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Estimating and modeling gene flow for a spatially distributed species.

By
T. Burr and T. V. Kurien
Departmeni Of Statistics

Florida State University
Abstract

This paper models the genctic behavior of a large population of individual:
which is divided into colonies. We are studying the relative frequency of an allele
Al at a specific locus and over all the colonies. The effects of various migration
patterns across colonies on these relative fregencies are studied. We set down a
joint distribution for the relative frequencies of Al at the colonies. This joint dis-
tribution is Gaussian and allows us to estimate parameters that describe the extent
of genetic exchange across colonies. These parameters are called migration rates.
The Gaussian models fits well to observed data and is very easy to simulate. The
model can be extended without much difficulty to describe various mating patterns

across colonies.

1 Introduction

Population geneticists have many models to study the effect of geographical subdi-
vision on the evolution of a species.

Consider a large population of individuals of a particular species which is to some
extent subdivided into colonies. Complete subdivision means that each colony is
isoiated. At the other extreme is no subdivision. This means that all adults in the

entire population are equally likely to mate with all other adults of the opposite sex




in the population. It ic believed that many species follow mating patterns some-
where between these two extremes. To set the stage for the mathematical models,
the necessary genetical terms are collected here. Most organisms are diploid, having
chromosome: in pairs, one inherited from each parent’s gamete (sperm or egg) cell.
The genotype of a diploid individual is the specification of all of its chromosome
pairs. It is sometimes sufficient to model a diploid species as if it were haploid.
Heploid individuals have only one of each type of chromosome. We think of a chro-
mosome as a long string of symbols from e four-letter DNA alphabet representing
the four different nucleotides of DNA. At a certain place on a chromosome (referred
to as a locus) is a .meaningful string of several hundred symbols called a gene. Typ-
ically there are many loci on a chromosome. The possible messages that could be
written are called tue alizles of that locus. Though the characteristics of an

individual depend in a complicated way on all loci, it is informative to study a single
locus. If this locus is a string of 200 letters there are 42® alleles. At the present
time 1t 1s common to detect alleles by electrophoresis which typically is able to de-
tect only a few alleles from the essentially infinite number of possible alleles at the
DXNA level. If only two alleles can be distinguished at a locus, say Al and A2, then
the three possible genotypes for that particular locus are A1A2, A1A1, and A2A2,
which are referred to as heterozygote, homozygote, and homozygote, respectively.
Neatural selection 1s in effect if the different genotypes have different probabilities of
contributing to the gene pool in the next generation. If, for example, heterozygotes
have a larger probability of surviving to adulthood and contributing to the gene
pool o1 the next generation, then heterozygotes are said to have a greater fitness.
An allele that is not affected by selection is called neutral. If an allele is altered by
& copying error or environmental stimulus, the resulting allele is called a mutant.
The present work considers loci with two neutral alleles. Note that if there are more

than two alleles at the locus under study, then the alleles could be grouped into two
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Two simple models that represent extremes in migration habits are the Island
Model and the Stepping-Stone Model. (Wright, 1931 and Kimura, 1953) In the
Island Model all colonies are equally likely to exchange migrants with all other
colonies. In the Stepping-Stone Model each colony exchanges migrants with oniy
iuc nearest neighbering colciaes. Tiese two extremes will be considered here and
in the context of the Gaussian Model will be referred to as the full-neighbor and

4-neighbor models.

Kimura (1953) proposed a migration pattern where migration is from nearby
colonies. This is called the Stepping-Stone model. In the two-dimensional Stepping-
Stone model each colony is located at a grid point in an n by n lattice. Identify
the location of a colony by i where i € {(0,0),(0,1),...(n—1,n—1)}. The version
studied here is the following: Each colony maintains a constznt population size N,
with 2 alleles at each locus. Since there is a finite number of colonies, a joint non-
trivial stationary distribution of the relative allele frequency of Al in each cclony
is possible only if there is reversible mutation or migration from 2 constant outside
source.

