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SUMMARY

THE PROBLEM

The problem addressed in this research report concerns the estimation of parameters
for a nonlinear prediction equation. Such nonlinear equations arise in selection research
when performance-based tests are used as predictors of flight performance during training
and a neural network formulation is employed to capture the statistical relationship
between scores on the test and training performance. Software packages for desktop
computers are not readily available to estimate parameters for nonlinear equations.

FINDINGS

The inner workings of an optimization technique called simulated annealing were out-
lined in some detail. A computer program was written in BASIC to implemnent the
algorithn' and was then applied to artificial data. These data axe typical of what might
arise from a neural network approach to generating a prediction equation. Simulated
annealing was successful in finding solutions that, on the average, were very close to the
global minimum for the defined problem. This research supports the claim that simulated
annealing can be used as a heuristic tool to estimate parameters for nonlinear models.

RECOMMENDATIONS

Simulated annealing appears to be a powerful all-aroun- tool and should be investi-
gated further on actual selection research data. In addition to its utility as a numerical
optimization technique, it has been used to investigate learning in neural networks and
in artificial intelligence approaches to problem decomposition. Simulated annealing was
very time consuming, and its performance on this highly simplified problem should not
be construed as a blanket recommendation when scaling up to real-world problems. This
research did not compare 3imulated annealing4 with other well-known techniques for non.
linear rarameter estimation. When formulated as a sum-of-squares problem, these other
techniques may be more suitable than simulated annealing.
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INTRODUCTION

Statistical analysis of naval aviation selection test data has always relied on the use of
linear regression models. Linear mode's represent only a small subset of possible math-
ematical models that could be used as an empirical tool to predict aviator performance.
Specifically, the whole class of nonlinear models has not been addressed.

Recent research into neural networks and parallel distributed processing has uncovered
some interesting nonlinear models (1). We intend to reanalyze the test scores of student
naval aviators with a nonlinear model borrowed from the neural network literature. We
hope that this new class of nonlinear models will be a more powerful tool in predicting
aviator performance and will result in an improved naval aviator selection test battery.

A computer-based algorithm to find the parameters of the model is necessary before
these new nonlinear models can be applied to selection data. Standard algorithms exist
for finding the regression weights of linear regression models, and these techniques are
readily available in the statistical packages we use.

The situation is not as fortunate with regard to nonlinear models. Although many
techniques are described in the literature, none of them are standard features in the
statistical packages.

The purpose of this paper is basically tutorial in nature and, as such, describes an
algorithm for finding the parameters of a nonlinear model. This algorithm is called
"simulated annealing." The actual workings of this algorithm are examined in some
detail. Several computer programs written in BASIC were developed for this report.
One of these is described in Appendix A. These programs generated the data analyzed
and discussed in the report. These programs also form the foundation for the actual
machinery of analyzing ieal world selection data.

Appendix B contains the mathematical background for some of the expressions used
in this report, as well as the rationale for the Monte Carlo approach underlying the
algorithm for finding the weights of the nonlinear model.

WHAT IS SIMULATED ANNEALING?

Simulated annealing is a term used to describe a new technique for finding the optimum
value of a complicated function with many variables (2,3). The word "annealing" actually
describes the physical process used in treating metals and glass by heating the material
to a high temperature and then slowly cooling the material according to a temperature



schedule. The purpose of this treatment is to reach a ground state so that certain
favorable properties sucha as a lack of brittleness in the metal or uniformity in the glass
are achieved.

Simulated annealing has a goal of finding the minimum of a function of many variables
by first "heating" the system being optimized at a high temperature and then lowering
the temperature in slow stages until the system "freezes." The sequence of temperatures,
including the melting point and freezing point, is called an annealing schedule.

Technically, simulated annealing is a stochastic-search technique with a control param-
cter represented by the temperature. The algorithm attempts to evaluate a complicated
multidimensional integral by a Monte Carlo sampling approach. The Monte Carlo tech-
nique is necessary because the integral is too complicated to solve through conventional
analytical means (4). Because of the complicated nature of the integral, the Monte Carlo
approach follows a scheme designed to provide better sampling of the states where major
contributions to the integral are made (5). (See Appendix B.)

The Metropolis algorithm (6), used for many years by statistical physicists, implements
such a sampling scheme and provides the numerical method for actually calculating the
needed values. When the Metropolis algorithm is augmented by the addition of a temper-
ature parameter, it provides the computational basis for developing a computer program
to carry out simulated annealing (7).

A SIMPLE NEURAL NETWORK

The class of nonlinear models in this research effort stem from neural network paradigms
(1). One of the simplest neural networks possible is shown in Fig 1. This is the network
that will be studied in this paper.

The three circles labelled u1 , v2 , and u3 are called processing nodes. They are analogous
to neurons. The pattern of connectivity among the processing nodes is shown in Fig. 1
with the output of unit 1 and unit 2 flowing into unit 3. The output of unit 3 is the final
output of the neural network system. The weights, w, and w 2, modify the output from
units 1 and 2. Because these weights can be positive or negative, they are analagous to
the excitatory or inhibitory influence of neurons on other neurons they are connected to.

