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A random image can therefore be modelled by a collection of random variables UQ located 
at the vertices a of a graph G = (V, e). Gibbs distributions have been used to specify the 
distribution of random images because the graph structure G can be tailored to take into 
account the dependencies intrinsic to the structure of the images arising in practice. 

The general pattern analysis problem can be broadly described as follows. There is a true 
image / which cannot be observed. However, a deformed version / of / can be observed. 
The physical process deforming the true image / is due to the process of observation itself. 
This physical process could be mathematically modelled as an additive noise or by some 
other process. The pattern analysis problem is to reconstruct the true image / based on 
the observed image Iv by using a statistical procedure that is optimal in some sense. 

Bayesian Image analysis first formulates a prior distribution for I which incorporates what 
is known about the structure of the true image I. Gibbs distributions have been used as 
prior distributions in Bayesian Image analysis [5]. The next step in Bayesian Image analysis 
is to update the prior notion of I using Iv. This gives rioC- io a a posterior distribution 
on the set of images. Under fairly general conditions, the posterior distribution is a Gibbs 
distribution. The posterior mean or the posterior mode is usually used as an estimate of 
the true image I. 

Bayesian Image analysis has had a good deal of success in dealing with pattern analytic 
problems. The HANDS project at Brown University [8] is an application of Bayesian 
Image analysis to recognizing biological shapes like human hands. For Bayesian Image 
analysis, it is necessary to generate an observation from the posterior distribution, and 
this is commonly done using the Gibbs Sampler [5], which in turn uses the Metropolis 
algorithm [9]. In fact, we can simulate observations from the prior distribution using the 
same Gibbs Sampler, to evaluate its suitability for the problem at hand. This is called 
pattern synthesis. However these methods are not very fast and require a good deal of 
computer time. 

A natural question that now arises is whether we can replace simulations with direct 
mathematical approximations of such distributions when the number of vertices ( sites ) 
of the graph is very large. The answer to this question is in the affirmative, for special 
graphs, provided that the number of vertices increases to infinity and the scale of gray 
levels present at each site increases at a certain rate. Results that describe this kind of 
behavior are called mixed limit theorems and have been studied previously by Grenander 
and Sethuraman [7] and also by Chow [4]. 

A graph of interest in pattern analysis is the linear connection graph G\ defined below. 
G\ has vertex set {0, ...,  n) and edge set {(i, i -f 1) : 0 < i < n}. 

We will introduce some notation in order to state the mixed limit theorem for the graph 
Gx. Let A(-) be a symmetric density and Q(-) be a density function on 3?. Let (UQ, ...,Un) 
which reside at the vertices of G\ have a joint density proportional to 

The function .4 is called the acceptor function in the pattern analysis literature. The accep- 
tor function models the local dependence between the U^s. The situation when the local 



dependence specified by the pattern analytic problem at hand should make neighboring U{ 
alike can be modelled by taking the acceptor function A to be a symmetric density which 
is decreasing on $l+. The situation when the local dependence should make neighboring 
C/f's different can be modelled by taking A to be a symmetric density which has bounded 
support and is increasing on 3?+. In the equation above, the factor of s/n represents an 
increase in the scale of gray levels present at each site as alluded to earlier. 

Define 
Xi = yfnUi 

1.1 
and Yi = X{ — Xo, i = 0,..., n. 

Note that YQ = 0 and that the distributions of the X,-'s do depend on n. We shall not 
explicitly indicate this dependence for the rest of this paper. The case when -A(-) has a 
second moment and Q(x) is essentially of the form exp(—x2) was the first situation to be 
considered. Mixed limit theorems for the distribution in C[0,1] of the process formed by 
linearly interpolating the X,'s have been derived by Chow [4], The limiting process in 
this case is a Gaussian process with a known covariance function. This corresponds to the 
situation in which the acceptor function A has thin tails. The case where the acceptor 
function A has thick tails is the situation that we will study in this paper. Let A(-) be a 
stable density with index a, 0 < a < 2. Then A has thicker than normal tails. Theorem 
2.2 is a mixed limit theorem for the distribution of a family of stochastic processes on [0, l] 
based on the X,-'s. The processes that we will study are related to the stable processes (see 
Breiman [10]). Since stable processes are defined on the space D[0,l], this is the natural 
topological space to prove distributional limit theorems for the processes under study. 

