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Abstract

In this paper we discuss a Gaussian random field that arises in pattern analysis. This random field exhibits
phase transitive behavior for a particular value of the temperature parameter. We analyze this kind of
non singular behavior and the effect that it has on the field random variables. The limiting specific heat
also exhibits a phase transition with a power law behavior.

Section 1. Introduction

One of the principal aims of statistical mechanics is to derive the thermodynamic behavior
of macroscopic bodies beginning from a description of their microscopic components. A
good deal of work has been done on modelling ferromagnetic and antiferromagnetic behav-
ior. A magnet can be considered to have a large number of magnetic domains, to each of
which a magnetic spin is associated that represents the direction of magnetization at that
domain. We usually assume that the spins take two values, 0 and 1. The physical models
usually postulate that these domains are sites (or vertices) in a graph.

An undirected graph G = (A, e) consists of a set of vertices, A and an edge set, e. The
elements of e are unordered pairs (z,y),z,y € A; when (z,y) € e we say that that there is
an edge of the graph between z and y, or that z and y are neighbors. We shall assume that
(z,z) € e, i.e. the graph has no loops. As an example, consider a 4 neighbor n X n lattice
graph in the plane. A vertex of this graph is an ordered pair (7,7),0 < 7,7 < n — 1, the
edge set is defined as follows; each point has four neighbors,where (1 —1,7),(1+1,7), (4,7 —
1),(#,j+1),71—1, ¢4+ 1 etc. are calculated modulo n. Thus (n,n) is identified with O,
and this graph is actually a torus. We shall be seeing this graph again in Section 3. of this
essay. In general, the way we define the graph neighborhood structure is dictated by our
knowledge of the influence of different sites on each other.

1



We have spins at every site in the graph, and a probability model is fully specified as soon
2s we put a joint distribution on these spins. These models are supposed to tell us which
configurations of spins are more likely than the others. Physical models usually assume
that the joirt distribution of the spins is a Markov random field. A Markov random field
is a probability distribution on the set of spins in the graph for which the conditional
distribution of spins on a set A, given all other spins in the graph equals the conditional
distribution of the spins on A, given the spins immediately bordering A. Markov random
felds are identical to the so called Gibbs distributioiis with nearest neighbor potentials,
provided that every A is given positive probability. Presently, we shall give a precise
Eieﬁnition of Gibbs distributions with nearest neighbor potentials. Preston [1] has a2 more
complete discussion of Markov random fields and Gibbs states.

A nearest neighbor Gibbs distribution is defined as follows:

Let G = (A, e) be the finite graph with vertex set A and edge set e. A set BC A iscalled a
simplex of G if for all z € B,y € B,z # y, there is an edge between z and y in the graph
G. Simplices are also sometimes referred to as cliques.

Let J be a real valued function defined on subsets of A such that J(8) = 0. The function
J(-) is celled a potential. Let A be a non-empty subset of A. Define the probability of A,

7(A) = Z Y exp > J(B) (1.1)
BCA
B a simplex of ¢

This is the probability that all sites in A have spin 1 and the rest have spin 0. We could
generalize this to let the spins assume arbitrary real (or complex) values. We shall consider
these kinds of distributions below. (see (1.2)).

Definition 1.1

Let
L ={(i1,.1a): 0S4 Sn—1,k =1,..d)}.

For .
1= (il,...,?:d) € Li al'ldj = (Jvla:":jd) € Li

let, i+j= ({1 ®j1,---,7¢ € Ja), where & is addition modulo n.
Note For the rest of this essay, 1, j, k, 1 will denote d dimensional vectors in L.

We shall consider graphs with vertex set L¢. The edge set will be defined as follows. First
specify a neighborhood Ng of 0, and then define a neighborhood of i € L¢ by i-+j, j € No.
These graphs are said to be isotropic, i.e. the neighborhood structure is the same for
all vertices. In fact, the example that we had introduced earlier was just a specizl case
with d = 2, and Ng = (0,1),(1,0),(0, -1),(—=1,0). Np is usually taken to be a symmetric
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neighborhood of 0. Let {X*.i € L%} be a collection of random variables on the lattice L¢
with joint distribution defined by

Za(T) P exp(—H(z)T™') x Miere Q(a1), (1.2)

where Q(:) is a density on R. Za(T) is called the partition function. The function H :

R — R is called the Hamiltonian. We can look at two different types of Hamiltonians,
ferromagnetic and antiferromagnetic. Ferromagnetic Hamiltonians increase as neighboring
spins become more alike, and antiferromagnetic Hamiltonians increase as neighboring spins
become less alike. For instance, if the Hamiltonian in (1.2) is given by

Hz)= > Y ez — =) (1.3)

ieLld jJ€No

then it is ferromagnetic if the cj’s are positive, and is antiferromagnetic if the c;’s are
negative.

