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Abstract 

This paper presents a knowledge-based system to interpret registered laser radar 
and thermal images. The objective is to detect and recognize man-made objects at 
kilometer range in outdoor scenes. The multi-sensor fusion approach is applied to 
various sensing modalities (range, intensity, velocity, and thermal) to improve both 
image segmentation and interpretation. The ability to use multiple sensors greatly helps 
an intelligent platform to understand and interact with its environment. The knowledge- 
based interpretation system, AIMS, is constructed using KEE and Lisp. Low-level 
attributes of image segments (regions) are computed by the segmentation modules and 
then converted to the KEE format. The interpretation system applies forward chaining 
in a bottom-up fashion to derive object-level interpretations from data bases generated 
by low-level processing modules. Segments are grouped into objects and then objects 
are classified into pre-defined categories. AIMS employs a two-tiered software structure. 
The efficiency of AIMS is enhanced by transferring non-symbolic processing tasks to a 
concurrent service manager (program). Therefore, tasks with different characteristics 
are executed using different software tools and methodologies. The interaction between 
the high and low level modules and the reasoning rules enable AIMS to tolerate errors by 
verifing segmentation and improving initial interpretation incrementally. Experimental 
results using real data are presented, 

AI Topic: machine vision^ image interpretation, intelligent robotics. 
Domain Area: detection and recognition of man-made objects in outdoor scene. 
Language/Tool: KEE /Lisp/C. 
Status: under development. 
Effort: 2 man-years. 
Impact:  Enhances image understanding capability of intelligent robots by using AI 
and multiple sensing modalities. 
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1    Introduction 

This paper reports a prototype system to interpret ground-based, kilometer-range 

laser radar (ladar or lidar [1]) and infrared images. The goal of the system is to detect 

and recognize man-made objects (MMO) in outdoor rural scenes. The complete system 

consists of two building blocks: (1) the segmentation modules for all low-level processing, 

and (2) an interpretation system for high-level reasoning. The focus of this paper 

is the interpretation system: AIMS (Automatic Interpretation system using Multiple 

Sensors) [2]. The MMOs in our test images are mostly vehicles, such as trucks. The 

background is composed of vegetation, ground, and sky. However, the capability of 

AIMS is not limited to this specific domain. For example, the system may also be used 

for robot navigation, remote sensing, and other tasks that require the capability of image 

understanding using multiple sensing modalities. Our system applies the muUi-scnsoT 

fusion (MSF) approach to integrate information derived from multiple modalities to 

improve both image segmentation (by pixel-level sensor fusion) and image interpretation 

(by object-level sensor fusion). Different sensors provide not only different types of 

information, but also multiple observations of the same information through different 

channels. Therefore, vision systems based on MSF can provide better performance than 

that of mono-sensor vision systems. MSF applies toward not only different sensors, but 

also different processing techniques because no single sensor and no single technique is 

sufficient under all circumstances. 

Most vision problems, especially those at the intermediate level (segmentation 

and perceptual grouping) and the top level (recognition and interpretation), while often 

seemed trivial to human, can neither be formulated as analytical optimization problems 

nor by rigorous mathematics alone. The interpretation of multi-sensory images is even 

more difficult because many sensors provide images very different from video intensity 

images we perceive and utilize in daily life. The difficulties in image processing and 

the dissimilarities between the sensors pose major problems to the effective utilization 

of all information. Therefore, intelligent systems that interpret multi-sensory images 

automatically can provide valuable assistance to human experts and empower robotic 

systems to accomplish a wider range of missions. However, robust algorithms for high- 

level vision tasks, such as image interpretation, have not yet been established. 