The output of processing node unit 3 is a nonlinear function of the sum of its inputs.
This nonlinear relationship, when graphed, has a siginoid shape as illustrated in Fig 2.
This type of function mimics the typical firing rate of an idealized neuron. If the input to
the neuron is below some threshold, output becomes negligible or is absent. As we reach
the slope of the S-shaped curve, the firing rate increases with increasing input. Finally,
at the top of the curve, we see that the firing rate saturates; increased input does not
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1
Output from Unit 3 =

I+e -( W1 U±+W2 U2)

WW2

U1 U1

SIMPLE NEURAL NET

Figure 1. A diagram of a simple neural network showing the output as a function of the two input units
and the associated weights.
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Figure 2. The general shape of the nonlinear function used to determine the output of a processing node.
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result in al ever increasing output. This description essentially captures the notion of
nonlinearity.

The exFlicit nonlinear function used by many researchers is also the one used in this
paper:

y = 1/(1+ e-') (1)

where y is the output from unit 3, and x equals the sum of the weighted inputs from
units 1 and 2. (x = wIuI + w2u 2.)

A NONLINEAR MODEL FOR PREDICTION

The processing nodes ul and u2 represent the scores on selection tests, the weights
w, and w2 represent adjustable parameters, and the output of u3 is the predicted value
of some criterion variable. Just as in linear regression models, we seek to minimize the
sum of squared errors, that is, we try to find those values of w, and w2 that result in the
minimum value of

N
SSE = E(predicted(i) - observed(i)) 2  (2)

i=1

In keeping with the tutorial nature of this report, we choose a situation with values
small enough so that the examples can be easily followed. This simple illustrative problem
should not be confused with the real values of an actual problem.

Let N = 4 cases; that is, test results are available for two tests on four subjects, where
u, equals the result on test 1, and u 2 equals the result on test 2. The test scores are
scaled to have values between zero and one. The weights are restricted to three distinct
values: -1, 0, and +1. Because two weights can each assume three values, the parameter
space for this problem consists of nine possible states. These nine states are enumerated
in Table 1.

Table 2 contains an example of how the sum of squared error (SSE) is calculated. The
columns labelled ul and u2 represent the processing nodes unit 1 and unit 2. The values
under these columns are the results of the two tests. These test scores are scaled such
that their values lie between 0 and 1. We consider the situation where the weights from
state 4 (wl = 0 and w2 = -1) are used by the model to generate the predicted values
listed in the fourth column. For the purposes of this simulation the true state of the
world is arbitrarily chosen to be state 9 where w, = +1. and w2 = +1. When reality acts
in accordance with these parameters we obtain the observed values of the fifth column.
The sum of the squared discrepancies over all four subjects is calculated as .605.

5.



Table 1: A hsting of the nine parameter states with associated weights

State w, w 21 -1 -1

2 -1 0
3 -1 +1
4 0 -1
5 0 0
6 0 +1
7 +1 -1
8 +1 0
9 +1 +1

Table 2: The calculation of the surm of squared error (SSE) when the weights of state 4 are used to predict
the world, but the weights of state 9 represent the "true" observed world.

Case ul U2  Predicted Observed (p o)2

1 .10 .90 .289 .731 1 .195
2 .70 1.00 .269 .346 .333
3 .30 .40 .401 .668 .071
4 .20 .05 .488 .562 .006

r4 I(-- o)= 605
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Table Z: A list of the sum of squared error (SSE) for all nine states.

State w, w2 SSE Comment
1 -1 -1 .8197
2 -1 0 .4001
3 -1 +1 .1056 Local Minimum
4 0 -1 .6046
5 0 0 .2049
6 0 +1 .0208 Local Minimum
7 +1 -1 .j16
8 +1 0 .0829
9 +1 +1 .0000 Global Minimum

Table 3 shows the same SSE calculation for all nine possible states of the system.
States 3 and 6 represent local minima, and state .9 (by definition) is the global minimum
for the SSE function. The local minima in Table 3 are defined relative to the linear listing
of the states and not in relation to the disposition of the weights in parameter 3pace.

In linear regression models, the solution to finding 1he regression weights that minimize
the SSE are well known and easily implemented using standard algorithms. This paper
describes an algorithm, which, like the ones for linear regression models, will find values
foi the set of weights that result in the minimum value of the SSE function that arises
from the use of a nonlinear model. Simulated annealing is a technique to handle just
such a problem.

A DETAILED LOOK AT THE METROPOLIS ALGORITHM

The major component of simulated annealing is the Metropolis algorithm, named after
its inventor (5). Because the algor-thm was originally designed to deal with problems
arising from s3etistical rnchanics, terms such as "energy" and "temperature" are used.
Such terms are retained here because of their metaphorical advantage.

At the mopt general level we are trying to solve an optimization problem. That is,
we are trying to -hid the minimum value of the SSE generated from a nonlinear model.
To comply with the terminology used by the Metropolis algorithm, we equate "Sum of
Squared Error" (SSE) of Equation (2) with the term "Energy."

The Metropolis algorithm works in the followi-g fashion.
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1. The process starts with the system in some arbitrarily chosen state. For example,
the process might start out in state 2 where w, = -1 and w2 = 0.

