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Foreword

Ocean circulation models have the potential to provide accurate
forecasts, as well as nowcasts. The development of these models is
facilitated by the existence of continuous time series of quantities to
which they can be compared. The Levitus climatology provides one
standard, but most useful quantities are available only as seasonal
means. Several algorithms are presented to convert these into the
continuous form that is required.

W B. MoSe'j J. B. 'Tupaz, Captain, USN
Technical Director Commanding Officer
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Executive Summary A large-scale, integrated program in ocean circulation model development
has been pursued by the Ocean Modeling and Prediction Branch, Ocean
Sensing and Prediction Division, Naval Ocean Research and Development
Activity. This program will provide the Navy with accurate nowcasts and
forecasts of the state of the ocean on global, regional and tactical scales.
One of the constraints that has been applied to this research is the
development of circulation models that accurately reproduce the measured
climatologies of such quantities as the dynamic height, thermocline depth,
and depth-averaged density. These fields are derived using in situ data that
have been acquired over many decades, but are so irregularly distributed
that in most regions only annual or seasonal mean fields have been derived.
Comparisons between model and data climatologies are facilitated if both
are available as continuous time series, but the standard Levitus climatology
is generally available at time scales no shorter than seasonal. This report
describes several methods for converting the existing seasonal quantities into
a continuous time series of fields, and also notes an amplitude error and
bias present in the seasonal values as presently derived.
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Fitting Seasonal Averages with a
Continuous Function

Overview The Levitus climatology contains annual and seasonal averages for
potential temperature, salinity, and density (Levitus, 1982). To include this
information in an ocean model (either as a forcing function or a
climatological relaxation term), it is desirable to compute a more c'-.tinuou
version of these quantities. In the past, these data have simply been inter-
polated, but this process ignores the filtering effects created by the seasonal
averaging process. The basic philosophy of all the methods described here
is to develop a continuous function whose seasonal averages match those
given by the climatology.

The first part of this report describes a basic problem with the raw data
(a bias resulting from the seasonal averaging and sampling process) and some
solutions. The remainder of the report describes various methods for
generating a continuour function to represent the climatology. Fourier
methods, polynomial interpolation, and splines of various orders are analyzed
and compared. The methods produced similar continuous function, as well
as similar first derivatives. The second derivative in the case of the polynomial
and spline forms is discontinuous between years or seasons, and may be
of concern.

Aliasing Present We can simulate the process of developing a set of seasonal averages and
in the Climatologies can show that there are two basic problems. Seasonal averaging involves

taking all the data that occurs in a particular season and averaging it. The
Levitus climatologies are computed in this way. Mathematically, this process
is equivalent to convolving the original "continuous" time series with a
91-day "running average," then sampling the resulting smooth time series
at a 91-day increment. The averaging filter significantly reduces the
amplitudes of Fourier components whose periods are shorter than 91 days,
but by no means entirely removes them. Figures 1 and 2 show the results
of computing seasonal time series from sine and cosine waves of various
periods. When this averaged time series is resampled at a seasonal (91-day)
increment, all the energy that remains at scales shorter than 182 days is aliased
into the longer scale components. Figures 3 and 4 show the response of the
seasonal averaging filter. All energy with time scales shorter than 182 days
are reduced in amplitude by the 91 -day running average. When these data are
sampled at a 91-day increment, any energy with scales shorter than 182 days
is aliased into longer period components. Once this aliasing has occurred,
the process cannot be reversed. The seasonally averaged quantities are
corrupted to the degree that significant energy at scales shorter than 91 days
exists in the real ocean. The red spectra of many oceanographic quantities
generally imply that the shorter the time scale, the weaker the phenomenon
(at least until the scale is I day, at which point the tidal energy becomes
significant). Exceptions occur at inertial and tidal periods.

