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Abstract 

One may estimate a conditional hazard function from grouped (and possibly censored) 
survival data by the time and covariate specific occurrence/exposure rate. Asymptotic 
results for cumulative versions of this estimator are developed, utilizing the general frame- 
work of counting processes. In particular, a grouped data based goodness-of-fit test for 
Cox's proportional hazard model is given. Various constraints on the asymptotic behavior 
of the widths of the calendar periods and covariate strata employed in grouping the data 
are needed to prove the results. Actual performance of the estimators and test statistics is 
evaluated by Monte Carlo methods. 
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1. Introduction 

The purpose of this paper is to study grouped data based inference for Beran's 
(19S1) general nonparametric hazard function model and Cox's (1972) proportional 
hazards model. In the general nonparametric model the conditional hazard function 
A(i|z) of the survival time of an individual with covariate z is given by 

X(t\z) = a(t,z), (1.1) 

where a is an unknown function. In Cox's model, a is specified by 

a(t,z) = \0(t)exp{ß'0z}, (1.2) 

where the covariate is /»-dimensional, ßo is a /^-vector of unknown regression coeffi- 
cients and Ao is an unknown baseline hazard function. 

The usual approach to analyzing grouped survival data is to assume that a is 
piecewise constant over ?ach grouping cell, see Hoem (1987). Then the likelihood 
function is proportional to the Poisson likelihood (Laird and Olivier, 1981) and 
the maximum likelihood estimator of a is the classical occurrence/exposure rate. 
Kalbfleisch and Prentice (1973). Holford (1976), and Prentice and Gloeckler (1978) 
have studied the maximum likelihood estimator of the regression parameters in 
Cox's model when the baseline hazard function is taken as a step function. Holford 
(1976) noted that this estimator is inconsistent unless the grouping becomes finer 
as the sample size increases. 

It is important to know whether the convenience of analyzing grouped data 
from a given actuarial life table is overshadowed by biases that arise when the 
grouping is coarse. There exist many numerical studies comparing the grouped and 
continuous Cox model analyses for specific data sets, see the references in Hoem 
(1987, p. 137). All these studies have found that the two approaches give quite sim- 
ilar results. Breslow (1986), considering data on cancer mortality among Montana 
smelter workers, found that the estimated regression coefficients from the grouped 
data analysis were within one standard error of those from the continuous data 
analysis. Similar conclusions were reached by Selmer (1990) for data on mortality 
from coronary heart disease. Selmer obtained an extremely close agreement of like- 
lihood ratio test statistics (used to test for differences between nested models) in 
the full Cox model and the Cox model with a piecewise constant baseline hazard 
function. However, it would be useful to have a theoretical underpinning for these 
empirical studies. 

Theoretical results for continuous data are well developed; see Andersen and 
Gill (1982) (henceforth AG) for Cox's model, and McKeague and Utikal (1990a) 
(henceforth MU) for the general nonparametric model. Corresponding results for 
grouped data are available only in special cases. Aficionados of contingency table 
analysis might consult Friedman's (1982) paper on the Cox model, but his results 
are difficult to interpret in the survival analysis context.    Pons and Turckheim 
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(1987) have used histogram sieve estimators for Cox's model (as have Borgan and 
Ramlau-Harisen (1985) and Karr (1987) for Aalen's multiplicative intensity model), 
but their approach applies to grouped data only when the covariate takes at most 
finitely many values and is non-time dependent. As far as we know, the general 
nonparametric model with grouped data has not been treated in the literature. 

Our aim here is to show that the results of AG and MU have analogues in the 
grouped data case. Various conditions on the asymptotic behavior of the widths of 
the calendar periods and covariate strata used in grouping the data are needed for 
this. We also develop a grouped data version of MU's (1991) goodness-of-fit test for 
the Cox model. Estimators of the cwudlüwnal cumulative hazard function J4(-, Z) = 
J0 a(t,z)ds and the doubly cumulative hazard function «A(v) — Jo Jo a °^ ^x P^ 
an important role in this work. The goodness-of-fit test is based on a comparison 
of estimates of A under the general nonparametric model and the Cox model. 

In Section 2 we formulate the general model (1.1) in the (by now standard) 
counting process setting and discuss the estimation of -A(-,z) and A. Our Cox 
model results, extending AG, are given in Section 3. The goodness-of-fit test for 
the Cox model is discussed in Section 4. Section 5 contains a simulation study and 
an application to real data. All proofs are contained in Section 6. For simplicity 
we restrict attention to the case of a one-dimensional covariate (p = 1) throughout 
the paper. 

2. Fitting the general nonparametric model to grouped data 

Let N(t) = (Ari(i),..., Nn(t))', t € [0,1] be a multivariate counting process 

with respect to a right continuous filtration T\. , where N((t) is the number of 
failures of the ith individual during the time period [0,t]. The counting process N 
is adapted to the filtration and the sample paths of Ni,..., Nn are right-continuous 
step functions, zero at time zero, with jumps of size +1. No two component pro- 
cesses jump simultaneously. We also assume that Ni has intensity 

\i(t) = Yi(t)a(t,Zi(t)), (2.1) 

where a is a completely general function, Yi(t) is a predictable {0, l}-valued process 
indicating that the i'th individual is at risk when Yi(t) = 1, and Zi(t) is a predictable 

[0, l]-valued covariate process. The processes Mi(t) = Ni(t) — JQ \{(s)ds are local 
martingales. 

