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A. Research Objectives

The research objectives in this contract are to develbp and test new integral-equation

methods for solving electromagnetic scattering problems. One important application of the

methods is in calculating Radar Cross Section (RCS). Because the methods are designed

to be extremely efficient computationally, they will ultimately be able to be applied to

calculations of the RCS of realistically large vehicles and platforms. The specific research

objectives for the program were:

(1) Develop, test and evaluate codes to calculate electromagnetic scattering from conduct-

ing bodies in two dimensions, employing the Fast Multipole Method (FMM) originally

developed by Rokhlin (Ro85, Ro90) for acoustic scattering. The FMM reduces computa-

tion time for electromagnetic scattering problems from 0(n3 ) to 0(n4 / 3 ), and potentially

0(n log n) per iteration, where n is the number of sample points oil the boundary of

the scatterer. Using complexification and extrapolation, the FMM can be made globally

0(n4/3), and potentially 0(nlogn).

(2) Develop the theory of impedance boundary conditions so that orattering may be com-

puted from conducting bodies coated with thin dielectrics.

(3) Develop methods to improve the accuracy of integral-equation computations of electro-

magnetic scattering. Extend and improve a scattering code using fourth-order-convergent

quadrature formulas. Development of this code was begun under a related prior IR&D

project in FY1988. Acesstoa Ir

(4) Explore approaches to computing scattering in three dimensions. .

D I I; t I' u t IonlI
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B. Research Accomplishrments

(1) A FORTR kN code (FMMl) implementing the Fast Multipole Method for the two-

dimensional calculation of electromagnetic scattering from conductors was developed, tested,

and evaluated. T:he code reprcsents a significant accomplishment because of its extraordi-

nary computational efficiency. The operation count has been reduced to O(n 4 / 3) (globally)

by using the code in conjunction with the mechod of complexification and extrapolation.

Conventional iterative methods have operation counts of O(n 2 ) per iteration, and Gaus-

sian eliaination is g"obally O(n3 ). The FMM for electromagnetic scattering is reported in

our publication En9g (see Section C and Appendix A).

(2) The theory of impedance boundary conditions has been dveloped for multiple thin

material layers. This theory allows for the calculation of electromagnetic scattering from

coated conductors.

(3) A code calculating electromagnetic scattering from conductors has been developed, us-

ing an integral-equation formulation employing highly accurate, fourth-order-convergent

quadrature formulas. This is perhaps the most accurate integral-equation code in exis-

tence for electromagnetic scattering. Development of this code (SKIE1) was begun in a

related prior IR&D program in FY1988 and reported in our publication Mu89 (see section

C and Appendix A). However, the code was extended and perfected under this contract,

because many of its features and subroutines were necessary for the proper design of the

code implementing the Fast Multipole Methud (Accomplishment (1)).

(4) The code (SKIE1) as perfected and extended under this contract was used in an

IR&D investigation of the resonance problem in electromagnetic scattering computation,

as reported in our publication Mu9O (see Section C and Appendix A).
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(5) Preliminary exploratory work was performed on the extremely difficult problem of

three-dimensional scattering computation.

C. Publications

[1] En9l: Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassilicou (1990) "The Fast

Multipole Method for Electromagnetic Scattering Problems", submitted to J. Appl. Phys..

Included in Appendix A

[21 En9la: Engquist, B., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1991), "Higher

Order Impedance Boundary Conditions for Electromagnetic Scattering," to be submitted

to Journal of Applied Physics. Included in Appendix A

[3] En9lb: Engquist, B. (1991), "Effective Boundary Conditions for Helmholtz's Equation

with Thin Layers", to be submitted to SIAM J. Numer. Anal.

[4] Mu90: Murphy, W. D., V. Rokhlin, and M. S. Vassiliou (1990), "Solving the Resonance

Problem in Electromagnetic Scattering Computation", J. Appl. Phys. 67 (10), 15 May

1990, 6061-6065. Included in Appendix A

[51 Mu89: Murphy, W. D., V. Rokhlin, and M. S. Vassiliou (1989), "Numerical Second-

Kind-Integral-Equation Solutions of Electromagnetic Scattering Problems", Electronics

Lett. 25, 643. (This is a relevant publication produced under a related FY1988 IR&D

project). Included in Appendix A

D. Personnel

# WILLIAM D. MURPHY, PhD. Member of the Technical Staff, Computational Sciences

Fundion, Rockwell International Science Center. Program Manager and Co-Principal
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Investigator. Dr. Murphy has built on the foundations created by Dr. Rokhlin for acoustic

scattering t0 develop effective new numerical techniques for electromagnetic scattering.

* MARIUS S. VASSILIOU, Ph.D. Member of the Technical Staff, Computational Sci-

ences Function, Rockwell International Science Center. Co-Principal Investigator. Dr.

Vassiliou's role has been primarily in the computer implementation of the new numerical

methods.

* BJORN ENGQUIST, PhD. Professor of Mathematics, University of California, Los An-

geles. Co-Principal Investigator. Professor Erigquist has developed the theory of homog-

enization and concentration allowing the calculation of scattering from conductors with

thin coatings.

* VLADIMIR ROKHLIN, Ph.D. Professor, Dept. of Computer Science, Yale University.

Co-Principal Investigator. Dr. Rokhlin's role has been in mathematical analysis and

program design.

E. Interactions

(1). Papers Presented at Conferences:

[1] Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1991), "The Fast Multi-

pole Method for Scattering from Electrically Large Objects," accepted for presentation at

the 1991 National Radio Science Meeting/ IEEE/AP-S Symposium, University of Western

Ontario, London, Ontario, Canada, June 24-28.

[2] Engquist, B., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1991), "New Methods for

Developing Higher-Order Impedance Boundary Conditions on Curved Surfaces," accepted
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for presentation at the 1991 National Radio Science Meeting/ IEEE/AP-S Symposium,

University of Western Ontario, London, Ontario, Canada, June 24-28.

[3] Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1991), " What is The

Fast Multipole Method (FMM) and How can it Help You Solve Electromagnetic Scattering

Problems More Effectively?", accepted for presentation at the Progress in Electromagnetics

Research Symposium (PIERS), Cambridge, Massachusetts, July 1-5.

[4] Murphy, W.D., V. Rokhlin, and M. S. Vassiliou (1990), "The Fast Multipole Method

(FMM) for Electromagnetic Scattering Problems", presented at the URSI/National Radio

Science Meeting, Jan. 3-5, Boulder, Colorado.

[5] Murphy, W.D., V. Rokhlin, and M. S. Vassiliou (1990), "Solving the Resonance Prob-

lem in electromagnetic Scattering Computation" , presented at the URSI/National Radio

Science Meeting, Jan. 3-5, Boulder, Colorado.

(2). Other Laboratories and Agencies

Harold Brooks of the Naval Weapons Laboratory, China Lake, CA, has been made aware

of our work and is interested in receiving copies of the code FMM1.
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F. New Discoveries

Wt have developed the first Fast Multipole Code that solves electromagnetic scattering

problems. Previous implementations of the method solved acoustic or potential problems.

We have developed a new method of calculating electromagnetic scattering and RCS that is

both highly efficient and highly accurate. The Fast Multiple Method, used in conjunction

with complexification and extrapolation, reduces computation time for electromagnetic

scattering problems from O(n 3 ) to 0(n"/3), and potentially O(n log n), where n is the

number of sample points on the boundary of the scatterer.

We have also developed new theory on impedance boundary conditions for multilayered

dielectrics, and begun work on the necessary theory to better handle corner singularities.

6
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G. Background Information, Theory, and Compritational Results

Cl. The Fast Multipole Method (FMM) Applied to Electromagnetic Scattering

Our paper En9l (reproduced in Appendix A) should be cc ,sulted for full details and

results. Below, we present some background information, partially excerpted from that

paper. Essentially, the Fast Multipole Method that we have developed and applied is one of

the most efficient methods available for computing electromagnetic scattering. The method

reduces the operation count for solving the Magnetic-Field Integral Equation (MFIE) from

0(n') for Gaussian elimination to 0(n 4 / 3 ) per conjugate-gradient iteration. If our method

of "complexification" and extrapolation of the wavenumber (mentioned below and de-

scribed in detail in the paper in Appendix A) is applied, then the condition number of

the discrete system is bounded; consequently, the operation count of the entire FMM (all

iterations, ) becomes globally 0(n 4/3).

The Fast Multipole Method (FMM) was developed by Rokhlin (Ro85, Ro90) to solve acous-

tic scattering problems very efficiently. We have modified and adapted it to the second-

kind-integral-equation formulation of electromagnetic scattering problems in two dimen-

sions. The present implementation treats the Dirichlet (TM) problem for two-dimensional

closed conducting objects of arbitrary geometry.

Consider a scatterer with n nodes on its boundary. Divide the boundary into p segments,

each containing n/p nodes. Instead of calculating n2 interactions among n current sources

on the boundary, consider each segment to be a cluster of n/p sources. For segments that

are close together, the exact interactions must be calculated. For segments sufficiently

far apart, however, we may combine the s,.)urces in each segment, approximating their

radiation fields by the first N multipoles. We describe each segment via an equivalent

7
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multipole located at the segment's center. We can calculate the contribution of each such

equivalent expansion to the field at the center of any sufficiently separated receiver segment,

and in that receiver segment we can use a partial wave expansion to obtain the field at

all the individual n/p nodes. The radiation field at any particular node on the scatterer

boundary is the sum of contributions of N multipole expansions of each of the far-away

segments, and the direct contribution of very close segments. The method reduces the

operation count for solving the Magnetic-Field Integral Equation (MFIE) from 0(n3 ) for

Gaussian elimination to O(n 4 / 3 ) per conjugate-gradient iteration.

We also present a simple technique for accelerating convergence of the iterative method:

"complexifying" k, the wave number. This has the effect of bounding the condition number

of the discrete system; consequently, the operation count of the entire FMM (all iterations)

becomes O(n4/3). We present computational results for moderate values of ka, where a

is the characteristic size of the scatterer. Methods and results are described in detail in

En9l, included in Appendix A.

Consider a two-dimensional conducting body whose axis is aligned with the z coordinate

axis. A monochromatic electromagnetic wave incident on this structure with an electric

field vector parallel to the axis of the body is referred to as the transverse-magnetic (TM)

case. The incident and scattered fields both satisfy the following Helmholtz equation

AE, +k 2 E, = 0. (1)

The boundary condition for equation (1) is that the total E field vanish on the surface of

this conductor, i.e.,

Et=0 on C (2)

8
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or more explicitly

E," + E = 0 on C. (3)

The above Helmholtz equation can be reduced to the following second-kind integral equa-

tion

%P(r) + 2 OG(klr - r') TP(r') dl' = -2E nc(r) (4a)L (rO n(r')

E.cat(r) = G(klr - r 'i) 91(r') dl! (4b)

On(r)

where r and r' are both on the boundary C, and G is the free-space Green's function in

two dimensions, i.e.,

G(klr - r') = iH(')(kir - r')/4 (5)

with Hl)(kIr - r'I) being the Hankel fuction of the first kind of order zero. See Co83 for a

derivation of equation (4). Equation (4), the TM case, is often referred to as the Dirichlet

problem in the mathematical literature (Kr89, Co83). If we discretize the boundary into

n points, then the above integral equation (4a) is converted to the following linear system

(via Nystr6m's method (Kr89)):

n

IF(ri) + 2 E Aij 1(rj) = -2Enc(ri) (6)
j=1

where the matrix A = (Aij) is n x n and the vectors (T(ri)) and (Enc(rj)) are col-

umn vectors having n rows. Applying normal matrix multiplication, AT requires O(n 2)

operations. The FMM algorithm reduces this to O(n4/s) or ultimately to O(n log n).

Consider n nodes on the boundary of the scatterer. Divide the boundary into p equal

segments, where 2 < p < n. In each segment, there are n/p nodes. If the length of the

boundary is L, each segment has length L/p. The center of each segment is located at

9
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zi(i = 1,2,... ,p). In scattering problems, each node can be treated. conceptually as if it

were a source of radiation.

If we have sources within a finite region of space, the radiation emitted from these sources

in the far zone can be approximated using a collection of multipoles located at the center

of the region (Ro85, Ro90, Gr87). The multipole approximation converges rapidly outside

any circle D containing all sources and separated from D by at least one wavelength.

In fact, once a sufficiently large number of multipoles is included, the accuracy of the

approximation increases superalgebraically (faster than any negative power of N (Ro9O)).

Consider each segment on the boundary as a cluster of n/p sources. The sources in each

segment are treated as a single aggregate source, and the radiation field of that equivalent

source is approximated using the first N multipoles located at the center of the segment.

For each pair of sufficiently-separated segments, the radiation of the N multipoles of one

segment can be represented as an analytical partial field expansion around the center of the

other segment. Then from this information, the field at the other nodes of that segment

can be evaluated using equation (16). For nearby segments, the direct contribution must

be calculated to evaluate the radiation field. The radiation field at any particular node

on the boundary is the sum of the contributions of N multipoles of each of the far-away

segments and the direct contribution of the nearby segments. Ro90 considers the precise

mathematical description of the process.

