
AD-A238 221/I1

Estimating and modeling gene flow for a spatially distributed species

JUL1 7 1961T. Burr 1

and

T. V. Kurien 2

Department of Statistics
Florida State University

VI T UfAo1SdI
iJust If iat Io

January 19911
FSU Technical Report Number M 837 PDI,';tri but ion/

U.S. Army Technical Report Number D 116
AFOSR Technical Report Number 91-255 A/rollaisllty Codeu

Dist Spea imal

/

Key Words: Migration rates, eigenvalues, allele, Stepping-Stone model, Island model, Gaussian ', "
model.
.1. Research supported by Florida State University
2 Research supported by USARO Grant No. DAAL03-90-G-0103 and by AFOSR Grant No. 91-0048.

A
1 .Appzcrve' ior public toloco;

*i * Distribution Unlirnitod

91-05201!/ll/llll/~l/ltll//l/l9I1 1 , n



Estimating and modeling gene flow for a spatially distributed species.

By

T. Burr and T. V. Kurien

Departmeii Of Statistics

Florida State University

Abstract

This paper models the genetic behavior of a large population of individuali

which is divided into colonies. We are studying the relative frequency of an allele

A1 at a specific locus and over all the colonies. The effects of various migration

natterns across colonies on these relative freqencies are studied. We set down a

joint distribution for the relative frequencies of Al at the colonies. This joint dis-

tribution is Gaussian and allows us to estimate parameters that describe the extent

of genetic exchange across colonies. These parameters are called migration rates.

The Gaussian models fits well to observed data and is very easy to simulate. The

model can be extended without much difficulty to describe various mating patterns

across colonies.

1 Introduction

Population geneticists have many models to study the effect of geographical subdi-

vision on the evolution of a species.

Consider a large population of individuals of a particular species which is to some

extent subdivided into colonies. Complete subdivision means that each colony is

isolated. At the other extreme is no subdivision. This means that all adults in the

entire population are equally likely to mate with all other adults of the opposite sex



in the population. It is believed that many species follow mating patterns some-

where between these two extremes. To set the stage for the mathematical models,

the necessary genetical terms are collected here. Most organisms are diploid, having

chromosome.- in pairs, one inherited from each parent's gamete (sperm or egg) cell.

The qsnotype of a diploid individual is the specification of all of its chromosome

pairs. It is sometimes sufficient to model a diploid species as if it were haploid.

Haploid individuals have only one of each type of chromosome. We think of a chro-

mosome as a long string of symbols from 'ie four-letter DNA alphabet representing

the four different nucleotides of DNA. At a certain place on a chromosome (referred

to as a locus) is a meaningful string of several hundred symbols called a gene. Typ-

ically there are many loci on a chromosome. The possible messages that could be

written are called tile aliies of that locus. Though the characteristics of an

individual depend in a complicated way on all loci, it is informative to study a single

locus. If this locus is a string of 200 letters there are 4200 alleles. At the present

time it is common to detect alleles by electrophoresis which typically is able to de-

tect only a few alleles from the essentially infinite number of possible alleles at the

DNA level. If only two alleles can be distinguished at a locus, say Al and A2, then

the three possible genotypes for that particular locus are A1A2, AlAl, and A2A2.

which are referred to as heterozygote, homozygote, and homozygote, respectively.

Natural selection is in effect if the different genotypes have different probabilities ot

contributing to the gene pool in the next generation. If, for example, heterozygotes

have a larger probability of surviving to adulthood and contributing to the gene

pool oi the next generation, then heterozygotes are said to have a greater fitness.

An allele that is not affected by selection is called neutral. If an allele is altered by

a copying error or environmental stimulus, the resulting allele is called a mutant.

