8 234 AFOSRTR: y1 0596

\\iﬁ\ﬂﬂx\ﬁ\\!ﬁ\ﬂh\ﬁ\“\%“\\\l\\

ﬂ
QUALCOMM, Inc.
10555 Sorr%m? Valley Road ~, r Xy
San Diego, California 92121
n Diego iforn QJ E Ef H

= 6 T T
&)

U, JULL 2 1991 §

that? @ f&g

FINAL TECHNICAL REPORT
FOR THE
RESEARCH IN MATHEMATICS AND COMPUTER SCIENCE:
CALCULATION OF THE PROBABILITY OF UNDETECTED

ERROR
FOR CERTAIN ERROR DETECTION CODES

PHASE II

31 May 1991

Submitted To:

USAF, AFSC
Air Force Office of Scientific Research
Building 410
Bolling Air Force Base, DC 20332-6448

Contract No. F49650-90-C-0017

Y)I\ i A )N b“_l.r.MUL A

Appw d f( p.’h mleuuo

B e

- 91-04738
91 7 11 pgs IO




QUALCOMM, Jnc.
10555 Sorrento Valley Road
San Diego, California 92121 , 1 R

e e

J
FINAL TECHNICAL REPORT
FOR THE
RESEARCH IN MATHEMATICS AND COMPUTER SCIENCE:
CALCULATION OF THE PROBABILITY OF UNDETECTED
ERROR
FOR CERTAIN ERROR DETECTION CODES
| PHASE II prasanios tor 0
Ca. 0 axsa) i
| e o]
| 31 May 1991 ety I
e T — ""“"f
R l ;
l Submittc(l To: f .I'\f‘fir‘ * K.ﬂfblei.li.q.x:i'.,_____,____ - l -
i _" t".-l;,t‘:nl iste (Codem
USAF, AFSC : —‘;,‘:-VLH..X tiﬁ(i-)'oj: ” "«.i
Air Force Office of Scientific Research ~ Dist Speaial '
Building 410
’ Bolling Air Force Base, DC 20332-6448 19\*\ ‘ (
I !

Contract No. F49650-90-C-0017

e P ot S S —




|QUALCOMM , Inc. Final Technical Report for the Research in Mathematics and Comgutcr Scicnce Il|

Fom Approved
REPORT DOCUMENTATION PAGE QMB No, 07040168

Pubdc reporting burder i for this colection o iMormation & estimated to avarage 1 houl per responss, (ncluding the time for teviewing instructions, hing existing cala
gahering and maintaining the data ded, and compieling and reviewing the collection of information. Send commsnis fegarding this burden estiriale o7 any olher aspect of this
cosection of ivommation, induding suggestions for reducing this butden, to Washingten + qQ Services, Di ate tor Information Operations and Repons, 1215 Jeffarson
Davis Highway, Suite 1204, Adi VA 22202.1302 and to the Otlios of Management and Budget, P Raduction 0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave biank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

_ 31 May 91 Fina! Technical Report - 4/1/90 - 5/31/91
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

Final Technical Report for the Research in Mathematics and Computer Science: Contract Number F49650-90-C-0017
Cakulation of the Probability of Undetected Error for Certain Error Detection Godes (Phase |I) Program Code Mumber S0514A

6. AUTHOR(S)
Viteibi, Andrew J. - Woll, Jack K. - Fredrickson, Lyle J. - Levin, Jeff A. -

Biskeney. Robert .- Chun, Dertor T. Lot arFE  AXY l q 3

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

QUALCOMM, Inc.
10555 Sorrento Valley Read
San Diego, California 92121-1617

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRE SS(ES) 70, SPONSORING/MONITORING
AGENCY REPORT NUMBF.R
USAF, AFSC

Air Force Olfice of Scientific Research F'(.{C( WO~ GO C -7
Buiding 410
Bolling AFB, D 20332-6448

1. SUPPLEMENTARYNOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CCOE

USAF, AFSC Approved for publia reloane 3
Air Force Office of Scientific Research s
Bulding 410, Hoom C-124 distriduttonunlicited, ./
Bolling AFB, DC 20332-6448

Attention: AFOSR/PKO

13. ABSTRACT (Maximum 200 words)

Cyclic Radundancy Check (CRC) codes have become the standard nieans for delecting eirors
in messages that have been transmitted over a noisy communications channel. Unfortunately,
even the very best CRC codes cannot detect all tansmissior errors.

In this report, we first describe a hardware device capable of evaluating the random error
performance o! an important class of CRC codes that are generated by polynomials of the torm
o{x) = (x+1) p{x), where p(x) is & primitive polynomial of degree (R-1). We then introduce a
new burst error model and astablish an equivalence between the burst and random error
performance of cyclic codes. From this, we can extend the random error test results obtained
from the hardware device to include burst errors,

Also included in this report is an intuitive ook at the factors which lead to good code
performance, and an overview of a supplemental i ardware device 1o measure the
perlormance of cyclic codes that are generated by arbitrary polynomials.