Section 2. 

Construct the stochastic processes Gn(t) and Xn(t) on [0, l] as follows: 

Xn(t) = n-1/QX[nt], 

Gn(i) = n-1/«^. 

The random variables X{ and Yi are as defined in equation (1.1). The processes Xn{>) and 
Gn(') are random variables in Z)[0,1]. A theorem that establishes the weak convergence 
in .D[0,1] of the stochastic processes Gn(t) and Xn(t) will be referred to as a mixed limit 
theorem. 

For the rest of this paper we shall assume that Q{x) — exp(—x2) and that A(-) is a 
symmetric stable density of index or, 0 < a < 2. 

Let /a(-) denote the symmetric stable density with index a. Let To have density /«(•). 
Then /<*(•) is a bounded density and P{TQ > x] ~ xa. We will make use of these facts in 
the proof of Lemma 2.1. 

Now (XQ, Yi,..., Yn) has a joint density proportional to 

n 

n2r0
X/«(Vt+i - yi) exp(-n"1 Y^iVi + so)2 - x2/n). (2.2) 



In Theorem 2.1 we will show that Gn(-) converges weakly to a process G(-) in D[0,1]. 
Corollary 2.1 of this theorem will show that Xn(r) will also converge weakly in D[0,1] to 
the same process G(-). 

The method of proof of Theorem 2.1 is as follows. We will show that the distribution 
of G„(-) conditional on Xo = XQ converges weakly in D[0,1]. We then show that the 
distribution of Xo converges strongly on 9£. A result of Sethuraman [3] which is stated 
as Lemma 2.2 in the proof of Theorem 2.1 will establish the weak convergence of Gn(-). 
Lemma 2.1 is a weak convergence result for stable laws which will be used in the proof of 
Theorem 2.2. 

Let X and Y be random variables. Then X = Y denotes that X and Y are equal in 
distribution. Let {Ar

n, n = 1,...} be a sequence of random variables on a complete 

separable metric space S and let X and Xo be random variables in S . Then X„ —>X denotes 
that £(Ar

n) converges weakly to £(X) in S. C(Xn\X§ = XQ) denotes the conditional 
distribution of (Xn given that Xo  = xo).    Let R(t) be a stationary and independent 

increment process in D[0,1] with R(t) = tl'aTQ. Lemma 2.1 below explicitly constructs 
such a process R(-) in D[0,1]. 

Lemma 2.1 

Let 0 < a < 2 and let To,Ti,... be i.  i.   d.   with density fQ.   Consider the partial sums 
i 

Si = Y^ Ti> ?' = 1,2,..., 50 = 0 and let the process (Ä»(t), 0 < t < 1) be defined by 

Rn(t) = n-l/aS[ni]. 

Then: Rn{-) -^U R(.) in D[0,1]. 

Proof 

The method of proof is the usual one, i.e., we shall first prove finite-dimensional convergence 
and then verify the appropriate tightness conditions. 

Let us calculate the characteristic function <f>n(-,t) of Rn(t),t € [0,1]. 

<f>n(u,t) = E(exp(iuR(t))) 

= MXmVun-1'*   £   z») (23) 
l<j<[*t] 

= exp(-\u\Qdn(t)) 

where dn(i) = i^)1^ —* t1/a as n - oo for i € [0,1). 

Let *0 = 0<ii < • • • < tk < i*+i = 1, and let fQ{-) be the symmetric stable density with 
index a. 