The present work considers loci with two neutral alleles. Note that if there are more

than t.o alleles at the locus under study, then the alleles could be grouped into two



Two simple models that represent extremes in migration habits are the Island

Model and the Stepping-Stone Model. (Wright, 1931 and IKimura, 1953) In the

Island Model all colonies are equally likely to exchia~iic migrants with all other

colonies. In the Stepping-Stone Model each colony exchanges migrants with only

nearest neighbzring e; 1.ce two extremes will be considered here and

in the context of the Gaussian Model will be referred to as the full-neighbor and

4-neighbor models.

Kimura (1953) proposed a migration pattern where migration is from nearby

colonies. This is called the Stepping-Stone model. In the two-dimensional Stepping-

Stone model each colony is located at a grid point in an n by n lattice. Identify

the location of a colony by i where i E {(0, 0), (0. 1), ... (n - 1, n - 1)}. The version

studied here is the following: Each colony maintains a constant population size A",

with 2 alleles at each locus. Since there is a finite number of colonies, a joint non-

trivial stationary distribution of the relative allele frequency of Al in each colon),

is possible only if there is reversible mutation or migration from a constant outside

source.

Assume here that there is an outside source, say a mainland population with

constant Al allele relative frequency PM-. Denote the relative frequency of allele Al

in the colony at i by pi. To specify a particular migration pattern, assume that the

colony at i replaces a fraction, m, of its population with immigrants from the four
neighbors. {(i 1 -1; i2 ), (i1 +li 2 ),(ii/ 2 -1), (/ii 2 +I)} and also replaces a small

fraction, nl, of its population with immigrants from a large mainland population.

Here, addition is modulo n to avoid edge effects. For example, the four neighbors

of (n- 1,n- 1) are {(n -2,;- - 1),(0,n- 1),(n - Ln-2),(n - 1,0)}. Assume

that all individuals produce many gametes (sperm or egg cells) and the stochastic

component of how one generation leads to the next is due to the binomial sampling

involved in reducing each population to size N.

Attempts to obtain the steady-state distribution of the relative frequency of al-

3



lele Al in a single colony have not been successful. However. a Beta distribution ap-

pears to give a good approximation in simulation studies (Maruyama, 1977). Weiss

and Kimura (1965) obtained an expression for the stationary correlation between

pi and pj without attempting to approximate the joint stationary distribution.

A rather different approach is to approximate the jrint steady state distribution

of {pi: i E (i1..7') : 0 i 1, 0 < i-, < n - 1}.

There has been no published attempt to 71,proximate this joint distribution;

however, in the full-neighbor case, as n --+ oc, one could use standard diffusion

theory to arrive at an approximating staio6nary distribution. (See, for example,

Mathematical Population Genetics.) The approximating stationary distribution

would in that case be greatly simplified since one could take the pi to be independent

beta random variables, with parameters determined by the number of migrants

exchanged per generation and the mean allele relative frequency.

To see that the Stepping-Stone model gives rise to a Markov Random Field,

write pi for the relative frequency of allele Al in colony i. Then the conditional

distribution of pi given the relative frequency of Al in all the colonies is the same as

the conditional distribution given the rcative frequency of Al in only the neighbors

of i. Since 0 < pi < 1. it will be necessary to transform the {pi} in order to use the

Gaussian model. However. for some values of the parameters, the Gaussian model

should fit the raw data. Under the Gaussian model, to be given in section 2, the

conditional distribution of Xi given the relative frequencies of Al in its neighbors

will be Gaussian. Empirically, it appears that a transformation will be necessary

except if i is near .5 and the number of migrants exchanged is fairly large, say 2

or more. The choice of transformation was made by considering that the marginal

distributions do appear to be approximately beta. Typical transforms from a beta

distribu; ion to approximate normality include the logit and probit transforms, which

are log(p/(l - p)) and qI'(p). respectivel, where (1, is the standard normal cumu-

lative distrubtion function. For some values of the parameters, these transforms
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might be improved by first raising p to some power. Therefore, the Gaussian Model

has been fit to z = log(p/(1 - p)),

= log(p'/(1 - p')), x = D- (p), and to x -1 -(p'). Good values for A seem to

be 1.5 to 2.

