
DT ~tC

RL-TR-91-93 -'

Final Technical Report JULi 5 199i -V
July 1991

AD-A238 280

RESEARCH AND l ll'llI IIl lI
DEVELOPMENT FOR DIGITAL
VOICE PROCESSING (DVP)

ARGON Corporation

J.D. Tardelli, P.A. LaFollette, C.M. Walter, J. LeBlanc,
P.D. Gatewood, D. Colbert

APPROVED FORPUBLIORELEASE,7DISTRIBUTION UNLIMITED

9 1-.0 4953

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

91 7 12 082

This report has be.-n reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-91-93 has been reviewed and is approved for publication.

APPROVED: ""

LUIGI SPAGNUOLO
Project Engineer

APPROVED:

JOHN K. SCHINDLER
Director of Electromagnetics

FOR THE COMMANDER:

JAMES W. HYDE III
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(EEV) Hanscom AFB MA 01731-5000. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE MR No. ovoo1 8
P blic rUow g bjrdn fbfortn ' ", d h i s as'rg ec tonaverage t hr pr rspa vdcki nt for ru m i r j rwng o c sarwdrg exstrg dA* souJce
ga~wrg d rwwwng U,. dow rwwdsv Vd ft ad clots, acrdsdDo d rfixnwkx= Serl COmrts rsk U d z b.new eS. wr W oed of trus
collamd c fiaw rchvk*g .gu mctorgb n ito Waot*iMeaWus Swvra kesfc tiTia,, Opawm adRgeis.1215 Jeffersor
Oawm Hkj', S.le 204 Arkxr VA 2-3 mito tOf Mw.gwSaxigdB.p8x dPma (.01Nt, Wai*ag~cwO DC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1991 Final Feb 86 - Jun 88

4. TITLE AND SUBTITLE 5 FUNDING NUMBERS

RESEARCH AND DEVELOPMENT FOR DIGITAL VOICE C - F19628-86-C-0057

PROCESSING (DVP) PE - 33401F
PR - 7820

6. AUTHOR(S) TA - 03
J. D. Tardelli, P. A. LaFollette, C. H. Walter, - 53
J. LeBlanc, P. D. Gatewood, D. Colbert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
ARCON Corporation REPORT NUMBER
260 Bear Hill Road
Waltham MA 02154

9. SPON$ORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR NG/MONITORING

Rome Laboratory (EEV) AGENCY REPORT NUMBER

Hanscom AFB MA 01731-5000 RL-TR-91-93

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Luigi Spagnuolo/EEV/(617) 478-4249

NOTE: Rome Laboratory (formerly Rome Air Development Center/RADC)
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(ms'n worca)

This technical report covers a variety of topics and research areas. An update of the
Canonical Coordinate (CC) Transformation process for digital speec, compression based
on non-Euclidean error minimization criteria is given. A method of transforming im-
perical filter sets to unitary error metrics is introduced and a sample error metric is
developed. Research into frequency shift invarient transformation is presented and its
utility for developing CC error metrics is discussed. A study into the relationship
between CC analysis and Linear Predictive Coding is presented. An improved AP120-B
implementation of the CC algorithm is given along with a fully parallel CC implemen-
tation on a systolic array processor. The latest developments in processor hardware,
operating systems, and program development software at RADC/EEV are documented. Custom
additions to the Interactive Laboratory System (ILS) analysis and display package are
covered along with its relationship to the Speech Data Base Library used at RADC/EEV.
Data Base input/output programs, analysis tools, search/sort programs are all presence(
The status of a communicability testbed system at the Speech Processing Facility is
presented.

14. SUBJEOTTERMS DigiLdl Voite Processing, Speech Compression, Vocoder NM MER OF PAGS

Signal Processing, Canonical Coordinate Analysis, Principle Compo- 148

nent Analysis, Non-Euclidian Error Minimization, (continued) 11PRICECOOE

17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT U/L
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED.

NSN 7540-01-2 -55M StaKWd Form 298(Rev 2.89)
Promorod by ANSI Std Z39 19
296-1 a2

Block 14 Continued

Error Metric, 3peech Processing Facility, Linear Predictive Coding
Speech Data Base, Communicability Testing, ILS, Array Precessor
Programs, Systolic ftray Processor, Channel Error Simulation,
Channel Delay Simulation, Digital Speech 1/0.

CONTENTS

(HAPTER 1 OVERVIEW

1.=. INTRODUCTION 1-1
1. OTHER CONTRACT TASKS 1-2
1.2 1 Voice Processor Intelligibility Testing 1-2
1.2.2 System Performance Evaluation1-2
1.2.3 DoD Digital Voice Processing Consortium Support 1-3
1.3 ACKNOWLEDGMENTS 1-3

CHkPTER 2 CANONICAL COORDINATE BASED DATA COMPRESSION

2.1 CANONICAL COORDINATE BASED VOCODER ALGORITHM

DEVELOPMENT EFFORTS 2-2

2.1.1 Structural Characteristics Of Two Canonical
.Joordinate Teclniques2-3

2.1.2 Updated Version Of The PCC Vocoder
Algorithm 2-3

2.2 FREQUENCY SHIFT INVARIANCE / ETA-TRANSFORM
STUDY 2-10

2.2.1 Continuous Case 2-11
2.2.2 Discrete Case 2-12
2.2.3 Eta Transform Software 2-19
2.3 STATISTICALLY BASED ERROR METRICS 2-21
2.3.1 Sources Of Data And Covariance Estimation

Procedures 2-21
2.3.2 Conclusions 2-26
2.4 APPLICATION OF A MODULAR GENERATING FUNCTION

APPROACH TO ERROR METRIC DEFINITION 2-34
2.4.1 Specification of an Error Metric K and

Associated Eigenvector/Eigenvalue Matrices

V and r Using Hermitian Generating Function

Procedures 2-35

2.4.2 Special Characteristics Of The Generating
Function Based Differential Operator

6G(r) 2-36

2.4.3 Explicit Characterization Of 6G(r) And

6 6G(F)) 2-37

2.4.4 Example Of Construction Of V When G
Corresponds To A Family Of Overlapping

Rectangular "Box-Car" Filters 2-38'_ a - ._
2.5 CANONICAL COORDINATE APPROACH TO ;

INTEROPERABILITY 2-401 DTIC T n
2.5..l Canonical Coordinate Background 2-401 Untv Dine:; u V. ,,I j

Dt
7 4lSt Z, SU la

0/)T

_ _ _ _ _ _ _ _ _ _ 'il

2.5.2 AR/LPC Specification in Terms of a 1-Dimensional
Projection of an N-Dimensional Canonical

Coordinate Process Based on Triangular D-,

Spectral Whitening A=I And J-R". 2-43
2.5.3 Deterninati3n Of Predictor Coefficient Vector

A And Reflection Coefficient Vector b
from Canonical Coordinate Equations for the
AR/LPC Situation 2-45

2.5.4 Characterization Of Extended Predictor
Coefficient Vector A in Terms of Both Time Domain
Matrices J and Frequency Domain Metric K . . 2-46

CHAPTER 3 A.GORITM RESEARCH AND IMPLEMENTATION

3.1 CANONICAL COORDINATE ALGORITHM AP-120B
IMPLEMENTATIONS3-1

3.1.1 CC Analysis Improvements3-2
3.1.2 Intermediate Canonical Coordinate File Structure 3-3
3.1.3 CC Synthesis Improvements 3-4
3.1.4 CC Analysis Operational Instructions 3-5
3.1.5 CC Synthesis Operational Instructions 3-6
3.1.6 Further Improvements 3-7
3.2 CANONICAL COORDINATE ALGORITHM SAP IMPLEMENTATIONS 3-7
3.2.1 Specific Algorithms Used In The SAP

Implementation 3-8
3.3 CANONICAL COORDINATE CODING ALGORITHMS 3-12
3.3.1 Program EHISTX 3-13
3.3.2 Program EAHST 3-14
3.3.3 Program CCHIST 3-15
3.4 RADC/EEV LPC-10E IMPLEMENTATIONS 3-16
3.4.1 Differences Between Version 49 And Version 52 3-17
3.4.2 Porting Of LPC1OE Code To The PDP-11 3-18

CHAPTER 4 RADC/EEV SPEECH PROCESSING FACILITY COMPUTER SYSTEM

4.1 PDP-11/44 HARDWARE (BLDG. 1120)4-1
4.1.1 MAP-300 Arithmetic Processor4-6
4.1.2 AP-120B Array Processor Hardware 4-6
4.1.3 Systolic Array Processor Hardware4-6
4.2 PDP-11/34 HARDWARE (BLDG. 1120) 4-11
4.2.1 MAP-300 Array Processors 4-14
4.3 PDP-I1/34 HARDWARE (BLDG. 1124) 4-14
4.4 PDP 11/44 SYSTEM SOFTWARE (BLDG. 1120) 4-16
4 4 PDP 11/44 Sysgen 4-16
4.4.2 Data Transfers4-17
4.4.3 User Enhancements 4-18
4.5 PDP 11/34 SYSTEM SOFTWARE (BLDG. 1120) 4-18
4 6 PDP 11/34 SYSTEM SOFTWARE (BLDG. 1124) 4-19

ii

4.7 SYSTOLIC ARRAY PROCESSOR PROGRAM DEVELOPMENT
SOFTWARE 4-19

4.7.1 SAP Microcode Interpreter - SAI 4-21
4.7.2 SAP Program Compiler And Executive - SAC & SAXM 4-22
4.7.3 SAP Macro Preprocessor - PREP 4-23
4.7.4 Further Modifications 4-25

CHAPTER 5 COMPUTER DATA BASES AND ANALYSIS TOOLS

5.1 INTRODUCTION5-1
5.2 RADC/EEV COMPUTER DATA BASES 5-2
5.2.1 Speech Data Base5-2
5.2.2 PC Data Bases 5-7
5.3 SPEECH DATA BASE ANALYSIS AND EVALUATION TOOLS . 5-7
5.3.1 Speech DB Input/Output 5-7
5.3.2 Speech DB Retrieval And Sorting 5-12
5.3.3 Interactive Laboratory System 5-14
5.3.4 Error Metric DB Display 5-23
5.3.5 Speech DB Utility Routines 5-25
5.4 PC DB TOOLS 5-26

CHAPTER 6 COMMUNICABILITY SYSTEM

6.1 RADC COMMUNICABILITY FACILITY6-1
6.1.1 PDP-11/34 - MAP-300 Processor 6-3
6.1.2 Other Processors 6-3
6.1.3 Operational Environment Simulations6-4
6.1.4 System Verification6-7

REFERENCESR-1

TABLES

Number Title Page

2.1 Example Set of Proportionally Spaced Frequencies 2-13
2.2 AP120B Software for Use in Eta Transforms 2-20
4.1 PDP 11/44 RSX-1M,V3.2 Hardware 4-2
4,2 PDP 11/34 (BLDG. 1120) RSX-lIM,V4.0 Hardware 4-12
4.3 PDP 11/34 (BLDG. 1124) RSX-1M,V3.2 Hardware . 4-15
5.1 FILE HEADER BLOCK FORMAT SPEECH DB AND ILS DATA

FILES (SEPT 1988) 5-3
5.2 Custom ILS Programs5-15

iii

FIGURES

Number Title Page

2.1 Canonical Coordinate Technique via Correlation
Matrix Diagonalization and Intermediate
Principal Components 2-4

2.2 Canonical Coordinate Technique via Error Metric
Diagonalization and Intermediate Pseudo-Canonical
Coordinates 2-5

2.3 Discrete Eta-Transforms of Test Signals 2-15
2.4 Discrete Eta-Transforms with Magnitude

Step Omitted 2-16
2.5 Discrete Eta-Transforms with Direct DFT

Evaluation (i.e. No Interpolation)2-17
2.6 Discrete Eta-Transforms with Exact Frequency

Ratios 2-18
2.7 Cannonical Coordinate Methods 2-22
2.8 Long Term Spectral Distribution of DRT

Wordlist CH307A 2-23
2.9 Long Term Spectral Distribution of DAM

Sentence List Speaker CH, File QSET1.DAM 2-23
2.10 Correlation Matrix and Eigenvalue Characteristics

White Gaussian Noise, DFT Magnitude,
Linear Frequency 2-25

2.11 Correlation Matrix and Eigenvalue Characteristics
Speech, DFT, Linear Frequency 2-27

2.12 Correlation Matrix and Eigenvalue Characteristics
Speech, DFT, Log Frequency2-28

2.13 Correlation Matrix and Eigenvalue Characteristics
Speech, Magnitude DFT, Linear Frequency2-29

2.14 Correlation Matrix and Eigenvalue Characteristics
Speech, Magnitude DFT, Log Frequency 2-30

2.15 Correlation Matrix and Eigenvalue Characteristics
Speech, Log Magnitude DFT, Linear Frequency . . 2-31

2.16 Correlation Matrix and Eigenvalue Characteristics
Speech, Log Magnitude DFT, Log Frequency 2-32

2.17 Correlation Matrix and Eigenvalue Characteristics
Speech, Phase DFT, Linear Frequency2-33

2.18 Digital Box-Car Filter (Real Components) 2-39
2.19 Canonical Coordinate Technique via Error Metric

Diagonalization Applied to Spectral Whitening
Procedures of the AR/LPC Type 2-41

iv

FIGURES (Continued)

Number Title Page

3.1 Pseudo-Canonical Coordinate Compression.3-9
3.2 Block Diagram of Systolic Algorithm. 3-9
4.1 PDP 11/44 UNIBUS Structure. 4-5
4.2 PDP 11/44 Configuration 4-5
4.3 Systolic Array Processor Modifications......4-10
4.4 PDP-11/34 (BL.DG. 1120) UNIBUS Structure 4-11
4.5 PDP.ll/34 UNIBUI Structure 4-14
4.6 SAP Program Development Software. 4-20
5.1 FLT Filter Characteristics. 5-6
5.2 Line Spectral Pair Display 5-20
5.3 Formant Filter Cascade 5-21
5.4 3-D EN Vector Display. 5-24
5.5 3-D ElN Grayscale Display 5-25
6.1 RADC/EEV Communicability Facility. 6-2
6.2 Communicability DRT Profiles. 6-8

v

CHAPTER 1

OVERVIEW

1.1 INTRODUCTION

This is the Final Technical Report describing work performed for the
U.S. Air Force Systems Command RADC/EEV Speech Processing Facility at
Hanscom AFB, MA. This woik was performed under contract number
F19628-86-C-0057 during the period 15-February-1986 through
31-July-1988. This effort is a continuation and extension of work
performed under previous contracts with RADC/EEV and reported
elsewhere [Ref. 1 - 10].

This technical report will cover a nuwber of algorithm research and
development topics. An update of research on the use of the Canonical
Coordinate (CC) Transformation process for digital speech compression
based on non-Euclidean error minimization criteria will be presented.
The relationship between CC analysis and Linear Predictive Coding will
be covered. A method of transforming empirical filter sets to unitary
error metrics will be introduced and a sample error metric will be
discussed including test results from an experimental vocoder using
this error metric. Development work in the area of quantization and
coding of CC parameters will be presented.

The report will also cover algorithm implementations completed during
this contract period and work in several support areas. The
implementation of a faster version of the CC algorithm operating on
the AP-120B array processor will be shown. An implementation of this
algorithm on a true systolic processor along with a software
development system for this processor will bs covered. The latest
developments in processor hardware, operating systems and program
development software at RADC/EEV will be documented. Additions to the
Interactive Laboratory System (ILS) analysis and display package will
be covered along with its relationship to the Speech Data Base library
used at RADC/EEV. The latest modifications to the communicability
system at the Speech Processing Facility will be described.

Numerous software packages are discussed within this report. Source
code for all programs developed under this contract is available to
authorized users of the RADC/EEV Speech Processing Facility through
reference to the virtual disk REPT88 and directory file
[200,200jREPT88.DIR. Some software has been segregated by topic on the
virtual disks LPCXE (LPC-10E programs), SAP (Systolic Array Processor

1-1

program development routines), MAP300 (MAP300 Array Processor
routines), IL (ILS standard and custom programs) and the physical disk
SPEECH (Speech Data Base). Most PDP-11/44 program tasks can be run
from the system device DR: at the special UIC (1,541 (i.e. "$").

1.2 OTHER CONTRACT TASKS

During the course of this contract numerous requirements were met that
do not lend themselves to a descriptive section in this technical
report. Several of these work areas are covered in the following
paragraphs for completeness.

1.2.1 Voice Processor Intelligibility Testing

ARCON provided the training, staff and supervision for the RADC/EEV
in-house voice communication systems test and evaluation program. This
program utilizes the Diagnostic Rhyme Test (DRT) as a measure of
system intelligibility. An average of twice weekly DRT liptener
sessions were conducted and the data was collected, scored, analyzed,
reported on and stored in the DRT Data Base. All software and data for
this system was maintained throughout the period of this contLract.
Evaluation of test data for both in-house research staff and other
government users of the RADC/EEV facility was also provided. Numerous
in-house DRT tapes were prepared for system evaluation at both the EEV
facility and an independent contractor (DYNASTAT Corp., Austin, TX),

Several new analysis tools have been designed and implemented by
ARCON. The ability to measure the intelligibility of communication
systems corrupted by random burst errors that totally disrupt a
transmission channel has been provided by ARCON to RADC/EEV through
the development of a modified DRT method and scoring procedure. All
software development and special projects having to do with the
intelligibility testing of voice communication systems are presented
in Reference 11.

Extensive intelligibility testing efforts were conducted during this
contract period. They include work for the Air Force HAVE QUICK (HQ)
and Def3nse Communications Agency BIT RATE REDUCTION (BRR) programs.
Over 380 3-Speaker DRTs were run, scored and analyzed for several
groups in the HQ program, A series of 160 3-Speaker DRTs were run,
scored and analyzed for the BRR program. In addition consultation was
provided on the preparation of test materials, test series design and
the interpretation of results.

1.2.2 System Performance Evaluation

An extensive evaluation of the intelligibility of digitally compressed
voice coimunicaLiois over severely degraded coimnunications channels
was conducted during this contract period. This effort included
channel error and transmission delay simulation along with
intelligibility testing.

1-2

The error and delay simulation software are discussed in this report.
The use of the modified DRT method including the selection of missing
words and a method for measuring channel down time are discussed in
Reference 11.

1.2.3 DoD Digital Voice Processing Consortium Support

The primary product of this effort was the completed Digital DRT/DAM
Test Material Library. This has been an ongoing project aimed at the
remastering of the DRT/DAM analog library onto digital video media,
the equalization of presentation levels for all speakers and the
measurement of speech to .,oise levels. Thi; project is covered in
Reference 11.

Other work in this area included the preparation of DRT and DAM
(Diagnostic Acceptability Measure) test material for the evaluation of
the NSA LPC-10E algorithm, This work required travel to Maryland.
Also, work in this area consisted of the preparation of sev(.ral DAM
test series for submittal to DYNASTAT.

1.3 ACKNOWLEDGMENTS

One of the authors, Mr. Charlton Walter, worked as a private
consultant to ARCON Corporation while performing research on Canonical
Coordinate Based Data Compression Methods. This work is detailed in
Chapter 2 of this report.

The authors wish to acknowledge the cooperation, encouragement and
technical support received from Mr. Anton Segota, 1st Lt. Denis
Robitaille and Luigi Spagnuolo of RADC/EEV. 1st Lt. Clark Carvalho of
EEV was responsible for many of the modifications to the
Communicability Test Facility discussed in Chapter 6 of this report.

We would like to dedicate the advancements in our Canonical Coordinate
algorithm research to the memory of Mr. Segota who had continually
supported this effort until his death in March of 1987.

1-3

CHA2TER 2

CANONICAL COORDINATE BASED DATA COMPRESSION

For the past eight years ARCON Corporation has been performing
original research for RADC/EEV on Array Processor Speech Compression
Methods with the ultimate goal to provide a digital speech compression
algorithm that can utilize non-euclidean error minimization criteria
and be formulated in a parallel or matrix manner to make use of a new
generation of true parallel signal processors. These processors are
just now beginning to make their mark in the signal processing field.
The ARCON algorithm research covered many areas before isolating a
particular decomposition of the canonical coordinate (CC) domain
[Refs. 6, 9, 10, 12 - 14]. The CC domain is defined by that space in
which the error metric or criteria and the signal correlation matrix
are diagonal. This decomposition takes advantage of a
pseudo-canonical coordinate parameter and an ordering procedure to
meet the needs of an analysis - synthesis bandwidth compression
communications system. The current status of this algorithm and its
relationship to previous work are presented in Section 2.1.

The algorithm has been successfully implemented in vocoder form on the
RADC/EEV FPS AP120-B array processor [Ref. 10]. Programs will accept
any hermitian error metric for definition of the error criteria,
transform input speech files into the defined CC domain and synthesize
output speech files at compression ratios and quantization levels set
by the operator. The latest version of this implementation is
presented in Chapter 3 of this report.

While the AP120-B processor is capable of high speed and vector
processing, it is not a true parallel processor. Because of this the
CC algorithm is vectorized when implemented on this processor. The
NOSC Systolic Array Processor (SAP) discussed in Chapter 5 has been
used by ARCON as a testbed for the fully parallel implementation of
the CC algorithm [Ref. 14]. -his implementation is presented in
Chapter 3 of this report.

Research into the definition of specific error metrics for use by the
CC algorithm has cove-red numerous areas during the current contract
period. Statistical approaches have been used to define several
spectral moment based error metrics. This work led to the search for
a transformation that would provide frequency shift invariance during
the generation of a spectral moment metric. This work is discussed in
detail in Section 2.2.

2-1

Statistically derived error metrics have been generated from speech
samples using the transformations of Section 2.2. These error metrics
are discussed in Section 2.3.

Empirical methods of developing an error metric from a priori
psychacoustic information required the development of complex
orthogonality transformations. This work is presented in Section 2.4.

Associated with any speech compression system will generally be some
type of distortion measure or error metric, used in optimizing the
performance of the system. The effectiveness of interoperability
between different speech compression systems can be expected to have a
close relationship to the compatibility of the error metrics used in
the optimization process. Thus the flexibility of the Canonical
Coordinate technique in handling a wide class of different error
metrics gives us a mechanism for evaluating the efficiency of
interoperability of differc .t systems and for improving this
interoperability. The relationship between CC and Linear Predictive
Coding (LPC) is discussed in Section 2.5.

2.1 CANONICAL COORDINATE BASED VOCODER ALGORITHM DEVELOPMENT
E F F O R T S

In this section an attempt will be made to both consolidate and to
update original research efforts carried out by ARCON for RADC/EEV in
the area of Canonical Coordinate Based Vocoder Algorithm Development
over the past eight years.

The objective of this research has been to develop algorithms and
procedures that exploit the continuing developments in parallel
processor technology in order to create a family of highly flexible
and compatible vocoder modules (using both software and hardware) that
can be easily reconfigured and reoptimized to more efficiently
transmit voice and other types of digital data using a variety of
different error criteria and different channel bandwidth constraints.

During the period from 1980 - 1984 a very general Canonical Coordinate
(CC) based digital data compression technique was developed and
reported on (Ref. 6,9,12]. This technique permitted the use of a
wide variety of error metrics in the data compression process and held
considerable potential for the use of psychoacoustic information in
the DVP optimization procedure. The technique was designed to make
the maximum use of evolving parallel array and systolic processor
architectures. The computationally intensive nature of this
particular CC processing technique employed did, however, present some
problems associated with the immediate implementation of the full CC
signal analysis/synthesis technique on existing first generation
array-oriented processors.

2-2

This led, during the period from 1984 - 1986 [Ref. 10,13] to the
development of a Pseudo-Canonical Coordinate (PCC) based data
compression technique that considerably simplified the computational
load when utilizing the present generation of (not highly parallel)
array processors.

The early stages in the development of the PCC technique contained
several erroneous simplifications that restricted the applicability of
this technique when applied to situations that could only be handled
by the full CC technique. These erroneous simplifications have been

corrected in the PCC technique reported here. Fortunately, the
simplifications did not affect applications of the approach that were
reported in the cited references, since the full generality of the PCC
technique was not used in those applications.

2.1.1 Structural Characteristics Of Two Canonical Coordinate
Techniques

The key structural characteristics of the original CC technique is
illustrated in Figure 2.1. This is based on an ongoing correlation
matrix diagonalization process, involving the use of an intermediate
eigenvector/eigenvalue based Principal Component analysis, followed by
another eigenvector/eigenvalue type transformation to obtain the full
CC representation of the signal data vectors, whose components have
been ordered in such a manner that the least error, relative to an
appropriate psychoacoustic-based error metric, is incurred in
transmitting a truncated representation of the CC data.

Similarly, Figure 2.2 illustrates the key structural characteristics
of the updated version of the PCC technique. This technique is based
on a single error metric matrix diagonalization application, involving
an eigenvector/eigenvalue procedure that defines a transformation to
an initial PCC vector f and determines a set of coordinate
significance weights, [Tn), that provide an initial ordering of the

PCC data vector components. This initial pseudo-canonical ordering
can then be refined to a full canonical ordering as indicated in the
diagram, ii necessary. However, as indicated in the detailed
description of the PCC technique, a reweighting of 7n by the factor

2
HrM can be used to obtain a significance weight

2
p 7nH, that can be directly applied to ordering

the 0n components in an optimum manner relative to the specific

error metric.

2.1.2 Updated Version Of The PCC Vocoder Algorithm

The following description of the PCC technique contains an initial

discussion that is essentially the same as that reported in Reference
1' covering the derivation ot the pseudo-canonical coordinate fP.
This is followed with the introduction of another pseudo-canonical
coordinate and of its association with the true canonical
coordinate 6. Finally, an updated version of signal analysis and
reconstruction using the PCC technique is covered.

2-3

<xxt> - R <00t> = Q < t>. <St>. I <zzt> - A

UtRu - Q(Diag) I
Unitary Unitary

X~ ~ OF WlNo-Diag)6d~-

UtJU - P(Non-Diag) Q'PQ' (Non-Diag) tW - A(Diag)

xtJx 41te4 - tfl - 6tA6 l ztIz

EA -<AXtjX> EA - <ntpa> EA EA <A5tAA6> EA <AztIAz>
X 6 z

= l-trRJ = l-trQP - 1-trl - 1-trA 1-trA

Domain x 4, 6 z

Type Raw Data Principal Pseudo Canonical Canonical

Component Canonical Coordinate Coordinate

Correlation R Q I I A

Matrix Arbitary Uncorrelated Flat Flat Uncorrelated

Characteristic Hermitian Uncorrelated Uncorrelated

Error J P H1 A I

Metric Arbitrary Derived Derived Real Real

Characteristic Hermitian Hermitian Hermitian Diagonal Identity

Error E^ EA E, EA EAx C 6 z

Criteria Unordered Partially Partially Ordered Ordered

Ordered Ordered on A on A

Figure 2.1

Canonical Coordinate Technique Via Correlation Matrix

Diagonalization And Intermediate Principal Components

2-4

<xxt> -R < 6fit> = T= H 2 = t 6t I <zzt> =A

yt RY- Hz (Non-Diag)

Unitary

YtjY = r(Diag) 1111](Non-Diag) WtflW - A(Diag)

xlix = itP/3 = tfl - 6tA6 = ztlz

EA = <AXtJAX> EA =Alr~l E A - t0ltAW> EA - <A6tAA6> EA <~,Z

= l-trRJ = ltrH2 r - 1-tril 1-tr X-r

Domain x /36 z

Type Raw Data Principal Pseudo Canonical Canonical

__________ ______Component Canonical Coordinate Coordinate

Correlation R T I I A

Matrix Arbitary Derived Flat Flat Uncorrelated

Characteristic Hermitian Hermitian Uncorrelated. Uncorrelated

Error J r IIA I

Metric Arbitrary Real Derived Real Real

Characteristic Hermiitian Diagonal Hermitian Diagonal Identity

Error EA EA EA EA EA
X P3 C 6z

C~riteria Unordered Partially Partially Ordered Ordered

Ordered Ordered on A on A

Figure 2.2

Canonical Coordinate Technique Via Error Metric Diagonalization

And Intermediate Pseudo-Canonical Coordinates

2-5

Derivation Of The Initial PCC Transformation -

The basic signal analysis and reconstruction process to be utilized in
this section is one that treats the original sampled waveform data as
a segmented series of consecutive N dimensional data vectors

x(t) = (x 0 (t) , X1 (t), ... ,XN_(t))T, indexed on a frame
number t, and whose complex valued components, xn(t), are generally
correlated and will be required to satisfy a non-euclidean, quadratic
error metric, characterized by an hermitian matrix J in the time
domain.

These vectors are first transformed into a frequency domain
representation y, through the Fourier transform process Z, as

y(t) = Zx(t), (2.1.1)

where Z is a unitary DFT matrix having components

ZR, = -exp(- 2 -mn).

The vectors are then transformed into a succession of special
pseudo-canonical and canonical coordinate domains, characterized by
the vectors 8(t), 6(t) and z(t), that simplifies the reconstruction
signal error minimization process, by achieving a more compact
representation of the signal x, or its DFT y, in the fl, 6 and z
domains.

Let R be the correlation matrix

R = <x(t)xt(t)> ,

averaged over a short term ensemble of vectors, (x(t)), indexed on the
frame number t, where <o> represents an averaging process over the
ensemble. For the moment, we will permit the probability distribution
of x(t) to depend on t. Let S be the "correlation" matrix in the
y-domain

S = <y(t)yt(t)>

Then from (2.1.1) we have that <yyt> = Z<xxt>Zt, or

S = ZRZt

Here S is often refered to as a spectral matrix. Note, in particular,

that if R is circularly symmetric, then Zt diagonalizes R, and

hence S will be diagonal in this situation.

Now in terms of the above ensemble averaging process, consider a
quadratic error criterion, in the x-domain, of the form

E_ = <AxtJAx> ='<(x(t) - M(t))tJ(x(t) - i(t))>
X

where (t) is an estimate of x(t), and J is the hermitian error
metric in the x-domain.

