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Abstract 

In this paper we discuss a Gaussian random field that arises in pattern analysis. This random field exhibits 

phase transitive behavior for a particular value of the temperature parameter. We analyze this kind of 

non singular behavior and the effect that it has on the field random variables. The limiting specific heat 

also exhibits a phase transition with a power law behavior. 

Section 1. Introduction 

One of the principal aims of statistical mechanics is to derive the thermodynamic behavior 
of macroscopic bodies beginning from a description of their microscopic components. A 
good deal of work has been done on modelling ferromagnetic and antiferromagnetic behav- 
ior. A magnet can be considered to have a large number of magnetic domains, to each of 
which a magnetic spin is associated that represents the direction of magnetization at that 
domain. We usually assume that the spins take two values, 0 and 1. The physical models 
usually postulate that these domains are sites (or vertices) in a graph. 

An undirected graph Q = (A, e) consists of a set of vertices, A and an edge set, e. The 
elements of e are unordered pairs (x,y),x,y £ A; when (x,y) G e we say that that there is 
an edge of the graph between a; and y, or that x and y are neighbors. We shall assume that 
(x, x) ^ e, i.e. the graph has no loops. As an example, consider a 4 neighbor nx n lattice 
graph in the plane. A vertex of this graph is an ordered pair (i,j),0 < i.j < n — 1, the 
edge set is defined as follows; each point has four neighbors,where (i — l,j), (i 4-1, j), (t\ j — 
1)> (hj + 1) , t — 1, » + 1 etc. are calculated modulo n. Thus (n.n) is identified with 0, 
and this graph is actuall}r a torus. We shall be seeing this graph again in Section 3. of this 
essay. In general, the way we define the graph neighborhood structure is dictated by our 
knowledge of the influence of different sites on each other. 



We have spins at every site in the graph, and a probability model is fully specified as soon 
as we put a joint distribution on these spins. These models are supposed to tell us which 
configurations of spins are more likely than the others. Physical models usually assume 
that the joint distribution of the spins is a Markov random field. A Markov random field 
is a probability distribution on the set of spins in the graph for which the conditional 
distribution of spins on a set A, given all other spins in the graph equals the conditional 
distribution of the spins on A, given the spins immediately bordering A. Markov random 
fields are identical to the so called Gibbs distributions with nearest neighbor potentials, 
provided that every A is given positive probability. Presently, we shall give a precise 
definition of Gibbs distributions with nearest neighbor potentials. Preston [1] has a more 
complete discussion of Markov random fields and Gibbs states. 

A nearest neighbor Gibbs distribution is defined as follows: 
Let Q = (A, e) be the finite graph with vertex set A and edge set e. A set BC A is called a 
simplex of Q if for all x € B^y G5,a: ^ y, there is an edge between x and y in the graph 
Q, Simplices are also sometimes referred to as cliques. 

Let J be a real valued function defined on subsets of A such that J(0) = 0. The function 
J(-) is celled a potential. Let A be a non-empty subset of A. Define the probability of A, 

( 
\ 

it{A) = Z~x exp E      J(£) 
BCA 

(l.i) 

\ B a simplex of c J 

This is the probability that all sites in A have spin 1 and the rest have spin 0. We could 
generalize this to let the spins assume arbitrary real (or complex) values. We shall consider 
these kinds of distributions below, (see (1.2)). 

Definition 1.1 

Let 

For 

Ld
n = {{iu ...,id) : 0'< ik < n - 1, k = 1, ...d)} . 

i = (ii,...,*rf) € Ld
n and j = Uu-Jd) € Ld

n 

let, i -f j = (i\ ©ii, —yid © j<0> where 0 is addition modulo n. 
Note For the rest of this essay, i, j, k, 1 will denote d dimensional vectors in Ld

n. 

We shall consider graphs with vertex set L£. The edge set will be defined as follows. First 
specify a neighborhood Ar

0 of 0, and then define a neighborhood of i E L£ by i+j, j 6 7\r0. 
These graphs are said to be isotropic, i.e. the neighborhood structure is the same for 
all vertices. In fact, the example that we had introduced earlier was just a special case 
with d = 2, and N0 = (0,1), (1, 0), (0, -1),(-1,0). N0 is usually taken to be a symmetric 



neighborhood of 0. Let {Arjn.i € Ld
n} be a collection of random variables on the lattice L* 

with joint distribution defined by 

Zn{T)~l exp(~H(x)T~l) x n,€L,Q(si), (1.2) 

where Q(-) is a density on 3ft. Zn{T) is called the partition function. The function H : 

Sfcnd __> sft is called the Hamiltonian. We can look at two different types of Hamiltonians, 
ferromagnetic and antiferromagnetic. Ferromagnetic Hamiltonians increase as neighboring 
spins become more alike, and antiferromagnetic Hamiltonians increase as neighboring spins 
become less alike. For instance, if the Hamiltonian in (1.2) is given by 

ffto-E £<*(*!-*I+J)2t (1-3) 

then it is ferromagnetic if the Cj's are positive, and is antiferromagnetic if the cys are 

negative. 