14. SUBJECT TERMS 15. NUMBER OF PAGES
27

16. PRICE CODE

17. SEGURITY CLASSFICATION 18. SECURITY CLASSIFICATICN 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF FEPORT OF THIS PAGE OF ABSTRACT
uUnclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rov. 2.69)
Prescribed by ANS| Std. 239.18
208-102




UALCOMM, Inc. Final Technical Report for the Research in Mathematics and Computer Scicnce I

TABLE OF CONTENTS

SPECIAL HARDWARE TESTER.......ccccoiinvninniiniin 4
TEST RESULTS

BURST ERROR PERFORMANCE OF BINARY CYCLIC CODES.... 11
RESULTS

GOOD CRC CODES FOR BURST DETECTION

CONCLUSION

APPENDIX A
Hardware Device for the Evaluation of Arbitrary Cyclic Codes
APPENDIX B

Shift Register Sequences and Code Polynomials

REFERENCES




|QUALCOMM, Inc, Final Technical Report for d\éﬁéséh;chii;Mfathemalics and Computer Science I

LIST OF FIGURES

1 Code Weight Computer Block Diagram ..........ocoiiiiviiiiniiiiniiiiiininnencnennenenannns 6
2 Proper Polynomial 211 .. ...t 7
3 Improper Polynomial 277 ......ovviviiiiiiiii i e s 8
4 Pud for CRC-16, CRC-CCITT, and CRC-16Q¥ ........ociiiiiiiiiiiiiiniiiciiinnnnn, 18
5 Channel Tester Block Diagram .......ccoo0vvines be et e ettt e et et r et r s e a e aaes 25
6 LESR for polynomial 211 ... .ot iee i cre e sasn b eaee nanes 20

LIST OF TABLES

1 List of Proper CRC Primitives.......ccccieeiiiiiiininiiniieiinienieenniiinesesnecesennnns 9
2 Conditional Probability of Undetected Error tor 16-bit CRC Codes
Assuming all 2b-2 Bursts of Length b are Equally Likely......coocovieiiiiiinnnnnnn, 16

3 Maximum Conditional Probability of Undetected, Pud(p*Ib),

Error for Three 16-bit CRC Codes............oviiiiiiii i e 17
4 Values of d1 and d1/b for CRC-16, CRC-CCITT, and CRC-16Q*

foranerrorburstof length R+1......oiiiiiiiiiiiiiiiiiiiiiiii i e 19
5 Parameters Related to the Burst Error Detection Capability
Of Three 16-Bit CRC Codes .......ciiiiiiiiiiiiii it 20




[OUALCOMM, Tne. ~ Final Technical Report for the Research in Mathematics and Com]gulcr Science Il|

L INTRODUCTION

The error detection performance of shortened and unshortened cyclic codes given that
tandom errors have occurred in the communication channel or storage device has been the subject of
many previous studies [1-4]. Particular emphasis has been placed on cyclic redundancy check
(CRC) codes with generator polynomials of the form g(x)=(x+1)p(x), p(x) a primitive polynorial
[4], since several codes in this class have been accepted as international standards (5]. The
probability of undetected error for these CRC codes when used in conjunction with a binary
symmetric channel with bit error probability p can be determtined for any shortened block length
[3.4]. Although the probability of undetected error for the unshortened CRC codes do not depend
upon the choice of the primitive polynomial p(x), the same is not true for the shortened codes.

It must be emphasized that Pyq is dependent upon the statistical behavior of the errors to be
detected by the CRC code. In this report we begin with the assumption that we are communicating
over a binary symmetric channel (BSC) where the probability of error for each binary digit (bit) is p
(0<p<1/2) regardless of whether the bit is a 1 or a 0, and that the errors in different bits are
statistically independent of one another. The BSC is a useful model which describes some
commonly used comnmnunication channels such as antipodal signalling in an additive white Gaussian
noise channel with an optimum receiver. Even correlated, symmetric errors approach the BSC
model after interleaving at a sufficient depth. However, there are many situations where CRC codes
are expected to detect errors which do not obey the BSC model. One such example is when a CRC
code is used to detect errors that were miscorrected by a convolutional ECC. In this case, the ECC
decoder will produce burst errors (without interleaving). In sections V and VI we will show how the
results obtained over a BSC are also applicable to the single burst error channel.

CRC codes may be used at their natural unshortened block length of N'=2R-1 - 1, or they
may be shortened to an arbitrary, reduced block length N. When unshortened, all CRC codes (with
generator polynomials of the form described above) with the same values of N' and K perform
identically; for any value of p, codes generated by different polyno:mials will all have the same
Pyd(N',p). In addition, Py4(N',p) for unshortened codes will not exceed 2°R for 0<p<0.5 regardless
of the choice of p(x). In contrast, the performance of shortened CRC codes is dependent upon both
the choice of p(x) and the shortened block length N, Furthermore, Pyg may exceed 2-R for some
values of p in the rangc 0<p<0.5.
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II. CALCULATING Pyd

Exact evaluations of Pyq for linear codes are well known [1,2,3,4,7], and the formulas are
repeated here without proof. An undetectable error occurs only when the error pattern is a non-zero
code word. Hence, the probability of undetected error is the probability that an N-tuple (error
pattern) will have the same portion of ones as a code word from the set of all 2K code words
generated by g(x). If Aj is the number of code words generated by g(x) with a Hamming weight of
i, then for independent errors,

N
Pud(N,p) = EAi pi(1-p)N-i ,where p=the channel bit
i=1 error probability.

The set {A;) is known as the weight distribution of the code generated by g(x)=(x+1)p(x),
and for unshortened CRC codes with R parity bits, {A;)} is independent of the choice of p(x).
However, for shortened codes with R parity bits, {A;} is dependent on both p(x) and N.