2. A new state of the system is generated by applying a set of moves to the system.
A transition matrix defined in Fig. 3 carries out these moves. From state 2, this
transition matrix shows a 50% chance of moving into state 1 and a 50% chance of
moving into state 3.

3. Move to a new system according to the transition matrix by generating a random
number. If the random number is less than or equal to .50, then move to state 1,
otherwise move into state 3.

4. Calculate the difference in energy (called AE) between the new state just entered
and the old state. For example, if the random number was .37, a move into state 1 is
called for. From Table 3, calculate AE = E(final)-E(initial) = .820-.401 = .419.
If the random number had been .74, then we would have moved into state 3. In this
case, AE = E(final) - E(initial) = .106 - .401 = -. 295

5. If AE < 0, then we accept the move into the new state. In the case where we moved
into state 3, AE < 0, so we would accept this move.

6. If AE > 0, then we accept the move into the new state with the probability e-a/T
In the case where we moved into state 1, AE > 0. The probability of accepting this
move is e-.419/T where T is the temperature parameter. If T = 1, the probability of
accepting the move equals .6577. We generate another random number, and if this
numL Or is less than .6577, we accept the move. Otherwise, we reject this move into
the new state.

7. In moving from state to state by following the above recipe, we keep a running total
of the weights attached to the states entered. At the end of a series of moves at a
fixed temperature, we average these weights. These average weights, when rounded
up or down, serve as the initial values of the ws for the next series of runs.

Appendix C contains the results from three representative runs of a computer sirn-
ulation of 40 cycles of the Metropolis algorithm for the example studied in this paper.
Each table shows the initial random starting state and the temperature parameter, which
was fixed at 1 for these examples. Each cycle shows the old state in which we started
and the new state we moved into using the transition matrix. The next column shows
AE. If ALE < 0 we accept the new state. Where AzE > 0, we calculate e-AE/T. This
calculation is shown under the column labelled X. The next colurnia over is the random
number generated when deciding whether to probabilistically accept the new state when
AiE > 0. If the random number is less than X, then the new state is accepted. If the
random number is greater than X, reject the move into the new state and keep the old
state. In the next two columns, the running total of the weights for all the states visited
so far is listed. The final column indicates whether the state was accepted or rejected.
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NEW STATE

Si S2 63 64 S5 S6 67 S8 69

S 0 1/2 0 0 0 0 0 0 1/2

S2 1/2 0 1/2 0 0 0 0 0 0

D SS3 0 1/2 0 1/2 0 0 0 0 0
L
D S4 0 0 1/2 0 1/2 0 0 0 0

S S5 0 0 0 1/2 0 1/2 0 0 0
T
A S6 0 0 0 0 1/2 0 1/2 0 0
T
E S7 0 0 0 0 0 1/2 0 1/2 0

S8 0 0 0 0 0 0 1/2 0 1/2

69 1/2 0 0 0 0 0 0 1/2 0

Figure 3. T'ansition Matrix showing probability of possible moves from state to state in the Metropolis
algorithm.



These simulations exhibit several key aspects of the Metropolis algorithm as it has been
explained above. Looking at cycle 1 of the first run, the starting state was arbitrarily
chosen as state 7. A random number greater than .5 led to the decision to go to state 8
as opposed to state 6. Because A•E was -.309 we trausitioned to a state of lower energy,
which we automatically accept. That is, we have found a state where the energy is lower
and therefore is a step in the right direction. We then add the weights of state 8 (w, = +1
and w2 = 0) to the running total of weights.

Cycle 2 starts out in state 8. The transition matrix indicates that we have a 50%
chance of moving into state 9 or a 50% chance of moving back into state 7. In fact,
the random number generated was less than .5 so we moved back into state 7. Unlike
the first cycle, cycle 2 moves from a region of lower energy to a region of higher energy
(smaller SSE to larger SSE). Chat is, in this cycle, AE > 0, and we have a probability
defined by e-'E/T of either staying in the same state by rejecting the proposed move
or moving into the state despite the fact that it is in a region of higher energy. This
is resolved by looking at the column labelled X and finding that for this A•E and this
temperature, the probability is .734 of accepting the move with the larger energy. There
is a corresponding probability of 1 - e-AE/T = .266 of rejecting this move and staying
in state 8. Because the random number .259 is less than .734, the move back into state
7 is accepted. The weights in state 7 are w, = ±1 and w2 = -1 so the running total is
appropriately incremented.

This feature of accepting some states even when they lead to a higher value of the
function to be minimized is different from other minimization algorithms. It allows for
certain controlled "up-hill" moves in the quest for the minimum.

At cycle 16, state 6 transitions to state 5, which is a move from a state of lower energy
to a state of higher energy. Even though the probability is .832 that this move will be
accepted, the lower probability of a rejection prevails and the move is rejected. In this
case, weights for state 6 (w, = 0 and w2 = +1) are added again to the running total.

One other feature needs to be pointed out, although it was implicit in the transition
matrix of Fig. 3. The states "wrap-around" so that state 9 can transition to state 1, and
state 1 can transition to state 9, as in cycles 13 and 14 of Table 5.

After 40 cycles, we have sampled a number of states and have procured some infor-
mation concerning the values for the weights in our nonlinear model. The values for w,
and w2 averaged over the 40 cycles for the 3 runs are shown in Table 4.

