ¢f(x) are proportional to
the resonances x,,,, found as roots of the pertinent character-
istic equation. This whole procedurz is entirely contained in
the frequency domain x, and is urielated to approaches de-
veloped for the mode-order domain. The numbers marked
along the various branches of the dispersion curves corre-
spond to values of the index « at the various frequencies at
which they occur. These numbers are obtained by carrying
on a partial-wave analysis of the form function as indicated
initems (v) and (vi) of Sec I, for various values of the mode
index n. At high frequencies, the 4, branch tends to the
Rayleigh speed c,. Figure 4 (bottom) shows that the 4,
branch crosses the ¢ = ¢, level at the coincidence frequency,
near x = ~ ' =20. For frequencies below coincidence, the
A, branch is to be replaced by the fluid-loaded branch 4,
which here is determined from our (exact, 3-D) shell formu-
lation,*>® not from any flat-plate result.?>? Only in this fash-
ion can the shell curvature (as well as fluid loading) effects
be preserved and studied. The (sometimes called fluid load-
ed) A branch is not shown here (in Fig. 4), but it is known to
remain always “subsonic” ¢ <¢,. The term “subsonic,” or
“supersonic” (¢> ¢, ) often used to describe these phase ve-
Iocities, is to be used with the understanding that thereare no
perceivable transonic effects or “sonic booms” occurring as
these phase velocities exceed the sound speed in the medium.
Itis known that phase v:locities in analogous electromagnet-
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ic instances can even exceed the speed of /ight in the medium
in question. The S, branch is the exact 3-D elasticity coun-
terpart of Junger's®’ upper branch of eigenfrequencies found
by means of Donnell’s shell-theory equations.?® At low fre-
quencies, the Donnell theory results do not differ much from
the exact 3-D elasticity results given in Fig. 4, for that
branch. Note that the exact S, branch displayed in Fig. < has
a relatively flat shape in the enlargement (bottom), but as it
is seen in the top graph for 0<k,a<500, at the higher fre-
quencies, it bends down and asymptotically approaches ¢,
just as the 4, branch. .
Figure 5 displays analogous results for a spherical steel
shell in water of thickness r = 2% in the band 0<k, a<500.
For this thickness, oniy three branches of the dispersion
curves (viz., Ay, A4,,and S, ) are present. The others appear
at still higher frequencies. Figure 6 displays analogous re-
sults for the shell in the same band when the thickness is now
1 = 1%. Only the A, and S, brauches are present in this case.
All that was said for the thicker shell still applies for Figs. 5
and 6. The bottom part of Fig. 6 shows a section of the resid-
ual response in the high-frequency band 400< &, a<500 for a
= 1% steel shell in water. In general, suppression of the
rigid background does not exactly isolate the resonances,
everywhere, in a completely clean and clear fashion. The last
segment of Fig. 2 (400<k,a<500) for the 71 = 5% shell
shows the point well. Even though at high frequencies the
rigid background should’ become “better,” the last segment
of Fig. 2 shows that such is not always the case. Figure 6
(bottom) is displayed here merely to show that if a “modi-
fied” background is used, the resonance-isolation process
that results is very clean and accurate. The modified back-
ground responsible for Fig. 6 does not assume the scatterer
rigid as in many earlier RST papers, but it accounts for the
matching of elastic properties of the scatterer and the fluid
loadings taking place at the shell’s surfaces. Its mathemat-
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ical derivation is lengthy and will appear elsewhere. Simple
observation of Fig. 6 is the best evidence of its appropriate-
ness.

Figure 7 shows the dispersion plot for the phase-velocity
of the A, branch for a steel spherical shell of t = 1% in wa-
ter. It coincides almost exactly with the A, branch shown in
Fig. 6 (top) which was computed using the exact 3-D for-
mulation of Refs. 5 and 6. However, it was calculated here by
means of the Donnell shell-theory equations™ used by
Junger and others.?” This plot is simpler and faster to gener-
ate than the one in Fig. 6 (top).