Let the cells into which the data are grouped be denoted Crj — Tr x Ty, where 
T\,..., Tin and 1\,..., ljn are the respective calendar periods (time intervals) and 
covariate strata. For simplicity, the time intervals are taken to be of equal length 
/„ = l/Ln and the covariate strata are taken to have equal width wn = l/Jn- 
Grouped data consist of the total number of failures and the total time at risk 
(exposure) in each cell Crj, given by 

A^n) = £ / ^c)e Ji)dN^) and Yrf = £ I HZi(t) €i3}ymdt, 



respectively. All our estimators are based on such data. 
Let Qo be the underlying hazard function to be estimated. To carry out infer- 

ence for c*o we need to assume that the support of ao, denoted supp(ao), is known. 
This assumption is needed to avoid the problem of low exposure on the boundary 
of the support. In typical survival analysis applications supp(ao) can be assumed 
to be the whole of [0, l]2, but there are simple useful examples where this is not 
the case; e.g., the illness-death process with duration dependence (see Example 3 
of MU) in which supp(a0) is the triangle {(t,z) € [0,1]2: z < t}. 

We slightly modify the usual occurrence/exposure rate around the boundary of 
supp(ao) by setting it equal to zero when any part of a cell falls outside supp(c*o), 
i.e., define 

a(*'*) = ~^n)     for (*>z) € Cri C suPPOo), 
rj 

zero otherwise. Our estimators are defined by 

A(«,z)=   /   a(s,z)ds    and    A(-,-)=   /   /   a(s,x)dsdx. 
Jo Jo Jo 

We assume throughout that ao is Lipschitz on its support. The following minor 
abuse of our notation will be very convenient: for any process (or set) £rj indexed 
by integers r and j, define £u for (t, z) 6 [0, l]2 by £tz = frj for (t, z) £ Crj. Define 

V= {(t,z): Cu C supp(a0)}, 

let Vz denote the z-section of D, and set YM(t,z) = Y,iI{Z^{t) € It}Yi(t). 

CONDITION A 

(Al) There exists a nonnegative, Lipschitz function /(•,•)> which is bounded 
away from zero on supp(a0), such that 

/ E(^^±-f(t,z)ydt=o(ii). 
JVZ       V       nwn I 

(A2) Leb{t G Vz:Y
("\t,z) = 0} = oP(l„). 

/        TIW \ ^ 
(A3) s"P(t,*)£VME[Yin)£z))   <°° 

(A4) Leb(lX) = 0(wn) + 0(/„), where Vz is the set of times t for which Cts 

overlaps both supp(ao) and its complement. 

These conditions are slightly stronger than those required in MU (1990a), but 
they are still quite mild. In particular, Condition (A4) is satisfied for the illness- 
death model mentioned above since Leb(Dz) < 2/n + wn = 0(ln) + 0(wn) in that 
example. 



THEOREM 2.1   For a fixed z e [0,1] suppose that Condition A holds. Ifnwz
n -+ 0, 

nwnl2
n —> 0 and nwn —> oo, then under a = c*o 

y/^(Ä(;z) - A(;z))^U(-,z) 

in D[0,1], where U(-,z) is a continuous Gaussian martingaie with zero mean and 
variance function 

Vzr(U(t,z)) = /   h(u,z)dui 
Jo 

where h = ao/f- 

In order to derive the asymptotic distribution of A we need to consider a se- 
quence of models of the form (2.1), with each indexed by the sample size and having 
a piecewise constant over the cells used to group the data, cf. McKeague (1988). 
At a given sample size a is assumed to be the piecewise constant approximation äo 
to äo determined by the cells Cyj. The approximation äo is defined by 

<*o (*, z) =   / /    a0(w, x) du dx        if Ctz C supp(a0), 
lnwn J JCtz 

zero otherwise. The following theorem is an extension to the grouped data setting 
of MU's (1990b) asymptotic normality result for A. 

CONDITION B 

(Bl)   // E(^±^ - f(t,z)Y dtdz = o(lWn). JJV     \    nwn / 

(B2) Leb2{(t, z) e V: Y{n\t, z) = 0} = oP(lnwn). 

(B3) SuP(ttZ)evE(¥g^- < oc. 

THEOREM 2.2 Suppose that Condition B holds. If ln -> 0, wn -> 0, nw2
nl

2
n = 0(1), 

and Jn = O(n), then the distribution of ^/n(A — A) under a = a0 converges in D2 
to the distribution of the process 

(*,*)=  /  /   y/h{u,x)dW(u,x), 
Jo Jo 

where h — a0// in the interior of supp(a0), zero otherwise, and W is a Brownian 
sheet. 

In the following proposition we check that Conditions A and B are satisfied in 
the i.i.d. case. Let (Nj,Yj, Z,), i - 1,... ,n be i.i.d. copies of (Ar, Y\ Z). LetF(f,«) 



be the subdistribution function of the covariate process at time t when Y(t) = 1} 

i.e., F(t,x) = P(Z(t) < x,Y(t) = 1), -oo < x < oo. 

PROPOSITION 2.1 (i.i.d. case). Suppose that for each t £ [0,1], F(t, •) is absolutely 
continuous on the support of cto(t, -) in [0,1] with density f(t, •) such that /(-, •) is 
Lipschitz and bounded away from zero on the support of ao- Suppose that ln —* 0 
and nwj = 0(1). 

(T) Ifnwnln —► oo, tnen Conditions (A1)-(A3) ho/d. 
(nj Ifnwnln —♦ co, then Condition B holds. 