Because our weights are restricted to three discrete values, we determine which al-
lowable values the weights are closest to. In run 1, -.10 rounds up to 0, and .08 rounds
down to 0. These revised weights are shown in the fourth and fifth columns. The last
column shows the state that corresponds to these revised weights. Performing the same
procedure for the other two runs, we can see what states the algorithm has selected.

10



Table 4: The values for the two weights found by the Metropolis algorithm at the end of a 40 step cycle.
Data are from three simulation runs.

Run wl w 2  w, w2 State

1 -.10 .08 0 0 5
2 .83 .18 1 0 8
3 -.33 .33 C 0 5

Table 5: The effect of lowering the temperature at a fixed AE on the probability of transitioning to a new
state.

A•E Temperature(T) A.E/T Probability
.5 10.00 .05 .9512
.5 1.00 .50 .6065
.5 .50 1.00 .3679
.5 .10 5.00 .0067
.5 .01 50.00 .0000

THE TEMPERATURE PARAMETER AND SIMULATED ANNEALING

We have set up the example so that state 9 with weights wl = +1 and w2 = +1 is the
model generating the observed data. How can the Metropolis algorithm, as defined so
far, find this desired state? This question leads us directly into a discussion of simulated
annealing, v, hich is nothing more than the use of the Metropolis algorithm at a series of
temperatur%-s ranging from very high ("hot") to very low ("cold"). In simulated anneal-
ing, we first heat the system to a very high temperature and then slowly cool it down in
stages to a minimum energy state or "ground state."

The ground state will point to a minimum of the SSE function for the nonlinear
model and, therefore, to the appropriate weights to use in the model. The series of
temperatures employed is called the "annealing schedule," and the plot on a log-log scale
of Temperature versus Energy is called the "annealing curve."

Intuitively, as the temperature is raised, states with higher energy are more likely to
be accepted. Conversely, as the temperature is lowered, moving into a state of higher
energy becomes more difficult. Table 5 presents some numbers to make this idea more
concrete.

Choosing a AE of .50, which is typical for the example problem of this paper, illustrates

11



the effects of lowering the temperature parameter from a hot temperature of 10 to a cold
temperature of .01. At a high temperature such as 10, the probability (.9512) dictates
that any move where AE = .50 will most likely be accepted. As the temperature is
lowered, this probability gradually decreases so that moves to a higher energy become
less and less frequent.

Another way of looking at how simulated annealing works to find the minimum through
the temperature parameter is considered in the following numerical argument. Assume
state 9 is reached through the usual process of sampling states with the Metropolis
algorithm. Also assume that the point on the annealing curve is reached where the
temperature has cooled down to a value of .1 From state 9, we can transition to either
state 8 or state 1. If the system transitions to state 1, then AE = .8197 (See Table 3)
and e-6E/T = .00027. It is, therefore, highly unlikely that state 9 will ever transition Lo
state 1 at this cold temperature. The move to state 1 will almost always be rejected, and
the system will stay in state 9 where the "correct weights" (wi = +1 and w 2 = +1) will
likewise almost always be counted.

If the other possible transition to state 8 were to take place, then AE = .0829 and
e-AEIT = .4364. The system will choose this transition less than half the time as compared

to a temperature of 1 when it would be accepted 92% of the time. Of course, state 8 is a
more favorable state than state 1 when trying to find the minimum of the SSE function.

Thus, at high temperatures, the system easily jumps from state to state despite high
energy barriers (AE), and, therefore, escapes from local minima. As the temperature
is lowered, the energy barriers become increasingly more difficult to overcome and the
system should "freeze" into states closest to the ground state. The system will then
spend most of its time in the ground state where the true global minimum is located.

Table 6 presents the results from a simulation run to ascertain whether the simulated
annealing approach is effective in finding the minimum of the SSE function. Each row
represents significant data at 13 different temperatures ranging from hot (T=100) to cold
(T=.01). The data in each row were generated by the same program that produced the
data for Appendix C, but in this case, the detail for each cycle has been suppressed.

The second arid third columns give w, and w2 averaged over 50 cycles. The fourth
column shows how often the proposed move was actually accepted. As the temperature
decreased, the ratio of accepted moves also declined. The next-to-last column gives
the energy (SSE) averaged over all 50 states visited at the listed temperature. This is
the important information to be digested from this simulation run. It shows that the
Energy steadily decreased as the temperature was lowered, and by the time the final
temperature of .01 was reached, the global minimum of zero had been found. The last
column shows the state closest to the average weights. This is the starting state which
simulated annealing uses at the next lower temperature.

The last three rows illustrate the effect of taking the temperature parameter down to

12



Table 6: Simulated annealing finds the minimum Energy.