Potential The red spectrum can be interpreted conversely, as well: the longer the
Undersampling time scale, the stronger the phenomenon. Both real, in situ data and model

Problems simulations show that the sea surface height (SSH) and the subthermocline
pressure field have their strongest components at scales much longer than
1 year. Figure 5 displays the spectrum of sea surface height as measured by
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Figure 5. Spectra of total SSH anomaly over a 380-day period comparing IES/PG in situ data and model-simulated data at two
locations. Both data sets show significantly red character.

an Inverted Echo Sounder (IES) array (Fox et al., 1988) in the North Atlantic,
compared to an ocean model result. Extremely long model simulations show
that significant energy exists at scales as long at 10 years (Fig. 6). Any
climatology developed using only a few years of data will gradually become
obsolete, as longer-term components treated as constant begin to change.
Climatologies based on 1-year averages will be outmoded rapidly since there
is significant variability on time scales longer than 1 year. Figure 7 displays
climatologies based on 1-year averages of SSH taken from a model simula-
tion of the North Atlantic at various locations compared to a climatology
based on all 10 years of the same data. In this simulation, interannual varia-
tions in the annual mean sea surface height are clearly substantial. The Levitus
climatology is based on between 10 and 30 years of data, but no data from
the past 10 years have been included. If the variability in the measured quan-
tities is significant on scales longer than 10 years, then this climatology may
already be out of date for some purposes.

4 Fitting Seasonal Averages with a Continuous Function
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Figure 6. Spectrum of SSHfor a ls)-year -4.0 - 1 I 1
model simulation of the North Atlantic -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -.5 0
showing that the redness of the spectrum LOG 10 (frcq l/day)
extends to scales of many years.

Biasing of the After smoothing and resampling the co-itinuous time series to form
Semiarntual seasonal averages, the remaining Fourier components are the annual and
Component semiannual periods. Figure 2 shows the effects on the semiannual component

of averaging and resampling to seasonal averages. Using January 1 as the
start of the time axis (t = 0), the semiannual sine component is clearly
reduced, but the cosine component is completely filtered out. Even if the
original time series consisted of only annual and semiannual components,
converting this data into seasonal averages destroys the semiannual cosine
wave, so that the original simple time series cannot reconstructed. The sine
component can be computed, but not the cosine. In the Fourier methods
given here, the annual and semiannual components are computed, but it
should be emphasized Lhat the semiannual component is biased in that its
phase is always 90' (always a pure sine component, with no cosine
component). The potential effects are subtle and not-so-subtle. For example,
whatever energy exists in the real ocean at semiannual scales will be partially
reduced, since only its sine component can be estimated. As an extreme
example, consider deriving a continuous wind series to drive the model for
seasonal winds. The driving at semiannual time scales will be weaker than
it should be (on average, about 71076 of what the total forcing should be).
An additional effect of this bias will be that the semiannual forcing will
always be at a particular global phase. A true, continuous climatology would
almost surely have a semiannual phase that varies with location.

Options for dealing with this problem range from doing nothing to
attempting to derive the semiannual phase relationship in some way. Rather
than include only the sine component of the semiannual climatology, the
semiannual variability could be totally ignored and only the annual
component used. In some areas of the world (i.e., the Indian Ocean) the
semiannual component is very strong and using only an annual component
of the climatology would significantly reduce the "information energy"

Fitting Seasonal Averages with a Continuous Function 5
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Figure 7. A' comparison of the seasonal cliriatologies formed from the lO-year-long data set of Figure 6 an'd similar climatologies
formed from individual v_-ars of the same data set. Interannual variationr in the climatology are as large as 10 cm in this data set.

being supplied to the model. The problem of transitioning the model
from being dri 'en by climatological data (to spin it up) io driving it with
real and current information will always be present. It i probably more
important to include the most information possible, regardless of bias, but
this remains to be tested and proven.

Three distinctly different methods were user] to develop continuous Overview of
functions that represent the given data (which consists simply of four seasonal Interpolation
averages at any given geographical locatir n). In each case, a set of best-fit Methods
coefficients, which represent Fourier coefficient weights or terms in some
polynomial -quation, are derived. Each grid point in the Levitus climatology
is assumed to be separately treated, which might result in some undesired
spatial variability (unverified). If this is the case, the coefficients could be
spatially smoothed before being used to create the continuous interpolating
functions.