Pug can also be calculated using the weight distribution of the dual code generated by the
parity check polynomial h(x) = (xN-1)/g(x). This is generally easier since the dual code is an (N,R)
code with a total of 2R code words and R is usually much less than N. If B; is the number of code
words generated by h(x) with weight i, then for independent errors occurring with probability p,

N

Pud(N,p) = 2R 2 B;(1-2p)i - (1-piN
i=0

Finally, it has been shown[4] that CRCs generated by h(x)=(xN'-1)/g(x), where
g(x)=(x+1)p(x), have a weight distribution Bj=w; + wn.i, where {wj} is the weight distribution of
the code generated by ha(x)=(xN-1)/p(x). This code is an (N,R-1) code with a total of 2RI code
words. If wj is the number of code words generated by hz(x) with weight i, then for independent
errors occurring with probability p,

N

Pua(N.p) = 2-R D (wirwn.)(1-2p)i - (1-p)N
=0
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We are now faced with the task ¢ dnding the weight distribution of the 2R-1 ¢code words
generated by ha(x). This can be done by generating every code word and tallying the number of
code words with weight 0,1,2,3, .. . \N. A very efficient algorithm exists[4] which requires
minimal hardware for implementation. This algorithm utilizes two identical linear feedback shift
registers (LFSR “A” and “B”) to produce two sequential outputs such that any N consecutive bits of
each output may be considered a code word, where R<N<2R-1, Because they are identical, both
LFSRs will generate the same sequence. However, LFSR “B” is intentionally started N cycles
(shifts) after LFSR “A™; hence, “B" lags “A” by N cycles. The time separation of N cycles between
the two identical sequences forms a code word “window” of length N in which the output of LESR
SA” represents bits entering the window and the output of LESR “B” represents bits exiting the
window. The algorithm makes use of the fact that if we currently know the weight i of the code
word in the window, then when the next code word appears after a single shift of both LFSR “A”
and “B”, it will have a weight of i, i-+1, or i-1, depending upon whether “A” (entering window)
equals “B” (exiting window), “A” is greater than “B”, or “A” is less than “B”, respectively, where
“A” and “B” are the outputs of each LFSR and take on the values 0 or 1. See appendix B for a
description of linear feedback shift register sequences.
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III. SPECIAL HARDWARE TESTER

As discussed earlier, the weight distribution of the code generated by ha(x) can be used to
evaluate Pyq. However, there are a total of 2R+! -1 non-zero code words (regardless of N) in an
(N,R-1) code, and weight calculations can become time consuming even for reasonable values of R.
In addition, the amount of hardware required can be reduced considerably when using the algorithm
described earlier.

Because of this, weight calculations are processed in a specialized digital Code Weight
Computer (CWC). The CWC is capable of evaluating all wj for any primitive polynomial of degree
2 through 40, inclusive, and for any block length greater than the degree of p(x) up to a maximum of
65535. A polynomial p(x) along with a block length N is loaded into the CWC via an interface card
which is connected to a personal computer (PC). The weight calculations consist of counting the
number of ones (weight) in each of all possible non-zero code words. Each of the blocks will have a
weighti, where 1<igN, For each weight, a weight enumerator wj representing the number of blocks
with Hamming weight i is updated until all 2R-1 - 1 non-zero blocks have been processed. Tais will
yicld N wj which imay be uscd to evaluate Pyg. When done, an interrupt is sent back to the PC, and
the {wij} arc read from the CWC. At this point, the remainder of Pyg(N,p) calculations are
performed in software for varying values of p. The majority of the CWC consists of emitter counled
logic (ECL)) which allows a system clock speed of 80MHz. Each of the 2R-1 - 1 blocks requires
roughly 2 clock cycles to be processed, allowing a 41-bit (R=41) CRC to be tested in under 7 hours.
As an example of the speed improvement of the CWC over a SUN  workstation running a non-
optimized C i rogram, the CWC required 15 seconds to complete an R=30 weight calculation
whereas the SUN required 1.5 hours.

Figure 1 shows the block diagram of the CWC, It is comprised of two linear feedback shift
registers (LFSR) that have feedback connections corresponding to the non-zero coefficients of p(x),
one 40-bit wide by 64K deep read/write memory (RAM) to store the wj, one 16-bit “address”
counter to access the RAM, one 40-bit “tally” counter to increment the w; as new blocks of weight i
are found, one 40-bit dual-purpose “event” counter 1o establish the block length and to count the 2R-
I-1 non-zero code words to be processed, and lastly, control and interface logic to integrate the
subsections.
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Both LFSR “A" and “B" have identical feedback connoctions and initial conditions such that
they both generate the same maximal sequence determined by primitive p(x). Howevet, LFSR “B™
begins running N cycles (shifts) after LESR “A” has stated, thus “B” lags “A” by N cycley, creating
a window of length N. The output from both “A" and “B” are used 10 determine the weight of the
code word in this window as follows:

Hamming weiglt

sam weight as previous code word
one less than previous code word
one more than previous code word
same weight as previous code word

The weight of the current code word is stored in an up/down counter which direcily
addresses a RAM which contains the weight enumerators {w;) as data. The data is incremented via
the tally counter such that cach RAM location cointsins an accumutation of ihe numtber of code words
having a weight of i. During the first N cycles after startup when “A™ is running and “B" is stopped,
the RAM address increments from zero up to the weight of the first code word at which time LESR
“B” starts. This creates the window with length N and weight i. For the next 2R-1-2 cycles, the
address counter increments, decrements, or remains stable depending upon whether the current code
word has a weight that is larger, smaller, or the same as the previous code word, respectively. Thus
the weights of all 2R-1-1 non-zero code words generated by p(x) are tallied. This along with a single
all-zero code word (wo=1) yields the complete weight distribution (w;) for all of the code words
generated by p(x).
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IV.  TEST RESULTS

The objective of the tests performed with the CWC was to determine at least one “good” code
having R parity bits in the range 8<R<41. Our criterion was the ability of the code to be "proper” at
a number of block lengths between (R+1)<N<2R-2, We maintain an carlier{4] definition of "proper”
as follows. A code is defined to be proper at block length N if Pud(N,p) < Pud(N,0.5) for any
0gp<0.5. Figures 2 and 3 illustrate the significant difference between proper p(x)=211 and
improper p(x)=277. Note that polynomial 277 is proper at N=14,

