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I. INTRODUCTION

The error detection performance of shortened and unshortened cyclic codes given that
random errors have occurred in the communication channel or storage device has been the subject of
many previous studies [1-4]. Particular emphasis has been placed on cyclic redundancy check

(CRC) codes with generator polynomials of the form g(x)=(x+1)p(x), p(x) a priinitive polynomial
[4], since several codes in this class have been accepted as international standards [5]. The
probability of undetected error for these CRC codes when used in conjunction with a binary

symmetric channel with bit error probability p can be determined for any shortened block length

[3,4]. Although the probability of undetected error for the .unshortened CRC codes do not depend
upon the choice of the primitive polynomial p(x), the same is not true for the shortened codes.

It must be emphasized that Pud is dependent upon the statistical behavior of the errors to be
detected by the CRC code. In this report we begin with the assumption that we are communicating
over a binary symmetric channel (BSC) where the probability of error for each binary digit (bit) is p
(0<p!l/2 ) regardless of whether the bit is a 1 or a 0, and that the errors in different bits are
statistically independent of one another. The BSC is a useful model which describes some
commonly used communication channels such as antipodal signalling in an additive white Gaussian

noise channel with an optimum receiver. Even correlated, symmetric errors approach the BSC
model after interleaving at a sufficient depth. However, there are many situations where CRC codes
are expected to detect errors which do not obey the BSC model. One such example is when a CRC

code is used to detect errors that were miscorrected by a convolutional ECC. In this case, the ECC

decoder will produce burst errors (without interleaving). In sections V and VI we will show how the
results obtained over a BSC are also applicable to the single burst error channel.

CRC codes may be used at their natural unshortened block length of N'=2R-1 - 1, or they
may be shortened to an arbitrary, reduced block length N. When unshortened, all CRC codes (with
generator polynomials of the form described above) with the same values of N' and K perform
identically; for any value of p, codes generated by different polynomials will all have the same
Pud(N',p). In addition, Pud(N',p) for unshortened codes will not exceed 2-R for 0<p<0.5 regardless

of the choice of p(x). In contrast, the performance of shortened CRC codes is dependent upon both
the choice of p(x) and the shortened block length N. Furthermore, Pud may exceed 2 -R for some

values of p in the ranti1e 0<p<_0. 5 .
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II. CALCULATING Pud

Exact evaluations of Pud for linear codes are well known [1,2,3,4,71, and the formulas are

repeated here without proof. An undetectable error occurs only when the error pattern is a non-zero

code word. Hence, the probability of undetected error is the probability that an N-tuple (error

pattern) will have the same portion of ones as a code word from the set of all 2K code words

generated by g(x). If Ai is the number of code words generated by g(x) with a Hamming weight of

i, then for independent errors,

N

Pud(N,p) = JAi pi(l-p)N-i ,where p=the channel bit

i=1 error probability.

The set (Ai) is known as the weight distribution of the code generated by g(x)-(x+l)p(x),

and for unshortened CRC codes with R parity bits, (Ai) is independent of the choice of p(x).

However, for shortened codes with R parity bits, (Ai) is dependent on both p(x) and N.

Pud can also be calculated using the weight distribution of the dual code gener, ted by the

parity check polynomial h(x) = (xN'- 1)/g(x). This is generally easier since the dual code is an (N,R)

code with a total of 2R code words and R is usually much less than N. If Bi is the number of code

words generated by h(x) with weight i, then for independent errors occurring with probability p,

N

Pud(N,p) = 2-R JBi(l-2p)i - (1-p)N
i=0

Finally, it has been shown[4] that CRCs generated by h(x)=(xN-1)/g(x), where

g(x)=(x+l)p(x), have a weight distribution Bi=wi + WN.i, where (wi) is the weight distribution of

the code generated by h2 (x)=(xN-1)/p(x). This code is an (N,R-1) code with a total of 2R-1 code

words. If wi is the number of code words generated by h2(x) with weight i, then for independent

errors occurring with probability p,

N

Pud(N,p) = 2-R D(wi+wN.i)(1-2p)i - (1-p)N

i=0

I .. ...- 2-
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We are now faced with the task - iinding the weight distribution of the 2R I code words
generated by 112(x). This can be done by generating every code word and tallying the number of
code words with weight 0,1,2,3,.. ,N. A very efficient algorithm exists[4] which requires
minimal hardware for implementation. This algorithm utilizes two identical linear feedback shift
registers (LFSR "A" and "B") to produce two sequential outputs such that any N consecutive bits of
each output may be considered a code word, where R<N<2R-I, Because they are identical, both
LFSRs will generate the same sequence. However, LFSR "B" is intentionally started N cycles
(shifts) after LFSR "A"; hence, "B" lags "A" by N cycles. The time separation of N cycles betwm-en
the two identical sequences forms a code word "window" of length N in which the output of LFSR

"_A" represesnts bits entering the window and the output of LFSR "B" represents bits exiting tile
window. The algorithm makes use of the fact that if we currently know the weight i of the code
word in the window, then when the next code word appears after a single shift of both LFSR "A"
and "B", it will have a weight of i, i+1, or i-I, depending upon whether "A" (entering window)
equals "B" (exiting window), "A" is greater than "B", or "A" is less than "B", respectively, where
"A" and "B" are the outputs of each LFSR and take on the values 0 or 1. See appendix B for a
description of linear feedback shift register sequences.