2 The Gaussian Model

Notation

Let:

= {(il,i 2 ): 0 < il _ n - ,0 2 < - 1} be an n by n array.

No be a neighborhood of 0. For example, one could take No to be

{(0, 1), (1,0), (0, -1), (-1, 0)}. This is the usual 4-neighbor lattice.

i + i = (il E jl, i 2 G j2) where 8 is addition modulo n.

Points in L' are 2 component vectors generically denoted by i,j, k, and 1. Let 1

denote the vector (1, 1) E L'.

Assume that the joint stationary density of Xi is the multivariate normal (MVN)

density:

f(x) = I-4112 (2-) - , 2 " exp{ (X - P1)T(xT- ). (2_.1)
2

Note that the mean of x is yI and the covariance matrix of x is A - '.
To capture the nearest-neighbor migration patterns, rewrite f(x) as:

f(x) = IAI2'2 (2,) - r,/2 exp{-1/2 E E c(O 1/d,j)(zi - xi+j)2 
- 02/2 Z_ (Z -)2)_

IEL jEN0  iEL2,

(2.2)

Here. c(0 1/d.j) determines the amount of migration among neighbors. Large

values of 61 correspond to large migration rates between neighbors. Large values of
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02 correspond to large migration rates from the constant outside source, or to large

mutation rates. The index j allows for the migration rate to depend on direction,

and d is the number of neighbors. Assuming d is known, one goal will be to estimate

01 and 02.

From (1.1) and (1.2) it can be shown that:

-oo = Aii = 02 + 2 1 c(0 1/d,j)
I EN0

Ai~i+j = -(c(Oi/d,j) + c(O 1/d,j)) ifj E N 0  (2.3)

Ai,i+ j = 0 ifj No.

The eigenvalues of A are:

n= 02 + 2 E c(9 1 /d,j)(1 - cos(2- < j, k > /n)). (2.4)
jEN0

Although A' depends on n we shall write \n as Ak from now on for notational

convenience. Also, let A be the diagonal matrix with diagonal entries \k.



3 The Stepping-Stone model

For the Stepping-Stone model we shall assume isotropic migration, by

putting c(61/4,j) = c( 9
1/4,-j) = 01/4. The Stepping-Stone model accounts or

local mLgration by taking N0 = {(0, 1), (1,0), (0,-1).(-1,0)}.

Then (2.3) and (2.4) simplify to:

A0 ,o = 4i~i=02+2i

Ai,i+j = -01/2 Vi E L' ifj E No (3.1)

Ai,i+j = 0ifj No

Ak = 02 + 01((1 - cos(2,, ki/n) + (1 - cos(2r, k2/n)). (3.2)

The model accounts for long distance migration (Island model) if we take

No = L' - (0. 0), which is the full-neighbor version. Then (2.3) and (2.4) simplify

to:

Ao,o = .4,i = 92 + ISI/(n2 -1)

-i,i+j = -20 1 /(n 2 - 1) ViE L2 ifj EL2 -(0,0) (3.3)

Ak - 2 78i/( l -1) ifk e L-(0.0)

Ao,0 = 62. (3.4)

In order to generate data from the density (2.2), first generate n 2 independent

standard normal random variables, say Z -- N(0.,I), where I is the n2 by 77' identity

matrix. To obtain X - N(0,.4 - ), use the fact that if Y - N(0; 2) then CY

N(0., CECT) for C an appropriately dimensioned matrix of constants. Now use the



spectral decomposition of the covariance matrix A 1 in the usual way to find C such

that CCT = 4 - ' - This gives the following prescription for generating the data. The

observation at the location 1 = (11,12) is generated by:

-2 Z k cos(2(<lj >+ < k~j >)/r) (3.

kEL2 jEL2 \jA1

This means that an observation from the steady-state distribution of an n bh

n array requires simply the generation of n2 standard normal random variables.

and performing the indicated sunmation. This is much faster than simulating

the migration and reproduction (random sampling of gametes) pattern for many

(approximately I00) generations until stationarity is reached.