A series of random seasonal climatolegies were generated , id fitted
with each of the methods described. Three samples are shown in Figures 8

6 Fitting Seasonal Averages with a Continuous Function
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through 13. In each plot, 2 consecutive years of identical data are shown
so that the continuity across the annual boundary is evident. The "square
wave" solid line represents the seasonal average drawn to cover its entire
season. Each example consists of a plot of the data converted into continuous
form by each of the methods described in the following text, followed by
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a plot of the time derivative of the continuous interpolating time series. The
three methods yield very similar time series and similar derivatives. This
similarity is emphasized in Table 1, which summarizes the results of 35
experiments (similar to results displayed in Figs. 8 through 13). In each case,
the variability of the interpolated continuous time series is computed for
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Table 1. Thirty-five realizations of
Annual Annual and 5th Degree Quadratic Mean STD Percent experiments (see Figs. 8-13)

Only Semiannual Polynomial Splines Variability Variability Deviation comparing variabilities of the

0.1061 0.1866 0.1774 0.1815 0.1818 0.0038 2.0748 continuous time series constructed
0.3411 0.3473 0.3372 0.3378 0.3408 0.0046 1.3550 by the various methods described in

0.1851 0.2282 0.2292 0.2220 0.2265 0.0032 1.4091 the text. The annual-only method is

0.1463 0.2057 0.1901 0.2001 0.1987 0.0065 3.2471 excluded in the final three columns.
0.0697 0.2903 0.3203 0.2824 0.2977 0.0163 5.4776

0.1928 0.2128 0.2322 0.2069 0.2173 0.0108 4.9684
0.2352 0.2544 0.2768 0.2474 0.2595 0.0125 4.8280
0.2358 0.2472 0.2639 0.2404 0.2505 0.0099 3.9443
0.1856 0.2262 0.2411 0.2200 0.2291 0.0088 3.8490
0.1573 0.1984 0.1850 0.1930 0.1921 0.0055 2.8672

0.2385 0.2562 0.2665 0.2492 02573 0.0071 2.7656
0.0868 0.2166 0.2630 0.2107 0.2301 0.0234 10.1643
0.0257 0.3446 0.3857 0.3352 0.3552 0.0219 6.1734
0.1565 0.2350 0.2156 0.2286 0.2264 0.0081 3.5588
0.0937 0.1958 0.1963 0.1904 0.1942 0.0026 1.3579

0.2023 0.2201 0.2324 0.2140 0.2222 0.0077 3.4493
0.1632 0.1931 0.1866 0.1878 0.1892 0.0028 1.4968
0.1862 0.2536 0.2611 0.2467 0.2538 0.0059 2.3254
0.1875 0.2769 0.2906 0.2694 0.2790 0.0088 3.1545
0.1180 0.1827 0.2109 0.1777 0.1905 0.0146 7.6534

0.2983 0.3149 0.2991 0.3063 0.3068 0.0065 2.1050
0.0649 0.2277 0.2386 0.2214 0.2292 0.0071 3.0901
0.1088 0.2394 0.2638 0.2328 0.2453 0.0133 5.4248
0.2701 0.2704 0.2747 0.2630 0.2694 0.0048 1.7839
0.0987 0.2404 0,2665 0.2338 0.2469 0.0141 5.7158

0.3058 0.3269 0,3316 0.3180 0.3255 0.0057 1.7361
0.0760 0.2453 0.2760 0.2386 0.2533 0.0163 6.4349
0.1113 0.2253 0.2726 0.2192 0.2390 0.0239 9.9833
0,2134 0.2236 0.2155 0.2175 0.2188 0.0035 1.5795
0.0559 0.2287 0.2384 0.2224 0.2299 0.0066 2.8630

0.2210 0.2278 0.2393 0.2215 0.2295 0.0074 3.2075
0.2065 0.2196 0.2158 0.2136 0.2163 0.0025 1.1481
0.0302 0.3235 0.3899 0.3147 0.3427 0.0336 9.7935
0.2471 0.2516 0.2456 0.2447 0.2473 0.0030 1.2290
0.3604 0.3701 0.3568 0.3600 0.3623 0.0057 1.5628

each method and then intercompared. Excluding the fit based on the annual
cycle alone, the time series created have variabilities that deviate from one
another by no more than 10076, and the bulk of the experiments showed
differences of only a few percent.