1.1    Knowledge-Based Systems in Vision 

Techniques derived from artificial intelligence research, such as knowledge-based 

systems (KBS) and inexact reasoning, may provide solutions to machine vision in gen- 

eral [3] and to sensor fusion in particular [4]. The KBS approach has been applied 

to various machine vision tasks, including image segmentation, object recognition, and 

scene interpretation for video, thermal [5], and indoor range images [6,7]* However, 

indoor range data are usually much more precise than data from outdoor range imaging 

because of the much shorter distances involved. Among various applications of ladar [1], 

it can be used as a ground-to-ground, long-distance sensing device. Figure 5 shows an 

example of ladar images. Ladar range data and thermal images have been used jointly 

to detect targets in the field [8]. Recently, XTRS, a target recognition system that 

uses ladar images has been reported [9]. Though the above mentioned systems have 

met some degrees of success, they have not rigorously applied MSF to enhance system 

performance. For example, in XTRS, two subsystems, one region-based and the other 

contour-based, work in parallel but not cooperatively. Therefore, the interpretation 

module in each subsystem does not have complete low-level information. Besides, most 

laser-based systems use only the range channel provided by the laser ranging devices. 

In comparison> AIMS uses all the available modalities in an integrated fashion. Our 

ladar images have three inherently registered components: range, intensity, and velocity. 

The thermal images are manually registered with the ladar images. Each modality 

provides different but complementary information: 3D geometry and object surface 

structure are extracted from range data; intensity data provide object surface reflectivity 

information; velocity data indicate moving targets; thermal images provide information 

about object temperature and thermal capacitance. Segmentation information derived 

from all data channels using various segmentation techniques are integrated into a single 

segmentation map (low-level integration) before the interpretation starts. AIMS uses 

the integrated segmentation map and other information from all information channels in 

the form of consistent interpretation hypotheses and increased confidence factors (high- 

level integration). Hence, AIMS has complete information of the scene rather than just 

partial information from a single source or a single feature extractor. AIMS is designed 

with the KBS technique for its ability to (1) separate interpretation knowledge and 

the inference mechanism, (2) handle inexact reasoning, and (3) emplying both forward 



chaining for a data-driven, bottom-up approach and backward chaining for a focused 

search. 

1.2    System Overview 

Figure 1 shows the overall structure of our system. The segmentation modules 

are written in C, while the reasoning modules are built using KEE* and Lisp. KEE is 

a commercial package for expert system shell development. It provides the inference 

engine and the rule parser in AIMS. KEE uses frame [10] for knowledge representation 

and encourages object-oriented programming. The image segmentation modules execute 

low-level tasks using minimal knowledge about the problem domain. They are divided 

into six groups of different functions: (1) noise removal; (2) image segmentation by 

surface fitting; (3) segmentation by the statistics of pixel values; (4) segmentation by 

histogram analysis and thresholding; (5) integration of segmentation maps, and (6) 

database generation. 

AIMS includes four major components; (1) the inference mechanism provided by 

KEE] (2) the rule bases and supplementary Lisp code, which contain the knowledge for 

image interpretation; (3) the data bases, which are produced by the database generator; 

and (4) the service manager, which executes numerical and graphics tasks for AIMS. 

The interpretation process starts by checking attributes extracted by the image seg- 

mentation modules. It then labels each segment as part of a man-made object or as the 

natural background (BG) based on these parameters. Next, segments are grouped into 

objects based on several criteria. Image interpretation rules then generate hypotheses 

of object interpretations. The hypotheses are strengthened or weakened by examining 

more evidence. 

2    Data,Characteristics and Image Segmentation 

2,1    Laser Radar Data 

Ladar discerns more structural details of distant objects because of its short wave- 

length. The random refraction and reflection of laser light in the atmosphere and on 

the object surfaces generate speckle noise.   This noise is significant in long-distance 

t KEE is a trade mark of IntelHCorp. 



out-door range imaging but virtually non-existent in indoor range imaging [6,7]. It is 

difficult, if not impossible, to reason about ladar images at the pixel level because of the 

speckle noise. Therefore, good segmentation is a crucial intermediate stage before im- 

age interpretation. In addition, how the images are segmented is closely related to how 

they are interpreted. We apply two segmentation methods, surface ßtting and image 

statistics, to ladar data in AIMS. The surface fitting method is designed to highlight 

object surface geometry, while the image statistics method is used to detect differences 

in object surface reflectivity. A complete discussion of the segmentation algorithms and 

their performances using ladar data is reported in [11]. 