Let 

X,,n = Rn(U) - Rn{U-l)i     1 <i< * + l, n= 1,2,... 
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Note that {Xj n, i = 1,  ..., k + 1} are mutually independent random variables. Let fi)U 

be the density of X{,n. Then by (2.3) it is clear that /1>n is given by 

/i,nO) = f*(d u.^_t.\)/dn(ij ~ *i-i)- 

Since Xj)n are mutually independent and Rn(ti) = y^Xj>n, i = 1, ..., fe+ 1, the density 

of (Än(*i), • • •, Rn(tk)) is given by 

k 

\fi,n(yi ~ Vi-i) where y0 = 0. 

This density converges to the density of (Ä(ii), • • • ,R(tk))- Hence the finite dimensional 
distributions converge. We will verify tightness next. 

Let 0 = to < t\ < t2 < t3 < <4 = 1, e > 0 and let £/, V be stable symmetric random 
variables with index a. Then by the mutual independence of the increments Xi>n, and the 
facts about the tail probabilities of stable symmetric random variables, it follows that 

P{\Rn(U) - Rn(t2)\ > £, \Rn(t2) " Än(*l)| > e} 

= P{\Rn(h) - Rn(t2)\ > €} • P{\Rn(t2) - Rn{h)\ > c} 

= P{\U\ > ,    *   . J • P{|V| > g    '  , J 

<M-(t3-t1)
2 

— £2 Q 

Using Theorem (15.6) in Billingsley [l], tightness of the distributions is immediate. This 
proves the lemma.    D 

Define V(XQ,X), f(u) and ß(u) as follows 

'1 rl 
exp(-  /   (x(t) + xo)2dt)dP(x)) 

D[o,i) 
v(x0,x) = exp(- I   (x(t) + x0)

2dt)( I exp(- /   (x(t) + x0)
2dt)dP(x)) 

Jo K
JD[O,I) JO J 

f(u)= j        exp(- / (x(t) + u)2dt)dP(x) 
JD[O,I) JO 

p(u) = /(ti)/ / /(y)cfy. 

Note The nniteness of these integrals becomes clear in the proof of Theorem 2.1 below. 

In order to state the mixed limit theorem for Gn we introduce the following notation. 

Let Qn = C{Gn\ Pn = C(Rn), P = C(R). For x0 in 8 let QUiXo = C(Gn\X0 = x0). These 
are probability measures on D[0r 1], 



Theorem 2.1 

Let A(-) be a stable density of index a, 0 < a < 2. Then Qn converges to Q weakly in 
D[0,1] where the density of Q is given by 

/D[O,I]
ex?(-/o(*W - Jo1 *M<fo)2«i<)<iP(s) 

Proof 

If we omit the exponential term in (2.2), then Gtt(*) and H„(-) have the same distribution. 
To study Qn, we shall first show that Qn,z0 converges weakly in D[0,1], We will then show 
that the densities of Xo converge. This proves strong convergence for the densities of A'o 
via Scheffe's theorem [2]. This will prove a weak convergence result for the distribution of 
Qn(-) on D[0,1], via a result of Sethuraman [3] stated below. 

Lemma 2.2 

Let An be a sequence of probability measures on V x W where V and W are topological 
spaces. Let ßn be the marginal distribution of An on V and vn(v, •) be the conditional p. 
m. of A„ on W. Suppose that ßn(A) —> ß(A) VA C V and i/n(u,-) —> v(v,-), weakly for 
almost all v (w. r. t /i). Then, An —* A weakly where 

A(Ax B) = I v(v,B)dß(v) 

for each measurable rectangle A X B 6 V X W. 

We shall apply this theorem where W = D[0, l], V = 9?, fin is the distribution of Ar
0, and 

^n(lO,') = C(Qn(-)\X0 = X0). 