To illustrate the above verbal description mathematically, let us consider the field of a

two-dimensional magnetic surface current distributed over a two-dimensional body. Since

we have an exterior Dirichlet problem, a double-layer potential is needed. For the two-

dimensional TM problem, a magnetic current density at any point of the boundary is a

10
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vector in the x-y plane tangent to the body. The electric field of such a current distribution

is given by t •
Ecat() = V x G(kI - #'DK(j') dl' (7)

where K("3') is the magnetic surface current density, '= (p, 6), and C is the contour of

integration. In two dimensions equation(7) can be written as

= COG(k )- 1)IK(P')I dl' (8)

which is identical with equation(4b) if IK(")I is taken to be %P("). Substituting equa-

tion(5) into (8), we get

= i/ °) J /4(k) -P ) IK(a')l dl' (9)

The Hankel fuction Ho')(kl- ') can be expanded in terms of higher order Hankel

functions:
00

H )(kI,- ~'I) = E Hm)(kp)Jm(kp')exp(im(0-0')) (10)

Substituting equation (10) into equation (9) yields

E1C8(pO) = E H(')(kp)exp(im8) (" . OPm0kp')exp(-im('),,=-00 fc(,/4) -(- ( IK9,1) ]'(1

This can be regarded as the multipole expansion of the source K(p', 0'). For a discretized

source at n points located at x,' = (ps, O) (j = 1,2,... n) over a segment of the boundary,

equation(11) reduces to

.Escat(p, B) = M° Z-/4)- '  Jm(kpj) exp(_imO),).(kp) exp(im0)IK(x)l A (12)
E E~i/4) On(x.) (2M=-ooj=l n

41.
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where A/ is the discretized element of arc length containing the source IK(x)I. For a

given accuracy, we can truncate the infinite sum in equation(12) at N, and thus calculate

the first N multipoles of the source.

Historically, the FMM algorithm was first applied to Poisson's equation for n point charge

lines at locations xi(i = 1, 2,.. ., n) with strengths Ki. This is mathematically equivalent

to solving the equation
n

A = 6(x - (13)
i=1

where 6(x) is the Dirac delta function and x and xi are two-dimensional points. The

solution to equation (13) is

n

(x) xi log(lx - xi)/(21r) (14)

If we evaluate equation (14) at each point xi(i = 1, 2,..., n), then this computation re-

quires 0(n 2 ) operations. However, if large numbers of particles are combined into single

computational elements, then this operation count can be reduced if an approximate an-

swer (to a specified accuracy) is desired. When a cluster of particles is "far away" from a

particular point, then the potential of the cluster is approximated by the potential induced

by a single computational element located inside the cluster (Gr87). In the FMM algo-

rithm the computational element is a Laurent expansion centered at a circle containing

the cluster of particles. Given a cluster of charges located at points zi(i = 1, 2,... , n),

the expansion is given by

nc p

O(z)= Re(jlog(z - zi)) ; Re(aolog(z - zo) + Z ak/(z - zo)k) (15)
i=1 k=l

Here p is the order of the multipole and the aks are coefficients chosen so that the truncated

series is an accurate approximation of the potential. For equation (15), the computational

12
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effort is only 0(p) operations and is much less than 0(n,) for the direct approach. The

region must now be organized into well-separated points and very-near points. For near

points, the direct evaluation of (14) is used. See Ro85, Ro90, ar.d Gr87 for details of decom-

posing the regions into boxes of different sizes. When applying the FMM to Helmholtz's

equation instead of Poisson's equation the expansion (15) is replaced by the standard Han-

kel function expansion, which is then truncated to obtain a given accuracy requirement.

That is,

Ecat = ZH-)mHt$(kp) exp(imO), if p> a (16a)

Eo Z =_ mJm(kp)exp(imO), if p <a (16b)

depending on whether the calculations are to be done outside or inside the circle of radius

a (Ro9O). Obviously, any prescribed accuracy in the series can be guaranteed by taking

more terms in the expansion at the expense of more CPU time. We refer the reader to

En9l (included in Appendix A) for more details.

13
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G2. Impedance Boundary Conditions for Thin Dielectrics

Higher order impedance boundary conditions for thin coatings about closed conductors in

two dimensions are derived using Fourier integral techniques. Using a single-layer potential

and these impedance boundary conditions, second-kind weakly singular integral equations

are derived that model TE electromagnetic scattering problems. These integral equations

are solved using Nystr6m's method and approximately fourth-order convergent quadrature

formulas.

Consider a two-dimensional closed perfect electrical conductor coated with a thin layer

of dielectric and/or magnetic material. The classical way of solving the electromagnetic

scattering problem from such an object is to develop an integral equation in which the

contour of integration contains both the conductor and the outer surface of the dielectric.

The difficulty with this approach is that as the thickness of the dielectric layer approaches

zero, an ill-conditioned equation may result. In addition, the size of the discrete linear

system is twice as large as in the method described below. Our procedure will translate

the boundary condition on the surface of the conductor to the dielectric-air interface by

developing an impedance boundary condition on the interface. The resulting integral

equation will only have to be integrated along the interface, thereby reducing the number

of unknowns for the discrete problem by a factor of two and possibly removing the ill-

condition'ng caused by grid points on the conductor and dielectric being too close together.

Other work in this area can be found in Ro89, Se89, Vo89, Ha75, Ka65, Se81, Se62, Se9l,

and Ba90.

14
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G.2.1 Derivation of Higher Order Impedance Boundary Conditions

The following treatment is taken from our paper En9la, in preparation for submission to

the Journal Applied Physics. A draft of the paper is included in Appendix A.

Consider Helnholtz's equation written in co-ordinates normal (n) and tangential (t) to an

infinite flat scatterer along the t axis, i.e.,

a2 U tot 8 2 Uto~t (1)t-a2+ +}tu2°+ =o (1)
0n2+0t2 +~

where k, is the wave number in the dielectric (ki = kaiVr/-j). Here the superscript tot

denotes the total field. Thus

uto = u + u i'n (2)

where inc denotes the incident field. No superscript is used for the scattered field. The

boundary condition on the conductor for the TE polarization case is

Utot (3)o-7 = 0(3

and on the dielectric-air interface we have

OU2' e 2  U1
1 t

-Tn - On (4)

where ei is the dielectric constant in the thin layer and E2 is that in air. We assume the

layer thickness is 6.

Taking Fourier integral transforms along the scatterer and assuming functions decay at

±00, we can derive the following equation, where ^ denotes Fourier transformation:

02 toton2  = 2(2 - k )ftot = ito, 0 < n<6 (5)
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Let fiot denote the unknown value of si at n = 0 (on the metal-dielectric interface).

Then we obtain

2r
0 ,oTT(o) 02+t¢o

af=tot(o) _2r+lfitot(0) = 0, r = 1, 2,... (6c)
On On2r+1

where we have used equations (3) and (5). Expanding in a Taylor series in 6, we have

fiotb 0 =fiot+ 2,fiot4'o(0 o)= -o 2 +" (7)

Oittot(6 - 0) = 6 tot + +.., (8)
On +6

Substituting (8) into (4) gives (at n = 6 + 0)

8itot/On = eC2 (Cifot + (6) 2fto/6 +.)/

I bito t,,/e + 0(6b2) (9)

where we have used equation (7) and the continuity of fitot. Note that the subscript 2

represents the point n = 6 + 0. Taking inverse transforms of equation (9) yields the desired

impedance boundary condition
t (,9 Utot/ 2 .2 ot)auo i -C2 (O 2 ot/la + k,.,) + 0(b2) (10)

On - .

In terms of scattered and incident fields equation (10) may be re-written as

Ou2  O2u2 + k2U2 ] =-2Ht - .(2/i) 2+ k iUnc
+n 6(6/ei 1- On t 12

6(11)
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where we have dropped the 0(62) term in equation (11).

Although equation(11) has been derived for a flat surface, it remains true to 0(62) for a

curved surface as well. This can be seen by making a rotation of angle oe between the flat

boundary and the curved boundary, i.e.,

t = ycosa - xsina

n = Xcosa +ysina.

Then to leading order a = y/R where R is the radius of curvature. Specializing to the

point (x, y) = (0, 0), the origin, we have

, 2t 02 27= 7( _L)Y_ I-X) + O(b2)

or

02 ,

and
O#'n 02 2  Y

or

19Y2 [(X,,)=(o,o) =R *"

Using the above and the chain rule in equation(10) leads to

-2 = -6(e 2/e1)[ - + O o +kl2Uoi + o(62)
On &2 +R On 12

or

(1 + R) =,& - -i---+ 2+ ] + 0(62).

eW On el &t2  12
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Finally,
=- - E2 + k ,, t t + o (6 )

an el 1 t]2O1 2

for a curved surface.

To develop a third order impedance boundary condition on a curved surface, start with

Helmholtz's equation in normal and tangential coordinates as

C + 2H OUot a2uto, k utot = 0 (12)
+ n- + -52 + 1 o(1

where 1 is the curvature at the boundary point. Let x and y be points separated by a

distance b on the dielectric and conductor, respectively. Then expanding in Taylor series

along the normal yields

totu ° (X) b2 O2utOt(x) 3
ut(Y) = uO(X) - O n + 62 O 2 + O(6). (13)

Integrate equation (12) along the normal and apply equation (3):

aut6 9u" 2 6to 2 tt
-2H] -'u 8 + u to9ds + k] uio ds=0 (14)7n- + 2H On d t2 + 0 1-1

where H is treated as a constant to 0(6).

From equation (13), we have

6 to to 6 a o u tot W )
U ds = buW - On + O(b3) (15)
On d2=6 0  Onu° x

itf- autot(x) b2 O2uto W + O(63). (16)

Jo Ott On 2 0n2

Inserting these expansions into (14) gives
_____(____ +2(Ouioix) 62 02u'°i(x:) O ,ut°(x )
OutotW+ )2 + 1(6 ' )+6 + k2"Uo(X) + ° (b) = 0. (17)

O n On 2 On2 & 2
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Note that since Outot/On = 0(6), we have that

Ut ds = 6utot(x) + 0(6 3 ) (18)

and from equation (12)

82 at,(x) kautoto)((19on2  + 0(6) + - - + k0utot) = o. (19)

Using equation (19) in equation (17) leads to
+a2, 6,( () + , (6 a2H)o(x)

IOn+ 2 W + 2H8 + (b + - -2H + k2(b + 62H)ut(x) + 0(6) = 0. (20)On ~ On &

The last expression may be re-written as

' 2.tot-tob = Ut(O +2k ut + 0(6V). (21)

The interface condition (4) may be used as before to obtain the appropriate condition at

the dielectric-air interface.

Now introduce the single-layer potential

u(x) = J (x,)O(y)ds(y) (22)

where x and y are two-dimensional points, C represents the outer contour (around the

dielectric), and 1 is the two-dimensional free stream Green's function given by

D(x, y) = iH(')(kJx - yl)/ 4  (23)

Here Ho") denotes the first kind Hankel function of order zero, and k = kair. If equation

(22) is substituted into (11) and the appropriate jump conditions (Co83) are enforced at

a 19
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the dielectric surface, we can derive the following weakly singular second-kind integral

equation:

O(x) - 2 J [oM(x, y)/On(x) + 6(C2 f/i)(82D(X, y)/& 2(X) + k 4(X, y))] 0(y) ds(y)

= -2g(x) (24)

See Co83 for more details on derivations of integral equations in the form of equation

(24). If 6 is set to zero, equation (24) reduces to the TE polarization case for scattering

from a perfect electrical conductor. If the term 82 4D/8t 2 is removed from equation (24),

we have the standard first order impedance boundary condition integral equation (Co83).

Finally, as written, we call equation (24) the second order (0(62)) impedance boundary

condition integral equation for modeling a thin coating about a metal conductor. The

second derivative term obviously models the curvature of the scatterer.

The above derivation can easily be extended to multiple dielectric surfaces. Suppose we

have m overlapping coatings with physical parameters (6j, ej, ki) (i = 1, 2,..., m). Let

6 = 6b + 62 + '". + 6m and set fi = ei+l/ei where em+l = eG,r. Then following the same

steps as above, we can derive the following impedance boundary condition at %,he m-th

dielectric-air interface:
In

Ou/On = - pj+lbi6j(o8u/& 2 + k u) + g + 0(62) (25)
j=l

where we have dropped the subscript 2, and g is now defined to be equal to the sum in

equation (25) for the incident field. An integral equation analogous to equation (24) can

be easily written.

In addition, fourth and higher order impedance boundary conditions may be developed by

allowing more terms in the Taylor series expansions (7) and (8). For example, the fourth
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order impedance boundary condition is given by

Ou/On + (C2 /fi)( 3/6)[( 2 /0t 2 + k ][0 2 u/0t2 + k2U] = g (26)

where -g now takes the form of the second term in equation (26) for the incident field and

the subscript 2 has been dropped.

G2.2 Examples

Assume the incident field is in the form of a plane wave with the incident angle /, i.e.,

uinc(x) = exp[ik(xI cos 0 + X2 sin/3)1 (27)

wherex = (xl, x2).

Fig. 1 shows the results (expressed as Radar Cross Section per incident wavelength, in

dB) for first and second-order impedance boundary conditions, for a peLfectly conducting

elliptical cylinder (axes a = 2, b = 1; kb = 5) having a thin coating of thickness 6 = 0.005.

The coating has material parameters e = p = 14 + 1.4i. The figure also shows a perfectly

conducting elliptical cylinder without a coating, for comparison.
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G3. Achieving High Accuracy in Second-Kind Integral Equation Solutions

In this section we describe the application of highly accurate quadrature formulas to the

computation of electromagnetic scattering via second-kind integral equations. Our code

using this method is perhaps the most accurate integral-equation method in existence for

computing electromagnetic scattering. The method handles the singularity in the kernel

(Green's function) by employing quadrature formulas with endpoint corrections (Ro85a,

Mu89) that are O(1/nk) where n is the number of grid points and k is a positive integer.

Thus, these quadrature formulas are convergent even for singularities of the form log x and

X*(-1 < a < 0). In our computer program SKIE1, k is approximately 4 (but can be made

higher).

In two dimensions, electromagnetic scattering from a closed conducting object defined by

the curve y can be described by solving Helmholtz's equation

V2 + k2q =0 (1)

where k is the wave number of the incident radiation. In the case of TM polarization, 0

represents E., the z-component of the electric field, and the boundary condition on -y is

given by

S= f = -Enc on - (2)

where E inC is the z-component of the incident electric field. We refer to problem (1-2) as

an exterior Dirichlet problem. For TE polarization, 0 represents H,, the z-component of

the magnetic field, and the boundary condition on -y is given by

-v v on-y (3)
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where v is in the outward normal direction from -y and Hinc is the z-component of the

incident magnetic field. We refer to the problem defined by equations (1) and (3) as the

exterior Neumann problem. For both the exterior Dirichlet and Neumann problems a

radiation boundary condition at oo is required to guarantee the uniqueness of the solution.