Most man-made objects are made of surfaces representable by patches of low-order 

surfaces. This assumption is practically true when the distance to an object is large 

compared to its body dimensions, as it is in our task domain. Therefore, only planar 

surfaces are used. The surface fitting-based segmentation algorithm employs a region- 

growing approach. Surfaces are fitted to segments and segments grow as long as the 

fitting error is within a pre-determined bound. Different object surface materials may 

generate different speckle patterns, which in turn generate different standard deviations 

(SD) of pixel values* The differences of local mean and SD are used for segmentation. 

The statistical approach is also applicable to range and velocity data. For example, the 

average range value for a segment is a good estimation of its distance to the sensor. 

2.2    Thermal Image Characteristics and Segmentation 

The pixel values in thermal (infrared or IR) images are usually dominated by 

the thermal properties of different materials, such as the thermal capacitance and the 

heat sink/source distinction. Some of these properties can differentiate object surface 

materials and, hence, indicate the existence of MMO's. However, IR images usually 

have lower spatial resolution and contrast than video intensity images. These properties 

result in extra problems for the segmentation and recognition. A popular approach for 

IR segmentation is background/target thresholding using the histogram, assuming that 

pixel values consist of a bimodal distribution. The IR images used in this research 

satisfy this assumption. The targets usually occupy less than 20% of the total number 

of image pixels and exhibit higher temperatures than that of the background, which is 

mostly vegetation. 



A segmentation scheme is designed based on such observations. By the Central 

Limit Theorem^ one can assume that all the different thermal characteristics of back- 

ground vegetation result in a Gaussian distribution of pixel values. This Gaussian bell 

is located at the lower-end of the histogram because hardly anything is cooler than the 

background vegetation (except shadows and the sky). The peak of this Gaussian bell 

is also the peak of the entire histogram because the background dominates the entire 

image. The peak of the histogram and its standard deviation cr is determined by solving 

0.5 = exp( 2^1 )' wnere £ is the 3db width of the Gaussian distribution. In a Gaus- 

sian distribution, the mean ^ is the same as the mode of the distribution and, hence, is 

easily determined as the peak of the histogram. Note that p. is not determined as the 

average of the entire thermal image. AU pixels with gray values covered by the range of 

[0, // + a] are classified as background; all pixels with gray values in the range of [/i + 3<r, 

255] are considered as MMO. Pixels with gray values in-between are then determined by 

their proximity to classified pixels. However, only regions large enough are established 

as segments. 

2.3    The Integration of Segmentation and Database Generation 

Different methods operating on multiple data sources generate different segmen- 

tation maps. These maps may have errors and possibly contradict one another. In- 

tegration from multiple sources enhances the signal to noise ratio. Therefore, errors 

and inconsistencies are expected to be reduced in the integration process. It is helpful 

to apply different weights on various input segmentation maps because there may be 

significant differences in the quality and reliability of different segmentation methods 

and data sources. For examples, segmentation from velocity images containing moving 

targets should be given larger weights than those that do not. Edge information, if 

available, may also be integrated into the segmentation map as a cue for region separa- 

tion. 

The output of the low-level integration module is a new segmentation map in which 

all segments are large and their contours compact (determined by thresholds). The 

current implementation of this integration module [11,12] is domain-independent. The 

integration module works with both region-oriented segmentation and edge detection 

modules [12].   In general, range data are not as noisy as their intensity counterparts 



and, therefore, are given higher weights. Velocity data provide useful segmentation 

information only if moving targets are in the scene. Therefore, the weight on velocity 

segmentation depends on the segmentation outcome of individual images. A set of 

utility programs collect the values for various attributes using original images and the 

integrated segmentation map. These data are converted to the representation format of 

KEE by the database generator, and the database is then transferred to AIMS as the 

basis for the interpretation [2]. 