! ~.3-
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Ill. SPECIAL HARDWARE TESTER

As discussed earlier, the weight distribution of the code generated by h2(x) can be used to
evaluate Pud. However, there are a total of 2R1- -1 non-zero code words (regardless of N) in an
(N,R- 1) code, and weight calculations can become time consuming even for reasonable values of R.

In addition, the amount of hardware required can be reduced considerfibly when using the algorithm

described earlier.

Because of this, weight calculations are processed in a specialized digital Code Weight
Computer (CWC). The CWC is capable of evaluating all wi for any primitive polynomial of degree.
2 through 40, inclusive, and for any block length greater than the degree of p(x) up to a maximum of

65535. A polynomial p(x) along with a block length N is loaded into the CWC via an interface card
which is connected to a personal computer (PC), The weight calculations consist of counting the
number of ones (weight) in each of all possible non-zero code words. Each of the blocks will have a
weight i, where 1_i5N. For each weight, a weight enumerator wi representing the number of blocks

with Hamming weight i is updated until all 2R-1 - I non-zero blocks have been processed. This will
yield N wi which may be used to evaluate Pud. When done, an interrupt is sent back to the PC, and
the (wi) are read from the CWC. At this point, the remainder of Pucd(N,p) calculations are

performed in software for varying values of p. The majority of the CWC consists of emitter cou:'led
logic (ECL) which allows a system clock speed of 80MHz. Each of the 2R-1 - 1 blocks requires
roughly 2 clock cycles to be processed, allowing a 41-bit (R-41) CRC to be tested in under 7 hours.
As an example of the speed improvement of the CWC over a SUN workstation running a non-

optimized C i rogram, the CWC required 15 seconds to complete an R=30 weight calculation

whereas the SUN required 1.5 hours.

Figure 1 shows the block diagram of the CWC. It is comprised of two linear feedback shift
registers (LFSR) that have feedbaci connections corresponding to the non-zero coefficients of p(x),

one 40-bit wide by 64K deep read/write memory (RAM) to store the wi, one 16-bit "address"
counter to access the RAM, one 40-bit "tally" counter to increment the wi as new blocks of weight i
are found, one 40-bit dual-purpose "event" counter to establish the block length and to count the 2R-

1-1 non-zero code words to be processed, and lastly, control and interface logic to integrate the

subsections.

-4- i



Both LFSR "A" and "B" have identical feedback connoctions and initial conditions such that

they both generate the same maximal sequence determined by primitive p(x). Howevet, LFSR "B"

begins running N cycles (shifts) after Li:SR "A" has started, thus "B" lags "A" by N cycles, cenatineg

a window of length N. The output from both "A" and "B" are used to detennine the weight of the

code word in this window as follows:

GL'ASS Ifni)l Hamiming woi.•it

0 0 &Ime weight aS previous code Word
0 1 owk le.ms than t)evious code word
1 0 one, more thm previous code word
1 1 samue weight as previous code word

The weight of the current code word is stored in an up/down counter which directly

addresses a RAM which contains the weight enumerators (wi) as datta. The data is incremented via

the :ally counter such th,.at each RAM kx'altion coatains an accumulat-ion of the niumiber of cdle. woniS

having a weight of i. During the first N cycles after startup when "A" is running and "B" is stopped,

the RAM address increments from zero up to tho weight of the first code word at which time LFSR

"B" starts. This creates the window with length N and weight i. For the next 2R-1-2 cycles, the

address counter increments, decrements, or remains stable depending upon whether the current code

word has a weight that is larger, smaller, or the same as the previous code word, respectively. Thus

the weights of all 2R-.1 non-zero code words generated by p(x) are tallied. This along with a single

all-zero code word (w0=l) yields the complete weight distribution {wi) for all of the code words

generated by p(x),
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IV. TEST RESUL T S

The obJcctivc of the tests Im-rfoineId with the CWC was to detcrnine. at least one "good" code

having R parity bits in thde range 8<R_4 1. Our criterion was the ability of the code to be "proper" at

a number of block lengths between (R+ I)<N<2lR-2. We maintain an earlier[41 definition of "proper"

as follows. A code is defined to be proper at block length N if Pud(Np) ;S Pud(N.0.5) for any

0<p<._0. 5 . Figures 2 and 3 illustrate the significant difference between proper p(x)=211 and

improper p(xy=277. Note thau polynomial 277 is proper at N=14.