Assume here that there is an outside source, say a mainland population with
constant Al allele reiative frequency pa. Denote the relative frequency of allele Al
in the colony at 1 by p;. To specify a particular migration pattern, assume that the
colony at i replaces a fraction, m, of its population with immigrants from the four
neighbors. {(7, — 1,2),(#; + 1,72), (41,72 — 1), (71,72 + 1)} and also replaces a small
fraction, my, of its population with immigrants from a large mainland population.
Here, addition is modulo n to avoid edge effects. For example, the four neighbors
of (n—1,n—1)are {(n —2,7n-1),(0,n~-1),(n—-1,n—2),(n—1,0)}. Assume
that all individuals produce many gametes (sperm or egg cells) and the stochastic
component of how one generation leads to the next is due to the binomial sampling
involved in reducing each population to size N

Attempts to obtain the steady-state distribution of the relative frequency of al-




lele A1 in a single colony have not been successful. However. a Beta distribution ap-
pears to give a2 good approximation in simulation studies (Maruyama, 1977). Weiss
and Kimura (1965) obtained an expression for the stationary correlation between
p; and pj without attempting to approximate the joint stationary distribution.

A rather different approach is to approximate the joint steady state distribution
of {pj:1€(11,12):0<;, <n—-1,0<7, <n-—-1}.

There has been no published attempt to 7y proximate this joint distribution;
however, in the full-neighbor case, as n — oo, one could use standard diffusion
theory to arrive at an approximating statlonary distribution. (See, for example,
Mathematical Population Genetics.) The approximating stationary distribution
would in that case be greatly simplified since one could take the p; to be independent
beta random variables, with parameters determined by the number of migrants
exchanged per generation and the mean allele relative frequency.

To see that the Stepping-Stone model gives rise to a Markov Random Field,
write p; for the relative frequency of allele Al in colony i. Then the conditional
distribution of p; given the relative frequency of Al in all the colonies is the same as
the conditional distribution given the rclative frequency of Al in only the neighbors
of i. Since 0 < p; < 1. it will be necessary to transform the {p;} in order to use the
Gaussian model. However, for some values of the parameters, the Gaussian model
should fit the raw data. Under the Gaussian model, to be given in section 2, the
conditional distribution of X given the relative frequencies of Al in its neighbors
will be Gaussian. Empirically, it appears that a transformation will be necessary
except if 4 is near .5 and the number of migrants exchanged is fairly large, say 2
or more. The choice of transformation was made by considering that the marginal
distributions do appear to be approximately beta. Typical transforms from a beta
distribution to approximate normality include the logit and probit transforms, which
are log(p/(1 — p)) and @7 '(p), respectively, where @ is the standard normal cumu-

lative distrubtion function. For some values of the parameters, these transforms
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might be improved by first raising p to some power. Therefore, the Gaussian Model
has been fit to z = log(p/(1 - p)) ,

= =log(p*/(1 — p*)), = = ®~1(p), and to z = ®~(p*). Good values for X seem to
be 1.5 to 2.

2 The Gaussian Model

Notation

Let:

L2 = {(i1,12): 0< 41 <n—1,0<4 <n—1} be an n by n array.

Np be a neighborhood of 0. For example, one could take Ng to be
{(0,1),(1,0),(0,-1),(—1,0)}. This is the usual 4-neighbor lattice.

14+ = (i1 41,72 & j2) where @ is addition modulo n.

Points in L? are 2 component vectors generically denoted by i,j,k,and l. Let 1
denote the vector (1,1) € L2.

Assume that the joint statior.ary density of Xj is the multivariate normal (MVN)

.
aensity:

(X—ul)T;(x—ul)}. (2.1)

Xlote that the mean of x is 11 and the covariance matrix of x is 4~2.

F(x) = |AP? (27) " P exp{~

To capture the nearest-neighbor migration patterns, rewrite f(x) as:

fx) = LA (27) " Pexp{=1/2 3 37 e(6:/d,3)(mi — ia3)* = 62/2 3 (mi— 1)?).

ieL? jeNy iel?
(2.2)

Here, ¢(6,/d,j) determines the amount of migration among neighbors. Large

[3%]

values of 8 correspond to large migration rates between neighbors. Large values of




g, correspond to large migration rates from the constant outside source, or to large
mutation rates. The index j allows for the migration rate to depend on direction,
and d is the number of neighbors. Assuming d 1s known, one goal will be to estimate
6, and 4,.