When using A in the i.i.d. case it suffices that the interval widths wn and /n 

satisfy nw\ —► 0, nu?£ —»■ oo, and /„ ~ wn. When using A in the i.i.d. case it suffices 
that the interval widths satisfy nw\ = 0(1), nwn' —* oo, and ln ~- y/w^. In 
particular, this suggests that for .4 there should be (asymptotically) more covariate 
strata than time intervals. Whether such advice should be followed in practice will 
be considered in the simulation section. 

It is possible to give a version of our result for A under the model a = ao, 
but we would then need nw„ —+ 0, which conflicts with the rate in Proposition 2.1 
(ii), so the result would not be useful in the i.Ld. case. We are able to get around 
this difficulty by restricting attention to the sequence of piecewise constant models 
a — äo. We regard this as a very natural approach in the grouped data setting. 

3. Fitting the Cox model to grouped data 

In the continuous data case the regression coefficient ßo is estimated by maxi- 
mizing Cox's partial likelihood function which has logarithm 

C(ß) = E/1 ßZi(u)dN,(u) - J1 log (£yKu)e*Zi(u>) dN^(u), 

where N^ — Yli^i- Pons and Turckheim (1987) estimate ßo by maximizing a 
histogram-type Cox's partial likelihood function which has logarithm 

C*(£) = E£/  /^(")<W.-H + E
1O
S(E/  e0Zdu)Yi(u)du)  f  dN^(u). 

r        i     ^T" r i     Jrr JTr 

However, in the grouped data case neither C(ß) nor Ch{ß) is observable. In fact 
Ch{ß) is observable with grouped data only when the covariate process Z takes at 
most finitely many values and is non-time dependent. 

For the general grouped data case we need to consider 

c,{ß) --Ylß^f -E^fEC^)^. 
r,J 



where Nr = ]Cj=i ^rj 1S ^e nur*iber of failures in the rth calendar period, and Zj 

is a representative covariate value for the jr'th stratum. The estimator ß is denned 
as a solution to Ug(ß) = 0, where Ug is the derivative of Cg. In the piecewise 
exponential model of Holford (1976), ß is the full maximum likelihood estimator of 
ßo, and 

A^(n) 

is the maximum likelihood estimator of the baseline hazard function. We also need 
the grouped data based analogue of Breslow's estimator of the cumulative baseline 
hazard function Ao(t) = fQ Xo(u)du given by 

A(t) =  /   \0(u)du. 
Jo 

As in AG, denote 

n 

for k = 0,1,2, where 0° = 1. The following conditions are assumed to hold through- 
out this section. 

CONDITION C 

(Cl) (Asymptotic stability). There exists a neighborhood B of ßo and function 
s(*} defined on B x [0,1] such that 

sup \S(k)(ß,t)-s(k\ß,t)\^0   for A: = 0,1,2, (Cl.l) 
t,ßeß 

supE(S{k\ß0,t)-/k\ß0,t))2 = 0(-)    for k = 0,1.      (C1.2) 
t \ns 

(C2)  (Asymptotic regularity).    Let B,  s^k^ be defined as in Condition A and 
define v - s^/s^ - (>(1)/a(0))2. For al\ßcB,te [0,1]: 

3<»(ß,t) = ^-(0)GM),   -(a)(A<) = ^*(0)(A0i 

s'^(-, •). A: = 0,1,2, are continuous functions on £ x [0,1], ^°) is bounded 
away from zero on B x [0,1], and 

= /  v(ß0,t)s{0)(ßo,t)\o(t)dt 
Jo 

V1 __ 



is positive. 

We shall also assume that Ao is Lipschitz. Our conditions are slightly stronger 
than the corresponding conditions of AG: we assume a rate of convergence in Cl.2, 
and that s^ is continuous. Our first result, showing consistency of /?, does not 
need either the full strength of Condition Cl (just Cl.l) or the Lipschitz condition. 
Condition C can be checked in the i.i.d. case, with Z and Y having sample paths 
in Skorohod space D[0,1], by using similar arguments to Theorem 4.1 of AG. 

THEOREM 3.1  (Consistency of ß). If wn -> 0 and /„ -* 0, then 

ß-^ßo- 

THEOREM 3.2  (Asymptotic normality of ß).  If nw2
n -* 0, n/; -+ 0 and nln ->■ oc, 

then 

It follows from the proof of Theorem 3.2 that if wn —► 0 and ln —► 0, then 
n~1Ig{ß) is a consistent estimator of £, where Ig(ß) is minus the second derivative 

of Cg(ß). The final result in this section gives the limiting distribution of A (cf. 
AG's Theorem 3.4). 

THEOREM ö.ö Li HW^ —> 0, ni^ —* 0 and ?i/n —> oo, then 

Vn(A - Ao)-^mo(-) + m2(l)^(.)    in D[0,1], 

where 

Jo   s(U}(po,tO 

and mo and in.\ are independent zero mean Gaussian martingales with 

{m0)i=   /      ,   ° -du,     (mj)^   /   v(/3o,u)s(0)(Ä?-u)A0(ii)du. 
Jo   5(UH^o,w) Jo 

4.  Goodness-of-fit test for the Cox model 

In this section we consider testing whether an underlying Cox model Qo(i, ~) = 
\o(t)exp{ßoz} adequately fits the grouped data. Here the support of A0 is the whole 
unit interval. Once again we need to consider a sequence of models a = a0 implicitly 
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indexed by the sample size, where Qo is the piecewise constant approximation to n0 

given by 

äo(t,z) = J*(t)e*9*i    forz€J>, (4.1) 

and Zj is a certain covariate value in the jth stratum.   Under the Cox model the 
doubly cumulative hazard function is estimated by 

A(t,z) =   /    /   Ck(n,x)dudx, 
JO Jo 

where 

Q(M,Z) = A0(u)e^rj     for 2 G I>. 