PLID(N,p)

4.50E-03

4.00E-03

3..0OE-03 
- "

2.50E- 03 , -- N,='I 4

2,00E-03 N-II' //,/ -/ " />N=--10

1 .SOE-03 / /

1 .OOE-03

5.OOE-04

O.OOE+00 ....... .-.
0 0.1 0.2 0.3 6.4 0,5

p

Figure 2. Prol)er Behavior of Polynomial 211 (octal)

[ .. . . .. ...7 -
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PUD(N,p)

4.50E-03 - N=12

4.OOE-03 13

3.50E-03

3.OOE-03
N=1O0%

2.50E-03

2.OOE-03 / N=9

1.50E-03

1.00E-03

5.OOE-04

0.OOE+00
0 0.1 0.2 0.3 0.4 0.5

Figure 3. Improper Behavior of Polynomial 277 (octal)

Although the tests did not evaluate p at an infinite number of values, we believe that the

chosen values of p are sufficient to eliminate improper codes. Table 1 lists a primitive polynomial

for each value of R that has passed our tests. Codes are generated by g(x)=(x+l)p(x).

! -8-
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List of proper CRC primitives (see conditions in text, below)

Parity Polynomial
Bits(R') R(x (octalM 1
8 211
9 543
10 1055
11 3471
12 4505
13 15647
14 23231
15 64167
16 103451
17 305667
18 422273
19 1150427
20 2227023
21 6556543
22 10344605
23 27566643
24 42607251
25 134461765
26 345502661
27 426225667
28 1112225171
29 2131556151
30 4660221051
31 16546672375
32 24242142531
33 67346536411
34 114271102221
35 276215750461
36 662342545661
37 1041103456055

The conditions for which the results in table 1 apply are as follows:

Each primitive p(x) was tested at every block length from (R+1) to 2m, inclusive, where m is

the smallest integer such that 2m > (R+10). Next, p(x) was tested at every block length that is a

power of two from 2m up to the lesser of 2R-2 or 215, inclusive. For example, at R=8, block lengths

of N=(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,64) were

tested.

Octal notation represents the non-zero coefficients of p(x). Thus 211 describes p(x)=x7+x3 +1.

-9-
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At each block length, Pud(N,p) was evaluated at fifty values of p in the range 10-4 <p<0.5.
Twenty, linear-,scaled values (0.50,0.48,0.46,... ,0.16,0.14,0.12) and thirty log-scaled (10 per
decade) values 10.1,0. l/q,0. l/q 2,0.1/q 3,. . .,0.1/q27,0.1/q 28 ,0.1/q 2 9,0.0001) were used, where
q=10(0.1).

If for all N and p, Pud(N,p) _< Pud(N,0.5), g(x) was declared "good" and entered into table 1.

The current definition of Pud(N,p) is based on independent, random bit errors occurring
with probability p. In the next section, we shall introduce a statistical burst error model and show
how the results obtained from the CWC can also be applied to error bursts. Before proceeding, we
would like to mention a supplcmental, hardware Channel Tester (CT) which is described in
appendix A. The CT was originally planned to extend the scope of our tests to include arbitrary
cyclic codes operating over real communication channels. Of particular interest was the burst error
performance of CRC codes when used in conjunction with error correcting codes. However, the
findings of the next two sec;ions extends the capabilities of the CWC to include burst error
performance measurement. Therefoi. , we include the untested CT designi only as an appendix to

this report.

1.- .10-
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V. BURST ERROR PERFORMANCE OF BINARY CYCLIC CODES

A statistical model for a single burst of length b is defined whereby the errors are confined to

a span of b digits and where the errors within the span occur randomly with bit error probability p.

We call such a burst a "(b:p) burst". The conditional probability of undetected error for a shortened

or unshortened cyclic code given the occurrence of a single (b:p) burst is shown to be equal to the

probability of undetected error for that cyclic code shortened to block length b when this shortened

code is used in conjunction with a random error channel with bit error probability p. We investigate

the performance of CRC codes with generator polynomials of the form g(x)=(l+x)p(x), p(x) a

primitive polynomial. We show that the burst error detection performance of these CRC codes

depends upon the choice of the primitive polynomial p(x). In particular, it is shown that 16 bit CRC

codes exist which have better burst error detection capabilities than the widely used 16 bit

international standards, i.e., the CRC-16 and CRC-CCITT codes. For the random error channel,

shortened CRC codes that outperform the commonly used CRC standards (such as the CRC-16 and

the CRC-CCITr codes) have been found [3-4].

In this section of the report, we are concerned with the single burst error detection capability

of binary, shortened or unshortened cyclic codes. Included in this class are the CRC codes with

generator polynomials of the form g(x)=(x+l)p(x).

We consider the following model for a single burst error of burst length b. We assume that

errors only occur within a span of b digits, and within that span, the errors occur randomly with bit

error probability p (0 <..p < 1). We call the above burst, a "(b:p) burst" where b is a positive integer

and p is a real number in the range 0 <•p < 1.

We believe that the (b:p) burst model is useful to describe many real burst error channels.
Examples are the errors produced by a decoder of an error correcting code or the errors which are

produced by a fading channel.

Note that with this model, if p < 1, errors do not necessarily occur at the first and last bit in
the burst so that the actual error pattern for a (b:p) burst may span less than b digits. This should be

kept in mind when comparing our results with those previously reported in the literature.