From (1.1) and (1.2) it can be shown that:

Ao = Ai=06+25 c(6:/d,})

jE]\"O
Aiivj = —(c(6:1/d,j) +c(6:/4d,3)) if j € No (2.3)
Ajiyy = 01f] g Ng.
The eigenvalues of A are:
R=0,+2 Z c(6,/d,3)(1 — cos(27 < 3,k > /n)). (2.4)

jeNg
Although ALl depends on n we shall write AL, as Ay from now on for notationel

convenience. Also, let A be the diagonal matrix with diagonal entries Ay.




3 The Stepping-Stone model

For the Stepping-Stone model we shall assume isotropic migration, by
putting ¢(6:/4,j) = ¢(6:1/4,—)) = 61/4. The Stepping-Stone model accounts for
local migration by taking No = {(0,1),(1,0),(0,-1),(—1,0)}.

Thexn (2.3) and (2.4) simplify to:

Aoo = Ajj=0,+ 26,
Ajjny = —6,/2 Vie L? ifje Ny (3.1)
Ajjry = 0 j g N

Ak = 6, + 6,((1 = cos(27ky /n) + (1 — cos(27ky/n)). (3.2)

i

The model accounts for long distance migration (Island model) if we take

No = L? —(6,0), which is the full-neighbor version. Then (2.3) and (2.4) simplify

10:

Ago = Aji=02+ 891/(712 -1)
Ajizy = —291/(7’12 -1 Vie Li ifje Li —(0,0) (3.3)

Ak = G +2n%6 /(" —1)ifk e L2 —(0,0)
Aoo = b (3.4)

In order to generate data from the density (2.2), first generate n? independent
standard normal random variables, say Z ~ N(0,]), where I is the n? by n? identity
matrix. To obtain X ~ N(0,471), use the fact that if Y ~ N(0,T) then CY ~

N(0,CZCT) for C an appropriately dimensioned matrix of constants. Now use the
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spectral decomposition of the covariance matrix A™! in the usual way to find C such
that CCT = A~'. This gives the following prescription for generating the czata. The

observation at the location 1 = (I;,12) is generated by:

cos(27(< LLj >+ < k,j>)/n)

Xi=p=n"?3 Zx > _
kel2  jelL} \/)‘5

,\
(@)
(@]

S

This means that an observation from the steady-state distribution of an n by
n array requires simply the generation of n? standard normal random variables,
and performing the indicated summation. This is much faster than simulating
the migration and reproduction (random sampling of gametes) pattern for many
{approximately 100) generations until stationarity is reached.

One of the main results of previous work with the stepping stone model is how
the covariance between pp and p; depends on the dimension of the habitat (linear,
in the plane, or in three dimensions), the migration pattern, and the migration rate.
Maruyama, Kimura and Weiss all used recursion equations to model the way that
thr~relorive fooguencies chai gz each go et ation and solvzd for the stationary covari-
ance, cov{po, p1). An attractive feature of the Gaussian model is that cov{Xg. X))
1s easler to compute than it is when working with the recursion equations. From
(3.3} it can be shown that:

2= °. .o k4
cov(Xo, X)) =nt T SO cos(27(< j. k> + <s, k+1 >)/n).

L

kel? j.sel? VA

It is known that migration rates among partially isolated colonies need not

(3.6)

be very large to prevent genetic diversity. However, if migration tends to be from
nearest-neighboring colonies rather than the entire population, then there is greater
potential for genetic diversity (Crow and Aoki, 1982). The Gaussian model has this
same feature. One way to see this is to solve for the variance of the equilibrium
distribution of the relative frequency of allele Al in any of the identical colonies.

Let Ay be given by equation 2.4. Then it follows from the spectral representation

n



of thie variance-covariance matrix that the variance of the relative frequency of Al

..-in each colony is:

var(X) = n™% > 1/A (3.7)
keL?

This provides an easy proof that var(X) is less in the full-neighbor modcl than
in the 4-neighbor model, which is intuitively expected. To see this, first note that
Moo = 02 in both the full-neighbor and the 4-neighbor models. Next, it can be
shown that all remaining eigenvalues are the same in the full-neighbor case, but are
not all the same in the 4-neighbor case. Also, the sum of the eigenvalues can be
shown to be the same i1 both cases. Then, since the harmonic mean of a collection of

unequal numbers is necessarily less than the arithmetic mean of that same collection
of numbers, the result follows. '

4 Estimation

The three parameters can be estimated by maximum likelihood using the density
in (2.1). The following is specifically for the 4-neighbor model but could easily be
modified for any neighborhood structure.