This conditon is given by

lim r 1 / 2  -ik O  (4)

By developing local or global boundary conditions that are applicable at a finite distance

R from the scatterer, it is possible to replace (4) with such conditions and solve the

finite domain problem. Although the discrete problem has matrices which are sparse, the

condition number increases with the inverse of the square of the mesh size as it approaches

zero and eventually produces ill-conditioned systems especially as k, the wave number,

increases. Instead we prefer an integral equation formulation which yields smaller matrices

(unknowns are only on -1 and not exterior to -t), although unfortunately these matrices are

dense.

We define the field ZoR 2 \ {ox} -+ C' of a unit charge located at the point xo E R2 by

the formula

.. (x) = Ho(k11x - xo11), (5)

where H0 denotes the Hankel function of order zero. We define the field 0" of a unity

dipole located at x0 and oriented in the direction h E R2 by the fonaula

ok k(x - xo, h)
XOh(X) = -H (kllx - xoll)" kix -Xoh) (6)

For a continous function a : [0, L] -+ C' , the potential of a single layer of density o, on a
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curve 'y is a mapping P, : R 2 -C C defined by the formula

L
Pko(x) = j (t)(x)a(t)dt (7)

and the potential of a double layer of density a on a curve y is a mapping Pla : R 2 
- C'

defined by the formula L
Pko(,) = fj (t),N(,)(X)()dt. (8)

Co83 show that by deriving appropriate jump conditions as x -- ', the function a satisfies

the integral equation

2ia(x) - Pk,(x) = -f(x) (9)

Thus, the TM problem is solved by solving the integral equation (9), and the resulting

field is generated by evaluating the integral (8).

Similarly, for the TE problem (Neumann case), using the single-layer potential (7) we must

solve

2ia(x) + 0 P,(X) = g() (10)

Consider a function %P satisfying Helmholtz's equation (1) and the radiation condition (4).

In polar coordinates it may be expanded as

00

(x)= E ImHm(kp)e'm' (11)
m=-00

where Hm denotes the Hankel function of order m. Asymptotic forms of the radiation field

can be developed. First define

Fp,,T(9) = lim 4I(tx + XO)Vt'ke- (i / 4) i (12)
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where x = (cos 0, sin 0). Substituting (11) into (12) and using the asymptotic decay of the

Hankel functions, we may write

00

Fkpzo(o) = : #1me-(mr/2)eimO (13)
M=-oo

which provides an explicit expression for Fqyo via the coefficients {/3 m}, and we will refer

to Fq,,x 0 as the asymptotic representation of the field T with the origin at x0 .

In order to solve eq. (9) or (10) numerically using Nystr6m's method, it is necessary

to develop quadrature formulas that can handle the logarithmic singularity of the Hankel

function. Roughly fourth-order-convergent quadrature formulas are derived (Ro85a, Mu89)

by starting with the Euler-Maclaurin formula with the singular point (x = 0) removed.

That is, let

j f(x)dx = h[yZf(xi) - 21 - h2f,(Xn) (14)
i=l

where h = 1/n and xi = i/n. To correct for the singular point, a concentration of points of

the form 6=1 Ajf (Xi) is introduced in the first interval, where Xj = jh/6 for j = 1, 2, ..., 6.

The derivative term is approximated by the one-sided difference formula

f'(xn) = F(3f(xn) - 4f (xn_)+ f(x.-2)) (15)

Combining these terms yields

I n 6

0f (x)dx =h(, fAxi) + E7 Ajf(X1) - f (xn)/2
i=1 jr1

4 (f(xn-2) - 4f (xn-) 3f(xn))) (16)

The unknown weights A, (j = 1, 2, ..., 6) are determined by solving the 6 x 6 linear system

that results when Eq. (16) is assumed exact for the following candidate functions f(x):
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1, x, x2 , logx, xlogx, and x2logx, using analytic integration rules. Once computed, the

quadrature weights can be stored and looked up numerically when needed. The proof of

approximately fourth-order convergence can be found in Ro85a.

Fig. 2 shows the approximately fourth-order convergence in several electromagnetic scat-

tering solutions. The relative errors are calculated by a method which is described in

Mu89. The method essentially amounts to making the code numerically verify Green's

second identity, and is a very good way to check the accuracy of the computations. As

can be seen on the figure, accuracy at 10 points per wavelength is at least one percent,

and can be much better. Dramatically increased accuracy can be obtained by using morm

points. This is important, because integral-equation methods commonly used today (most

of which are method-of-moments implementations) do not have nearly as favorable con-

vergence properties, and some of them even diverge.
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G4. Approaches to the Three-Dimensional Problem

The extension of the FMM to three dimensions is non-trivial because of the difficulty

of working with spherical Hankel functions. The essential idea is that one replaces the

computation of the field induced by a large number of monopoles or dipoles by the com-

putation of the field induced by a new computational element which is a spherical Hankel

function expansion. The cost of evaluating this expansion is much cheaper than the direct

evaluation of the field induced by all the mono-poles or dipoles. The cost of evaluating the

matrix-vector products are reduced when the accuracy requirements are small because the

number of terms in the spherical Hankel function expansion can be minimized.

In three dimensions, the formulation in equations (1-5) of Section G1 is modified to use

the three dimensional free-space Green's function given by

exp(iklr - r'I) (5')
aj- r'-r'=

In addition, the curve C in equation(4) now becomes a surface in three dimensional space.

The source distribution ?P(r) on C can be approximated by linear functions over each

triangular element which subdivides the surface C, i.e.,

1(r =e, Ln,(r)
n

where Ln is the hat function at the point rn, the center of the n-th triangular element.

The singularities in the integral in equation(4) at the point r = r' may be handled by the

quadrature formulas in Mu89.

Once equation(4) is discretized using the above expansion and quadrature formulas, a

linear system results. The 1-th component of this system is identical to the field evaluated
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at the point rl which is induced by the monopoles or dipoles around the surface C. The

fast multipole method replaces this matrix-vector operation by a computational element

induced by these monopoles or dipoles. Such a formula may be derived by using a Poisson

formula for Helmholtz's equation on a sphere S given by

I(X) = jI(s)H(x, s) ds

with

H(x,s) = 1) An V p(cosk) e)
n=a2Z(2 )(ka)

Here h 1) is the first spherical Hankel function, P, is the Legendre polynomial of order n,

0 is the angle between Ox and Os, r = lxi, a = Isl and x is a three dimensional point.

Using an appropriate integration formula (e.g., Ro85a) and truncating the above series to

quarantee a prescribed accuracy requirement leads to the desired computational element

which may be used in the FMM to reduce the number of calculations.
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G5 Numerical treatment of corner singularities.

The numerical methods that we have employed to solve the integal equations of scattering

theory assume the boundaries of the scatterer are smooth. For trailing edges of airfoils or

corner singularities, we must apply different quadrature formulas. One approach is given

below. Assume the parameterization variable is s with a = 0 at the comer and choose a

uniform mesh, h. Then we write

1! N/0g(x) dx ag~j + h gx)]tr~x> (xj)+h> g(xj). (1)
10j=Oj=+

Suppose the corner singularity can be approximated by a function like

g(x) = ao +ax + a2X+... (2)

where 0 < a < 1 and a is a function of the comer angle or the trailing edge angle. The

unknown values cej in equation (1) can be determined by assuming the formula is exact

for the trial functions g(x) = 1, xe, x,... Ix - 1. It, in addition, the function g(x) has a

logarithmic singularity due to the Hankel function kernel in the integral equation, we must

include in the trial functions g(x) those of the form In x, x ln x, x 2 ln x, ... as in Ro85a,

Mu89, and Mu90. For example, with a = 1/2 and I = 2, the weights in equation (1) are

a'0 = .195h, c4 = 1.61h, and a' = .695h. This can be seen by letting a' = ha0 , a, = hal,

and a' = ha 2 + h/2 and performing the integration over the interval [0,2h]. For g = 1,

g = x', and g = x, we obtain

hao + h.,. + ha 2 = 2h (3a)

ha h" + ha (2h)' = (2h)+'/(u + 1) (3b)
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halh + ha 2(2h) = (2h) 2/2. (3b)

Simplifying equation (3) gives

ao + al + Ce2 = 2 (4a)

a, + 2fcr2 = 2U+'/(Oa + 1) (4b)

a, +2a2 = 2. (4c)

Solving equation (4) yields

o = r (Sa)

a1 = 2 - 2r (5b)

a 2 = r (5c)

where

r = [2 - 2+'/(u + 1)1/(2 - 20). (Sd)

Substituting a = 1/2 into equation (5d) gives r = 0.195, and the result hollows.
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Fig. 1 Radar Cross Section per incident wavelength (in dB) for first and second-order impedance

boundary conditions, for a perfectly conducting elliptical cylinder (axes a = 2, b = 1;

kb -- 5) having a thin coating of thickness b = 0.005. The coating has material parameters

e= y = 14 + M.i. The figure also shows a perfectly conducting elliptical cylinder without

a coating, for comparison.
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convergence. The quadrature formulas used are approximately fourth-order convergent.
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APPENDIX A

1. Abstracts of Papers Presented at Conferences

[1] Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1991), "The Fast Multi-

pole Method for Scattering from Electrically Large Objects," accepted for presentation at

the 1991 National Radio Science Meeting/ IEEE/AP-S Symposium, University of Western

Ontario, London, Ontario, Canada, June 24-28.

[2] Engquist, B., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1991), "New Methods for

Developing Higher-Order Impedance Boundary Conditions on Curved Surfaces," accepted

for presentation at the 1991 National Radio Science Meeting/ IEEE/AP-S Symposium,

University of Western Ontario, London, Ontario, Canada, June 24-28.

[3] Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1991), " What is The

Fast Multipole Method (FMM) and How can it Help You Solve Electromagnetic Scattering

Problems More Effectively?", accepted for presentation at the Progress in Electromagnetics

Research Symposium (PIERS), Cambridge, Massachusetts, July 1-5.

[4] Murphy, W.D., V. Rokhlin, and M. S. Vassiliou (1990), "The Fast Multipole Method

(FMM) for Electromagnetic Scattering Problems", presented at the URSI/National Radio

Science Meeting, Jan. 3-5, Boulder, Colorado.

[5] Murphy, W.D., V. Rokhlin, and M. S. Vassiliou (1990), "Solving the Resonance Prob-

lem in electromagnetic Scattering Computation" , presented at the URSI/National Radio

Science Meeting, Jan. 3-5, Boulder, Colorado.
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[1] En9l: Engheta, N., W. D.Murphy, V. Rokhlin, and M. S. Vassiliou (1990) "The Fast

Multipole Method for Electromagnetic Scattering Problems", submitted to J. Appi. Phys..

[2] En9la: Engquist, B., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1991), "Higher

Order Impedance Boundary Conditions for Electromagnetic Scattering," to be submitted

to Journal of Applied Physics.

[3] Mu89: Murphy, W. D., V. Rokhlin, and M. S. Vassiliou (1990), "Solving the Resonance

Problem in Electromagnetic Scattering Computation", J. Appl. Phys. 67 (10), 15 May

1990, 6061-6065.

[4] Mu90: Murphy, W. D., V. Rokhlin, and M. S. Vassiliou (1989), "Numerical Second-

Kind-Equation Solutions of Electromagnetic Scattering Problems", Electronics Lett. 25,

643. (This is a relevant publication produced under a related FY1988 IR&D project).
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THE FAST MULTIPOLE METHOD FOR SCATIERING
FROM ELECTRICALLY LARGE OBJECTS

N. EnghetatW.D. Murphyt, V. Rokhlin*, and M. S.
Vassiliout
*Dept. of Electrical Engineering, University of Pennsylvania,
Philadelphia, PA 19104
tRockwell International Science Center, 1049 Camino Dos
Rios, Thousand Oaks, CA 91360
*Dept. of Computer Science, Yale University, New Haven CT
06520

The Fast Multipole Method (FMM) was developed by Rokhlin (J.
Comp. Phys. 60, 187-207, 1985; Yale Univ. Research Repor:
YALEU/DCS/RR-440, 1985) to solve acoustic scattering problems very
efficiently. We have modified and adapted it to electromagnetic scattering
problems in two dimensions.

Consider a 2-D closed conducting scatterer with n nodes on its
boundary. Divide the boundary into p segments, each containing n/p
nodes. Instead of calculating n2 interactions among n current sources on the
boundary, consider each segment to be a cluster of n/p sources. For
segments that arc close together, the exact interactions must be calculated.
For segments sufficiently far apart, however, we may do the following: we
combine the sources in each segment, approximating their radiation fields
by the first N multipoles. We describe each segment via an equivalent
source located at the segment's center. We can calculate the contribution of
each such equivalent source to the field at the center of any sufficiently
separated receiver segment, and in that receiver segment we can use a
Taylor expansion to obtain the field at all the individual n/p nodes. The
radiation field at any particular node on the sca,.rer boundary is the sum of
contributions of N multipoles of each of the far-away segments, and 'he
direct contribution of very close segments.

The method reduces the operation count for solving the
Magnetic-Field Integral Equation (MFIE) from O(n 3) for Gaussian
elimination to O(n 4/3) per conjugate-gradient iteration. It has proven useful
in calculating the scattering from electrically large objects difficult to
compute by many other methods.