3    The Design of the Knowledge-Based System 

The interpretation strategy of our work follows the three-step paradigm of Clancey's 

Heuristic Classification [13]. First, numerical parameters are converted into qualitative 

descriptors. Second, these descriptors are used to generate intermediate classifications 

of segments as man-made objects or background. Third, segments are grouped into 

objects and these objects are further classified into one of the pre-defined categories. 

Figure 2 shows the block diagram for AIMS and its operation. 

3.1    Knowledge Sources and Representation 

Man-made objects and natural backgrounds have different features. These differ- 

ences are reflected in different modalities in various forms. Expert knowledge is needed 

to detect such differences and to recognize the detected objects. Five types of knowledge 

sources are used to construct rules: 

1. imaging geometry and device parameters (knowledge which is dependent on the 

hardware but not on the imaged scene); 

2. numerical measurements for each segment (knowledge derived from pixel values 

under the guidance of various segmentation maps), such as region size and average 

temperature value in a region; 

3. neighborhood relationships in the segmentation maps (knowledge derived from 

the segmentation maps, but independent of image pixel values); 

4. models of possible objects (knowledge derived from potential targets); and 

5. general heuristics (knowledge derived from known facts in the task domain and 

common sense). 



Several different frame structures are defined to record information about the 

imaging devices, segments, and models of potential targets. Some attributes contain 

active values, or demons, which fire corresponding procedures (additional Lisp codes) 

when certain operations are performed on the selected slots. For example, when two 

rules generate two different interpretations (a symbolic attribute) of a target, both 

interpretations may be accepted and are stored in the order of the strengths of the 

hypotheses. The data structures representing scene contents are organized as two levels: 

segments and objects. The segment frames are used to represent subparts, while the 

object frames are used to represent a group of segments. The segment frames correspond 

to individual segments (areas) in the integrated segmentation map. The object frames 

are built as a higher-level structure during the grouping stage in the reasoning process. 

Grouping is necessary to correct the potential problem of over-segmentation in the 

segmentation stage. An object containing a single segment is a representation overhead. 

However, such overhead is necessary because the reasoning process iB bottom-up and 

the segment- level representation is built first. 

3.2    Hypothesis Integration and Confidence Factors 

Each KEE rule posts one or more hypotheses expressed as a quadruple (seg- 

ment/object, attribute, value, confidence factor). The hypothesis(es) is stored in the 

specified segment frame and slot as a pair (value, confidence factor). The confidence 

factor (CF) is a real number between -1.0 and 1.0. The CF denotes the degree of disbe- 

lief (negative number) or belief (positive number) of the associated hypothesis. The CF 

is used to handle inexact reasoning as opposed to logic resolution, for which everything 

is exactly true or false. Certain low-level numerical attributes, such as the bounding 

rectangles and the size of a/segment, are computed without using the CF. 

The CF value determined by a rule usually changes with one or more selected 

parameters (Figure 3). This is necessary for two reasons. First, rules are not equally 

effective under all circumstances. A rule may generate the same hypothesis with different 

CFs for segments with different attribute values. Second, thresholding is usually used 

to transform quantitative descriptors into qualitative (symbolic) descriptors in KBS. 

The nonlinearity introduced in this way is not aJways desirable, especially during the 

intermediate stage of reasoning.   Furthermore, it.is difficult to choose a set of fixed 
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thresholds which perform well in various conditions. Modifying the CFs dynamically as 

a continuous function reduces the rigidness of fixed thresholds. 

Our work assigns the CFs empirically in the interpretation rules. Multiple hy- 

potheses concerning the same attributes of the same object are combined in a way 

similar to MYCIN [14]. The CF combination rule is 

Combine(a, b) = 
' l-(l_a)(l-6)      ifo>0and6>0 

-Comfctne(-a, -ft)   if a < 0 and b < 0 (1) 
k (o + b)/(\a\ + |fc|)       otherwise. 