We will now show the weak convergence of £(Qn(-)|Xo = xo) by considering it's Radon- 

Nikodym derivative with respect to Pn and using the fact that Pn—>P. We shall denote 

a function x(-) in £)[0,l] by x from now on.   Let ' ° (x) denote the Radon-Nikodym 

derivative of Qn,x0 with respect to Pn{-) at x for x in £)[0,1]. For x in £>[0,1] let 

n 

fcn(x) = exp(-n_1 2j(a;(i/n) + x0)
2) 

t=i 

and Ä:(x) = exp(—  /   (x(t) + x0)
2dt). 

Jo 

Then 

dP, 
^(x) = kn{x)l f       kn(y)dPn(y). 
n JD[Q,1] 



Let / be a bounded continuous function from D[0,1] to 5£. Then 

/       f(x)dQnfX0 =  I       f(x)kn(x)dPn/ I       kn{x)dPn. (2.4) 
JD[O,I) JD[O,I] '  JD[O,I) 

The weak convergence of Qn,x0 will be proved by showing that 

/ f{x)kn(x)dPn{x) -►   f        f(x)k(x)dP{x) and 
JD[O,I) JD[O,I) 

I kn(x)dPn{x)^   I        k(x)dP(x). 
JD[O,I] JD[O,I) 

(2.5) 

This will prove that Qn,x0—*Qx0 and that 

dQ 
dP 

(x) = k(x)/ I        k(y)dP(y). 
JD[O,I] 

Lemma 2.3 will help us to verify this. 

Lemma 2.3 

Let / : 9? —+ -ft be continuous and xn —► x £ -D[0, l]. Then, 

n-'Y^Kx^i/n))^   f  f(x(t))dt. 

Proof 

Without loss of generality, we can assume that f(x) = x since the map x —► f(x) induced 
on D[0,1] by / is a continuous map from D[0, l] —► D[0, l]. Hence, it suffices to show that 

n_1 ^xn{i/n) ->  /   x(t) dt. 

Let us define 
(i\ _ / xn(i/n)    if (i - l)/n <t <i/n 

Vn[t)- \xn(0)       iff =0. 

n ,1 

Then, n-1 V^ xn{i/n) —   I   yn(t)dt.   Since xn —> 2: in £>[0, l],there exist An which are 

strictly increasing, continuous and surjective mappings of [0,1] —> [0,1]) such that 

xn(^n(t)) —» »(<) uniformly in < 
(2.6) 

and An(£) —> < uniformly in t. 



Let 5 G [0,1] be a continuity point of x(-). The following argument shows that yn{s) —♦ 
x(s). 

Theie exists tn such that (tn - l)/n < s < in/n. Let 5; = A-^z'n/n). Then yn(s) = 

Xn(^nS*n). Hence 

\yn(s) - x(s)\ < \xn(\ns*n) - s«)| + \x(s*n) - x(s)\ 

<   sup   \xn(\nt)-x(t)\ + \x(s*n)-x(s)\. (2-7) 
«€[0,1] 

Now 5* —> s and since 5 is a continuity point of x(-), |x(.s*) — x(s)\ —* 0 as n —► 00. The 
first term in (2.7) converges to 0 by (2.6). Hence yn(s) —► x(s), as asserted. Since the 
number of discontinuity points of x(-) is countable, yn(s) —* x(s) a- s- (Lebesgue). By the 
Dominated Convergence Theorem, and because xn and hence yn are uniformly bounded, 

/   yn(t)dt ->   /   x(t)dt. 
Jo Jo 

This proves Lemma 2.3.      □ 

Hence it follows that 

n""1 ]T x2
n(i/n) ->   /   z2(t.)di and 

y° (2.8) 

n~l ^>   xn(i/n) —►   /   x{t)dt. 
Jo 

Thusexp(-n-1 £"=i(x(?7n) + z0)
2) -* exp(-/^(^(t) + a:0)

2cfr) By (2.8) since exp(-t) is 
a bounded continuous function on [0,oo], /cn(xn) —+ k(x) and f(xn)kn(xn) —> f(x)k(x) as 
in —► x in D[0,1]. Also note that kn(x) and fc(a;) are bounded. 