2-6

This error can be expressed in terms of an error c,,, tric K in the
y-domain as

FL = <AytKAy> = <(y(t) -. -(t))tK(y(t) -(t))>

where '(t) = Zi(t) and K will be related to J by the equation

K = ZJZ¢

We now let V be a unitary matrix that transforms K to the diagonal
form r by means of the eigenvecr-,r equation

VtKV - r or KV - VP , where r - diag(-0 , ... , Ty_,) .(2.1.2)

Now let fl(t) be a vector such that

y(t) = Vfi(t) or P(t) = Vty(t) (2.1.3)

Then in terms of the pseudo-canonical coordinate domain P, the
quadratic error E. in the y-domain, with metric K, will have

the form

F_ - <&#tr p> - <(p(t) - p(t))tr(p(t) - (t))>

where r (- VtKV) is a diagonal error metric.

Let T be the correlation matrix in the i-domain

T = q6(t)pt(t)> ; (2.1.4)

then from (2.1.3) we have

T - VtSV . (2.1.5)

Note that T will generally not be diagonal, and hence P will not be a
full canonical coordinate, since this requires that both T and r be
diagonal. However, the diagonality of r does provide us with a

mechanism for ordering the components of the estimated P(t) in
such a way as to minimize the non-euclidean errors &. or

x
K, where

i(t) = zt(t) = Zt V(t).

Derivation Of Transformation From Pseudo To True CC -

For certain applications an additional pseudo-cannonical coordinate
vector C(t) and a true canonical coordinate vector 6(t) need to be
defined. Let f(t) be such that

fi(t) = Hf(t) ,

2-7

where H is an hermitian matrix such that C(t) is required to have the
identity correlation matrix, i.e. a "flat" spectrum, in the

C-domain, i.e.

< (t= I . (2.1.6)

Then from (2.1.4 2.1.6) and the condition that 11 be hermitian

(i.e. Ht-H), we have

T - <(t)Pt(t)> = H<C(t)Ct(t)>Ht = HHt = H2 = VtSV . (2.1.7)

From y(t) = V(t) and VtKV = r we have the inner product
equalities

yt(t)Ky(t) - Pt(t)VtKVP(t) - Ct(t)HtrHC(t),
i.e.,

yt(t)Ky(t) - pt(t)rF6(t) - t(t)IT (t),

where 11 is the hermitian matrix 11 - HtrH .

Now let 6(t) be such that S(t) = WtC(t), where W is a unitary
transformation that diagonalizes H to A via the eigenvector equation

WtIW- A

where A is real and diagonal since 11 is hermitian. Then in the
C-domain, we have the following error metric, (also inner product),
and correlation matrix relationships

t(t)AS(t) - Ct(t)WAWtC(t) - Ct(t)H(t),
and

<6(t)6t(t)> Wt<C(t)t(t)>W = WtW - I,

Thus S(t) is a true canonical coordinate, satisfying the twin
requirements of having both a diagonal error metric A and a diagonal
crrrelation matrix. Note, in particular, that the correlation
"spectrum" in the 5-domain is also "flat".

Signal Analysis And Reconstruction Using The PCC Technique -

From the previous section we see that the pseudo-canonical coordinate
P provides the first signal representation domain in which the error
metric r is guaranteed to be in diagonal form, and hence provides the
following procedure for ordering the components of the estimator

/3(t) in such a way as to minimize the non-euclidean error

E', or E., where

(t)= zt)(t) = Ztv(t)

In particular, let /(t,p) be an estimated vector consisting of the

2-8

first p components of p(t), followed by N-p time invarant estimates
for the remaining components that are not transmitted for use in the
resynthesis process, i.e.,

P(t,p) - (P 0(t), ... , p_1(t) ,p N_-)

Then E,(p) - <AfltFrA>

N-I

= Z <A M *(tp)(diag (yo .))A n(t,P)>

N-1

-1

X.-Yn(<fln(t)#'n*(t)> - <#n(t)X<#n*(t)>)
n-p

and if we normalize P(t) so that <P(t)> - 0, i.e.,

<,Sn(t)> - 0 for all n - 0,1, ... IN-,

then the above expression reduces to

N-i 2 N-i
E (p) - X YnHnn - X A (2.1.8)

n=p n=p n

where front (2.1.7)

2<P,(t)Pn*(t)> - Tnn _ Hnn

2
and where p n 7nHnn. We call pn the nth component

significance measure.

Thus E.(p) will be minimized for each p, provided the

coefficients pn are ordered so that

2
From (2.1.7) we have a convenient procedure for calculating Hnn as

Hnn - vf (n) Sv(n)

where v(n) is the nth eigenvector of (2.1.2), i.e. Kv(n) = -Ynv(n).

Moreover, if S is diagonal, then

a N-i

Hnn= Iv.(n)Iasm

The specific implementation of the above analysis and reconstruction
process can be carried out in two different ways, depending upon
whether the ensemble distribution of x(t) is regarded as fixed over
all t, or varying with time.

2-9

In the first course of action we have available relatively

time-independent values for the matrix H2 = T =</3(t)/t(t)> in
the P-domain that can be used, in conjunction with a time independent

r = VtKV, to define a set of time independent f-component

significance measures it -y nH 2 . The time dependent

components Pn(t) can then be determined from the vector equation

P(t) = Vty(t), for each frame y(t), and ordered on the
significance measures in for purpose of transmission.

This provides an explicit, time independent procedure for ordering the
coordinates in the pseudo-canonical coordinate representation in such
a way as to minimize the non-euclidean error for any given number of
transmitted components of P. Since the transformation matrix V will
be available at both analysis and reconstruction sites, only
/-component values, in a specified predetermined order, need be
transmitted.

In the second course of action, involving short term averaging and the
direct use of the time varying spectra data y(t) as a preliminary
step, a different way of implementing the canonical coordinate
methodology is desirable. This is particularly true in speech signal
data compression and resynthesis applications where long term
averaging leads to loss of intelligibility and quality in the
resynthesized speech. Here, for each data vector x(t) a DFT vector
y(t) - Zx(t) is constructed, using a zerofill procedure. Then, on the

assumption that R(t) = <x(t)xt(t)> is defined by averaging over
one circularly shifted frame of data, we have that R(t) is circularly

symmetric and hence S(t) = ZR(t)Zt = diag(s0(t), ..., sN1i(t)) is

diagonal, where sn(t) I Yn(t) 1 2. Consequently the component

significance measures An(t), for each frame t, can be expressed as

N-I

A (t) = -yH2n,(t) - -yX I vm(n) 12 sm(t)
n~ M=0

and used to provide an ordering, via

A q(O) (t) : Pq(1) (.. : Uq(N-i)(t),

for the order in which the first p components of O(t) = Vty(t),

i'e"P (q(O)(t) 1 q(1) (t) 0q(p-1) W)

are to be transmitted, along with the first p values of the
permutation vector q, in order to reconstruct the p-th order

approximation (t,p), then 5(t,p) and finally k(t,p).

2.2 FREQUENCY SHIFT INVARIANCE / ETA-TRANSFORM STUDY

In some applications of power spectrum analysis, we are presented with
power spectra that differ primarily by a frequency scale factor. This
phenomenon appears in the study of acoustic signals produced by a
pitch-like excitation, such as voiced speech or aircraft engine noise.
If signals contain energy primarily concentrated at the harmonics of a
"pitch" frequency, which itself may vary from one power spectrum to

2-10

another, then the difference in pitch (which shifts all the harmonics)
can mask fundamental similarities between the harmonic structures. In
this section we introduce a transform intended to produce a signature
that is invariant under pitch changes; we call this transform the
Discrete Eta-Transform.

2.2.1 Continuous Case

Before we discuss the discrete q-transform itse]f, we will define its
continuous analog. Let x(t) be a real-valued function whose Fourier
transform y(w) exists:

00

Y() J e'J x(t) dt, - < W < . (2.2.1)

Recall that if x(t) is replaced by a shifted function x(t+a) then

y(w) is replaced by e"2fjaw y(w), so that the magnitude of

y(w) is unchanged. Define the function Y by
() - l~e)l, - < A <

and define n by
00

t(a) - J e- 2
1tjA Y(A) dA, -o0 < a < w,

or equivalently

t(a)- J e- 2 1tj Iy(e\)I dX. (2.2.2)

We call q the eta-transform of x.

NOTE: r) is related to the Mellin transform of the function
lyl. The Mellin transform [Ref. 15] of a function x (of the

real variable t) is the function X (of the complex variable z)
defined by:

X(z) - j uZ-1 x(u) du,

0

or after the change of variable u = es,

X(z) - f ezs x(es) ds,

and if we evaluate X at z--2wja then we obtain

O

X(-2nja) - f e- 2 rob x(es) ds. (2.2.3)
-O

Comparing equations (2.2.2) and (2.2.3), we see that n(a) is
the Mellin transform of jyj evaluated on the imaginary axis at
-21rja.

2-11

The key property of the n-transform is that its magnitude is

invariant under both time shifts and linear changes in frequency
scale. Suppose that two functions xi and x2 have Fourier

transforms y1 and y that are related by

Iy1() I = 1y2(aw)j (2.2.4)

where a is a positive constant independent of w. (Note that (2.2.4)
will be satisfied if xi and x2 differ by a time shift and a linear

change in frequency scale.) Then the functions 7 and Y2
satisfy

Sly 1(e\)[- jy2(a el)I -ly 2 (e + i n a) - Y2(A + In a)

i.e., y1 and Y. differ by a shift of ln a. It follows that

their Fourier transforms ni and 12 are related by

171(a) = in a 172(a) for all a,

and so 7i (a) and 72 (c) have the same magnitude, for each a.

2.2.2 Discrete Case

By analogy with the continuous ,i-transform defined above, the
discrete q-transform is formed by taking the magnitudes of a discrete
Fourier transform (DFT), discarung the "redundant" half of this
vector, performing an exponential distortion of the frequency domain,
and imposing another DFT, as shown in the block diagram below:

exponential

IDT&I frequency
magnitud caling

x t Y, yp (E) -3 0 y g o k

05t<2M 05j<M 05i<N 05k<N/2

The "frequency rescaling" operation takes as its input a vector whose
components are uniformly spaced in the frequency domain (at
frequencies 0, c, 2c, 3c, ...), and produces as its output a vector

whose components are proportionally spaced (at frequencies fro,

fr1 , fr2 , fr3, . ..). Table 2.1 shows an example of a set of
proportionally spaced frequencies.

2-12

If the three operations (DFT, rescaling, and second DFT) are replaced

by their continuous analogs (Continuous Fourier Transform, rescaling,

and second Continuous Fourier Transform), we have the tl-transform
described in the previous section. As shown there, a pitch-like
change in the input signal produces no change in the magnitudes of the

continuous u-transform, because the rescaling step turns the

pitch-like change into a simple linear shift. It can be hoped that

the discrete version would share this desirable property, with

appropriate constraints on the input signal.

Figure 2.3 shows the discrete n-transforms of five different time
series. Each of the five inputs is a time series gererated by

sampling the sum of two sinusoids (256 samples, sampling rate - 8192

Hz), hamming weighting and filling with 256 trailing zeroes, the
lower-frequency sinusoid having a frequency 2/3 that of the

higher-frequency sinusoid. Except for the left-hand column, all the

graphs show complex data represented as phase and log magnitude.

Table 2.1

Example Set of Proportionally Spaced Frequencies

base frequency - 150.0 Hz
frequency ratio - :1.05

original DFT size - 128 samples
assumed sampling rate = 8 kHz

Index i Frequency (Hz) Fractional DFT bin
0 150.0 2.40
1 157.5 2.52
2 165.4 2.65
3 173.6 2.78
4 182.3 2.92
5 191.4 3.06
6 201.0 3.22
7 211.1 3.38
8 221.6 3.55
9 232.7 3.72

10 244.3 3.91
11 256.6 4.10

55 2195.3 35.13
56 2305.1 36.88
57 2420.4 38.73

58 2541.4 40.66
59 2668.4 42.70
60 2801.9 44.83
61 2942.0 47.07
62 3089.1 49.42
63 3243.5 51.90

2-13

We should also mention two possible alternatives to the discrete
t-transform we have defined:

1. The rescaling operation E could be applied to the DFT outputs
themselves, instead of their magnitudes. In this case the results
would be affected by (circular) time shifts in the input. Figure
2.4 shows the same test signals as Figure 2.3, but processed
without taking magnitudes of the initial DFT. The final DFT shown
in the right-hand column is plotted in full, since its last half
is not redundant in this case.

2. The initial DFT and rescaling could be replaced by a single step,
consisting of a DFT evaluated directly at proportionally spaced
frequencies. This renders FFT techniques unusable, but provides a
theoretically attractive method of interpolation. Figure 2.5
shows the same set of test signals processed by direct DFT
evaluation.

Four difficulties appear when we pass from the continuous to the
discrete realm and apply the transform to real-world signals. First,
we lose the shift invariance of the Fourier transform magnitude,
gaining instead the circular shift invariance of the discrete Fourier
transform magnitude. Therefore we can expect the discrete
q-transform magnitude to be unchanged by circular linear

shifts in the vector . But a linear change in frequency scale

does not produce a circular shift in Y; instead, components shifted

off the high (or low) end of Y re-enter the same end in a mirror
image. Therefore the discrete n-transform magnitude will, be changed
if there are significant nonzero components shifted off either end of

the vector Y.

A second difficulty is the windowing effect of a finite-length data
record. When the signal source undergoes a shift in frequency, the

data window does not. Thus there will be changes in the n-transform
magnitude due to the interplay of signal and window. This applies
whether we use a rectangular window or some other window.

A third difficulty (actually another windowing effect) is that only
certain frequency shifts actually leave the discrete YI-transform
magnitude unchanged. To leave njj exactly the same, the frequency
factor must be an integer power of the discrete frequency ratio r that
is chosen. The second and third rows of Figure 2.6 show discrete
eta-transforms of two data records differing by a frequency scale
factor of 4/3, the frequency ratio r being chosen as the 12th root of
4/3. (It can be seen from the figure that even in this case, other
windowing effects cause the final transform magnitudes to differ.)

Finally, the discrete q-transform is difficult to invert. In fact,
the shortcut version using an FFT and two-point linear interpolation
is not invertible at all, since it discards some of the information in
its input.

Because of these limitations, we expect the discrete n-transform to
be of limited utility in our future research.

2-14

rr':
0

4.j

Dw. .-
-- -- - - -- - -

.,2.

..£ ..

*~ . ~

r ~ ~ 1 --- ----

...... U -L..

LaL a)aL

0 OCD% MC

CD C)V D 0C 00 C0C>1.0

MC~ lN 00 DN >C

OlD OLA DI:rMM

Figure 2. 3
Discrete Eta-Transforms of Test Signals

2-15

....

44I

........................

is 4

..

....

H.

44

...... T.

0

.....

C) %.0 CD M 00 C l

Cor- roLtfl ILrl M 00 N o

Figure 2.4
Discrete Eta-Transforms with

Magnitude Step Omitted

2-16

..

....... .3

.....

..:

..

114

..

....

C:

1W2

-4-
0

...

CD D D D 00 C) '4k

CDr- rnU)L 0CC4. 00

-4

Figure 2. 5
Discrete Eta-Transforms with

Direct DET Evaluation (i.e. No Interpolation)

2-17

........... ..1.

Q) (j

) ...M

.3.

1-4

0

..

MX'
C) % C)00 0110(-4

00L C) 'DC:

Figure 2.6
Discrete Eta-Transforms with

Exact Frequency Ratios

2-18

2.2.3 Eta Transform Software

The following q transform procedures have been written by ARCON for
the AP-120B using AP's Vector Function Chainer (VFC) language:

1. MTIFND -- Eta Transform Interpolation, Forward

2. MTIINV -- Eta Transform Interpolation, Inverse
3. MTDFWD -- Eta Transform Direct, Forward

NTIFWD and NTIINV perform the interpolation step (E in the block
diagram) and its inverse. By contrast, MTDFWD replaces both the DFT
step and the interpolation step, performing a direct DFT evaluation at
proportionately spaced frequencies instead of interpolation. Table
2.2 lists the AP120B subroutines available for forward and inverse
interpolation. As the table shows, there are multiple versions of
MTIFWD available under different file names, using different methods
of interpolation. In order that a program may be written to call them
all interchangeably, all versions are called by the name MTIFWD; a
particular version is chosen at the task-building stage. An
initialization subroutine, MTINIT, creates tables in the API20B memory
for later use by MTIFWD and HTIINV. Programs using MTIFWD or MTIINV
must call XTINIT first. Likewise there is an initialization
subroutine MTDINI that must be called before using MTDFWD.

HTIFWD takes a vector y of length M, interpreted as the result of a
complex DFT, and produces a vector y of length N by "resampling" y
at unequally spaced (geometrically related) frequencies

f ri , i = 01, ... , N-1,

where f and r are constants. The constant f is the "base frequency"
in Hz, the lowest frequency used; the constant r is the ratio between
successive frequencies. The original DFT y has a frequency resolution
f./2M, where f. is the sampling frequency. The frequencies

represented in Y are proportionally spaced, and in general the new
frequencies fall between the integer multiples of the DFT resolution
fs/2N that are represented in the vector y. Interpolation is
performed to obtain results at the intermediate frequencies.

The base frequency f is converted into a DFT bin number
b = f/(f./2H), which is not necessarily an integer, and the value of

Yi is obtained for each i from 0 to M-1 by computing j = bri ,

truncating to form [j], the greatest integer not exceeding j, and then
interpolating between y[j] and y OWLI

So far we have not discussed how the interpolation is done, and indeed
Table 2.2 shows that more than one interpolation method has been
implemented. A simple two-point linear interpolation is one
possibility; in this case, the transformation E is itself linear. One
advantage of this option is its low computational cost. This option
is implemented in one version of MTIFWD. Another possibility is to
use a full interpolation formula to reconstruct exactly the DFT
evaluated at the fractional frequency, or to evaluate the DFT at
fractional frequencies directly from the time-domain signal (as in

2-19

MTDFWD). This option is computationally expensive. Still another
option is a compromise between computational cost and accuracy: the
DFT is converted into polar form and the phases and magnitudes are
linearly interpolated independently. This option is implemented in
another version of MTIFWD.

MTIINV is something like an inverse to MTIFWD. Strictly speaking,
MTIFWD has no inverse--it throws away some of the information
contained in the original vector y. But MTIINV attempts to invert the

transformation, reversing the scaling transformation j - bri, which
when solved for i gives

i = log(j/b) / log r

Then y. is reconstructed by interpolating between li, and Y

When this scale change calls for frequencies outside the range
represented by values of i between 0 and N-2, a linear extrapolation
is performed based on the two frequencies nearest the extreme.

Table 2.2
AP120B Software for Use in Eta Transforms

VFC interpolation routines for forward and inverse discrete
eta-transforms, and Fortran subroutines that create the tables needed
by the interpolation routines:

MTINPR.FTN--initialization subroutine MTINIT

MTIFWN.VFC--forward VFC subroutine MTIFWD, with two-point
interpolation

MTIINN.VFC--inverse VFC subroutine MTIINV, with two-point

interpolation

MTIFWP.VFC- -forward VFC subroutine MTIFWD, with polar interpolation
separately in phase and magnitude

MTDINI.FTN--initialization subroutine MTDINI (for MTDFWD)

MTDFWD.VFC- -forward VFC subroutine using direct DFT evaluation at
proportionally spaced frequencies

2-20

2.3 STATISTICALLY BASED ERROR METRICS

Canonical Coordinate data compression utilizes a simultaneous
diagonalization of two hermitian-symmetric matrices: the signal
covariance matrix and an error metric matrix. This diagonalization is
achieved by one of two methods as summarized in Figure 2.7. The
signal vector y can be either a directly digitized PCM signal,

or can be some vector derived from the original signal.

In Section 2.1 we have given some prominence to the discrete Fourier
transform of the original signal, since it may be easier or more
intuitive to specify error metrics in the frequency domain. Since the
discrete Fourier transform is invertible, a signal estimate can be
reconstructed from a DFT estimate at the decoder. Alternatively, we
could consider coding the phase and magnitude of the DFT separately.
In this case, both phase and magnitude could be independently cast
into canonical coordinate systems, each with its own error metric and
signal covariance;' or the canonical coordinate technique could be
applied to the magnitude (or phase) only, leaving the other to be
coded by some other method. Other possibilities include coding a
nonlinear function (such as the logarithm) of the magnitude of the
DFT, or applying logarithmic scaling to the frequency axis as in the
Discrete Eta-Transform discussed in Section 2.2. In each case, we
have a "signal" vector derived from the original signal vector. The
derived vector has its own statistical characteristics different from
those of the original signal, and thus its own canonical coordinate
transformation.

In order to investigr te some of these options, we have studied the
covariance matrices implied by some of the.e signal transformations.
We have used actual speech signals and computed the long-term
time-averaged statistics of various --rived signal vectors (such as
DFT magnitude, discrete Eta-transform, or DFT phase), and then
obtained the principal component transformations corresponding to
these statistics. For simplicity, we have used only Euclidean error
metrics.

2.3.1 Sources Of Data And Covariance Estimation Procedures

As our samples of speech, we used two different data sets. In order
to control the variability of the data, each data set consisted of
utterances by a single speaker, in a quiet environment, using a
dynamic microphone. One data set (set "CV") consists of a DRT word
list (list CH307A) read by speaker CH; the other data set (set "DA")
consists of a DAM sentence list read by speaker CH. The long-term
average spectral distribution of the two data sets is shown in Figures
2.8 and 2.9.

2-21

Original domais
of signal vector y

U~nitary rota tio Unitary rotation

Principal Component domain -. sncldmi
Covariance is diagonal Metric is diagonal

(uncorrelated components) Covariance may not be diagonal
Metric may not be diagonal

Scale change Scale change

Intrmdiate dmai Intermediate dkamki
Covariance is identity Metric is identity (Euclidean)

(uncorrelated components) Covariance may not be diagonal
Metric may not be diagonal

Untary rotation Unitary rotation

Canonical domain (1) Canonical domain MH)
Covariance is identity Metric is identity (Euclidean)

(uncorrelated components) Covariance is diagonal
Metric is diagonal (uncorrelated coordinates)

Figure 2.7
Cannonical Coordinate Methods

2-22

45

40

35

30

2S

20 IiIItl,

Figure 2.8
Long Term Spectral Distribution of DRT Wordlist CH307A

so

45

40

35

30

25

20 t

Figure 2.9

Long Term Spectral Distribution of DAM Sentence List

Speaker CH, File QSETI.DAM.

2-23

Each data set was analyzed in 64-sample frames. A simple
fixed-threshold silence suppression rule was applied. Each non-silent
frame was extended by 64 zeroes and a discrete Fourier transform was
computed on the result. Of the 128 DFT values, the first 64 were
retained. At this point the analyses diverged, depending on whether
the derived signal being studied was

1. the raw complex DFT vector,
2. the vector of DFT magnitudes,
3. the vector of logarithms of DFT magnitudes,
4. the raw complex DFT vector with Eta frequency scaling,
5. the vector of DFT magnitudes with Eta frequency scaling, or
6. the vector of logarithms of DFT magnitudes with Eta frequency

scaling.

Whichever derived signal was used, it formed a vector of length 64 for
each frame of speech. The covariance matrix of this vector was then
estimated as the average over time of the various products of the
vector components.

For each covariance matrix, we performed an eigensystem solution to
diagonalize the matrix, yielding a transformation matrix for principal
component compression of the chosen derived signal vector. As a
consequence of a relationship analogous to Equation 2.1.8, the mean
square error for principal component data compression is equal to the
sum of the eigenvalues corresponding to coordinates not transmitted.
Therefore the eigenvalues of the covariance matrix provide all the
information needed to determine the mean square error at any given
level of principal component data compression. Specifically, the mean
square error caused by dropping some coordinates is equal to the sum
of the eigenvalues corresponding to those coordinates. However, it
should be noted that there is no direct comparison between a certain
level of mean square error in one type of derived signal vector, such
as DFT magnitude, and a certain level of mean square error in a
different type of derived signal vector, such as log DFT magnitude
with Eta frequency rescaling.

Gaussian Noise Case - In order to provide a simple example of
this method, we have computed the covariance matrix and corresponding
eigenvalues for the complex DFT vector applied to a synthetic data set
consisting of white Gaussian noise. For such a data set, the true
covariance matrix is the identity multiplied by a scalar constant, and
the eigenvalues are all equal to that constant. Figure 2.10 shows a

summary of the covariance metric for the complex DFT vector estimated
from white Gaussian noise. The gray scale plot in each figure

indicates the magnitudes of elements o' the correlation matrix
obtained from the estimated covariance matrix. The plot of

eigenvalues shows that half the eigenvalues are approximately zero,
and the ocher half are approximately equal to each other. This is not
surprising, since the zero-filling operation applied to each frame
results in an oversampled DFT. The plot of cumulative eigenvalue sums

shows that as we decrease the compression rate from 100% to 50% the

expected error decreases from 100% to 0%.

2-24

.3000 - ----. -- V--

.21000

.8000

.7000 - -- - -

Figure 2. 10
Correlation Matrix and Eigenvalue Characteristics

White Gaussian Noise, DFT Magnitude, Linear Frequency

2-25

2.3.2 Conclusions

Although the following comparisons show some qualitative distinctions,

it should be reiterated that compression efficiency is not directly

comparable betqeen any two cases.

Raw DFT - Figures 2.11 and 2.12 summarize statistical

characteristics of the complex DFT of speech frames, with and without

logarithmic frequency rescaling. The gray scale plot in each figure

indicates the magnitudes of elements of the correlation matrix
obtained from the estimated covariance matrix. For data set "DA", the

cumulative eigenvalue curve is steeper, implying better compression,

in the linear-frequency case. On the other hand, for data set "CV",
the cumulative eigenvalue curve is steeper in the log-frequency case.

Magnitude Of DFT - Figures 2.13 and 2.14 summarize statistical

characteristics of the magnitudes of the DFT of speech frames, with

and without logarithmic frequency rescaling. The cumulative

eigenvalue curve is steeper, implying better compression, in the

log-frequency case.

Logarithm Of Magnitude Of DFT - Figures 2.15 and 2.16 summarize

statistical characteristics of the logarithm of magnitudes of the DYE

of speech frames, with and without logarithmic frequency rescaling.

The cumulative eigenvalue curve is steeper, implying better

compressic., in the log-frequency case.

Phase Of DFT - Figure 2.17 summarizes statistical

charactezistics of the phase of the DFT of speech frames. Phases at.

different frequencies appear to be independent, offering no

opportunity for compression by this method.

2-26

7,..

A,. **:~-... 1r t . . -f 4..

-A Isk

-- ~~i -.'.1 A x

>1~ * 4 "

.~ ., ~ ~4 - . .,i

From DA From CV

100

10000

.9000

Figure 2.11
Correlation Matrix and Eigenvalue Characteristics

Speech, DFT, Linear Frequency

2-27

.4 ~4

* . . -4

(, , tveCie aI .e 5t VA *I *0-

. . . as.

Fiur 2.12~.-

Corlto Mix an . ievau .. arac. t, r ''&.ic- *A

Speech DAT Log Frqunc

.3088-28

F-rom DA From CV

3000 ~ ~ ta alre -s' PAP-T- , - - - -

.70 -0

I 000Figure 2.13

CorltonMti adEgnaleCaaceitc

.peh8 Mgiud FLierFrqec

.700 .-- L.. I2-29...

From DA From CV

.2000 - -'

.9000

.9000

.71000

Figure 2.14
Correlation Matrix and Eigenvalue Characteristics

Speech, Magnitude DVI, Log Frequency

2-30

"7.

From DA

.3 e09

.206Fiur 2.15 (.~

Corlto Marxan000nau Caateitc

Speh0.0 agiueDT ina rqec

.000 -,-r -31--- - - -r - -

, ffjk45 1

From DA From CV

.2e00 S .L ..-

.9000

.7000 .. .A ..

.3000 - .

.2000

l0 0

.000

Figure 2.16
Correlation Matrix and Eigenvalue Characteristics

Speech, Log Magnitude DFT, Log Frequency

2-32

0 -. 117 ,..4 4 f 1

..9000..

C- 00 a C4e-0- s. D 0 A

Fiur 2.17j

Speech, 4. PaeDFT ina Feuec

2-33 .9

2.4 APPLICATION OF A MODULAR GENERATING FUNCTION APPROACH TO
ERROR METRIC DEFINITION

In the process of utilizing the Canonical Coordinate approach, it has
become clear that the specification of suitable error metrics for use
in the optimization of narrowband voice communication systems is more
complicated than was originally anticipated.

The large number of degrees of freedom that are avaiable in directly
specifying the error metric K in the frequency domain (or J in the
time domain) is such that systematic procedures are needed to
accomplish this task. Moreover, it is highly desirable that these
procedures be able to make use of as much a priori psychoacoustic
information as possible.

The modular generating function (MGF) approach outlined in this
section provides a convenient procedure for generating unitary
matrices to be considered for the eigenvector based transformation
matrix V associated with K (or Y with J).

This is accomplished by using an exponential generating function
procedure based on an hermitian matrix G. The structure of the matrix
G can be more easily organized (and related to psychoacoustic
attributes characterizing the voice spectrum) than that of the more
abstract unitary matrix V. This follows since the only mathematical
constraint on G is that it be hermitian (i.e. has complex conjugate
symmetry) whereas V must satisfy a much more severe set of complex
orthogonality constraints.

Moveover, the approach also provides a mechanism for generating K from
a series of modular steps, begining with a real diagonal metric r,
and then adding successively higher order differential variations,

based on both G and r, that transform r into K in a procedure based
on

K = vrvt

However, in this procedure, the explicit characterization of the
sucessive steps can be more easily related to various psychoacoustic
attributes of the spectral signal data than in the conventional
formutation.

A specific example of a 10 by 10 G matrix with a family of 3 wide
overlapping "box-car" type filters is given in Section 2.4.3. In a
recent experiment, the MGF procedure utilized a similar family of
overlapping "box-car" type filters for the generation of an orthogonal
family of transformations operating in the frequency domain. The
affect of these transformations was to emphasize formant peaks within
a Principal Component based CC speech compression system.