Section 2. Summary of results. 

Our study is based on an unpublished manuscript of Grenander and Sethuraman [2], They 
defined a class of Gaussian Markov random fields on the lattice L£. These fields were 
trigonometrically interpolated to [0,1]d and the convergence of these processes were studied 
in some simple cases. Grenander and Sethuraman [2] studied probability distributions like 
those specified in (1.2) with Hamiltonians given by (1.3). The Cj were allowed to depend 
on n. However, we shall assume that the CJ are fixed. Our fields are also Gaussian Markov 
random fields. A parameter T is present which will play the role of temperature in one of 
our models. We obtained the following results: 

1. The variance of the field variables grows faster for T >16, than for T == 16. 
2. The limiting specific heat diverges as T —* 16. 
3. This divergence takes place at a rate proportional to (T — 16)"-1 .   This is called a 

power law behavior at T = 16. 
4. The sum of squares of the field random variables satisfy a different central limit law 

for T = 16 as compared to T > 16. 

Section 3, A Gaussian model. 

We shall define a Gaussian model as shown below .  Let Y^ be a collection of random 
variables indexed b\r the lattice L\ with a joint p.d.f given by 

exp 
Ei6L= Eje^o cj(yi ~ ynj)2    l 

- 5 E ^2 fz^n (3J) 



No = Mo U —Mo is a symmetric neighbourhood of 0. Here cj represent the interaction 
between y\ and yi-uj, are independent of n and reflect the isotropic structure of the graph. 
T is the usual temperature parameter that we saw in (1.2). 

This joint density can be put in the form 

where A is of the form 

Au=A0,o = l-2r-1 ]TcjVi€.L2
n 

je No 

AM+j = 0 if j g A^o C3-2) 

Ai,i+j = Aoj = 2i±^ if j € i^o Vi e Ll 

A is a circulant matrix, and has eigen-vectors 

Ck = (exp(i27T < k,j > /»)J 6 L2
n),k G L*. 

The eigen values of A, Ak are given by 

Ak = ]P Aojexp(t2w < k,j > /n) 

= 52 ^ojexp(z27r < k.j > jn) 
jGATo 

= A0,o -f- 2 ^ (cj + c_j) COS(2T7 < k, j > /n) 

= 1 - 2T-1 53 (q 4- c_j)[l - cos(2~ < k, j/n >)] (by (3.2)). 
j€M0 

The eigenvalues and eigenvectors depend on n, which for reasons of clarity has not been 
included in the notation. 

(3.3) 

We will now specialize this model to the four neighbor lattice graph that we had defined 
in Section 1., that is, we will assume that Mo = {(1,0), (0,1)}, we will also assume that 
all the Cj=l, and that n is odd. Since the cj are positive, the model is antiferromagnetic. 

Now by (3.3), the eigen values of A are given by 

Ak = 1 - -[1 - cos( !-) 4-1 - cos(—=-)]. (3.4) 
In n 



Since .4 is the inverse of the variance-covariance matrix cf the Y'S, we have that 

Var(yi
(n))=Var(r0^) = n-2 £ J" C8'5) 

Notice that the Y's have a legitimate p.d.f if T > 16 since all the eigen values of A are 
positive, by (3.4). The two theorems below will study the 'rate of growth of the variance' 
of the Y's. 

Theorem 3.1 

Suppose that T > 16, then, for each i E L2, 

Var(Y(n))->   /       (l~4T-1(l-cos(27rx)-f I - cos(2iry)))~l dxdy as n-+ oo.      (3.6) 
•/[O.l]2 

Proof. By (3.5), 

Var(Y.(n)) = n-2 £       __        _ ^^^ + J ___ cos(27r/c2/n)]- (3'7) 

The rest is trivial.    □ 
Remark When T = 16 the integral in (3.6) diverges. However, with a different normal- 
isation, the variance of the normalised Y's converges to a finite constant, as studied in 
Theorem 3.2 below. 

Theorem 3.2 
Let T = 16, then   

Var((x/logn)"1yi
(n)) -4 4/a- as n -» oo. 