The above combination rule provides satisfactory results, although it is based on heuris- 

tics as much as on probability theories. In our work, we have not adopted the methods 

that use detailed mathematical modeling, such as the Dempster-Shafer theory [15]. The 

reason is that several important assumptions in such probabilistic models are unlikely 

to be true in real situations. For example, it is very difficult (1) to get precise measure- 

ments of the probabilities (a priori or a posteriori) associated with all events; (2) to 

claim the statistics from a limited data set (i.e., training) as a reliable estimation of the 

underlying distribution function; and (3) to verify the independence between events. 

If these assumptions are unconfirmed, using complicated mathematic models does not 

deliver the promised optimality. 

3.3    Rule Bases and the Reasoning Process 

The rules in AIMS are organized into five groups: (1) pre-processing and sys- 

tem initialization, (2) coarse classification of segments into MMO/BG, (3) segment 

grouping, (4) classification of BG segments/objects, and (5) classification of MMO seg- 

ments/objects. These groups of rules are sequentially invoked in forward chaining (FC). 

At any given time, only one group of rules is active in the match-resolve-fire cycle. 

However, stages (4) and (5) can operate in parallel. The conflict resolution strategies 

in AIMS are rule weighting and FIFO. The partition of rule bases reduces the matching 

overhead of rule selection, and provides indirect control over the breadth-first search 

implied in FC. Backward chaining (BC) rules will be added in the future to adopt the 

hypothesize-and-verify approach for focused searches. Thus, when a hypothesis with a 

strong confidence is posted, AIMS can switch into the BC mode to verify that hypoth- 

esis. The rule groups are described below: 



1. The pre-processing module handles the differences between individual segmenta- 

tion maps and integrated segmentation maps. Rules in this group also compute 

low-level attribute values and place them into correct slots. This module contains 

largely numerical tasks whose functionalities are gradually shifted to the database 

generator and the service manager. 

2. The MMO/BG distinction is made based on various attributes and numerical 

parameters, such as the surface temperature, the surface fitting coefficients, the 

SD of range values, etc. We find that this binary decision of MMO/BG is always 

made correctly with high CF values. 

Example: 

IF (segment A is relatively hot) 

AND (segment A has compact contour) 

THEN (segment A is an MMO, confidence = Conf(temperature,shape)). 

3. The grouping of segments into objects depends on the neighborhood relationship, 

the MMO/BG classification, the difference in distance, and the object contour anal- 

ysis. Only segments of the same MMO/BG type can be grouped together. Thermal 

image segmentation usually helps the grouping process because thermal images 

are usually under-segmented due to the lack of contrast. 

4. The classification of BG uses the velocity of an object, the position of a seg- 

ment/object within the image frame, the SD of range values, and other attributes 

to classify BG segments into SKY, TREE, and GROUND. For example, GROUND is usu- 

ally at the lower part of the image, though not always. Therefore, being planar 

and (surface normal) pointing upward are more important criteria. 

Example: 

IF (segment A is type BG) 

AND (segment A is relatively cool) 

AND (segment A can be fit by a (planar) surface) 

AND (the surface normal of segment A points upward) 

THEN (segment A is GROUND with a confidence of 0.9). 
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5. The classification of MMOs into BULLETIN BOARD, TANK, APC, JE«?, and TRUCK 

relies mostly on shape and size analysis. Rules that recognize targets in more 

general articulations are under development. However, based on dz/dy (surface 

gradient), the surface fitting error, and the knowledge of target body dimensions, 

it is possible to estimate the rotation of an object and to determine whether the 

target is viewed from broad-si de. 

Example: 

IF (segment A is of type MMO) 

AND (segment A has a width of less than 4m) 

AND (segment A is no taller than 2m) 

THEN (segment A is a JEEP with a confidence of 0.8). 