2-34

2.4.1 Specification Of An Error Metric K And Associated

Eigenvector/Eigenvalue Matrices V And r Using Hermitian
Generating Function Procedures

Given an hermitian matix K, then there exists a unitary V and a real
diagonal matrix r satisfying the well known eigenfunction equations,

VtKV - P or KV - Vr

Alternatively, given any unitary matrix V and real diagonal r, a

hermitian matrix K can be constructed from

K = VFVt

Now this later expression for K can be used to provide considerable

insight into the structure of K if we make use of a well known
exponential generating function procedure that states that for any
unitary V there exists a hermitian G for which V = exp(iG), and

conversely.

For convenience in scaling and relating the hermitian matrix G to
various physical variables we will introduce a real scalar coefficient

k and write the above expansion as

V - exp(iG/k) - I + IG G- - + -1-- G + (2.4.1)

k 2!k' 3!k 3 4!k4

This expasion is the macrix counterpart of

v = ei' = I + ig .g3 +.4 +
212-3! + 41g

4

relating a real valued variable g to a complex valued v having unit

modulus Iv12 = .,

The importance of the expansion cited in (2.4.1) resides in its
ability to characterize the rather complex structure of the unitary
matrix V in terms of the much simpler structure of the hermitian
matrix G and in the potential for relating G more directly to
psychoacoustic attributes involved in the y - VP transformation
process.

Now expanding K in terms of V = exp(iG/k) yields the power series

expansion

K = VI'Vt = exp(iG/k)l' exp(-iG/k)
= (I+G 1- i G3 + r i i I G2 + i G 3 +

k 2k2 6k- k 2k 2 6k +

2-35

To the first order of terms in G, this reduces to

K - r + 1(GF - FG) + O(G2),

and to the 2nd order in G we have

K = r + 1(Gr - VG) - --L(G2r - 2GrG + rG2) + O(G')
k 2k

This can also be written, by factoring the 3rd term, as

K = r + 1(Gr - rG) - 1k(G(Gr-rG)-(Gr-rG)G) + O(G3). (2.4.2)
k 2k

If we now let SG(F) be the 1st order variation in r, generated by
the hermitian operator G, and specified as

6G(F) = I(GF - FG) , (2.4.3)

then K, as expressed in (2.4.2) can be developed in the Taylor-series
like expansion (around the diagonal matrix F) of the form

K = r + 6 G(r) + Ak(G6G() -
6G(r)G) + O(G)

or

K = r + 6G(r) + -. 6(5G(r))+ O(G 3) = e'G . (2.4.4)

This series expansion of K in terms of successive differential
variations, generated by an hermitian operator G, operating on a
diagonal matrix F, provides a mechanism for generating K from a
concatenation of elementary matrix operations.

2.4.2 Special Characteristics Of The Generating Function Based

Differential Operator 8G(F)

The first order differential operator SG(F) was defined in

(2.4.3), for hermitian G, real diagonal r and real scalar k, and can
be written as

SG(r) = 1(GP - rG) = -[G, r]

in terms of the commutator operation [G, ri = GF - PG of G and P.

Note that the commutation notation is applicable to all matrices,
whether hermitian or not. However, as used in representing 8

G(F),

both G and P must be hermitian, with P further .restr;cted to being

diagonal.

2-36

The above defined 6G(1) is easily shown to be an hermitian

operator, since

6Gt(F) -_ ((Gr) t (ro)t) - -1(rG - Gr) - 1(Gr - FG) - 6G(r)

and is also linear in r in the sense that for hermitian 1 and 0 and

scalar w

6(+ n) - 6G(r) + 6G(O) and 6G(wr) - w6G(F)

In particular, however, 6G(F) has the important characteristic of

a first order differential operator [i.e. D(uv) - Duov+uoDv] in the

sense that

6G(M) = 6G() + ()

This follows from the Jacobi Identity for Commutators, which states

that [G, M] - [G, F]f2 + r[G, Q2]

2.4.3 Explicit Characterization Of 6G(r) And 6 G(6 G(r))

From the explicit characterization of an hermitian G

Goo Gol G02 GON G Go1 G02 GON

Go Gi G12 0 N G*0 011 012 GlN

G = G20 G21 G22 G2N= 020 021 022 G2N

G G G G* G* G* G

N0 0
NI

0
N2 NN N0 GNl GN2 GNNI

and r - diag(70 , 7 1 , . N)

we have 6G(F) = 1[G, r1 =

0 -GO1(y0 -1) -G02(0 -7y2) -GoN 00-7N)

GO1Q(0 -71) 0 -G120(71-72) -GIN(71- 7N)

SO 2) G(2(1 "--y2) 0 -G2N(72"7N)

GON(0 -IN) GlN*('Y-lfN) GN-lN(rN-1'N) 0

Note that while the commutator itself, [G, P] is skew hermitian, i.e.

[G,r]t = -[G,r], the prefix coefficient i/k makes 6
G(r)

hermitian.

2-37

For the 2nd order differential operator 6G(6G(r)) we have the
following characterization

6G(6G()) k-[G, SG(r)] = (G6G(r) - 6G(r)G)

=-'(G(Gr - rc) - (Gr- rG)G)

or _6 _(6 G()) =-(G2r - 2GrG + rG 2) (2.4.5)

2.4.4 Example Of Construction Of V When G Corresponds To A
Family Of Over.apping Rectangular "Box-Car" Filters

This example has a generating function G that resembles a sequence of
rectangular handpass (Box-Car) filters in the frequency domain that
overlap by 50% and have a uniform width of 3 units each.

Equation (2.4.6)

110000 000001 31 0001 2

0111000000 10 000 00
S00 11 1 00 0 00 G2 0)8 1 2 l 8

00000111I00 01 0 01

6310001367

k 10002204 0 0i
0~ ~~~I 0 01 0 0 04

0i 00 0 1 1 1 6 i040 0 0 04
0~ ~ 0I 00 0 1 19 16 0I0 001

11 0 0(040 0 04 1 162 19 160 10 41 0112

6 7 6 10 0 0 13

6 7 60 1 0 10 06 19 361
i0 6 7 6 3 4 0i0 16 191

3 ~ 1 3 67 63 0 0 0

16 i04 0 1 3 6I06 16 19

0 0 3 6 6 3= () ((i 0 0 0 1 0 0~ 0 0

k 1 0 0 0 1 10
16 3 1 0 0 0 1 3 6 7

119 16 10 4 1 0 1 4 10 16
16 19 16 10 4 1 0 1 4 10
10 16 19 16 10 4 1 0 1 4

4 4 10 16 19 16 10 4 1 01
G4 4 10 1619 16 104 1 01

24k4) 0 1 4 10 16 19 16 10 4 1
1 0 1 4 10 16 19 16 10 4
4 1 0 1 4 10 16 19 16 10
10 4 1 0 1 4 10 16 19 16
16 10 4 1 0 1 4 10 16 19

For the first row of each power of G we have:

Co (L) (1 1 0 0 0 0 0 0 0 1)
2

C0 2 (~ (3 2 1 0 0 0 0 0 1 2)
S 2k"

3
Gon =.~~ 7 6 3 1 0 0 0 1 3 6)

6k3
Con 1 (19 16 10 4 1 0 1 4 10 16)

24k

2-38

From the expansion of V in terms of G and k to order G4 we have

V - exp(iG/k) - I + k - _-2G2 - + 14k4 + O(G5) (2.4.7)k 2k 2 6k3 24k

hence the first row of V has, for its first 5 components, the values:

Equation (2.4.8)

0 1 2 3 4 5
n G0o G o nGO Gan Gan GOn REAL IMAG

V . + i - 7 + 19 + ((G5) - (1I 3 19)+ i(l--L)+ (G 5)
k 2k 6k3 2 +4k 4 P '24k, k 6ki -2 6i +16 (_i 2(L)+ O(G 5)

Vol = + k 2k 0 +k + O(G) (+ O(G k)+
2k2 6k 24k k 3k k1 3i + 10 +i(G)_

V02 2 3+ + (~ 4) +0(G')
2k2 6k3 24 2k 12k 2k3

_03 - + -+ (G)- 1 4 i + O(G5)V = 6k3 24k + 6k 6k

V04 = + 1 + O(G5) _ 1 + 0 + O(G5)
24k4 24k4

From the circular symmetry exhibited by the particular G, and each of
its powers, shown in (2.4.6), it follows from (2.4.7) that V has the
same circular symetric property, and therefore can be characterized by
a single row (or column) vector of the type illustrated in (2.4.8).

Moreover, the complex conjugate matrix Vt will have the same
property, and hence from

- V'y, or P = vt(n)y, where 4m(n) -

we can consider (vt(n)) as a family of circularly shifted row

vectors of Vt, operating as "filters" on y to yield the filtered

canonical coordinate fP. A typical version of vt(n), centered on
0, will have the form whose real components are illustrated in Figure
2.18.

1

,-. -. -, o ? ,,

Figure 2.18

Digital Box-Car Filter (Real Components)

2-39

2.5 CANONICAL XOORDINATE APPROACH TO INTEROPERABILITY

The Canonical Coordinate (CC) approach permits speech compression
systems optimization with respect to any arbitrary quadratic error
metric, in accordance with a very specific set of signal data
transformation construction rules that go from highly cross-associated
signal input (x-domain) data representations to completely
uncorrelated (, 6, z domain) representations, It is this facility
for systematically transforming between a number of signal parameter
representations of the same underlying digital voice data that holds
the greatest promise for achieving the highest possible degree of
interoperability between different speech compression systems.

However, it must be noted that a high degree of interoperability
between different speech compression systems is also highly contingent
upon the degree of compatability between the error metrics used in the
optimization process associated with each class of system. To the
extent that there is serious incompatability between the error metrics
used, there is likely to be difficulty in achieving a satisfactory
degree of interoperability between the different classes of systems.

In the majority of speech compression systems the error metric will be

some variant of either the mean-square-error (i.e. LZ) metric or of

some other LP metric. In particular, most LPC-type systems are
based on minimizing a mean-square unit prediction error. This
translates, in terms of an N-dimensional vector data frame, into an

error metric J-R"1 where R is an N-dimensional correlation

matrix in the time domain, and to an error metric K-S" in the
frequency domain, where S is an N-dimensional spectral matrix. A

detailed proof of this process is provided in this section. On the
other hand, the error metric associated with Principal Component, or
Loeve-Karhunen, type vocoders [Ref. 16.] is well known to be simple
euclidean in form, i.e. J = I (hence also K = I).

2.5.1 Canonical Coordinate Background

Following the notation in Figure 2.19, let D be a matrix defining a
non-orthogonal transformation from a "canonical" coordinate component
vector z to the "raw signal vector x, i.e.

Ix - Dz - YW '1/2zi (2.5.1)

w.here x satisfies a non-euclidean "orthonormalization" condition,

based on a specified hermitian matrix J, of the form xtJx = 1 and
z satisfies an euclidean orthonormalization condition ztz = 1

Hence D satisfies a basic complex conjugate matrix equation of the
form

[DtJD = I or J = Dt1'D'jj . (2.5.2)

2-40

<xxt> = R <ot> 'H2 = I <66t> - I <zzt> - A

yty - H2

[ZL 4a-A 1

YtJY = P(Diag) HtHN H(Non-Diag) Wt IIW- A(Diag)tJ L

xtJx -tr teSA t

" The Spectral Whitening Assumption A I is Equivalent to the Error Metric

Assumption J R- .

" The General CC Decoposition, x = Dz = YHWA-1/2z, Reduces to x =

Yr1/2Wz, Where Y and r Satisfy the Eigenvector Equation YtRY =

r-1 with Unitary Y and Diagonal r, and Where W is an Arbitrary Unitary

Matrix.

* Detailed Specification of W Depends Upon Specific AR/LPC Type Structural

Constraints on D = YrF1/2W, such as Triangularity.

Figure 2.19

Canonical Coordinate Technique Via Error Metric Diagonaiization

Applied to Spectral Whitening Procedures of the AR/LPC Type

2-41

If we approximate x by an estimate i(p) by transmitting only the
first p components of z and replacing the remaining N - p components

of z by preselected estimates ZP I ... I N-1I then it can

be shown that minimizing the non-euclidean error E(p), defined as

E(p) - <Axt(p) J Ax(p)> - <(x - (p)) J(x - C(p))>

where c(p) = DIPz + DkI - I)i with I. - diag(10 ,...., lp, Op . .. N_1)

can be written

E(p) = tr(I - Ip)A

where A satisfies a generalized eigenvalue equation of the form

I JRJD = JDA or DtJRJD = A (2.5.3)

where R is the covariance matrix

R = <(x - <x>)(x - <x>)t>

or R - <xxt> when <x> = 0

and A is a diagonal matrix whose diagonal elements are ordered as

Now for any positive diagonal scaling matrix () whatsoever we may
define

A = 0-1/ 2D-1 and B= A-
and then write

I z -D-j jx7 -I2 (2.5.4)

where

I D B01/ 2 (2.5.5)

Then (2.5.2) can be written J = AtO-A and (2.5.3) reduces
to

f ARA f fA I A(2.5.6)

or RAt = B(OA) (2.5.7)

or E)Bt (2.5.8)

and, in particular, R"1 = At(OA)-'A

It is also important to note, from (2.5.2) and (2.5.3) that

I R - DAD 1 (2.5.9)

and from R = <xxt> = D<zzt>Dt, that

[A=<zz> • (2.5.10)

2-42

The diagonal scaling matrix Q specified in (2.5.5) above is necessary
in certain situations, such as that encountered in AR/LPC analysis
where the matrices A and B nust be both triangular and also scaled so
that they have l's on the m~in diagonal. In this situation, it is

shown in Section 2.5.2, that both A = I and J = R- , thus

leading to the Cholesky-type decomposition R = BQBt cited in
(2.5.18).

If, however, we are not constrained to have D be triangular, and hence
neither A nor B, then the decomposition of R specified by (2.5.9) will
not be of the Cholesky type and will not in general have a completely
recursive solution. In fact, the solution will not be uniquely
specified until a constraint of the form specified by (2.5.2),
involving an error metric J is specified.

2.5.2 AR/LPC Specification In Terms 3f A 1-Dimensional
Projection Of An N-Dimensional Canenical Coordinate

Process Based On T,'.angular D 1 ,Spectral

Whitening A=I And J=I'"

The typical AR/LPC process can be considered as the minimization, in
the mean-square-error sense, of the difference x0 - 0 between
a variable x0 and a linear estimate

M

0 alx1 = _ax
i~1

of the next N1 terms in a sequence

= (xI, ... , xM)t

where 20 0_1 .. am)

This can be characterized as the minimization of <Ix 0 - 12>

subject to the constraint that ao = 1 or, equivalently, as the
minimization of

<Ix 0 - -012> _ <1X0 _a- 12> = W0<1z 0 1
2> (2.5.11)

subject to the constraint that

<1z0 12> = 1 I (2.5.12)

where, from (2.5.4), z0 can be expressed as

z 0 - wo0 "1 2 (x 0 - :) - w0" 2 atx . (2.5.13)

Here x and a are the N = M+l dimensional vectors

x = (x0, x1 , M/ X t

a = (1, a, a.)t

2-43

Note, in particular, that (2.5.13) can be considered as the
projection, P0 on the 0th vector component of the N dimensional

canonical coordinate equation (cf 2.5.4)

i z D- 1x = Q-i/2Ax 1 (2.5.14)

i.e. z = POz = Pofn-i/2Ax = v0-11 2atx

and from (2.5.11) and (2.5.12) that w0 - min<lx 0 - >

Here A, for purposes of recursive computational convenience, must be
assumed to be upper triangular in form

A [- a (2.5.15)
0A

and

p 0 = [] - diag(10 , 01 ...,
0M)P= 0 0

In terms of (2.5.10) and (2.5.14) we have

A = <zzt> = 0-1/ 2A<xxt>AtO'1/ 2 = 0-I/ 2 ARAW-1/ 2 . (2.5.16)

The AR/LPC constraint specified by (2.5.12), i.e. <1z 0 12> = 1, is

simply the projection PoAPo = PO<zzt>P0 = <jz 0 12 > - 1

of the general constraint that A = I .

This says that the general vector-based AR/LPC process carries out an

inverse fil ering operation z = D-ix (= 0-1/2Ax) in which

z has a flat uncorrelated spectrum <zzt> = A = I

Hence (2.5.16) reduces to ARAt - 0 .

And consequently the general canonical coordinate Eqs. (2.5.7) and
(2.5.8) become, in the AR/LPC context

RAt = BO (2.5.17)

aud R = BMBt (2.5.18)

where, since A is upper triangular, as specified in (2.5.15), this

inverse B must also be upper triangular, i.e.

~=[] . (2.5.19)
0B

Finally, we note, from (2.5.18), that in the AR/LPC solution

R_- 1 = AV -A

and since, from (2.5.2) and (2.5.5), we also have

2-44

J - Dt-'D' - (At -1/ 2)(f - 1/ 2A) = Ati/2A,

it follows that

IJ--'
is the metric in the x-coordinate system that characterizes the
general vector-based AR/LPC process.

2.5.3 Determination Of Predictor Coefficient Vector 5 And

Reflection Coefficient Vector from Canonical Coordinate

Equations for the AR/LPC Situation

In Section 2.5.2 we saw that the basic Canonical Coordinate equations

in the AR/LPC context could be put in the form (2.5.17) of an Nth

orde. matrix equation

I t l(2.5.20)

where both A and F (- A-) are upper triangular matrices having

l's on their main digG'Pls, speciiied in (2.5.15) and (2.5.19) as

A= 1 ~J and B [.
0 A 0 BI

Because of the triangular nature of A and B, auation (2.5.20) has a

recursive solution for these matrices and for the diagonal matrix 0.
The following partitioned expansion of the matrix equation yields the

well known interrelationships between a, b, woo 0, A, B and

R, r , i , R:[ro 1t 101S o o]
or

[ro+ 02i r'A .- t5

Thus we obtain

1. A scalar relationship characterizing the Mth order AR/LPC error

t o.

W0 = r0 + r'a

2-45

2. A vector relationship characterizing the Mth order prediction

coefficient i.

I R = -ori i (2.5.21)

3. A vector relationship characterizing the Mth order reflection

coefficient b.

4. An Mth order matrix equation for use in the recursive determination

of A, B, and 5 from Mth order

RAl = E

From the above basic AR/LPC relationships we can also express W0 as

w0= 0- = atRa

or, in terms of b as

[= r0 - StfH and r0 = btlb (2.5.22)

Note also the following relationships between 2 and

E - _Et2 and 2i = .t .

2.5.4 Characterization Of Extended Predictor Coefficient Vector
a in Terms of Both Time Domain Matrices J and

Frequency Domain Metric K.

In terms of the extended predictor coefficient vector a, of dimension

N - M+l, defined as a = (].,a a,)t (lat)t, we can

rewrite (2.5.21) as

IRa=w 0 p or a = O0 R-p . (2.5.23)

where R is an N dimensional correlation matrix and p is a "unit
impulse" vector

I p = (1, 0 ... , 0)t and ptp = 1

Thus the vector a is w0 times the first column of the inverse

matrix R-', or, since J = R-1, we have

a = w0Jp . (2.5.24)

2-46

Now upon noting that the counterparts of R and J in the time domain

are the spectral matrix S and metric K in the frequency domain, given

by

S - ZRZt and K - ZJZt

it follows, if we let c be the Fourier transform of a, i.e.,

c = Za or a - Ztc

that (2.5.23) can be written

I Sc = Woa or c =o (2.5.25)

where a is the flat spectrum" vector in the frequency domain

corresponding to the "unit impulse" vector p in the time domain,
i.e.,

a-(I, 1,..., l)t- Zp where ata = I

Moreover, the counterparts of (2.5.24) and (2.5.22) are, in the

frequency domain, that

[c = wo0Ka (2.5.26)

and [w0 ctSc (2.5.27)

since, from J = R-1, it follows that K = S-1.

The particular significance of the expression for c and w0 in

(2.5.25 - 2.5.27), arises from the fact that S, and hence also K

(=S-1) are diagonal, when R is circularly symetric, and

therefore S"1 has the simple characterization

S= diag(l/s0 , /s1, ... I/SN-1) (2.5.28)

2-47

CHAPTER 3

ALGORITHM RESEARCH AND IMPLEMENTATION

Algorithms implemented during this contract period have included two
versions of the Canonical Coordinate Speech Compression System and two
versions of the NSA LPC-lOE Linear Predictive Coding Vocoder.

A faster AP-120B implementation of the CC algorithm was developed to
aid in Error Metric research and in quantization/coding studies. A
fully parallel implementation of the CC algorithm on a Systolic Array
Processor was developed to demonstrate the versatility of the
algorithm when combined with a truly parallel processing architecture.
The algorithm research and development required by this task was
reported by ARCON at ICASSP-87 [Ref. 14].

A true vocoder implementation of the CC method requires research into
parameter quantization effects and the development of a coding
capability for the transmission of CC coefficients between analysis
and synthesis processors. Several development tools have been
generated during this contract period to aid in this work. Because
they are closely related to the CC algorithm implementations, they
will be included in this Chapter.

The emergence of the FSVT and STU-III programs during this contract
period led to the necessity of an operational version of the LPC-1OE
algorithm at RADC/EEV. Two versions of this algorithm (V49 and V52)
were received from NSA at separate times in PDP VAX Fortran form. They
were ported to the RADC/EEV PDP-11 Fortran IV system by ARCON.

3.1 CANONICAL COORDINATE ALGORITHM AP-120B IMPLEMENTATIONS

ARCON has continued to improve the RADC/EEV implementation of the
Canonical Coordinate Algorithm on the FPS AP-120B located at the
speech lab. This implementation has undergone a significant number of
changes and has evolved into two separate routines. Both routines are
Fortran programs which utilize AP-120B library function calls
optimized for AP program memory use with the Vector Function Chainer
(VFC) language. Speech input, CC parameters and synthesized speech
output are all stored and/or accessed from Speech Data Base files.

3-1

The first routine, CCANLI, implements the analysis portion of the
algorithm. It will:

1. input an error metric transformation matrix and eigenvalues
2. loop over a user specified number of input speech data frames,
3. condition the input signal,
4. calculate the pseudo CC parameters beta and the permutation

vector based on the CC parameter mu,
5. code and quantize the speech coefficients (magnitudes and

phases of the pseudo CC parameters beta, the inverse
permutation vector and the signal vector scale factors) and
pack them into the output file.

The second routine, CCSYN1, implements the synthesis portion of the
algorithm. It will:

1. input an error metric inverse transformation matrix and
eigenvalues

2. unpack and decode speech coefficients,
3. further quantize phases if requested,
4. synthesize an estimate of the input signal based on any

requested percent of the ordered beta's.

The splitting of the algorithm into these two routines has permitted
more efficient testing of speech coefficient compression. The analyst
no longer has to re-analyze speech data to study the effects of
varying the amount of beta synthesis. Furthermore, the breakup has
enabled ARCON to study the effects of quantization and coding of the
speech coefficients on the performance of the algorithm.

With this latest implementation, significant improvements in
performance have been realized. The original implementation of this
algorithm, CCVOC, executed at approximately 25X real time. The
throughput of the latest implementation is approximately 5X real time
(3X real time for the analysis routine and 2X real time for the
synthesis routine). Several changes in the manner in which the
analysis and synthesis routines execute are responsible for this
performance improvement. The basic idea is to distribute the
processing between the AP and the PDP-11 and to have them process data
simultaneously. The first step in this process was the separation of
the CCVOC algorithm into analysis and synthesis routines joined by a
CC parameter file. Speed improvements to the analysis and synthesis
routines were then implemented. Descriptions of these improvements are
given below along with operational instructions for the analyst.

3.1.1 CC Analysis Improvements

The previous version of CCANLI read one block of data at a time and
converted it to floating point representation. This input buffer was
then loaded into the AP-120B one frame (64 words) at a time and
analyzed by the AP routines DECOMN and PCCZ. The speech parameters
were retrieved from the AP, encoded and packed into the output buffer,
and written as necessary to disk. This was repeated until all the
input blocks had been processed.

3-2

The first change to CCANLI was to distribute the processing between
the PDP-1l and the AP-12OB. On the input side the processing required
to float and scale the input data is performed by the AP. On the
output side the processing required to encode and pack the magnitudes,
phases and indices into the output buffer is also performed by the AP.
The packing of the signal vector scale factors is still peiformed by
the PDP-II.

The second change was to have the PDP-11 and the AP-120B do more
processing simultaneously. This was accomplished by setting up two
input and two output buffers in the AP-120B. CCANLI now reads 8 blocks
of input data and transfers it directly to one of two input buffers in
the AP. The PDP-11 signals the AP to begin analyzing data in the input
buffer. While the AP is analyzing the data in the input buffer, one
half the previous AP output buffer (representing 16 frames of speech
parameters) containing the encoded and packed magnitudes, phases, and
indices and the as yet unpacked signal vector scale factors, is
retrieved from the AP. The signal vector scale factors are packed into
the PDP-II's output buffer and the buffer is written to disk.
Similarly the second half of the AP's output buffer is retrieved,
prepared and written to disk. The next 8 blocks of input data are read
from disk and transferred to the next AP input buffer. Each input
buffer is 2048 words in size and represents 32 frames of input speech.
Each output buffer is 4160 words in size (representing 4096 words of
encoded and packed magnitudes, phases and indices and 64 words of
signal vector scale factors).

The two AP routines DECOMN and PCCZ were combined into one routine,
DECPCC, and modified to process 32 frames of data each time it is
called from the host program. For each set of 32 frames in the input
data, processing in the AP-120B is as follows. The input buffer is
first floated and scaled and then on a frame by frame basis the input
data is analyzed and the magnitudes, phases and indices are encoded
and packed into the appropriate output buffer. The signal vector scale
factors for the frame are also moved to the output buffer. After all
frames have been analyzed, the first 4096 words of the output buffer
are converted to integer and AP processing terminates.

3.1.2 Intermediate Canonical Coordinate File Structure

An intermediate file of Speech Data Base structure is used for the
storage and transfer of the results for the CC analysis routine. This
file contains a full set of CC parameters without any effort made to
compress the information. Due to the fixed point file structure, these
parameters must be quantized.

Studies were undertaken to determine adequate quantization levels of
the various speech coefficients. From these studies it was determined
that magnitudes would be represented by integers in the range of
-32767 to 32767 (2 bytes), phases would be represented by integers in
the range of -127 to 127 (1 byte) and indices would be represented by
integers from 0 to 63 (1 byte). Since storage of the indices required
a maximum of 6 bits the signal vector scale factors are packed into
the upper two bits of the first 32 indices. As a result, the speech

3-3

coefficients for one frame of data (64 words) require 128 words in the
output file.

The complete definition of all CC parameters in this file allows for
the synthesis routine to be used repetitively with changing degrees of
compression. This provides an easy method of comparing compression and
coding schemes. As ranges of compression, quantization levels and
coding methods are developed they can be incorporated into the
analysis routine or operate on the CC parameter file separately.

3.1.3 CC Synthesis Improvements

On the synthesis side, CCSYN1 previously read one block of speech
parameters from disk, unpacked and decoded the speech parameters,
loaded one frame's parameters into the AP and called the AP routine
SYNTH which generated synthesized speech from the speech parameters.
The synthesized speech is retrieved from the AP and output to disk as
required.

The first change to CCSYN1 distributed the processing between the
PDP-11 and the AP-12OB. On the input side, the processing required to
reconstruct the magnitudes, phases and inverse permutation indices is
now performed by the AP-120B. Reconstruction of the signal vector
scale factors is still performed by the PDP-11 and the information
required to reconstruct them is removed from the input data before it
is loaded into the AP-120B. On the output side, the processing
required to clip, scale and convert the output data to integer is also
performed by the AP.

The second change was to have the PDP-11 and the AP-120B do more
processing simultaneously. This was accomplished by setting up two
input and two output buffers in the AP-120B. The PDP-11 reads 8 blocks
of input data from disk representing 16 frames of speech parameters.
Two signal vector scale factors for each frame are reconstructed and
the information used to reconstruct them is removed from the input
data. The modified input buffer and the signal vector scale factors
are loaded into the AP. Another 8 blocks of data is read, processed
and loaded into the AP yielding a total of 32 frames of speech
parameters per AP input buffer. Two reads are required due to size
limitations. The PDP-11 signals the AP to begin synthesizing the data.
While the AP is synthesizing the data in the input buffer the PDP-11
retrieves tie synthesized data from the previous output buffer, writes
it to disk, and then prepares and loads the next input buffer into the
AP. Each input buffer is 4160 words long (4096 words of encoded
magnitudes, phases and indices and 64 words of signal vector scale
factors). Each output buffer is 2048 words.

In the AP-120B, the first 4096 words of the input buffer are convelted
to floating point. Then on a frame by frame basis the magnitudes,
phases and indices are reconstructed and a normalized time domain
signal is generated and stored in the output buffer. After all frames
have been processed the output buffer is scaled and converted to
integer.

3-4

3.1.4 CC Analysis Operational Instructions

Program CCANLI implements the analysis portion of the Canonical
Coordinate algorithm. This program requires the analyst to provide an
error metric file, a speech data base file to be analyzed and an
output file to receive the speech parameters generated by the program.
The output file will be twice the number of blocks the analyst chooses
to analyze in size.

The analyst may invoke CCANLI simply by entering the command "RUN
$CCANLI". The program performs some initialization and attempts to
allocate the AP-12OB. If the AP is not available the program waits.
Once the AP has been allocated a short informational message is
displayed and the analyst is asked for the name of the error metric
file. The error metric file is opened and the header and frame size
are displayed. After a short wait, caused by the loading of the AP
with the error metric, the analyst is asked if the input signal should
be preprocessed with pre-emphasis and/or normalization. The analyst is
then prompted for the name of the speech data base file that is to be
analyzed. The file is opened, its header and the number of analysis
blocks available are displayed. The starting block within the input
file and the number of blocks to analyze are requested next. Should
the analyst attempt to analyze more blocks than possible, the requests
for the starting block and the number of blocks are re-issued.