The following result can be used to construct a chi-squared goodness-of-fit test 
of the Cox model versus the alternative that the Cox model does not hold, based 
on increments of A — A, cf. MU (1991). 

THEOREM 4.1 Suppose that Conditions B and C hold. Ifwn -> 0, /„ -► 0, nw2
nl

2
n = 

0(1), Jn = 0(n) and nln —► 00, then the distribution of \fn(A — A) under the 
piecewise constant Cox model a = a0 converges in D2 to the distribution of the 
process 

m(t,z) =   f f y/M^x)dW{u,x)~b{z) f f   ^X)  dW(u.x) 
Jo Jo Jo Jo   ${Q)(ßo,u) 

*(1)(A,tif 
s^(ßo,u) 

y/g(u,x)dW(s.x), 

where 

ti{u,x) = 
f(u,x)   ' 

g(u,x) = \0(u)eß<>zf(uJx), 

b(z) =   f   cß°xdx, 
Jo 

c(t, ,) = E-» {A.(0 [ .«*"* - K«) /' £!g^ W * }■ 

When using -4 — A in the i.i.d. case it suffices that wn and /„ satisfy the same 
rates as previously given for A. Note that the rate nit'J —> 0 needed for two of our 
Cox mcdel results (in Section 3) is incompatible with the slower rate needed when 
using A in the i.i.d. case (see Pioposition 2.1 (ii)).   For this reason the condition 



nw^ —> 0 was avoided in Theorem 4.1.   Fortunately our Cox model results hold 
without this condition, provided a = &Q. 

In order to perform the chi-squared test we need to estimate the functions /i, </, 
b and c. This is done by inserting /?, A0 and estimators of s^(ßo,u) for k = 0,1 and 

f(UjX). Estimate s^(ßo>u) by Sg (ß>u) defined after the proof of Proposition 2.1 

in Section 6, and estimate f(u,x) by Y^ jnwnln for u £ TT and x E Xj. Further 
details on the construction of the chi-squared test can be found in MU (1991). 

5. Numerical results 

5.1 Monte Carlo study. We have carried out a simulation study of the per- 
formance of our Cox model estimators and test statistics for various sample sizes, 
censoring levels, and grouping patterns. The parameters of the underlying Cox 
model were taken to be ßo = 1 and Ao = 1, and the covariate was uniformly dis- 
tributed on [0,1]. The censoring time was independent of both the failure time 
and the covariate, and exponentially distributed with parameter 7. The censoring 
parameter 7 was set to 0.75 and 2,5, amounting to 31% and 60% censoring prior 
to the end of follow-up. In each case the follow-up period was adjusted to give an 
average of 19% surviving beyond the end of follow-up. 

[Insert Table 1 here] 

Observed coverage probabilities of asymptotic 95% confidence intervals for 
ßo are contained in Table 1. Inspecting Table 1 we find that all the coverage 
probabilities are close to their nominal value of .95. It appears that variations in 
sample size and number of cells have little effect, Also, we could find no evidence 
of bias in ß. In view of Holford's (1976) comment that ß is inconsistent unless the 
grouping becomes finer as the sample size increases, we had expected to eventually 
obtain poor results at very large sample sizes if the number of cells is kept small. 
However, this effect only became noticeable for sample sizes above two million. 

In order check for asymptotic normality of ß we examined normal plots and 
histograms of standardized values of ß. All of these indicated that \/n(ß — ß^T,1^2 

closely follows a standard normal distribution. 
We performed the chi-squared goodness-of-fit test of Cox's model using incre- 

ments of A — A over a 2 x 2 partition of the grouping cells, so that there were 4 
degrees of freedom. The results are displayed in Table 2. Very similar results were 
obtained when using different degrees of freedom, e.g. 4 x 4. Also, our results are 
very consistent with those obtained in the continuous data case, see MU (1991). 

[Insert Table 2 here] 

Inspection of Table 2 indicates that the number of covariate strata Jn has 
a strong influence on the level accuracy of the test, whereas the number of time 
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intervals has little effect. For sample sizes less than 1000 we recommend that at 
most 5 covariate strata be used. For sample sizes between 5000 and 10,000 we 
recommend that about 10 covariate strata be used. A very large sample size (say 
n > 40, 000) would be required to obtain satisfactory results when using 2Ü covariate 
strata. These recommendations hold irrespective of the amount of censoring. 

We occasionally (in 1-2% of cases) obtained a negative chi-squared statistic 
at sample size 7t = 250 when using 20 covariate strata. The problem of a negative 
chi-squared statistic can be caused by small sample size, too many covariate strata, 
low rate of survival beyond the end of follow-up, or failure of the data to fit the 
Cox model. Under the Cox model the problem can be avoided by grouping the 
data so that the total time at risk in each cell is sufficiently large; in the simulation 
study we found that it was enough to have at least 10c/o surviving beyond the end 
of follow-up in each covariate stratum. When the data fail to fit the Cox model 
the use of a model-robust estimator of the covariance would avoid the problem (cf. 
Hjort. 1990. p. 1254), but this would be difficult to implement. 