'This work was supported by Air Force Office of Scientific Research
Contract Number F49620-89-C-0048



NEW METHODS FOR DEVELOPING HIGHER ORDER
IMPEDANCE BOUNDARY CONDITIONS ON CURVED
SURFACES 1

B. EngquisttW.D. Murphyt, V. Rokhlin*, and M. S.
Vassiliout
tDept. of Mathematics, University of California at Los Angeles,
Los Angeles, CA 96024
tRockwell International Science Center, 1049 Camino Dos
Rios, Thousand Oaks, CA 91360
*Dept. of Computer Science, Yale University, New Haven CT
06520

We have developed techniques for computing electromagnetic
scattering from closed 2-D conductors coated with multiple thin layers of
possibly lossy dielectric and/or magnetic material. Using Fourier integral
techniques, we derive higher-order impedance boundary conditions of
0(82) and O(84) in the thickness parameter 8. We develop second-kind,
weakly singular integral equations. These integral equations are discretized
and solved using Nystr~m's method and approximately
fourth-order-convergent quadrature formulas. Solutions compare
favorably with analytical results. We have used our techniques to study the
effects of layer thickness, body geometry, and incidence angle on the
scattered fields.
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We describe the Fast Multipole Method (FMM) developed by Rokhlin
(J. Comp. Phys. 60, 187-207, 1985; Yale Univ. Research Report
YALEU/DCS/RR-440, 1985) to reduce the computation time required for
solving scattering problems modeled in the form of integral equations. The
method was developed first for acoustics. We have modified and adapted it
to electromagnetic scattering problems in two dimensions. Briefly, the
method relies on dividing the boundary of the scatterer into segments, each
containing several nodes, and performing exact computations only for the
interactions of neighboring segments. When segments are sufficiently far
from each other, approximations are used, expand-ng "source segments"
into multipoles.

Our present computer code reduces the operation count for solving the
Magnetic-Field Integral Equation (MFIE) from O(n3) to O(n4/3) per
conjugate-gradient iteration. It has achieved dramatic results in solving
scattering from electrically large objects. The implementation is presently
limited to computing scattering from closed conducting objects in two
dimensions. Impedance boundary conditions which have been developed
and tested in a simpler computer code will soon be merged into the FMM
implementation to allow computation of conductors coated with dielectrics.
In addition, work is proceeding on a three-dimensional implementation.

1This work was supported by Air Force Office of Scientific Research
Contract Number F49620-89-C-0048
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The Fast Multipole Method (FMM) was developed by Rokhlin (J.
Comp. Phys. 60, 187-207, 1985; Yale Univ. Research Report
YALEU/DCS/RR-440, 1985) to reduce the computation time required for
solving scattering problems modeled in the form of integral equations.
When such integral equations are discretized, a full dense linear system of
size n x n results. If direct methods such as Gaussian Elimination are used
to solve the system, O(n3) arithmetic operations are needed. If indirect
methods such as Generalized Conjugate Residual (GCR) are employed,
O(n2) arithmetic operations are needed for each iteration. Rokhlin has
shown that the operation count may be reduced to O(n logn )per iteration,
by using the structure of the Green's function and the fact that only an
approximation to the matrix product is needed. The algorithm is analogous
to the evaluation of the field created by a charge and dipole distrbution
(hence the name "Fast Multipole Method"). The actual implementation thus
far uses a simpler algorithm which achieves 0(n4/3), although O(n logn ) is
achievable theoretically. For moderately large problems (n - 20000), the
two algorithms yield similar CPU times, although for very large problems,
implementing the full O(n logn ) algorithm is desirable.

Originally, Rokhlin's work was for acoustic scattering problems
where a fluid scatterer is embedded in a two-dimensional fluid space. This
mathematical problem is formulated as a coupled system of integral
equations between the interior and exterior problems. Rokhlin extended
these ideas also to two and three-dimensional potential theory (Laplace's
equation) where even faster computations are possible (O(n) operations).

We review some of these results, and extend their application to the
area of electromagnetic scattering. Initial results with the O(n4/3) algorithm
have been obtained for TM scattering from arbitrarily shaped
two-dimensional closed conductors. The FMM, combined with
fourth-order convergent quadrature formulas in Nystrom's method
(Murphy, Rokhlin and Vassiliou, Electronics Letters 25, 543-644, 1989)
represents a very fast and accurate method to solve electromagnetic
scattering problems from electrically large objects.

1This work was partially supported by Air Force Office of Scientific
Research Contract Nwnber F49620-89-C-0048
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The "resonance problem" considered here is that at certain values of
the wavenumber k, the second-kind integral equation for solving scattering
problems can become extremely ill-conditioned. This affects both the
accuracy and speed of numerical solutions. The convergence of iterative
methods in particular is adversely affected by large condition numbers. We
consider the second-kind integral equation, derived using double-layer
potentials, for TM scattering from a conductor. We solve an exterior
Dirichlet problem. It has nonunique solutions for values of k at which the
corresponding homogeneous interior Neumann problem has a nontrivial
solution. These values of k are the resonant wavenumbers.

Numerically, we discretize the integral directly using quadrature
formulas (Nystrom's method). We employ fourth-order convergent
quadrature formulas which handle the logarithmic singularities in the
problem (Murphy, Rokhlin, and Vassiliou, Electron Len. 25, 643, 1989).
We tested the solution procedure at resonant k's for circular and elliptical
scatterers (roots of derivatives, respectively, of Bessel functions and
modified Mathieu functions). We found very large condition numbers for
the discrete matrices (up to 0(107)), generally leading to poor solutions.

We apply two approaches to alleviate the resonance problem. The
first is to use a different integral equation, based on both single and
double-layer potentials, analogous to the combined-field equation (CFIE).
This leads to low condition numbers, and good solutions, at resonant k..
The second method is to use the original second-kind integral equation,
introduce a small imaginary part in k, and extrapolate back to the real axis.
Solutions obtained by the two methods are in excellent agreement.

By solving the resonance problem, we ensure that fast and accurate
solutions are obtainable at any arbitrary wavenumber.

IThis work was partially supported by Air Force Office of Scientific
Research Contract Nwnber F49620-89-C-0048
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ABSTRACT

The Fast Multipole Method (FMM) was developed by Rokhlin to solve acoustic scat-

tering problems very efficiently. We have modified and adapted it to the second-kind-

integral-equation formulation of electromagnetic scattering problems in two dimensions.

The present implementation treats the Dirichlet (TM) problem for two-dimensional closed

conducting objects of arbitrary geometry. Consider a scatterer with n nodes on its bound-

ary. Divide the boundary into p segments, each containing n/p nodes. Instead of calcu-

lating n2 interactions among n current sources on the boundary, consider each segment to

be a cluster of n/p sources. For segments that are close together, the exact interactions

must be calculated. For segments sufficiently far apart, however, we may combine the

sources in each segment, approximating their radiation fields by the first N multipoles.

We describe each segment via an equivalent multipole located at the segment's center. We

can calculate the contribution of each such equivalent expansion to the field at the center

of any sufficiently separated receiver segment, and in that receiver segment we can use a

partial wave expansion to obtain the field at all the individual n/p nodes. The radiation

field at any particular node on the scatterer boundary is the sum of contributions of N

multipole expansions of each of the far-away segments, and the direct contribution of very

close segments. The method reduces the operation count for solving the Magnetic-Field

Integral Equation (MFIE) from 0(n 3 ) for Gaussian elimination to 0(n1 /"3) per conjugate-

gradient iteration. We also present a simple technique for accelerating convergence of the

iterative method: "complexifying" k, the wave number. This has the effect of bounding the

condition number of the discrete system; consequently, the operation count of the entire

FMM (all iterations) becomes 0(n 4'/). We present computational results for moderate

values of ka, where a is the characteristic size of the scatterer.
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I. INTRODUCTION

Electromagnetic scattering comprises an important class of problems in physics and

engineering. It is desirable to have efficient techniques to compute scattering accurately. In

this paper we present the first application of Rokhlin's Fast Multipole Method (FMM) to

the problem of electromagnetic scattering from two-dimensional closed conducting objects

of arbitrary geometry.

In many two-dimensional scattering problems, it is customary to reduce the scalar

Helmholtz equation to a second-kind integral equation. The resulting integral equation

can generally be treated using various numerical techniques ' 2 . One of the standard meth-

ods for this numerical treatment of scattering problems is to discretize the second kind

integral equation using an appropriate quadrature formula (Nystr~m's method)' ,'. Such

discretization leads to systems of linear algebraic equations which may be solved by Gaus-

sian elimination or iterative methods such as conjugate gradient or generalized conjugate

residual (GCR)4 . These iterative methods require the full dense matrix to operate on

a sequence of recursively generated vectors. Consequently, the operation count is 0(n 2 )

where n is the dimension of the matrix. There have been many successful efforts to reduce

the operation count and storage requirements and to introduce "fast" algorithms5'6 '7' s .

The FMM is a particularly promising method among these. In the FMIM, the operation

count for each iteration is reduced to O(114/3), which is significantly smaller than 0( 72),

especially for large n(> 10,000). This algorithm can be further improved to one that has

an operation count of 0(n log n) per iteration. However, we have not yet implemented the

fastest algorithm. When these algorithms are combined with a GCR or conjugate gradient

algorithm, the resulting procedure only requires a small number of iterations to converge

to a solution to the scattering problem. This is the case even at resonance frequencies, if

the method of "complexification" is applied (see discussion below).

The purpose of the present paper is to explain this algorithm in simple terms and

to explore its application to electromagnetic scattering. Rokhlin's FIMM, which was first

3



employed for Poisson's equation5 and acoustic scattering6 in two dimensions has been

extended to three dimension for Poisson's equation9 and is currently being extended for

Helmholtz's equation.
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II. PROBLEM STATEMENT

Consider a two-dimensional conducting body whose axis is aligned with the z co-

ordinate axis. A monochromatic electromagnetic wave incident on this structure with an

electric field vector parallel to che axis of the body is referred to as the transverse-magnetic

(TM) case. The incident and scattered fields both satisfy the following Helmholtz equation

AE. + k2 E, =0. (1)

The boundary condition for equation (1) is that the total E field vanish on the surface of

this conductor, i.e.,

E!" = 0 on C (2)

or more explicity

E nc +E cat =0 on C. (3)

The above Helmholtz equation can be reduced to the following second-kind integral equa-

tion

41(r) +21i G(klr - r'I) q(r') dl' = -2Einc(r) (4a)+ c 2 n(r')

Eff(r) = Jfc OG(klr - r') (r) dl' (4b)
Ic n(r')

where r and r' are both on the boundary C, and G is the free-space Green's function in

two dimensions, i.e.,

G(klr - r'I) = iH(')(klr - r')(5)

with H(1)(kjr- r'j) being the Hankel fuction of the first kind of orde'r zero. See Ref.[10]

for a derivation of equation (4). Equation (4), the TM case, is often referred to as the

Dirichlet problem in the mathematical literature1' 1 ° . If we discretize the boundary into n

5



points, then the above integral equation (4a) is converted to the following linear system

(via Nystr6m's method'):

n

'(ri) + 2 E Aj I(rj) = -2E nc(ri)
= -2E z (ri)(6)

j=l

where the matrix A = (Aij) is n x n and the vectors (T(ri)) and (Eikc(ri)) are col-

umn vectors having n rows. Applying normal matrix multiplication, AT requires O(n2 )

operations. The FMM algorithm reduces this to 0(n 4/3 ) or ultimately to O(n log n).
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III. RAPID SOLUTION OF INTEGRAL EQUATIONS

The detailed mathematics behind the FMM is presented in (5] and [6). The develop-

ment is quite complex. Below, we offer a simplified version, with more physical intuition

relevant to electromagnetic scattering.

Consider n nodes on the boundary of the scatterer. Divide the boundary into p equal

segments, where 2 < p < n. In each segment, there are n/p nodes. If the length of the

boundary is L, each segment has length L/p. The center of each segment is located at

zi(i = 1,2,... ,p). In scattering problems, each node can be treated conceptually as if it

were a source of radiation.

If we have sources within a finite region of space, the radiation emitted from these

sources in the far zone can be approximated using a collection of multipoles located at the

center of the region5,6,11. The multipole approximation converges rapidly outside any circle

D containing all sources and separated from D by at least one wavelength. In fact, once

a sufficiently large number of multipoles is included, the accuracy of the approximation

increases superalgebraically (faster than any negative power of N)6.

Consider each segment on the boundary as a cluster of n/p sources. The sources in each

segment are treated as a single aggregate source, and the radiation field of that equivalent

source is approximated using the first N multipoles located at the center of the segment.

For each pair of sufficiently-separated segments, the radiation of the N inultipoles of one

segment can be represented as an analytical partial field expansion around the center of the

other segment. Then from this information, the field at the other nodes of that segment

can be evaluated using equation (16). For nearby segments, the direct contribution must

be calculated to evaluate the radiation field. The radiation field at any particular node

on the boundary is the sum of the contributions of N multipoles of each of the far-away

segments and the direct contribution of the nearby segments. Reference [6] considers the

precise mathematical description of the process.
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To illustrate the above verbal description mathematically, let us consider the field of a

two-dimensional magnetic surface current distributed over a two-dimensional body. Since

we have an exterior Dirichlet problem, a double-laycr potential is needed. For the two-

dimensional TM problem, a magnetic current density at any point of the boundary is a

vector in the x-y plane tangent to the body. The electric field of such a current distribution

is given by

Esca t (P- ) = V x j G(kj[- '[)K(-') dl' (7)

where K(W') is the magnetic surface current density, , = (p, 9), and C is the contour of

integration. In two dimensions equation(7) can be written as

oa( kle - FI
(= I O1(7') IK()l dI' (8)

which is identical with equation(4b) if IK(-')l is taken to be '(,3'). Substituting equa-

tion(5) into (8), we get

E (i/4 H ( I)IK(W')I dl' (9)

an(P'

The Hankel fuction HI')(k[j- )') can be expanded in terms of higher order Haiikel

functions:
00

H)(kj, 1j'I) = E H(')(kp)Jm(kp)exp(im7(9 - 0')) (10)

Substituting equation (10) into equation (9) yields

00 i 4Jm(kp')exp(-i7mg')
Escai(p,O)= E g)(kp)exp(i)j(i/4) (I(p',1')Idl' (11)

This can be regarded as the multipole expansion of the source K(p', 9'). For a discretized

source at n points located at x = (p., 9') (j = 1,2,.. ,n) over a segment of the boundary,

equation(11) reduces to

o . i9Jm,(kp'.lexp(_inO,)
E ca(p') = (i/4) OJ n ) H)(kp) cx)(im0)IK(x )IAlj (12)

m=-00 , j=)
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where Al'. is the discretized element of arc length containing the source IK(x!)I. For a

given accuracy, we can truncate the infinite sum in equation(12) at N, and thus calculate

the first N multipoles of the source.