The analyst is next given the option of opening a new or existing file
to receive the output and the name of the file is requested. If the
file is to be a new file, it is created with sufficient size and
opened; otherwise it is opened and the number of blocks in the file
and the number required are displayed. At this point, if there is
insufficient space in the output file, CCANLI branches back to the new
or existing file option prompt; otherwise the analyst is prompted for
the starting block in the output file at which to begin storing speech
parameters. A check is performed to ensure that sufficient space
exists in the output file from the point at which data is to be
stored. If there is insufficient space the program branches back to
the new or existing file option prompt.

The analysis of the input file now begins. The program keeps the
analyst informed of its progress by displaying a status message after
every 256 blocks of data have been analyzed. When the analysis has
completed the analyst is prompted for a title that will be inserted
into the header block of the output file. The comment field from the
input file is displayed next and the analyst has the option of keeping
the comments, adding to the comments or deleting the comments and
generating comments of his/her own. The output file's header block is
displayed and the program terminates.

3-5

3.1.5 CC Synthesis Operational Ins:ructions

Program CCSYN1 implements the synthesis portion of the Canonical
Coordinate algorithm. This program requires the analyst to provide the
error metric file used in the generation of the speech parameter file,
the speech parameter file to be synthesized and an output file to
receive the synthesized speech generated by the program. The output
file will be half the number of blocks the analyst chooses to
synthesize in size.

The analyst may invoke CCSYN1 simply by entering the command "RUN
$CCSYN1". The program performs some initialization and attempts to
allocate the AP-120B to the task. If the AP is not available the
program waits. Once the AP has been allocated a short informational
message is displayed and the analyst is asked for the name of the
error metric file. The error metric file is opened and the header and
frame size are displayed. After a short wait, caused by the loading of
the AP with the error metric, the analyst is prompted for the name of
the .Deech data base file that is to be synthesized. The file is
open d, its header and the number of synthesis blocks available are
displayed. The analyst is asked the percent oZ beta synthesis, the
number of bits to use in the phase representation the starting block
within the input file and the number of blocks to synthesize are
requested next. Should the analyst attempt to synthesize more blocks
than possible, the requests for the starting block and the number of
blocks are re-issued.

The analyst is next given the option of opening a new or existing file
to receive the output and the name of the file is requested. If the
file is to be a new file, it is created with sufficient size and
opened; otherwise it is opened and the number of blocks in the file
and the number required are displayed. At this point, if there is
insufficient space in the output file, CCSYNI branches back to the new
or existing file option prompt; otherwise the analyst is prompted for
the starting block in the output file at which to begin storing
synthesized speech. A check is performed to ensure that sufficient
space exists in the output file. If there is insufficient space the
program branches back to the new or existing file option prompt.

The synthesis of the input file now begins. The program keeps the
analyst informed of its progress by displaying a status message after
every 256 blocks of data have been synthesized. When the synthesis has
completed the analyst is prompted for a title that will be inserted
into the header block of the output file. The comment field from the
input file is displayed next and the analyst has the option of keeping
the comments, adding to the comments or deleting the comments and

generating comments of his/her own. The output file's header block is
displayed and the program terminates.

3-6

3.1.6 Further Improvements

Although significant improvements over the earlier versions of the CC
algorithm implementations have been achieved, additional improvements
in performance and ease of operatio.. could be realized.

Presently, CCANLI works on input data 8 blocks at a time (32 frames),
with the resulting speech parameters requiring twice the number of
output blocks for a total of 16 blocks. While CCSYN1 works on input
data 32 frames at a time (16 blocks). The resulting synthesized speech
requires half the number of output blocks for a total vf 8 blocks. Due
to task size limits the speech parameters are transferred to/from the
AP 8 blocks at a time for both analyzer and synthesizer. If the size
of the output/input buffers could be increased by two then half as
many PDP/AP transfers and disk read/writes would be required, thus
improving performance.

Another improvement in performance would come about by restructuring
the CC parameter file. Presently as each frame is analyzed the
magnitudes, phases and indices are encoded and stored in the output
buffer. After retrieval each frame is processed; the magnitudes,
phases and indices are decoded and synthesized. A reorganization of
the CC parameter file such that all the similar speech parameters are
consecutive for blocks of 32 frames would allow the AP to
encode/decode speech parameters for the 32 frame blocks of parameters.
This improvement would require modification to both the analysis and
synthesis routines.

A third synthesis improvement in performance may be realized if the
job of reconstructing the signal vector scale factors is off-loaded to
the AP. It is unclear at this time if this is feasible but i.s
something that could be looked into.

A fourth synthesis improvement would be to output the synthesized
speech directly through the lOP to be recorded. Since the synthesis
already operates slightly faster than 2X real time this could most
likely be achieved.

An error encountered while attempting to open a file results in an
error message being displayed and program termination. This can prove
quite annoying. The analyst should be prompted again for the file name
instead of terminating the program. Correcting this problem would
require modification to the QIO Library routine GFQIO.

3.2 CANONICAL COORDINATE ALGORITHM SAP IMPLEMENTATIONS

In addition to the AP-120B implementations discussed in Section 3.1,
ARCON has successfully implemented a non-real-time version of
Canonical Coordinate signal analysis and reconstruction on the
Systolic Array Processor (SAP). The SAP hardware and support software
are described in Chapter A of this report. In this section we describe
the Canonical Coordinate implementation itself, including the systolic
algorithms developed for that implementation.

3-7

In Canonical Coordinate signal compression, a complex-valued quadratic
error metric with its dimension equal to the analysis window size is
used in the time or frequency domain, to define a non-euclidean error
criterion for a specific application. An eigensystem solution for the
frequency-domain error metric diagonalizes the error metric and
provides the transformation operator. This computation takes place
outside the analysis/reconstruction process and the transformation
operator is available a priori to both the transmitter and receiver.

The analysis process as currently implemented on the SAP is depicted
in Figure 3.1 and operates frame by frame. The sampled input speech is
zero filled and transformed by a DFT to the frequency domain. At this
point the complex signal vector is transformed into a pseudo CC domain
using the transformation matrix (the complex conjugate transpose of V)
as defined by the error metric eigensystem solution. A further
transformation to the true CC domain would require a second
eigensystem solution at this stage and would be computationally
burdensome. However, this is not necessary since the same effect can
be achieved by properly ordering the pseudo-CC elements. P is simply
the permutation operator that will rank order the real vector U where
U is the pseudo CC domain power spectral density weighted by the
diagonalized error metric as defined by the eigenvalue vector. P is
then used to order the pseudo CC domain signal vector at which point
the vector can be truncated to a length that corresponds to the
transmission rate desired.

The transmitted information must include the complex-valued signal
elements and their ordering parameters, After decoding and reordering
of the transmitted signal parameters, a priori knowledge and/or
adaptive procedures can be used to estimate the missing signal
elements. For reconstruction the pseudo CC domain signal vector
estimate is transformed by the matrix V to the frequency domain, -d
then returned by an inverse DFT to the time domain. Init. .
zero-filling requires that the upper half of the time-domain estimate
be stripped off at this time.

3.2.1 Specific Algorithms Used In The SAP Implementation

Canonical coordinate processing, summarized in Figure 3.2, is
primarily a series of linear transformations on an N-dimensional
signal space, where N is the frame size, together with data-dependent
sorting operations. In our systolic implementation, we use a linearly
connected array of N processors, each responsible for a one-component
"slice" of the computation. Most of the steps begin with a vector
contained within the systolic array, one component in each processing
element, and produce a transformed vector still contained within the
array. With this data organization, the steps of CC processing
involving component-by-component operations become trivial.,

3-8

Error Metric

Defintion DiagoZnauiltiofl

K=ZJZ ~ v VKV=F=[1

Signal Analysis

Signal Reconstruction

P-py=Vf3 xZ y

Figure 3.1
Pseudo- Canonical Coordinate Compression

Analysis Steps

Reconstruction Steps

Unsort =Px Zy

Figure 3.2
Block Diagram of Systolic Algorithm

3-9

Discrete Fourier Transform - The first step of analysis, the DFT,
shifts the original signal into the array as it computes the
transform. For the DFT, the input signal is fed into the array from
the left end (entering node N-1 first), node m computing the m-th
complex DFT value. After the]as sample of the input has entered the
array, N zeroes are shifted in. At each systolic step, a node computes
a new complex power of the N-th root of unity and multiplies it by the
arriving input sample, accumulating the result. rhe powers of the root
of unity are generated recursively by complex multiplication rather
than being stored in a table within the processing elements. A similar
method is used for the inverse DFT performed as the last step of
synthesis, except that the inverse DFT begins with its input already
in the array, and simulates the presence of the "redundant" half of
the 2N-dimensional complex vector.

Matrix-By-Vector Multiplication - For the matrix multiplication, the
vector y is rotated through the array one full cycle, and as the
components of y pass through, proce 3or m computes one component of
the product. Each processing element contains in its RAM one row of
the complex conjugate transpose of V, which in our formulation of CC
processing does not change from one frame to another. During the
synthesis, the matrix multiplication is computed in the same way, but
with one row of V itself stored internally by each processing element.

Sorting Algorithm - Our sorting algorithm is derived from the
"odd-even transposition sort" [Ref. 171, modified to work on an array
with one-way communication paths. The purpoie of the algorithm is to
sort the pseudo-canonical coordinates b(i) so that they are ordered by
their magnitudes U(i).

This algorithm operates with a circularly connected linear array of N
nodes, i.e., one in which there is a data path from node i to node i-l
for every i, and a data path back to node N-1 from node 0:

S+ (N-) --- -... ---- (2) ---- (1) ---- (0) ---- + ---

Each node of the array contains an ordered triple (U(i), b(i), i); in
sorting terminology, U(i) is the "key." During each step of the
algorithm some of the nodes exchange their triples with those of their
neighbors, and at the end the permutation P has been applied to b.
Initially node number k has the triple (U(k), b(k), k), for every k.
In each systolic step, the processors ate paired in a pattern to be
described below, and in each pair the following two operations are
performed:

a. The left-hand node)f each pair sends its triple to the
right-hand node.

3-10

b. The right-hand node, which began the step with a triple (U(i),
b(i), i), has now received another triple (U(j), b(j), j) from
the left-hand node. This node compares U(i) and U(j), then keeps
the triple whose U is smaller, and sends the other triple to the
node on its right. (The node to the "right" of node 0 is node
N-1.)

For every step the nodes are paired: node N-I with node N-2, node N-3
with node N-4, etc., ending with nodes 1 and 0. The algorithm proceeds
in N steps. For the first, third, and all other odd-numbered steps,
all pairs behave the same. But in each even-numbered step there is one
pair of nodes that are "special." In step 2, nodes N-I and N-2 are the
special pair; in step 4 it is nodes N-3 and N-4 that are special; and
in general in step 2i the special nodes are N-2i+l and N-2i. In an
even-numbered step, the left-hand node of a "special" pair sends its
number and tag to the right-hand processor as usual, but the
right-hand node sends its own number and tag on to the right, instead
of comparing and choosing the smaller number to send. After step N,
the sort will be finished.

The "unsort" operation at the beginning of signal reconstruction
(Figure 3.1), which has to place b(n) into node n for n-- 0, ..., N-1,
is well suited to a systolic array. The permuted coordinates b(P(m))
are rotated through the array together with their original subscripts
P(m); each node examines the subscripts as they come by, and when node
n sees that the subscript P(m) is cqual to its own node number, n, it
picks up the coordinate arriving with it, which is b(n). (Each node
has its own node number stored in RAM, so that this comparison can be
made.)

Speech has been processed with the systolic implementation described
here and developed by ARCON. The results are in excellent agreement
with those obtained from non-systolic implementations of CC processing
for several error metrics, at various compression ratios.

SAP Future Efforts -

This systolic implementation of the CC algorithm provided the design
parameters necessary to define a self-contained real-time systolic
architecture. For a frame size of 64, each node would require storage
for the 64 complex numbers in one row of V (or of its complex
conjugate transpose), and could require storage for an additional 64
complex numbers if the DFT coefficients are stored rather zhan being
computed. An individual node would have a repertoire of operations
more specialized to the CC application, such as a complex
multiply/accumulate operation. The sequencer would consist of
read-only memory incorporated into a systolic control module. Buffered
A/D and D/A converters would replace the disk input and output used in
the SAP implementation.

3-11

A practical rarrowband CC vocoder would operate on signal vectors of
length from 128 to 256 elements. This would require an increase in the
number of processor nodes and the memory size at each node. An
alternate solution would be to utilize the circular nature of the
array for multiple passes of the vector. In this way processor speed
can be traded off against the number of processors required. These
requirements are well within the range of current technology if a one-
chip-per-node approach is taken. Currently such a real-time
implementation might be expensive, but in the near future it would
become more practical.

3.3 CANONICAL COORDINATE CODING ALGORITHMS

Three programs were developed to assist the analyst in selecting
quantization for the speech coefficients. In addition, these programs
are vseful in assisting the analyst to zero in on the amount of speech
coefficient compression to employ in the synthesis program.

The first of these plograms, EHISTX, generates energy and silence
threchold histograms consisting of 256 bins and stores these
consecutively in an output file. After every fifty blocks of the input
file have been processed, the energy and silence histograms are
retrieved from the AP. The energy histogram is scaled by 256 and its
last bin is set equal to 256 and the two histograms are written to the
output file. This file can be displayed by ILS routines. Coding of the
program is in Fortran and VFC routines which execute on the PDP-11/44
and AP-120B, respectively.

The second program, EASTST, is a combination of CCANLI and EHISTX
except that the magnitudes, phases, and indices are not quantized and
no histograms are output. The program computes the RMS for the current
frame and if it exceeds the silence threshold it performs the analysis
of the frame; otherwise no analysis is done. This program thus outputs
speech coefficients for frames of data whose RMS exceeds that of the
silence threshold. These speech coefficients are then studied by the
last of the three programs, CCHIST. Coding of the program is in
Fortran and VFC routines which execute on the PDP-11/44 and AP-120B,
respectively.

CCHIST generates histograms of selected speech coefficients. The
analyst may generate individual, identical or sets of histograms.
These histograms are displayed at the analyst's terminal as they are
generated, printed on the line printer when a program terminates
normally, and are written to an ILS compatible data file. Coding of
the program is in Fortran and VFC routines which execute on the
PDP-11/44 and AP-120B, respectively.

3-12

3.3.1 Program EHISTX

EHISTX computes energy and silence threshold histograms from raw input
speech data. Histograms contain 256 bins each and are output after
each 50 blocks of input speech. The energy histogram is scaled by 256
and the last bin is set to 256. The format of the output file is
compatible with ILS; therefore, ILS plotting routines may be used to
display data.

EHISTX requires the analyst to provide the input file from which
energy and silence threshold histograms are to be produced. In
addition, the analyst must provide EHISTX with the name of a file
which will receive the generated histograms.

The analyst may invoke EHISTX simply by entering the command "RUN
$EHISTX". The program performs some initialization and attempts to
allocate the AP-120B. If the AP is not available the program waits.
Once the AP has been allocated a short informational message is
displayed and the analyst is asked if the input signal should be
preprocessed with pre-emphasis and/or normalization. Next the analyst
is asked to enter values of the decay and knee constants. The value of
the decay and knee constants are displayed and the analyst is then
prompted for the name of the speech data base file that is to be
analyzed. The file is opened, its header and the number of analysis
blocks available are displayed. The starting block within the input
file and the number of blocks to analyze are requested next. Should
the analyst attempt to analyze more blocks than possible, the requests
for the starting block and the number of blocks are re-issued.

The analyst is next given the option of opening a new or existing file
to receive the output and the name of the file is requested. If the
file is to be a new file, it is created with sufficient size and
opened; otherwise it is opened and the number of blocks in the file
and the number required are displayed. At this point, if there is
insufficient space in the output file, EHISTX branches back to the new
or existing file option prompt; otherwise the analyst is prom[d for
the star.ing block in the output file at which to begin storing speech

parameters. A check is performed to ensure that sufficient space
exists in the output file from the point at which data is to be
stored. If there is insufficient space the program branches back to
the new or existing file option prompt.

The analysis of the input file now begins. The program keeps the
analyst informed of its progress by displaying a status message after
every 50 blocks of data have been analyzed. When the analysis has
completed the analyst is prompted for a title that will be inserted
into the header block of the output file. The comment field from the
input file is displayed next and the analyst has the option of keeping
the comments, adding to the comments or deleting the comments and
generating comments of his/her own. The output file's header block is
displayed and the program terminates.

3-13

3.3.2 Program EAHST

Program EAHST is a combination of EHISTX and CCANLI. The purpose of
this program is to analyze only those frames of input data where the
RMS of the input signal exceeds the silence threshold. Output of this
program is processed by CCHIST which generates histograms of
analyst-selected criteria.

The analyst is required to supply EAHST with an error metric file, an
input speech data base file and output file.

The analyst may invoke EAHST simply by entering the command "RUN
$EAHST". The program performs some initialization and attempts to
allocate the AP-120B. If the AP is not available the program waits.
Once the AP has been allocated a short informational message is
displayed and the analyst is requested for the name of the error
metric file. The error metric file is opened and the header and frame
size are displayed. After a short wait, caused by the loading of the
AP with the error metric, the analyst is asked if the input signal
should be preprocessed with pre-emphasis and/or normalization. The
program then prompts for the values of the decay and knee constants to
be used in the computation of silence threshold. After displaying the
decay and knee constants the analyst is prompted for the name of the
speech data base file that is to be analyzed. The file is opened, its
header and the number of analysis blocks available are displayed. The
starting block within the input file and the number of blocks to
analyze are requested next. Should the analyst attempt to analyze more
blocks than possible, the requests for the starting block and the
number of blocks are re-issued.

The analyst is next given the option of opening a new or existing file
to receive the output and the name of the file is requested. If the
file is to be a new file, it is created with sufficient size and
opened; otherwise it is opened and the number of blocks in the file
and the number required are displayed. At thiL point, if there is
insufficient space in the output file, EAHST branches back to the new
or existing file option prompt; otherwise the analyst is prompted for
the starting block in the output file at which to begin storing speech
parameters. A check is performed to ensure that sufficient space
exists in the output file from the point at which data is to be
stored. If there is insufficient space the program branches back to
the new or existing file option prompt.

The analysis of the input file now begins. The program keeps the
analyst informed of its progress by displaying a status message after
every 50 blocks of data have been analyzed. When the analysis has
completed the analyst is prompted for a title that will be inserted
into the header block of the output file. The comment field from the
input file is displayed next and the analyst has the option of keeping
the comments, adding ro the comments or deleting the comments and
generating comments of his/her own. The output file's header block is
displayed and the program terminates.

3-14

3.3.3 Program CCHIST

CCHIST accepts as input a parameter file which has been generated by
EAHST. From this file histograms of selected coefficients may be
generated. These histograms are displayed at the terminal and written
to a print file and an ILS compatible data file as they are generated.
The maximum number of histograms that may be produced is 30. The
analyst may specify individual, identical or sets of histograms be
generated.

When identical or sets of histograms are generated, the histogram
parameters are inserted at the start of the comment field in the
header block. This information takes a maximum of 154 bytes. Any
comments added or kept by the user will be displaced by the length of
parameter comments.

The analyst may invoke CCHIST simply by entering the command "RUN
$CCHIST". The program performs some initialization and displays a
short informational message. The analyst is then prompted for the name
of the speech parameter file from which histograms of selected
coefficients will be produced. The file is opened, its header and the
number of frames available are displayed and the name of the output
file is requested. The analyst is then asked whether individual,
identical or sets of histograms are desired.

If the analyst selects individual histograms the following processing
occurs. The analyst is asked if the generation of a histogram is
desired. An answer of no terminates histogram generation. An answer of
yes results in the analyst being prompted for the type of coefficient,
the starting frame, the number of frames, the number of bins, the
minimum and maximum endpoints, the type of histogram and the element
to plot. The histogram is generated and displayed at the analyst's
terminal and the analyst is again asked if the generation of a
histogram is desired. To generate another histogram the analyst must
enter the criteria again.

Should the analyst choose to generate identical histograms CCHIST
prompts for the number of histograms to generate. Unlike generating an
individual histogram, the analyst enters the histogram criteria only
once. After the first histogram has been generated and displayed the
analyst need only enter the element number for the next histogram.
Generating sets of histograms is similar to identical histograms
except that criteria for the magnitude, phase, and index histograms
are requested. The histograms for each coefficient are generated and
displayed and the analyst is prompted for the next element to plot.

When histogram generation concludes the analyst is prompted for a
title that will be inserted into the header block of the output file.
The comment field from the input file is displayed next. If the
analyst selected identical or sets of histograms the comment field has
histogram criteria inserted at the beginning. The analyst has the
option of keeping the comments, adding to the comments or deleting the
comments and generating comments of his/her own. The output file's
header block is displayed, the print file is closed and printed and
the program terminates.

3-15

3.4 RADC/EEV LPC-10E IMPLEMENTATIONS

At the RADC/EEV Speech Laboratory, there exist two implementations,
Version 49 and Version 52, of NSA's LPC-1OE ---ech coding algorithm.
ARCON was responsible for the implementation c version 49 and its
upgrade to version 52. A VAX Fortran-77 version 52 of NSA's LPC-IOE
was made available to ARCON with the intention of porting this code to
the PDP-11/44 at the Speech Processing Facility. Since the source code
received from NSA is intended for execution on a VAX system and
incompatible for direct use on the PDP-II, ARCON needed to revise this
code. The modifications included the ability to access speech data to
and from the RADC/EEV Speech Data Base (see Section 5.2). Once the
required modifications had been made, the correctness of the PDP-11
implementation was verified by running both versions with identical
input and comparing both the listing output and synthesized speech
data output from the PDP-11 version with the outputs available from
the VAX implementation.

The user interfaces to the two implementations are similar. For the
PDP-11 implementation, the following user supplied parameters are
required:

1. Starting frame (a frame is 180 samples)
2. Number of frames to process.
3. Whether to perform analysis, synthesis, or both.
4. Listing level (Note: on the PDP-lI, listing output goes to LUN

6 which is assigned to TI: at task build time).
5. Input file (Device and UIC default to SP:[200,200]).
6. Output file (Device and UIC default to SP:[200,200]).

The user has the option of performing only analysis, only synthesis,
or both during one execution of the task. In the cases of only doing
analysis or synthesis, a representation of the bit stream data between
a transmitter and receiver is stored in a file of ASCII hex digits
with each record in the file holding 54 bits of information for one
LPC frame. Thus to do synthesis only, abit stream data file must
already exist. In the case of both analysis and synthesis being
performed, no bit stream data files are created. However, a simulation
of the encoding and decoding processes during channel transmission is
performed between the analysis and synthesis processes. The original
source code as received from NSA provides user-selectable channel bit
error generation. However the source lines supporting this option were
all commented out and we did not restore them in the PDP-11 version.
The only other option presented to the user concerns the level of
detail provided by the listing output:

Level Meaning
-1. No data file generated
0 Vary detail level by frame (not implemented on PDP-II)
1 Processing errors and statistics only
2 Coded parameters for each frame
3 Scalar variables and RC's
4 Vectors and matrices
5 Synthesis buffers
6 Analysis buffers

3-16

In the NSA VAX version of the LPC-10E code, the user specifies the
amount of input data to process in terms of a number of sentences,
rather than specifying frame numbers. Code to detect sentences is
based upon the counting of consecutive unvoiced frames and comparing
the count to a predetermined threshold. The technique seems to work
well enough with a file of DAM sentences in a quiet environment. For
applications in the Speech Lab, however, a user specified starting
frame number and the number of frames of data to process is a more
useful control scheme. This scheme is used on other utilities in the
Speech Lab such as MAPLP. The user is prompted for these two
parameters at the beginning of program execution. Note that for
LPC-10E a frame is 180 data points long while Speech Data Base blocks
a e always specified in terms of 256 word disk blocks.

3.4.1 Differences Between Version 49 And Version 52

Many of the changes to the source code in going from version 49 to
version 52 have more to do with commenting and p-.gramming practice,
as opposed to functional changes in the algorithm. (A complete
computer-generated list of differences between Version 49 and Version
52 code is contained in the file LPC52.DIF on the virtual disk LPCXE.)

The functional changes to the algorithm are:

A -An integer square root function was added to replace the standard
square root function as found in the Fortran Run-Time library. The new
function uses a successive approximation method which can take
advantage of a DSP's fast multiply capability for a real-time
implementation of the algorithm. This method eliminates prescaling and
division common to Newtonian methods.

B- An implementation error in the TBDM subroutine was fixed. The TBDM
subroutine calculates Average Magnitude Difference (AMDF) values as
required for making estimates of pitch and voicing decisions. The
"bug" was in regard to the selection of lag values set one octave up
from the initially selected lag with a minimum AMDF value. AMDF values
at the upper octave lags are also computed and a final selection as to
the AMDF minimum is then made.

C - A signal-to-noise ratio (SNR) value is computed as the running
average of the ratio of the running average full-band voiced energy to
the running average full-band unvoiced energy. The SNR is used in
attempting to optimize the voicing decision in the presence of high
noise environments which have been historically problematic for LPC
processing of speech. The voicing decision is reduced to a linear
............ function based upon a set of fixed "voicing parameters"
(e.g., zero crossing counts, ratio of AMDF wax. and min.). Finer
voiced/unvoiced discriminations are statistically possible given
knowledge of the current SNR. In this implementation, the SNR is used
to select a vector of coefficients used to form the linear
discriminant function evaluated once every half frame.

3-17

D - A check is no longer performed to monitor for the erroneous
"locking up" in the voicing state as has tended to occur within high
noise environments.

E - A new normalization subroutine was added for normalizing
calculated voicing parameters. These parameters are all represented
such that they all fit within 16-bit data structures.

F - The dynamic programming algorithm for pitch tracking was changed
such that a search for a pitch winner value at 1/3 and 1/4 of the
original best pitch estimate is made. Previously, a search was only
made at 1/2 of the original pitch estimate.

G- The pitch smoothing logic during the decoding of transmitted
parameters was corrected.

3.4.2 Porting Of LPC1OE Code To The PDP-11

Because the Speech Processing Facility does not have a full Fortran-77
implementation, special techniques were necessary to adapt the NSA
LPC-10E Version 52 code to run on the RADC/EEV PDP-II/44. This section
describes the problems found and the solutions used. With appropriate
modifications, the same approach can also be used for any future
LPC-1OE version obtained from NSA. The source files and demonstration
data files were read from a magtape on ARGON's own VAX system and were
transferred to RL02 disks for eventual transfer to the RADC PDP-11
system. The source code was successfully compiled and run on the ARGON
VAX system.

Several problems remained before this code could be run on the PDP-11
system with its Fortran IV compiler:

1. Conversion of VAX system calls into equivalent calls to the
RSX-11M executive. These calls are for functions such as
returning the current time and date and, in the case of the
VAX, dynamically allocated a Logical Unit Number (LUN) for file
I/0. Some of these functions can be simply deleted by doing
things like static allocation of LUN's at compile time as is
typical with RSX-11M application programs.

2. Conversion of CHARACTER data structures in VAX Fortran into
LOGICAL*I structures in Fortran IV and rewriting any string
manipulation sections of the code.

3. Conversion of all WHILE DO constructs into IF and GOTO
equivalences.

3-18

4. Conversion of file I/O routines into QIOLIB subroutine calls
which will allow the LPCIOE program to work with Speech Data
Base files.

5. Removing all END DO statements and replacing them with
appropriate statement labels which must also be included in the
corresponding DO statements.

6. Removing all "Include" statements and manually including the
material from the include file by using the include function
available with the EDT text editor.

A fully functional Fortran-77 compiler and run time object library
would have made this project considerably easier. (The Vax Fortran,
for which the NSA code was written, is an enhanced version of the
Fortran-77 standard.) There is a Fortran-77 compiler on the PDP-11
systems which seems to work without error. However, the appropriate
run time object modules for the compiler are not available and
therefore there are limitations on the types of operations that can be
performed program modules compiled with this compiler. Most
importantly, no run-time I/O support is available, as either the
required run time modules are not found at link time or the program is
terminated at run time with errors within the I/O modules. Thus
Fortran-77 modules that perform I/O cannot be run on the PDP-11
system.

A complete conversion of the LPC1OE code to Fortran IV is _iso
problematic in that the block structure offered by Fortran-77 would
have to be taken apart, hand-coded with GO TO statements, and
carefully tested to make sure that the hand-coded conversion is
correct. In addition, a way of dealing with 32-bit integers would have
to be devised. It should be noted that the code as compiled on the VAX
uses a default of 32-bit integers (compared to the 16-bit integers of
Fortran IV) and at some places in the code, the use of all of the
precision offered by 32-bit integers is explicitly called for.

ARCON's approach to this problem was to sort the LPC-1OE modules into
those that require the I/0 offered by Fortran IV and those that
require the 32-bit integer operations and block structure offered by
Fortran-77. The modules were appropriately linked together and
overlaid as needed. At task build time, the appropriate run-time
library is associated with the correct set of object modules. This is
ensured by placing all Fortran-77 modules in "Fortran-77 only"
overlays for which the Fortran-77 run-time library is explicitly
linked. This approach works but care must be taken regarding the
default data types for the two compilers (e.g., logicals), which is
best dealt with by explicit declaration of data types (e.g.,
logical*l). All files for this development are located on the virtual
disk LPCXE.

3-19

The task build command file LPCBLD.CMD utilizes an overlay structure
and defines a task name ... LPC. The overlay descriptive language file
LPCBLD.ODL is extensive and combines Fortran IV and 77 modules. The
task image consists of a root segment made up of Fortran IV modules
only and two large memory resident overlay segments sharing common
virtual address space. A remapping of the overlay segments occurs once
every analysis frame.

As opposed to the dynamic LUN assignment used in the VAX environment a
static LUN assignment is made for the PDP-l1 task:

LUN #1 = Speech data file input (Default SP:[200,200])
LUN #2 = Speech data file output (Default SP:[200,200])
LUN #3 = Bit stream input (Default SY:current UIC)
LUN #4 = Bit stream output (Default SY:current UIC)
LUN #5 = TI:
LUN #6 - Listing output set to TI: at Task Build.