PUD(N,p)
4.50E-03 T
4.00E-03 ¢ -
M.m"‘:
3.50€-08 4 g
e T -’
O/ '/ l,
3.008.08 4 A Y
.08 4 N=id 7" 7" -
2.50E-03 //,f;?, N1 //
» 00k-0a | /// I “Net,
1.50E-03 - o
1.00E-03 |
5.00E-04 |

0.00E+00 +
0

Figure 2. Proper Behavior of Polynomial 211 (octal)
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PUD(N,p)
4.50E-03 -

<
]
N

4.00E-03 -
3.50E-03 -
3.00E-03 -
2.50E-03 -
2.00E-03 -
1.50E-03 A
1.00E-03 4

5.00E-04 -

0.00E+00 -
0 0.1 0.2 0.3 0.4 0.5

Figure 3. Improper Behavior of Polynomial 277 (octal)

Although the tests did not evaluate p at an infinite number of values, we believe that the
chosen values of p are sufficient to eliminate improper codes. Table 1 lists a primitive polynomial
for each value of R that has passed our tests. Codes are generated by g(x)=(x+1)p(x).
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7UAL(£0MM. Inc.

Jable 1.
List of proper CRC primitives (sec conditions in text, below)

Parity Polynomial

Bits(R) p(x) (octah!

8 211

9 543 -
) 10 1055
I 11 T B - ¥ ) C T I
: 12 4505

13 15647

14 23231

15 64167

16 103451
. 17 305667 -

18 422273

19 1150427

20 2227023

21 6556543

22 10344605

23 27566643

24 42607251

25 134461765

26 3455025661

27 426225667

28 1112225171

29 2131556151

30 4660221051

31 165466723175

32 24242142531

33 67346536411

34 114271102221

35 276215750461

36 662342545661

37 1041103456055

The conditions for which the results in table 1 apply are as foliows:

Each primitive p(x) was tested at every block length from (R+1) to 2m, inclusive, where m is
the smallest integer such that 2m > (R+10). Next, p(x) was tested at every block length that is a
power of two from 2m up to the lesser of 2R-2 or 215 inclusive. For example, at R=8, block lengths
of N=(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,64} were
tested.

1 Octal notation represents the non-zero coefficients of p(x). Thus 211 describes p(x)=x7+x3+l.
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At each block length, Pyd(N,p) was evaluated at fifty values of p in the range 10-4 <p<0.5.
Twenty, linear-scaled values (0.50,0.48,0.46, . .. ,0.16,0.14,0.12) and thirty log-scaled (10 per
decade) values {0.1,0.1/q,0.1/q2,0.1/g3, . . .,0.1/q27,0.1/q28,0.1/q2%,0.0001} were used, where
q=10(0.1),

If for all N and p, Pyd(N,p) < Pud(N,0.5), g(x) was declared "good” and entered into table 1.

The current definition of Pyg(N,p) is based on independent, random bit errors vccurring
with probability p. In the next section, we shall introduce a statistical burst error model and show
how the results obtained from the CWC can also be applied to error bursts. Before proceeding, we
would like to mention a supplemental, hardware Channel Tester (CT) which is described in
appendix A. The CT was originally planned to extend the scope of our tests to include arbitrary
cyclic codes operating over real communication channels. Of particular interest was the burst error
performance of CRC codes 'when used in conjunction with error correcting codes. However, the

findings of the next two sec.ions extends the capabilities of the CWC to include burst error

performance measurement. Therefm. , we include the untested CT desiga only as an appendix 10
this report.
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V. BURST ERROR PERFORMANCE OF BINARY CYCLIC CODES

A statistical model for a single burst of length b is defined whereby the errors are confined to
a span of b digits and where the errors within the span occur randomly with bit error probability p.
_We call such a burst a "(b:p) burst". The conditional probability of undetected error for a shortened -
or unshortened cyclic code given the occurrence of a single (b:p) burst is shown to be equal to the
probability of undetected error for that cyclic code shortened to block length b when this shortened
code is used in conjunction with a random error channel with bit error probability p. We investigate
the performance of CRC codes with generator polynomials of the form g(x)=(1+x)p(x), p(x) a
primitive polynomial. We show that the burst error detection performance of these CRC codes
depends upon the choice of the primitive polynomial p(x). In particular, it is shown that 16 bit CRC
codes exist which have better burst error detection capabilities than the widely used 16 bit
international standards, i.e., the CRC-16 and CRC-CCITT codes. For the random error channel,
shortened CRC codes that outperform the commonly used CRC standards (such as the CRC-16 and
the CRC-CCITT codes) have been found [3-4].

In this section of the report, we are concerned with the single burst error detection capability
of binary, shortened or unshortened cyclic codes. Included in this class are the CRC codes with
generator polynomials of the form g(x)=(x+1)p(x).

We consider the following model for a single burst error of burst length b, We assume that
errors only occur within a span of b digits, and within that span, the errors occur randomly with bit
error probability p (0 < p <1). We call the above burst, a "(b:p) burst” where b is a positive integer
and p is a real number in therange 0 <p < 1.

We believe that the (b:p) burst model is useful to describe many real burst error channels.
Examnples are the errors produced by a decoder of an error comrecting code or the errors which are
produced by a fading channel.