Section 2. Summary of results.

e,

Our study is based on an unpublished manuscript of Grenander and Sethuraman [2]. They
defined a class of Gaussian Markov random fields on the lattice L2. These fields were
trigonometrically interpolated to [0, 1]¢ and the convergence of these processes were studied
in some simple cases. Grenander and Sethuraman [2] studied probability distributions like
those specified in (1.2) with Hamiltonians given by (1.3). The cj were allowed to depend
on n. However, we shall assume that the cj are fixed. Our fields are also Gaussian Markov
random fields. A parameter T is present which will play the role of temperature in one of
our models. We obtained the following results:
The variance of the field variables grows faster for T' >16, than for T = 16.
The limiting specific heat diverges as T — 16.
This divergence takes place at a rate proportional to (T'— 16)~! . This is called a
power law behavior at T = 16.

4. The sum of squares of the fleld random variables satis{y a different central limit law
for T' = 16 as compared to T > 16.

w 1o

Section 3. A Gaussian model.

We shall define a Gaussian model as shown below . Let Y (" be a collection of random
variables indexed by the lattice L2 with a joint p.d.f given by

ZieLg EjeNo ey — ¥ia3)? 1 2
5T ) Z 4

exp

/Za(T). (3.1)

“ielL2
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Ng = Mp U =My is a symmetric neighbourhood of 0. Here c; represent the interaction
between y; and yj.+j, are independent of n and reflect the isotropic structure of the graph.
T is the usual temperature parameter that we saw in (1.2).

This joint density can be put in the form

(n) (n)
exp( E___‘él__) /Zn(T)

where A i1s of the form

Aji =Agp=1-2T7"1 Z c; Vie L2
JEN,
A3 =0 j& Ny (3.2)

SFC5 g5 e N Vi e L2,

Aijry = Aoj =~

A is a circulant matrix, and has eigen-vectors
(e = (exp(i27 <k,j> /n),j € L2),k € L3,
The eigen values of A, Ay are given by

Ak = E Ao jexp(i27 < k,j> /n)

JeLg
Z Agjexp(i27 < k,j> /n)
JEND
(3.3)
= Agpo +2 Z (¢5 + c—j)cos(27 < k,j> /n)
Jt-Mo
=1-27"1 Z (c; + c3)[1 — cos(27 < k,j/n >)] (by (3.2)).
JEMo

The eigenvalues and eigenvectors depend on n, which for reasons of clarity has not been
included in the notation.

We will now specialize this model to the four neighbor lattice graph that we had defined
in Section 1., that is, we will assume that Mo = {(1,0),(0,1)}, we will also assume that
all the c;=1, and that n is odd. Since the c; are positive, the model is antiferromagnetic.

Now by (3.3), the eigen values of A4 are given by

27k 27k
L) 4+ 1 — cos( 2

A =1-—

- (3-4)

[1 — cos(

'\Hllb
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Since .4 is the inverse of the variance-covariance matrix cf the ¥ 's, we have that

n n — 1
Var(¥{™) = Var(¥{M) =n=2 3 —. . (33)
kerz 7K

Notice that the Y’s have a legitimate p.d.f if T' > 16 since all the eigen values of A4 are
positive, by (3.4). The two theorems below will study the ‘rate of growth of the variance’
of the ¥'’s. ' :

Theorem 3.1

Suppose that T' > 16, then, for each i€ L2,
Var(Yi(n)) — / (1 — 4771 = cos(27z) + 1 — cos(27y))) " *dzdy asn — co.  (3.6)
[0,1)2

Proof. By (3.5),

1 -
(1~ &[1 —cos(27k1/n) + 1 — cos(27kz /n)]’ (3.7)

Var(%{™) =72 3
keL?

The rest is trivial. O

Remark When T = 16 the integral in (3.6) diverges. However, with a different normal-
isation, the variance of the normalised ¥’s converges to a finite constant, as studied in
Theorem 3.2 below.

Theorem 3.2
Let T' = 16, then

Var((\/logn)‘ll’;(”)) — 4/7 as n — oo.

Proof. By (3.5), we can write )

Vo =Var((/log n)—ll’i("))
— (e T 1 59)

N 1+ cos(27ky/n) + 1+ cos(27ks /n).