5.2. An example using the Japanese atomic bomb survivors data. Huffer and 
McKeague (1991) have studied the application of Aalen's (1980) additive risk model 
to grouped data on the incidence of cancer mortality among Japanese atomic bomb 
survivors. It is of interest to examine whether these data can be adequately fitted 
by the Cox model. The time variable r, taken as time since exposure, is grouped 
into eight 4-years intervals: 5-9, . . ., 33-37 years. The covariate is dose (in units of 
rads), taken as the midpoint of one of the six dose groups: 0, 1-50, 50-100, 100- 
200, 200-300, > 300, with dose= 400 for dose > 300. According to our simulation 
results, this grouping of the data is adequate for the chi-squared test. 

Table  3.    Result? of Cox Model Goodness-of-fit  Test for Japanese Atomic Bomb 
Survivor Data. 

1 
1 

Age at exposure 
0-9      j 10-19 20-34 35-49    |  > 50   | 

;    Male 
; Female 

reject 
negative 

reject 
reject 

negative 
negative 

reject    1 reject 
negative | reject j 

We have evaluated the chi-squared statistic separately for males and females 
in each of 5 different age at exposure groups. There were 4 = 2x2 degrees of 
freedom in each test. The results are given in Table 3. The chi-squared statistics 
indicate extremely strong departures from the Cox model, except in the cases having 
a negative chi-squared.   In fact, as noted above, negative chi-squared values also 
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suggest a lack of fit with the Cox model when the total time at risk in any cell is 
sufficiently large (as is the case with these data). 

6. Proofs 

The following notation will be useful: 

<") = E/ I{Zi(u)eXj}dMi(u), 

M(n\t,z) = T f I{Z,(u) € Iz}dMt(u), 
,   Jo 

a{n\t,z) = ^/{Z,(i)€l:}^((W(,2,W), 

o>> =  I a{n\u,z)du. 
Jrt 

PROOF OF THEOREM 2.1 Note that 

v/nü£(i(*, z)-A(t, z)) = Xm(t, z) 

+ J^ f I{u evg}(-4-7  \MLVdu V     nJo    t *'VY&>      nwnlnf(u,z)J    u~ (6.1) 

+ y/nwn   I    il{ueVz}—{%j-aQ{u,z)\du, 

where 

X(t,z) = —=   /   J{uGD;)      - v ;, 

and, given a function 0 defined on [0,1], the piecewise linear approximation ip* to 
ip determined by the calendar periods Tr is defined by 

r(t) = 0(i,_, ) + ^^ (V>(<r) - t/-(<r-l )) 

for t € Tr = (tr-iytr\. Using an analogous argument to the treatment of the   erm 

.Y(n) in the proof oi Theorem 1 of MU (1990a), it can be shown that X-^U in 

D[0,1]. Thus, by Lemma 4.1 of McKeague (1988), we have Xm-^+U in D[0,1]. The 
rest of the proof consists in showing that the last two terms on the r.h.s. of (6.1) 
converge uniformly in probability to zero. 
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Note that the predictable variation process of M» is (M,)< = J0 A,-(u)du, so 

that, using standard martingale theory, E(Muz )2  <  0(l)l£(Yu? ).    Also, from 
Condition (Al) and the boundedness of /, 

It follows that 

f   E(Yi?)du = o(nwnl3J2) + 0(nu>„/„). 

/   £(M^)2<iu = 0(nu,n/n). (6.2) 

The second term on the r.h.s. of (6.1) is of order 0{B\) + 0(B2) uniformly in t, 
where 

Bi = 

i?2 = v/mü 

1— / /{ri?> = o}|Afi;>|rfu, 

77), lr*tu„/„ 

Denote 

Since V//0 = 0 implies that K(n)(u, z) = 0 for Lebesgue a.e. u € 7*, Condition (A2) 

holds with Y^n\t,z) replaced by lyz . Thus, by the Cauchy-Schwarz inequality 
and (6.2), B\ is of order 

o(       *        )op{y/rn)Op{^nwnln) = op(l). 

Vu=  f I{yM(v\z) >0}dv. 

Since, for 0 < 6 < 1, 

P( inf rju < fln) = P ( sup   /   /{y(n)(u, *) = 0} dv > /n(l - <$)) 
u€X>' \u€X>r7Tu / 

< P(Leb{u 6 P,:y(n)(w,^r) = 0} > /n(l - (5)) -» 0 

by Condition (A2), we see thai rj~l is of order Op^"1) uniformly inu GD.. The 
Cauchy-Schwarz inequality gives 

•/Tu 

which yields an upper bound on (Yuf j1, so that 

B2<0P(y^)  f   2iy-/(„,,) (/ *_A,W<r>|</u. (6.3) K    li    J Jvz nwnln V;Tti 1 <n>(ü,r)     / 

12 



By Condition (Al), 

Also, by (A3), 

JVt\nwnln / 

E f  \ f (Y<n)(vyz))-1 dv)Adu = 0(—)\ 
JV^JTU J Vntün/ 

Thus, using (6.2) and the Cauchy-Schwarz inequality twice, the expectation of the 
integrand in (6.3) is of order 

{[•«)]'-K^)T}'-{«-«}'-(A)- 
It follows that B2 is of order op(l). 