Note that the LUN for the listing output can be changed by first
installing the task- and then using the REA (Reassign) command
available from MCR. Thus, the listing output can be directed either to
the lineprinter or to a disk device in which case a file named
LPCDATA.DAT is created. Also of note is the fact that the listing
output requires more than 80 columns per line. When the listing output
is directed to a VT100, a SET /BUF=TI:140. command and the changing of
the VTI00's SET-UP parameter concerning 80/132 COLUMNS must be
enacted.

The correctness cf the PDP-11 implementation was verified by comparing
both the listing output and synthesized speech data output from the
PDP-11 version with the outputs available from the VAX implementation.
Of course, the outputs compared were taken with common inputs to the
PDP-11 task and the VAX task: the input speech data used is in a file
provided by NSA, DAM9.SPD, which consists of 9 DAM sentences each read
by a different speaker. After some errors in the PDP-11 task were
located and corrected, the output files matched the VAX output files.
Also, a listening comparison of the synthesized data files from the
PDP-11 and VAX was done using the MAPLP utility to confirm the
integrity of the output files and compatibility with the Speech Data
Base. LPCIOE analysis of other Speech Data Base files on the PDP-11
system has also been performed successfully.

3-20

CHAPTER 4

RADC/EEV SPEECH PROCESSING FACILITY COMPUTER SYSTEM

The primary computing machine used for the generation, maintenance,
and updating of data at the RADC/EEV Speech Laboratory is the DEC
PDP-1l/44 minicomputer. It is the central facility for software
development, data storage and data analysis. It serves as the host for
all the other processors in the lab. These peripheral processors
include:

1. FPS AP-120B array processor
2. MAP-300 arithmetic processor
3. CSP-30 signal processing minicomputer
4. Spectral Dynamics digital signal analyzer system
5. NOSC Systolic Array Processor (SAP)
6. TRS-80 Model-100 microcomputer DRT data entry units (DEU's)

There are two other systems, DEC PDP-II/34s, available at RADC/EEV.
The first is located at the RADC/EEV Communicability Test Facility in
Building 1120. It hosts two MAP-300 array processors and is primarily
used for the communicability testing effort. The second is located at
the RADC/EEV Test and Evaluation Facility in Building 1124 and is used
extensively for the Digital Tape Mastering and T&E requirements of the
DoD Digital Voice Processing Consortium.

The following sections will describe in detail the current status of
hardware, system software, and program development software for each
of these systems. Changes or additions made to these systems under the
current contract will be stressed. These systems have been previously
discussed in References 9 and 10.

4.1 PDP-11/44 HARDWARE (BLDG. 1120)

The PDP-11/44 functions as the host--providing data communication and
storage facilities, and serving as the program development center--for
all other processors available in the Speech Lab. The PDP-11 runs the
RSX-IIM, operating system, a real-time, interrupt-driven, multi-user
environment which is well suited to the development of scientific
applications, and which is easily modified to accommodate a changing
hardware setup.

4-1

The PDP 11/44 hardware configuration has undergone some minor changes
during the contract period. Table 4.1 shows the current status of the
backplane of the PDP 11/44 minicomputer located in the RADC/EEV Speech
laboratory. For each Unibus module present in the 11/44 system, Table
4.1 presents the board number(s), a description, memory address(es),
interrupt vector location(s), and bus priority. Note that several of
the modules listed are not presently interfaced into the system but
are available for future use. On the other hand there are devices
which are mentioned but are not actually available at the Speech lah
(e.g., a TMII magtape controller); software device drivers were
generated for them nevertheless.

Figure 4.1 is a representation of the processors and peripheral
devices currently at the speech lab. It illustrates the common
communication path which they share--the Unibus. Figure 4.2 puts this
hardware in a physical perspective as it illustrates the location of
each device in the computer room.

Previously, the storage devices on the PDP-11/44 consisted of two 300
Mbyte disk drives, two RL02 drives (10 Mbytes each), two RL01 drives
(5 Mbytes each), and four RK05 drives. The RK05 hardware was expensive
to maintain and had been superseded by the RL01/RL02 devices for
offline data storage. The system was restructured which led to the
removal of the RK05 hardware and an obsolete paper tape punch/reader.
This resulted in a reduction of the PDP-II/44's physical size and
allowed for more convenient placement of the large CDC drives. The
second 300 Mbyte drive was previously used only for backup purposes
and as a standby in the event of a failure on the primary drive that
was used as the main "system" device. The second drive is now used for
the storage of the Speech Data Base.

Table 4.1
PDP 11/44 RSX-IIM,V3.2 Hardware

The hardware consists of a PDP 11/44 with 1024K words (16 bits each)
of MOS memory with Parity checking or an address space of 0-7640000
(octal) bytes, plus a Unibus addressing space of 8 Kbytes,
i.e.17760000-17777777(8).

BAll-AA unit, from right to left

Device Controller Function Address Vector BR
PDP 11/44 CPU

-- KD11-Z M7090 Console interface 17777560 60 4
17777566 64 -

Line clock 17777546 100
FPll-F M7093 Floating 224

Point Unit
M7094 Data Path
M7095 Control
M7097 Cache 17777744-54
M7098 Unibus interface
M8743 1 Meg. byte of memory
M8743 1 Meg. byte of memory

4-2

Table 4.1 (Continued)
PDP 11/44 RSX-lIM,V3.2 Hardware

BAIl-AA unit, from right to left(Continued)

Device Controller Function Address Vector BR
M9202 Unibus connector

SA: DR11-C M7860 SAP intf. (non-DMA) 17767770 320 4
TTI: DL11-W M7856 LA-36 via QUINTRELL 17776520 330 4

RS232-C, 300 baud 17776524 334 4
TT2: DL11-A M7800 YA Tektronix 4015-1 17775610 310 4

@20 ma, 9600 baud, 17775614 314 4
self-clocked

TT3: DL11-W M7856 ZENITH P.C. 17775620 340 4
EIA, 2400 BAUD

SA: DR11-W M8716 SAP intf. (DMA) 17772414 324 5

UNIBUS to BAll-F ====-->

BAll-F unit, from front to rear

Device Controller Function Address Vector BR
-- DR11-C M7860 16-BIT Parallel 767760 410 5

Interface
Digital data I/0 SD350

TT4: DZ11-A M7819 Speech Peripheral
Bench 760010 350 5

RS232-C, 4800 baud
TT5: " VT-l00 @ 9600 baud
TT6: VT-100 @ 9600 baud
TT7: M!00, Cmptr Rm,

@ 9600 baud
TT1O: " Modem @ 300 baud
TT11: M100, Sound Rm,

@ 9600 baud
TT12: VT-100 @ 9600 baud .
TT13: VT-100 @ 9600 baud
RLO: RLll-AK M7762 RLO2-AK drive 774400 360 5
RLI: " RL02-AK drive $I

RL2: I RL01-AK drive of

RL3: t RL01-AK drive it

MPO: HIC-11 MAP-300 Array 766004 440 7
Processor

LPO: LXYIl M7258 Printronix P300 777514 200 4
DRO: Xylogics 650 Xylogics RM05 776700 254 4

Emulation
SDO: SD13209 Modified DR1-C's for 767700 300! x
SDl: Spectral Dynamics 360 767710 300! x
SD2: (looks like four devices to the
SD3: RSX-11M operating system)

UNIBUS to FPS AP-120B >

4-3

Table 4.1 (Continued)

PDP 11/44 RSX-IIM,V3.2 Hardware

BAll-F unit, from frent to rear (Continued)

Device Cont.oller Function Address Vector BR
DDV11-C LSIll Backplane for:
DW11-B M8217 UNIBUS/QBUS Converter - -

for
IBO: IBVIl-A M7954 Instrument Bus for SD-350 760150 420/430 x

IEEE-488 Bus in/out --.-.. >

DW11-B M9401. QBUS Mirror Image - -

TEV11 M9400YB QBUS Terminator
DWII-B M9403 QBUS Connector - -

FPS AP-120B

APO: FPS #218 FPS Arith. Proc. AP-120B 776000 170 x

UNIBUS to BAII-E =-==-..>

BAll-E unit, from front to rear

Device Controller Function Address Vector BR
OMR DC11-AB M7821 Decision Inc. 6510 776500 300! -

M957,M594 Optical Mark Reader 776504 300, -
M105

DBIl-A M7248 UNIBUS repeater -

M7213,M783
M784,M785,M930A

UNIBUS to CSP-30 S/N 20 >

CSP30 1020A CSP30 to PDP 11/44 link 760020 370/374 -

M930A Passive UNIBUS
terminator - -

Special status devices

Controller not connected:

SD-13378 GPIB adapter for SD350-6,

talks to IBV11-A

Loadable driver for pseudo-devices:

VD: Virtual Disk driver

4-4

A/b

P. C.

PUP C-
it /44

r.? U CAC."V- FPS -Alb_ r7 I cx,
A,?-QOB

CAD

')7 ' &'
Ic

?L

V'r I VTiCO b/Pk

M DEM

A
/D

1"0
/00

S? -p
G PT-IB

FLOM sp"%l 10 - it %=.

a--Cn
A

Wx- I I

L-r ro r, 3001A

s , D%->K
A/r

v V_

All 'AJLO ICS
CT-P 1 0 RLII-PIK PAL

U" "/A
fkLO I (A)

0 IkLma. CD

Figure 4. 1
PDP 11/44 UNIBUS Structure

CS? 30 Am C."
-rA tr I-PPN ES/, bmwe 7,c:- RLO Io

AI

100 S F 36 6- R L 9):LU ,I I 'RL

j: u- n Z R L (4 Z-

AP-i'OB sb 3,sz

C. fl> C- C- Oc-

c S? 3cx-) 3cr-
m BYTIF- fvl,6ym

OUVE

Figure 4.2
PDP 11/44 Configuration

4-5

4.1.1 MAP-300 Arithmetic Processor

There is currently one MAP-300 Array Processor interfaced into the
PDP-11/44 system at the Speech Laboratory and is used mainly for
program development of speech algorithms discussed in Chapter 3. The
MAP-300 consists of a Central Signal Processing Unit (CSPU), an
Arithmetic Processor (AP), a Host Interface Module (HIM), and two I/0
Scrolls (ADAM and AOM). There are three separate Memories, each
capable of supporting a maximum of 256 Kbytes of MOS memory or 64
Kbytes of Bipolar Memory. The word size for this machine is 32 bits.
Each memory is served by a separate 32-bit bus and memory arbitration
logic. It is possible to have concurrent operation of all processors
with little memory contention. The MAP-300 on the PDP-11/44 system at
RADC/EEV has 128 Kbytes of 500 nanosecond memory on bus 1, 32 Kbytes
of 500 nanosecond memory on bus 2, and 20 Kbytes of 200 nanosecond
memory on bus 3.

4.1.2 AP-120B Array Processor Hardware

The Floating Point Systems AP-120B array processor at the RADC/EEV
facility uses a pipeline architecture. The (ycle time of the adder,
multiplier and memory is 167 nsec, giving a pipelined
multiply/accumulate every 167 nsec. This will allow a 1024 point
complex FFT every 4.8 msec. The 120-B uses a 38-bit floating point
format, with a 10-bit binary exponent and a 28-bit two's complement
mantissa. It has several memories, each with its own dedicated
controller: a 4K addressable word program memory with 64-bit words,
the 38-bit/word Data memory with two "data-pads" for scratch
registers, and a 38-bit/word table memory. There are 16 words of
16-bit integer scratch pad for use in transmitting address data, loop
counters and decision logic. The AP-120B was modified to include dual
channel programmable D/A - A/D ports for signal data using FPS IOP-16
interface cards and Datel D/A - A/D boards. Software was developed to
utilize these data I/O ports for vocoder research.

4.1.3 Systolic Array Processor Hardware

The Systolic Array Processor (SAP) was originally developed by
J. J. Symanski of the U. S. Naval Ocean Systems Center (NOSC) [Ref.
1.8]. This device is a programmable, reconfigurable systolic array
testbed created for the purpose of early research on the
implementation of signal processing algorithms on a lattice of
identical processors operating in parallel on data synchronously
flowing through the structure. The SAP consists of 64 processing nodes
each capable of bit-serial data communications with neighboring nodes.
The data paths for nodes on the lattice structure's boundary can be
rerouted under software control.

4-6

For control and arithmetic, each node contains a simple
microcontroller (Intel 8031) and an arithmetic processing unit (Intel
8231). The microcontroller also synchronizes data transfers and
provides command and data I/O for the SAP. One Kbyce of local RAM for
data storage is available at each node, and each node maintains a
local program store (4 Kbyte EPROM) with the SAP's central control
module globally broadcasting codes to select specific functions to be
executed within the nodes.

Upon the arrival of the SAP at the RADC Speech Laboratory in 1986,
interface hardware was designed and built to connect the SAP with the
Speech Laboratory's PDP-11/44 system. The hardware used consisted
simply of an interrupt driven DR-l1C device and a newly configured
cable. A device driver was designed to provide the I/O operations
peculiar to the SAP's 16 bit command transfers and 8 bit data
transfers. The driver is in the standard RSX format and both the
executable code and the data structures are "loadable". The source
code for this device driver and data tables, SADRV.MAC and SATAB.MAC,
are on the virtual disk SAP at [200,300]. The device logical is SA:.

The DR-11C device has a measured throughput of 75-85 microseconds per
transfer. Most all of the possible operations within the SAP can be
completed in much less time than 80 microseconds, in fact, many can be
completed in less than one microsecond. In order to reduce this SAP
idle time during its performance of some tasks, a faster alternat-ve
to this hardware/software driver configuration was needed, A DMA
version of the DR-11 (i.e,, a DR-IIW) which provides one word
transfers every 2 microseconds was selected. This resulted in a 30 to
40 times decrease in SAP/PDP interaction time.

The DR-11W was attached as a peripheral to the Unibus of the
PDP-II/44. The address and vector switches on the board were set for
772410 and 324, respectively. The hex board was inserted into a slot
of the peripherals backplane in the CPU box after the removal of the
GRANT CONT CARD from the slot. The NPG (non-processor grant) jumper
for this slot (pins CAI to CBI) was removed from the backplane.

WARNING!!

Should the DR-11W board ever be removed from the system, the
NPG jumper must be reinserted (this is true of any DMA
device). Also, a Grant Cont. Card would also be inserted
into the vacated slot.

A device driver was written for operation with the DR-IIW. The driver
for the DR-iIC provided the foundation for the new driver. The source
code files, SADRV.MAC and SATAB.MAC, for this new driver are on the
virtual disk SAP at [200,201] along with command files. The major
changes involve the control of DMA operations and the restriction of
only word (16-bit) transfers with the DR-11W as contrasted with the
byte I/O capabilities offerei by the DR-IIC.

4-7

This driver was written for a PDP-1l/44 and will not work with any
other PDP-11 not supporting extended memory (e.g., PDP 11/34). The
extended memory of the PDP-11/44 requires the translation of an 18-bit
memory address code placed on the Unibus by the DR-11W during a DMA
process into a full 22-bit value to allow access to the full memory
space available. Unibus Mapping Registers (UMR) on the PDP-11/44
provide this address translation (See PDP-11 Processor Handbook). Two
system routines are available in RSX-11 for allocating and loading
UMR's by a task--$STMAP, $MPUBM (See Appendix B of the Guide to
Writing RSX-11 Device Drivers for information of using $STMAP and
$MPUBM). The initialization of the data structures associated with the
new driver in SATAB.MAC is slightly different from those of the
DR-lIC. An additional 6 word block at the end of the STATUS CONTROL
BLOCK is allocated for storing UMR information. The Control Byte in
the UNIT CONTROL BLOCK is also initialized to indicate that the device
is a DMA device and that data buffers processed by the driver must be
word aligned.

A separate cable was constructed for interfacing the SAP to the
DR-IIW. Both versions of the SA: driver have been retained as well as
the cable for the DR-IIC. Thus the DR-11C will provide a back-up for
the DR-IIW.

Problems were encountered after the DMA cable was debugged. Sequences
of SAP commands which previously worked with the DR-11C (interrupt
driven) interface no longer worked when the commands were sent to the
SAP at a much higher transfer rate via the DMA interface. (The peak
transfer rates for the DR-11C and DR-11W are approximately 75
microseconds and 3 microseconds, respectively.) The first problem was
found with the SAP command CP ("clear processors") which does a
hardware reset of all of the microcontrollers making up the Systolic
Processing Elements (SPE's). Upon reset, each microcontroller goes
through some initialization code in preparation for receiving its
first opcode and interrupt signaling a request to perform the function
encoded in the opcode. A certain period of time is required after the
reception of CP before the SPE's are fully initialized. However, while
the SPE's are executing the initialization routine, the SAP Computer
Interface (CI) can receive, decode, and execute subsequent commands.
It was found that if commands are sent to load the SPE's with an
opcode and interrupt immediately following a CP, without first using a
delay command (DY 15), the opcodes did not get performed. This was
never a problem with the old interrupt driven interface since the
SPE's had sufficient time to initialize themselves before the first
interrupt occurred. Thus, SAP programmers are advised to always
include a DY 15 command after a CP command.

Other, similar "race conditions" were noted. Using the DMA interface,
it is necessary for the programmer to insure that delays arc included
in "FLAG CYCLE" code sequences. These sequences involve the FLAG

f which is broadcast to a "E's and which goe Lzvugh a
specific number of cycles with each cycle used to synchronize a
specific operation. For example, during an "A-Store Lateral Move"
function, four bytes of data are transferred from a SPE's local memory
to the local memory of one of its neighbors. Only one byte can be
transferred at a time using the MD command. Also, certain operations

4-8

must be performed on the data at the "boundary" SPE's such as
introducing input data to the array or collecting output data from the
array. Thus a means of synchronizing the individual byte transfers
among SPE's is required. The clearing and the resetting of the FLAG
line defines a FLAG cycle. However, when using DMA, a delay after
clearing the FLAG and after resetting the FLAG is needed to give the
microcontroller time to perform the software polling of the FLAG line.

Another example of the need for a delay between successive SA commands
is the IT WT sequence which will interrupt (IT) the SPE's and thereby
initiate a function to be performed within the individual SPE's,
whereupon then the SAP will wait (WT) until all SPE's have indicated
the completion of the function. While in the wait state, the SAP will
not request further commands from the host. Disastrous results can
ensue should certain commands be sent to the SAP before all of the
SPE's have completed their functions. When the microcontrollers are
performing functions requiring interaction with the APU chips, they
must operate with a 2 mHz. clock as opposed to the "fast" 8 mHz.
clock. While in the slow clock mode of operation, it is possible for
the WT command in an IT, WT sequence to be executed before the SPE's
can signal themselves busy. Thus the SAP does not go into the
appropriate wait state and programs do not operate as intended. Note
that this problem never occurred while using the slower,
interrupt-driven interface. One solution is to always include a DY 3
command between the IT and WT commands. (The operand of the DY command
specifies the length of delay which ranges between 16 and 256
microseconds.) A couple of disadvantages to this solution are:

1. Extra command words must be generated, stored, and transmitted
to the SAP. A significant SAP program will have thousands of
IT, DY 03, WT sequences, so adding an extra word on each
sequence will have a notable effect.

2. The delay can slow down program execution in the sense that the
function can be executed in less than the time taken by the
delay.

An alternative to the IT, DY 3, WT sequence for executing SPE
functions is to use the IW command which combines the interrupt and
wait operation into one command. However, even with the older
interface, this command did not work as expectea while the SPE's were
working in the slow clock mode. The hardware for implementing the IW
instruction was modified so that it would accurately detect the length
of time required for SPE's to perform the requested function even when
the slow clock was used. The specific change was to use the 64 kHz.,
instead of the 0.25 mHz. clock, as the clock input to the quad D
flip-flop chip at K32 in the SAP computer interface. Schematics
bhowing the current state are available in the SAP Hardware file at
the RADC/EEV Speech Laboratory. Following these hardware changes,
correct program performance was validated using the IW instruction for
initiating SPE functions.

4-9

The SAP is software reconfigurable. For vector operations it can be
configured such that data flows in a linear path through all 64
processors by starting at the top left processor (viewing the SAP from
the froat) and ending at the bottom right processor. This
configuration is set up by setting the "A Data Mux" to mode 2. The
hardware on the AB module is constructed such that the top left
processor receives input to its A register from the "Virtual A-0"
register while in mode 2. This means that a new data byte can be
pumped into the linear array from the virtual A-0 register while an
output byte is taken from the bottom right processor's A register
which feeds into the A-7 virtual register.

The Canonical Coordinate algorithm (see Chapter 3) required that
another mode of A register data flow be created. In this mode the
linear flow through all 64 processors is maintained yet the output of
the array (bottom right processor) is fed back into the input of the
array (top left processor). This mode of data flow is selected by a
value of 6 in the field of the "SA" command which selects the "A Data
Mux" input. This enhancement consists of adding inputs to the 8
multiplexers used to select the inputs to the leftmost A registers
when the "A data" is shifted right. Figure 4.3 displays the schematics
for details of the changes.

A - v i t -) -A O - 3 0 3 4 1 .4R
- (0 2

11T-3 - 321 2 1

(8-33) -P RT-7 1C34) 13 6 1" 3 4) 1 3 31

(t34) 13F2 2 15
M 41:::u

ART-1.-1K32) 2 2 11ARr-4 11W232) 2 2 S

11 I(11 W3 1

r111l 1313

i1H341 13 6 I(X34)13 16 1

5RT-2r1'32) 2 ART-6-IBB321 2 2

,3L34) 13 6 P(AA 3 4)13 61

Figure 4.3
Systolic Array Processor Modifications

4-10

4.2 PDP-11/34 HARDWARE (BLDG. 1120)

A separate PDP-1 system received at the Speech Lab from DCEC in March
1985 is now operational. An evaluation of the system following the
installation performed by DEC Field Service indicates all hardware
subsystems are functional except for one of the magtape drives (MM1:).
This drive fails diagnostics and fails attempts to write tapes using
RSX-11 utilities. The lack of this one subsystem does not impede any
of the near-term projects for which the PDP-11/34 is allocated.

This system is utilized primarily for communicability testing. Several
real-time vocoder algorithms designed for this system are now
operational and provide the basis for the communicability testing.

Figure 4.4 shows the peripherals available on this system and Table
4.2 illustrates the system configuration.

b~~l-b.7 1- 6 t

IS
3 4U 'fln5Z. O- & I1P-%W

Figure 4.4
PDP-11/34 (BLDG. 1120) UNIUS Structure

4-11

Table 4.2
PDP 11/34 (BLDG. 1120) RSX-11M,V4.0 Hardware

The hardware consists of a PDP 11/34 with 124K words (16 bits each) of
MOS memory with Parity checking or an address space of 0-757777
(octal) bytes, plus a UNIBUS addressing space of 20(octal) Kbytes,
i.e.77S0000-7777777(3).

BAll-KA unit, from right to left

Device Controller Function Address Vector BR
PDP 11/34 CPU

-- KD1l-EA M7859 Programmers Console
Console Switch

Register 777570 - -

-- FP11-A M8267 Floating Point Unit - -

M8265 Data Path
M8266 Control
M9312 Boot diags, - -

Cons'le Emulator
TTO: DL1I-W M7856 LA-36 777530 300 4

@20 ma, 300 baud
MS1-JP M7847 1 Meg. byte of MOS memory (4 16K boards)

M7847 1 Meg. byte of MOS memory (4 16K boards)
M9202 Unibus connector

MS11-Jll M7847 I Meg. byte of MOS memory (4 16K boards)
" t M7847 1 Meg. byte of MOS memory (4 16K boards)
f i M7847 1 Meg. byte of MOS memory (4 16K boards)
o I M7847 1 Meg. byte of MOS memory (4 16K boards)
" " 1M7847 1 Meg. byte of MOS memory (4 16K boards)
" " M7847 1 Meg. byte of MOS memory (4 16K boards)

TTl: DL11-W M7856 VT-52 Console 777560 60 4
TT2: D'lI-W M7856 VT-52 Console - -

M7850 Parity Controller (2 units)
M7850

UNIBUS to BAll-K>

BAll-K unit, from front to rear

Device Controller Function Address Vector BR
-- BAll-K Expansion Box with

Backplanes and
Power Supply

RH11-C M7297 RP04 Disk Drive '6700 254 5
M 7 2 9 6 it ...

M7295 ..
M5904
M5904
M5904
M9202 Unibus connector

4-12

Table 4.2 (Continued)
PDP 11/34 (BLDG. 1120) RSX-IIM,V4.0 Hardware

BAII-K unit, from right to left (Continued)

Device Controller Function Address Vector BR
MT0: RH11-C M7297 TEI6 800 bpi

Magtape Drive 772440 224 5
of. I M7296

MTI: RHII-C M7295 TE16 800 bpi
Magtape Drive

M7294
M5904
M5904
M5904
M9202 Unibus connector

MPO: G727 MAP-300 Array Processor
MPI: G727 MAP-300 Array Processor

UNIBUS to BAll-F ----.---- >

BAll-F unit, from front to rear

Device Controller Function Address Vector BR
-- DBll M7248 Bus Repeater

M7212
M7212
M7212
M784 Unibus Receiver
M9202 Unibus connector

DR11-C M7860 Interface 767770 420
DR11-C M7860 " 767760 430
VARIAN Status 42 printer/

plotter 777514 200
VARIAN it

M9202 Unibus connector
DL11-D M7800 775610 300 4
DL11-D M7800 775620 310 4
DL11-D M7800 775630 320 4
DL11-E M7800 775640 330 4

M9202 Unibus connector
DL11-D M7800 775650 340 4

M9202 Unibus connector
M9302 UNIBUS Terminator

4-13

4.2.1 MAP-300 Array Processors

The two additional MAP-300 processors are included with the PDP-1/34
system at the Communicability Test Facility in Building 1120. MAP
diagnostic programs and the required MAP loader programs can be found
on DB:[6,100].

These two MAPs primary use is in the communicability testing effort
and are similar to the RAP-300 on the 11/44 except for one difference.
The difference is that the dual MAPs have 96 Kbytes of 500 nanosecond
memory on bus 1, 32 Kbytes of 300 nanosecond memory on bus 2, and 16
Kbytes of 170 nanosecond memor" on bus 3. Therefore, the dual MAPs
have faster memory yet not as much memory as the PDP-11/44 MAP-300.

Each MAP has an audio interface unit that includes handset I/0 and
anti-alias filters. These interfaces were modified tointeract with
the Speech Lab's audio system. A cable to connect the "Modem" ports of
the two MAPs is available for transferring the digital bit stream from
one processor to the other or through a bit error simulation device.
Loop-back connectors are also available for these "Modem" ports.

4.3 PDP-11/34 HARDWARE (BLDG. 1124)

The second PDP-11/34 is located in the RADC/EEV Test and Evaluation
Facility in Building 1124 and is used primarily for the DoD Digital
Voice Processing Consortium effort. This PDP-11/34 replaced a disabled
PDP-II/20., It includes two RL02 disk drives permitting the system to
run with the full version of RSXIIM. The peripherals used with the
PDP-11/20 were retained. The devices supported by the operating system
are 1) an RL02 disk drive 2) a 9 track magtape 3) two terminals and 4)
A/D and D/A converters. Figure 4.5 and Table 4.3 are a representation
of the peripheral devices currently available with this system.

Figure 4.5
PDP-lI/34 UNIBUS Structure

4-14

Table 4.3
PDP 11/34 (BLDG. 1124) RSX-I1M,V3.2 Hardware

The hardware consists of a PDP 11/34 with 124K words (16 bits
each) of MOS memory with Parity checking or an address space
of 0-757777(8) bytes, plus a UNIBUS addressing space of 20(8)
Kbytes, i.e. 760000-777777(8).

Device Controller Function Address Vector BR
KD11-EA M8266 CPU, board 2

CPU, board I - - -

with Memory 772300.. .356 250 -
Management at 777572.. .656

FPlI M8267 Floating Point Unit - 244 -
- MR11-EA M9312 Boot diags,Console 765000 - -

Emulator
" I DLn: 773000 - -

and
- KY11-LB M7859 Programmers Console with

Console Switch Register 777570 - -

- MS11-LD M7891 MOS memory with 0-757777 - -
I (M7850) Parity Controller 772100 114 -

TTO: DL11-W M7856 VT-52 Console 777560 60 4
RS232-C

TTl: DL11-W M7856 LA-36 777530 300 4
@20 ma, 30C baud 776524 334 4

PRO: PCll M7810 Paper Tape Reader 777550 70 4
PPO: " Paper Tape Punch 777554 74 4
RLO: RL11-AK M7762 RL02-AK drive 774400 160 5
RL: " RL02-AK drive " " "

MTO: TM11 800 bpi Magtape 772520 224 5
MTI: " 800 bpi Magtape

************** Devices available without Drivers****************
KWII-K PROG. CLOCK 170404 444 -

AD11-K A/D CONVERTER 170400 340
AAII-K D/A CONVERTER 170416 360

4-15

4.4 PDP 11/44 SYSTEM SOFTWARE (BLDG. 1120)

4.4.1 PDP ii/44 Sysgen

A new Sysgen for the PDP 11/44 was carried out due to a depletion of
dynamic pool (DP) space. The DP is a segment of physical memory
reserved for use by the operating system for maintaining dynamic data
structures (e.g., file control blocks, task control blocks) and for
buffering data during I/O (.e.g., terminal input characters). A
listing of the usages of DP -kn be found on 5-29 of the RSX-11 Sysgen
Manual. The operating system is responsible for managing this resource
and allocates blocks of memory in the DP on a "first-fit" basis. The
size of the DP memory region is limited by the virtual address space
available to the executive task. When the operating system is
assembled with VMR following the sysgen process, the DP space is
allocated. In the case of the currently used system, the maximum
amount of pool space available was requested. It does follow that if
the size of the executive built during the sysgen process was reduced,
more DP space would be available. Therefore, several steps were taken
to alleviate this problem by removing unnecessary zequests for DP. The
new sysgen decreased the size of the executive and therefore provided
for increased DP. The changes in the operating system produced by th.s
new sysgen are:

1. No resident DK:(RK05), PP:, PR:(paper punch), CR:(card reader),
or MT:(magtape) device drivers were created. These devices were
either removed from the system since the last sysgen or were
never included in the actual physical system. It should be
noted that if any one of these devices is needed in the future,
a loadable device driver can be included into the operating
system without going through a complete sysgen.