Historically, the FMM algorithm was first applied to Poisson's equation for n point

charge lines at locations xi(i = 1,2,... ,n) with strengths tei. This is mathematically

equivalent to solving the equation

1,

A = 6 (x - xj)K, (13)

where 6(x) is the Dirac delta function and x and xi are two-dimensional points. The

solution to equation (13) is

n

O(x) = K i log(Ix - xil)/(27r) (14)
i=1

If we evaluate equation (14) at each point xi(i = 1, 2, . . ,.,, n), then this computation re-

quires O(n 2 ) operations. However, if large numbers of particles are combined into single

computational elements, then this operation, )unt can be reduced if an approximate an-

swer (to a specified accuracy) is desired. When a cluster of particles is "far away" from a

particular point, then the potential of the cluster is approximated by the potential induced

by a single computational element located inside the cluster' 2 . In the FMM algorithm the

computational element is a Laurent expansion centered at a circle containing the cluster

of particles. Given a cluster of charges located at points z,(i = 1, 2,..., n,), the expansion

is given by

n.

O(z) = Re(E log(z - z) t Re(a log(z - zo) + Z ak/( - -,)') ('15)
i=1 k=1

Here p is the order of the multipole and the aks are coefficients chosen so that the truncated

series is an accurate approximation of the potential. For equation (15), the computational

9



effort is only 0(p) operations and is much less than 0(n,) for the direct approach. The

region must now be organized into well separated points and very-ncar points. For near

points, the direct evaluation of (14) is used. See Refs.[5,6,12] for details of decomposing

the regions into boxes of different sizes. When applying the FMM to Helmholtz's equa-

tion instead of Poisson's equation the expansion (15) is replaced by the standard Hankel

function expansion, which is then truncated to obtain a given accuracy requirement. That

is,

sata (9) f amH1)(kp)exp(in), if p > a (16a)

EM=_ -mP.Jm(kp)exp(imO), if p < a (16b)

depending on whether the calculations arc to be done outside or inside the circle of adius

a6. Obviously, aia, prescribed accuracy in the series can be guaranteed by taking more

terms in the expansion at the expense of more CPU time.

10



IV. OPERATION COUNT

We illustrate the computational work required for the FMM algorithm using a simple

example. Consider p segments around the boundary of the scatterer. Assume that for

each segment, the two adjacent segments are "nearby," and thus require direct calculation

of the radiation field. All other segments are considered "far away" for this example and

the multipole expansion will be used. The following steps are taken:

Step 1: Find the first N multipoles of sources in each segment. Since to evaluate each

multipole, all the sources are involved, the first N multipoles of sources in each segment

require Nn/p operations. For p segments, we have

N(n/p)p = Nn (17)

As we mentioned earlier, the number of multipoles used is a function of the accuracy

needed in thie calculation. This number is typically proportional to kd where k = 27r/A

and d is the length of the source region. Thus, N ;, kL/p. Substituting this value of N

iD 3 equation (17) gives

Nnt k(L/p)n (18)

as the operation count for this step.

Step 2: For each pair of "far away" s.gments, cvaluate the radiation fields of N multipoles

of one segment at the center of the other. This is an O(N) operation for each pair. The

number of pairs is almost p2 . In actuality, for each segment, the number of far away

segments is p - 3. Therefore, the number of far away pairs is p(p - 3), which for large p is

almost p2 . Therefore, the operation count for this step is

Np 2 - k(L/p)p2 -- kLp (19)

11



Step 3: In this step, for each segment, add the contribution of N multipoles of any one

of the far away segments evaluated at the center of the chosen segment. For any chosen

segment, the number of far away segments is p - 3, or approximately p, for large p. Thus,

this step requ-res

Np ;, k(L/p)p ; kL (20)

operations.

Step 4: Here, the radiation field is known at the center of each segment. The field at the

other nodes in the segment can be evaluated using a partial field expansion. For each

neighboring node, this is an O(N) operation. Thus, for n/p - 1 nodes in each segment,

the number of operations is

N(nlp - 1) Nn/p (21)

For p - 3 segments, we have

(Nn/p)(p - 3) ; Nn ": k(L/p)n (22)

Step 5: Finally for the nearby (neighboring) segments, the direct contributions must be

evaluated. For q sources, the number of operations is q2 . Here, in each scgment there are

n/p sources. For a particular segment in question and its two near-neighbors, the work is

(3n/p)2 ; 112 /p 2  (23)

For p segments, the count is

(n 2/p 2 )p -- n2/p (24)

Adding the above five steps and optimizing with respect to p the resulting expression

for total operation count (as in Ref.[6]), the optimal count T is

T = 0(n 3/ 2 ) (25)

12



The operation count can be further reduced by applying the above procedure recursively,

with each of the nearby segments subdivided with appropriately chosen p'. The new

estimate so obtained shows that the FMM algorithm is 0(n4/3). Our current FMM code

implements the 0(n4/3) algorithm. In Ref.[51 the above subdivision is used recursively to

obtain an 0(n) algorithm when applied to Poisson's equation (13). By reproducing the

construction of Section VII in Ref.[5] for Helmholtz's equation an 0(n log(n)) algorithm is

theoretically achievable.

The essential feature of the FMM algorithm is that it performs the matrix-vector

operation

AI(m) (m =0,1,2,...) (26)

in 0(n4/ 3) operations, Here the superscript m is the iteration counter. Note that A is never

computed, so that the algorithm only requires vector storage ! The storage requirement is

0(n4/3), like the operation count 6. The actual solution to the system (6) is obtained using

a conjugate gradient or GCR4 algorithm in which the most computationally extensive step

is that of forming the vector expression (26) by the FMM technique. GCR must be used

on the matrix I + 2A or conjugate gradient on the normal equation because I + 2A is

nonsymmetric.

The FMM algorithm is in no way restricted to the TM case (4). In fact, an almost

identical algorithm can be applied to the TE case (Neumann problem in the mathematical

literature"1, ° ) or to the combined field integral equation (CFIE), which does not have a

resonance problem (see, e.g., [3]). Rather than solve the CFIE, we use a "lazy man's"

technique that employs the method of "complexification" on equation (4) directly. This

"trick", the reader will soon see, works remarkably well and allows us to avoid dealing with

the more complicated CFIE. Although "complexification" has been used in electromagnet-

ics to satisfy the radiation condition, here it is used to reduce the condition number of the

matrix A and thereby reduce the number of iterations for convergence of the conjugate

gradient algorithm.
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V. COMPUTATIONAL RESULTS

In Fig. la, we show the comparison of the FMM algorithm with the analytic solution

for the scattering of a plane wave incident on a circular cylinder for the case ka = 80.

We present our computational results in a form often used in electrical engineering: that

is, as plots of differential scattering cross section or Radar Cross Section (RCS) versus

observation angle, for a given angle of incidence. The RCS is related to the magnitude of

the electric field in the far zone. In two dimensions, "RCS" is something of a misnomer: the

more proper term is "scattering width," but the label RCS is commonly applied anyway.

The two-dimensional definition is13

IESC"I 2  (7
RCS = = 27r lir r JE! c1 (27)r-oo IEincI 2

where Ecat is the scattered field and E'lc is the incident field. The quantity we plot is

the ratio of a to the wavelength of the incident wave, expressed in decibels (dB).

Fig. la shows the agreement of the RCS between the two solutions is exact for the

observation angle q between 0' and 400, where most of the rapid changes occur. In Fig.

1b, we plot the entire FMM solution from 00 < 0 < 180 ° , which also agrees exactly with

the series solution, but we leave out the latter to avoid too much congestion in the figure.

In this example, we have used 10 points per wavelength on the scatterer boundary, so

n = 800. In Table 1, we list some results from the FMM code for various values of k and n

for scattering from two-dimensional conducting circular and elliptical cylinders (a=semi-

major axis, b=semi-minor axis). The expansions (16) were truncated to give an accuracy

of 10' and the convergence tolerance for the conjugate gradient algorithm was set to

10'. In the table, Ner denotes the actual number of iterations in the conjugate gradient

algorithm to achieve a relative error tolerance of 10', ERR is the actual relative error

tolerance between the last two iterations, and CPU is the average CPU time in seconds on

a VAX 6410 computer for one iteration of the conjugate gradient FMM algorithm using

14



double precision arithmetic. In most cases, for "complexified" k-values an eror tolerance

of 10- instead of 10- 3 would only add one or two more iterations to Nijr. However, for

"non-complexified" k-values, an error tolerance of 10 ' would require many more iterations

because of the large condition number involved in those cases. Since the matrix A is never

explicitly calculated in the FMM algorithm, the total CPU time for one incident angle is

roughly equal to the product of ITER and CPU. To calculate the number of points NA per

incident wavelength in Table 1, we have used an approximate formula for the perimeter of

an ellipse, obtaining

NA n (28)
k f(a 2 +b 2 )/2

Note that for some of the cases in Table 1, we have used values of k, the wave num-

ber, that have imaginary parts. This was done to test the method of "complexification".

Equation (4) has resonances1 ° only at real distinct values of k and as k gets larger, root

clusters become more dense; at these resonance frequencies, the condition number of the

matrix A becomes large and iterative methods require many more iterations to converge

to a given tolerance. We have shown in Ref.[3] that by moving k slightly into the com-

plex plane("complexifying" k) the condition number can be reduced by four or five orders

of magnitude and consequently, the convergence rate of most iterative methods can be

greatly improved. This is clearly demonstrated in Table 1. Furthermore, by using two

complex values of k (say k = 100 + .li and k = 100 + .2i) we have shown in Ref.[3] that

the extrapolated values of the RCS to the real axis are accurate to a value in dB roughly

equal to the amount of movement into the complex plane (in this case .1dB). Of course,

parabolic extrapolation would be even more accurate, but would require computations for

three complex values of k. However, this is not a severe problem when using iterative

methods because the iteration scheme for the second value of k can be started with the

final solution from the first value of k and so on. Thus two solutions for two close values

of k require only about 1.1 times as much CPU time as does one case. Comlplexification is

hence a viable and realtively cheap method for accelerating convergence in such problcms.
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Parabolic extrapolation is done in the following way. Suppose the imaginary parts of

three "complexified" k-values are k0,ki, and k2 and the corresponding RCS values for one

observation angle are a0 , a,, and a2, respectively. We compute the Lagrange interpolation

polynomial through the points (ko,ao), (ki,ai), and (k2,a2) and set k equal to zero in thiis

quadratic polynomial in k(i.e., we extrapolate to the real axis) obtaining

a(O) = poao + pia, +P2a2 (29)

where Po = k, k2/[(ko - kj)(k0 - k2 )], P1 = kok2/[(ki - ko)(k1 - k2)], and P2 = k~kl/[(k2 -

k0)(k2 - k)]., Parabolic extrapolation is second-order accurate provided the function a(k)

is "sufficiently smooth" (has three continuous derivatives). This means that for uniform

spacing (Ak = k2 - k, = k, - k0 ) the error in a due to the extrapolation is O((Ak)2 ).

Linear extrapolation is only O(Ak) if a has two continuous derivatives in k. In practice,

we have found that the accuracy of the extrapolation procedure is even better than these

estimates would suggest.:

In Fig. 2, we show some RCS plots for scattering from a two-dimensional conducting

circular cylinder for linear extrapolation from "complexified" k values. To remove the

effect of the "complexification" in computing the RCS in the far field, we must rescale

ESCat(rFf) where ?FF is the value of r in the far field, typically about 10,000. If k =

kre + ikin, where ki,,, is the imaginary term added to k to accelerate convergence of the

iterative procedure, then we rescale E c"t(rff) by multiplying it by exp(ki,,, rF) from the

asymptotic expansion of HV')(ki,,, 'FF). The RCS is then computed using equation (27)

and the rescaled values of Ecat(rFf). Extrapolation of the RCS to the real axis is also done

using the rescaled values. In Fig. 2, the linearly extrapolated values (frorm k = 80 + 0.5i

and k = 80 + 1.0i) of the RCS give exact comparisons with the unextrapolated ones (for

k = 80). The parabolically extrapolated values give the same excellent agreement. The

number of iterations required to converge to an error tolerance of 10- for these three cases
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are 79, 26, and 16, respectively, and again for faster convergence it pays to "complexify".

Note also that large condition numbers not only imply slow convergence but also poor

accuracy, giving another reason to "complexify". Of course, one could always solve the

CFIE rather than equation (4) and avoid the problem of large condition numbers due

to resonance. Unfortunately, solving the CFIE for TE polarization requires dealing with

the second derivative of the free space Green's fuction, which has a nasty singularity.

"Complexification" is easier!

In Fig. 3a and Fig. 3b, we plot the RCS for scattering from a conducting elliptical

cylinder using linear extrapolation (a = 2, b = 1, k = 100 + 0.5i, k = 100 + 1.0i) with an

incident plane wave at 900. As can be seen in Table 1, n = 1600 for these cases. The

agreement between extrapolated values and unextrapolated values of the RCS is exact.

Again we merely show the extrapolated values in the figures to avoid too much congestion.

Parabolic extrapolation using k = 100 + 0.3i, 100 + 0.6i, 100 + 0.9i gives the same excellent

results.