Let 0 <e<1landlet 0 <6< 1/2 be such that
2722%(1 ~€) < 1 — cos(2rz) < 27°22(1 +€) f 0 <| z |< 6. (3.9)

-
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Let Iy = ky—(n—=1)/2, 2 = ka—(n—1)/2, and a(ly, l2) = [1 —cos(2x]) /n)+1—~cos(27y /n))].
Then V,, can be written as

r 1

V, = 4(n®logn)™" E — - }

n g L syai B mtyr2m [1 —cos(2xly/n) + 1 — cos(27ly /n))
—(n=-1)/2&12<(n~1)/2~-1 -

2 - 1
= 4(n*logn)™? Z ORD

”11!22)';-;501. (310)
1
+ 4(n*logn)™!
o o<mzl<n6 a(ll, 12)
0<izj<né

= Va1 + Va2 , respectively.

1

Now observe that a(l;,12) > (1 — cos(276)) in the region {| 1 |> néor |12 |2 n6} Hence,
Va1 < 4(log n) 1(1 = cos(276))™* = o(1) as n — oo. :

Then by (3.9) we have that
972(1 — €)(12 + 12) < n?a(ly, ) < 272(1 + &)(2 + 12), (3.11)

if Illl < TI5, “21 < né.

By (8.11), .
4(7%(1 4+ €)logn)™? IRy
SRRV E)
o<liz]<ns
SVap (3.12)
1
S 4(7;’2(1 = E) log h)—l Z TN
o<iiyl<né 11 U 12)
0<iizl<ns

From Lemma 3.1 (below) and (3.12), it follows that V, 2 — 4/7 as n — co. Hence, by

3.10) we know that .Vn converges to 4/x as n — oo. This completes the proof of the
g b
theorem. O

Lemma 3.1

Let K, = (log n)“’1 E (12——'—1_2-)- Then, K, — 2% as n — oo.
o<liyjen V1 P02
o< lizi<n

(@2}



Proof. This lemma is proved by finding an upper and lower bound to K ,. Using the
inequality,

1 1 1
< < 3.1
=1+ -1 22 +y? T (1 +1) $25),
for (I} —1,lp = 1) < (z,y) < (h,12), it {ollows that K, is bounded above by
 dzdy
logn)™? / A
(togn) 1<zl lyl<n &2 + ¥
< (logn)™ / =l
1<z2+y?<an? T° T Y (3.14)

27 n\/'2_ d d
= (logn)™? / / rr d (by a polar transformation)
o J1
= 27(1 — (logn) (1 — log v2)) = 2% + o(1).

To obtain a lower bound, define D, = {1 <z <norl<y<nand(z,y)#(1,1)}. Then
by using (3.13) a lower bound on K, is obtained as follows

K, =4(logn)~ - E (2 +22)

0(11 <n
0<lg<n

—~1 !
=4(log n) > (h—1)24+(2—1)?

2<11<n+t1
2<ia<n+1

=4(10g n)—l( Z (Zl _ 1)2 _1’_(12 _ 1)2 { O(l))

<Zl<n-—-l
2<l<n+1 (3.15)

(i, 12) # (?—,'2)

>4(logn)‘1(/ x(j:fyg 0o(1))

>4(logn)™* (/ diiyz +0(1)

1<z24y2<n? T2+ Y

X
o
=1



This completes the proof of Lemma 3.1. O

We shall now study the behavior of the specific heat, which is defined by G.(T) =
2 e 7

Tac?z_z (Tlo"z Zn). We shall show that G.(T) — G(T") where G(T') is called the limiting
' n

spemﬁc heat. The limiting specific heat G(T') is proportional to (T — 16)~! near T = 16.

This is called a power law behavior at T' = 16 in the statistical mechanics literature.

Now note that A is the inverse of the variance covariance matrix of Y's, and the determinant
of A= is the product of the eigenvalues of 471, These eigen values are the reciproczls
of the eigen values of A, since A is square symmetric. Hence the partition function Z,, is
given by

n?
Zn = (27)F x Myerz (M) ™2

For T > 16,

210

log Zn = 2870 _ 271 3™ log(Au)
keL2

n?log 2= -1 2] 1
= = 27°n oy kCZL? log(Ax)

(3.16)

We shall now calculate the specific heat,

6‘2 Tlog Z,
CalT) = 3T2 < n? )

By (3.16) we have

——‘?(n.QT)"l <« (1 — cos(27ky /n) + 1 — cos(27k2 /n))) .
([1 — &[1 = cos(27k;y /n) + 1 — cos(27ks /1))



Differentiating again,we have

T*(Tlog Z,)
01?