Proof. By (3.5), we can write 

V» -Var((VEg^)-13',(")) 

= (nVlogn)  "4 ^  i + cos(2~Jci/n) + 1 + cos(2^fc2/n). 
(3.8) 

k€L= 

Let 0 < e < 1 and let 0 < 8 < 1/2 be such that 

2~2:r2(l - e) < 1 - COS(2TTX) < 2TTV(1 + e) if 0 <| a |< <5. (3.9) 



Let h = fc,-(n-l)/2, h = /:2-(n-l)/2, zmda(luh) = ll-cos(277;1/n)-rl-cos(2-/2/n)]. 
Then V„ can be written as 

Vn = 4(nlogn)- 2^ ll-cos(2-l1/n) + l-cos(27r/2/n)] 
_(n-l)/2<l2<(n-l)/2-l 

= 4(nMogn)-      Ei 
»ilfc»« or    v *' "' (3.10) 

-MCn'logn)-     £    ^) 
0< 
0<|I2[<n« 

= Vn,i + K,2 , respectively. 

Now observe that a(/i J2) > 0- — COS(2TT£)) in the region {| l\ |> n£ or  | I2 |> ^}- Hence, 
Vn,i < 4(logn)_1(l - COS(2TT<5))"

1
 = o(l) asn-^co. 

Then by (3.9) we have that 

2*2(1 - ml + 13) < n2a(/1;/2) < 2TT
2
(1 + €)(/

2 + Z2), (3.11) 

if |Zi|<n£,|J2| <™$. 

By (3.11), 

4(^(1 + «) log n)-1     V 2 

<|Ia|<n*   V  1    ^    2; 
0<|l2l<»* 

< V„,2 (3.12) 

< 4(^(1 -Ologh)"»     £     (JfTl)- 
0<|J2|<nf 

From Lemma 3.1 (below) and (3.12), it follows that Vn^ —► 4/TT as n —y 00. Hence, by 
(3.10) we know that Vn converges to 4/TT as n —» 00. This completes the proof of the 
theorem.    D 

Lemma 3.1 

Let Kn = (logn)   x     ]P        2 -  2  . Then, J\n -» 2?r as n -» 00. 
0<!J1l<n    ^   1     '       2J 
0<|i2i<n 



Proof. This lemma is proved by finding an upper and lower bound to Kn.   Using the 
inequality, 

ih-iy + ih-i)2   x* + y* - {ii + q) 

for (l\ — l,lj — 1) < (x>y) — ('11^2), it follows that J\„ is bounded above by 

. n        N-i   / dxdV < (logn)      / 
Jl<x2 + y2<2n2 ^ + IT (3.14) 

= (logn)_1 /       /          (by a polar transformation) 
Jo     Ji r * 

= 2TT(1 - (log n)-1 (1 - log %/2)) = 2TT + o(l). 

To obtain a lower bound, define Dn = {l<x<noTl<y<n and (x,y) ^ (1,1)}. Then 
by using (3.13) a lower bound on Kn is obtained as follows 

^n=4(logn)-1  £  ^-L^ 
0<Jj<n   V 1     *      i/ 
0<J2<n 

=4(logn)->     i: )2*(/,-l)' 
2<*2<n-}-l 

2 < ?i < n + 1 

(h,h)^ (2,2) 

^4(logn)-»(/    ^ + 0(1)) 



This completes the proof of Lemma 3.1.    D 

We shall now study the behavior of the specific heat,  which is defined by G n(T)  = 

X— fTl0gZn\ We shall show that G„(T) -* G[T) where G{T) is called the limiting 
dT2 \     n2     ) 

specific heat. The limiting specific heat G(T) is proportional to (T - 16)_1 near T = 16. 
This is called a power law behavior at T = 16 in the statistical mechanics literature. 

Now note that A is the inverse of the variance covariance matrix of 7's, and the determinant 
of A"1 is the product of the eigenvalues of A~J. These eigen values are the reciprocals 
of the eigen values of A, since A is square symmetric. Hence the partition function Zn is 
given by 

Zn = (27r)4xnkeI,(Ak)-1/2. 

For T > 16, 

log^=n^2I_2_1^log(Ak) 

n2log2-     2_^2 (^J>g(AO 

We shall now calculate the specific heat. 

d2    (T\ogZn Gn(T) = r. 
dT2 

By (3.16) we have 

_a_   fTl0gZn'\ ]0g277 
dT 

(3.16) 

2~'n-2 J2 los(A*) 

_0(n2T)-i   V"        ([1 - cos(27rA-1/n) 4- 1 - cos(27rfc2/n)]) 

^ ([1 - f [1 - COS(2TTA-, In) + 1 - cos(2^2/n)]) 



Differentiating again.we have 

\Jn\J- ) — OJV2 

r  -2    ^        [1 - COS(2TTkjn) + 1 - cos(2~:k2/n)) 
Z=T[T2n2 ^ [l - * [1 - cos(27r^/n) + 1 - COS(2TTk2/n)) 