The MLE 7 of u is the sample mean 7.

Let wy = 1 — cos(27ky/n) + 1 — cos(2wky/n), and let d = 4. Note that
Ak = 0 + Giwyi (see 3.2).

The likelihood equations for 6, and 6, are:

D > 2 (m—zy)? (4.1)

kery B2+ Brwk ieL3 JeNg
1
n? Yy = = n-? E (z; - T)? (4.2)
xerz 02 + fiwy ieL?



Theorem 1.
The RHS of (1.1) is equal in distribution to n™? Tkerz 4wkAg 3. The RHS of
(1.2) is equal in distribution to n™? Ty (00) M X3 :

Proof
The RHS of (1.1) is a quadratic form, so it can be expressed as XTBX, where
Boo = B;y =4
Boj = Bii+y =0forj¢&No
= 1{or j € Np.

Let the covariance matrix of X be I, and let the matri-: with the eigenvectors
of .S be denoted P7. Let Y = PTBY2X. Then YTY = XTBX, Y is a vector of
independent, mean 0 normal random variables, and Y, has variance 4wy /Ax. The
result follows by observing that a x? random variable can be generated by squaring

a standard normal random variable.

To find the distribution of the RHS of (1.2), let ¥ = PTX so that Y7V = XTX,

and Y ~ N(PTp, A-1). Therefore, Tx400 z? < 051 x*(62n2 1)+ Txz0,0 A x*. Then,

n=2 zieLﬁ(zi ~Z)2 =n"? zieL% g} - 7? 4 -2 ZieLg y? — T2, The result follows by
observing that yoo = nZ. O
Now let a; and a; be defined by:
a; = limp.eon™? Tyerz 4wk /Ax

= Jfo [o 4(2 = cos(27z) — cos(27y)) /(62 + 61(2 — cos(27z) — cos(27y))) dzdy

a, limaoe n=2 EkGL?, 1/)\]{

= J§ [3(82+ 6:(2 — cos(27z) — cos(27y)))~t dzdy < oo.
By a version of the CLT, the RHS of 1.1is AN(ay,02), where ¢? — 0. Similarly,
the RHS of 1.2 is AN with mean a; and a variance that goes to zero as n — oo.
The asymptotic distribution of the MLE's of §, and 6, has been established by
first noting that the likelihood can be written in terms of independent random vari-

ables by using ¥ = P7X, where P7 is the matrix of eigenvectors of the covariance

10



matrix of X. As in the proof of theorem 1, this follows because ¥ ~ N(PTyu, A-?),
making Y a vector of n? independent normal random variables with different vari-
ances, one with mean nu, and all others with mean 0. The likelihood is then
Mierz fi(zx, 6). where fi(zx, 6) = (Ak/(27))%exp(—~Axzd /2) for all k except k =
(0,0), since Yo has nonzero mean, with density (62/(27))/?exp(—62(z00 —np)?/2).
-~ The likelihood equations for Y are the same as those for X. The asymptotic
normality of § = (6;,8,) now follows from theorem 2(iv) of Bradley and Gart (1962).

Specifically, let ¢;, ¢, and c¢3 be defined by:
2¢;. = limpaeen™ Tierr Wi/ A}
= [3 [3(2 — cos(27z) — cos(27Y))? /(82 + 61(2 — cos(27z) — cos(27y)))? dzdy
20, = limpoeon™? Tierz Wi/
= J§ J3(2 = cos(27z) — cos(27y))/ (62 + 61(2 — cos(27z) — cos(27y)))? dz dy
25 = limnoon~? Skerz Mo -

= [} [3(62+ 6:(2 - cos(2mz) — cos(2my))*dady .
It follows that ¢, ¢;. and c¢3 are finite.

Theorem 2.

n(f - 8) < N(0,1-), where I= < G )
€2 €3

In particular, n(6; — 6:) A N(0,c3(c1cs — ¢2)7?) and
n(8z - 82) 5 N(0, e1(crcs — ¢2)7).

‘Theoren 2 (iv) of Bradley and Gart is appropriate when the number of pop-

~ulations sampled increases as the sample size increases. The proof will consist of

i1



verifving the conditions of their theorem. In order to conform more with their no-
tation, the boldface vector notation will not be used while verifying the conditions.
Since the duta is a single observation from each site in an n by n array, the sample
cize is n? instead of the usual n. Assume that one sample is taken from each density
£(z;,6). The joint likelihood is then []%, fi(z;,0). In general, it is not necessary
that each f; depend on both 6, and 6,, but in the present case each {; does depend
on both #, and €,.