Note that with this model, if p < 1, errors do not neccssarily occur at the first and last bit in
the burst so that the actual error pattern for a (b:p) burst may span less than b digits. This should be
kept in mind when comparing our results with those previously reported in the literature.

| il )
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Previous results have been published regarding the burst error detection capability of cyclic
codes [1-2]. It has long been known that for a cyclic code with arbitrary generator polynomial g(x)

of degree R, the fraction of bursts of length b which is undetected by the code is:

0 ) ~ ifb< R,
2 R-1) if b=R+1, and
2R if b > R+l

Here, the definition of a burst of length b differs from our (b:p) model in several ways. For
one, with this definition, there is always an error in the first and last (that is, the b-th) digit of the
burst. Furthermore, this dzfinition is "non-statistical” in that it refers to fraction of bursts that are not
detected rather than the probability of a burst not being detected. Using this definition, the fraction
of undetected errors for a burst of length b would equal the conditional probability of undetected
error given a burst of length b provided that the 22 burst error patterns that have an error in the first
and b-th positions are all equally probable. It is our belief that this assignment of probabilities does
not describe accurately many real communications or storage channels and that the assignment used
in our (b:p) model is a much better model for actual burst errors. We refer to this older model of a
burst as the "“non-statistical” model.

Let Py4(pib)) be the conditional probability of undetected error for an error detection code
given that the code experiences a (b:p) burst. In many applications it may be difficult to know an
exact value to assign to p but rather we may know what limits to assign to a range of values: ppyip <
P < Pmax. We propose to choose that value of p in the range pmin < p < Pmax. for which Pyd(plb)

is a maximum. We call this worst case value of p, p*, and we denote the corresponding worst case
conditional probability of undetected error for a burst of length b, Pyg(p*Ib). Thus:

Pyg(p*b)= max [Puq(pb)], Pmin<P<Pmax

The question as to the choice of pyjn and ppax depends on the source of the burst error in
the application. It is reasonable, in most applications to set pyin = 0 and pyax=0.5 but there are
situations where one might consider pjpax > 0.5 (e.g., a phase slip in a P.S.K. demodulator). In
this section of the report, unless it is specifically stated to the contrary, we assume that pyjp = 0 and
Pmax =0.5.

12- |
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For pmin = 0 and ppax = 0.5, one would think that p*=0.5 for all codes, but for many

codes, including several commonly used international standards, this is not the case. For codes

where p*=0).5, the results predicted by the (b:p) burst model give results similar to those predicted
by the older burst model. In particular, Pyg(p*Ib) =0 for R > b and P,4(0.5b) = 27 R.2" for R < b.

- However, as we shall see, when p* is not equal to 0.5, the results predicted by the (b:p) model can

differ s1gmficantly from those pnedxcted by the older model.
A somewhat surprising result occurs for the case of ppax > 0.5. In this case, as we shall

prove later, for almost every code, if Pyq(plb) < Py4(0.51b), for all p < 0.5, then Py4(plb) >
Pyd(0.5lb) for some p > 0.5. Said more simply, for R<b, P,,4(0.5Ib) = 2'R-2'b is almost never an
upper bound for Py(plb) if ppyax > 0.5.

An important consequence of the (older) non-statisitical definition of a burst is that the
fraction of undetected errors of burst length b does not depend upon the specific choice of the
generator polynomial of the code but only on the number of parity digits in the code. In particular,
for CRC codes with generator polynomials of the form g(x)=(x+1)p(x), p(x) a primitive polynomial,
this definition implies that the burst detection capability of these codes does not depend upon the
choice of the primitive polynomial p(x). As we shall see, this is not the case using our definition of a

smglc (b:p) burst if p* is not equal to one half. That is, using our deﬁnmon th_\lo_r_ss_c_&s&

w wnll find CR
ingl

In the next section we prove that for any (unshortened or shortened) cyclic code, the
conditional probability of undetected error given a (b:p) burst is equal to the probability of undetected
error for that code when used with a random error channe! with bit error probability p when the code
is shortened to block length b. We then examine some consequences of this result. In particular, we
explore the burst error performance of CRC codes with generator polynomials of the form
gx)=(x+1)p(x), with p(x) a primitive polynomial.
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VI. RESULTS

Consider any shortened or unshortened cyclic binary (N,K) code (with R = N-K). Define
Pud(N,p) as the probability of undetected error for the code when the code is used in conjunction

with a binary symmetric channel with channel bit error probability p. Furthermore. define Py, q(plb)
as the conditional probability of undetected error for the same code given a (b:p) burst. Then, the
following theorem states that for all (N-K) < b < N, the conditional probability of undetected error
for the (N,K) code given that a (b:p) burst occurred is equal to the probability of undetected error for
the same code, shortened to block length b, when this shortened code is used with a binary
symmetric channel with channel bit error probability p. That is, we have the

Theorem: Pud(plb) = Pyq(b.p).

Proof: Since the code is a linear (N,K) code we can assume in the calculation of the
conditional probability of undetected error that the all zero code word was transmitted. First assume
that a (b:p) burst occurred as the error pattern. This error pattern is such that it has all of its
components identically zero except for a span of length b starting in position i and ending in position
i+(b-1). Within this span, the coefficients of the error pattern are i.i.d. binary random variables with
the probability of a 1 equal to p. We are now concerned with the probability that this error pattern,
when input to a linear fecedback shift register (LFSR) with feedback connections set in accordance
with the coefficients of the generator polynomial g(x), will result in the final contents of this shift
register being all zeros. Note that the coefficients of the error vector outside of the range (i,i+b-1)
are all zero so that the leading all zero coefficients when input to the LFSR will leave it in the all zero
state. Then, the coefficients corresponding to the burst in the interval (i,i-+b-1) enter the LFSR and
either leave it in the all zero state or not. If the LFSR is left in the all zero state the trailing zeros
entering the LESR will not alter this condition. If the LFSR is left in any other state other than the all
zero state, it will not return to the all zero state as a result of the trailing zeros. Thus, the situation is
exactly the same as if the code was shortened to block length b, and was used in conjunction with a
binary symmetric channel with channel bit error probability p. Q.ED.
By a careful reading of the above proof, we find that the following corollary is true:

Corollary: All shortened codes obtained from a given cyclic code have the same Py 4(pib)
(and thus the same Py 4(p*Ib)) provided that b is less than or equal to the shortened block length.

| 14 ]
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These results are interesting in their own right, but they are particularly significant since
Pud(N,p) (and thus Pyq(plb)) has been computed for a wide varicty of codes. The consequences of
this computation are described in the nexi section for the class of CRC codes with generator
polynomial g(x) = (x+1)p(x), p(x) a primitive polynomial [4-5]. Using the hardware tester
described earlier, Pyq(p*Ib) can be computed for any CRC code in this class where p(x) is any
primitive polynomial of degree 40 or less.