The first method described is based on developing a Fourier series that
represents either the annual component alone, or both the annual and
semiannual waves. As described, when the semiannual component is included
in the fit, there is a bias in that only the sine component can be estimated
from the data. However, if only the annual component is used, significant
energy present in the semiannual waves is ignored. In both cases, the inter-
polating function is continuous throughout the year, as well as from year
to year, and so are all its derivatives. This continuity is important if the
model being driven directly or indirectly by the climatology responds to
temporal derivatives of the quantities being supplied. In the samples (Figs. 8
through 13), the annual-only fit is shown with a long dash line and the annual
plus semiannual fit is shown with a dotted line.

The second method is based on polynomial interpolation. We attempt
to derive a finite polynomial which, when averaged, yields the

10 Fitting Seasonal Averages with a Continuous Function



correct seasonal values. The polynomial and its derivatives are continuous
throughout the year, but it is shown that at the year-to-year boundaries,
continuity constraints must be relaxed for a solution to exist. For example,
in the case of a 5th degree polynomial, we can require continuity off and
f', but in the case of a 6th degree polynomial, we cannot add continuity
off" and still find a solution. The 5th degree polynomial fit is displayed
in Figures 8 through 13 using a dot dashed line.

The final method of solution is based on splines of various degrees. Each
season is represented by a separate polynomial (linear, quadratic, or cubic)
and then boundary conditions of continuity are used to fix the terms. It
is shown that linear and cubic splines are not uniquely determined by the
equations and that some additional ad hoc constraint must be imposed.
Quadratic splines can be derived without problem (indicated in Figs. 8
through 13 by a short dash line.

In each of the methods described below, the four known seasonal average
quantities are represented by the symbols b, through b4'

Fourier Interpolation Assuming that the underlying time series had a Fourier representation,
the seasonal averaging process will produce a time series that has a
dc component, a cosine and sine component with an annual cycle, and a sine.
component with a semiannual cycle. Any other frequencies are aliased or
averaged out. The most general Fourier expansion we can write then for
the original time series is

b(t) = ao + alcos(wt) + a2sin(cot) + a3sin(2ct) , (1)

where co is the frequency corresponding to the annual cycle. If time is
measured in days, then the first day (Jan 1) corresponds to t = 0 and the
fundamental frequency will be given by co = 2u/364 (for the case of a model
year with 364 days). If time is measured in weeks, then co = 2n/52 and
the first week will be at t = 0.

The four seasonal averages of Equation (1) are given by:

bi = < b(t) >I = a0 + a, < cos(cot) >I

+ . . . + a3 < sin(2cot) >I, (2)

b2 = < b(t) >2 = a0 + a1 < cos(cot) >2

+ . . . + a3 < sin(2cot) >2, (3)

b3 = < b(t) >3 = a0 + a, < cos(cot) >3

+ . . . + a3 < sin(2cot) >3, (4)

b4 = < b(t) >4 = a0 + a, < cos(cOt) >4

+ . . . + a3 < sin(2cot) >4, (5)

where b, represents the January-March average, b2 the April-June average,

etc., and the symbol < . . . >i means the average for season i.
Performing the various averages as continuous integrations of the sinusoids
provides the key to the simplicity of the final algorithm: all the various
averages reduce to either + 2/n or -2/n.