One of the main results of previous work with the stepping stone model is how

the cova-riance between po and Pl depends on the dimension of the habitat (linear,

in the plane, or in three dimensions), the migration pattern, and the migration rate.

Maruv ama, Kimura and lVeiss all used recursion equations to model the vay that

th - -u cha:.g- each g-.r and sol'.'zd for the stationary- covar;-

ance, cov(p0,pl). An attractive feature of the Gaussian model is that cov(X0.X 1)

is easier to compute than it is when working with the recursion equations. From

(3.5) it can be shown that:

coy(Xo,Xi) =-4 - Z cos(2,(< j k > + < s.k + I >)/n) (3.6)

kcEL, j,SEL2

It is known that migration rates among partially isolated colonies need not

be very large to prevent genetic diversity. However, if migration tends to be from

nearest-neighbo ring colonies rather than the entire population, then there is greater

potential for genetic diversity (Crow and Aoki, 19S2). The Gaussian model has this

same feature. One way to see this is to solve for the variance of the eauilibrium

distribution of the relative frequency of allele Al in any of the identical colonies.

Let Al. be given by equation 2.4. Then it follows from the spectral representation



of the variance-covariance matrix that the variance of the relative frequency of Al

. in each colony is:

var(X) = n2- i 1/Ak. (3.7)
ke Ln

This provides an easy proof that var(X) is less in the full-neighbor modcl than

in the 4-neighbor model, which is intuitively expected. To see this, first note that

A,0,o = 02 in both the full-neighbor and the 4-neighbor models. Next, it can be

shown that all remaining eigenvalues are the same in the full-neighbor case, but are

not all the same in the 4-neighbor case. Also, the sum of the eigenvalues can be

shown to be the same iii both cases. Then, since the harmonic mean of a collection of

unequal numbers is necessarily less than the arithmetic mean of that same collection

of numbers, the result follows.

4 Estimation

The three parameters can be estimated by maximum likelihood using the density

in (2.1). The following is specifically for the 4-neighbor model but could easily be

modified for any neighborhood structure.

The MLE P of u is the sample mean Y.

Let Wk = 1 - cos(2r ki/n) + 1 - cos(2,r k2 /n), and let d = 4. Note that

A' = 8 2 + OiWk (see 3.2).

The likelihood equations for 01 and 02 are:

n2 2 4Wk - 2 -2 (X - '+J) 2  (4.1)
k eL 02 + Ol'k IeL2jEN0

2 _ 1- = -2 E (X, Y)2  (4.2)
k L L 2 + 81Wk le 2
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Theorem 1.

The RHS of (1.1) is equal in distribution to n-2 EkEL2 4wkAl X2. The RHS of

(1.2) is equal in distribution to n- Ek#(o,o) AkXI-

Proof

The RHS of (1.1) is a quadratic form, so it can be expressed as XTBX, where

Bo,o = Bj 4
Boj = Bi,I+j =O forj iNo

1 fori E No.

Let the covariance matrix of X be E, and let the matri: with the eigenvectors

of,. be denoted pT. Let Y = PTBl/2 X. Then yTy = XTBX, Y is a vector of

independent, mean 0 normal random variables, and Y'k has variance 4wk/Ak. The

result follows by observing that a X2 random variable can be generated by squaring

a standard normal random variable.

To'find the distribution of the RHS of (1.2), let Y = PTX so that yTy = XTX,
0- 2 8 l 2(@nU)+[k00.1"Thn

and Y , N(pTI1, A-'). Therefore, k#0, x hen,

EIEL2 (Xd 2 -L 1? The result follows by- R(i- = n =i = = IL iLY1-=
n nn

observing that Yo,o = n'. C

Now let a, and a 2 be defined by:

a, = lim'." n-2 EkEL2 4wlk/Ak

f f ' 4(2 - cos(2, x) - cos(2-,y))/(92 + 01(2 - cos(2=rx) - cos(27ry))) dxdy < oc
t2

a 2 = lim, .n-2 "kEL2 1/Ak

f f(02 + 801(2 - cos(2,-x) - cos(27ry))) -1 dxdy <oo.

