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EXECUTIVE SUMMARY

This paper presents an overview of neural network technology and
specifics of the self-organizing networks. An artificial neural network
is described which recognizes objects regardless of their spatial
orientation. This network is invariant to rotation, scale, and
translation.

Invariance is built into the network by introducing a unique set of
features which were developed in-house. This overcame the two
shortcomings of long training times and combinatorial explosion of terms
often present in other networks. Preliminary results suggest that with
further refinement and enhancement, the system described in this report
will have the capability to reliably recognize targets under adverse
environmental conditions.
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FOREWORD

An overview of Artificial Neural Networks technology and its
application to target recognition is presented. Architecture and
attributes of self-organizing networks are discussed in detail. Target
recognition using self-organizing neural networks was investigated. The
networks were trained to recognize targets regardless of the viewing
position. Performance as a function of orientation angle, and scale
were characterized as well as overall performance.

This technical report was reviewed by Frank Rucky, Head of the
Concepts and Technology Branch and Kurt Mueller, Acting Head of the
Advanced Weapons Division.

Approved by:

0. P. CREDLE, Head
Weapons Systems Department
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INTRODUCTION

Building machines capable of human-like thinking and reasoning will
probably require technology derived from the study of artificial
intelligence and neural networks. For many years researchers have been
examining the functioning of the brain trying to simulate some of its
unique capabilities by computer. Already, these networks can simulate
learning some of the functions that humans are able to perform almost
automatically such as image and speech recognition. Although progress
has been made in these systems, researchers have only scratched the
surface and more work needs to be done to make the systems more
versatile and accurate.

Similar to our current understanding of the human brain, neural
network models are composed of dense interconnections of simple,
nonlinear computational elements operating in parallel. These systems
have many advantages over sequential machines including the high
computation rate provided by massive parallelism. Neural networks are
also more robust than conventional computational techniques since
degradation of the input signal or failure of a few nodes or connections
will not significantly impair overall performance. Neural networks show
the most potential in areas where multiple hypotheses are pursued in
parallel, high computation rates are required, and the current systems
performance is far from equaling human performance.'

The goal of this report is to describe a system for automatic
target recognition. The system is able to recognize a class of targets
regardless of its angle of orientation, its relative site, and its
position in the field of view. These factors, known as rotation,
scaling, and translation, cause distortions in the object which make it
look very different to the computer than the same image in its standard
position. Also, noise in the picture (such as a cloud covering part of
the target) can confuse the system into thinking that the noise is part
of the image and thus make it more difficult for the automatic target
recognition system to identify the target. Current target recognition
systems are not able to completely overcome the noise problem. However,
neural networks offer hope of achieving a solution to this problem.

- ----- -- mmmmnmm mu m~l~~llNHa1
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BACKGROUND

AUTOMATIC TARGET RECOGNITION

Target recognition can be defined as choosing the proper model
structure to characterize a given target or, more simply, identifying a
target as belonging to a certain class. Some criteria used for target
identification are explained by Larimore 2 and Chellapa and Kashyap.3
Researchers have attempted to identify unknown objects by comparing
their 2-D silhouettes to silhouette models in a library. Edges composed
of straight line segments have been used as features by many researchers
for identification and satisfactory results have been obtained from
these methods on conventional computers.4,5

Artificial neural networks have been trained to distinguish among
digitized images of several targets presented in fixed positions with a
high degree of success6. The success rate is much lower, however, when
the targets are rotated, translated, or scaled. Previous techniques
used to compensate for the rotation, translation, and scaling have
included training the network on the images presented at different
angles and designing networks so that the synaptic weights have affine
invariance incorporated into their calculation. 7,8 These techniques were
of limited success. 6

ARTIFICIAL NEURAL SYSTEMS

Although they may seem big and extremely complex, in reality,
artificial neural networks are simple elements which once interconnected
form a powerful computational system. The fundamental elements of any
neural network are the neurons and connection weights. The neuron is a
simple computational element, usually a summer and threshholder, which
is connected to other neurons via weighted connections. The connection
weights specify the amount information is modified as it is passed
between neurons. Various networks are formed by different connection
schemes, neuronal functions, and training methods.