Fitting Seasonal Averages with a Continuous Function 11



The final seasonal average equations are, simply,

bi = a. + (2/nT) (+ a, + a2 + a 3), (6)

b2 = a0 + (2/n) (-a + a2 - a 3), (7)

b3 = a0 + (2/n) (-a- a2 + a 3), (8)

b4 = a0 + (2/T) (+ al - a 2 - a 3). (9)

Adding all four equation- -roduces the expected value for the constant
term,

a0 = (b, + b2 + b3 + b4). (10)

Adding the resulting equations in various pairs produces the final estimates
for the remaining a's:

a, = (n/8) (b, - b 2 - b3 + b4), (11)

a2 = (n/8) (b, + b2 - b3 - b4), (12)

a 3 = (iT/8) (b1 - b 2 + b- b4 ). (13)

Thus, from the original seasonal amplitudes b,, we can immediately
construct the coefficients a, in the expansion. Seasonally averaging the time
series will reproduce the given b, exactly.

If we choose to ignore the semiannual component, we can use the fact
that this component is orthogonal to the annual one, so that simply setting
a3 = 0 will give the least-squares best fit. Alternately, we can go through
the mechanics and verify that the constant and annual cosine and sine terms
have the same coefficients as derived above.

One obvious way to interpolate the given seasonal averages is to use a Polynomial Interpolation
finite polynomial. That is, we attempt to find a polynomial of degree N
such that the time series

N

b(t) I cit' (14)
i=O

integrated over 3-month periods provides the proper seasonal averages. The
additional constraint in the problem, however, is that the time series must
have a period of 1 year, and it should be continuous (and have continuous
derivatives) everywhere, including where the function shifts from the end
of the year to the beginning of the next year. If we normalize the time variable
to the range 10,1], then we have the additional set of N constraints:

b(O) = b(l) , (15)

b'(0) = b'(l), (16)

b"(O) = b"(1) , (17) 0

(18)

12 Fitting Seasonal A verages with a Continuous Function

"" • a a i I I I0



b(N - 1)(0) = b(N - 1) . (19)

A final constraint,

b(N)(O) - b(N)(l), (20)

is satisfied automatically because, it simply requires that c, = CN, but
problems are created. We have N + 1 unknowns (ci), but N + 4
constraints (the N equations in (20), plus the four seasonal averages that
are required). One might be tempted to solve this as a least-squares problem,
but first it will be shown that the derivative constraints prevent a solution
from being found.

As an example, take the simple quadratic function,

f(t) = a + bt + Ct 2 . (21)

The time variable is normalized to go from t = 0 to t = 1, so the
requirement of continuity of the function and its derivatives implies
the following set of equations (note first that f'(t) = b + 2ct):

f(0) = f(l) --. a = a + b + c, (22)

f'(0) = f'(1) -- b = b + 2c. (23)

The last equation sets c to zero. The previous equation then requires that
b be zero as well. Generally, one can show that the only finite polynomial
function, which is periodic and continuous with continuous derivatives that
match across the end points, is the function fit) = constant. (If we want
an infinite polynomial, all we have to do is expand the Fourier series derived
above for the annual and semiannual fit.)

Polynomial Interpolation As seen in the last section, no single, finite polynomial will interpolate
with Relaxed Constraints the seasonal data in a satisfactory way. The constraint of having all its

derivatives continuous across yearly boundaries would have to be removed
to permit a solution. A discontinuous derivative in the time domain implies
a significant amount of power at high frequencies in the Fourier domain,
which is undesirable, but we can still generate the polynomial and assess
its accuracy.

We have four constraint equations that come from the giver seasonal
averages, and we probably want the function and at least its first derivative
to be continuous across yearly boundaries. This operation provides six
constraints, so the simplest polynomial will have the form,

5

b(t) = . ct i . (24)