3*4    The Service Manager 

Despite the flexibility of KEE, three major issues are identified as its weak spots: 

(1) execution efficiency, (2) low-level data access during high-level reasoning, and (3) in- 

terface capability and feedback to low-level processes. Lisp-based development systems, 

such as KEE) are convenient tools to execute symbolic reasoning tasks and to handle 

explicitly-encoded knowledge. However, these systems usually do so at the price of soft- 

ware overhead. The slowdown occurs for two main reasons. First, most such packages 

are built on multiple layers of software and, therefore, are very inefficient. Though KEE 

provides an extensive set of primitives (functions) for parameter access and program 

control, some functions can be implemented more efficiently using Lisp or C code. Sec- 

ond, image interpretation is not a task that consists solely of symbolic processing. For 

example, some rules may need the body dimensions, the average velocity, and the sym- 

metry of the object's body contour for recognition. Moreover, not all the data can be 

conveniently stored/accessed in the frame paradigm. In general, accessing image pixel 

values and data files is difficult to implement directly using KEE primitives. Lisp code 

may be used, but it is not as efficient as C code running on general-purpose hardware. 

The graphics component of KEE does not provide the capability or flexibility needed 

by AIMS. Therefore, we have to implement our own graphics interface to control the 

graphics hardware. 

11 



Our solution to the above problems is a program, the service manager (Figure 4), 

which runs concurrently with AIMS* The purpose of the service manager is to help 

AIMS run low-level tasks efficiently on the designated development platform. AIMS 

sends a message to the service manager for the desired service; then the service manager 

interprets and executes the commands and feeds the results back. The functions of the 

service manager include numerical-intensive subroutines, color graphics, image file I/O, 

and the access of low-level data, such as pixel values and segmentation maps, etc. These 

operations can be written as supplemental Lisp code called from within KEE; however, 

Lisp code runs slowly for these tasks and lacks the flexibility of C in controlling the I/O 

and peripherals. Thus, when the system grows larger, such inefficiency degrades the 

system performance significantly and slows down the development process. 

The interaction between low- and high-level processes is helpful for the interpre- 

tation system. The database generator provides the feed-forward interface from the 

low-level process to the symbolic reasoning process. The service manager provides the 

feedback path from the symbolic process to the low-level, numerical process. The ef- 

ficiency of the service manager enables rule designers to use more complicated tests 

(the IF part) and to take more complicated actions in the conclusion (the THEN part) 

of rules. In addition to calculating numerical parameters, rules can be constructed to 

direct the segmentation modules to refine earlier segmentation results. 

Using this service manager provides a good trade-off during the implementation 

of AIMS, because it cuts short the development cycle and facilitates more testing. On 

one hand, such hybrid software structure accelerates the software development. On the 

other hand, AIMS still keeps most knowledge (the interpretation rules) in a symbolic, 

explicit format independent of the inference mechanism. The contents of some well- 

understood KEE rules are gradually replaced by Lisp code for efficiency, while the form 

of the rules is not changed. At the same time, the Lisp code is gradually replaced by 

a task assignment to the service manager program. Thus, the benefit of a high-level 

expert system shell is mostly preserved and the problem of slower operation is reduced. 

The choice of a specific expert system shell (or to build one from scratch) depends many 

factors, such as available resources (e.g., man-years) and project requirements (e.g., run- 

time efficiency). The choice of a programming language is less dominant, since all of 

them have equivalent description power. 
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4    Experimental Results 

Figure 5 contains the original ladar range» intensity, velocity, and registered ther- 

mal image. The scene shows a single 5-ton truck, 910m from the ladar sensor, beading to 

the right but not moving. T; top image in Figure 6 is the integrated segmentation map 

with region boundaries in white contours overlaid on the range image. White regions 

are detected targets, and black areas are segments which do not have a high-confidence 

interpretation hypothesis. Some of the black areas are actually classified as GROUHD or 

SKY. However, the confidence factors for such classifications fall below a threshold (0.4) 

and are considered too weak to report. Light gray marks GROUND and dark gray marks 

SKY. 