By a version of the CLT, the RHS of 1.1 is AN(ai, a,), where a' 0. Similarly,

the RHS of 1.2 is AN with mean a2 and a variance that goes to zero as n - o.

The asymptotic distribution of the MLE's of 91 and 02 has been established by

first noting that the likelihood can be written in terms of independent random vari.

ables by using I' - PTX., where pr is the matrix of eigenvectors of the covariance
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matrix of X. As in the proof of theorem 1, this follows because Y N(PT , A- 1 ),

making Y a vector of n2 independent normal random variables with different vari-

ances, one with mean ny, and all others with mean 0. The likelihood is then

H-keLn fk(xk, 9). where fk(xk, 9) = (\k/(2-,))1/ 2exp(-Akx4/2) for all k except k -

(0, 0), since Y0,0 has nonzero mean, with density (02/(2.))'/'exp(- 2 (Xo, -nu)/2).

The likelihood equations for Y are the same as those for X. The asymptotic

normality of 8 = (j, E) now follows from theorem 2(iv) of Bradley and Gart (1962).

Specifically, let c1 , c2 , and c3 be defined by:

2cj. = limn-. n 2 FkEL W2 /A

= fo' f0(2 - cos(2zx) - cos(2-y))2 /(92 + 01(2 - cos(2-rx) - cos(27ry))) 2 dxdy

2c 2 = lim,o n-2 EkEL2 wk/A?\

= f0' f0(2 - cos(2,x) - cos(2%, y))/(92 + G,(2 - cos(2-x) - cos(2,, y)))2 dx dy

2C3  =lim,,- n-' F-kEL \ A 2

= fo' ffo(92 + 01(2 - cos(2-,x) - cos(2iy))-dxdy.

It follows that cl, c2.and c3 are finite.

Theorem 2.

In particular, n(O" - 0) -4 N(0, c 3 (cc 3 - c2) - ) and

n-(0 2 - 02) -* N(O, c1(c1c -

Theorem 2 (iv) of Bradley and Gart is appropriate when the number of pop-

-ulations sampled increases as the sample size increases. The proof will consist of
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verifying the conditions of their theorem. In order to conform more with their no-

tation., the boldface vector notation will not be used while verifying the conditions.

Since the dzita is a single observaton from each site in an n by n array, the sample

cize is n 2 instead of the usual n. Assume Llat one sample is taken from each densiT,

fi(z,, 0). The joint likelihood is then -Ij 1 fi(xi, 0). In general, it is not necessary

that each fi depend on both 61 and 02, but in the present case each fi does depend

on both 01 and 0:.

Let ' = (06102), Q = (0, ~o) x (0, oo). The conditions to verify are:

1(a). For almost all i E R and for all 0 E Q, aiogf/ae, alogf/a02, a2
1og /a,

&~log /0; &logfi/l0a 2 a3 ogfi/a9 a9, 31ogf;/0 1 &96 exist for i = ,

1(b). For all f;, for almost all zx, and for every 0 E Q,
lafi/ap, < Fj(x;), j&aa21 < Fj(.), jlafle~ < F,, (x;). jla./ae' l< F,.2(X),

Ia8.,JaaaO21 < Fi12(Xi), lalogfi/aea1 < H,112(Z), ja3log./D 1 o9a62j < H-.2 2 (r),

w,,hcre jr,(i,) and FS,,(x) are integrable over R and f Hrst(z,)fi d < M,,

with the M finite positive constants, for i = I,.... - 1. andr.s. t = (1, 2).