2      Y^        [1 - cos(27T^1/n) + 1 - COS(2TT/c2/n)] 
+ T2n*   *-f   [1 - 4[1 - cos(27rfci/n) -f 1 - cos(27r/:2/n)] 

^     8      y>        [1 - COS(2TTfcx/n) + 1 - cos(2?r/c2/n)]2 

+ r3n2 £f  [1 - A[l - cos(2?rifc1/n) + 1 - cos(2wÄ&/n)p J' 

The first two terms in the above expression will cancel out and leave us with 

_S__ ys        ([1 - cos(27Tfc1/n) + 1 - cos(27r/c2/n)])2 

T'n2kfe C[l-4.ll-cos(2irJbi/n) + l-co8(2ffJb2/n)])^ 

This will converge to 

~,m*       8    f1   Z1 [1 - cos(2^) +1 - cos(2xy)]2 ,    _, .     „.. 

This integral is divergent at T = 16 and in fact, ff(T)oc (T - 16)-1 for T > 16 as T -» 16. 

Thus the specific heat for this model diverges. 

Section 4. 

In this section, we shall study the behavior of the sum of squares of the random variables 

Y;n\ We shall show that this sum of squares obeys a different central limit theorem when 
T = 16, as compared to T > 16. The reason for this result, is due to the asymptotic 
behavior of the eigen values Ak being different at T = 16. 

Define 

Q« - £ (n(n))2- 



Then, Qn — T^ Vjt/A»«-, where V* Eire i. i. d. random variables with a x] distribution. 

k€LS 

Theorem 4.1 

If T > 16, then 

Qn - !Ck€L* ^ -*Jv(0,l) as n —> co. 
3Sk€L£ ^k 

Proof. We shall check that Liapounov's conditions [4] for asymptotic normality hold. 

Let Kn = Var(Qn), then (Qn - E{Qn))/y/Kn^N(0,l) as n -> co if JY~
2
 ]T E(V, - 

l)4/Ak —> 0 as n —» oo. Since 14 are i. d., -E(Vfc — I)4 is a constant independent of k. The 

terms Kn and  Y^ JE?(Vfe — l) /Ak are both 0(n2). Hence Liapounov's condition holds. 
k€L2

n 

This proves the theorem   D 

We shall now study the behavior of Qn when T = 16. Theorem 4.2 is a central limit 
theorem for Qn when T — 16. 

Theorem 4.2 

If T = 16, then 

(Qn — E(Qn)) /n2—>JB as n —► oo where J3 has an m.g.f. given by 

Proof. We shall calculate the m.g.f of (Qn — E(Qn))/n2 and show that this m.g.f. con- 
verges to the m.g.f. of B. This is sufficient to prove convergence in distribution of 
(Qn-E(Qn))/n2 toB. 

Let i/?n(i) be the m.g.f. of Qn — E(Qn)/n2. Then 

expC-c^Ekei» V) 
nk(l - 2tAk/n2)i/2   ' 

10 



Taking logarithms in the above, 

k6« kSi' 

-'Ef(.-»EV). 
By Lemma 4.1 the term 

(4.1) 

n'2j J2 Kj ~* (4V*-1 (j - 1) as n -* co. 

Hence, by equation (4.1) and the above, 

Ö j(i -1J 

This completes the proof of the theorem.    D 

Lemma 3.2 Let T = 16 and let j > 2 be an integer. Then 

n"2i ]C Ak' -* (^^'"'(i - 1) as n -> oo. 
k€L3 

Proof, The proof of this lemma is substantially the same as the proof of Theorem 3.1 and 
so we will only sketch the proof. Since T = 16, 

n -2j 
k ^      (1 - 005(271/! /n) + 1 - cos(27r/, /n)V * V ~~; 

0<I/2|<n/2 

Let <5 be as in the proof of Theorem 3.1. Then the right hand side of (4.2) is approximately 
equal to 

s^V E  (yr^iy 
0<|I1j<n    V   1      '       2/ 'It 
0<iJ2|<n 

S^'(27r2)^' / -  -  1   — 

S^'(2rr2)-^/(i-l). 

11 



This completes the proof of the lemma.    D 

Remark The limit in distribution of Qn is different for T = 16 as compared to T > 16, 
ädÄLakation constant for Qn at T - 16 is »« instead of n , en T > 16. Tha. 

suggests that the field random variables Y™ vary much more for T = 16 than for T > 16. 

However the critical behavior is at the endpoint of definition of the model and so it is 
o« opinion that this does not seriously restrict the apphcatum of the Gauss:an model m 

pattern analysis. 

12 
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