2. No ANSI magtape support is available.

3. No on-line formatting or diagnostics are available. The only
formatting needed on the system is for the 300 Mbyte disks
which have always been done off-line with the custom formatter
provided by Xylogics.

4. No crash-dump analysis. However the XDT execitive debugger will
continue to be executed on system crashes.

All custom device drivers (e.g., AP:, SD:, VD:, MP:) were rebuilt for
the new executive along with the custom BYE task. The new executive
file and system task files were replaced on the 300 Mbyte system disk.
The virtual disk used for the sysgen was copied back onto the SYSGEN
virtual disk on the old 11/34 system disk pack.

4-16

A gain of approximately 800 words of DP was realized following all of
these procedures. This should meet the demands placed on the PDP 11/44
system for the near future. The next course of action, should demands
exceed the available DP resource, is to generate a version 4.x of the
RSX-11M operating system which has provided a means of significantly
reducing the virtual address demands of the executive task and
consequently provides more DP space.

4.4.2 Data Transfers

Interactions between the PDP-11/44 and certain non-Unibus devices have
been provided by ARCON. A program called UPLOAD was written to upload
text files from the Zenith PC to the PDP-Ii. This utility can be used
to transfer the DRT data received from Dynastat on MS-DOS formatted
5-1/4" floppy disks. More generally, it will transfer any MS-DOS ASCII
files and store the information in FILES-Il format on any of the disks
available on the PDP-11 system. The terminpl emulation program, ZSTEM,
on the PC provides the access to the floppy disk data and directs the
upload activity on the PC's serial interface port tied to the PDP-II.
Having this capability allows an analyst to transfer data between
systems easier.At times it has been necessary to transfer data between
the PDP-11/34 and the PDP-11/44 or between the PDP-11/44 and the ARCON
VAX/VMS system. A route for the interconnection of the PDP-11/34 to
the PDP-11/44 consists of using the RL02 disk drives on the PDP-11/44
and the magtape on the PDP-II/34. The conversion from one medium to
the other (RL02 <-> Magtape) is provided by the third PDP-11 at
RADC/EEV which has both of these devices. All data can be formatted as
Files-ll since all machines involved run under the RSX-11M operating
system. As for the interconnection between the PDP-11/44 and the VAX,
they both have an RL02 disk drive and the VAX has the software
capability of transforming FILES-11 formdt to fit its systems needs.

Another set of routines were written to provide serial communication
between the PDP-11 and another compucer. The Fortran programs PC2PDP
("PC to PDP"), PDP2PC ("PDP to PC"), and XMODEM are all
XMODEM-protocol file transfer programs. They offer the option of
binary transfer, and for ASCII files they allow the user to dis-
tinguish between PDP-11 files (such as Fortran source) that rely on
implicit CR/LF characters between records, and PDP-I1. files (such as
Runoff output) that contain all their carriage control characters
explicitly. [These programs do NOT perform conversion to or from
Fortran column-I carriage control format.] All source code, command
files and a documentation fi]e for these routines are located on the
REPT88 virtual disk. The assembly language package TTIN does the
PDP-II's input during file transfer, storing received characters in a
circular buffer that is currently 512 characters long.

It must be noted that at high speeds (9600 bits per second or so),
file :ransfers from the PC to the PDP-11 may fail if other users are
on the PDP-II. But failed transfers will be detected as such, and can
be retried later. This problem can be solved by running PC2PDP at a
priority of 71 decimal (107 octal) or higher, but then other users
will experience a gross degradation of throughput.

4-17

4.4.3 User Enhancements

The STARTUP.CMD file has had minor modifications and is now fully
documented to ease future modifications. This new file is found on
DR:(1,2].

The HELP utility has been used to provide a new user with an
understanding of the programs and data bases available on the system.
New help files provide information on special login accounts, the
contents of virtual disks, and the system backup procedures. All help
files are on DR:[I,2].

The help file HELPVDK.HLP will assist users of the PDP-11/44 in the
location of source code. It can be accessed simply by entering HELP
VDISKS at a terminal. A list of the available virtual disks, how to
access them, whether they are backed up, what type they are, and what
each of them contains will scroll on the terminal screen.

The help file HELPACN.HLP will list the currently active system,
backup, and research and development accounts on the system. It can be
accessed by typing HELP ACCOUNTS at a terminal. Specialized research
accounts along with utility accounts for system shutdown, backup
procedures, device setups and initialization will be listed.

A unified backup procedure was developed to protect the various
virtual disks and data bases. The help file HELPBKU.HLP will assist
the user in backing up the appropriate disks. A user can obtain this
listing by entering HELP BKU at any terminal.

All virtual disks have been indexed through the use of READ.ME files
on each disk. These files will be as current as their creation date
and should provide the uninitiated with a basic understanding of the
UIC and file contents of the disk.

4.5 PDP 1134 SYSTEM SOFTWARE (BLDG. 1120)

The new PDP-11/34 runs an RSX-lIM version 4.0 operating system. One
distinctive difference between the version 3.2 RSX-11M operating
system and the version 4.0 system, is the ability to use command line
interpreters (CLI) other than just MCR. DCL is the other popular CLI
available on RSX-11M version 4.0 and many of the login command files
on the system assign DCL as the default CLI. The user can go from one
CLI to the other with simple terminal commands.

Some of the system software provided with the DCEC system on the
PDP-11/34 was explored. It was discovered that a half-duplex terminal
driver was generated for this RSX-11M executive. The EDT editor can
not be operated in Keypad mode with a half-duplex terminal driver. The
FrUErd -77 C0uIIpiltr oM Lhe system was also tested. An unresolved

problem was encountered at Task Build time in that the required object
modules called by the Fortran-77 modules could not be located even
when the F77.OLB library was explicitly indicated in the TSK command
input. Complete documentation for the Fortran-77 compiler has not been
located.

4-18

Speech algorithms such as LPC-I0, CVSD, APCSQ, along with others are
readily available for use with the MAPS on thc. 11/34 system. A command
file for executing the speech algorithms on the MAPS can be found at
DB:[6,100]MPSPEAK.CMD. These algorithms were tested and execute as
expected.

For easy access to these speech algorithms, a user can simply log in
on the PDP 11/34 under the account SPEECH/RUN. The user will be
prompted for a MAP-300 designator (A or C), shown a list of the
algorithms available, and asked to enter the algorithm name the
analyst wishes ti execute.

4.6 PDP 11/34 SYSTEM SOFTWARE (BLDG. 1124)

Currently, the dedicated application for the PDP-11/34 is the
collection of EPL and Speech/Noise ratio data from DRT source tapes
[Ref. 9] and a digital bit stream eiror generation task (BER). The EPL
software was revised such that the program no longer needs to be run
in the absence of an operating system (i.e. stand alone), but is able
to execute as a RSX-11M task. The BER task simulates transmission
channel error conditions modeled on magtape and utilizes the PDP-II's
D/A capability to output TTL level bit streams [Ref. 9]. This software
was also modified to operate under RSX-IIM.

4.7 SYSTOLIC ARRAY PROCESSOR PROGRAM DEVELOPMENT SOFTWARE

The SAP is not a stand-alone computing system as it requires streams
of externally generated commands and data in order to do meaningful
work. The PDP-lI/44 serves as a host for the SAP and its Program
Development Software. The host must operate both as a control store
and sequencer, and as a file server and data formatter. Communications
between the host and the SAP is by way of two unidirectional busses
with a maximum transfer rate providing a command to the SAP
approximately every 3 microseconds. In using a minicomputer as a
sequencer, command transfer speed is sacrificed for the flexibility
offered by an environment wherein program changes can be easily and
quickly made. The minicomputer as filR server provides the SAP with
access to large segments of speech data stored on disk and also
provides storage for data produced during the algorithm's execution.

Software was.developed on the minicomputer to provide SAP programming
and "execution" capabilities Both an interpreter and a compiler were
developed. Command and data transfers with the SAP and host directives
are enacted as the interpreter analyzes an input source file. The
compiler generates a binary object file encoding the stream of SAP
commands and host directives to be actually executed at some later
time.

4-19

Interacting with the SAP via the interpreter provides a means of
quickly debugging small routines; on the other hand, the execution of
compiled code provides significant execution speed advantages. A SAP
execution or executive program is available which reads a specified
object file, scans the commands and host directives encoded in the
file, performs the requested host directives, transmits blocks of SAP
commands to the SAP, and performs data I/0 between the SAP and the
host.

The instruction set for the SAP consists of the basic 32 instructions
recognized by the SAP's interface and control module (e.g., MD for
move data on previously selected inter-nodal path), and eight
directives for operations to be performed by the host (e.g., GB for
get a block of data from a previously opened file). Symbolic
variables, assignment statements, expression evaluation, and looping
constructs are all available in the SAP's programming language. The
source code input to the interpreter and compiler tends to be very
cryptic and redundant. It is difficult to convey the logical steps of
an algorithm with just the SAP source code mnemonics. A macro
pr - ocessor was developed in response to this problem. A "library" of
commonly used higher level operations can be created by macro
definitions and included into a user's program as needed.

The interactions of the various SAP program development tools are
shown in Figure 4.6. Their specifics will be addressed in the
following sections. Program source code, task build and overlay
command files, program instructional files for the various routines
resides on the virtual disk SAP along with and a complete set of
development memoranda (SAPMEMO.RNO). The program tasks are located on
the system disk DR: at UIC [1,54] and are installed.

Figure 4.6

SAP Program Development Software

4-20

4.7.1 SAP Microcode Interpreter - SAI

A microcode interpreter (SAI) based on NOSC software was developed to
provide a means of quickly debugging small roucincs. The SAP
interpreter prompts the user for the input source file of SAP command
mnemonics and their operands as well as additional commands specified
to perform operations in the host program such as disk I/0 and
terminal display and then proceeds in converting these commands to
their binary counterparts and sending them to the SAP in the requested
sequence. The commands currently available bosides the basic 32 SAP
commands are:

1. FO--opens a disk file specified by name for either input or
output.

2. FC--closes a specified open disk file.
3. GB--gets a block of data from specified disk file.
4. PB--puts a block of data into a disk file.
5. CO--converts either PDP integer or floaling point data array

into a separate array of Intel floating point values (4 byte
each), or performs the opposite conversion from Intel format to
the PDP format.

6. DO--begins a "DO LOOP" for multiple iterations of the same
block of commands

7. EN--delimits end of "DO LOOP".
8. ST--delimits end of source file

The parameters for the commands can be represented as symbols and
expressions formed by symbols alo-g with the operators +,-,/,9, and
parentheses. Also hexadecimal constants can be specified for thbse
parameters which is useful since much of the original documentation
for the SAP instructions from NOSC refer to these parameters in
hexadecimal notation. Assignment of values to symbols is accomplished
by a standard assignment operation denoted t-y A summary of the
featu- if SAI are:

1. Use of symbols to identify variables to which i'teger values
can be assigned using an assign statement. (Curren'ly room in
symbol table for 20 symbols).

2. Use of expressions for assignment values and for some of the
parameters for the SAP commands and the host directives.

3. Use of decimal or hexadecLal constants.
4. Up to 4 levels of DO-LOOP nesting.
5. Two data "channels" between disk files and the 1024 byte RAM

buffer in the SAP (the SAP BUFFER). Each channel can be
associated with a distinct disk file. Data conversion between
PDP-11 integer or floating point format and Intel floating
point format is performed in the channels. The "scattering" of
data bytes for the Intel floating point values is also
performed to allow loading of data into processing elements of
the SAP in linear, row/column, or matrix format. An inverse
process of "gathering" the data read back from the SAP is also
available.

6. Literal string data delimited by double quotation marks are
displayed on the terminal at run time.

4-21

The syntax for all of the commands and host directives used by the SAI
program are documented in the in:cructional file SAIUSE.DOC. A file
SAIDOC.DOC gives software details of the SAI program.

4.7.2 SAP Progiam r*mpiler And Executive - SAC & SAXM

As anti-ipated, the SAI program which must translate each SAP command
before o~nding it to che SAP for execution results in very inefficient
u!e of the array of processors in the sense that the SAP must spend a
gzeat deal of time waiting for the PDP-11 to translate and transmit
i:,struc-P-ns. However the SAI interpreter does provide a means of
easily changing a SAP program under development as this involves
editing the SAP source file with EDT. Once the SAP algorithm has been
debugged and is ready to run using a large stream of data (speech data
for instance), then a fascer means of feeding instructions and data to
the SAP is needed than cai, be provided by the SAI utility.

Since the execution of compiled code provides significant execution
speed advar:ages, a comp.Ler was written, SAC, which translates the
same set of SAP command mnemonics and host directives (e.g., open a
data file, read a block from a data file) as does SAL. SAC, however,
stores the translated binary information in a disk file instead of
sending it to the SAP for execution. Parameteis associated with host
directives are also placed in the binary file. Differentiation of host
directives and SAP commands is facilitated by having all host
directives coded as negative values (all information in the file is
stored in 16-bit word units) while none of the SAP commands are ever
coded as negative values.

The user of SAC is only required to provide a source file of SAP
commands in the same format as used by SAI and an output SAP object
file. A file naming convention to use might be .SAP extensions for
source files and .SOB for object files.

The execution of SAP object files created by SAC is performed by "SAP
execution" program SAXM. This program reads a specified .SOB file,
scans the commands and directives coded in this data stream, performs
the requested host directives, transmits blocks of SAP commands to the
SAP, and performs data I/O between the SAP and the host.

Refinements to the SAC and SAXM programs were made as experience was
gained by actually trying to piogram the SAP. The command stream to
the SAP tends to be very repetitious with the same 10 to 15 command
segments being sent multiple times. Also signal processing algorithms
applied to real-time signals as found in speech research also tend to
be redundant with each block of input data processed with the exact
same set of commands as all the previous blocks. Thus a DO-LOOP
construct has been included with the SAP programming tools to provide
multiple iterations of the commands and directives found within the
body of the DO-LOOP reserved words "DO" and "EN". Actually, two
variations of the DO-LOOP constructs have evolved. An invariant
DO-LOOP can be specified by the programmer with the "DO/I" command in
the source file while a DO-LOOP which contains command parameters
which change from one iteration of the loop to the next is specified

4-22

simply as "DO". The manner in which these two variations of the
DO-LOOP are processed by the SAC and SAXM programs differ
significantly and the way in which a programmer uses them will greatly
affect the execution speed of the algorithm.

A simple "DO" loop is expanded by the SAC program such that multiple
copies of the commands within the loop are included with the .SOB
object file. The commands from one iteration of the loop to the next
may not exactly match those of other iterations. It is obvious that
the length of code generated is a function of the number of
instructions within the DO-LOOP and the number of specified iterations
of the loop. If the code within the DO-LOOP body is invariant from one
iteration to the next, then only one copy of this command stream is
needed along with a parameter indicating the number of iterations of
the loop requested. A large reduction in the size of the .SOB file is
made possible by the use of DO/! when the desired loop is invariant.

Another, perhaps more important advantage is offered by the
discrimination of invariant and variant DO-LOOPS. The transfer of SAP
commands from the PDP-11 can be substantially increased if it is known
that a finite set of instructions is to be sent to the SAP over and
over again. Instead of having to read multiple iterations of the same
commands and directives from a disk file, the copy of the loop's
commands and directives can be buffered into RAM on the first pass
through the loop with all further iterations requiring no more disk
I/0 which is very slow compared to accessing all of the required data
in RAM.

In anticipation of the need to write speech processing algorithms
which will require several thousand SAP commands (all contained
perhaps in one "outer" DO-LOOP) to process one block of speech data,
the RAM resources offered by the upper 1 Megabyte of the PDP-1.1/44's
memory have been tapped. The most recent version of SAXM has the
capability to map this memory region as needed to store up to 512 K
SAP instructions and to transfer these commands from PDP-11 RAM to the
SAP interface at almost maximal rates.

4.7.3 SAP Macro Preprocessor - PREP

The SAP source code written for input to the SAI and SAC interpreter
and compiler tends to be very cryptic, and redundant. It is difficult
to convey the logical steps in an algorithm with the symbols used for
the SAP compiler. It was aucided that a more efficient programming
environment could be create.." by the introduction of a Macro
preprocessor in which many instructions making up one logical
operation in a SAP program 'an be represented by a single cr very few
symbol(s). A "library" of commonly used operations can be created by
these Macro definitions and included into a user's program as needed.

4-23

The Macro preprocessor was developed and is available for writing
source code for the SAP interpreter (SAI) and compiler (SAC). User
instructions are available in the file PREP.DOC.

An input file to the preprocessor includes the SAP commands and host
directives mnemonics normally provided to SAI and SAC, as well as
direc-ives to the preprocessor for declaring macro definitions,
specifying include files, and defining conditional macro expansions.
The macro preprocessor's directives are:

.MAC --macro definition
syntax: .MAC macroname (....... macro (_ Zinition
example: .MAC APU (SS 03, LA %1, SS 01, MS, SL, IT, WT, FS)
NOTES: 1) A "%n", where n is a number between 1 and 10,

denotes an argument reference to be provided
when the macro is actually called. A leading
space is required before the "%" character
unless it is the first character in a line.

2) Carriage return/linefeeds within the macro
definition are retained and included in the
macro's expansion.

3) Macro definitions cannot be nested within other
definitions although calls to previously
defined macros within a definition is permitted.
Limit the nesting of macro calls to 10 levels.

.IF --conditional macro definition
syntax: .MAC macroname (.if %n = xxx (.... conditional

definition)
example: .MAC DOIT (SS 03, LA %2, SS 01,MS,

.IF %l - FAST {IT,WT)

.IF %l - SLOW (SL,IT,WT,FS) }
NOTES: 1) Only "equal to" conditional operations are

alltwed with the left side of the operator always
being an argument reference and the right side
being a string constant.

2) Text wiLhin the "()" following the conditional
statement are included upon expansion only
if the supplied argument to the macro call
matches the string constant. Otherwise
the material is excluded upon expansion.

.INC --include file directive
syntax: .INC filename
example: .INC MACRODEFS.SAM
NOTES: 1) The specified file is open for input and the

preprocessing continues using the source
code within the include file. Upon reaching
the end of the include file, the preprocessing
resumes in the original source file at the
statement following the .INC directive.

2) Nesting of .INC directives in include files
is not permitted.

4-24

MACRO CALLS
syntax: macroname (argl,arg2 ,arglO)
example: DOlT (FAST,OCH)
NOTES: 1) Expansion of the previously defined macro

begins. If the specified macro has not been
previously defined, the macroname and
argument list will be copied to the
output file.

2) Null arguments can be specified by ",,"
Leading spaces in argument strings are not
stripped out.

3) iirguments can consist of macronames and
argument references.

4.7.4 Further Modifications

In an attempt to meet the programming needs for the Canonical
Coordinate (CC) project, the SAXM (execution) and SAI (interpreter)
programs include the following capabilities:

1. The source input file for the SAY'i or SAI program can be
included in the MCR command line used to invoke the task. Thus,
indirect command files can be developed for controlling the
sequential execution of "SAP programs".

2, Upon the detection of End-of-File (EOF) during a read operation
from a data file, all open data files are closed and the task
is terminated.

3. Upon the detection of EOF during a write operation to a data
file, a subroutine (EXTEND) is called to request an extension
of the file by 50 blocks. The write operation is attempted a
second time after a successful extension.

The macro preprocessor (PREP) and compiler (SAC) tasks also accept
file specifications in the MCR command line invoking them. The
specification's syntax is "output file - input file". (Note, RSX-I1
tasks must be installed with ... XXX task names in order to access the
command line buffer via the GETMCR system directive.)

4-25

CHAPTER 5

COMPUTER DATA BASES AND ANALYSIS TOOLS

5.1 INTRODUCTION

The data at RADC/EEV has developed over several years and includes
every thing from DRT results to samples of processed speech. It has
been organized into several data bases which include:

1. Speech Data Base
2. DRT Raw Data Base
3. DRT Analysis Data Base
4. Raw & Processed Acoustic Noise Data Base
5. Annotated Graphics Package (AGP) Noise Data Base
6. Error Metric Data Base

ARCON was responsible for incorporating two large format disk pack
random access devices into the EEV facility. This extensive random
access memory allowed for the design of a general speech data base
(DB) accessible by all processors. The first device, DRO:, is used as
the System default disk and for the storage of most pseudo disks. The
second device, DRI:SPEECH, is used for this general speech data base
and has the pseudo device name SP:. ARCON has designed, developed and
installed this Speech Data Base at the RADC Speech Processing
Facility. This DB allows A/D and D/A real time I/O to files from all
processors that have this capability. In additice1 and of primary
....eortance, raw data files can be downloaded to any procer or for
analysis. The resulting processed data files can be directly)mpared
with processed files from any other device/algorithm analysis
operation within the system. A major advantage in the use of DB file
data for comparison is an exact start point in the data frame for any
analysis. The header file attached to all DB files contains the
information required to trace the processing that has been
accomplished.

Data base management software has been developed by ARCON to locate
and sort DB files based on the header information. Speech Data Base
files can contain either fixed point or floating point data. The
speech DB has been matched to commercial ILS software installed by
ARCON. The ILS package can be used for the analysis and display of
fixed- point Speech Data Base files. An ARCON Speech Data Plot Package
can handle 7ixed or floated files and allows numerous options for file
comparisons.

5-1

The DRT data consists of a collection of unscored DRT system files
(XXXX.ZFY's) representing individual listener responses and the DRT
Analysis Data Base. An extensive set of comparative analysis routines
has developed over several years along with utility routines for
management of and searching threugh these data bases. Current status
of the data base structures, data collectior test scoring and utility
software can be found in the recent ARCON re-,o't "RADC/EEV Diagnostic
Rhyme Test System Improvements" [Ref. 11],

Acoustic background noise data has been collected in two ways. Raw
noise data has been digitized at set sampling rates and is available
for a large number of environments in files of ;he Speech DB format.
The Spectral Dynamics SD360 dual channel processor has the ability to
collect and analyze data under computer control with AGP software
operating on the PDP-I1/44 Noise data collected in this manner is
available in the AGP data base which has been discussed in detail in
Reference 9.

Canonical coordinate research has resulted in a lazge collection of
error metric files. These files are used by thc CC analysis and/or
synthesis routines for processing speech. They are scored in floating
point Speech DB format but have a size and structure uniquely their
own. A 3-D display version of these files makes up a subset of this
data base.

The previous DB descriptions are an indicator of the many types of
data used in speech/noise research. Tools for the management,
searching, sorting, display, and analysis of these DB's provide for
the full utilization of the data.

5.2 RADC/EEV COMPUTER DATA BASES

5.2.1 Speech Data Base

ARCON Corporation has designed, developed and implemented a speech
data base for use at the RADC/EEV Speech Processing Facility. This
data base, along with accompanying software, enables users to store
and manipulate data from any of the various processors at the Speech
Lab. Details on the development of the Speech DB can be found in
References 9 and 10.

The Speech Data Base is designed such that all data is stored in files
of a standard format. These files are arranged on a "public" (i.e.,
available to all system users) disk, and can be accessed through
calls from user-written programs to a standard subroutine library
(QIOLIB). Data is stored in direct access, block I/O files, in either
16-bit integer or 32-bit floating point formats. Block I/O, in which
512-byte segments of data are read or written at one time, is the
fastest and most efficient method of file access. It is well suited to
our applications, in which disk I/O can be the rate-limiting factor in
real-time processing.

5-2

All speech data base files are created and manipulated by the standard
routines from QIOLIB. Each file has a one-block (512 bytes) header
record which defines its content. This header record enables the users
to label data files with such information as: whether the data is raw
(i.e., stra.ght A/D, no processing) or processed; type of internal
format; whether it is real or complex; source processor; processing
algorithm used; creation date; title; and any comments. Table 5.1
shows the format of these header records. This header format has been
slightly altered to be congruent with the data file format of ILS (see
the accompanying section on ILS).The 16-bit integer format is the
same as the ILS "sampled data file" format; however, there is no
provision in ILS for a floating point sample data file.

The Speech Data Base resides on one of the CDC 300 Mbyte disk drives
and is assigned the global pseudo-device name SP: which is declared a
"public" device when the operating system is brought up. The QIOLIB
routines which open and/or create new files use SP:[200,200] as the
default device and directory unless the user specifies otherwise.
Therefore, all files referred to by name only are assumed to be
located on the Speech Data Base disk. However,if for testing purposes
the user wishes to locate files on other volumes or at other UIC's,
simply specifying the volume explicitly will cause the file to be
accessed there.

The Speech data base format has been used for the organization of data
other than speech. The DB can be considered to contain subsets of
information. The major subset is speech material aid is referred to as
"the Speech DB". The remaining subsets are the Digital Acoustic Noise
TB and the Error Metric DB.

Table 5.1
FILE HEADER BLOCK FORMAT SPEECH DB AND ILS DATA FILES (SEPT 1988)

Variable types: A - ASCII, F - Fl. Pt., I - Integer, R - RAD50
Lengths given in words. '*' indicates speech data base variable.,

NAME START LENGTH TYPE CONTENTS
N (IFRAME*) 1 1 I NUMBER OF POINTS PER ANAL. WINDOW
M 2 1 1 NUMBER OF AUTOREGRESSIVE COEFFS.
ICON 3 1 I PREEMPHASIS CONSTANT (0-100)
NSHFT 4 1 I SHIFT INTERVAL PER DATA FRAME
IHAM 5 1 I HAMMING WINDOW ('Y' OR 'N')
NSPBK (NBLKS*) 6 1 I # BLOCKS IN FILE (NOT INCL HDR)
NP 7 1 I NUMBER OF RESONANCE PEAKS
ISTAN 8 1 I STARTING FRAME FOR ANALYSIS
NAN 9 1 I NUMBER OF FRAMES ANALYZED
NFR 10 1 I # OF VAR. SIZED FRAMES ANALYZED (PAN)
MU 11 1 I # OF AUTOREGRESSIVE COEFFS. (PAN)

T 12 1 I DOWN-SAMPLING FACTOR

5-3

Table 5.1 (Continued)
FILE HEADER BLOCK FORMAT SPEECH DB AND ILS DATA FILES (SEPT 1988)

NAME START LENGTH TYPE CONTENTS
IFLD(l) 13 1 A FIELD 1 - 2 ALPHABETICS
IFLD(2) 14 1 A FIELD 2 - 2 ALPHABETICS
IFLD(3) 15 1 A FIELD 3 - 2 ALPHABETICS
IFLD(4) 16 1 A FIELD 4 - 2 ALPHABETICS
NSC 17 1 I STARTING SECTOR FOR ANALYSIS
IAFIX 18 1 I FLAG FOR AUTOREGRESSIVE COEFF. (PAN)
IDK 19 1 I DISK # OF DATA FILE ANALYZED
NFL 20 1 I FILE #" " "1 "t

ID (1) 23 1 A IDENTIFICATION 2 ALPHABETICS
ID (2) 24 1 A IDENTIFICATION - 2 ALPHABETICS
ID (3) 25 1 A IDENTIFICATION - 2 ALPHABETICS
ID (4) 26 1 A IDENTIFICATION - 2 ALPHABETICS
ID (5) 27 1 I IDENTIFICATION - NUMERIC
NASC 28 1 I NEXT AVAILABLE SECTOR (TTL)
NAPT 29 1 I NEXT AVAILABLE POINT (TTL)
NZERO 30 1 I NUMBER OF ZEROS (TTL)
FLAG 31 1 I =< 1111 IF SECONDARY FILE INITIALIZED (TTL)
ITYPE* 32 1 I DATA TYPE: RAW - 0, PROCESSED -1
IFRMAT* 33 1 I DATA FORMAT: FLT PT =0, INTGR =1
IRLCX* 34 1 I DATA FORMAT: REAL -0, CMPLX =1
IDEV* 35 1 I SOURCE PROCESSOR (INTGR CODES)
ENGPW* 36 2 F ENERGY/POWER
SGNOI* 38 2 F SIGNAL/NOISE RATIO
RAWFIL* 40 5 SOURCE RAW FILE NAME - FORMAT:

IRFLNM(3)* R 3 WDS. - RAD5O FILE NAME
IRFLEX* R I WD. - RAD50 EXTENSION
IRFLVR* I 1 WD. - INTEGER VERSION #

IALG* 45 1 I COMPRESS. ALGORITHM (INTGR CODES)
ISNCOM* 46 1 I SYNTHESIZED - 0, COMPRESSED = 1
IWINDW* 47 1 I WINDOW FUNCTS. USED (INTGR CODES)
IHFLT* 48 1 I FILTER - HI LIMIT
ILFLT* 49 1 i FILTER - LO LIMIT
BLANK 50 7 - UNUSED
ICHAN 58 1 I STARTING A/D CHANNEL
NCHAN 59 1 I NUMBER OF CHANNELS
MULAW 60 1 I SET TO 50 IF 8-BIT LOG QUANT. (REC)
IPWR* 61 1 I SAMPLING FREQ. =
IFRQ* 62 1 I IFRQ * (1O**IPWR)
FLAG 63 1 I ILS FILE TYPE

-32000 = ILS SAMPLED DATA FILE
-30000 = ILS RECORD DATA
-29000 = ILS ANALYSIS DATA
-31000 = FLOATING POINT AND NOT ILS

XXXXX 64 1 I = 32149 INITIALIZED ILS SAMPLE DATA FILE
NSIZ1* 65 1 I NUMBER OF SAMPLES =
NSIZ2* 66 1 I NSIZ2 + (NSIZI*32767)
MAXCUR* 67 1 I CURRENT MAXIMUM AMPLITUDL
MAXORG* 68 1 I ORIGINAL MAXIMUM AMPLITUDE
DATE* 100 5 A CREATE DATE - (DD-MMM-YY)
TITLE* 105 10 A DESCRIPTIVE TITLE - 20 CHARS MAX
COMMNT* 115 142 A COMMENTS - 282 CHARACTERS MAX

5-4

Digitai Acoustic Noise Data Base

This DB contains digitized samples of noise recorded from various
operational platforms under numerous configurations. The files can be
raw 8 kHz. bandwidth signals, filtered versions, LPC processed
versions, processor residuals, etc. The one unifying factor is that
all members of the DB can be traced back to a raw noise samcple in the
DB. Its structure is similar to the Speech Data Base in that it
contains a one-block header record to indicate the format and origin
of its content. These noise files reside on the device SP: under the
directory UIC [200,230] and are used in conjunction with the speech
files for the study of different effects of noise on speech.