In the next section, we will always assume that the range of p of interest is 0 < p < 0.5.
Before proceeding to this section, we explore the consequences of allowing ppax to be strictly
greater than 0.5. If we compute the derivative of Pyq(b,p) (and thus, Pyq(plb)) with respect to p and
set p=0.5, we obtain -2-(R-1)B;+ b2-(b-1), where B is the number of code words of Hamming

weight 1 in the dual code when the code is shortened to block length b, Setting this derivative to
zero and solving for B) we obtain the equation B]—b2R‘b Except for the hypothetical case where

B 1-b2R -b, we have a non-zero derivative at p=0.5. This implies that except for this hypothetical
case. the maximum value of Pyg(plb) cannot occur at p=0.5. It should be realized that the same

argument can be used to show that, except for this hypothetical case, the maximum value of
Py d(N,p) does not occur for the binary symmetric channel at p=0.5. This is true even for the so-

called proper codes [2-4] where Pyq(N,p) < Py(N,0.5 ) for all p < 0.5.

[ -15- J
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VII. GOOD CRC CODES FOR BURST DETECTION

We first focus on the specific case of CRC codes with 16 parity check bits. Using the older
definition of a burst where all 2°2 bursts of length b are equally likely we find that all such codes
have the same conditional probability of undetected error. The results are presented in the following

ne:

Table2
Conditional Probability of Undetected Error for 16 Bit CRC Codes
Assuming All 292 Bursts of Length b Are Equally Likely

Burst I I Conditional Probability of Und {E
b< 16 0

b=17 215231 x 10"
b> 17 216 _ 15x 107

We next consider the performance of 16 bit CRC codes with generator polynomials of the
form g(x) = (1+x)p(x), where p(x) is a primitive polynomial (of degree 15). In particular, we
consider the performance of these codes for a (b:p) burst. We consider three codes, two of which
are the commonly used international standards (CRC-CCITT and CRC-16) and a third code which is
denoted CRC-16Q*. (This is not the CRC-16Q code referred to in [4].) The generator polynomials
of these codes are as follows:

CRC-16 g00=x+(x 1 ax +1)=x10 + x13 2 41,
CRC-CCITT g=G 1 x4 B ax12 0 13 2 4 x41)
=x’l6 + x12 o +1,

CRC-16Q* 2=+ +x10 4x? 08 4P 3 41)

=)4116 ax13 8 400 40 ot a3 +x+1.

For pmax = 1/2, the maximum conditional probability of undetected eiror, Py q(p*Ib), for
these three codes is shown below in Table 3. The CRC 16Q* code has p*=0.5 for all burst lengths.
It should be remembered that ppax is assumed to be 0.5. If py,ax Were taken to be greater than 0.5
than p* would not equal 0.5 and Py 4(p*Ib) would be somewhat higher than the values given in this

table.
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Jable3
Maximum Conditional Probability of Undetected, Py (p*Ib), Error for Three 16-Bit CRC Codes

b CRC-16 CCITT CRC-160*

<16 0 0 0

17 93x107°  93x107  7.6x10°

18 15x107%  1s5x10? Lix107d B
19 18x10°%  17x10%  13x10°

20 20x107%  18x10%  14x105

21 21x10%  18x10%  15x103

22 21x107%  18x10% 15x107°

23 20x10%  17x10%  1.5x107

2% 19x10°%  17x107¢ 15x107

25 18x107%  16x10%  15x10°

26 17x107%  15x10%  15x10°

27 16x10°%  14x10%  15x10°

28 15x10%  13x10%  1.5x10°

29 14x107%  12x10% 15x107

30 14x10%  1ax10% 15x10°

31 1sx10°¢ L1x10%  15x10°

32 16x10°%  10x10%  15x107

It should be noted that the CRC-16Q* code has aimost an order of magnitude improvement in
the maximum conditional probability of undetected error, Pyq(p*Ib), over the two international
standards for all burst lengths in the range 17 < b < 32. The old definition of burst error
performance which compares the percentage of burst error patterns of length b which are nox detected
by the code (as given in Table 1) predicts that all three codes have identical performance.

Figure 4 is a plot of P4(plb) versus p for the three codes CRC-16, CRC-CCITT and CRC-
16Q* for b=20 for p taking values in the range 0 < p < 1. Many peculiar phenomena are apparent
from these curves. Although, the two international standards have similar behavior for p in the range
0<p <0.5, they have markedly different behaviors for p in the range 0.5 < p < 1. Note that the
CRC-CCITT code has two distinct local maxima, one for p bslow 0.5 and one for p above 0.5.
Also, although the CRC-16Q* code has its maximum for p above 0.5, the value at its maximum is
not very different from its value at p=0.5.
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Figure 4. P,¢(plb=20) for CRC-16, CRC-CCITT and CRC-16Q*.

There are many CRC codes with generator polynomials of the form (1+x) times a 15th
degree primitive polynomial that have the burst error performance superior to the international
standards. The following discussion shows why the generator polynomials chosen for the
international standards were poor choices for burst error detection and how other choices result in -
better codes.