Figure 8 shows the form equation (top) and the residual
response (bottom) of a steel shell of t = 1% in water. The
curves are found in the band 300<k, a<500, and the lower
ones have made use of the “modified” background men-
tioned above. While the form function (top) exhibits some
peaks and some dips, the “residual” response displays clear
resonances everywhere. In fact, as stated above, these residu-
als are the isolated resonances, as predicted by the present
approach.

Figure 9 is analogous to Fig. 8, but the steel shell now
has thickness 1 = 2.5%. The novelty is the appearance of a
large broad peak near k,a=486. In fact, it extends from
k,a = 470 to 510. This feature was seen earlier at k,a=240

G. C. Gaunaurd and M. F. Werby. Lamb and creeping waves 1662




. Phase Velocity VS Ka
4
1.68522
)
]
-
dr- X . Y L4
1.355734 4 3 1
[ °°
{ oo’
= ! I
8 ! oot
£ (oz26244 ! o’
i
) <+ J — o.
@ 1T 4 o’
.c L J .Q
Q. ‘( o
1 o*
H
! o
L]
0.69674 4] -
r 1 «*
1 e .0'
4 1 o
4 e '.
“1 t L d
T -
1 o/ .
-
0.36725 4——p-}—t—t—nrt
0 20 40 80 80 100

FIG. 7. Detail of the dispersion plot for the phase velocity ¢, of the 4, Lamb wave on a 1%

22.1 z‘-9
o 2 i
2 il il H.Iln‘ it
% '!)!l.ﬂlllhfr,h;'\"‘1!.!”(!' g '”- ';{I.lin! “
210 e 209 '
o il 2 ‘-HnHHHnw el
e [H ¢

300 320 340 360 380 400 400 420 440 460 4% 5&)

Ka (<]

g 10 Zo9
= osil 1111 | 206““ ||I||
e e
< ; g EEM
2 --tn;‘f'f {1 IRED i

et ) g
2oa it Bogl b
g o £

FIG. 8. Form function (top) and residual response (bottom) fora 1% steel
shell in water in the band 300< &, a<500. We underline the clean and clear
nsture of the isolated resonances in the bottom plot, obtained via the same
“modified” background used in Fig. 6 (ii).

1663 J. Acoust, Soc. Am., Vol. 89, No. 4, Pt. 1, Apni 1991

Ka

% steel shell in water, in the band 0<k, a<100.

1.7 - 64
4 ]
S ., , » 2. il
£ ol ! 5 , %
g Z '}
08 2 32 }
E ”1'! li || Il[l‘ : , : W,
[
§04 E 16 " R q."/”'\" :
0 [}]
300 320 340 360 380 400 400 420 440 450 480 00
Ka Ks
% 07 b 87
z 'l z .
£ osf! € a2 ™
g ’ l‘ " 1 ﬁ . '}; \\a
)
203 o (“"w.‘ ':.: 2 28 ! |
3 §, D
S 03 ! 'n..-‘ e © 14 / 1
@ I, z o
g o 1 - & pVAVNTE

mmm«w

Ka

FIG. 9. Same as Fig. 8 but now for a steel shell of thickness 2.5%. The main
feature observable in this case is a large and wide resonance peak near
k,a~480. This is caused by a thickness resonance effect resulting when the
frequency-thickness product for the shell equals either the phase velocity of
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for a 5% shell in Figs. 1 and 2. Figure 10 dispiays dispersion
plots for the phase velocities of the first three Lamb waves
Ay, Sy, and 4, in the band: 300<k, a<500. We note that near
480 the c, of the A, branch is ~2.87 Km/5. This new large
peak is caused by a thickness resonance effect present in the
shell which we analyze below. This peak could be caused by
the fact that the phase velocity of the propagating wave
equals the frequency-thicknesg product (viz., for ¢, = fh ).
This condition is not due to the coincidence phenomenon,
although it resembles it in form. In fact, this resonance con-
dition could be simply stated as: # =4, where A =c¢,/f is
the wavelength of the A, wave in the shell, of phase velocity
¢,- Shell motions ir. this situation are of a bending or flexural
nature, and follow a direction through the thickness, normal
to the fluid-solid interface, as one would observe at the inci-
dence point on the shell. Suck condition serves to predict the
spectral location of the large thickness resonance, since
27a 2ra & _2m &