I- -11-I
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Previous results have been published regarding the burst error detection capability of cyclic
codes [1-2]. It has long been known that for a cyclic code with arbitrary generator polynomial g(x)
of degree R, the fraction of bursts of length b which is undetected by the code is:

0 if b:_ R,
2-(R-1) ifb = R+l, and
2 "R if b > R+1.

Here, the definition of a burst of length b differs from our (b:p) model in several ways. For
one, with this definition, there is always an error in the first and last (that is, the b-th) digit of the
burst. Furthermore, this definition is "non-statistical" in that it refers to fraction of bursts that are not
detected rather than the probability of a burst not being detected. Using this definition, the fraction
of undetected errors for a burst of length b would equal the conditional probability of undetected

error given a burst of length b provided that the 2 b-2 burst error patterns that have an error in the first
and b-th positions are all equally probable. It is our belief that this assignment of probabilities does
not describe accurately many real communications or storage channels and that the assignment used
in our (b:p) model is a much better model for actual burst errors. We refer to this older model of a

burst as the "non-statistical" model.

Let Pud(Plb)) be the conditional probability of undetected error for an error detection code

given that the code experiences a (b:p) burst. In many applications it may be difficult to know an
exact value to assign to p but rather we may know what limits to assign to a range of values: Pmin <

P 5 Pmax. We propose to choose that value of p in the range Pmin S P _S Pmax, for which Pud(plb)
is a maximum. We call this worst case value of p, p*, and we denote the corresponding worst case
conditional probability of undetected error for a burst of length b, Pud(P*Ib). Thus:

Pud(P*Ib) = max [Pud(plb)], Pmin:U<.Pmax

The question as to the choice of Pmin and Pmax depends on the source of the burst error in

the application. It is reasonable, in most applications to set Pmin = 0 and Pmax=0.5 but there are
situations where one might consider Pmax > 0.5 (e.g., a phase slip in a P.S.K. demodulator). In
this section of the report, unless it is specifically stated to the contrary, we assume that Pmin = 0 and

Pmax = 0.5.

I-12
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For Pmin = 0 and Pmax = 0.5, one would think that p*=0.5 for all codes, but for many

codes, including several commonly used international standards, this is not the case. For codes
where p*--0.5, the results predicted by the (b:p) burst model give results similar to those predicted
by the older burst model. In particular, Pud(p*Ib) --0 for R _> b and Pud(0.51b) = 2 -R- 2-b for R < b.

However, as we shall see, when p* is not equal to 0.5, the results predicted by the (b:p) model can

differ significantly from those predicted by the older model.
A somewhat surprising result occurs for the case of Pmax > 0.5. In this case, as we shall

prove later, for almost every code, if Pud(plb) <_LPud(O. 5 1b), for all p <_ 0.5, then Pud(plb) >
Pud(O.51b) for some p > 0.5. Said more simply, for R<b, Pud(0.51b) = 2-R_2-b is almost never an
upper bound for Pud(Plb) if Pmax > 0.5.

An important consequence of the (older) non-statisitical definition of a burst is that the

fraction of undetected errors of burst length b does not depend upon the specific choice of the
generator polynomial of the code but only on the number of parity digits in the code. In particular,
for CRC codes with generator polynomials of the form g(x)=(x+1)p(x), p(x) a primitive polynomial,
this definition implies that the burst detection capability of these codes does not depend upon the
choice of the primitive polynomial p(x). As we shall see, this is not the case using our definition of a
single (b:p) burst if p* is not equal to one half. That is, using our definition, the worst case
conditional probability of undetected error for a (b:p) burst for two codes having the same number of
parity digits but differing in the choice of their generator polynomial g(x). can differ significantly. In
particular we will find CRC codes that-outperform the international standards with respect to their
ability to detect single (b:p) bursts.

In the next section we prove that for any (unshortened or shortened) cyclic code, the
conditional probability of undetected error given a (b:p) burst is equal to the probability of undetected
error for that code when used with a random error channel with bit error probability p when the code
is shortened to block length b. We then examine some consequences of this result. In particular, we
explore the burst error performance of CRC codes with generator polynomials of the form
g(x)=(x+l)p(x), with p(x) a primitive polynomial.

-13-



IQUALCOMM, Inc. Final Technical Report for the Research in Mathematics and Computer Science 11

VI. RESULTS

Consider any shortened or unshortened cyclic binary (N,K) code (with R = N-K). Define
Pud(N,p) as the probability of undetected error for the code when the code is used in conjunction

with a binary symmetric channel with channel bit error probability p. Furthermore. define Pt(ud iW

as the conditional probability of undetected error for the same code given a (b:p) burst. Then, the
following theorem states that for all (N-K) < b < N, the conditional probability of undetected error
for the (N,K) code given that a (b:p) burst occurred is equal to the probability of undetected error for
the same code, shortened to block length b, when this shortened code is used with a binary

symmetric channel with channel bit error probability p. That is, we have the

Theorem: Pud(plb) = Pud(b,p).