Temp Avg w, Avg w2 Accept. ratio Avg Energy State
100.00 -.20 -. 10 .96 .347 5

10.00 .08 -.06 .96 .287 5
1.00 0.00 .16 .90 .276 5

.93 .14 .22 .78 .179 5

.80 .32 .16 .84 .180 5

.70 .12 .36 .72 .177 5

.60 .64 .20 .78 .150 8

.50 .40 .30 .72 .146 5

.40 .38 .30 .74 .144 5

.30 -.22 .60 .42 .132 6

.20 .58 .71J .32 .052 9

.10 1.00 .74 .32 .022 9

.01 1.00 1.00 .00 .000 9

a low value as was discussed above. At a temperature of .2, the algorithm entered state 9
after 50 cycles because that is the state the averaged weights were closest to at the end.
The system started off in this state at the next lower temperature of .1. The weights
at the "nd of the 50 cycles at this temperature were even closer to the true values of
w, = +1 and w2 = +1. So, at the final temperature of .01, the system started out in
state 9 and never once left it on any of its 50 cycles.

In this particular case, simulated annealing worked to perfection. It found the state
where the global minimum was located. Because simulated annealing is a heuristic tech-
nique, it has no known guarantees for always finding the global minimum. Nonetheless,
as we have demonstiated here, this technique does show promise for getting close to the
global minimum for tiiis type of optimization problem.

DISCUSSION

The annealing curve shown in Fig. 4 encapsulates the main point of this paper. This
curve shows the relationship between the objective function to be minimized and the
temperature parameter as plotted on a log-log scale (8). Each point on the curve is the
average of 30 simulation runs on thc computer. At high temperatures (i.e., greater than
10, which ;s 1 on the log scale), the energy is simply the average of the energy of all the
given states for our problem. All the states are essentially visited at random.

13
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Figure 4. The annealing curve showing how the Energy function is minimized as the temperature parameter
is lowered.
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As the temperature slowly decreases, weights are found that result in a lower and
lower energy. Finally, a temperature is reached wher., the energy no longer decreases.
This value is about .014 in terms of energy (On the log scale this equals -1.85.) The true
value of the global minimum is zero. Figure 4 shows, on the average, how close simulated
annealing can come to the true global minimum. It certainly does a creditable job of
finding the optimal weights we want to employ in the nonlinear model. This is basically
what we require of simulated annealing as a practical tool.

CONCLUSION

In order to break new ground in developing mathematical models for predicting naval
aviator performance, we have investigated certain nonlinear models inspired by neural
network research. The estimation of parameters for these nonlinear models involves
more advanced techniques. These numerical algorithms for parameter estimation are not
readily available in our current statistical packages.

Therefore, this report has attempted to show how one such technique can be used as
a heuristic device to estimate parameters. This parameter estimation technique uses a
Monte Carlo approach that has been refined by statistical physicists over the past 35
years.

The paper went into some detail on the actual workings of the Metropolis algorithm
and simulated annealing to illustrate just how successful this heuristic can be. The value
of simulated annealing still remains to be verified for more realistic problems with much
larger number of parameters.
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APPENDIX A

This Appendix contains a program written in GW BASIC, Version 3.15, running on a
Zenith Z-248 (IBM 286 compatible machine) under MS-DOS Version 3.1. This program
was used to generate the data in Appendix C. Th'ý lines of code that print out the various
headings and the information for each cycle axe omitted to make the program easier to
follow. The documentation of the program follows.

Lines Description
20 A matrix for the two weights for each of the nine states is set up.
30 The user inputs the temperature parameter.
40 The user inputs the number of cycles.
60-150 Reads in the two test scores for the four subjects and the true

value of the output based on the model.
160-210 Reads in the weights.
220 Chooses a random starting state between 1 and 9.
280-380 Loops through the required number of cycles.
300 Calls subroutine 3000 to implement the calculations for each cycle.

Subroutine 3000 calls subroutines 1000 and 2000.
1000 Subroutine to calculate the sum of squared errors (SSE) or

what has been called the energy of the state. Determines
energy based on four subjects over two tests for the initial state.

2000 Subroutine to implement the transition matrix of Fig. 3.
3010 Calculates energy for initial state.
3020 Transitions to new state.
3030 Calculates energy of the new state.
3040 Calculates AE, the difference in energy between the initial

state and the transitioned state.
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Lines Description
320 Calculates e(-AE/T) and stores values in X.
350 Implementation of the Metropolis algorithm. If AE < 0

or a random number < X, then the new state is accepted.
(Subroutine 5000) If AE > 0 and the random number > X,
then the old state is retained (Subroutine 6000).

5000 Subroutine for Lccepting a new state. Calls subroutine 4000.
The new state is now the old state for the next move.

6000 Subroutine for retaining the old state. Calls subroutine 4000.
The old state remains as the old state for the next move.

4000 Subroutine to average the weights of either the new state or the
old state as determined by the Metropolis algorithm.

PROGRAM LISTING

The following BASIC program was used to generate the data appearing in Tables 4, 5,
and 6. The documentation appears on the previous page of this appendix. The program
lines which output information to the printer hwae been omitted for the sake of clarity.