The integrated segmentation correctly marks the entire truck as a single segment, 

and the interpretation module classifies the segment as MHO. The segment is further rec- 

ognized as a TRUCK, The hot engine block is detected and (together with shape analysis 

of target contour) confirms the heading of the truck. The approximate body dimensions 

of the truck (length and height) are estimated from the bounding rectangle, dz/dy, and 

the spatial resolution of the ladar receiver (0.05 millirad). The dz/dy gradient is also 

used to estimate the rotations of the target as 16% compared to the documented value 

of 24°. Since the truck is 910 meters away and the data are noisy, the rotation esti- 

mate can not be very accurate. The length of the truck is estimated as 5.68 meters, 

and this length can be used to verify the target recognition hypothesis. Note that our 

segmentation and integration algorithms favor compact regions. Therefore, gun barrels, 

antennas, and exhaust pipes are not always preserved. However, this behavior can be 

changed by modifying the integration algorithms to preserve linear features and long, 

pipe-like regions. 

The system is implemented on an IBM RT PC running AIX. The data collection 

and database generation modules between the segmentation modules and AIMS take 

about two minutes of CPU time. AIMS takes about 30 minutes of wall-clock-time, 

(actually 19 minutes of CPU time due to extensive memory swapping) to interpret one 

set of images. The CPU time is expected to be longer if the C-based service manager is 

not employed and, hence, all the low-level processing tasks must be coded as KEE and 

Lisp functions. An experiment to implement 25% of all the interpretation rules in C 

with a primitive FC engine on a 64-node AT&T PIXEL machine accelerates the WCT 

by a factor of about 200. 
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5    Conclusion 

A knowledge-based system (AIMS) for integrated laser radar (ladar) and ther- 

mal image interpretation is presented. It performs well on real images to detect and 

recognize man-made objects. AIMS consists of rule-based reasoning modules, and re- 

quires the segmentation modules to provide input data. The multi-sensor fusion (MSF) 

approach is applied at both the segmentation and the reasoning levels. The low-level 

integration module fuses segmentation cues from multiple sources to generate an im- 

proved segmentation map. The additional information provided by MSF is vital because 

of the significant loss of information in the transformation from a 3D world to 2D im- 

ages and various forms of noise. AIMS uses forward chaining to drive the interpretation 

process in a bot torn-up fashion. The reasoning process follows the order of data ab- 

straction, heuristic classification (target detection), and refinement /verification (target 

recognition). The software structure of AIMS is a hybrid. Therefore, tasks at different 

levels of the machine vision paradigm are executed using different software tools and 

methodologies. 

The performance of the system indicates both the power of the MSF approach and 

the suitability of using knowledge-based systems to pursue MSF. This assertion may be 

examined from three perspectives: (1) Multiple sensing modalities provide different 

and complementary information about the scene. The complexity of the MSF-based 

system is high and no known algorithm manages the information effectively. (2) The 

integration of segmentation maps provides high-quality segmentation, which is essential 

for intelligent image interpretation. (3) The high-level integration of interpretation 

knowledge from different knowledge sources and different sensing modalities produces 

better scene interpretation. The reasoning system integrates high-level information from 

multiple modalities in the form of consistent interpretation hypotheses and increased 

confidence factors. 

AIMS has been developed over four years by one half-time researcher to rearh 

its current status and is under further development. The current system is just a 

prototype and recognizes only a small number of objects. It must acquire additional 

knowledge to work on more difficult problems. When the problem domain changes, 

different sets of object models and recognition rules have to be built, and probably 

different sets of features are needed.   Currently, 3D models of potential targets are 
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under further development to improve target recognition in different viewing directions. 

These models are constructed as another knowledge base in KEE format system such 

that the knowledge of AIMS remains explicitly encoded and separated from the inference 

mechanism. 
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