As we have stated, the FMM algorithm of this paper is 0(n4/1) per conjugate gradient

iteration. This means that the CPU time is proportional to 74 / 3 , i.e.,

T = aVAX n4/3 (30)

where we have emphasized that the proportionality constant a is a fuction of the computer

being used (in this case a VAX 6410 in double precision). Using equation (30) and some

of the data in Table 1, we can obtain a rough estimate for the value of C1 VA.\'. In this case

aVAX " .003 (31)

Suppose now we would like to estimate the CPU time requircd on our VAX to com-

pute the electromagnetic scattering problem for an example having 10.000 unknowns. We
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assume that without too much "complexification" convergence occurs in 10 iterations or

less. Thus, for this example

T °i ; aVAX(10)n 4 / 3 = .03(10, 000) 4 1 3 = 1.8 hours (32)

Although this last CPU time may seem large, we are only using a VAX in double precision,

and a vectorized version of this code on a CRAY computer would do the same calculation in

minutes. Furthermore, ordinary Gaussian elimination for a matrix of order 10,000 would

require about (10, 000)'/3 operations and would use considerably more CPU time than

that in equation (32).

Finally, the most important statement about the FMM and our approach to "com-

plexification" and extrapolation of the RCS values for complex ks to the real axis is that

for complex k (Re(k) > 0 and Im(k) > 0), the solution to equation (4), a second kind

integral equation, is unique for sufficiently smooth scatterers and consequently, the con-

dition number of A is bounded 14 and independent of n. This means, when we use our

extrapolation procedure (either linear or parabolic), N, te is small (say, N, tcr 10) and

independent of n for error tolerances of 10'. Of course, if the accuracy requirements are

increased, so will N,, er, but in either case the FMM is globally O(n/ 3 ) and we can write

Tot = Niter acomputer n 4/ 3  (33)

where Niter is only a function of e, the error tolerance, and not a fuuction of 7? , and

acomputer is a function of the computer speed for arithmetic operations and, also inde-

pendent of n . For further proof, we present more evidence in Table 2, where we have

set the "complexification" to 5i in all cases and maintained approximately 10 points per

wavelength for various geometries. Note the small number of iterations to convergence,

indicating a bounded condition number independcnt of n. Finally, in Table 3, we list some
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preliminary results of the FMM code on th, CRAY 2. This code is not yet fully vectorized,

so we don't give CPU times.

Although we have only considered circular and elliptical cylinders for the test cases

in this paper, the code can handle any closed two-dimensional metal scatterer having a

unique outward normal at every point on C. Therefore, at present, we cannot deal with

the trailing edge of an airfoil that comes to EL point (non-existence of G/an at the trailing

edge); currently, we must round this region off. However, we are working on replacing the

current at this singular point with its asymptotic expansion, allowing us then to deal with

such points. We are also considering thin coatings about metal scatterers using higher

order impedance boundary conditions, similar to our treatment in Ref.[15].

Our closing observation is that in computational electromagnetic scattering, almost

anyone can obtain reasonable results using a bad algorithm if ka is small. It is much

more difficult to get good results for large values of ka, and it is doubly difficult to do

so efficiently. We hope that by choosing moderate values of ka, we have demonstrated

the robustness of the FMM algorithm for effectively solving electromagnetic scattering

problems.
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Table 1

Fast Multipole Results for Scattering from Two-Dimensional Conducting

Circular and Elliptical Cylinders

(DEC VAX 6410 Computer, Double Precision)

kb a b n nx Niter CPU Err

50 1 1 500 10 66 11.99 .441 (-3)

80 1 1 800 10 79 22.35 .856 (-3)

80 + 1.6i 1 1 800 10 13 22.43 .200 (-3)

80 + 2.4i 1 1 800 10 9 21.73 .655 (-3)

80 + 3.2i 1 1 800 10 8 21.89 .198(-3)

80 + 4.8i 1 1 800 10 6 21.27 .750(-3)

80 + 6.4i 1 1 800 10 6 21.22 .223(-3)

150 + 6.4i 1 1 1500 10 6 51.94 .633(-3)

100 2 1 1600 10.12 184 34.89 .992(-3)

100 + 2i 2 1 1600 10.12 11 35.57 .293(-3)

100 + 3i 2 1 1600 10.12 9 36.53 .478 (-3)

100 + 4i 2 1 1600 10.12 8 35.84 .494(-3)

100 + 6i 2 1 1600 10.12 6 35.35 .998(-3)

50 3 1 1200 10.73 95 32.61 .950(-3)

50 + 2, 3 1 1200 10.73 10 33.98 .863 (-3)

100 + 2i 3 1 2237 10 12 86.93 .639(-3)

k = Wavenumber
a = Semimajor axis
b = Semiminor axis
n = Total number of unknowns (sample points on scatterer boundary)
nx = Number of unknowns per wavelength of incident radiation
Niter = Number of iterations to convergence
CPU = CPU time per iteration, in seconds
Err = Relative Error

NOTATION: .441 (-3) means 0.441 X 10-3



Table 2
Fast Multipole Method: CPU Time for Fixed "Complexification"

(Scattering from Two-Dimensional Conducting Circular and Elliptical

Cylinders)

(DEC VAX 6410 Computer, Double Precision)

kb a b n Niter CPU Err

50 + 5i 1 1 500 6 11.97 .251 (-3)
100 + 5i 1 1 1000 6 22.46 .973 (-3)

150 + 5i 1 1 1500 7 42.28 .313(-3)

200 + 5i 1 1 2000 7 51.90 .686(-3)

50 + 5i 2 1 791 7 22.22 .998 (-3)
150 + 5i 2 1 2372 8 78.59 .408 (-3)

100 + 5i 3 1 2237 9 86.28 .999 (-3)

k = Wavenumber
a = Semimajor axis
b = Semiminor axis
n = Total number of unknowns (sample points on scatterer boundary)
Niter = Number of iterations to convergence
CPU = CPU time per iteration, in seconds
Err = Relative Error

NOTATION: .251 (-3) means 0.251 X 10-3



Table 3
Fast Multipole Method: CRAY Results with Fixed "Complexiflcation"
(Scattering from Two-Dimensional Conducting Circular a.vi Elliptical

Cylinders)

(CRAY-2 Computer, Single Precision)

kb a b n Ntr Err

200 +5i 1 1 2000 7 .686(-3)
300 +5i 1 1 3000 8 .331 (-3)
400 +5i 1 1 4000 8 .803(-3)
500 +5i 1 1 5000 9 .327(-3)

100 +5i 2 1 1582 7 .997(-3)
200 + 5i 2 1 3163 6 .995(-3)
300 +5i 2 1 4744 6 .991 (-3)

100+ 5i 3 1 2237 8 .995(-3)
200+ 5i 3 1 4473 7 .997(-3)

100 +5i 4 1 2916 9 .998(-3)

50 + 5i 10 1 3554 8 .996 (-3)

k = Wavenumber
a = Semnimajor axis
b = Semiminor axis
n = Total numuber of unknowns (sample points on scatterer boundary)
Niter = Number of iterations to convergence
Err =Relative Error

NOTATION: .686 (-3) means 0.686 X 10-3



FIGURE CAPTIONS

Fig. la. Radar cross section (RCS) for a circular cylinder of unit radius. Incident field is

a plane wave with wave number k = 80. Solid line shows solution from the FMM code,

while dotted line is that from the series solution.

Fig. lb. RCS of previous case from the FMM code for more observation angles.

Fig. 2. RCS for a circular cylinder of unit radius. Incident fields are plane waves with

with wave numbers k = 80, k = 80 + .5i, and k = 80 + 1.0i. Solid line shows solution from

the FMM code with no extrapolation (k = 80). Dotted line shows solution of the linearly

extrapolated RCS from k = 80 + .5i and k = 80 + 1.0i.

Fig. 3a. RCS results from the FMM code for an elliptical cylinder with semimajor axis

a = 2 and semiminor axis b = 1 linearly extrapolated from incident field plane waves at

900 with wave numbers k = 100 + .5i and k = 100 + 1.0i.

Fig. 3b. RCS of previous elliptical case for more observation angles.
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ABSTRACT

Higher order impedance boundary conditions for thin coatings about closed conduc-

tors in two dimensions are derived using Fourier integral techniques. Using a single-layer

potential and these impedance boundary conditions, second-kind weakly singular integral

equations are derived that model TE electromagnetic scattering problems. These integral

equations are solved using Nystr6m's method and approximately fourth-order convergent

quadrature formulas.
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I. INTRODUCTION

Consider a two-dimensional closed perfect electrical conductor coated with a thin layer

of dielectric and/or magnetic material. The classical way of solving the electromagnetic

scattering problem from such an object is to develop an integral equation in which the

contour of integration contains both the conductor and the outer surface of the dielectric.

The difficulty with this approach is that as the thickness of the dielectric layer approaches

zero, an ill-conditioned equation may result. In addition, the size of the discrete linear

system is twice as large as in the method described below. Our procedure will translate

the boundary condition on the surface of the conductor to the dielectric-air interface by

developing an impedance boundary condition on the interface. The resulting integral

equation will only have to be integrated along the interface, thereby reducing the number

of unknowns for the discrete problem by a factor of two and possibly removing the ill-

conditioning caused by grid points on the conductor and dielectric being too close together.

Other work in this area can be found in Rojas and Al-hekaill, Senior and Volakis2' ,3 ,

Harrington and Mautz4 , Karp and Karal5 , Senior8 ,' ,', and Barkeshli and Volakis9 .
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II. DERIVATION OF HIGHER ORDER IMPEDANCE BOUNDARY CONDITIONS

Consider Helmholtz's equation written in co-ordinates normal (n) and tangential (t)

to the scatterer, i.e.,
Ik 2u o t 2utot +k 2u to =onOn2 + 5t 2 +1 = (1)

where k, is the wave number in the dielectric (ki = kair,/(F-p). Here the superscript tot

denotes the total field. Thus

U t o t =U~ "" i nc (2)

where inc denotes the incident field. No superscript is used for the scattered field. The

boundary condition on the conductor for the TE polarization case is

a- - o- = o(3)

an

and on the dielectric-air interface we have

Outot  62 Outot2n 1  On

where el1 is the dielectric constant in the thin layer and C2 is that in air. We assume the

layer thickness is 6.

Taking Fourier integral transforms around the scatterer and assuming periodic condi-

tions, we can derive the following equation, where ^ denotes Fourier transformation:

O2istoto2  = ( 2 - k)fitot =ftot, 0 < n<6 (5)

Let Mt denote the unknown value of is at n = 0 (on the metal-dielectric interface).

Then we obtain

itot (tot
uo(0) = iot (6a)
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__________) rf*itot (6b)
On2r 

0

5 1 2tt(o)= 2r+li ot()= 0 ) r = 1, 2,... (6c)

On On 2 r+1 -

where we have used equations (3) and (5). Expanding in a Taylor series in 6, we have

(O-o)= , 0  + 2 +  (7)

0stot(6 - 0) - 6 , to, + +... (8)
an 6

Substituting (8) into (4) gives (at n = 6 + 0)

%IitOt/an = f 26( a ot + (,6) 2,aot/6 + .)/e,

= &6 afitot/e, + 0(62) (9)

where we have used equation (7) and the continuity of fitot. Note that the subscript 2

represents the point n = 6 + 0. Taking inverse transforms of equation (9) yields the desired

impedance boundary condition

- b62 (a2 2U tot/& +k

Out_ = - ,2 (o2uo/ot2 + U,2o) + o(6b2) (10)
an 6

In terms of scattered and incident fields equation (10) may be re-written as

-nc 2Uinc
+ (/E21C) [492U + k U2 ] = -2- -(2fl

wr w(11)

where we have dropped the 0(62) term in equation (11).
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Now introduce the single-layer potential

,(X) 4)c'(x,'y)O(Y) ds(y) (2u~x) =(12)

where x and y are two-dimensional points, C represents the outer contour (around the

dielectric), and (I is the two-dimensional free stream Green's function given by

4(x, y) = iH( 1)(kJx - yl)/ 4  (13)

Here HV') denotes the first kind Hankel function of order zero, and k = kair. If equa-

tion (12) is substituted into (11) and the appropriate jump conditions10 are enforced at

the dielectric surface, we can derive the following weakly singular second-kind integral

equation:

O(X) 2 J[O(X, )8n(x) + 6(C2 /fI )(a 2 4(X, y)/ 2 (X) + kD(x, y))] 0(y) ds(y)

-2g(x) (14)

See Colton and Kress'0 for more details on derivations of integral equations in the form

of equation (14). If 6 is set to zero, equation (14) reduces to the TE polarization case

for scattering from a perfect electrical conductor. If the term a2 1/&2 is removed from

equation (14), we have the standard first order impedance boundary condition integral

equation' 0 . Finally, as written, we call equation (14) the second order (0(62)) impedance

boundary condition integral equation for modeling a thin coating about a metal conductor.

The second derivative term obviously models the curvature of the scatt'rer.

The above derivation can easily be extended to multiple dielectric surfaces. Suppose

we have m overlapping coatings with physical parameters (6i, ,i, ki) (i = 1, 2,.'.., m). Let

6 6 + 62 +.. + 6 m and set Pi = ei+l ei where em+l = eair. Then following the same

6



steps as above, we can derive the following impedance boundary condition at the m-th

dielectric-air interface:

m

au/a = -Z#1+1 61 (a2,u/ 2 + k u) + g + 0(62) (15)
j=l

where we have dropped the subscript 2, and g is now defined to be equal to the sum in

equation (15) for the incident field. An integral equation analogous to equation (14) can

be easily written.

In addition, fourth and higher order impedance boundary conditions may be developed

by allowing more terms in the Taylor series expansions (7) and (8). For example, the fourth

order impedance boundary condition is given by

OulOn + (C2 /fE)(6 316)[a2 1& 2 + k'][ 2u/oat2 + k2u] = g (16)

where -g now takes the form of the second term in equation (16) for the incident field and

the subscript 2 has been dropped.