Proof: Since the code is a linear (N,K) code we can assume in the calculation of the
conditional probability of undetected error that the all zero code word was transmitted. First assume
that a (b:p) burst occurred as the error pattern. This error pattern is such that it has all of its

components identically zero except for a span of length b starting in position i and ending in position
i+(b-1). Within this span, the coefficients of the error pattern are i.i.d. binary random variables with
the probability of a 1 equal to p. We are now concerned with the probability that this error pattern,
when input to a linear feedback shift register (LFSR) with feedback connections set in accordance
with the coefficients of the generator polynomial g(x), will result in the final contents of this shift
register being all zeros. Note that the coefficients of the error vector outside of the range (i,i+b-1)
are all zero so that the leading all zero coefficients when input to the LFSR will leave it in the all zero
state. Then, the coefficients corresponding to the burst in the interval (i,i+b-1) enter the LFSR and
either leave it in the all zero state or not. If the LFSR is left in the all zero state the trailing zeros

entering the LFSR will not alter this condition. If the LFSR is left in any other state other than the all
zero state, it will not return to the all zero state as a result of the trailing zeros. Thus, the situation is

exactly the same as if the code was shortened to block length b, and was used in conjunction with a
binary symmetric channel with channel bit error probability p. Q.E.D.

By a careful reading of the above proof, we find that the following corollary is true:

Corollary: All shortened codes obtained from a given cyclic code have the same Pud(plb)
(and thus the same Pud(p*lb)) provided that b is less than or equal to the shortened block length.

-14.
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These results are interesting in their own right, but they are particularly significant since
Pud(N,p) (and thus Pud(plb)) has been computed for a wide variety of codes. The consequences of

this computation are described in the next seý:tion for the class of CRC codes with generator
polynomial g(x) = (x+l)p(x), p(x) a primitive polynomial [4-51. Using the hardware tester
described earlier, Pud(p*lb) can be computed for any CRC code in this class where p(x) is any

primitive polynomial of degree 40 or less.

In the next section, we will always assume that the range of p of interest is 0 < p <_ 0.5.
Before proceeding to this section, we explore the consequences of allowing Pmax to bc, strictly
greater than 0.5. If we compute the derivative of Pud(b,p) (and thus, Pud(plb)) with respect to p and
set p=0.5, we obtain -2-(R-1)BI+ b2(b-1), where B1 is the number of code words of Hamming

weight 1 in the dual code when the code is shortened to block length b. Setting this derivative to
zero and solving for B 1 we obtain the equation B 1 =b2R'b. Except for the hypothetical case where
B l=b2R-b, we have a non-zero derivative at p=0.5. This implies that except for this hypothetical
case. the maximum value of Pd(Rlb) cannot occur at p--0.5. It should be realized that the same

argument can be used to show that, except for this hypothetical case, the maximum value of
Pud(N,p) does not occur for the binary symmetric channel at p--0.5. This is true even for the so-
called proper codes [2-4] where Pud(N,p) < Pud(N,0.5 ) for all p :0.5.

-15-
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VII. GOOD CRC CODES FOR BURST DETECTION

We first focus on the specific case of CRC codes with 16 parity check bits. Using the older
definition of a burst where all 2 b-2 bursts of length b are equally likely we find that all such codes
have the same conditional probability of undetected error. The results are presented in the following

table:

Table2

Conditional Probability of Undetected Error for 16 Bit CRC Codes
Assuming All 2b-2 Bursts of Length b Are Equally Likely

Burst Length Conditional Probability of Undetected Error
b< 16 0

b=17 2.15 = 3.1 x 10-5

bŽ >17 2, 16 = 1.5 x 10-5

We next consider the performance of 16 bit CRC codes with generator polynomials of the
form g(x) = (1+x)p(x), where p(x) is a primitive polynomial (of degree 15). In particular, we

consider the performance of these codes for a (b:p) burst. We consider three codes, two of which

are the commonly used international standards (CRC-CCITT and CRC-16) and a third code which is

denoted CRC-16Q"". (This is not the CRC-16Q code referred to in [4].) The generaior polynomials
of these codes are as follows:

CRC-16 g(x)=(x+1)(x15 +x +1)=x16 + x15 +x2 +1,

CRC-CCITT g(x)=(x+i)(x 1 5 +x14 +x13 +x12 +x4 +x3 +x2 + x +1)

=x16+ x12 +x5 +1,

CRC-16Q* g(x)=(x+l)(x15 +x10 +x9 +x8 +x5 +x3 +1)

=x 16 +X15 +xll +x8 +X6 +x5 +x4 +x3 +x+l.