2(a). For the sequence of density functions {fi}, r JD, f dzi = o(i),

where Dj {= jogfi/o,]j > na} and Z " I fD,, (8iogfQaO,) fj dxj = o(n),

whcre D. = {!alogf,/aOrj < n2 } for r = 1.2.

2(b). For the sequence of density functions {f,}, " , dz -

w.here D3 i = {!aiogf,/aasol > n2}, _,21 fD,, ialog.f,/a3 a f, dz, = o(n 4 ).

,,here D,4 = {IDa-ogf;/aeraos, < n2}, and

1imn,2_ n-2 E,21 fa [ciogf/a0,aojffdzj = J,,(O) exists, and that J,,(O) be posi-

tive definite with finite determinant for r. s = 1, 2.
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2(c). Referrig to Hir and Mi in 1(b). E 'D fj dzj = o(1), where D,5j

{Hi:,t > n2} and n-' i i < Mil with M a finite positive constant.

3(a). For every e > 0, limn_- n 2 g fD7, E,=, (alogf/aT)' fj d = 0, ,,here
D7, = {;Z=1 (alogf/a6) 2 >

Verification o' the conditions will now be given.

Recall that for i # (0, 0), fi(x,, ) =

and _-, = 2 - cos(2-,i/n) - cos(2i*2 /n). The i = (0, 0) observation has non-zero

mean and should be treated separately since the derivatives needed will ie slightly

different. It is easily verified that the (0,0) observation poses no difficulhy, so for

brevity, will not be treated here.

1(a). Clearly these derivatives exist, and are recorded here for later use.
alogf/86, = (j)/2)(1/A,- x), alogfi/aO2 = (1/2)(/A, - x),

aqlogf e0 _= .,._ ,,/(2A 2 log)/,i - -1/(2A ), &2logf,/Dao ae. = -L/(2A),
a"1o9' /aO'a62 = L,,/ A, nlogfi/ao, 802 = iA

1(b). afi/e02  (A7 '2 - A,/)exp(-Aix3/2)/(2(2-)1/*

Since 0 < wi _< 4., and 02 _A :5 < + 401,
lalo .f,1,302l < (6-12A6)/1)ep _AX2/

jaof/6I~ 612 6,H 61 ')ip ~ /2)/(2(2-,)1 ') Fj 2 (xj). wich is

integrable over _.

Since af,/&O, = wfO.f/aO2, let Fj 1 (z) = 4F, 2 (z;), which is integrable over R.

Next,

a2 T2),\ ))exp(-- T2) /(2 (2, )1/
' . - , + ' - '1( ' ( -+ 4 0)'1 ')e p ( -Ax /2 )/(2(2 ,) /2)

2'~a~ 2 6'+ 1/ + X4(62 6 6
Fill
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Since afi/fa'o = ,,:2a 2fi1/o, let Fi1l = 4Fi22 and clearly both Fill and Fi22 are

integrable over R.

Similarly,

= ~w~ - 3/2+2 \1/ 2 ±(AT'1/2 -a2 -. ; /a a2A )x',,2)exp(- Aix- /2)/(2(2,,)'12)

Ia fa/aaa21& < (0-3/2 + 0-1
/

2 + (-1/2 + (02 + 40,)1/ 2 )x?/2)exp(-,\ix2/2)/(2 -, )1/2

FXl2 .

And Fj, 2 is integrable over R.

Next,
a3logfi/aoa02 - ja3logf/a 09 2 2I =- W / A1 < 25/03 = !-/;-

a3logf/,a0 ==j 3logf,/,q6a 2~ / < 5/03

The condition fr Hi,.tfjdzi < Mi is satisfied for all i for r, s, t = 1 2 with '-N1

25/0'22

2(a). alogfi/a 2 = (1/Aj - x?)/2 , so _ P;(D2i) = 0, where Pj(D2 ;) is the

measure associated with the random variable z. To see this, note that Allx "i-

N(0, 1), so z. ) . Therefore, P-(Ix- 1/,An > 2n2 ) n - 11 > 2(z 2 ),:) <

1/(2An 4) < 1/(202n 4). for all i, by Chebyshev's inequality.