Then by using Theorem 5.5 of Billingsley [1] it follows that both terms in (2.5) converge 
as stated. 

Thus Qn,x0—
,(?i. as n —> 00 and 

^=exp(- [\x(t) + xo)2dt)([        exp(-  f (x(t) + x0)
2dt)dP(x)) "' 

dr Jo VD[O,I] Jo / (2.9) 

= u(x0,x). 

Now. we will show that the distribution of Xo converges strongly by using Scheffe's theorem 
[2]. 
Define 

fn(xo) = exp(-x2
0/n) / exp(-n_1 Y](x(i/n) + x0)

2)dPn(x). 
JD[0,1] X=x 

Then, the density of A'0  is given by /n(^o)/   /      fn(xo)dxo.    By (2.5) we know that 
J—00 

fv(xo) -> /(io) as n -+ 00 where 

f(x0)=   I exp(- /   (x(t) + xo)2dt)dP(x). (2.10) 
*/D[0,l] Jo 



In order to sucessfully apply Scheffe's theorem, we need to check that J^ fn(xo)dxo 
Jstf(xo)dxQ. 

By Fubini's Theorem and elementary algebra we know that 

/ fn(x0)dx0 =  I exp(-x2
0/n) [       exp^"1 ]T(z(i/n) + x0)

2)dPn{x)dx0 

=  /        expr-n-^^^/^+dKn + l^-^xCz/n))2) 
MM        

v ,=l »=1 J 

r n 

x  I exp(-n/(n + l)(x0 - [n(n + l)]"1 ^z^/n))2)^ dPn(x) 
J# ■    i=i 

-> v^7 /        exp(-  /   x2{t)dt+{(   x{t)dt)2)dP(x). 
JD[O,I]        ^    JO JO ' 

This limit is equal to J^ f(xo)dxo, because 

/ f(xQ)dx0 =  /   /        exp(- / (x(i) + x0)
2dt)dP(x)dx0 

J& M JD[O,I] JO (0 

= y/Z [        expf-  /  x2(t)dt + ( /  x(t)dt)2)dP(x). 
JD[O,I]       \   Jo Jo J 

Thus the distribution of Xo converges strongly to a distribution with density function given 
by 

dp(x0) = f(x0)/ f f(x0)dx0. (2.12) 

Hence, by Lemma 2.2 it follows that Qn converges weakly to a distribution Q on D[0, l] 
with density given by 

dQ{x) = ( / u(x1x0)dß{x0)yP(x). (2.13) 

The integral in (2.13) can be further simplified by using (2.10) and (2.11). 

f u/    ,      Uexpj- J0\x(t) + xo)2dt)dx0 

JSR J^f{x0)dx0 

exp(-ti(x(t)-f>x(u)duydt) 

/D[O,I] 
e*P(~ JoWO - Jo x(u)du)*dt)dP(x)" 

This completes the proof of Theorem 2.1     D 

The following corollary is a mixed limit theorem for Xn(t). This shows that mixed limit 
theorems exist for the stable case and the limits are Gibbs distributions. 



Corollary 2.1 

Xn(t) converges weakly in D[Ü,1] to the process G(-) which has distribution Q. 

Proof 

Since A'n(t) = n-1/Q + 1/2A'o + Gn(t), 0 < o: < 2, and the distributions of X0 converge 
strongly as n -+ oo it follows from Slutsky's Theorem that the distributions of Xn(-) 
converges weakly in JD[0, l] to Q(-)-    □ 

Remark. The next problem that has to be addressed is that of explicitly evaluating the 
integral fD,Q ^ exp(—/0 (x(t) — J0 x(u)du)2dt)dP(x). This will be necessary in order to 

simulate observations from the limiting distribution Q. 
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