Consider first that we want to detect a burst of length b=R+1. The burst is not detectable if
and only if the polynomial which represents this burst is divisible by the generator palynomial of the
code. But at this burst length there is only one such burst pattern: namely, the generator polynomial
itself. Assume that the generator polynomial has exactly dj ones (and R-dj zeros): that is, assume
that the generator polynomial has Hamming weight equal to dj. Then, the conditional probability

that a (b:p) burst with b=R+1 is not detectable is given by the formula Pyq(plR+1) = pd1(i-p)(®-d1),
This equation has its maximum at p=d/b. If d;/b>0.5, then the maximum value of Py,4(pIR+1) for
0 <p < 0.5 occurs at p=0.5. If, however, d1/b < 0.5, then the maximum value of Pyq(pIR+1) is

Py(d/biR+1) = (d1/b)d1(1-(d1/b))(b-d1), For the three codes discussed previously, the values of
dq and dy/b are listed in table 4.
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Table 4
Values of dp and dj/b for CRC-16, CRC-CCITT, and CRC-16Q*
for an error burst of length R+1

Cocle di/b

CRC-16 a7
CRC-CCITT an?
CRC-16Q* 10/17

Bven if ppax Were taken to equal 1, the CRC-16Q* code would have a smaller probability of
undetected error than the two international standards. This is the case since (d1/b)d1 (l-(dllb))(b'dl)
is smaller for d)/b=10/17 than for d1/b=4/17.

The discussion in the previous paragraph might suggest that the only parameter of importance

in choosing the generator polynomial is its Hamming weight. This is not the case, as can be seen by
considering longer error bursts. For error bursts of length R+2, one must consider dg, the

Hamming weight of (x+1) times the gencrator polynomial. Then the conditional probability of
undetected error is: Pud(p|R+2)=2pdl(1-p)(b'dl) +p92(1-p)(b-d2), For error bursts of length R+3
one must consider d3 and d4, the Hamming weights of (x2+1) times the generator polynomial and

(x2+x+1) times the generator polynomial, respectively. The conditional probability of undetected
error in this case is given as: Pyg(plR+3)=3pd1(1-p)(b-d1)42pd2(1-p)(b-d2)+pd3(1-p)(b-d3)

+pda(1-p)(b-da),

The values of dy, d2, d3, and dg, for the three 16 bit CRC codes discussed previously are
given in Table 5 as well as the maximum values of Pyg(pl17), Pyg(pl18), Pyq(pl19), and Pyq(pl20)
for these codes for p in the range O<p<0.5 and 0<p<1.0. The values of dy, d2, d3, and d4q explain
why the primitive polynomial of degree 15 used in the generator polynomial of the CRC-16Q* code

is better than the primitive polynomials of degree 15 used in the gencrator polynomials of the two
international standards. In particular, it can be shown that the values of dy, d3, d3, and d4, for the

CRC-16Q* code are near optimal for minimizing Pyq(pl17), Pyq(pl18), and Py q(p119) over the
entire range O<p<l.
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CRC-32 g(x)

CRC.32Q*  g(x)

1t

(x+1)(x3 Lex3ax2ax+ 1)

(x324x314xd41)

Ot 1)(x31ax234x224x VS ax M axTaxdax341)

(x324x314x244x224x 16,4 x J4xBax TaxSaxIaxa 1),

Parameter . CRC-16 . CRC-CCITT . CRC-160* Range
4 4 4 10

& 6 8 10

& 6 8 12

dy 6 12 10

max Pyg@?)  94x10%  94x105  76x 1076 0<p<0.5
max Pyg@l?) 94 %10  94x10%  10x107 0<p<l
max Pyg8)  15x 104 15x10% L1x100 0<p<0.5
max Pyg18)  1.5x10%  15x104  13x103 O<pel
max Py,q(pt19) 1.8 x 104 1.7x 104 1.3 x 1079 0<p<0.5
max Pya(p9  1.8x 104 1.7x 104 14 x 1075 O<p<l

The improvements obtained in the conditional probability of undetected burst error are much
more dramatic when one uses more parity bits in the CRC code, For example, consider two CRC
codes with 32 parity bits obtained from the following two generator polynomials, both of which are
of the form (1+x) times a primitive irreducible polynomial of degree 31:

The parameter dj for these codes is 4 and 12 respectively. This is the parameter which

describes the conditional burst error detecting capability of the code for a burst of length 33. The
resulting values for Pyq(p*133) are: for the CRC-32 code, Pyg(p*133)=5.1 x 10-6, and for the CRC-
32Q%, Pyg(p*133)=4.0 x 10-10,
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VIII. CONCLUSION

A fast and efficient hardware device for determining the weight distribution of certain CRC
codes is currently in operation. The weight distribution of codes generated by g(x)=(x-+1)p(x) where
p(x) is a primitive can be determined for any R up to 41 and any N up t¢ 65535. From this, the
exact probability of undetected error when communicating over a random channel can be evaluated.

A new burst error model is proposed for evaluating the burst error detection: performance of
CRC codes. Based on this model, we find that codes with the same number of parity digits can have
very different burst error detecting performance. In particular, a 16 bit CRC code that has an order
of magnitde improvement in burst detecting capability over the CRC-CCITT and CRZ-16
internacional standards is given. With this model, evaluating the burst performance of CRCs
generated by g(x)=(x+1)pix) is tast and efficient using the hardware device above.

Insight as to what characteristics of the generator polynomial corresponds with good burst
1
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APPENDIX A : Hardware Device for the Evaluation of Arbitrary Cyclic Codes

Results from the Code Weight Computer (CWC) only apply to CRCs with generator
polynomials of the form g(x) = (x+1)p(x) when used over a random or single burst error channel at
block lengths up to 65535, where p(x) is a primitive polynomial of degree up to 40.