For u 6 {T*z U Pz)
c, ao(tx,2r) = 0. By the Lipschitz assumption on ao, the last 

term on the r.h.s. of (6.1) is bounded uniformly in t by 

Jvz\ 

[ao(iz,z) + 0(/n) + 0(u;n)]yu
(r) 

I uz 
-a0(u,z) du + y/nvj n   I     \0LQ(u,z)\du 

< V^{0(L) + 0(wn) + 0(l)Leb{u G P, : Y^ = 0}} + 0(Vm^)Leb{DA} 

by (A2), (A4), nw\ —► 0 and nwnl
2

n —► 0. This completes the proof.      D 

PROOF OF THEOREM 2.2 By routine calculation 

y/n(A-A)(t,z) = Xl(t,z) 

+ ^/7/{u€PI}(i ri, -)Ml? dudx 
Jo Jo ^Yix}     nwnlnf(u,x)/ 
at («) 

I{U e Vx}(—^y - ä0(u,x)J <2udx, 
lux 

where 

X(t,z) = — £  / /{« € P,}      .-/ 

(6.4) 

13 



and given a function tp on [0, l]2, ip* is defined to be the piecewise bilinear approx- 
imation to ip determined by the cells Crj, obtained by extending the definition of 
V'* in the obvious way. 

To complete the proof it suffices to show that the last two terms of (6.4) con- 

verge uniformly in probability to 0, and X—>m, where we are using Lemma 4.1 of 
McKeague (1988) again. As in the proof of Theorem 3.1 of MU (1990b), we need to 
show that {X, n > 1} is tight in D2 and its finite dimensional distributions converge 
weakly to those of m. Tightness can be shown using Jn — 0(n), see Lemmas 2 and 
3 of MU (1990b). Convergence of the finite dimensional distributions can be shown 
using Condition (Bl) to obtain convergence of the predictable variation processes 
of increments of X (cf. Lemma 4 of MU (1990b)), and verifying the Lindeberg 
condition which is similar to (3.2) of MU (1990b). 

The second term on the r.h.s. of (6.4) is uniformly of order 0(G\) + 0(G2), 
where 

Gl = -j^rr II ^y«(") - °> w^Wudx, y/nwnln J Jv 

G2=^ (I l-^V - />,*) (Y^y'lM^ldudx. 
JJv\nwnin 

As in dealing with B\ in the proof of Theorem 2.1, the Condition (B2) holds with 

Y(n)(t, z) replaced by Yt^ . By Condition (Bl) and boundedness of /, we have that 

JJvE{M{
u
n^fdudx = 0(nwnln). Thus, Gx is of order 

^OP(V^)OP(VWX)=OP(1). 

Also, as in dealing with B2 in the proof of Theorem 2.1, define 

^=  f I{Y(n\v,x)>0}dv. 

Since, for 0 < S < 1, 

P{    inf    r)ux<6ln)=P[     sup     /   7{r(n)(^x)==0}^>/n(l-<^ 
(«.*)€*> \(U,X)£VJTU ' J 

<p( // I{Y^\u,x) = 0} dudx > wnln{\ - £)) 

< P(Leb{(u,x) £ V:Y^n\u,x) = 0} > wnln(l - 6)) -> 0 

by Condition (B2), we have that t)~l is of order Op(l~l) uniformly in (u,x) € T>. 
So that 

G2 * °P(f) SL IÄ - 'M(/r. Y^)dV>- ]dUdX-     (65) 

14 



By (Bl), (B3) and Cauchy-Schwarz equality, the expectation of the integrand in 
(6.5) is of order 

{'-(«)]'• H^)?}! ■ {<*-*«}' -„(£). 
It follows that G2 is of order op(l). Thus the second term converges uniformly in 
probability to zero. 

Consider the last term of (6.4).    For the piecewise constant model, a«"    = 

äo(u,x)Yux . Thus, the last term of (6.4) is of order 

0(^)Leb2{(U,z): Yj^ = 0}-^0 

by Condition (B2) and nw^l^ = 0(1). This completes the proof.      D 

PROOF OF PROPOSITION 2.1 We only consider part (i); the proof of part (ii) is 
almost identical. Under the conditions of the proposition, Y^n\t, z) has a binomial 
distribution with parameters n and L f(t, x)dxy and there exist positive constants 

b and c such that bwn < JT f{t,x)dx < cwn, for each (t,z) £ supp(a0). Since the 

fourth central moment of a binomial (n,p) r.v. is of order 0((np)2), and using the 
Lipschitz assumption on /, as well as nw^ = 0(1) and nwnln —► 00, we have 

uniformly over (t,z) € supp(e*o). Condition (Al) follows using the dominated 
convergence theorem. Next, 

E[Leb{t € D2:F
(n)(r,z) = 0}] < (1 - bwn)n < e"6™" = o(ln) 

by nwnln —+ 00, giving Condition (A2). Condition (A3) holds by Lemma 2(i) of 
MU (1990a).      D 

It is useful to define the grouped data version of S^ given by 

S<*>(/M) = 4£z*rr
(;V*>    forf€Tr. nln *—^   J     J 

j 

Note that, by Conditions (Cl.l) and continuity of s^ in (C2), if wn —► 0 and 

/„ —► 0, then Sg    satisfies Condition (Cl.l) in place of S^kK 

15 



PROOF OF THEOREM 3.1 Define X(ß) = n~l(C(ß) - C(ß0)), and Xg(ß) analo- 
gously for the grouped data case. Consider the difference between X(ß) and Xg{ß)% 

for some fixed ß. Routine manipulation gives 

X,(ß) - X(ß)  <-\ V / (ß - ße)(zj - Z,(u))/{iJt(u) e Tj}dNi(u) 

i z11, 
+ - /   log 

n Jo   ' 
' S?\ß,u)\      ,„(St°\ß,u) 
,Sl°\ß0,u), 

-log 
%#°>(A,«), 

The first term on the r.h.s. is bounded above by 

\ß - ß0\ sup |(Zj - Zi(u))l{Zi(u) e ij}\• i^»)(i)-^o, 

dJV(n)(u). 