This means that f.- 'D 2i fjdxj < n2(02 + 40, ) 2 /((2-,)/-20'7 4 ) which is o(1).

For the second part of 2(a), note that (8fj/a 2)' = (x! - 29x/A + I/A2)/4, so

fD2 , (afj/8 2 )2 fidz < (3/0 + 2 + 1/9 )/4 = b, for all i, so the condition holds,

since n2 b is o(774).

Since a1ogfi/&ao = a1 ogfi/&02, these same conditions can be verified for

alogfi/ao0 in the same way.

2(b). For r:=1 and s =2, D 3; = {ta 2logf/aoaO2 > n 2 , and ja2 og.fi/a01 a 2 l =
4..i/(2A?) < 2/02, so lim,-. P;(D 3i) = 0 . Therefore, for n > 2/02, all terms in the

sum are zero, so the sum is zero.

14



By inspection of 321og.fi/a9' and (921ogf/ , simila." results follnow for each of

these.

Since a 2log.fi/8oS, a12logf/a02, and a&log./&6alO8O2 are all bounded, the condi-

tion, Ei_ fD4 , ( 02gfi/&Or&s) 2 .fjdxj = o(n 4), is easily verified.

Also, a21ogfi/aO2, a92log.f,/ae2, and 821og.f/a 1 a&2 are all constants and

lim _- Pj(D 4i) = 1, so the limit:

lim_o Z, fD4 , - ja 2logf/9&;a., I fdzj = I,, exists for r, s = 1, 2. The three

elements of I were identified earlier as ci, c2 , and c3. with 2c= lim,_on -2  i i z/A,

2C2 = li'_ nv2  22 ' 2C3 = lin - I /~

The matrix I must be positive definite, so it is necessary that cIc 3 > c'. This

follows from the Caucy-Schwarz inequality. Also, the determinant of I is finite, since

cl, c2 , and c3 are all finite.

2(c). It has been shown that it suffices to take Hjrst = 25/03 for rs,t 1,2,

so for n > 25/03, P(D5 j) = 0. Therefore, the conditions involving integrals over

D5 i and D6 . hold. Also, it follows that Hi,,t < M = 2/6 , so that n-2 .=2  . is
bounded by 25/03. which is finite.

3(a). This condition may be verified using the same approach as in 2(a), so will

not be repeated here. C

5 Goodness of Fit

A Gaussian model has been proposed to explain the stationary distribution of the

relative frequency of allele Al in the Stepping-Stone model. The simplifications

achieved justify its use, provided that it adequately describes the data and makes

predictions that can be tested.

Two predictions of the Gaussian model that can be tested on real data are
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the behavior of co(Xo., XI) and the behavior of var(A) , where N is the sample

average. Equation 3.6 gives the covariance between X 0 and X 1 and it can be shown

that var(X, - 1/(O8). These two predictions have been compared to several sets

of data simulated from the Stepping-Stone model described in section 1. For the

simulated data. it does appear that var(Xt) 1 I/(n 2 02). In the Gaus4-,-n Model.

equation 3.6 implies that cov(Xo, Xi) decreases with separation between 0 and I at

a faster rate for small 01. The same is true for simulated data from the Stepping-

Stone model.

Also. any test of multivariate normality can be applied to the simulated data.

The Handbook of Statistics, Volume 1 has a few tests and reference to others. These

tests have been applied on the marginal distributions from 200 observations of a 4 by

4 array at steady state: probit plots, D'Agostino's D (1971), Shapiro and 7ilk's W

(1965), skewness, kurtosis, and the Box and Cox transform (Gnanadesikan, 1977).