For Pmax = 1/2, the maximum conditional probability of undetected eiTor, Pud(P*lb), for

these three codes is shown below in Table 3. The CRC 16Q* code has p*=0.5 for all burst lengths.
It should be remembered that Pmax is assumed to be 0.5. If Pmax were taken to be greater than 0.5
than p* would not equal 0.5 and Pud(P*lb) would be somewhat higher than the values given in this

table.

r ' -16-
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Table 3

Maximum Conditional Probability of Undetected, Pud(P*Ib), Error for Three 16-Bit CRC Codes

b CRC- 16 CCITT CRC-160*
< 16 0 0 0
17 9.3 x 10 '5 9.3 x 10 '5 7.6 x 10-6

18 1.5 x 10 -4 1.5 x 10-4 1.1 x 10'5

19 1.8 x 10-4 1.7 x 10'4 1.3 x 10'5

20 2.0 x 10-4 1.8 x 10-4 1.4 x 10-5

21 2.1 x 10-4 1.8 x 10 -4 1.5 x 10'5
22 2.1 x 10 -4 1.8 x 10"4 1.5 x 10-5

23 2.0 x 10 '4 1.7 x 10 "4 1.5 x 10"5

24 1.9 x 10-4 1.7 x 10 "4 1.5 x 10-5

25 1.8 x 10-4 1.6 x 10 "4 1.5 x 10"5

26 1.7 x 10 '4 1.5 x 10 -4 1.5 x 10-5

27 1.6 x 10 ' 4  1.4 x 10 -4 1.5 x 10-5

28 1.5 x 10 -4 1.3 x 10-4 1.5 x 10"5

29 1.4 x 10- 4  1.2 x 10 ' 4  1.5 x 10-5

30 1.4 x 10-4 1.1 x 10-4 1.5 x 10-5

31 1.5 x 10"4 I.I x 10 -4 1.5 x 10-5

32 1.6 x 10 -4 1.0 x 10-4 1.5 x 10-5

It should be noted that the CRC- 16Q* code has almost an order of magnitude improvement in
the maximum conditional probability of undetected error, Pud(P*Ib), over the two international

standards for all burst lengths in the range 17 < b <_ 32. The old definition of burst error

performance which compares the percentage of burst error patterns of length b which are not detected
by the code (as given in Table 1) predicts that all three codes have identical performance.

Figure 4 is a plot of Pud(plb) versus p for the three codes CRC- 16, CRC-CCITT and CRC-

16Q* for b=20 for p taking values in the range 0•_ p _< 1. Many peculiar phenomena are apparent
from these curves. Although, the two international standards have similar behavior for p in the range
0_< p _< 0.5, they have markedly different behaviors for p in the range 0.5 < p < 1. Note that the
CRC-CCITT code has two distinct local maxima, one for p b'-low 0.5 and one for p above 0.5.
Also, although the CRC-16Q* code has its maximum for p above 0.5, the value, at its maximum is

not very different from its value at p--0.5.

-17-
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Figure 4. Pud(plb=20) for CRC- 16, CRC-CCITT and CRC-i16Q*.

There are many CRC codes with generator polynomials of the form (I+x) times a 15th
degree primitive polynomial that have the burst error performance superior to the international
standards. The following discussion shows why the generator polynomials chosen for the
international standards were poor choices for burst error detection and how other choices result in
better codes.

Consider first that we want to detect a burst of length b=R+ 1. The burst is not detectable if
and only if the polynomial which represents this burst is divisible by the generator polynomial of the
code. But at this burst length there is only one such burst pattern: namely, the generator polynomial
itself. Assume that the generator polynomial has exactly dl ones (and R-dI zeros): that is, assume
that the generator polynomial has Hamming weight equal to dl. Then, the conditional probability
that a (b:p) burst with b=R+l is not detectable is given by the formula Pud(pIR+1) = pdl(1.p)(b-dl).
This equation has its maximum at p=dl/b. If dl/b>0.5, then the maximum value of Pud(pIR+l) for
0<.p < 0.5 occurs at p=0.5. If, however, dl/b < 0.5, then the maximum value of Pud(plR+l) is
Pud(dl/b1R+l) = (dl/b)dl(l-(dl/b))(b-dl). For the three codes discussed previously, the values of
dl and dl/b are listed in table 4.

I _ "' ' -18-I
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Values of dI and d l/b for CRC-16, CRC-CC1I', and CRC-16Q*
for an error burst of length R+ I

Coxd d I d l/b

CRC-16 4 4/17
CRC-CCITT 4 4/17
CRC-16Q* 10 10/17

Even if Pmay were taken to equal 1 , the CRC-16Q* code would have a smaller probability of
undetected error than tie two international standards. This is the case since (dl/b)dl(l-(dl/b))(b'dl)

is smaller for dl/b=10/17 than for dl/b=4/17.

The discussion in the previous paragraph might suggest that the only parameter of imnportance
in choosing the generator polynomial is its Hamming weight. This is not the case, as can be seen by
considering longer error bursts. For error bursts of length R+2, one must consider (12, tile

Hamming weight of (x+l) times the generator polynomial. Then the conditional probability of
undetected error is:Pud(PIR+2)=2pdl(1-p)(b-dl) +pd2(1.p)(b-d2). For error bursts of length R+3
one must consider d3 and d4, the Hamming weights of (x2+1) times the generator polynomial and

(x2 +x+l) times the generator polynomial, respectively. The conditional probability of undetected
error in this case is given as: Pud(plR+3)-3pdl(1-p)(b'dl)+2pd2(1-p)(b'd2)+pd3(l-p)(b'd3)
+pd4(1&-p)(b-d4).

