
REPORT DOMPI IMcKITATION PAGE J AI. 70-08
P~1~ u rupow, me Utn. for 8 uwbmucfn eswdtq Xiiq "a smo= gonbi nu - -

oe ft 11 msbOf kfiafn.ki II-SUNjIfMM ft mI I I; ft bu*..k 19 WftoS D-A 238 079 '"00.. A m

RT DATE j3. REPORT TYPE AND DATES COVERED

Final: 09 Jan 1991 to 01 Mar 1993
r .. . 5. FUNDING NUMBERS

Tartan Inc., Tartan Ada VMS/C30 version 4.0, VAXstation 3100 (Host) to TI
TMS320C30 VMS 5.2 (Target), 90121011.11121

6. AUTHOR(S)

IABG-AVF
Ottobrunn, Federal Republic of Germany O T IC

NF FLECT F
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)1*,. JULU, 1911 8. PERFORMING ORGANIZATION

IABG-AVF, Industrieanlagen-Betriebsgeselschaft ,a REPORT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 080
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081

1 . SUPPLEMENTARY NOTES

12&. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Tartan Inc., TArtan Ada VMS/C30, Version 4.0, Ottobrunn Germany, VAXstation 3100 (Host) to TI TMS320C30 VMS 5.2
(Target), ACVC 1.11.

91-0386611111111111I I, I Il M11101101
14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE COOE

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 296, (Rev. 2-89)
Pv~ by ANSI Sd. 239-126

.

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on December 10, 1990.

Compiler Name and Version: Tartan Ada VMS/C30 version 4.0

Host Computer System: VAXstation 3100 VMS 5.2

Target Computer System: 320C30 on Texas Instruments Application board

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
90121011.11121 is awarded to Tartan Inc. This certificate expires on
1 March, 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Directo,.omputer & Software Engineering Division
Institute for Defense Analyses 4'-4 1 * for-
Alexandria VA 22311

T 1? c t i " _

6ida Joint Program Office (lNtr bu t..
Dr. John Solomond, DirectorD e p a r t m e n t o f D e f e n s e

----- -- - l a_ i l i td. C 0 0

Washington DC 20301 an d/--oor lis Special

AVF Control Number: IABG-VSR 080

9 January, 1991

based on TEMPLATE Version 90-08-15 ==

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 90121011.11121
Tartan Inc.

Tartan Ada VMS/C30 version 4.0

VAXstation 3100 => TI TMS320C30
VMS 5.2 Application board

Prepared By:

IABG, ABT. ITE

DECLARATION OF CONFORMANCE

Customer: Tartan, Inc.

Certificate Awardee: Tartan, Inc.

Ada Validation Facility: IABG

ACVC Version: 1. 1

Ada Implementation:

Ada Compiler Name and Version: Tartan Ada VMS/C30 Version 4.0

Host Compiler System: VAXstation 3100 VMS 5.2

Target Computer System: 320C30 on TI Application Board

Declaration:

[I/we] the undersigned, declare that [I/we] have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed above.

_ _ _ _ _ _ _ _ _ _ _ _ _ Date: /
Customer Signature

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83J using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552) . The results of this validation apply
only to the computers, operating systems, and compiler versions identifieA in
this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Proaramming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECKFILE are used for this purpose. The package REPORT
also provides, a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECKFILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In scme tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and implementation-
dependent characteristics. The modifications required for this
implementation are described in Section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see Section 2.1) ana,
possibly some inapplicable tests (see Section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test -uite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer syste; to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Comiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

Conformity Fulfillment by a product, process or service of all
requirements specified.

1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

Operating Software that controls the execution of programs and that
System provides services such as resource allocatior, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.

Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for

withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is November 21, 1990.

E28005C B28006C C34006D C35702A B41308B C43004A

C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C97116A C98003B

BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A

CC1226B BC3009B ADlBO8A BDlB02B BDlB06A BD2AO2A

CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A CD4022A CD4022D CD4024B

CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E

CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E

CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A

CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B

CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant

for a given Ada implementation. Reasons for a test's inapplicability may

be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for

the reasons indicated; references to Ada Commentaries are included as

appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations requiring more
digits than SYSTEM.MAXDIGITS:

C24113F. .Y (20 tests) C35705F. .Y (20 tests)
C35706F. .Y (20 tests) C35707F. .Y (20 tests)
C35708F. .Y (20 tests) C35802F. .Z (21 tests)
C45241F. .Y (20 tests) C45321F. .Y (20 tests)
C45421F. .Y (20 tests) C45521F. .Z (21 tests)
C45524F .Z (21 tests) C45621F. .Z (21 tests)
C45641F. .Y (20 tests) C46012F. .Z (21 tests)

The following 21 tests check for the predefined type SHORTINTEGER:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55BO9D B86001V C86006D
CD7101E

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B074 B55B09C B86001W C86006C
CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or SHORTINTEGER.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a name
other than FLOAT, LONGFLOAT, or SHORTFLOAT.