*»j,« 

since the width of X,- is tun -> 0 and n_1Ar(n)(l) = Op(l), see AG (p. 1108). 
Similarly, the second term tends in probability to zero by continuity of log, the 
remark preceding the proof, and the assumption that $(°> is bounded away from 

p 
zero.   Thus \Xg(ß) — X(ß)\—>0.   The result now follows using the argument in 
Section 2.3 of AG.     □ 

PROOF OF THEOREM 3.2 Using a Taylor expansion of Ug(ß) around ßD, and in- 
specting the proof in the continuous data case (AG, p. 1106), we reduce to showing 
that 

1 
U9(ßo) - U(ßo) -^0    and    I sup Ig(ß) - I(ß) >0, 

where U(ß) is the derivative of C(/7), and I(ß) is minus the second derivative of 
C(ß). Now, since 

where M^ = £)i M%, we have 

Ug(ßo)-U(ßo)\ 
1 

^ 4s IE / (*i - Z.(«))'{Z;(u) e I,} dW,-(u) (6.6) 
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+ 

+ 1 

f (s«\ßo,u) _ 5»)(A,,,)\      (n) 

f[^2zje^
z^I{Z,(u)€Jj}Y,(u) 

J° \ i,i 

(6.7) 

?d) 
«4^^,«)   Ao(«)d« 

S?\ßo,u) 
(G.8) 

The integrands in (6.6) axe predictable and bounded in modulus by ifn, so that, 
using standard martingale theory, (6.6) is of order Op(wn). 

Next, (6.7) is bounded by 

1 
y/ri J0   \SW(ß0,u)     sW(ß0,u))aM     (U 

+ — Vl- &\ß0,tr)       S^ißctr) 
^i^\siO)(ß0,tr)       S?\ßo,U) 

|M<">|, 

where Mr is the increment of M^ over Tr and tr is an arbitrary point in Tr. 
The integrand of the first term is predictable and of order op(l) uniformly in u, by 
Conditions (Cl.l) and (C2), so, as in dealing with (6.6), the first term above con- 
verges in probability to zero. To deal with the second term, approximate Sg fSg 

by S^/S^°\ with an error of order Op(wn) uniformly in t. This leads to the upper 
bound 

i    Ln 

V7 k=0 r=l 

+ Op(wn)-±=T\M^\. 

(6.9) 

(6.10) 

r(») : Note that the second moment of Mr     is of order 0(nln) uniformly in r, so, by the 
Cauchy-Schwarz inequality and Condition (Cl.2), we have 

E\\^k\ß^tr)-^
k\ßo,tr)\\M^\]<0{n-'y/20{nlnyl2=0{l„fl\ 

uniformly in r, for k = 0,1. Thus (6.9) is of order 

n-ll20P{\)LnO{lnyi2 = OP(nln)-^2-^0 

since nln —* oo. The term (6.10) is of order 

Op(u)n)n-
]/2InO(n;n)1/2 = Op(ici//„)1/2-^0, 
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since nw„ —► 0 and nln —> oo. We have shown that (6.7) converges in probability 
to zero. 

Now consider the läse term (6.8). Approximate the first term of the integrand 
by nS^\ with an error of order 0(nwn) uniformly in u. Then, also approximating 

$gl)/$g0) by 5(1)/5(0), we obtain an upper bound of order 

By the Lipschitz condition on Ao, the second term is of order Op(y/nln).   Since 
nw„ —► 0 and nl2

n —+ 0, it follows that (6.8) tends in probability to zero. 
Finally, consider the difference between Ig(ß) and I(ß). Note that 

and Ig{ß) is obtained by replacing S^ by Sg throughout this expression. By the 
remark preceding the proof of Theorem 2.1, the difference between the integrands 
in Ig(ß) and I(ß) tends uniformly in probability to 0.  Since 7V*(n)(l) = Op(n), it 

follows that n-1 sup^ \Ig(ß) — I(ß)\—*0, completing the proof.     D 

PROOF OF THEOREM 3.3 We shall use the notation N9(u) = Nrn) for u € Tr. 
Note that 

v/£(Ä(t) - Ao(0) =-FT-  /   f-7sA ^7T^ |JV'(U)<*U 
y/ZlnJo \s?\ß,u)     SC)(/?,u)/ (6n) 

where 

*W = A= f   ( K -j^k r) dN^n\u). 

Consider the first term on the right hand side of the decomposition (6.11). We may 

approximate Sg (ß,u) by §(°\ß,u) with an error of order 0(wn) uniformly in u. 