The values of d1, d2, d3 , and d4 , for the three 16 bit CRC codes discussed previously are
given in Table 5 as well as dte maximum values of Pud(p117), Pud(P118), Pud(Pl19 ), and Pud(PI20)
for these codes for p in the range 0.p_..0. 5 and 0.p<_l.0. The values of dl, d2, d(3, and (14 explain

why the primitive polynomial of degree 15 used in the generator polynomial of the CRC-16Q* code
is better than the primitive polynomials of degree 15 used in the generator polynomials of the two
international standards. In particular, it can be shown that the values of dl, d2 d3, and d4 , for the
CRC-16Q* code are near optimal for minimizing Pud(P117), Pud(P118), and Puid(Pl1 9 ) over the

entire range Q p<l.

S. . .. ~ ~-19. _.. .
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P>arameters Related t•othe urst Error MOte)ion ICapability of Thre.0 16-fit CRC Codes

Parameter CRC-16 CRC-CCITr CRC-160* RangQ
dl 4 4 10
d2̀  6 8 10
d3 6 8 12

S6 12 10

1ma ud(PT17) 9.4 x 10'5 9.4 x 10-5 7.6 x 10.6 0<p<0.5
'ax Pud(pI17) 9.4 x 10-5 9.4 x 10-5 1.0 x 1o05 0<p<l

"max Pud(P)18) 1.5 x 10-4 1.5 x 10-4 1.1 x 10-6 0<)<0.5
max Pu(W18) 1.5 x 10-4 1.5 x 10- 4  1.3 x 10-5 0<p<l

max Pud(P19) 1.8 x 10-4 1.7 x 10-4 1.3 x 10-5 0<p<0.5
max Pud(P119) 1.8 x 10`4 1.7 x 10-4 1.4 x 10-5 0<p(1

The improvements obtained in the conditional probability of undetcctcd burst error irn much

more dramatic when one uses more parity bits in the CRC code. For example, consider two CRC

codes with 32 parity bits obtained from the following two generator polynomials, both of which are

of the ftonn (1 +x) times a primitive irreducible polynomial of deogree 31:

CRC-32 g(x) = (x+l)(x3 l+x3+x2+x+i)

= (x32+x31+x4+1)

CRC.32Q* g(x) = (x+ 1)(x 31 +x23+x22 +x I5+x 14 +x7+x4+x3+ 1)

= (x32 +x3 1+x24+x22+x 16+x14+x8+x7+x5+x3+x+l),

The parameter d1 for these cmles is 4 and 12 respectively. This is the parameter which

describes the conditional burst error detecting capability of the code for a burst of length 33. The

resulting values for Pud(p*13 3 ) are.: for the. CRC-32 code, Pud(p*13 3 )=5 .1 x 10-6, and for the CRC-

32Q*, Pud(p*133)=4.0 x 10-10.
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VIII. CONCLUSION

A fast and efficient hardware device for determining the weight distribution of certain CRC

codes is currently in operation. The weight distribution of codes generatc.. by g(x)=(-x+1)p(x) where

p(x) is a primitive can be deternined for any R up to 41 and any N up to 65535. From this, the

exact probability of undetected error when comm|unicating over a random channel can be evaluated.

A new burst error model is proposed for evaluating the burst error detection performance of
CRC codes, Based on this model, we find that codes with the same number of parity digits can have

very different burst error detecting l)erfornance, In particular, a 16 bit CRC code that has an order

of magnitude improvement in burst detecting capability over the CRC-CCIT" and CR•-16

international standards is given. With this model, evaluating the burst performance of CRCs

generated by g(x)=(x+l)p(x) is fast and efficient using the hardware, device above.

Insight as to what characteristics of the generator polynomial corresponds with good burst

Pt~rform~mance is also provided.
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APPENDIX A : Hardware Device for the Evaluation of Arbitrary Cyclic Codes

Results from the Code Weight Computer (CWC) only apply to CRCs with generator

polynomials of the form g(x) = (x+l)p(x) when used over a random or single burst error channel at

block lengths up to 65535, where p(x) is a primitive polynomial of degree up to 40.

To allow an even wider search and certification range, a hardware Channel Tester (CT) has

been studied to measure the performance of cyclic codes created by an arbitrary generator polynomial

g(x) up to degree R=64 and at block lengths up to N=22 4 . The C7 would be capable of counting the

number of undetected errors that occur over existing (real) communication channels or through a

channel simulator which would emulate both random and multiple burst channels. The relative

frequency of undetected errors could then be used as an estimate of the probability of undetected

error (Pud) over the channel. Additional measurements would include channel bit error rate, channel

delay, and error burst length within a code word. In conjunction with a personal computer (PC), the

CT could provide stand-alone capability including pseudo-random data generation, parity

encoding/decoding, receive self-synchronization, and error counting.