7



III. NUMERICAL METHOD

We discretize equation (14) using Nystrim's method 1 and the approximately fourth-

order convergent quadrature formulas that handle logarithmic singularities derived in

Refs.[12,13,141. The main advantages of Nystr6m's method over the method of moments15

or finite elements are that matrix fill is less expensive and higher order convergent quadra-

ture formulas are easier to employ than corresponding high order basis functions such as

piecewise cubic Hermite polynomials or cubic B-splines' 6 .

The resulting linear system is then solved by Gaussian elimination with partial piv-

oting or generalized conjugate residual(GCR)17 iterative methods. The latter algorithm

performs well for moderate condition numbers (n < 1000). For larger condition numbers,

we use the theory of "complexification". See below and Ref.[14] where we have seen that

this theory is applicable even at resonance frequencies (K --+ oo).

8



IV. COMPUTATIONAL RESULTS

Assume the incident field is in the form of a plane wave with the incident angle Pl, i.e.,

u'nc(x) = exp[ik(xi cos/# + x2 sin #)] (17)

where x = (xI, X2). For our first example we consider a thin dielectric around a metal

circular cylinder, since the analytic solution" is available for this case.
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The "resonance problem" is that at certain values of the wave number k (the resonant k 's), the
second-kind integral equation for solving scattering problems can become extremely ill-
conditioned. This adversely affects both the accuracy and speed of numerical solutions. We
consider transverse-magnetic scattering from a conductor (Dirichlet problem). The integral
equation (derived using double-layer potentials) is discretized using approximately fourth-
order convergent quadrature formulas. At resonant k's for circular and elliptical scatterers, we
find very large condition numbers for the discrete matrices [up to O( 10') ], generally leading
to poor solutions. We apply two approaches to alleviate the resonance problem. The first is to
use a different integral equation, based on both single- and double-layer potentials. This leads
to low condition numbers and good solutions at resonant k. The second method is to use the
original second-kind integral equation, introduce a small imaginary part in k, and extrapolate
back to the real axis. Solutions obtained by the two methods are in excellent agreement. The
extrapolation technique will be particularly useful in the case of the exterior Neumann
problem, when the application of the first technique will be numerically more difficult. By
solving the resonance problem, we ensure that fast and accurate solutions are obtainable at any
arbitrary wave number.

I. INTRODUCTION field of the incident radiation is in the z direction: i.e., paral-
A. What is the resonance problem? lel to the axis of the scatterer (in transverse electric, or TE,

Briefly, the resonance problem is that at certain values scattering the m-ignetic field is parallel to the axis).
ofrwavefnumer, the eoncekprobm itra eaterin f - One way of modeling TM scattering from a closed con-of wave number, the second-kind integral equation for solv- ducting object defined by the curve C is to introduce the

ing scattering problems can become extremely ill-condition- d ob e penisl

ed. The presence of resonances adversely affects both the double-layer potential

accuracy and the speed of the solution method: The accura- u(x) r a4'(xay) kV(y)ds(y), (.)
cy is affected because of the ill-conditioning of the problem. Jc dy(y)
The speed may be affected because large condition numbers where x and y are points in the plane, x is outside C and y is
tend to make it difficult for iterative solution techniques to on C. 4) is the two-dimensional Green's function
converge.' The resonance problem must be solved if reliable
and efficient solutions are to be obtainable at anv' arbitrary (x,y) = - ,' (kIx -.. ) (2)
frequency. 4

The resonance problem arises in many numerical inte- where k is the wave number of the incident radiation and
gral-equation methods for solving scattering problems. Pre- H, ')is the Hankel function of tli first kind of order zero.
vious investigators have discussed the problem for moment- Physically, u represents the scattered electric field E. per-
method solutions of the magnetic-field integral equation pendicular to the plane coniaining the scatterer, u satisfies
(MFIE),2 electric-field integral equation (EFIE),' and Helmholtz's equation, with a radiation condition at infinity
combined-field integral equation (CFIE). 24  and with the boundary condition determined by the incident

In this paper we concentrate on alleviating the reso- electric field E'"":
nance problem in the Nystrom-method solution of the sec- u=f(x) = - E! on C. (3)
ond-kind integral equation for electromagnetic scattering Thisisa Dirichlet problem. Colton and Kress sho% that the
derived using double-layer potentials. The basic numerical T saisiethe iton an
method is described by Murphy, Rokhlin, and Vassiliou5  function 'I satisfies the integral equation
and is summarized in Sees. I B and II A below. O aXY)'l'(x) + 2 'lo'xy)q(y)ds(y) =2f(x), xeC, (4)

B. A more precise definition 
c v(y)

Consider a two-dimensional closed conducting object in Unfortunately, Eq. (4) does not have a ivnique solution for
the (xy) plane. We treat transverse-magnetic (TM) scatter- all values of k. In fact, nonunique solutions exist for those
ing from such an object. By TM we mean that the electric values of k where the interior Neumann problem

6061 J ADDL. Phys 67 (10). 15 May 1990 0021-8979190/106061-05$03.00 @ 1990 American Institute of Physics 6061



V2v+kv=O inC, (5a) solving the 6X6 linear system that results when Eq. (8) is
a, assumed exact for the following candidate functions f(x):

= 0 on C (5b) I,x,x',log x,x log x, and x2log x, using analytic integration
rules. Once computed, the quadrature weights can be stored

has a nontrivial solution. These values of k are referred to as and looked up numerically when needed. The proof of ap-
interior resonances of the Dirichlet (TM) problem, or inte- proximately fourth-order convergence can be found in
rior Dirichlet eigenvalues. Rokhlin. f

Numerically, when one tries to solve Eq. (4) at or near a
resonance, the condition number K of the resulting discre- B. The condition number
tized linear system becomes large. The solution becomes
much more sensitive to computer round-off errors, and iter- The discrete system is of the form

ative solution procedures have more difficulty converging. Ax = b, (9)
In short, efficient solution techniques and accurate results where A is a nonsymmetric complex matrix of order n and x
become much more difficult to achieve, and b are vectors of length n. The condition number K is

defined as
C. What can be done?

Below, we study the condition number of the discrete K hA 11 hA - (10)

system for the case when C is a circle and the case when C is where II1 can be any finite-dimensional norm. We choose

an ellipse. We then outline two approaches to alleviate the the 2-norm, in which case we have'

resonance problem: (1) using a combined-potential equa- a',,,,
tion in place of Co (4) and (2) introducing a small imagi- K (11)
nary part in k and extrapolating back to the real axis.

where 0
',,a and a,,, are, respectively, the largest and small-

est singular values of the matrix A. We can thus compute the
It. THE ILL-CONDITIONING OF SCATTERING condition number of the matrix by performing a singular
PROBLEMS NEAR A RESONANCE value decomposition. This is a somewhat expensive oper-

A. Numerical method: Discretization and quadrature ation to perform routinely, but it is indispensible for the pres-

formulas ent study. As a resonance frequency is approached, arm,,, ap-

We discretize Eq. (4) using Nystrbm's method; thai i proaches zero, and the condition number approaches

we approximate the integral directly with a quadrature for- infinity.

mula. We use roughly fourth-order-convergent quadrature
formulas t!.at handle logarithmic singularities.5" The high- C. Resonances of a circular conductor of unit radius
order accuracy is important because in the vicinity of a reso- For a circle of unit radius, the resonant wave numbers
nance, solutions are extremely sensitive to round-off and are determined from the roots of the derivatives of Bessel
truncation errors. functions; that is,

Roughly fourth-order-convergent quadrature formulas
that handle logarithmic singularities atx = 0 are developed" , (kin) =O, n = 0,1,2..., m = 0,1,2......(12)
by starting with the Euler-Maclaurin formula with the sin- In Table I, we show some computational results for K with k
gular point removed. That is, let at or near a resonance, with the scatterer being a circle of unit

It , radius. The value of n denotes the number of sample points
af(x)dx = hi 2f,( X along the boundary, separated by equal arc lengths. The

(6) number of points per wavelength is n/k. The three resonant
wave numbers k,, k2 , and k3 in Table I have values

where h= l/n and xi = i/n. To correct for the singular 3.831 705 9702, 7.015 586 669 8, and 19.615 858 5105, re-
point, a concentration of points of the form Y.= 2,f(x, ) is spectively. More roots of J ' can be found in Abramowitz
introduced in the first interval, where x. =jh /6 for and Stegun. q

j = 1,2,..., 6. The derivative term is approximated by the Notice in Table I that a slight movement of k into the
one-sided difference formula complex plane reduces the condition number K by orders of

magnitude, even for the highest wave number k,. We will
f'(x.)= - [3f(x,,) -4f(x._ ,) +f(x,_-)]. (7) use this fact in our extrapolation technique.

Combining these terms yields D. Resonances of an elliptical conductor

x f(X,) 6 I For an ellipse, the resonant wave numbers are deter-
f(x)dx = h f(x, 2f(x,, mined from the roots of the derivative of a modified Mathieu

function. We generated these roots ourselves: to our knowl-

- [f(x,, -2 4f(x, - ) + 3f(x,) edge they are not satisfactorily tabulated. Mathieu functions
24 arise often in problems with elliptical geomett3 and have an

(8) extensively developed theory,"0 which we cannot present

The unknown weights A, (J = 1,2,... ,6) are determined by here. Since, however, they are not as generally known or as
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TABLE 1. Condition numbers K for a circle ofradius a 1, using Eq. (4). tion). To find the characteristic number one must find the
Notes: 0.10(3)meanso.IX10'. nisthenumberofsamplepointson the root of a continued-fraction equation. Our approach is to
scatterer boundary, k is the wave number, and a is the rdius; a = 1, obtain tabulated values of the characteristic numbers,' 0 in-

Number of points terpolate them using a natural cubic spline, and use the inter-
Wavelength polated value as an initial guess in the method of bisection to

ka K on scatterer boundary find the root of the continued-fraction equation. This gives
us the characteristic number for any value ofq to high preci-

40 A, 0.34790 (5) 10.4 sion. We can then determine the coefficients and calculate
s o k , 0 .9 2 2 5 1 ( 6 ) 2 0 .8f0 k, 0.29271 (7) 26.1 the values of the derivative ofthe modified Mathieu function

200 k, 0.50210 (7) 52.2 for various values of q, and use the secant method to obtain
100 k, + 0.05i 0.20355 (2) 26.1 the derivative's root. The root q, is related to the resonant
100 k, + 0.025i 0.19506 (2) 26.1 wave number k via q, = (c2/4) k 2, where 2c is the interfocal
100 k, + 0.01i 0.10163 (3) 26.1 distance for the ellipse in question. We have generated roots
100 ki + 0.002i 0.50803 (3) 26.1 for the function Ceo for use in this study.
100 k, + 0.001i 0.10160 (4) 26.1 Our present computer implementation requires that the
100 kt +0.0004i 0.25401 (4) 26.1 samplepointsontheboundaryofthescattererbeequispaced
100 k, + 0.0002 0.50804 6(4) 5.7 in arc length. In the case of a circular scatterer, this is simple:

80 k, 0.96858 (5) 11.4 As = aAO, where As is the arc length interval and a is the
100 k2  0.27361 (6) 13.7 radius of the circle. However, for other closed contours a
200 k2  0.83871 (7) 27.4 numerical algorithm must be invoked to prduce equally
100 k2 + 0.05i 0.20126 (2) 13 7 spaced points. This resampling procedure, which uses fast
100 k2 + 0.001i 0.10062 (4) 13.7 Fourier transforms, perturbs the discrete problem very
100 k, 0.63729 (4) 5.1 slightly (typically 0.0 1% or less); however, these small per-
200 k, 0.16200 (6) 10.2 turbations are often great enough so that the resulting linear
200__k_,_+_0.05i_0.20194(2)__0_2 

_ system has a different resonance from the original problem.

To obtain the resonant wave numbers of the discrete
problem resulting from a slightly perturbed scatterer shape,

widely tabulated as Bessel functions, we discuss them brief- we use the secant method to drive the minimum singular
ly. When we apply the method of separation of variables to value om,n to 0. Suppose the resonant wave number is de-
Helmholtz's equation in elliptical coordinates, we obtain the fined as the root of a nonlinear function o,,,, =f(k). Then,
following equations: using the .ecant method, an improved root is given by

d2y, + (A 2qcos2u)y=0 (13a) k( =k(n o k,)_k (-,)(15)
nu o,,jn) &"n-I1)

and where the superscript (n) denotes the iteration counter. In
practice, we have found that only one or two iterations are

du ( - 2q cosh 2u)y = 0, (13b) required to obtain an accurate resonant wave number for an
du2  ellipse, when we use the root of the derivative ofthe appro-

which are, respectively, the Mathieu and modified Mathieu priate modified Mathieu function to obtain a starting value
equations. In the present problem, the equation of interest is for the algorithm. Table II lists the continuous and discrete
the second one, the modified Mathieu equation. Solutions to resonant wave numbers for a number of ellipses. The values
this equation are the modified Mathieu functions, which k,, ks, ': 6, and k, refer to the discrete k's in this table in
have the form" order from top to bottom, and are used in the tables follow-

Ce,. ( u,q ) = A ~) ing.
2,- Table III lists some condition numbers for various val-

ues ofk near a discrete resonance for an ellipse with semima-
Ce2,, (u,q) cosh (2r + I )u, (14b) jor axis a and semiminor axis b. We compute the number of

r-o points per wavelength using an approximate formula for the
S n- + 2 'sinh(2r + l)u, (14) perimeter of an ellipse, which yieldsSen + I (U1 Y B2 +.1 ( 1,4c,

r-O

Se2.+ 2 (u,q)-- B ,+ 2 sinh(2r+ 2)u. (14d) TABLE If. Resonant wave numbers for various ellipses. Notes: ois the
=0 semtmajor axis, b the semiminor axis, and k the wave number.