To allow an even wider search and certification range, a hardware Channel Tester (CT) has
been studied to measure the performance of cyclic codes created by an arbitrary generator polynomial
g(x) up to degree R=64 and at block lengths up to N=224, The CT would be capable of counting the
number of undetected errors that occur over existing (real) communication channels or through a
channel simulator which would emulate both random and multiple burst channels. The relative
frequency of undetected errors could then be used as an estimate of the probability of undetected
error (Pyd) over the channel. Additional measurements would include channel bit error rate, channel
delay, and error burst length within a code word. In conjunction with a personal computer (PC), the
CT could provide stand-alone capability including pseudo-random data generation, parity
encoding/decoding, receive self-synchronization, and error counting.

Any poiynomial up to degree 64 may be used to encode a programmable pseudo-random data
source, generating codewords with block lengths of up to 224 bits (N < 16777216, N-K < 64).
Measurements performed will consist of a) the total number of codewords transmitted, b) the total
number of codewords received with errors (including both detected and undetected errors), and ¢)
the total number of codewords received with detected (parity) errors. From these measurements, the
probability of block error, of detected block error, and of undetected block error can be computed.
In addition, the channel tester will be capable of measuring the delay through the chanrel, the
number of bit errors within an undetected error block, or the longest error burst (number of bits
between first and last error in a block) within an undetected error block (the terms codeword and
block are used interchangeably).
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Figure 5 shows a block diagram of the CT. The process of measuring the probability of
undetected block error shall consist of the following procedure:

1. Load and initialize all Lincar Feedback Shift Registers (LFSRs), counters, and control logic.

2. Start transmission of preamble PN sequence immediately followed by cyclic encoded PN data.

3. On receive side, acquire synchronization with preamble then switch to error detection of the cyclic encoded PM data,
4. Continuously transmit and receive the PN data, measuring the number of block errors, detected block errc:s, and
blocks sent.

5. Prior to overflow of the block counter (number of blocks sent), the CT shall pause, allowing the Personal
Computer (PC) to upload the measurements.

6. After uploading the various counter contents, the PC shall zero the measurement counters then signal the CT to

resume processing from iterm 4, above.

The process of measuring the channel delay and error statistics (bit error rate or longest burst)
shall consist of the following procedure:

1. Measure the delay from the start of transmission (beginning of first codeword sent) to the start of reception
{(beginning of first codeword reccived).

2. Pause, to aliow PC to read delay measurement.

3. Continue, counting the number of bit errors in a block, or the longest burst of errors in a block, depending upon

the mode of operation. At the end of each block, pause if an undeiected error has occurred, else flush counters and

repeat.
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The CT will be comprised of a transmit encoder, a receive decoder, and an error recorder as
follows: A 24-bit programmable transmit data LFSR will generate a pseudo-random noise (PN)
sequence that will serve as the information to be cyclic encoded. This PN sequence will also serve
as a preamble to allow a 24-bit receive data synchroni.: '/LFSR (programmed with the same PN
__generator polynomial) to acquire bit and block synchronization. In search mode, the synchronizer
will function as a self synchronizing descrambler with shift register state detection to permit code
word (block) synchronization with the transmitter. In data mode, the synchronizer will operate as an
LFSR, generating an identical, local PN which shall be matched against the received PN to detect
data errors. Encoding will be performed by a 64-bit transmit parity LFSR which will be used to
generate the parity bits for each code word and may be programmed with any code generator
polynomial g(x) vp to degree 64. Similarly, a 64-bit receive parity LFSR shall be programmed with
the same g(x) and will perform the cyclic decoding - detecting errors in the received blocks. To
establish the timing for the (N,K) codewords, pro: rammable 24-bit block size counters shall be used
separately in transmit and receive, where N and K are up to 24-bits each.

To keep track of the statistics, three multi-purpose counters will be used; a block counter,
block error counter, and detected block error counter will be updated with every codeword received,
and shall be read from the PC whenever the CT pauses. The block counter shall be programmable
and will allow up to 224 blocks to be tested before pausing the CT. In addition, the block counter
will function as either a bit error or error burst counter - measuring the total number of bit errors or
the number of bits between the first and last error in each block, respectively. A 16-bit block error
counter will accumulate the number of code words that have any errors, and a 16-bit detected block
error counter will accumulate the number of code words that have parity (detected) errors. Thus the
frequency of undetected errors occurring over the channel can be calculated by taking the difference
between the block error count and the detected block error count and then dividing this result by the
block count. The detected block error couater will also te used to measure the delay through the
channel. Finally, state machine and control logic will integrate the various sections of the CT
throughout the synchronization and measurement process.
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APPENDIX B : Shift Register Sequences and Code Polynomials

A linear feedback shift register (LFSR) with feedback connections corresponding to the non-
zero coefficients of a primitive polynomial p(x) and initialized to any non-zerc state will produce a
maximal sequence containing all 2R-1 -1 non-zero code words generated by ha(x)=(xN"-1)/p(x)
before repeating[4]. When initialized to the all zero state, the LFSR will produce the all zero code
word. This accounts for all 2Rl code words generated by ha(x). The block length N is simply the
number of consecutive bits in the sequence that are observed when measuring the weights. This can
be visualized as a window of length N panning across the LFSR output sequence one cycle at a time.
For an unshortened code, the window will view 2R-1 -1 bits at a time for a total of 2R-1 -1 unique
non-zero code words. For shortened codes, the window will view fewer bits at a time, but will still
look at all 2R-1 -1 non-zero code words. See figure 6 for an example of an LFSR described by
polynomial 211 (octal).

Figure 6. LFSR for polynomial 211.

"‘,

E E E E ®) E E of—— Output Sequence

2 D =1 shift delay
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