Bivariate normality was checked using the Box and Cox transform. Multivari-

ate normality (the joint distributions of all 16 random variables) was checked using

multiva.riate tests of skewness, kurtosis (Mardia., 1970), Ialkovich and Afiffis (1973)

generalization of 1 a x'6 probability plot of the Mahalanobis distances, and the

associated Kolmogorov-Smirnoff (KS) test. Although the probability plot looked

nearly linear, the uniform random variable associated with the KS test was .947.

(Large values indicate lack of fit.) The Box and Cox transform was used on the raw

data, say pi, for i= 1.2.... 16, and on pi/(1 - pi). With the raw data, it was best

not to transform and with pi/(l - pi), the log transform was best. Regarding the

marginals. 3 of the 16 skewness tests rejected and 5 of the 16 kurtosis tests rejected.

Because pA was taken to be .5. skewness is not expected but nonnormal kurtosis is

a possibility. However, with 200 observations it would be surprising if none of the

tests rejected the Gaussian assumption since it is an approximation to the unknown

distribution. When .,,f was taken to be .7, log(pi/(l - pi)) has a skewness of about
.4 and a kurtosis of about 3.4. This can be improved by using log(p\/(i - pt)
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with A = 1.5 or 2. A better transform appears to be q-'(pi) or -(p ) w,'here

A = 1.5 or 2. With p,4 = .7 and using 5-(p.), 200 observations from a 5 by 5 ar-

ray appeared to be approximately MVN. Multivariate skewness and kurtosis were

both within acceptable range, the X22s plot of Mahalanobis distances looked very

good, and the uniform random variable associated with the Kolmogorov-Smirnoff

test was .0717. Only one of the 25 marginal tests of skewness and one of the 25

marginal tests of kurtosis were rejected at the .05 level. All of the above tests were

with m, + m > 1 to make the number of occurrences of pi = 1 small. An observation

of pi = 1 was changed to (N - .5)/N where A' is the number per colony. Hereafter,

it is assumed that rn1 + m > 1.

Assuming that the Gaussian Model adequately describes the data, it is of inter-

est to estimate 01 and 02 from simulated data and make predictions about the effect

of changing from the 4-neighbor to the full-neighbor models. Using the -(p!.S)

transform, with 7z = 10, m, = .1, and m = 1.0, 1.5, 2.0, 2.5, 3.0, 01 and 02

were estimated by maximum likelihood using a grid search to find good start-

ing values, followed by the Newton-Raphson technique. The estimated values

were used to predict the variance of the marginals for the full-neighbor model.

Using 01/99 versus 01/4, for m = 1.0, 1.5, 2.0, 2.5, 3.0, the predicted val-

ues for the variance were .99. .73, .57, .47, and .41, respectively. As expected.,

these predictions are lower than those observed in the 4-neighbor case, which were

1.39, 1.06, .85, .71, and .63, respectively. A second simulation with the same

values of m but using the full-neighbor migration pattern produced variances of

1.0, .73, .57, .45, and .39 for the 5 values of m. These are in good agreement with

what had been predicted.
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6 Summary

A Gaussian model has been fit to data simulated from the Stepping-Stone Model

used in population genetics. Standard tests of multivariate normality on the trans-

formed data suggest that the fit is acceptable, with the transform - '(p) or <I(p 5 )

performing well. In addition, implications of the model do appear to hold for the

transformed data.

The parameters of the Gaussian have been estimated by maximum likelihood,

and the asymptotic distribution of the maximum likelihood estimators has been

established.

The previous result by Kimura and Weiss for cov(Xo, XI) has been derived (for

the transformed data) without recourse to recurrence equations. A comparison oi

the Stepping-Stone neighborhood structure with the other extreme neighborhood

structure, the Island model, has been made in terms of var(Xi). A more complete

comparison using the total variation distance between the two joint di.;tributions is

possible.

Finaly, the Gaussian model promises to have other applications. For example,

the residuals from a regression model with spatial autocorrelation could be assumed

to follow the Gaussian model. The parameter 01 provides a natural alternative in

the hypothesis testing that is sometimes used in that context.
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