It is convenient to define the time to be in the range [-2,21. That is, t = -2
represents the beginning of January 1 and t = + 2 would be the end of
December 31. Integrating b(t) from t = -2 to t -1 yields the average for
the first 3 months of the year, which should equal b,; integrating from
t = -1 to t = 0 should yield the given average for the second 3 months
of the year b2, and so on. Continiity of b(t) and b'(t) yields the final two
constraints. These six equations in the six unknowns are represented by the
matrix equation,
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1 -3/2 7/3 -15/4 31/5 -21/2 127/7 (cO  (bl
1 -1/2 1/3 -1/4 1/5 -1/6 1/7 c1  b2
1 1/2 1/3 1/4 1/5 1/6 1/7 c2  = b3
1 3/2 7/3 15/4 31/5 21/2 127/7 c3  b40 1 0 4 0 16 0 C4  0

0 0 1 0 8 0 48 c5  0

(25)

This matrix can be inverted exactly to yield:

co = (-37/300)(t, + b4) + (187/300)(b2 + b3), (26) 0

c1 = (5/18)(b - b4) - (3/21(b 2 - b3), (27)

c, = (2/5)(b, - b 2 - b 3 + b4) , (28)

C3 = (-47/72)(b, - b4) + (9/8)(b 2 - b3), (29)

c4 = (-1/20)(b, - b 2 - b3 + b4) , (30)

C5 = (7/48)(b i - b4) - (3/16)(b 2 - b3). (31)

At each grid point in the model, then, the four seasonal average quantities
are transformed into a set of six coefficients for a 5th degree interpolating
polynomial.

In the normal method of spline interpolation, we are given a set of data Spline Interpolation:
points, and we desire a set of cubic polynomials defined between the points Introduction
that match at the points, as well as having matching first and second
derivatives at the points. In our problem, the points rercesent averages over
a season; thus, we are more interested in findinig a set of interpolating
polynomials that match well at the boundaries, and that yield the proper
seasonal averages when appropriately integrated. This philosophy is similar
to the usual definition, so the method will still be referred to as spline
interpolation.

The first spline method discussed will simply use linear functions in each Linear Splines
season. That is, in each quarter, the function is assumed to have the form
bi(t) = co + c11t. This gives eight unknowns. The seasonal averages
provide four constraint equations, and the requirement that the various 0
functions match at their respective boundaries provides another four. These
constraints would appear to provide equations to determine the unknown,
but the equations are not independent.

Let the time argument t vary from -I to + I in each season (quarter).
The seasonal averaging process (integrating each function over [-] ,I) yields
the constant terms directly.

Cot = 0.5 bi . (32)

The requirement of continuity across seasonal boundaries (including
between seasons 4 and 1 at the year-to-year boundary) produces (after
rearrangement and replacing c0 ).

c11 + c12 = 0.5(b 2 - bl) , (33)
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C12 + C1 3 = 0.5(b 3 - b2), (34)

C 13 + C14 = 0.5(b 4 - b 3), (35)

c14 +c11 = 0.5(b] - b4) (36)

Unfortunately, these equations are inconsistent, as can be demonstrated
by adding the first and third equations and subtracting the second and fourth
equations. This leads to an unacceptable constraint on the data itself; that is:

0 = bi + b 3 -b 2 - b4. (37)

We can solve problems of this type if we bring in an additional ad hoc
requirement. For example, we may try to find the set of linear functions
that has the least total variance while still exactly satisfying a subset of the
original constraint equations, or we might look for the set that has
the smallest overall coefficients in the fit. This, then, becomes a constrained
least-squares problem and methods of solving them (particularly with the
small numbers of equations involved) are no more difficult than normal
least squares problems (Brandt, 1970; Claerbout, 1976; Golub, 1983;
Meyer, 1982). In particular, if the absolute constraints we require are given
by the matrix equation

Gc = d (38)

where c is the column of coefficients we are looking for, and the goal is
to minimize the energy of the coefficients (that is minimize the scalar cTc),
then the solution is given by:

c = GT(GG)-ld. (39)

Cubic Splines As above, we attempt to find a set of four cubic polynomials, one for
each season, which match at the seasonal and annual boundaries and also
have continuous first and second derivatives there. Further, we require that
the seasonal averages computed from these functions match the four given
values. As above, we start off appearing to have enough equations to solve for
all 16 unknowns (four seasons, and four coefficients for each cubic
polynomial): the four seasonal average equations and four equations each
from continuity of the functions, their first and their second derivatives across
boundaries.