This DB contains various versions of the acoustic noise data. These
include various types of raw input data, compressed versions of the
data and synthesized data. A brief description of these file types and
their identifying file extensions are given in the following list.

1. Input Data
1. .NOI - Raw Data Files Sampled at 16 kHz.
2. .FLT - Downsampled and filtered .NOI files (8 kHz.)
3. .BBN - Special extended noise data files

2. Compressed Data
1. .ANA - ILS LPC Parameter files
2. .RES - ILS LPC Residual files

3. Synthesized Data
1. .LPC - LPC-10E V52 Synthesized data
2. .ILS - ILS LPC Synthesized data

3. .CCX - Canonical Coordinate Synthesized data

All of the Speech DB I/O routines are usable with signal files in the
Acoustic Noise DB. Special care has to be taken by the analyst when he
adds new raw data files (.NOI) to this DB. All noise samples within
the data base are assumed to have been sampled at 16 kHz. with 8 kHz.
anti-alias filtering being provided by the RADC/EEV Precision Filter
Set. This facilitates comparisons between noise platforms. The 8 kHz.
bandwidth was chosen to be meaningful for speech research and still be
able to identify important high frequency audio components of the
noise. A downsampled version of the .NOI data has been 6enerated for
use with analysis tools that expect a 4 kHz. bandwidth. These files
have been generated using the ILS routines FLT with an anti-alias
filter designed with the ILS filter routine EFI. The command strings
used and a plot of the filter characteristics are given in Figure 5.1.

5-5

(DB)

100

90

EF! a 2z-ee Iffe 0 80
,LOU PASS ELITIC ILTEP e.oo W RIPPLr
PASS BAND EDGE 400e.000 HZ

STOP BAND EDGE 4214.332 HZ

THETA- 66.8073 4 RHO. 0.21215 , -49.999992 DB DOUN 70
8 . ORDER r

R(J) P(J)
0.100 ()OOOOE+e 0.442093164E-1

0 -9 @2a449Sgr,@ 12l~49E9 -6

3 e.291156697E+O 0.2950632BTE+ee
4 -0.243822408Ee 0.436744839E+00

6 -e.17712949sE40 e.436744839E+00
y7 I9 131 T.8 0 P90C2S5'd&9 -_________

8 -0.401976138E+e 0.133394405E+e0
9 9.1e83232e9E+e *.442093015E-01

-0.008063 0.981829.

0.161821 0.752830
E.344924 0.322539

-0.091028 0.995848....... . °D°? 30
-0.388546 0.921429 3
-0.868237 0.496149

...... 20

,, 10

0 2000 4000 6000 8000
FREQUENCY (HZ)

Figure 5.1
FLT Filter Characteristics

Error Metric Data Base -

This DB is used by the Canonical Coordinate research efforts of
Chapter 2. These are floating point files with header information and
are of the Speech DB format. This data base is recognized by the file
extension .ERM and is segregated to the SP: device at UIC [200,200].
The error metric files are application specific and are used for the
CC analysis and synthesis of speech. Implementations of various
statistical, analytical and empirical algorithms have been used for
the generation of the Error Metrics. Eigensystem solution algorithms
and Unitary Matrix series expansion methods are included to generate
the transformation matrices and eigenvalues required by the Canonical
Coordinate methods. Details on the development of these Error Metrics
are given in Chapter 2 of this report.

5-6

5.2.2 PC Data Bases

There also exist at the Speech Laboratory two other data bases which
are worth mentioning. These DBs are accessed through Zenith PC clones.
The first is a Technical Information Data Base. This DB contains
information about all the technical and final reports located at the
Speech Laboratory. The utility program PCFILE 3 provides the
capabilities of finding, adding, deleting, sorting, and listing the
records of the requested information the user needs,

The second DB is referred to as an Archive Data Base and it is a
library data base that will contain information of all audio tapes in
the test and evaluation laboratory. The utility program DBASE III
provides the user with the capability to add, modify, locate, sort,
and list the records available at the RADC/EEV Speech Processing
Facility. Because of the large amount of data to enter, this data base
is still being added to. The tapes included in this data base are
digital DRT/DAM Masters, analog DRT/DAM Masters, and all processed
tapes submitted by various organizations.

5.3 SPEECH DATA BASE ANALYSIS AND EVALUATION TOOLS

Software routines provide a set of general functions to facilitate the
use of the Speech Data Base. These functions are data collection or
generation; DB I/O; DB sorting and retrieval; data processing and
analysis; data display; DB maintenance utilities. The Interactive
Laboratory System (ILS) software package [Ref. 19] is integral in the
support of the Speech DB and its subsets, the Noise DB and the Error
Metric DB. Most of the data analysis and processing functions have
been implemented as custom ILS programs. The following sections will
discuss the development or modification of programs that provide these
functions for the Speech DB. These programs can also be used with the
Digital Acoustic Noise DB since it is a subset of the Speech DB.
Previous program developments can be found in References 9 and 10.

5.3.1 Speech DB Input/Output

ARCON has developed I/0 systems on the two array processors, the
AP-120B and the MAP-300, available at the RADC/EEV Speech Processing
Facility. These systems provide a way of testing speech algorithms
written for the processors, and a way of transferring speech from or
to the Speech Data Base.

The MAP-300 has two routines MAPIN and MAPLP. The MAPIN program can be
used to input audio data to the Speech DB of as a loop-back I/O test
of the MAP-300. The MAPLP program is the primary Speech DB output
method at EEV. It has numerous options and will be discussed in
detail.

5-7

The programs APIN and APOUT are used with the AP-120B for Speech DB
input and output. These programs run on the PDP-ll and make use of the
interface between the AP-120B and a modified IOP-16 scroll board. The
TOP provides four 12 bit wide channels each of input and output for
the AP-120B. A separate routine APLOOP is used for loop-back I/0
testing of the AP-120B.

MAP-300 Input/Output Software -

ARCON designed and implemented a MAP-300 Speech Data Base routine
called MAPIN that performs a real-time analog to digital conversion of
a speech signal on one channel of the ADAM board. This data is either
stored on the Speech DB disk in standard speech DB format or, if in
loop back mode, is sent to the AOM board on the MAP-300 system for
digital to analog conversion. If in data storage mode, this routine
also sets up the header and allows for the analyst to add or modify
any of the information within the header before it is written to the
speech file. This program has not been modified during this contract
period and was completely described in Reference 9.

ARCON developed another MAP-300 speech data base routine called MAPLP
which performs the reverse of the operation done by MAPIN. A speech
file is read from the Speech Data Base, transmitted to the MAP-300,
and sent out to the AOM board, all in real-time. MAPLP not only
performs D/A conversion of Speech DB files but also has two added
features that make it more useful for the Speech Lab Facility's
purposes. The first feature is the ability to control two channels of
programmable precision filters. The second feature allows for multiple
sets of output blocks from Speech DB files to be defined for output.
Within each of those multiple sets, the analyst has the capability of
selecting the starting block number, the number of blocks to be
converted, and the number of times the set is to be repeated, as well
as the option to select a scaling factor or reset the sample rate.
This routine has been extensively modified during the current contract
period and will be discussed below.

Separate ILS versions of both MAPIN and MAPLP have been developed for
the input and output of audio data to the Speech DB from within the
ILS package. These routines will be discussed in a later section.

Program MAPLP - The Speech Data Base output program MAPLP may be
executed with the "RUN $MAPLP" command. Since it utilizes the MAP-300,
this processor must have been previously initialized and must be
allocated to the user. The most convenient method of initializing the
MAP-300 is with a special login account RADC/MAPUP. Upon execution of
MAPLP the program pauses to remind the user that the MAP must be
allocated. An opportunity to do this is provided through the use of
PAUSE and RESUME commands,

5-8

MAPLP asks the analyst if program control of the Precision Filter Set
is wanted. Under this option two of the Precision Filter Set channels
may be controlled by MAPLP. A channel number is requested and the
current cutoff frequency and gain state is given. New cutoff frequency
and gain values are requested. An input of zero or a carriage return
(CR) defaults to the previous value. After both filters are input the
routine lists external actions that must be taken and waits for a CR
before continuing.

The name of the Speech DB of interest is requested and its header
information is displayed if requested. The default device and UIC for
this file is SP:[200,200', other devices and UICs can be accessed if
given explicitly. MAPLP allows for up to ten individual segments of
the file to be output se4uentially. The routine asks for the number of
segments or "SETs" that the analyst wants.

For each SET the analyst inputs the start block number, number of
blocks to output and the number of times to repeat this SET. For each
SET the analyst may modify the output sampling rate from that defined
for the DB file and may provide a scaling factor to reduce the signal
by shifts of from zero to four bits. If control of the Precision
Filter Set was originally chosen, then the characteristics of the
original channels can be modified for each output SET. The combination
of multiple output segments, controllable ampling rate, scaling and
dual channel filter characteristics provides the analyst with a varied
experimental capability.

After all SETs are defined, MAPLP waits for a CR and then outputs the
data as defined. The output can be terminated at any time with a CTRL
Z. For single SETs the default for the number of repeats is -1 or
continuous and a CTRL Z is required to terminate the output. On
termination MAPLP allows the user to repeat the previous group, define
new sets for the same file, define a new file and new sets or exit the
program.

AP-120B Input/Output Software -

Three programs utilizing the AP-120B for input, output and loopback of
speech are available to the analyst. Two of these programs, APIN and
APOUT, have been modified to improve their performance. The size of
buffers in both the AP-120B and the PDP-11 have been increased from 1
block to 8 blocks. In addition, double buffering has been implem, nted
in both programs in an effort to allow the PDP-11 to keep up with the
AP. This modification allows the AP to instruct the appropriate IOP-16
to load or dump one buffer while the PDP-11 is transferring data from
or to the other buffer. These programs provide an alternative to their
MAP-300 counterparts in the event the MAP is not available to the
analyst.

5-9

The third program, APLOOP, is essentially a combination of APIN and
APOUT. Since the purpose of this program is simply to input and then
output data the PDP's only responsibility is to interface with the
analyst. The AP controls the input and output of data.

Program APIN - The program APIN inputs speech data through the lOP to
the AP-120B, and transkers it to the Speech DB. The real-time data
collection of APIN was limited by the AP-120B memory size. All
collected data was stored in the AP-120B before transfer to the Speech
DB. This was due to limitations in the addressing of the IOP-16 Scroll
board from the AP-120B. ARCON solved this problem by using a double
buffering method which involves the filling of one buffer while the
second buffer is being output to the PDP-11 for storage on the Speech
DB. Thus the size of the speech file is only limited by the amount of
available disk space.

Program APIN enables the analyst to input data from an A/D converter
into a speech data base file. This is accomplished by using the AP's
lOP connected to an A/D converter to transfer data from the A/D
converter into the AP. The data stored in the AP is retrieved by the
PDP-11/44 and written to disk. The amount of data which could be input
was limited by the amount of data memory in the AP which is 64K words
(256 disk blocks).

APIN was modified such that the limiting factor is now the available
amount of contiguous space that can be allocated to a speech data base
file. This was accomplished by setting up two buffers in the AP's data
memory and setting up the program such that the PDP transferred one
buffer from the AP to disk while the lOP was loading the other buffer.
These buffers were made as large as possible, their size being limited
by the PDP-II/44's task size which cannot exceed 32767 words. These
modifications cut down on the number of transfers which were necessary
between the PDP and the AP and the PDP and disk and allows the PDP to
keep up with the AP. This is necessary if no data dropouts are to
occur. Coding of the program is in Fortran and VFC routines which
execute on the PDP-11/44 and AP-120B, respectively.

The analyst may invoke APIN simply by entering the command "RUN
$APIN". A heading identifying the program is displayed and the AP is
assigned to the task. If the AP is not available the program waits.
The analyst is then requested to enter the sampling frequency, the
number of seconds of data to collect, the channel number and the name
of the file which is to receive the input data. The output file is
created and opened and the program displays the number of data blocks
and the number of speech samples that will be collected. The program
waits for the analyst to enter a CTRL Z before it begins collecting
data. When the program is finished collecting data the header is
displayed and the analyst is prompted for the high and low filter
limits, a title and comments to be inserted into the header. The
header is displayed and the analyst is asked if any changes are
desired. If so, the program branches back to the high filter limit
prompt. When the analyst is satisfied with the header the output file
is closed and the analyst may input additional speech data if desired.

5-10

Progrem APOUT - The prograt. APOUT outputs selected blocks of data from
a Speech DB file to the PDP-II. The data is then transferred to one of
two buffers in the AP-120B. When the IOP-16 is ready the AP-120B
outputs the data through the IOP-16 to a D/A converter. The selected
blocks are output continuously until halted by the user. APOUT also
allows the user the opti'rn of continuing with data from another speech
file. There is no limit to the number of blocks that can be output.

Program APOUT enables the analyst to output repeatedly a selected
amount of a speech data base file through one of the AP's lOPs which
is connected to a D/A converter. The program suffered from several
logic errors which made its operation unpredictable. In the process of
outputting data the program would occasionally hang.

After correcting the logic errors, modifications similar to those made
to APIN were implemented. Again the limiting factor in the buffer size
was the PDP-II/44's task size. These modifications have made APOUT
more resistant to delays that may be caused by the PDP's servicing of
other users. Coding of the program is in Fortran and VFC routines
which execute on the PDP-11/44 and AP-120B, respectively.

The analyst may invoke APOUT simply by entering the command "RUN
$APOUT". A heading identifying the progrcm is displayed and the AP is
assigned to the task. If the AP is not available the program waits.
The analyst is prompted for the name of the input file and the file is
opened. If desired the analyst may display the header. The sampling
frequency of the file is displayed and the analyst is given the option
of changing it. Tl-a output channel is then requested and the number of
blocks available in the file is displayed. The analyst is requested
for the starting block and the number of blocks to output and the
output of the data begins. The data will be continuously output until
the analyst halts the output with a CTRL Z. The analyst is then given
the option of outputting another file.

Program APLOOP - The third program in this group, APLOOP, implements
the loopback mode utilizing the AP-120B. This program inputs data to
the AP-120B's data memory through the lOP connected to an A/D
converter and outputs the data through the AP's second lOP which is
connected to a D/A converter. Double buffering has been employed in
the program allowing one buffer to be output while the second buffer
is input. Coding of the program is in Fortran and VFC routines which
execute on the PDP-11/44 and AP-12OB, respectively.

While testing this program periodic noise was detected in the output
of the data. Extensive testing has been conducted in an effort to
locate the source of this noise. Although to date it has not been
isolated what has been learned is that the period of the noise is
related to the frequency at which the data is sampled, it is not
related to the size or location in memory of the buffers. The noise is
induced on the signal before it is stored in the AP's data memory and
it is not due to data dropouts caused by switching of buffers.

5-11

In an effort to eliminate this noise an attempt was made at using
interrupts to control the timing of commands to the lOPs. That is,
commands to the TOPs instructed the lOPs to issue interrupts when the
transfer of data was complete. These interrupts were decoded and
handled by an interrupt handler which issued new commands to the
appropriate TOP. From the outset problems were encountered with IOP°2.
This TOP appeared to issue interrupts constantly even when commanded
not to do so. It is unclear whether this problem is related to the
noise encountered by APLOOP but further examination could prove
useful.

APLOOP inputs speech data from the A/D converter through an IOP-16 to
the AP-120B and outputs the data through a second IOP-16 to a D/A
converter.

This program suffers from unwanted noise being imposed on the speech
signal. The noise is periodic in nature but varies in amplitude.
Through testing it has been found that its period is dependent on the
sampling frecqiency. If the sampling frequency is halved the period
doubles. Additional tests have been conducted to determine if the
noise is related to buffer transition. These tests consisted of
increasing the size of the buffer. If the noise were related to buffer
transition then a change in the period would be noticed. No such
change occurred. A final test was conducted to determine the point at
which the noise was being introduced to the signal. The AP-120B
instructed the TOP to output a set of buffers loaded with zeroes while
IOP-I loaded the original buffers. Both sets of buffers were captured,
written to disk and displayed by ILS. It was determined that the noise
is introduced to the signal before it is stored in the AP.

The analyst may invoke APLOOP simply by entering the command "RUN
$APLOOP". A heacling identifying the program is displayed and the AP is
assigned to the task. If the AP is not available the program waits.
The analyst is prompted for the sampling frequency and channel. Data
is collected and after a short time is output. The analyst may
terminate the loop back program by pressing the RETURN key.

5.3.2 Speech DB Retrieval And Sorting

The PDP system utility routines PIP and SRD are often used to search
for Speech DB files with a descriptive name or extension. The DB has
grown to include such a large variety and number of files that these
utilities are no longer capable of performing the location task, A
program FINSP has been developed that has exparded retrieval and
sorcing capabilities. All source code and cmmand files can be found
in the virtual disk REPT88. The task is available on DR:[I,54].

FINSP begins by asking the user what device to search on, in what UIC,
and the extension of the files to search. It is important to note that
the user can use an asterisk in the UIC and/or extension rp:7ponse to
indicate he wishes to search all UIC's on that device and/or all files
for the specified material. Once the user has entered this information
the routine displays it and gives the user a chance to correct it
before the program proceeds.

5-.12

When the information is correct, FINSP creates a file, 'NAME.CMD',
which contains a PIP command line generated from the user's responses.
FINSP then spawns MCR, executes the command file, and forms another
file, 'NAME.DOC', containing a listing of the file names and the
directories where they are located. After ,he spawning process is
completed, the user begins another series of questions and answers in
order to obtain the actual infcrmation the user wishes to locate.

The first question asked concerns how many fields of the speech file
header the user wants to search. A maximum number of fields to search
has been set to five. The routine then displays a list of the fields
and requests the user to enter the field numbers. An error message
will appear if the user attempts to enter the same field number more
than once. A list of the fields is as follows:

1 = DATA TYPE

2 - SAMPLE TYPE
3 - SOURCE PRrCESSOR

4 - SOURCE OF RAW DATA FILE
5 - COMPRESSION ALGORITHM
6 - SYNTHESIZED / COMPRESSED DATA
7 - FILE CREATION DATE
8 - TITLE
9 - COMMENTS
10 - SAMPLING FREQUENCY
11 - INTERNAL FORMAT

12 - WINDOW

The next set of questions that the user confronts involves more
details on each of the fields chosen. For example, if field #1, DATA
TYPE, was chosen, the user would then be presented with these three
options:

0 - Raw datz
1 - Processed data
2 - Raw or Processed data

Each field has different options within them and it is suggested that
the user pay close attention to them for the best possible results.
The comment field has its own special way of locating key words or
phrases. he user can enter expressions consisting of the key
words/phrases, parentheses, and boolean operators, .AND. or .OR., such
as (XXXX .OR. YYYY), where a search for the XXXX substring is
carried out first then a second search is made for the YYYY substring.
More than one of these structures can be given within a search
expression for multiple layers of ordering.

Once all the data the user wishes to find has been selected, the user
is asked what type of output he wishes, either a list of file names or
the actual header contents, and if to spool +his output to the line
printer or the tera.inal screen. If the user chooses to spool to the
line printer, a file named 'NAME.LST' is generated and saved at the
end of execution of FINSP.

5-13

After all these topics are answered, FINSP starts the actual process
o' opening the first file in the 'NAME.DOC' file, searching its header
for the user-requested information, if found, writing the desired
output to the user- chosen device, and closing the file. This process
continues until all file names in the 'NAME.DOC' file have been
exhausted. It should be noted, however, there are certain files that
FINSP will not search. Any WD9999.;l files and files with the
extensions .CMD, .FTN, .LST, .OBJ, .TSK, .DIR, and .DOC will be
skipped over when the searching takes place.

5.3.3 Interactive Laboratory System

The Interactive Laboratory System (ILS Version 3.0) is a modular
software package for computer use in research involving sampled data
and signal processing. It has been programmed to operate in an
interactive, multi-user mode. The ILS package distributed by Signal
Technology, Inc. consists of about 90 main programs and about 250
Fortran subroutines [Ref. 19]. There are seven assembly language
subroutines provided for the primitive disk I/O operations.

To make the ILS software more accessible to RADC/EEV researchers, the
second 300 Mbyte disk drive is partitioned into individual file
directories dedicated to ILS and speech data base files. Upon login to
a researcher's ILS account, he is assigned to his particular ILS UIC.
The user has the ability to access ILS data files on other devices and
UIC's by way of user-specified directory pathnames created with the
ILS task TBL. This utility manipulates a table of pathnames in the
user's ILS common file. The actual ILS task files reside on the public
virtual disk IL:. Not all of the ILS modules can be installed at one
time due to the limited "pool space" memory allocated to the operating
system for the use of such things as maintaining task control blocks.

ARCON modifications to the ILS package have been reported in previous
reports [Ref. 9,10] and have included the following improvements. A
menu of ILS programs is available through the command file ILS.CMD
that allows access to the ILS routines without memorizing all the
routine mnemonics. The limited ILS numeric file name structure was
expanded to include meaningful names and extensions. A dynamic program
serving monitor DYNSRV was developed to handle the problem of limited
installed routines imposed by "pool space".

Because of the modularity of the ILS system, any program module may be
modified without affecting the other modules. This feature also
permits the replacement or addition of program modules on disk
providing they are properly designed to be compatible with the ILS
conventions. Within each ILS program another level of modularity is
seen in which all programs are composed of subroutine and function
calls to standardized segments of code residing in a well designed
library. Thus the ILS system is very amenable to custom alterations of
signal processing and analysis software.

5-14

A large number custom ILS routines have been developed and
ftiplemented by AiCON for the analysis of speech and noise data in
support of the various research tasks under the current contract.
These routines have included the implementation of several
enhancements to standard LPC processing as suggested by G. Kang &
S. Everett of the Naval Research Laboratory [Refs. 20 and 21], the
line spectral pair analysis method and a set of pole/zero filter
routines. A list of custom ILS modules developed for the RADC/EEV
system is provided in Table 5.2.

Table 5.2
Custom ILS Programs

DSP - Sample Data File Display routine with a voicing
"ONSET" detection option

FFC - Formant Frequency Resonance Cascade generator with
a pole/zero plot

GCD - Glottal Closure Detection Function
HCR - File Header Creation
HDS - File Header Display
HMD - File Header Modification
KEA - Kang/Everett LPC Analysis
KES - Kang/Everett LPC Synthesis
LPM - D/A Output Parameter generator
LSN - D/A Output LISTEN
LSP - Line Spectral Pair Calculation and plot
MFS - Modify Formant Structure for LPC Analysis Files
REC - A/D Input RECORD
RMS - Root Mean Square Function
SNR - Speech to Noise Ratio and Equivalent Peak

Level (EPL) Measure

All ILS files are located on the virtual disk ILS. This disk is
mounted public at system startup and has the pseudo device name IL:.
The various file types are segregated into different UICs as follows.

1. [100,300] - Object Code and Object Libraries
2. [100,302] - Source Code (.FTN) Files
3. [100,304] - Overlay Descriptor (.ODL) Files
4. [100,305] - Compile and Taskbuild (.BLD) Files
5. [100,306] - Executable Tasks (.TSK)
6. [100,307] - ILS Help (.HHH) Files

As a sample of the flexibility of the ILS system several of these
programs will be discussed.

5-15

MAP300/ILS Listen [LSN]

An ILS utility has been developed which provides A/D services
previously available with the MAPLP task. The program is 'LSN' which
enables one to 'listen' to sampled data files while working within the
ILS environment. Just as with MAPLP, the MAP-300's digital-to-analog
capabilities are used for the real-time analog reconstruction of
sampled signals and therefore the user As responsible for initializing
and allocating the MAP before using LSN. Several parameters can be
specified by the user for controlling the segments of the sampled data
file to reconstruct, gain, sampling frequency, and the cut-off
frequencies of reconstruction filters. These parimeters can either be
specified in an interactive manner during the eyecution of LSN, or
they may be stored in a separate file using another new ILS program,
LPM - Listen Parameter Modify, and extracted ly the LSN program.

The alphabetic options for LSN are:

'S' - use the secondary file for data input (default - primary file)
'N' - output the next consecutive sequence of data with the same

number of frames as on the previous invocation of LSN
'A' - read signal segment definitions and filter parameters from

file pointed to by the 'PRIMARY-B' filename (set with FIL B)
WM- allow user to interactively define multiple signal segments

for sequential output
'F' - allow user .o interactively define filter characteristics

for 2 channels of the Precision Filter Bank

The numerical command parameters passed to LSN are:

Nl - starting frame (size of frames controlled by CTX task)
N2 - number of frames to output
N3 - number of repetitions of same segment (-1 results in "infinite"

repetitions..,or until cntl-Z is pressed)
N4 - scale factor where sampled data is multiplied by 2**(-N4)
N5 - sampling frequency used on reconstruction

The default values for the numerical parameters are:

NI - NISAV value from common file which normally will be set by
previously executed ILS task (e.g., CUR)

N2 - N2SAV value from common file
N3 - infinite repetitions (-1)
N4 - scale factor of 1.0 (i.e., N4=0)
N5 - sampling frequency specified in header of sampled data file

The LSN task makes use of object modules from the ILSLB, SNPLB, and
QIOLB libraries. Note that a special version of the ILSLB module FILIO
is used for purposes of controlling the allocation of LUNS used by the
ILS modules. This new module circumvents problems encountered when
attempting to use SNAPLB modules and ILSLB modules which attempt to
use the same LUNS for different purposes.

5-16

Disk 1/0 for the sampled data is done at the QIO level (i.e., block
I/0) as previously used with MAPLP. However, since the segments to be
output are now specified in terms of a variable frame size, a
deblocking scheme is required. An efficient, low-overhead scheme was
devised such that the code required for setting up I/O parameters from
one disk read to the next is minimized and consists of modulo 256
additions and comparisons. The MAP-300 code itself is just as found in
MAPLP although the data buffers are no longer constrained to be of
lengths which are integer multiples of 256 samples.

The LPM ("listen parameter modify") utility allows the user to
create/modify a parameter file to be used with the LSN A option. The
parameters to be specified for each output segment are:

1. starting frame
2. number of frames
3. number of repetitions
4. sampling frequency
5. scale factor
6. filter control parameters for two channels

The parameter file is in the form of an unformatted, direct-access
file with the PRIMARY-B filename stored within the common file serving
as a pointer to the file. The modification of an existing parameter
file pointed to by the PRIMARY-B filename can be carried out by
invoking LPM with the '0' option ("old") while the default is to
create a new parameter file. A limit of 10 signal segment definitions
per file is in effect.

MAP300/ILS Record [REC] -

The A/D conversion program MAPIN was revised and is now available in
the form of an ILS task and is referred to as REC ("record"). This
task uses the ADAM module on the MAP-300 system for performing
real-time A/D conversions of sampled data files resident on disk. Like
all ILS tasks, data files to be accessed by REC are "pointed to" using
the FIL task. Alphabetic and numerical arguments are supplied by the
user either within the MCR command line invoking REC or following a
prompt at run time. The possible alphabetic arguments are:

L - Operate in loopback mode in which the digitized signal is fed
immediately back to the MAP's AOM module for D/A conversion.
No data files are created in loopback mode. If no "L" is
provided, the default mode of operation is one in which the
signal samples are written to a disk file.

S - Write signal sample data to the file currently specified as
the secondary file within the ILS common file. The default is
to write to the primary file.

The possible numerical arguments are:

N1 - Sampling frequency in Hertz
N2 - Sampling duration in seconds
N3 - A/D channel on ADAM (0 or 1); default is 0

5-17

The operation of the MAP itself during the data collection is
identical to that of MAPIN. One added fpature, however, is the
monitoring for A/D saturation during the course of sampling a signal.
The saturation detection is implem ented in hardware on the ADAM board.
At the completion of the sampling phase, the ADAM register #4 is read
which provides an OVF bit indicating if either the most positive or
most negative quantization value had been generated by the A/D
converter. If the OVF bit is set, a warning message is provided to the
user indicating that A/D saturation had occurred at least for one
sample during the whole process. It should be noted here that an ILS
task, STE, is availahle which will scan a data file and will list
frames in whic; samples are found having values greater than 2048 or
less than -2048. However, samples generated from the ADAM are left
justified (use of upper 12 bits or 16 bit words) and will exceed the
range ch:ecked by STE even if no saturation has taken place.

The REC task is overlayed and makes use of modules from the SNPLB,
QIOLB, and ILSLB libraries. Note that a slightly changed version of
the ILS module with file primitives, FILIO, is used for this task
build. The new module is MYFILIO with changes made in regards to the
allocation of LUNS for ILS file I/O which conflicted with those used
for I/O with the MAP.

Speech/Noise Ratio And EPL Measurement Task [SNR]

An extension to the ILS software involves a task which provides the
ability to measure the Equivalent Peak Level of speech segments as
well as the Speech-to-Noise ratio [Refs. 9,22,23]. The algorithm to
provide these measurements already existed in the form of a PDP-11
assembly language program requiring an analog input. ARCON revised and
implemented an ILS version of this program, called SNR, which provides
EPL and SNR measurements on a user-specified number of frames of a
sample data file stored on the Speech DB.

The speech data file to be analyzed is first specified using the FIL
task. Either a primary or secondary file can be analyzed. The three
numerical arguments for the SNR command are starting frame, number of
frames, and the LUN for displaying results (defaults to KBU). The S/N
ratio and EPL estimates generated are displayed on the specified
device and they are written into the file's header in the fields
allocated for "Signal-to-Noise ratio" and for "Current Max.
Amplitude". The EPL is recorded as an integer and is in dBm units. The
S/N ratio is stored as a floating point value and is in dB units.

There are a few notes regarding the internal operations of the task:

1. The S/N ratio measurement algorithm is based upon 20 millisecond
frames of data. The frames specified by the user for analysis are
in terms of the samples/frame set with the CTX task. Internally,
these frame parameters are converted to 20 millisecond frame
equivalences.

5-18

2. A minimum of 3 seconds of input time data is required to even get
results from the program and it is strongly recommended that at
least 15 seconds of data be used for analysis. Previous work with
the algorithm has been based upon 40 second data samples.