Let 7 = (6,,6,), Q= (0,00) x (0,00). The conditions to verify are:

1(a2). For almost all z; € R and for all § € Q, dlogf:/56,, Blog f;/88,, 8*log f;/ 86?2,
d*logfi /863, 8 log f; ] 86,868,, Blog fi/80286,, 8°log f;/ 96,082 exist for i = 1,...,n%

1(b). For &ll {;, for almost all z;, and for every 6 € Q,
|0f:/861] < Fal(z;), |6f:/08,| < Fia(zy), 107 £i/86%] < Faa(z:), [0%fi/963] < Fioa(s),
8° 1:]06,86,| < Fio(z;), |8%logfi /86388, < Hina(z:), |8%logfi)86,062] < Hiap(z:).
where Fy.(z;) and F;;,(z;) are integrable over ® and [ H,, (z)f; dz; < M;.

with the M; finite positive constants, for i = 1,...n* — 1, andr.s,¢ = (1,2).

2(a). For the sequence of density functions {{;}, }'_:fil fD] {; dz; = o(1),
where Dy; = {|0logf;/86,] > n?} and T, D, (Blogfi/36,)* 1, dz; = o(n*),
where Dy; = {18logf;/88,| < n*} for r = 1,2.

2(b). For the sequence of density functions {f;}, Zf‘il Ip, fidzi = o(1),
vhere Da; = {|8%logf;/86,06,| > n?}, Zf; D, |6%log f:/ 86,88, {; dz; = o(n*),
where Dy; = {|0%logf;/ 86,086, < n?}, and
liMp2 e n™2 T0) [ 187108 fi/ 86,86, i dz; = J..(6) exists, and that J,.(8) be posi-

tive Cefinite with finite determinant for r,s = 1, 2.




2(c). Referring to Hiy and M; in 1(b). T, /p,, fidzi = o(1), where Dy; =
{Hizo > n?} and n! Z?;‘l M. < M with M a finite positive constant.

3(a). For every € > 0, lim,_, n™? Z:il o, D (310gf,-/39,)2 f;dz; = 0, where
Dy = {2, (8logfi/86.)" > en*.}

Verification of the conditions will now be given.
Recall that for 7 # (0,0), fi(z;,8) = (A/27) ?exp(—Xiz? )y,
and w; = 2 — cos(27i;/n) — cos(2xiy/n). The 1 = (0,0) observation has non-zero
mean and should be treated separately since the derivatives needed will t.e slightly
different. It is easily verified that the (0,0) observation poses no difficulty, so for

brevity, will not be treated here.

1(a). Clearly these derivatives exist, and are recorded here for later use.
Ologf:/ 86, = (wi/2)(1/X; — 22), Blogfi/86, = (1/2)(1/\; — z?),
8%logf:/ 06 = —w?/(2)3), B%logfi/86% = —1/(2)%), B%ogf;/86,08, = —w;/(2)3),
Ologfi/86286, = /)3, 8%logf;/86,865 = w;/ N}

I

1(b). 8fi/802 = (AT — A/ MJexp(~Aiz?/2)/(2(27 1/?)
Since 0 < w; €4, andf; < A < 6, +46,,
|Blog fi/06,] < (6577 + (62 + 46,)/)exp(—=Mix?/2)/(2(27)/?) = Fia(a;), which is
integrable over R.

Since 8f;/86) = w;0f;/86,, let F;y(z;) = 4F;2(z;), which is integrable over R.

Next,
G108 = (7 AT L AT = A exp(—Aial/2)/(2(27)1 )
10°7:/063] < (657 + 677 + 22877 + (62 + 46,)1 ) )exp(=Mix?/2)/(2(27)?)

= Fill

13




Since 8%f;/06% = w?8% f;] 863, let Fi;y = 4F;2, and clearly both Fy;; and Fjy, are

integrable over R.

Similarly,
8°£:/06:06, = —wi(27AT 242702 1 (AT < AP)2? 2)exp(~ hix?/2) /(2
|6 £:/86,06, < (923/2 ; 9'“”+(9 Y24 (8, + 46,)112)22 [2)exp(—Aiz?/2) /(2=

Fil?