10 RANDOMIZE TIMER
20 OPTION BASE 1:DIM W(9,2)
30 INPUT "Temperature = ";TEMP
40 INPUT "Number of cycles =";NC
50 DEF FNCALC(D,T)=EXP (-D/T)
60 FOR I=1 TO 4
70 FOR J=1 TO 2
80 READ X(I,J)
90 NEXT J
100 READ TRUE(I)
110 NEXT I
120 DATA .1,.9,7310586
130 DATA .7,1.0,.8455348
140 DATA .3,.4,.6681878
150 DATA .2,05,5621765
160 FOR K=1 TO 9
170 FOR J=1 TO 2
180 READ W(K,J)
190 NEXT J
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200 NEXT K
210 DAIA -1,-I,-I,0,-1,I,0,-I,00,0,1,10,-I,1,0,1,1
220 K=INT(9*RND+1):OLDK=K
280 FOR N=1 TO NC
300 GOSUB 3000
320 X=FNCALC(DELTAE,TEMP)
340 RN=RND
350 IF DELTAE < 0 OR RN < X THEN GOSUB 5000 ELSE GOSUB 6000
380 NEXT N
400 END
1000 REM Subroutine CalcEnergy
1010 ENERGY=0
1020 FOR I=1 TO 4
1030 SUM=0
1040 FOR J=1 TO 2
1050 SUM=SUM+X(I,J)*W(K,J)
106n NEXT J
1070 PRED(I)=1/(I+EXP (-SUM))
1080 ENERGY=ENERGY+(PRED(I)-TRUE(I))T 2
1090 NEXT I
1100 RETURN
2000 REM Subroutine ChangeK
2010 RN=RND
2020 IF RN <.5 THEN GOTO 2050
2030 IF K=9 THEN K=1:GOTO 2070
204u K=K+1:GOTO 2070
2050 IF K=1 THEN K=9:GOTO 2070
2060 K=K-1
2070 RETURN
3000 REM Subroutine Cycle
3010 K=OLDK:GOSUB 1000:OLDENERGY=ENERGY
3020 GOSUB 2000
3030 GOSUB 1000:NEWK=K:NEWENERGY=ENERGY
3040 DELTAE=NEWENERGY-OLDENERGY
3050 RETURN
4000 REM Subroutine to average the move taken
4010 FOR J=1 TO 2
4020 AVG(J)=AVG(J)+W(K,J)
4030 NEXT J
4040 RETURN
5000 REM Subroutine for accepting New State
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5010 K=NEWK
602.0 GOSUB 4000
5030 OLDK=NEWK
5040 FI1AG=l
5050 ASUM=-ASUM+±
5060 RETI AN
6000 REM S$ubroutine for rejecting new state and keeping old state
60±0 K=OLDK
6020 GOSUB 4000
6030 FLAG=0
6040 RSUM=RSUM+±
6050 RETURN
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APPENDIX B

This appendix provides some mathematical background for the equations that appear
in simulated annealing and discusses why the Monte Carlo approach is necessary.

To begin, we state a theorem (9) which is important because it tells us about the
exictence of a minimum for real-valued, continuous functions. It therefore sheds light on
the problem of how to find the weights in the neural network model which minimize the
sum of squared error function.

We shall re-cast the theorem in a form that reflects the notation used in the example
of the main body of the report. The theorem states that the value of the weights, wl*
and w2*, which result in the minimum value of the function g(w) is given by

*= l f Wie'9(w1'w2) dw, dw 2

A-00 ff. J'_,0 e-0(w' 2) iiwo dw,2

where
g(w 1 , U)2 ) = )2 (4)

i=. 1 + 
)

g(w1, w2) is the num. of squared error function (Energy) which we sought to minimize via
simulated annealhrg.

Equation (3) !an be calculated numerically by the following six steps.

Step 1. Recall the definition of the mean or expected value of a discrete variable X
from elementary statistics.

N

E(X) = Z•pX(X 1 ) (5)
i=l

A simple examp!e is the expected value of the throw of a six-sided die. Using formula (5)

21



E(X)= 1*1/6+2*1/6+3*1/6

+4 * 1/6 + 5 * 1/6 + 6 * 1/6

3.5

Step 2. To estimate the expected value of the throw of the die by Monte Carlo
simulation use random numbers generated by a computer over a finite number of trials
(100 trials, for example). When the random number is between 0 and 1/6, add 1 to a
running total; between 1/6 and 2/6, add 2 to the running total; ...; between 5/6 and 1,
add 6 to the running total. At the end of 100 trials, divide the total by 100 to form an
estimate of E(X).

Step 3. For a continuous variable, use the integral in the statistical definition of the
expected value.

E(X) = J xP(x)dx (6)

The Monte Carlo method is still a valid tool in forming an estimate for E(X). Draw
numbers as dictated by the density function P(x). and, as in Step 2, add the numbers
over some finite number of trials and divide by the number of trials to obtain an estimate
of E(X).

The important point Lei - is that the Monte Carlo method can be vie', ed as a statistical
approach to finding E(X) or, as a numerical method for finding the value of an integral.
They are both one and the same thing. Newman and Odell (10) state quite clearly, "Thus
it is immaterial whether we consider our problem from the point of view of integration
or instead consider it as a statistical problem of estimating the expected value at least
as far as the numerical result is concerned ."

No one actually uses the Monte Carlo method to evaluate a one-dimensional integral,
which are either solved analytically or by using more efficient numerical techniques. The
Monte Carlo method does come into its own, however, when a multidimensional integral
does not yield to analytical means, and a numerical approach is warranted. The Monte
Carlo method is competitive with other numerical techniques in this situation and, in
many cases, is the preferred technique.