The neurons perform all of the mathematical functions of the
network. A neuron receives input from the outside world, other neurons
in the network, or, in some cases, both sources. The neurons use these
inputs and the weights from its connections to other neurons to compute
one output which it sends to other neurons in the network or the outside
world. One of the differences between the various network architectures
is the functions that the neurons perform. Some neurons also contain a
threshold function which insures that the output is within the allowed
range of values. Figure 1 shows a typical neuron.

2
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OUTPUT

- A Possible Thresh~old Funmon

INPUTS

F(X, W) is the function performed where
X is the vector of inputs x1, X2, 1 9xn and
W is the vector of weights w1, w2, ...9W

FIGURE 1. A NEURON
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For every neuron in the network there is a weight associated with
each of its inputs. Each input is multiplied by its corresponding
weight to determine its contribution to the output. These weights can
be either excitatory or inhibitory. Excitatory weights increase the
effect of the input value while inhibitory weights decrease the input's
effect.

Neurons are generally grouped together in layers. Networks car be
either one layer or multiple layers. Each neuron in one layer receives
input from every node in the previous (source) layer, but each input is
modified by the weight of the connections between the nodes. The output
of each neuron in a layer, modified by the connection weight, is input
to every node in the next (destination) layer. Although neurons can
have different functions, neurons within a layer generally have the sane
function.

Learning takes place by modifying the values of the connection
weights so that the actual output of the network gets closer to the
desired output. Training, the process by which the network learns, can
be performed using one of two different methods: supervised or
unsupervised learning. In supervised learning, the actual outputs of
the network are compared with the desired outputs (supplied by a
teacher) to determine the network's error value. In contrast, during
unsupervised learning, the network is not given a desired output;
instead, the network uses its own method to determine the error value.*
In either supervised or unsupervised learning, the network uses the
error value to modify its weights. Since large changes in the weights
would cause the network to become unstable, weight values are changed by
only a small percentage of the error. Training time (measured in number
of iterations, cycles through the network, or weight updates) depends
upon the type of network used, the accuracy required for the given
problem, and the difficulty of the problem. Training time is not
necessarily critical because the real power comes from their speed and
accuracy once they are trained.

Although there are many different types of networks, some are more
well known than others. Experience with different models lead our
effort toward the use of network structures similar to Kohonen's self-
organizing feature maps. 9 This paper focuses on Kohonen's networks and
describes some of the results from implementing variations of these
networks for automatic target recognition.

There are diLferent methods which the network can use to
compute error. One common method to compute the output of the
network is to find the node which holds the smallest value. If
this value is larger than a given threshold value, the difference
between them is the error. Another method which is used in
networks whose weights correspond to the input space, is to compare
the value of the weight with the value of the corresponding input
and use this difference as an error value.

4
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KOHONEN'S SELF-ORGANIZING FEATURE MAPS

Kohonen developed a neural network which can function in either a
supervised or unsupervised mode. The most well known version of
Kchonen's network is the self-organizing feature maps, named for its
ability to look like the input space. The supervised versions, learning
vector quantization (LVQ) and improved learning vector quantization
(LVQ2.1), are considered a special cas~e of the original algorithm.'0

SELF-ORGANIZING FEATURE MAPS

Kohonen's original network, self-organizing feature maps, consists
of two layers; an input layer and an output layer. Each node in the
input layer is connected to each node in the output layer as shown in
Figure 2. Neurons in the output layer are arranged in a two dimensional
grid with many local, within layer, connections. The input layer
passes the data through the connections to the output layer which
clusters the input vectors.

Each neuron in the output layer is connected to all of the nodes in
its neighborhood. A neighborhood is defined as all of the surrounding
nodes which are within a radius (R) of the center node. Tnitially R is
fairly large and R shrinks with time until each node has only one node
in its neighborhood (i.e. itself). Figure 3 shows the shrinkage of the
neighborhood of the center node over a time period. One common approach
is to initialize the radius R to half the number of nodes in each row of
the output layer and let it decay linearly in time. However, no
specific technique is proposed for decaying the radius R. Depending
upon the problem, certain implementations may work better than others.