x=kig=—— f="— £ = -
' ¢, f ¢ h ¢ h/a

Substitution of the numerical values vields

o 2X3.14X287X10°
1.4825x10°x0.025
just as seen in Fig. 9. There is a “principle of transverse
resonance’' 121424 that could also account for this peak,
and which is usually written as h=mA,/2 form =2, 4, 6,
... ,where A, is the shear wavelength in the layer. Form = 2,
this condition is A = A; (or equivalently, X,k = mw), which
differs from the previous resonance condition in that we now
have A, rather than 4 in the right side. This leads to ¢, = fh
and to an equation to predict the peak location which is

(5a)

480,
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_ 27 Ss
h/a ¢’

which differs from Eq. (5a) in that ¢, is siow replaced by c,.
There is also an analogous “principle of longitudinal reso-
nance”!"'#1%24 ysually writtenas & = n(4,/2) forn = 1, 2,
3,..., where A is the dilatational or longitudinal wavelength
in the layer, which is easily seen to be equivalent to
ksh = nz. For n=1, it leads to ¢,/2 =/fh, or simply,
h = A4,/2. The peak location could be now predicted by

7 C
x=2T Sd (5¢)

h/a 2¢,’

x (5b) |

which differs from Eq. (5a) in that ¢, has been replaced by
¢,/2. Substituting the values of the material parameters into
Egs. (5b) and (5c) yields g

_ 6.28X3.24x10°

0.025% 1.4825% 10°

for Eq. (5b), and x = 504 for Eq. (Sc). Figure 9, which
displays our numerical prediction, shows the broad thick-
ness pea: extending within: 470<x< 510, with the top of the
peak at ~480. This rules out the prediction of Eq. (5b),
whichis ~ 13% too large. However, it iraplies that both Egs.
(5a) and (5c) predict a location for the thickness resonance
peak which is in agreement with our calculations in Fig. 9 for
a steel shell. In the absence of other evidence, it seems that
the prediction of the main peak displayed in Fig. 9 is best
given by Eq. (5a); however, that of Eq. (5c) dis only
18/504 =3.5% away from the other, and thus, the differ-
ences are small. They are close enough to each other to be
both “confirmed” by the calculations we have performed for
several other thicknesses and materials which will be shown
elsewhere. At present, it is not clear if the location of this
large thickness resonance peak should be determined by that
of its central lobe of highest amplitude, or by that of onc of
the particular subpeaks that form it (see Fig. ). This point
will be further studied by us in the future. For the case in Fig.
2, the phase velocity is slightly less than the values found
here, so the location of the peak in Fig. 2 is about
x=k,a==236, as seen there. Finally, the resonance fora 1%
steel shell in water is enlarged in Fig. 11 in the band
90<k,a< 150. It is in this band that the strong flexures begin
to appear at the coincidence frequency x = 100. This figure
was already examined in Fig. 3(c) of Ref. 6; however, now
the various peaks in Fig. 11 have been identified with the
various mode orders n that cause them. This is done by a
partial-wave analysis as described in items (v) and (vi) of
Sec. I, and used in Figs. 4-6. This partial-wave analysis
shows each one of the individual contributions to the ensem-
ble of peaks appearing in Fig. 11, and permits one to identify
them in that fashion. Figure 11 displays the set of resonances
numbered n = 107 to 126, which are separated a narrow
distance Ax~ 1.2, and are due to the 4. - _, ,.hich in the
present exact formulation, always acounts for fluid loading
and shell curvature. It also displays another resonance set,
spaced a wider amount, Ax~ 3.5, toward the right end of the
plot, which is due to the S, wave, originally studied by
Junger?” by means of a shell-theory approximation analo-
gous to the one we used in Fig. 7. Coincidence occurs near