Step 4. The multiple integral,

" " f (X l,X2, ... ,X ,,)p(X I,X 2, ... ,x ,,)dx l,dX2, ... ,dx,

may be untractable analytically, but statistically it is still quite simply a problem of
estimating a mean. So, as in Step 3, generate vectors f(XI, X2,... , X.) according to the
probaLility distribution p(x1, x2 ,. .. , x), add them up and divide by the number of trials
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to form an estimate of the mean. The result is a numerical estimate of the value of this
complicated integral.

Step 5. Armed with this knowledge, equation (3) is not quite as fearsome as it first
appeared. If the term,

e-Ag(w1,W2)
ff. ff0. e - A"-(wxw2)dwj dwd2

represents a weight or probability, then it can be tied it to what has been learned in the
previous steps. This is where the connection to statistical physics enters. The so-called
canonical distribution (11) is defined as

e-/3*Encrgy(State r)

P(State r) = f e-P*Enery(Sate S) (7)

S

where the integral in the denominator represents a multidimensional integral over all
possible states S.

With the following notational changes, g(wI, w 2) = Energy(State r), and / = A = 1/T
we can invoke the theorem and see that the weight vector that minimizes the Energy
function is the expected value of the weight vector distributed according to the canonical
distribution as P3 goes to infinity or as the temperature goes to zero. Step 4 showed
that the Monte Carlo approach can be employed to numerically evaluate the complicated
integral of equation (3).

Step 6. The following equation brings home the fact that the mean of our -weight
vector distributed according to such a probability distribution is also the minimum value
which we seek.

E(wi, w2) = j J(wi, w 2)dwi dW2  (8)

It is to be understood that the temperature parameter contained in the probability term
goes to zero. The form of this equation is the same as in Step 4 and can be numerically
estimated.

Since P(State r) is a probability, the value of the integral in the theorem can be numer-
ically calculated via a Monte Carlo approach according to the reasoning outlined in the
above steps . A complication exists in that our probability term includes a multidimen-
sional integral in the denominator. In fact, things are simplified tremendously by taking
the ratio of the probability of two "energy" states (two different SSE functions arising
from using different. weight parameters). By taking the ratio of two states the desired
goal of eliminating the integral in the denominator of equation (7) is accomplished. This
derivation follows Hammersley and Handscomb (12).
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PBe-r.g.ySj)
f feI9*En~ruu(S)dS
S

A*Bn~rgY( Si)

7r(S,) f ePA_,n.r.v(S)ds
S

7r(Sj) e e-1P.--.,,1,,)1

r•(Si) J .•.PEnergy(Si)

=-P*[Ener.9y(Sj)-E nergy(Si)]

If AE = Energy(Sj) - Energy(S,) and T = l/T, then

7r(Sj)

With these manipulations, we have come to the term which figured so prominently in

the discussion of the Metropolis algorithm. Hamnmersley and Handscomb go on to show

how this term is used in a Markov chain approach to generate transition probabilities.

This is the same technique which is explained in the text and which produced the data

contained in Appendix C.
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APPENDIX C

This appendix contains three simulation runs of the Metropolis algorithm in which
the temperature parameter was set to T=1. By following the explanation in the text,
these tables allow the interested reader a detailed look at the heuristics of the algorithm
as it goes about its job of searching for the optimal weights.
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Computer simulation data to illustrate the workings
of the Metropolis algorithm. Run #1.

Cycle Old State New State AE X RN w, w2  Acc
1 7 8 -. 309 *** *** 1 0 A
2 8 7 0.309 .734 .259 2 -1 A
3 7 6 -. 371 *** *** 2 0 A
4 6 5 0.184 .832 .894 2 1 R
5 6 7 0.371 .690 .532 3 0 A
6 7 6 -.371 *** *** 3 1 A
7 6 5 0.184 .832 .564 3 1 A
8 5 4 0.400 .671 .755 3 1 R
9 5 4 0.400 .671 .402 3 0 A

10 4 5 -.400 *** *** 3 0 A
11 5 4 0.400 .671 .152 3 -1 A
12 4 5 -.400 *** *** 3 -1 A
13 5 4 0.400 .671 .551 3 -2 A
14 4 5 -.400 * * 3 -2 A
15 5 6 -. 184 * * 3 -1 A
16 6 5 0.184 .832 .953 3 0 R
17 6 5 0.184 .832 .892 3 1 R
18 6 7 0.371 .690 .823 3 2 R
19 6 7 0.371 .690 .058 4 1 A
20 7 8 -.309 *** *** 5 1 A
21 8 7 0.309 .734 .978 6 1 R
22 8 9 -.083 *** *** 7 2 A
23 9 1 0.820 .441 .108 6 1 A
24 1 2 -.419 * * 5 1 A
25 2 3 -.295 * * 4 2 A
26 3 4 0,499 .607 .294 4 1 A
27 4 5 -.400 * * 4 1 A
28 5 6 -. 184 * * 4 2 A
29 6 5 0.184 .832 .802 4 2 A
30 5 4 0,400 .671 .075 4 1 A
31 4 3 -.499 *** *** 3 2 A
32 3 4 0.499 .607 .306 3 1 A
33 4 3 -.499 *** *** 2 2 A

34 3 4 0.499 .607 .499 2 1 A
35 4 3 -.499 *** *** 1 2 A
36 3 2 0.295 .744 .828 0 3 1R
37 3 2 0.295 .744 .260 -1 3 A
38 2 1 0.419 .658 .608 -2 2 A
39 1 2 -.419 * *** -3 2 A
40 2 3 -. 295 * * -4 3 A
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Computer simulation data to illustrate the workings
of the Metropolis algorithm. Run #2.