While the neighborhood is shrinking, the network is training. The
training continues even after the neighborhood has shrunk to only one
node. The error that is used to modify the weights of the network is
defined as the difference between the input value and the corresponding
weight value. In most cases, all of the weights
in the network are not modified. Only the weights for the node
that is closest to the input (the winning node) and the nodes in its
neighborhood are modified. This method of modifying the weights has the
effect of keeping nodes next to each othpr in the matrix responding to
inputs that are fairly close to each other.

The first step in the algorithm for Kohonen's self-organizing
feature maps is to initialize the network with iandom values. Usually
these initial values are within the range of the input values. The

5
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network is then presentcd with input. With the presentation of new
input, each neuron in the output layer computes the distance from its
weights to the current input by:

Z

i-i

where x1 (t) is the input at time t, w j(t) are the weights for node j at
time t, and d1 is the distance to node j.

The node with the smallest distance (d.) is considered the winner
and is the only neuron that generates output. The weights in the
winning node and its neighborhood are then moved slightly closer to the
input by:

wij :l) wi <)11 t [ i  t - j (t) ]

where r7 is a learning parameter which starts out large (close to 1.0) at
the beginning of training and gradually shrinks toward zero as the
training progresses. Like the neighborhood shrinkage, the shrinkage of
the factor r is left undetermined so that it can be adjusted to better
fit the problem. A linear decay is suggested as a starting point for
the shrinkage of r. Inputs are presented to the network and weights are
modified for a given number of iterations or until some metrics are
computed to indicate that the network has arrived at a steady state.

Due to the fact that the neighboring neurons in the output layer
are pulled closer to the input with the winning neuron, the network
begins tc take on the shape of the input space. As it progresses during
training more nodes will be pushed into areas with a higher
concentration of input samples. If a picture was drawn of the network
using the weights as coordinates and drawing lines between a neuron and
the four neurons surrounding it (three in the case of nodes on the edges
of the matrix) then none of the lines would cross each other and the
picture would model the input space. The following examples illustrate
this behavior of Kohonen's network.

Example 1: The Box Network

One fairly simple example of Kohonen's network which shows how the
feature maps reflect the input space is the example of the box. This
network consists of a ten by ten matrix of output nodes and two input
nodes. The input to the network is a set of points randomly generated
from a square area in the x-y plane. Initially the weights are set to
small random values. After a few hundred iterations the weights begin
to spread out evenly. If the nodes were plotted with the weights as
small boxes and lines are drawn to the four neighboring nodes in the
matrix, then the picture begins to look somewhat like a piece of graph
paper as shown in Figure 4.

8
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FIGURE 4. THE BOX NETWORK
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A similar network has also been run with parts of the square region
excluded from the input space. In this case the network placed very few
neurons if any in the area that was excluded. These neurons are only
placed there because they are pulled by the neurons on either side and
are not able to respond to changes and move out of the excluded area.
As an example, Figure 5 shows the weight distribution for the case in
which no inputs are generated in the region {R(x, y) 1 x < 5, y < 5).

Example 2: The Unit Circle Network

Another experimental example is the unit circle network. The
network is initialized with the output layer consisting of a two by four
matrix of nodes and the input layer with two nodes. The input consists
of two points randomly chosen from the circumference of the unit circle
with the origin placed at zero. The weights are initialized to random
values along the circumference of the unit circle. The network was
trained to divide the circumference of the circle into eight equal
areas. The output is then drawn by connecting a dashed line from the
origin of the graph to the point on the unit circle whose coordinates
are the values of the weights See Figure 6.

This network was also run with a sixteen node output layer. The
results were the same as in the above network except the circle was
divided into sixteen different regions instead of eight.
Experimentation with the network having different numbers of output
nodes, it was determined that it would divide the circumference of the
circle into as many equal regions as there were output nodes.

LEARNING VECTOR QUANTIZATION

Kohonen's learning vector quantization (LVQ) is a variation of the
self-organizing feature maps network that uses supervised learning.
This algorithm is frequently used to fine tune the weights after the
completion of the self-organizing feature maps algorithm.