3. In response to the inconsistency of the Speech Data Base standard
regarding the storage of raw time data in an integer format (left
justified vs. right justified 12-bit values), an automatic scaling
mechanism is provided when data representing values greater than
could be found in a right justified 12-bit variable is found. The
scaling consists of dividing all data by 16.

4. Automatic scaling of frame energy values is also included for
"centering" within the histogram the hump associated with the
distribution of noise .rames. This technique was previously
developed on the assembly language implementation.

5. Double precision floating point values are used in most of the
calculations.

The task was run with input from some of the DRT and DAM files
available on the SP: disk as well as a test file created with one of
the DRT tapes with helicopter background noise. The S/N and EPL
results were within the range expected based upon previous experience
with this test material.

Line Spectral Frequencies [LSP] -

An enhancement to the ILS package was the addition of a Line Spectral
Pair [LSP] analysis and plotting capability. Line Spectral Pairs [Ref.
24], or Line Spectral Frequencies, provide an alternate
parameterization of linear predictive inalysis: instead of describing
an all-pole filter by giving its prediction coefficients or its
reflection coefficients, the all-pole filter is described by giving
the poles of two related filters, whose poles are guaranteed to be on
the unit ciycle. These poles, interpreted as frequencies, are called
line spectral frequencies, or, since they occur in pairs, line
spectral pairs. ARCON has developed software that derives the line
spectral frequencies of a linear predictive' model and plots these
frequencies as a function of time. Figure 5.2 is an example of such a
plot, showing a tenth-order analysis for the sentence "Thieves who rob
friends deserve jail;" the two curves at the bottom show pitch and
energy, for reference purposes.

5-19

*Thleves ho rob f-lends deserve 1811

Figure 5.2
Line Spectral Pair Display

Formant Frequency Resonance Cascade [FFC] -

Another addition to the ILS package was the development of a program,
called FFC, for the design of a cascade of second order resonance
filters to represent formant structures as defined by their order,
center frequency, and bandwidth. The routine requests the following
input data from the user: the number of formant resonators; the
sampling frequency; and the pitch frequency; as well as the center
frequency and bandwidth for each of the formant resonators. Once this
routine is executed, an output sample data file is generated, the
power spectrum of this data is plotted, and the filter parameters are
output to the line printer file. This routine has been used for the
generation of synthetic vowels. Figure 5.3 illustrates a sample run of
the FFC routine.

5-20

FORMAIt RESONJINCE CASCADE

D1UMIER OF CASCADED RESCtHATORS - 5
SAMPLE FREOUCKY - 8000
PITCH PERIOD (I SAMPLES) * 66
FRAME 1.00~H (I SAMPLES) ass

THETA R A a c

0.392699 0.952098 0.147243 i.759248 0.906490
1.9F,'1741 9.9S2098 0.848576 2.OS7914 0.906490
1.767146 4,946506 Z.26S282 -0.3693aB 0.895874
2.387610 0.924465 3.202440 -1.347812 $.854636s.0e0cae *.406jae .eoa.4j -8.4500a# -#.475000

II

I I 1 4 i 1i

Figure 5.3
Formant Filter Cascade

Modified Formant Frequency Structure [MFSJ -

The custom ILS routine MFS was developed to provide the capability of
modifying the formant structure of LPC analyzed speech. The routine
operates on LPC analysis files that have been generated from sampled
data files by any of the ILS LPC programs (i.e. ANA; API; KEA). The
analysis file must be assigned as the ILS secondary file and is
modified in place by MFS.

The input parameters expected by MFS are the initial frame number and
the number of frames to be considered,~ A "marked" option can be called
with an alphabetic parameter M. This option searches the specified
range for analysis frames that have been marked or flaged by the
routine SGM for special attention.

Each frame or every marked frame, depending on option M, is reported
on by listing any measurcd formants and by giving the formants derived
from the roots of the fourier transform of the reflection
coefficients. The analyst is then given the opportunity to moaify any
of these roots by inputting a replacement frequency and bandwidth
pair.

5-21

After modification of any of the frame's formants, MFS calculates the
respective reflection coefficients and replaces the original RC's in
the frame with them. In this manner an analyst can shift formant
locations and change their bandwidths vithin an utterance.

The procedure to generate a synthesized output file for the modified
utterance requires the use of the ILS Filter routine FLT and the
original LPC residual. The residual of the LPC analysis is most easily
generated within ILS by the RAN routine. This residual signal is used
as the excitation signal for an analysis filter as defined by the MFS
modified analysis file.

The MFS program has been used in conjunction with the ANA, RAN, FLT
SGM and FFC routines to artificially change the formant structure of
vowels within carrier words and phrases to study the least noticeable
difference effect or "difference lima" of vowel formant frequencies
and bandwidths.

Glottal Closure Detector (GCD] -

The custom ILS routine GCD was developed to provide a glottal closure
detector algorithm. GCD requires the user to assign a primary input
file and a secondary output file prior to execution. The context of
these files must be less than 257.

The user invokes GCD using the following syntax:

GCD Nl,N2
where

NI = frame number to begin on, and
N2 - numberof frames to process

NI and N2 parameters both default to values used in previous routines
executed from ILS. If the proper criteria has been met, the routine
proceeds to set certain variables with values, such as window sizes,
for use later in the algorithm. A list of these variables and their
formulas are as follows:

MWIND = 0.020 * FS
LNWND =' 0.0030 * FS
C FS / 128

Ml = 300 / C
M2 1000/ C

where FS is the sampling frequency of the speech file.

With these variables set, a loop is then initiated which performs such
functions as reading frames of data from the speech file, if
necessary, saving this frame of data so that another frame can be read
in, and writing frames of results to another speech file. Two other
subroutines are called from within this loop which accomplish a
majority of the computations needed for the GCD algorithm. The first

5-22

subroutine, SUMSQ, takes a window, MWIND, of the samples read from the
speech file, sums up the squares of these samples, and saves this
value in SSQ. The algorithm for this subroutine is as follows:

t+MWIND

SSQ = X s2(k)
k=t

Note: t denotes the present position on the signal for the which the
computations are being done

The second subroutine, SDFT, takes a smaller window, LNWND, of the
same samples and performs a Discrete Fourier Transform of 128 points.
It must be noted that if the window size LNWND is less than 128, the
remaining points are zeroed so as to look like the subroutine is
receiving 128. SDFT returns 64 magnitude-squared samples which are
then summed up between Ml and M2 and assigned the variable SSSQ. The
algorithms used for those calculations are:

Dr(m) = DFT (s')

where si' - s t , st+I . st+n l -0,0 and i - t,t+127
n = LNWIND-l

and

M2

SSSQ = X IDt(k) 12

k-M1

The final computation involves dividing SSQ by SSSQ, scaling the value
by 32767, and storing this final integer as F(t) where it will be
later written to the secondary file at the proper time. The formula
is as follows:

F (t) = SSQ*32767/SSSQ

The calculations above are continued until the routine has a reached
the final sample point in the number the user requested to process.

5.3.4 Error Metric DB Display

Two methods are available for plotting the magnitudes of the elements
of an error metric matrix. In the "waterfall" method each row of the
matrix is plotted across the screen with successive rows offset
vertically from each other. This kind of a display is available as an
option of the ILS DSP command: in effect, a 64 X 64 matrix is treated

5-23

as 64 successive 64-sample frames for display purposes. The program
DEMDSP (described below) converts a .ERM file to an integer data file
that DSP can plot. In reading a plot of this kind (Figure 5.4), it is
easy tc see where the peaks are within each row, but it is harder to
compare the relative heights of different peaks in one row, and
virtually impossible to compare the heights of peaks in different
rows.

Often it is difficult to interpret an error metric matrix displayed in
the "waterfall" form. ARCON has developed software to provide an
alternate display format. This program, called ERM3D, uses a raster
graphic method to display an error metric matrix, as shown in Figure
5.5. Lighter or darker shades correspond to matrix entries with larger
or smaller magnitudes, on a scale with 100 different levels. This gray
scale is automatically adjusted to the range of magnitudes present in
the matrix. Another option of ERM3D allows display of the magnitudes
of the metric's eigenvector matrix.

-- ---"--------------------

Figure 5.4
3-D EM Vector Display

5-24

Figure 5.5
3-D EM Grayscale Dispiay

5.3.5 Speech DB Utility Routines

ARCON introduced three separate routines to the ILS package for the
generation and maintenance of speech data base header information. The
first of these ARCON developed routines is HCR which creates and
initializes a speech DB header block for any speech DB file. The
second, HDS, displays any speech data base header block the user
requests. The last routine, HMD, allows the modification of a speech
file header which can be useful if information was incorrectly
inserted when created. These routines are of extreme importance
because it is through accurate Speech DB header information that all
traceback and location routines operate. The originator of DB files
holds the responsibility for accurate header information. These
routines provide for convenience in fulfilling this responsibility.

Since the Error Metric files in the Speech DB are floating point files
of specific form and content they can be converted to fixed point for
various analysis purposes. The usual need is for a graphic
representation of the metric structure. This can be provided by ILS as
discussed above. The DEMDSP routine will open an Error Metric File and
pace through its structure asking the analyst which matrices or
vectors should be converted and in what form. The resulting file is of
ILS form and can be plotted in a number of ways. The most convenient
method is with the DSP function using multiple plots. Figure 5.4
demonstrates the results.

5-25

5.4 PC DB TOOLS

At the RADC/EEV Speech Processing Facility there exist two other data
base utility packages, PCFILE 3 and DBASE III. They are used for the
maintenance of the PC Data Bases described earlier in this section and
are implemented on Zenith PC clones. PCFILE 3 utilizes the Technical
Information DB to provide the ability to add, modify, delete, find,
sort, or list any of the technical reports available at the Speech
Lab. DBASE III works with the Archive DB and has many of the same
qualities as PCFILE. However, DBASE III has one added feature which
makes it more useful for the purposes of the Speech Lab. It allows
structure modification of the data base even after the data base has
been added to. In PCFILE once the user has set up the fields and
enters the first record of the data base, the structure can no longer
be changed except for creation of a new DB.

5-26

CiAPTER 6

COMMUNICABILITY SYSTEM

6.1 RADC COMMUNICABILITY FACILITY

The Communicability Facility at RADC/EEV (Figure 6.1) has been
modified extensively and now has full-duplex capability as well as the
original half-duplex system. Users communicate in complete freedom in
full-duplex, or on a push-to-talk basis in the half duplex mode. Both
test stations reside in isolation rooms. Control boxes at both
locations are switchable, half to full duplex.

A Carter Engineering headset model CEH157TR with an Electro-Voice
M-IOI/AIC microphone is the current user interface to the system;
however, the design of the stations lends itself to chenges in
headset/microphone arrangements with little difficulty. These headsets
plug into in-house designed boxes that amplify the outgoing signal,
match impedances, transmit switch information (for half-duplex mode),
and provide sidetone (in full-duplex mode).

All audio lines are shielded, balanced cable. In full duplex mode the
signal from studio A follows the same patn as half duplex, to the
control box in the DRT control room. At the box, a printed circuit
card labeled "Full Duplex" replaces its counterpart labeled "Half
Duplex". This card allows studio A's signal to proceed directly to the
computer room, bypassing the relay and amplifier system used in the
half duplex mode.

Transformers at the patch panel in the computer room step this signal
down to unbalanced and from here a host of signal processing devices
may be accessed. Before leaving the computer room, the processed
signal is transformed to a balanced state. In full duplex, the signals
get routed directly to the opposite station from their origin.
Transformers residing at both listening positions step the signal down
to unbalanced, low impedance to properly match the headsets.

6-1

The test administrator can monitor and record the test proceedings
during full duplex operation in either a processed or unprocessed
state at the audio equipment racks in the computer room. A microphone
is available to communicate in unprocessed speech to each isolation
room. The administrator has control over signal levels both pre- and
post-processor.

Test Station A Anl Filters

ToProcessor

Oscilloscope

Audio Cassette Deck

Test Control I Half Duplex
~Analog Filters

PatchFrom Processor

Audio

Test Control
Full Duplex

Test Station B

Figure 6.1

RADC/EEV Communicability Facility

This facility can be mated with any number of vocoder systems
available at the Speech Laboratory. Acoustic background noise can be
provided in one of the test rooms for the simulation of various
acoustic environments. A full range of transmission channel effects
can modify the transmitted digital bit stream for the simulation of an
actual transmission channel. The facility hardware has been tested and
verified by ARCON using the DRT.

6-2

6.1.1 PDP-11/34 - MAP-300 Processor

Current use of the Communicability Facility most often includes
interfacing with a host PDP-11/34 (see chapter 5) and two MAP-300
array processors. These processors are available to run a number of
different narrowband digital voice algorithms in real time, full or
half duplex. These algorithms include:

1. LPC at 2.4Kbps implemented by BBN
2. APCSQ at 9.6Kbps implemented by NSA and BBN
3. CVSDM, a MITRE implementation of CVSD wi't variable rate

selection
4. APC-NS at 9.6Kbps developed by DCEC with Noise Shaping
5. CVSDND, a University of Notre Dame implementation of CVSD
6. ATC, a 9.6Kbps algorithm developed by GTE
7. PARC, a 9.6Kbps algorithm
8. RELP at 9.6Kbps developed by BBN using residuals of LPC

analysis

Most algorithms make available variable bit rates and random error
insertion within the software. All algorithms implemented on the
MAP300s can be interfaced to the outboard error generators and channel
delay simulators.

The MAP-300s are equipped with Speech Processor Interfaces (SPIs) that
give access to the analog and digital I/0 of the MAPs. ARCON has
incorporated transformers to enable the use of balanced cables to
reduce line noise. Line input/output jacks and a handset are
available. ARCON has made a number of modifications to the SPIs in
order to facilitate research efforts at the Speech Lab. The filters,
once a permanent feature, now may be switched out of the signal path
allowing the use of the more sophisticated outboard filters. The SPIs
have also been modified to operate in analog loopback.

6.1.2 Other Processors

The patch panel in the computer room allows the communicability system
access to a number of other devices. Any processors with standard
audio connectors and line impedances can easily be interfaced.
Non-standard processors will require the design of analog and digital
interfaces. Algorithms available to the communicability testbed
through the patch panel include:

1. Quintrell LPC's & PLPC
2. RADC/EEV's FPS AP-120B algorithms
3. RADC/EEV's MAP-300 algorithms
4. MIT LL 2400 bps LPC (Adams-Russell)
5. MIT LL 1200 bps LPC
6. BBN APC-NS at 9.6 kbps
7. NSA Multiple Rate Processor CVSD, APC, LPC

6-3

6.1.3 Operationel Environment Simulations

In one of the isolation rooms used for the Communicability Facility
acoustic noise backgrounds may be recreated with an audio system
consisting of 6 Acoustic Research AR9 tower speakers, two Phase Linear
model 700 stereo preamplifiers, 3 Phase Linear model 3500 stereo
amplifiers, and 2 Soundcraftsmen stereo 24-band graphic equalizers.
Pre-recorded audio tapes (analog or digital) may be played back
through this system, or an available white noise generator may be used
with one of the graphic equalizers to produce a frequency response
curve that approximates background acoustic noise for a variety of
environments. Informal measurements suggest the RADC/EEV sound system
installed in this isolation room is capable of producing acoustic
noise environments approaching an SPL of 110db.

Audio channel)roblems on either side of a communications link can be
simulated at the communicability testbed through the use of
interchangeable microphones/headsets, audio noise generators and a
wide selection of fixed and programmable filters.

Degraded channel conditions can be simulated with the insertion of
error generators and line delays in the digital bit stream. Error
generators can be set to produce a given percentage of random bit
errors or may be configured to generate block errors that are read off
of computer magtape. ARCON has developed software (BER) for use on the
CSP-30 high speed signal processor that translates channel models from
computer magtape to TTL line level signals that are in turn fed to
error generators and output as burst errors. Simulated communication
satellite delay can be created on two independent channels with the
use of the MAP-300 currently hosted by the PDP-II/44. By sending the
digital bit streams and a clock line of one or two processors, the
ARCON developed program will give any amount of delay requested by
inputting the number of samples of delay desired. Access to the bit
streams and clock signals have been facilitated by ARCON designed and
implemented patch panels loca!d on the back of all three MAP-300s in
order to achieve maximum flexibility in transmission channel
simulations.

Bit Error Rate Program (BER]

A version of BER can be run on the CSP-30 system. This is function 225
on the CSP-30's "disk" and is loaded with the DOS by reference to this
number. The procedure for running the program is:

1. Have the CSP-30 file server task running on the PDP-11/44 by
logging into the account RADC/CSP which will automatically log
itself off after installing the file server.

6-4

2. Power-up the CSP-30 with the key switch and also power-up the
CRT.

3. Reset the CSP-30 by depressing the Master Reset and I/O eset
Toggle switches on the console. Load the starting address of
DOS which should be retained during power-down within the
CSP-30's Magnetic core memory. The starting address of DOS is
100000 and is usually retained on the thumbwheel switches.
Press the SET ADDRESS toggle. Press RUN and the DOS program
should execute.

4. Enter the function code 225 on the CSP-30 terminal.

5. The BER program is loaded and executed as indicated by the
prompt to select the desired bit rate.

6. Load the burst error tape on the tape drive nearest the
console. Make sure that the tape is at load point and that it
is on line.

7. Select the bit rate and indicate the number of files to skip on
the tape before beginning output.

8. TTL level error bits will be available on the patch panel in
the area labeled CSP-30 and at the BNC connector labeled B-OUT.

The burst error program, BER, is also available as a disk resident,
bootable task image on the PDP-11/34 machine in the Building 1124
Speech Lab. The task can be loaded into the machine and executed
simply by logging into the RSX-IIM system as RADC/BER. The login
command file for this account will prompt the user to mount a burst
error tape onto the MTO: magtape device and then a booting of the task
image will be performed. The RSX-11M operating system code residing in
lower memory will be destroyed in this process although the operating
system can be easily rebooted from the system disk when needed. The
BER program becomes a stand-alone task with complete control of all
devices. A prompt at the console will request the user to either
advance the magtape to the next burst error file, to back up one file,
or to begin reading the burst error information on the file currently
positioned at the head of the magtape drive. A line displaying the
number of microseconds between each sample output on the D/A will then
be shown on the screen. The burst error stream is at that point
available from the D/A converter. To stop the program, a control-halt
sequence is entered at the PDP's switch console. A control-boot at
this point will reboot the RSX-11 operating system. The BER program
can be restarted by loading in the start address 1000 (octal) at the
console and pressing the start switch. The BER program does not have
to be halted before taking the magtape drive off-line and either
rewinding the current tape or switching to another burst error tape.

6-5

The task is now configured to output samples at a 2400 bits/second
rate. This bit rate can be changed by writing in one word at the
location 1164 (octal). This word must be the value equal to minus the
number of microseconds between each sample. For example, there are 416
microseconds between each sample when operating at 2400 bits/second.
Thus, location 1164 has a value of 177140 (octal) which represents
-416. After changing this value, the program can be restarted from the
console at the start address.

A few changes were made to the original BER source in order to make a
bootable version for the PDP-11/34:

1. The first instruction executed is RESET which causes a UNIBUS
INIT to be generated which will initialize all device
controllers on the bus.

2. Set the programmable clock's interrupt vector to 344 in place
of 444 as it was on the old PD?-II/20 system.

3. Set the buffersize for records read from the magtape as
4000(octal) since the newer burst error tapes are recorded with
2048 bytes/record. Some of the older burst error tapes have
record sizes other than 2048 bytes. These can be used with the
program after changing the BUFSIZ value at location 2440
(octal) to the desired number of bytes per record (currently
set to 4000(octal)).

The BER task image was placed on DL:[1,54]. It is booted using the

privileged MCR command BOO with the command:

BOO DL:[I,54]BER.TSK

Note, as soon as this command is executed, the RSX-11 operating system
will be overlaid by the BER task.

Copies of the BER source file and task build command file can be found
on the Building 1124 PDP 11/34's DL: disk at UIC [200,210] and on the
SOFTWARE DEVELOPMENT disk for that system. Copies of the files related
to BER can also be found on the PDP-l1/44 system on the REPT88 virtual
disk.

MAP-300 Modem Delay Program [DELAY]

Code was written for the I/0 Scroll (IOS-2) module of the MAP-300
which performs a delay function on two independent data channels
operating at a fixed baul rate of 2400 bps. The "modem" interface
circuitry built onto the IOS-2 is used for I/0. The normal receive
data and transmit data lines are used ior one channel with the second
channel created by using two lines normally used for other purposes in
normal RS-422 or RS-232 protocol. No bit manipulation is required
within the MAP., The incoming half-word (16 bits) encoding the input
data is stored into a circular buffer formed on BUS-2 memory. The
output data is addressed by a second pointer offset from the input

6-6

pointer by the number of samples of delay desired. The transmit timing
is controlled by a programmable timing circuit on the IOS-2 which is
programmed for the 2400 bps transfer rate. The sampling of incoming
data is determined by the external clock signal.

The IOS-2 code implementing the delay is on the MAP300 virtual disk at
[200,310]DELAY.MSO. Its binary image must be loaded into the MAP with
the MLD loader. However a command file has been created on
DR:[l,54]DELAY.CMD which will initialize the MAP and start the DELAY
program. The DELAY.FTN program configures the MAP memory, loads the
(c'lay integer value (number of sample delays), requests the CSPU to
load and bind the DELAY program into the IOS-2's program memory, and
loops through this cycle each time the user wants to change the delay
value. It should be noted that there is no simple way to have the
OS-2 stop executing once it is started. A complete MAP-STOP,

;4AP-START sequence is executed each timE the user changes delay
values. Thus a new loading and binding of the IOS-2 program memory is
performed. The time to make this change is well under a second.

6.1.4 System Verification

The communicability testbed has the capability to input and output
audio signals at many locations throughout the system. This allows for
troubleshooting and verification of the intelligibility of part or all
of the system using the DRT. For example, with the use of a switch
that effectively locks the signal flow so that station B is always
sending and station A is always receiving, an input deck is placed at
station B. Pre-recorded test material leaves station B and travel-
through the communicability system, including any chosen processor,
after which it is accessed for recording at the output to station A on
the relay box. This allows DRT tapes to be generated that include the
entire communicability system's characteristics except for the
microphones. Tape decks can also be configured to record conversations
taking place in either full or half duplex modes, processed and
unprocessed speech.

The plot profile (Figure 6.2) shows high quality scores for the
communicability system in loopback as well as interfaced with three
standard narrowband digital voice processing algorithms as implemented
by the MAP 300s. A comparison of the station A-B signal path and the
B-A path are statistically identical. A slightly higher score for the
inclusion of the analog loopback of the MAP 300 S -ech Processor
Interface (the third system on the plot) is a reflecti-n of bandpass
filtering taking place at this point in the signal path. Finally, the
scores for the three algorithms, LPC-10 at 2.4Kbps, APCSQ at 9.6Kbps,
and CVSD at 16Kbps are statistically identical to scores for the
processors in a stand-alone configuration. The DRT confirms the high
intelligibility of the communicability system.

6-7

(n W w a

z n '-4

oo V 0 0J V)
a M 0 W

0 M 0 0 In 0 CL . 99 ccI U
w (a wn a 'a qa ta atfl I

Wc CO W C A W W 49W ve w to InC
SIn th In th In in tA V) gow

C- Q> > U.. 0- 00 Q

t. I tAOa

LL~ IZ "- - a 1 a)

(xz wz (n n**a n1.-o

a.. (l0 .V)O (x (.j;0 M .JU# I
IL V In L M =1 MM3 Ma

I- :9 -WA = x XQ - z W

0.1 w 0t Er - Zr I- - I-< -<

Cr-- o IJ n~ UW nWI-)t A&a.0 CLO CLO CL L "c9 a V) VIU a fn0 jV) 0 1 - V)In ol (do ing

.....

........

...............

- I-.....

Q w

-6--

REFERENCES

1. S. Woolf, et al., "Interactive Mathematical Modeling", Chapter IX,
Speech Processing; RADC-TR-77-86 February 1977; ARCON Corporation,
Final Technical Report 1 October 1973 to 1 September 1976.

2. W.H. Rosenfeld and C.B. Hayes, "Speech Processing Software and
Computer Systems Development", R77-01W ARGON Corporation, 4 Feb 1977;
Final Report 1 September 1975 to 30 September 1976.

3. W. Rosenfeld, "Narrowband Digital Voice Processing (LDVT
PLPC/TRIVOC Software Documentation)", ESD TR-76-282, Vol. IV, March
1978.

4. J.D. Tardelli and C.B. Hayes, "Narrowband Digital Voice Processing
Software and Computer System Development; Quintrell and PDP-11
Programs and Systems", R78-01W ARCON Corporation, 24 April 1978; Final
Report 1 October 1976 to 31 December 1977.

5. J.D. Tardelli and C.B. Hayes, "Mathematical Modeling for
Narrowband Digital Voice Processing - A Quintrell Implementation of
AFSC LPC-10 and Voice Processing Facility Systems", R80-01W ARGON
Corporation, 30 Sept 1980;and Fiial Report 1 Jan 1978 to 30 April
1980.

6. C.M. Walter and J.D. Tardelli, "Array Processor Oriented Signal
Compression Techniques for Optimizing the Performance of Narrowband
Digital Transmission Systems", R81-01W ARGON Corporation, 30 Oct
1981;Final Report 1 May 1980 to 30 Sept 1981; and RADC-TR-85-41, March
1985.

7. E. Wachsler and J.D. Tardelli, "Speech Processing Facility System
and DRT Software", R82-01W ARGON Corporation, 20 April 1982; Final
Report 1 May 1980 to 31 December 1981.

8. J.D. Tardelli and W.F. Bellew, "Diagnostic Rhyme Test Software
System", R83-01W ARGON Corporation, 31 January 1983; Interim Report 1
January 1982 to 31 December 1982 and RADC-TR-85-240, December 1985.

9. J.D. Tardelli, C.M. Walter, J.W. Kennedy and J.T. Sims, "Research
and Development for Digital Voice Processing", R84-OIW ARGON
Corporation, 31 July 1984; Final Report I January 1982 to 8 May 1984;
and RADC-TR-85-46, March 1985.

10. J.D. Tardelli, C.M. Walter, J.T Sims, P.A. LaFollette and
P.D. Gatewood, "Research and Development for Digital Voice Processing
(DVP)", R86-01W ARGON Corporation, 30 May 1986; Final Report I January
1984 to 14 February 1986; and RADC-TR-86-171, October 1986.

R-1

11. J.D. Tardelli, J. LeBlanc and P.D. Gatewood, "RADC/EEV Diagnostic
Rhyme Test System Improvements", TR-88-0l ARCON Corporation, 24 June
1988; Interim Report 16 February 1986 to 30 June 1988; and
RADC-TR-89-256, November 1989.

12. C.M. Walter and J.D. Tardelli, "Signal Compression Model
Interrelationships in the Time, Frequency, Principal Component and
Canonical Coordinate Domains", Proc. of 1982 IEEE ICASSP, IEEE Press,
New York, 1982, pp. 1367-1370.

13. J.D. Tardelli and C.M. Walter, "A Speech Waveform Analysis and
Reconstruction Process Based on Non-Euclidean Error Minimization and
Matrix Array Processing Techniques", Proc. of 1986 IEEE ICASSP, IEEE
Press, New York, 1986, pp. 1237-1240.

14. P.A. LaFollette, J.T. Sims, and J.D. Tardelli, "A Parallel
Implementation of Canonical Coordinate Speech Compression", Proc. of
1987 IEEE ICASSP, IEEE Press, New York, 1987, pp. 2193-2196.

15. Magnus, W., Oberhettinger, F., and Soni, R.P., Formulas and
Theorems for the Special Functions of Mathematical Physics, Third
Edition, Berlin: Springer-Verlag, 1966.

16. S.A. Zoharian and M. Rosenberg, "Principal-Components Analysis
for Low-Redundancy Encoding of Speech Spectra", Journal of the
Acoustical Society of America, Vol. 69, pp. 832-845 (March 1981).

17. D.E. Knuth, Sorting and Searching, Reading, MA: Addison-Wesley,
1973, p. 241.

18. J.J. Symanski, "Progress on a Systolic Processor Implementation",
Proc. SPIE Tech. Syrip. East '82, May 1982.

19. Interactive Laboratory Systems (ILS) Users Guide Version 3.0,
Interactive Laboratory Systems (ILS) Trogramming Guide Version 3.0, 1
October 1980; Signal Technology Inc., Santa Barbara CA 93101

20. G.S. Kang and S.S. Everett, "Improvement of the Narrowband Linear
Predictive Coder, Part 1--Analysis Improvements", NRL Report 8645,
Naval Research Laboratory, Washington DC, 27 December 1982.

21. G.S. Kang and S.S. Everett, "Improvement of the Narrowband Linear
Predictive Coder, Part 2--Synthesis Improvements", NRL Report 8799,
Naval Research Laboratory, Washington DC, ll-June-1984.

22. P.T. Brady, "Equivalent Peak Level: A Threshold-Independent
Speech-Level Measure", J. Acoust. Soc. Am., Vol. 44, pp. 695-699,
1968.

23. J.T. Sims, "A Speech-To-Noise Ratio Measurement Algorithm", J.
Acoust. Soc. Am., Vol. 78, No,. 5, pp. 1671-1674, 1985.

R-2

24. G.S. Kang and L.J. Fransen, "Low-Bit Rate Speech Encoders Based
on Line-Spectrum Frequencies (LSFs)", NRL Report 8857, Naval Research
Laboratory, Washington DC, 24 January 1985.

NOTE: Although this report references the following limited documents,
no limited information has been extracted.

Item 6, DoD and DoD contractors only; premature dissemination, Mar.
85. Other requests to RADC/EEV Hanscom, AFB MA 07131-5000.

Item 7. DoD and DoD contractors only; software documents, Dec. 85.
Other requests to RADC/EEV Hanscom, AFB MA 07131-5000.

Item 9. DoD and DoD contractors only; premature dissemination, Mar.
85. Other requests to RADC/EEV Hanscom, AFB MA 07131-5000.

R-3