Cycle Old State New State AE X RN wI w2  Acc
1 7 6 -. 371 *** *** 0 1 A
2 6 7 0.371 .690 .483 1 0 A
3 7 8 -.309 * * 2 0 A
4 8 9 -.083 * * 3 1 A
5 9 8 0.083 .920 .917 4 1 A
6 8 9 -. 083 *** *** 5 2 A
7 9 8 0.083 .920 .690 6 2 A
8 8 9 -.083 *** *** 7 3 A
9 9 8 0.083 .920 .646 8 3 A

10 8 9 -.083 *** *** 9 4 A
11 9 1 0.820 .441 .887 10 5 R
12 9 1 0.820 .441 .808 11 6 R
13 9 1 0.820 .441 .154 10 5 A
14 1 9 -.820 *** *** 11 6 A
15 9 1 0.820 .441 .521 12 7 R
16 9 8 0.083 .920 .560 13 7 A
17 8 7 0.309 .734 .354 14 6 A
18 7 8 -. 309 * * 15 6 A
19 8 9 -.083 * * 16 7 A
20 9 1 0.820 .441 .433 15 6 A
21 1 9 -.820 *** *** 16 7 A
22 9 8 0.083 .920 .276 17 7 A
23 8 7 0.309 .734 .671 18 6 A
24 7 6 -. 371 *** *** 18 7 A
25 6 7 0.371 .690 .184 19 6 A
26 7 8 -. 309 *** *** 20 6 A
27 8 7 0.309 .734 .201 21 5 A
28 7 8 -. 309 * * 22 5 A
29 8 9 -. 083 * * 23 6 A
30 9 8 0.083 .920 .439 24 6 A
31 8 9 -. 083 *** *** 25 7 A
32 9 8 0.083 .920 .850 26 7 A
33 8 7 0.309 .734 .248 27 6 A
34 7 6 -. 371 *** *** 27 7 A
35 6 7 0.371 .690 .128 28 6 A
36 7 8 -. 309 * * 29 6 A
37 8 9 -. 083 * * 30 7 A
38 9 1 0.820 .441 .941 31 8 R
39 9 8 0.083 .920 .383 32 8 A
40 8 7 0.309 .734 .637 33 7 A
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Computer simulation data to illustrate the workings
of the Metropolis algorithm. Run #3.

Cycle Old State New State AE X RN Wl w2  Ac
1 2 1 0.419 .658 .569 -1 -1 A
2 1 9 -. 820 *** *** 0 0 A
3 9 8 0.083 .920 .462 1 0 A
4 8 9 -. 083 * * 2 1 A
5 9 1 0.820 .441 .145 1 0 A
6 1 2 -. 419 * * 0 0 A
7 2 3 -. 295 * * -1 1 A
8 3 2 0.295 .744 .968 -2 2 R
9 3 2 0.295 .744 .839 -3 3 R

10 3 2 0.295 .744 .395 -4 3 A
11 2 1 0.419 .658 .389 -5 2 A
12 1 2 -.419 *** *** -6 2 A
13 2 1 0.419 .658 .836 -7 2 R
14 2 3 -.295 *** *** -8 3 A
15 3 4 0.499 .607 .767 -9 4 R
16 3 4 0.499 .607 .988 -10 5 R
17 3 2 0.295 .744 .898 -11 6 R
18 3 4 0.499 .607 .885 -12 7 R
19 3 4 0.499 .607 .464 -12 6 A
20 4 3 -.499 *** *** -13 7 A
21 3 4 0.499 .607 .865 -14 8 R
22 3 2 0.295 .744 .741 -15 8 A
23 2 3 -.295 *** *** -16 9 A
24 3 2 0.295 .744 .571 -17 9 A
25 2 1 0.419 .658 .155 -18 8 A
26 1 9 -.820 *** *** -17 9 A
27 9 1 0.820 .441 .912 -16 10 R
28 9 1 0.820 .441 .550 -15 11 R
29 9 8 0.083 .920 .266 -14 11 A
30 8 7 0.309 .734 .005 -13 10 A
31 7 6 -.371 *** *** -13 11 A
32 6 5 0.184 .832 .347 -13 11 A
33 5 6 -. 184 *** *** -13 12 A
34 6 5 0.184 .832 .555 -13 12 A
35 5 6 -. 184 *** *** -13 13 A
36 6 5 0.184 .832 .423 -13 13 A
37 5 6 -. 184 *** *** -13 14 A
38 6 5 0.184 .832 .317 -13 14 A
39 5 4 0.400 .671 .563 -13 13 A
40 4 5 -.400 * *** -13 13 A
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