The second moment of Mr is of order of 0(nln) uniformly in r, so that Nr is of 
order of Op(nln) uniformly in r by nln —> oo. Thus the first term is of order 

0P(wn)^L-Op(nln) = OptvWO-^O 
vnln 

uniformly in t and ß. 
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As in AG, denote 

{P' '        nj0   {SW(ß,u)V W' 

and let Hg be the grouped version of H obtained by replacing S^ by §(k\ k = 0,1, 
Taylor's expansion gives 

X{t)=Hg{ßut)-^iß-ß0), 

where ß\ lies between ß and /?o- From the proof of Theorem 3.4 of AG (p.1109), 
H(ßi,t) converges in probability to —E • ?/>(£) uniformly in £, for any /?i such that 

ßi—>ßo. The difference between Hg(ß,t) and H{ß,i) is of order op(l) uniformly 
in ß and £. Thus, Hg(ßi,t) also converges in probability to — S • ?/>(£) and it follows 
from the proof of Theorem 3.2 and the proof of Theorem 3.2 of AG (p. 1106) that 

X—>mi (!)?/>. We have used the conditions nw2
n —► 0, n/^ —> 0 and n/n —»• co in 

order to be able to appeal to Theorem 3.2. 
Since Ao is Lipschitz and nl\ —» 0, as in dealing with (6.7) in the proof of 

Theorem 3.2, the last term on the right hand side of the decomposition of (6.11) 
differs from the piecewise linear approximation MQ to 

1     t* dM^ju) 
Mo(t) - ^ JB WKß^ü) 

by at most op(l), uniformly in i. From the proof of Theorem 3.4 of AG, Mo—»m0 

and, also using the proof of Theorem 3.2, Mo and X are seen to be asymptotically 
independent. Thus (MQ^X) converges in distribution to (mo,mi(l)^>), and, by 
applying a slightly extended version of Lemma 4.1 of McKeague (1988), so does 
(M0*,X*). This completes the proof.      D 

PROOF OF THEOREM 4.1 The proof is almost identical to the proof of Theorem 
4.1 of MU (1991), so we only sketch the required modifications. In (Q.S) of that 

paper, M< replaces M, MQ replaces Mo, and we appeal to Lemma 4.1 of McKeague 
(1988) to show that these substitutions make no difference asymptotically. We also 
need to show that 

s(*}(/?o,u)= /   xkeßoXf(u,x)dx    for k = 0,1,2, (6.12) 
Jo 

as is immediate in the i.i.d. case. Since x K-> xkeßoZ is Lipschitz on bounded intervals, 

/    S(k\ßQ,u)-  f  xkeßoXf(u,x)dx du^op(^/^L) + Op(wn) 
Jo Jo 
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by Condition (Bl). Thus the representation (6.12) follows by the triangle inequality, 
Condition (Cl.l), and continuity of s'*'. 

Finally, note that under the piecewise constant model the remainder terms 
(6.8), (6.10) and the first term in (6.11) are absent, so Theorems 3.2 and 3.3 hold 
without the condition nw„ —> 0.      D 
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Table 1»  Observed Coverage Probabilities of Asymptotic 95% Confidence Intervals 
for ß0. 

Cens Ln Jn 

Sample Size 

250 500 1000 5000 10000 50000 

31% 

5 
10 
20 

5 
5 
5 

.9490 

.9490 

.9488 

.9494 

.9488 

.9490 

.9492 

.9496 

.9498 

.9496 

.9496 

.9494 

.9506 

.9504 

.9502 

.9438 

.9456 

.9450 

5 
10 

10 
10 

.9510 
,9510 

.9478 

.9478 
.9466 
.9476 

.9508 

.9508 

.9482 

.9490 
.9480 
.9484 

5 
20 

20 
20 

.9492 

.9488 
.9464 
.9458 

.9494 

.9494 
.9504 
.9502 

.9508 

.9512 
.9478 
.9474 

60% 

5 
10 
20 

5 

5 
5 

.9516 

.9524 

.9520 

.9490 

.9494 

.9492 

.9512 

.9514 

.9516 

.9428 

.9428 

.9428 

.9460 

.9452 

.9452 

.9526 
,9528 
.9526 

5 

10 

10 

5 

.9518 

.9528 

.9460 

.9466 

.9484 

.9480 

.9454 

.9454 

.9476 

.9480 

.9530 

.9530 
5 
20 

20 
20 

.9536 

.9524 
.9466 
.9462 

.9502 

.9506 
.9460 
.9452 

.9468 

.9470 
.9522 
.9526 

Table 2.   Observed Probabilites of Rejecting the Cox Model at Asymptotic Level 
5%. 

Cens Ln Jn 

Sample Size 
250 500 1000 5000 10000 50000 

31% 

5 

10 

20 

5 

5 
5 

.0806 

.0732 

.0750 

.0556 

.0596 

.0584 

.0608 

.0576 

.0594 

.0568 

.0576 

.0570 

.0516 

.0520 

.0484 

.0472 

.0472 

.0480 
5 
10 

10 
10 

.2160 

.2298 
.1480 
.1542 

.1180 

.1146 

.0704 

.0800 
.0608 
.0658 

.0510 

.0564 
5 
20 

20 
20 

.6534 

.7364 
,4290 
.4702 

.3236 

.3326 

.1744 

.1836 
.1276 
.1368 

.0668 

.0772 

60% 

5 

10 
20 

5 

5 
5 

.0702 

.0644 

.0644 

.0580 

.0580 

.0582 

.0634 

.0548 

.0576 

.0592 

.0576 

.0600 

.0526 

.0504 

.0490 

.0520 

.0494 

.0478 
5 
10 

10 
10 

.1592 

.1600 
.1176 
.1114 

.1006 

.0964 
.0796 

.0800 

.0682 

.0668 
.0572 

.0578 
5 

20 

20 

20 

.4662 

.5306 
.2830 
.3056 

.2196 

.2222 
.1576 
.1622 

.1308 

.1348 
.0798 
.0888 

NOTES: The data were generated using the uniform random number generator of 
Marsaglia, Zaman and Tsang (1990). The number of samples in each run was 5000. 
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