Using the LVQ algorithm, the desired output is known because the
network has either been examined to determine the correct answers or
been set up initially with the correct responses. An untrained network
is initialized by setting the weights to actual values from one of the
inputs in the region of interest for the node. Kohonen refers to these
weight vectors as codebook vectors. Inputs are presented to the network
and the distances are computed using the same function as in the self-
organizing feature maps algorithm. If the desired output node is the
winner then its weights are pushed slightly closer to the input by the
equation:

w 4i( t+lw) t)~j +T1 ( t7) [1 C t) -w Ct)

If the winning node is not the desired node then the weights in the

winning node are pushed slightly away from the input by:

10
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Dashed lines are the lines to the weight values.
Solid lines show the regions of responsiveness
for each node.

FIGURE 6. THE UNIT CIRCLE NETWORK
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where xi(t) is the input at time t, wij(t) is the weight for node j at
time t, and n(t) is learning factor at time t. In this approach the
weights are not only moved toward the correct responses but also moved
away from the wrong responses. Because they are moved away from an
incorrect response, the weights are fine tuned to more accurately
portray the input.

IMPROVED LEARNING VECTOR QUANTIZATION

The improved learning vector quantization (LVQ2.1) is another
variation of the supervised type Kohonen feature maps algorithm. This
algorithm is the same as the algorithm for LVQ except for one change:
there is a different action taken when the winning node is not the
desired node. For LVQ2.1, not only is the winning node pushed away from
the input but also the desired node is pushed toward the input using the
following equations:

Wid (t+l) =Wid (t) +) ( t) [XJ (t) -Wid (t))

where j refers to the winning node and d refers to the desired node.

The network that was selected for solving the automatic target
recognition problem is the improved learning vector quantization
network. This network performed better in tests than any other network
that was tried. This paper presents a new approach to affine invariant
target recognition using Kohonen's network.

TARGET RECOGNITION SYSTEM

DATA GENERATION

For the purpose of recognizing large image arrays of targets
(100xl00) without the combinatorial explosion of terms and connections
that occur with a large image, an attempt was made to include
information derived from correlations between pixels as described by
Giles et.al. Furthermore, a neural network model was developed which
accounts for aliasing and the jaggies which result from digitizing the
picture on the computer screen.

The three targets shown in Figure 7 were used in this study. Each
image is 100xl00 pixels in size. The images shown are silhouette
images. Thin, one pixel thick boundary, and thick, two pixel thick

13
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boundary, edge images were also used. The targets shown in Figure 7 are
in standard position; the targets were also rotated, scaled and
translated in this project. No noise was added to the pictures in this
stage of the project.

FEATURE EXTRACTION

A procedure for selection and extraction of features was developed
to provide a set of feature vectors for use with the neural network
model. Pixels in the image are considered either one or zero where one
corresponds to a pixel in the target and zero corresponds to a
background pixel. Components of the vector X represent the features
extracted from an image, where X is defined as follows:

X = (x1I, x21, x3}
x= the total number of pixels in the image that are not

background.
x2 = the sum of all of the products of pixels with the

pixels which are the same distance from a designated
origin but 90 degrees apart.

x3 = the same as x2 except for pixels 180 degrees apart.

At first glance, the above features appeared to be invariant - at
least under translation and rotation - if the proper origin is selected.
However, close inspection of these features revealed that aliasing may
cause any or all of the features to fail to be invariant.

To remedy the problems described above, an average number of pixels
representing a target was chosen rather than an absolute number of
pixels. Deviation from this assumed average is a function of the
rotation angle as well as the inherent problem of aliasing. Using this
approach, a learning paradigm was selected which accounted for average
behavior in a system. It appeared that although the features described
above are not truly rotationally invariant when a transformation is
applied to a digitized target, they are nearly rotationally invariant
and a paradigm which accounted for fluctuations about an assumed mean
would work well. This led to the choice of the LVQ2.1 algorithm.

After several training sessions in which an attempt was made to
implement rotational invariance, it became apparent that aliasing and
jaggies caused the features extracted at the mid angles (25 degrees to
65 degrees) to differ substantially from those extracted from the same
target at angles near zero degree and 90 degrees. Therefore, it was
decided to use two feature vectors to represent each target. The first
vector was composed of features initialized with the target at standard
position (at 90 degree angle), as shown in Figure 7, and the second
vector used the same features initialized at mid angles (45 degrees).

Translation invariance was easily incorporated into the network by
computing features with respect to the center of gravity of the target.
Thus the designated origin referred to in the definitions of features
x2 and x3 is the center of gravity of the target.