And F;, is integrable over R.

Next,
8logfi /063106, = |8Plogf; /00208, = w2 /)3 < 25/65 = Hi,
8Plogf; 06,063 = |0®logfi/063106,] = w;/ A} < 5/63 = Hiypa

The condition [y Hirs fidz; < M; is satisfied for all ¢ for r, s, = 1,2 with M; =
25/63.

2(a). Ologfi/06; = (1/Xi — 21)/2 , so im,—.co Pi(D3;) = 0, where P;(Dy;) is the
measure associated with the random wvariable z;. To see this, note that A}/Qz,- ~
N(0,1), so z? ~ XA;ix}. Therefore, Pi(Jz? — 1/Xi| > 2n?) = P(|x? — 1| > 2(n?))\;) <
1/(223n*) < 1/(262n), for all 7, by Chebyshev’s inequality.

This means that 35, Jp,, fidzi < n?(6; +46,)/?/((27)1/-263n*) |, which is o(1).

For the second part of 2(a), note that (8f:/88,)* = (z} — 227X + 1/22)/4, so
/D, (8£i/96,)" fidz; < (3/63 + 2+ 1/62)/4 = b, for all 7, so the condition holds,
since n?b is o(n?).

Since Ologfi/06, = w;0logf;/08,, these same conditions can be verified for
Olog f;/36; in the same way.

2(b). Forr=1 and s =2, D3; = {|8%logf;/86,88,| > n?}, and |6%logf;/86,08,| =

wi/(22F) < 2/63, s0 limn—oo Pi(D3;) = 0 . Therefore, for n > 2/62, all terms in the

SuImn are Zero, so the sum is zero.

14
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By inspection of 8%logf:/06] and 8%logfi/063, similex results follow for each of
these.

Since 0%logf;/66%, &*logf;/063, and §%logf;/ 06,06, aze all bounded, the condi-
tion, ©F, D.. (8%ogfi/06.06,) fidz; = o(n*), is easily verified.

Also, 8%logf;/ 063, d*logf; 063, and O%logfi/ 06,06, are all constants and
lim, e Pi(D4i) = 1, so the himit:

limn oo T2y Jp,, — |8%log /86,08, fidz; = 1. exists for r,s = 1,2. The three

- . . . . . _ 2
elements of I were identified earlier as ¢1, ¢z, and ¢3, with 2¢; = limp—eon™? L0, w?/ A2,

. n 2 » . _ 2
2¢) = liMpmon 2 T, wi/ A}, 203 = limp_een 20, 1/A2.

The matrix I must be positive definite, so it is necessary that ¢;c3 > c2. This
follows from the Caucy-Schwarz inequality. Also, the determinant of I is finite, since

c1, 2, and c3 are all finite.

2(c). It has been shown that it suffices to take Hiy = 25/63 for r,s,t = 1,2,
so for n > 25/63, P(Ds;) = 0. Therefore, the conditions involving integrals over
Ds; and Dg; hold. Also, it follows that H; e < M; = 25/63, so that n=2 Zfil M; is

bounded by 25/63, which is finite.

3(2). This condition may be verified using the same approach as in 2(a), so will

not be repeated here. 0

5 Goodness of Fit

A Gaussian model has been proposed to explain the stationary distribution of the
relative frequency of allele Al in the Stepping-Stone model. The simplifications
achieved justify its use, provided that it adequately describes the data and makes
predictions that can be tested.

Two predictions of the Gaussian model that can be tested on real data are
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the behavior of cov(Xp, X)) and the behavior of var(X) , where X is the sample
average. Equation 3.6 gives the covariance between X and X and it can be shown
that var(:X') =1/(n%6;). These two predictions have been compared to several sets
of data simulated from the Stepping-Stone model described in section 1. For the
simulated data. it does appear that var(X) =~ 1/(n%6,), In the Gaus~inn model,
equation 3.6 implies that cov(Xg, X]) decreases with separation between 0 and 1 at
a faster rate for small 6,. The same is true for simulated data from the Stepping-
Stone model.

Also. any test of multivariate normality can be applied to the simulated date.