A35801E checks that FLOAT' FIRST. .FLOAT' LAST may be used as a range constraint
in a floating-point type declaration; for this implementation, that range
exceeds the range of safe numbers of the largest predefined floating-point
type and must be rejected. (see 2.3.)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point operations
for types that require a SYSTEM.MAX-MANTISSA of 47 or greater; for this
implementation, there is no such type.

C45536A, C46013B, C46031B, C46033B, and C46034B contain 'SMALL
representation clauses which are not powers of two or ten.

C45624A and C45624B are not applicable as MACHINE OVERFLOWS is TRUE for
floating-point types.

2-2

IMPLEMENTATION DEPENDENCIES

B86001Y checks for a predefined fixed-point type other than DURATION.

CA2009A, CA2009C .D (2 tests), CA2009F and BC3009C instantiate generic units
before their bodies are compiled; this implementation creates a dependence on
generic units as allowed by AI-00408 & AI-00506 such that the compilation of
the generic unit bodies makes the instantiating units obsolete. (see 2.3.)

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A53A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten type'small; this implementation does not support
decimal smalls. (see 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A84O use -epresentation
clauses specifying non-default sizes for access types.

CD2Bl5B checks that STORAGE ERROR is raised when the storage size specified
for a collection is too small to hold a single value of the designated type;
this implementation allocates more space than what- the length clause
specified, as allowed by AI-00558.

The following 264 tests check for sequential, text, and direct access files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A. C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (E) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (-6) CE3805A..B (2)

2-3

IMPLEMENTATION DEPENDENCIES

CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L. CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B and CE3107A require NAMEERROR to be raised when an attempt
is made to create a file with an illegal name; this implementation does not
support external files and so raises USEERROR. (see 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see Section 1.3) were required for 106 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way

expected by the original tests.

B22003A B24007A B24009A B25002B B32201A B33204A
B33205A B35701A B36171A B36201A B37101A B37102A
B37201A B37202A B37203A B37302A B38003A B38003B
B38008A B38008B B38009A B38009B B38103A B38103B
B38103C B38103D B38103E B43202C B44002A B48002A
B48002B B48002D B48002E B48002G B48003E B49003A
B49005A B49006A B49006B B49007A B49007B B49009A
B4AO10C B54A20A B54A25A B58002A B58002B B59001A
B59001C B590011 B62006C B67001A B67001B B67001C

B67001D B74103E B74104A B74307B B83EOlA B83E01B
B85007C B85008G B85008H B91004A B91005A B95003A
B95007B B95031A B95074E BC1002A BC1109A BC1109C
BC1206A BC2001E BC3005B BD2AO6A BD2B03A BD2DO3A

BD4003A BD4006A BD8003A

E28002B was graded inapplicable by Evaluation and Test Modification as
directed by the AVO. This test checks that pragmas may have unresolvable
arguments, and it includes a check that pragma LIST has the required effect;
but for this implementation, pragma LIST has no effect if the compilation
results in errors or warnings, which is the case when the test is processed
without modification. This test was also processed with the pragmas at lines

46, 58, 70 and 71 commented out so that pragma LIST had effect.

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO; the compiler rejects the use of the range FLOAT'FIRST. .FLOAT'LASTas the
range constraint of a floating-point type declaration because the bounds lie

outside of the range of safe numbers (cf. LRM 3.5.7(12)).

Tests C45524A. . E (5 tests) were graded passed by Test Modification as
directed by the AVO. These tests expect that a repeated division will result
in zero; but the standard only requires that the result lie in the smallest

safe interval. Thus, the tests were modified to check that the result was

2-4

IMPLEMENTATION DEPENDENCIES

within the smallest safe interval by adding the following code after line
141; the modified tests were passed:

ELSIF VAL <= F'SAFESMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

C83030C and C86007A were graded passed by Test Modification as directed by
the AVO. These tests were modified by inserting "PRAGMA ELABORATE (REPORT);"
before the package declarations at lines 13 and 11, respectively. Without the
pragma, the packages may be elaborated prior to package report's body, and
thus the packages' calls to function Report. IdentInt at lines 14 and 13,
respectively, will raise PROGRAMERROR.