Gn(T) =

~2 [1 —cos(27ky /n) + 1 — cos(27ks /n))]
=

keL?2 %{1 - 005(2 kl /n) +1- COS(..:- ]ug/n)]

2 T‘ [1 —cos(2nky /n) + 1 — cos(27ks /n))
T2n? 1— &[1 —cos(2wky /n) + 1 — cos(27ka/n)]

T Tz 2
kEI.2

8 T [1 —cos(27ky/n) + 1 — cos(27ky /n)}?

" T3n? e [1— %[1 —cos(27ky/n) + 1 — cos(27ky /n)]?

The first two terms in the above expression will cancel out and leave us with

([1 — cos(2xky /n) + 1 — cos(27ks /n)])?

Gn (T) Tz 2 keZL’ — #[1 —cos(27k1 /n) + 1 — cos(27wkz/n)])? .

This will converge to

[1 — cos(27z) + 1 — cos(27y)J _
G = T2 / ./ (1 —-4T —1{1 — cos(2wz) + 1 — cos(27y)]}? dz dy asn — co.  (3.17)

This integral is divergent at 7' = 16 and in fact, G(T)ex (7' —16)7! for T > 16 as T — 16.

Thus the specific heat for this model diverges.

Section 4.

In this section, we shall study the behavior of the sum of squares of the random variables
}’}(") . We shall show that this sum of squares obeys a different central limit theorem when
T = 16, as compared to T' > 16. The reason for this result, is due to the asymptotic
behavior of the eigen values Ay being different at T = 16.

Define
Qn = Z (Yk(n) )'2'

kEL?
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Then, Qn.—? E Vi/ Mk, where Vi are i. i. d. random variables with a ' ? distribution.
KeL2

Theorem 4.1

If T > 16, then X
Qn = 2xéLz Mx

/3 Ckers AR

2,N(0,1) as n — oo.

Proof. We shall check that Liapounov’s conditions [4] for asymptotic normality hold.

Let K, = Var(Qn), thea (Qn — B(Qn))/VE-2N(0,1) as n — 0 i K72 > E(Vi -
. KeL2

1)4/)\1‘( — 0 as n — oo. Since V. are i. d., E(V; — 1)* is a constant independent of k. The

terms K, and Z E(Vy — 1)‘1 /A\i are both O(n?). Hence Liapounov’s condition holds.

" keL? .
This proves the theorem O

We shell now study the behavior of @, when T = 16. Theorem 4.2 is a central limit
theorem for @, when T = 16.

Theorem 4.2

If T =16, then

(@n — BE(Qx)) /nz—&B as n — oo where B has an m.g.f. given by

(o=}

»(t) = exp (—2"‘1 Z (7 )

e —
i — )=

~

Proof. We shall calculate the m.g.f of (@, — E(Q,))/n*® and show that this m.g.f. con-
verges to the m.g.f. of B. This is sufficient to prove convergence in distribution of

(Qn — E(Qn))/112 to B.

Let ¥,(t) be the m.g.f. of @, — E(Q-)/n?. Then,

exp(—cg? 2xerz At
[T (1 = 2tk /n2)2/2

10
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Ya(t) =




Taking logarithms in the above,

log(¥a(t)) = =02 Y At =271 > log(1 — 2t/ Men?)

keL? keL?

AN (¢.1)
—omt 3 B (o2 5 0)

j=2 J kelz

By Lemma 4.1 the term

n=2 Z A = (@R - 1) as n — oo
kelLz

Hence, by equation (4.1) and the above,

q 16t/=2)
nbn(t)—*ekp( 4= Z(J(J/_l))>

This completes the proof of the theorem. O

Lemma 3.2 Let T = 16 and let j > 2 be an integer. Then

n=2 Z A = (@R ~ 1) as n — oo,
keL2

Proof. The proof of this lemma is substantially the same as the proof of Theorem 3.1 and
so we will only sketch the proof. Since T' = 16,

-25 =i gl =2 1
e Z A =8 n E (1 —cos(2wly/n) + 1 — cos(27l2/n))i " (2)

kel2 0<1yl<n/2
0<lal<n/2

Let 6 be as in the proof of Theorem 3.1. Then the right hand side of (4 2) is approximately

equal to
I (9=2)"J
87 (27%) E CE I°)J

0<lyl<n
0<jiz2|<n

= 89(2ny7 | —
1<r2+y2<2n262 ("52 - y2 )J

=< 87(2=2) % /(5 = 1).

11



This completes the proof of the lemma. O

Remark. The limit in distribution of Q, is different for T = 16 as compared to T > 16,
and the normalization constant for Qn at T = 16 1s n? instead of n wwhen T > 16. This

suggests that the field random variables Yk(n) vary much more for T = 16 than for T > 16.

However the critical behavior is at the endpoint of definition of the model and so it is
our opinion that this does not seriously restrict the application of the Gaussian model in
pattern analysis.

o)
o
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