15
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Features were adjusted for scale invariance by a simple ratio and
proportion scheme. The radius (R) of the smallest circle centered at
the target's center of gravity, which enclosed all of the target's
pixels was found. Each of the features was then multiplied by 144/R 2 ,
where 144 is simply a base value indicating the square of the radius of
the circle which encloses the standard size training targets.

TARGET RECOGNITION

First the features were extracted for the targets of interest, and
then the feature vectors were used for training and testing. Kohonen's
LVQ2.1 technique was used for recognition. Sample feature vectors for
the targets were placed in the codebook vectors to initialize them.

A methodology was formulated and algorithms developed for training.
A randomly selected target was rotated at an arbitrary angle between
zero and 180 degrees while keeping target position fixed (no
translation) and target size standard (i.e., scale factor of 1:1).
Features were extracted and used to generate the feature vector as
described before. Next, these feature vectors were introduced to the
neural network model and the codebook vectors were computed and updated.
During training the network assigned two codebook vectors to each
target. This process was repeated for 1000 iterations, and resulted in
the two codebook vectors moving toward the center of the cluster that
represents the target. Iterations of 200, 400, and 600 were also
considered during training processes.

During testing, one of the three targets was randomly selected,
rotated, scaled, and translated. Feature vectors were extracted from
the image and then presented to the network for recognition. These
training and testing procedures were repeated for all of three sets of
images (i.e., silhouette, thin edge, thick edge).

RESULTS

The recognition network was tested for many combinations of
orientation angles, scale factors, and translations. Angles were varied
from zero to 90 degrees, scale factors ranged from 0.49 to 1.7, and the
translations ranged from -15 to 15 in both the x and y directions.

Performance of the network varied only 10 percent as a function of
orientation angle when silhouette and thick edge images were used. In
the case of thin edge images, the network perforce varied considerably
and did especially poor at angles near 45 degrees. Figure 8 shows the
percent correctly classified as a function of orientation angle.

It appeared that in the case of thin edge images the network did
well for scale factors from 0.81 to 1.2, but the performance fell off
sharply as the scale factor increased or decreased beyond this range.
When thick edge images were used the network performed very well for
scale factors from 0.81 to 1.44 with a correct recognition rate of 97

16
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percent. In the case of silhouette images recognition rates as high as
100 percent were achieved, and where the target size was reduced the
accuracy dropped by three percent. Figure 9 shows the percent correctly
classified as a function of scale factor.

As expected, the network trained on silhouette images exhibited the
best overall performance, achieving an accuracy of 99 percent when
trained for 1000 iterations (Table 1). In general thick edge images
were superior to thin edge images for identifying targets (90.0 vs. 70.0
percent). As Table 1 also shows, no appreciable improvement was
obtained by increasing the number of iterations for either the thick
edge or thin edge images.

CONCLUSION AND SUGGESTION FOR FURTHER STUDY

The test results clearly demonstrated that the feature extraction
technique described here, along with LVQ2.1 algorithm, represents an
efficient and effective method for target recognition which is invariant
under any of the affine transformations of scaling, translating, and
rotating. Using only two codebook vectors for each target and only
three features per vector, a high rate of success was achieved in
distinguishing among three targets presented at varying spatial
orientations. In addition to the rapid training process and efficient
identification, a new set of features was introduced which may be easily
generalized to account for more complex structured targets.

Work is still underway on the problem of identifying targets by
feature extraction with a Kohonen type network. Emphasis is being
placed on establishing criteria for determining adequate training time,
incorporation of statistical measures to determine probabilities of
detection, and assigning measures of confidence to the response of the
network. Other areas related to automatic target recognition which are
currently being studied include developing more efficient scale
invariant algorithms, and perhaps more significantly, designing networks
to work in the presence of a low signal to noise ratio.

18
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TABLE 1. OVERALL PERFORMANCE OF THE NETWORK USING
THREE TYPES OF IMAGES

IMAGE NO. OF % CORRECT
TYPE ITERATIONS

200 95.2SILHOUETTIE 1000 99.0

200 83.0

300 88.0
THICK EDGE

400 90.0

1000 84.0

4017 63.0

THIN EDGE 600 70.0

1000 63.0
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