Any polynomial up to degree 64 may be used to encode a programmable pseudo-random data

source, generating codewords with block lengths of up to 224 bits (N < 16777216, N-K < 64).
Measurements performed will consist of a) the total number of codewords transmitted, b) the total

number of codewords received with errors (including both detected and undetected errors), and c)

the total number of codewords received with detected (parity) errors. From these measurements, the

probability of block error, of detected block error, and of undetected block error can be computed.

In addition, the channel tester will be capable of measuring the delay through the channel, the

number of bit errors within an undetected error block, or the longest error burst (number of bits

between first and last error in a block) within an undetected error block (the terms codeword and

block are used interchangeably).

-.22 I
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Figure 5 shows a block diagram of the CT. The process of measuring the probability of

undetected block error shall consist of the following procedure:

1. Load and initialize all Linear Feedback Shift Registers (LFSRs), counters, and control logic.

2. Stant transmission of preamble PN sequence immediately followed by cyclic encoded PN data.

3. On receive side, acquire synchronization with preamble then switch to error detection of the cyclic encoded PN data.

4. Continuously transmit and receive the PN data, measuring the number of block errors, detected block erro,'s, and

blocks sent.

5. Prior to overflow of the block counter (number of blocks sent), the CT shall pause, allowing the Personal

Computer (PC) to upload the measurements.

6. After uploading the various counter contents, the PC shall zero the measurement counters then signal the CT to

resume processing from item 4, above.

The process of measuring the channel delay and error statistics (bit error rate or longest burst)
shall consist of the following procedure:

1. Measure the delay from the start of transmission (beginning of first codevord sent) to the start of reception

(beginning of first codeword received).

2. Pause, to a'ulow PC to read delay measurement.

3. Continue, counting the number of bit errors in a block, or the longest burst of errors in a block, depending upon

the mode of operation. At the endi of each block, pause if an undeiected error has occurred, else flush counters and

repeat.

!F, -23-, I
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The CT will be comprised of a transmit encoder, a receive decoder, and an error recorder as
follows: A 24-bit programmable transmit data LFSR will generate a psevido-random noise (PN)
sequence that will serve as the information to be cyclic encoded. This PN sequence will also serve
as a preamble to allow a 24-bit receive data synchroni, . (/LFSR (programmed with the same PN

generator polynomial) to acquire bit and block synchronization. In search mode, the synchronizer
will function as a self synchronizing descrambler with shift register state detection to permit code
word (block) synchronization with the transmitter. In data mode, the synchronizer will operate as an
LFSR, generating an identical, local PN which shall be matched against the received PN to detect
data errors. Encoding will be performed by a 64-bit transmit parity LFSR which will be used to
generate the parity bits for each code word and may be programmed with any code generator
polynomial g(x) up to degree 64. Similarly, a 64-bit receive parity LFSR shall be programmed with
the same g(x) and will perform the cyclic decoding - detecting errors in the received blocks. To
establish the timing for the (N,K) codewords, pro, ;rammable 24-bit block size counters shall be used
separately in transmit and receive, where N and K are up to 24-bits each.

To keep track of the statistics, three multi-purpose counters will be used; a block counter,
block error counter, and detected block error counter will be updated with every codeword received,

and shall be read from the PC whenever the CT pauses. The block counter shall be programmable
and will allow up to 224 blocks to be tested before pausing the CT. In addition, the block counter
will function as either a bit error or error burst counter - measuring the total number of bit errors or
the number of bits between the first and last error in each block, respectively. A 16-bit block error

counter will accumulate the number of code words that have any errors, and a 16-bit detected block
error counter will accumulate the number of code words that hav.w parity (detected) errors. Thus the

frequency of undetected errors occurring over the channel can be calculated by taking the difference

between the block error count and the detected block error count and then dividing this result by the
block count. The detected block error counter will also be used to measure the delay through the
channel. Finally, state machine and control logic will integrate the various sections of the CT
throughout the synchronization and measurement process.

-24- 1
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APPENDIX B : Shift Register Sequences and Code Polynomials

A linear feedback shift register (LFSR) with feedback connections corresponding to the non-

zero coefficients of a primitive polynomial p(x) and initialized to any non-zero state will produce a

maximal sequence containing all 2 R-1 -1 non-zero code words generated by h2(x)=(xN'-1)/p(x)

before repeating[4]. When initialized to the all zero state, the LFSR will produce the all zero code

word. This accounts for all 2R-1 code words generated by h2(x). The block length N is simply the

number of consecutive bits in the sequence that are observed when measuring the weights. This can

be visualized as a window of length N panning across the LFSR output sequence one cycle at a time.

For an unshortened code, the window will view 2R-I -1 bits at a time for a total of 2R-I -1 unique

non-zero code words. For shortened codes, the window will view fewer bits at a time, but will still

look at all 2R'1 -1 non-zero code words. See figure 6 for an example of an LFSR described by

polynomial 211 (octal).

Figure 6. LFSR for polynomial 211.

" Output Sequence

D = 1 shift delay

+ = modulo-2 adder (exclusive-or)

-26
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