The Handbook of Statistics, Volume 1 has a few tests and reference to others. These

tests have been applied on the marginal distributions from 200 observations of a 4 by
4 array at steady state: probit plots, D’Agostino’s D (1971), Shapiro and Wilk's W
(1965), skewness, kurtosis, and the Box and Cox transform (Gnanadesikan, 1577).
Bivariate normality was checked using the Box and Cox transform. Multivari-
ate normality (the joint distributions of all 16 random variables) was checked using
multivariate tests of skewness, kurtosis (Mardia, 1970), Malkovich and Affi’s (1973)
generalization of W, a x%; probebility plot of the Mahalanobis distances, and the
associated Kolmogorov-Smirnoff (KS) test. Although the probability plot looked
nearly linear, the uniform random variable associated with the IXS test was .G47.
(Large values indicate lack of fit.) The Box and Cox transform was used on the raw
data, say pj, for i= 1.2,...,16, and on p;/(1 — p;). With the raw data. it was best
not to transform and with p;/(1 — p;), the log transform was best. Regarding the
mearginals, 3 of the 16 skewness tests rejected and 5 of the 16 kurtosis tests rejected.
Because pas was taken to be .5, skewness is not expected but nonnormal kurtosis is
a possibility. However, with 200 observations it would be surprising if none of the
tests rejected the Gaussian assumption since it is an approximation to the unknown
distribution. When pas was taken to be .7, log(p;/(1 — p;)) has a skewness of about

-4 and a kurtosis of about 3.4. This can be improved by using log(p!/(1 — p?)
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with A = 1.5 or 2. A better transform appears to be ®~(p;) or &~¥(p) where
A = 1.5 or 2. With pas = .7 and using ®~*(p{*®), 200 observations from a 5 by 5 ar-
ray appeared to be approximately MVN. Multivariate skewness and kurtosis were
both within acceptable range, the x3, plot of Mahalanobis distances looked very
good, and the uniform random variable associated with the Kolmogorov-Smirnoff
test was .0717. Only one of the 25 marginal tests of skewness and one of the 25
marginal tests of kurtosis were rejected at the .05 level. All of the above tests were
with m;+m > 1 to make the number of occurrences of p; = 1 small. An observation
of p; = 1 was changed to (N — .5)/N where N is the number per colony. Hereafter,
it is assumed that m; + m > 1.

Assuming that the Gaussian Model adequately describes the data, it is of inter-
est to estimate 6, and 6, from simulated data and make predictions about the effect
of changing from the 4-neighbor to the full-neighbor models. Using the ¢~(p}*)
transform, with n = 10, m; = .1, and m = 1.0, 1.5, 2.0, 2.5, 3.0, 6; and 6,
were estimated by maximum likelihood using a grid search to find good start-
ing values, followed by the Newton-Raphson technique. The estimated values
were used to predict the variance of the marginals for the full-neighbor model.
Using 6,/99 versus 6,/4, for m = 1.0, 1.5, 2.0, 2.5, 3.0, the predicted val-
ues for the variance were .99, .73, .57, .47, and .41, respectively. As expecied,
these predictions are lower than those observed in the 4-neighbor case, which were
1.39, 1.06, .85, .71, and .63, respectively. A second simulation with the same

values of m but using the full-neighbor migration pattern produced variances of

1.0, .73, .57, .45, and .39 for the 5 values of m. These are in good agreement with

what had been predicted.




6 Summary

A Gaussian model has been fit to data simulated from the Stepping-Stone Model
used in population genetics. Standard tests of multivanate normality on the trans-
formed data suggest that the fit is acceptable, with the transform ¢-1(p) or = (p'*®)
performing well. In addition, implications of the model do appear to hold for the
transformed data.

The parameters of the Gaussian have been estimated by maximum likelihood,
and the asymptotic distribution of the maximum likelihood estimators has been
established.

The previous result by Kimura and Weiss for cov(Xg, X)) has been derived (for
the transformed data) without recourse to recurrence equations. A comparison of
the Stepping-Stone neighborhood structure with the other extreme neighborhood
structure, the Island model, has been made in terms of var(Xj). A more complete
comparison using the total variation distance between the two joint distributions is
possible.

Finally, the Gaussian model promises to have other applications. For example,
the residuals from a regression model with spatial autocorrelation could be assumed
to follow the Gaussian model. The parameter 8, provides a natural alternative in

the hypothesis testing that is sometimes used in that context.
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