1
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k,a~108. For a t = 1% shell, it should appear at x =k,a

= ¢ = = 100 but as we mentioned above, this relation is to
be modified by a multiplicative factor that depends on mate-
rial parameters and that is close to unity. The left portion of
Fig. 11, up to ka=125 actually shows the superposition of
two resonance families. The flexural (antisymmetric) reso-
nance family begins to appear slightly below the coincidence
frequency, at which point, a (forthcoming) partial-wave
analysis of the figure shows that the individual resonance
contributions are quite broad when displayed versus ka.
These flexural contributions are coherent and add in phase
below coincidence, but are out of phase above it so that an
envelope type of function becomes noticeable. This envelope
makes up the “bump” characteristic of this neighborhood of
the coincidence frequency. Superimposed on this envelope is
a narrow resonance family due to a surface wave analogous
to the Stoneley wave at the interface of an elastic plate fluid-
loaded on only one side. Alternative names for these reson-
ances are “leaky pseudo-Stoneley resonances,” and also
“Junger-type resonances,” and they appear near coinci-
dence. At their inception, and for the steel in Fig. 11, they
have a phase-velocity of 0.88¢,, which ultimately increases
to ¢, atcoincidence, at which point they are essentially dissi-
pated. In the vicinity of the coincidence frequency where
they occur, these two families seem to be the same, but they
really have different origins.”> This point can be verified by
calculating the responses of shells to incident pulses at coin-
cidence, in the late-time region. This excludes the broader
flexural family (4, ) which dissipates faster in time, and per-
mits the extrac:ion of the associated group velocities from
the resonance half-widths, of the Junger-type family, as was
reported earlier.® A more detailed description and study of
the partial-wave analysis that leads to Fig. 11 and these re-
sults, will appear elsewhere. Items (viii)-(xii) of Sec. 1, al-
though not used here, have been used in past resonance stud-
ies®1°, and will be used in future ones.

11l. CONCLUSIONS

The present paper examines the featrres in the scatter-
ing cross sections of air-filled spherical steel shellsin water in
the band 0< k, a<500. The resonance features are then asso-
ciated with the Lamb waves propagating in the sh=1l materi-
al, and with other external circumferential waves propagat-
ing in the outer fluic. The presence of circumferential waves
in the inner fluid does not manifest itself appreciably in the
scattering cross sections. Having these resonance responses
it is not hard to work backwards,’ and be able to identify
various properties of the scatterer such as its overall dimen-
sion, thickness, and material composition. For example,
knowledge of the location of the large lobe that develops at
the (nondimensional) coincidence frequency, x, for which
xt~1, immediately gives the relative shell thickness .

Our analysis is based on an exact three-dimensional
elasticity methodology that we described in Refs. 5 and 6,
initially implemented there, and continued here. This meth-
odology is ideal to reliably analyze any scattering problem
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FIG. 11. Detail of the resonance response of a steel spherical shell of (rela-
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strong flexures are seen to develop. The resonance peaks are fabeled/num-
bered by the partial-wave analysis described in the teat

pertaining to insonified shells fluid loaded on their inner and
outer surfaces, particularly at low frequencies. This ap-
proach never misses any of the many effects present in the
scattering process whether they are due to curvature, fiuid
loading, thickness resonances, or to choice of frequency
band.