The notation Ce and Se (on which there are variations)
arose from the notion of"elliptic cosine" and "elliptic sine." Continuous kb Dzscrete kb a b

The coefficients A and B must be found through recur- 3.380 123 647 98 3.377 841 278 90 ( =,) 2 I
rence relationships. First, however, one must determine the 3.467 850 747 85 3.467 387 362 51 ( Ak 1.5 1
"characteristic number" A for which a periodic solution ex- 3.562 999 874 37 3.558 639 339 65 ( = k,.) 1.25 1
ists. One must do this for each value ofthe parameter q (giv- 3.301 504 871 94 3.300 3j2 24101 ( ,) 3 1
en u, which is fixed by the eccentricity of the ellipse in ques-
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TAIBLE Ill. Condition number% K for varioua ellhp~e, uing Eq (4). TABLE IV- Condition numbers%-foracircleofradiusa = I uingthecom-
Not.s. 0. 10 (3) ieaun 0.1 X 10'. a v, the number of s.ample point'-; ol the hined-potential equation I Eq. (19) 1. Notes: it is tie nluber of %aniplh
s.atterer boundary, k is the wave number, a is the seminimajor axis, and b i% points on the cattercr boundary. k i tihe wave number, and a i% the radius;
the seminiior axis. a = 1.

Number of points Number of points
Wavelength Wavelength

I kb a b K on scatterer boundary If ka on scatterer boundary

]SO L 2 1 0.15107 (8) 28.07 40 A, 3.8933 10.4
150 A, + 0.002i 2 1 0.50537 (3) 28.07 80 A, 3.8930 20.8
150 k, +0.001i 2 1 0.10107 (4) 28.07 100 A, 3.8930 26.1
150 k4 +0.02i 2 1 0.50542 (2) 28.07 40 k, 7.0648 5.7
150 k4 +0.01' 2 1 0.10108 %3) 28.07 80 k, 7.0507 11.4
150 k, + 0.2i 2 1 0.51228() 28.07 100 k, 7.0505 13.7
150 k, + 0.Ii 2 1 0.10141 (2) 28.07 200 k, 7.0505 27.4
150 k, 1.5 1 0.12572 (8) 33.93
150 A, + 0.002i 1.5 1 0.50698 (3) 3393
150 k, +0.001i 1.5 I 0.10139(4) 33.93
150 k,, 1.25 1 0.36088 (7) 37.24
150 k. +0.002, 1.25 1 0.50202 (3) 37.24 Ifwediscretize Eq. (19) using the same highly accurate
150 k. +0.001i 1.25 0.10040 (4) 37.24 quadrature formulas we used for Eq. (4), a linear system
150 k, 3 1 0.19492 (8) 20.32 similar to (9) results, but with a much better-conditioned
150 A, +0.002i 3 1 0.52592 (3) 20.32 coefficient matrix A. We illustrate this point in Tables IV
150 k, + 0.001i 3 1 0.10522 (4) 20.32 and V. Equation (19), the combined-potential equation, is

somewhat more complicated than Eq. (4), the integral equa-
tion obtained by using only double-layer potentials. How-
ever, the linear system is so much better conditioned that the

point s ( 16) additional work required to discretize the integral equation
A k (7+ .b2 is justified. Since most iterative methods for solving the lin-

ear system (9) have a convergence time that is an increasing
Table I shows, as does Table I, the bad conditioning function of K, the condition number, K should be minimized.

that occurs near resonance. Again, notice how a slight move- Unfortunately, in the transverse-electric (TE) case,
ment ofk into the complex plane reduces K by orders ofang- which is a Neumann problem, the combined-potential equa-
nitude, tion analogous to Eq. (19) contains the second derivative of

the Green's function IV. This makes the equation much more
COLINGD-TEN L R EN A POB M Udifficult to solve numerically. Thus, we investigate an alter-

native approach to solving the resonance problem.

A different integral equation from Eq. (4) can be
formed by combining single- and double-layer potentials. IV. SOLVING THE RESONANCE PROBLEM BY
Let EXTRAPOLATION FROM THE COMPLEX PLANE

uW x)4(xy) - t14)(xY)IP(y)ds(y), (17) In this simple but powerful approach, we take the reso-
Jc d y ,(y) / nant wave number, add to it a small imaginary part, and

where -q00 is an arbitrary real number such that . solve the scattering problem. We repeat this for a different
small imaginary part. We then have two different solutions

7 Re k>0. (18) that we can use to extrapolate to a solution corresponding to
the resonant wave number with zero imaginary part. We

We use 77= I in our computations. Using (17), Colton and show an example in Fig. I. Here, we use solutions for
Kress6 derive the integral equation k = k, + iO.002 and k = k, + iO.001 to obtain :he radar

%V +/O\P - i77SVP = 2f, (19)

where K and S are operators given by TABLE V. Condition numbers K for various ellipses using the combined-
potential equation [Eq (19)]. Notes n is the iumber of sample points on

(AV') (x) = 2 C (x,y) q'(y)ds(y), (20) the scatterer boundary, A is the wave number, a is the semimajorayis, and b
c v(y) is the semimmor axis.

(SV) (x) = 2 F 4 (x,y)W1(y)ds(y). (21) Number ofpoints
Jc Wavelength

Equation (19) is the modified Dirichlet problem (TM) that k b a b K on scatterer boundary

has solutions for all wave numbers k satisfying Im k>O.4  150 A, 2 1 3.2821 28.07
Equation (19) is analogous to the combined-field integral 150 k, 1.5 I 3.3914 33.93
equation (CFIE) of electrical engineering practice, but it is ISO A, 1.25 I 3.4160 37.24
not the same. We refer to it in this paper as the combined- 150 k, 3 1 3.5451 20.32

potential equation.
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12 ,converge rapidly for such small values of K. t 2"t

E 10 The RCS results for the ellipsea = 2, b = I at resonance
k, are plotted in Fig. 2 [this curve is the same on a plot of this

U size whether computed via Eq. (19) or via the extrapolation
technique I. These results are compared in the figure with the
RCS results computed at resonance using Eq. (4) with no

% 4 -extrapolation. The enormous difference between the two
'- 2 curves highlights the possibly disastrous results that can be

, I . obtained when condition numbers reach values of 0(10").
o 40 so 120 IS0 Blindly solving Eq. (4) without considering resonance is not

4 wise.

FIG. I. Radar cross section (RCS) for a circle of unit radius at resonant V. SUMMARY
wave number k,. Solid line shows solution obtained using the combined-
potential equation (19). Dotted line shows solution obtained usingextrapo- We have solved the problem of resonance in integral-
lation from the complex plane. The error between the two methods is less equation scattering methods using two different approaches:
than0.002dBandcannotbeseenontheplots.Theseriessolutionforacircle (I) By solving a combined-potential equation (Eq. (19) ]
is also indistinguishable on the plot. and (2) by extrapolation from the complex plane. In this

cross sction (RCS) for a circle of unit radius at resonant paper we have solved a Dirichlet (TM) problem for which

wave number k1. As can be seen in Fig. I, the agreement the combined-potential equation is relatively easy to treat

between this method and that using Eq. (19) described numerically, so that the extrapolation technique may not

above is excellent. The error between the two methods is less appear to offer any overwhelming advantages. However,

than 0.002 dB and cannot be seen on the plots, when we solve the Neumann (TE) problem, the combined-

As another example, we consider an elliptical scatterer potential equation analogous to Eq. (19) contains the sec-

with parameters a = 2, b = 1 (where a is the semimajor axis ond derivative of the Green's function 4). This makes the

and b is the semiminor axis), n = 150, and k = k,, illumi- equation much more difficult tosolve numerically. In theTE

nated by a plane wave with incidence angle 90" (broadside case, the extrapolation technique will offer a significant ad-

incidence). Three separate linear extrapolations are com- vantage.

puted: (I) k, + tD.002 and k, + 10.001, (2) k, + i0.02 and By solving this problem, we have assured the possibility

k, + i0.0 1, and. (3) k,4 + iO.2 and k, + 10.1. The maximum of obtaining accurate and efficient solutions at all frequen-

RCS errors (for 100 observation angles) between the solu- cies. We have thus significantly strengthened a highly accu-

tions obtainedl using these three extrapolations and those ob- rate implementation of the second-kind integral equation for

tained using the combined-potential equation (19) are, re- scattering.
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NUMERICAL The unknown weights )Aj = 1, 2, .... 6) are determined by
SECOND-KIND-INTEGRAL-EQUATION solving the 6 x 6 linear system that results when eqn. 5 is
SOLUTIONS OF ELECTROMAGNETIC presumed exact for the following candidate functionsf(x): 1,

SCATTERING PROBLEMS X, x', log x, x log x, and x' log x, using analytic integration
rules. Once computed, the quadrature weights can be stored
and looked up numerically when needed. The proof of

Indexing terms: Electromagnetic waves, Scattering, Numerical approximately fourth-order convergence can be found in
methods and number theory, Radar cross-sections Reference 2.

Our method involves a direct discretisation of the integral &A new, highly accurate numerical method based on second- using a quadrature formula, and does not explicitly involve an

kind integral equations has been developed to solve electro-

magnetic scattering problems for closed conducting bodies in expansion in basis functions as in the method of moments
two dimensions. The method is approximately fourth-order Common implementations of the method of moments typi-
convergent, owing to the use of accurate new quadrature cally use pulse, triangle or low-order trigonometric basis func-
formulas tions. Such choices of basis functions lead at best to first or

second-order accuracy, provided the singularity in the Green's
function is handled adquately. (In theory, it is possible to

Introduction: We have developed a second-kind integral equa- obtain higher accuracy by using higher-order basis functions.)
tion solver (the SKIE method) for transverse-magnetic (TM)
electromagnetic scattering from perfect electrical conductors Results: The method as implemented at present can calculate
of arbitrary closed geometry in two dimensions. The method TM electromagnetic scattering from closed, perfectly conduct-
uses accurate, roughly fourth-order-convergent quadrature ing bodies in two dimension. Some bistatic RCS c.,culations
formulas. The resulting discrete matrix has a condition are shown in Figs. I and 2. Fig. I shows the results for a
number bounded by a constant as the sampling is refined (for cylinder of size ka = 20 where a is the radius, and Fig. 2
a given scatterer size and nonresonant frequency). shows the results for an ellipse of size ka = 27-7 where a is the

semimajor axis.
Method: We begin with a second-kind integral equation
derived from Helmholtz's equation Accuracy: One way to verify the accuracy of the numerical

method is to compare numerical results with known analytical
f p qsolutions for canonical shapes, as done for the cylinder of

p(q) dq + 2np(p) = 0(p) (1) Fig. 1. We also adopt an approach where the accuracy can be
an verified for any shape of object. The approach ;s essentially

one of testing how closely the method verifies Green's second
We solve a Dirichlet problem, with 4i the prescribed value of
the potential on the closed boundary B of the scatterer. In the 0 14- 1

TM case we are solving, 0 is the electric field normal to the *

plane of the scatterer, q and p are, respectively, source and "12
field evaluation points on B, aG/8n is the normal derivative of I
the Green's function for Helmholtz's equation and p is the ( 3 10
unknown double-layer distribution on the boundary of the
scatterer. Once p is known, the field at a point exterior to the
s,:atterer can be obtained by evaluating

E 6
f aG(P , q) ko o20 H 0 III

0(p) = p(q) dq (2) 0 4 0 80 120 160
a8  n ozimutth o. degrees =7'

Eqn. I is discretised by replacing the integral with quadrature Fig. I Bistatic RCS (TM) for conducting cylinder of size ka = 20,

formulas, leading to a matrix equation that can be solved where a is radius

numerically. We have solved the linear system using both To show detail, lobe at 0' (forard scatterng) is cu, off in plot, and
Gaussian elimination and an iterative generalised conjugate plot shows only first half of azimuth range

residual technique.' Roughly fourth-order-convergent quadra- Numercal

ture formulas that handle logarithmic singularities at x = 0 ----- Analytic

are develop, .' by starting with the Euler-Maclaurin formula
with the si' %Aar point removed. That is, let identity. Suppose that we are solving an exterior Dirichlet

problem on some two-dimensional boundary, and the right-
hand side of the problem is equal to the field generated by a

L 1 dipole source located inside the boundary. The solution of this
f(x) dx = h, f(x,) - - hIf'(x,) (3) Dirichlet problem at receivers exterior to the boundary must

0 Jbe equal to the field of the source at those rece' -s, as if the

boundary were not present. A relative error can oc computed
where h = l/n and x, =i/n. To correct for the singular point, a between the fields calculated by solving the Dirichlet problem
concentration of points of the form Y' I, f(Xj) is introduced and the fields of the source.
in the first interval, where Xj =jh/6 for j = 1, 2, ... , 6. The
derivative term is approximated by the one-sided difference 28
formula 0 2'-

20
f'(x.) = [3f(x.) - 4f(x._ 1) + f(x.. 2)] (4) v 16

Combining these terms yields U "

ff(.x) dx = h f(X,) + )JX ) -f(x2 0 1 0
o azim uth 9,degrees LIMIIJ

[f(x. - 2) - 4f(x,. 1) + 3f(x.)] (5) Fig. 2 Bistatic RCS (TM)for broadside incidence on conducting ellipse



points per wavelength is increased from 5 to 60, the relative
error decreases from order 10-2 to order I0-6, The dotted
line shows fourth-order convergence, and is drawn for refer-

2 %.ence. At 10 points per wavelength, the accuracy is of orderS10 -N%10-1.

.3 N fourth -order

10 convergence Condition number: Fig. 4 illustrates another important pro-
perty of the SKIE method. For the ellipse mentioned above in
connection with Fig. 3, Fig. 4 plots the condition number of

164- the matrix against the number of sample points per wave-length. As Fig. 4 shows, the condition number is low, and it

does not change as the number of sample points is increased.
.. The SKIE method produces problems that are well-

.10 0 N conditioned away from resonances. A low condition number
_ o is advantageous both because it indicates a stable method'
t .6 and because it tends to lead to faster convergence for iterative

10 0 methods for linear systems.5 Note that the condition number
0 ,  is bounded by a constant for a given scatterer size and non-

resonant frequency.
10
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