In fact, again as above, the equations turn out to be linearly dependent,
and some type of least-squares solution, constrained to meet the remaining•
independent equations exactly, must be performed. Rather than do this
solution at this time, the requirement of continuity of the second derivative
is dropped, and the order of the interpolating polynomials is dropped down
to quadratic in the following section.

Quadratic Splines After reading the previous two sections, one might wonder why another
spline order should be attempted, but in this case it can be solved without
external ad hoc requirements or least-squares criteria.

Each of the four seasons is represented by a unique quadratic function
in 1. For convenience, separately define the time to run from t = -I to
I = + I for each season. Then the four functions each have the following
form
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fi(t) Coi + clit + c21t
2  (40)

f:(t) =cli + 2c2it . (41)

The continuity of f across seasonal boundaries provides the first four
equations. 0

fA(+ 1) = f 2 (-1)- c0 + C "+ C2 1 = C02 - C12 + C2 2 , (42)

f 2(+ 1) = f 3(-l) C2 + Cl2 + C22 = C03- C13 + C2 3  (43)

f3(+ 1) = f4(-1)-' C03 + C13 + C23 = C04- C14 + C24, (44) 0

f 4(+ 1) = fl(-1) -C4 + c14 + C24 = COI - C1 + c 2 1 , (45)

Continuity of the first temporal derivativef' across seasonal boundaries
implies that

fl'(+ 1) = f2(-1) q, + 2c-, = c - 2c 22 , (46)
f (+ 1) = f(-1)- c 12 + 2c22 = c13 - 2c23 , (47)

f (+ 1) f (-l) - c13 + 2c 23 = c14 - 2c2, (48)

f'(+ 1) = f1(-l) . c14 + 2c4 = - 2c 21 . (49)

The final four relationships among the 12 c are derived using the
seasonal averages. For each of the four seasons, there is a constraint that

+f ,(t)dt =bi, (50)

where the bi are the four given seasonal means. Performing the integration
results in the four equations:

3coi + C2 i = 3b i . (51)

All of these relations can be compactly represented in matrix form:

3 0 1 0 0 0 0 0 0 0 0 0 C 3b)

0 0 0 3 0 1 0 0 0 0 0 0 C11  3b2
0 0 0 0 0 0 3 0 1 0 0 0 C21  3b3
0 0 0 0 0 0 0 0 0 3 0 1 C02  3b4

1 1 -1 1-1 0 0 0 0 00 0

0 0 0 1 1 1 -1 1-1 0 0 0 C2  0
0 0 0 0 0 0 1 1 1 -11-1 C03  0
-1 1 -1 0 0 0 0 0 0 1 1 0

0 1 2 0 1 -2 0 0 0 0 00 C23  0
0 0 0 0 1 2 0 1 -2 0 00 C 0
0 0 0 0 0 0 0 1 2 0 1-2 C14) 0

0 1 -2 0 0 0 0 0 0 0 1 2 c 0

(52)
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This matrix can be solved to yield

19 1 (53)
col = 19 - 12 + b3 - Ib (53)

3
cl= 3(b 2 - b4) (54)

9 3 3 3
c2,1 = -'9b + - b2--3b3 + - b 4  (55)86 8 16 8

for the first season. By direct solution, or by symmetry, the solutions for
the other three seasons can be found by permuting the index to represent the
season appropriately. For example, to solve for season 2, replace the second
index of the c0 by "2" and permute the subscripts on b from [1234, to
[41231. By continuing to permute circularly, the values of c,2 through ci
are generated.

Summary Several methods permit quantities known only as seasonal values to be
converted into continuous time series. These fields can be used as continuous
forcing functions for models or as a continuous climatological relaxation
term in the model equations. Errors in the seasonal values due to averaging
and sampling (aliasing) were described. A companion report is being written
that proposes a method for computing continuous time series that do not
have these undesirable effects.
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