There is no need to analyze or interpret resonance fea-
tures in shell cross sections by means of plate waves or plate
vibrational theories, whether these are fluid loaded on one or
twosides, or placed in a vacuum. The tendency todo that has
been quite popular, and it has included ourselves (cf. Fig. 4,
Ref. 5). However, at present, we realize that it only obscures
the issues and introduces errors. It is clear from the present
study that only the 3-D elasticity formulation ot 1iefs. 5 and
6 accounts for all possible shell effects. Next best, is the use of
a shelil theory approximation®”-® which will be ccurate at
least up to the coincidence frequency. As we saw in Fig. 7,
such an approach can still extract the curvature effects re-
sponsible for the high values of the phase velocities along the
Ao and S, branches at low frequencies. (We repeat that the
branch we have called 4, already contains the fluid-loading
effects within it.} The basic explanation is that above coinci-
dence there is an 4, (Lamb) wave in the shell and also a
corresponding A, wave in the fluid, which is transmitted to i
by the motion of the shell. Below coincidence, the 4,
(Lamb) wave in the shell is turned off or ceases to ba excited,
while its counterpart in the fluid does not. This counterpart
has to account for the presence of the surrounding fluid,
since without it, it would have no place 1o propagate. Thus
what has been termed as a (plate) A wave (that “accounts”
for the fluid loading) emerges in a natural way from the
present methodology which obviously always accounts for
the fluid loading on the (curved) shell. We remark that the
present exact three-dimensional methodology is also avail-
able for layered shells.® This formul .ion also leads to the
generation of exact dispersion plots for the phase velocities
of the various types of Lamb waves propagating on fluid-
loaded spherical shells. This generalizes early plate results,
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such as those in Fig. 26 of Ref. 12 (or Fig. 4, Ref. 5), and
discourages possible future attempts to interpret resonance
features in shell cross sections by plate waves or results. We
have favorably compared dispersion plots obtained by the
present exact methodology anu those based on the Don-
nell*” shell equations (Fig. 7). We have studied a large-am-
plitude thickness resonance effect present in shells at rela-
tively high frequencies. Since calculations are rarely carried
out to very high frequencies (viz., x~500 and beyond), we
suspect that it was precisely for that reason that it had re-
mained unnoticed. The present broad band calculations ex-
hibited here have brought it into the open. The location of

this thickness resonance can be predicted by Egs. (5a) and |

(5¢), which rest on resonance conditions of the simple type:
h=2,orh=24,/2, respectively. A third possible resonance
condition (viz., A, = /) examined in this regard, does not
seem to agree with the nume-izal calculations we have per-
formed and displayed in Fig. . However, these calculations
(ct. Fig. 9) do confirm the predictions of both Egs. (5a) and
(5c¢) within acceptable accuracy. It also follows that if calcu-
lations were to be performed in even broader frequency
bands (i.e., x> 500) than shown here, one would be able to
note higher-order thickness resonance effects of the types
discussed here, caused by the overtones associated with mul-
tiples of the appropriate wavelengths. We have illustrated
(in Fig. 6, bottom) that the resonance-isolation process typi-
cal of the RST can be very clearly and accurately accom-
plished over the entire spectrum by the suppression of a
“modified” background that will be the subject of a later
detailed study. Furthermore, by means of a partial-wave
analysis, we have identified the basic types of resonance fea-
tures present in the resonance response of a submerged steel
shell in the vicinity of its coincidence frequency, and estab-
lished their connection with the underlying surface waves.
We remark in closing that the features in the cross-section of
any submerged shell, as obtained from an incident cw wave-
form, are related to those occurring when the incidence is
pulsed. For example, an energetic sinusoidal pulse of short
duration incident on a shell will backscatter a pressure re-
sponse that will reproduce the (steady state) form function
| f.. (x)] that was obtained for cw incidences. For this to
occur, the carrier frequency x, of the incident pulse should
coincide with one of the shell resonances x'”. This replica-
tion of the response will be more evident for frequencies be-
low that carrier frequency. Conversely, for long incident
pulses (say, having a delta function centered around x, for
spectrum), the amplitude of the scattered pressure field will
reproduce the portion of | f,, (x)| near a shell resonance
provided that x, = x'”. In other words, long incident cw
pulses with x, = x*”, will excite individual resonances x*”
in the target. These ideas can all be extracted from the filter-
type relation
| O . i
P (7) =5~ S (X)Pye (X)e= %7 dx,

6)

which gives the scaitered pressure in the pulsed case, in
terms of the form function in the steady-state case, and the
spectrum of the incident pulse. In this later case, knowledge
of the transient vibration of the shell*® becomes critical.
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