B83EOlB was graded passed by Evaluation Modification as directed by the AVO.
This test checks that a generic subprogram's formal parameter names (i.e.
both generic and subprogram formal parameter names) must be distinct; the
duplicated names within the generic declarations are marked as errors,
whereas their recurrences in the subprogram bodies are marked as "optional"
errors--except for the case at line 122, which is marked as an error. This
implementation does not additionally flag the errors in the bodies and thus
the expected error at line 122 is not flagged. The AVO ruled that the
implementation's behavior was acceptable and that the test need not be split
(such a split would simply duplicate the case in B83EOlA at line 15).

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C were graded inapplicable
by Evaluation Modification as directed by the AVO. These tests instantiate
generic units before those units' bodies are compiled; this implementation
creates dependences as allowed by AI-00408 & AI-00506 such that the
compilation of the generic unit bodies makes the instantiating units
obsolete, and the objectives of these tests cannot be met.

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contain uses of the types that require a constraint. However, the
generic bodies are compiled after the units that contain the instantiations,
and this implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 & AI-00506 such that the compilation
of the generic bodies makes the instantiating units obsolete--no errors are
ietected. The processing of these tests was modified by compiling the
seperate files in the following order (to allow re-compilation of obsolete
units), and all intended errors were then detected by the compiler:

BC3204C: CO, Cl, C2, C3M, C4, C5, C6, C3M

BC3205D: DO, D2, DIM

2-5

IMPLEMENTATION DEPENDENCIES

BC3204D and BC3205C were graded passed by Test Modification as directed by

the AVO. These tests are similar to BC3204C and BC3205D above, except that

all compilation units are contained in a single compilation. For these two

tests, a copy of the main procedure (which later units make obsolete) was

appended to the tests; all expected errors were then detected.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the

AVO. The test contains a specification of a power-of-ten value as small for

a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal

smalls may be omitted.

AD9001B and AD9004A were graded passed by Processing Modification as directed

by the AVO. These tests check that various subprograms may be interfaced to

external routines (and hence have no Ada bodies) . This implementation

requires that a file specification exists for the foreign subprogram bodies.

The following command was issued to the Librarian to inform it that the

foreign bodies will be supplied at link time (as the bodies are not actually

needed by the program, this command alone is sufficient:

ALC30 interface/system AD9004A

CE2103A, CE2103B and CE3107A were graded inapplicable by Evaluation

Modification as directed by the AVO. The tests abort with an unhandled

exception when USEERROR is raised on the attempt to create an external file.

This is acceptable behavior because this implementation does not support

external files (cf. AI-00332).

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Mr Ron Duursma
Director of Ada Products
Tartan Inc.
300, Oxford Drive,

Monroeville, PA 15146,
USA.
Tel. (412) 856-3600

For a point of contact for sales information about this Ada implementation
system, see:

Mr Bill Geese
Director of Sales
Tartan Inc.

300, Oxford Drive,
Monroeville, PA 15146,
USA.
Tel. (412) 856-3600

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Aca Programming

3-1

PROCESSING INFORMATION

Language Standard, whether the test is applicable or inapplicable;

otherwise, the Ada Implementation fails the ACVC [Pro90.

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3452

b) Total Number of Withdrawn Tests 83

c) Processed Inapplicable Tests 86
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 635 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

The above number of I/O tests were not processed because this implementation

does not support a file system. The above number of floating-point tests were

not processed because they used floating-point precision exceeding that

supported by the implementation. When this compiler was tested, the tests
21isted in Section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was

tested, the tests listed in Section 2.1 had been withdrawn because of test

errors. The AVF determined that 635 tests were inapplicable to this

implementation. All inapplicable tests were processed during validation

testing except for 285 executable tests that use floating-point precision

exceeding that supported by the implementation and 264 executable tests that

use file operations not supported by the implementation. In addition, the

modified tests mentioned in Section 2.3 were also processed.

A Magnetic Tape Reel containing the customized test suite (see Section 1.3)

was taken on-site by the validation team for processing. The contents of the

tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of

tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as

appropriate. The executable images were transferred to the target computer

system by the communications link, an RS232 Interface, and run. The results

were captured on the host computer system.

Testing was performed using command scripts provided by the customer and

reviewed by the validation team. See Appendix B for a complete listing of

the processing options for this implementation. It also indicates the

3-2

PROCESSING INFORMATION

default options. The options invoked explicitly for validation testing

during this test were:

options used for compiling:

/replace forces the compiler to accept an attempt to compile a unit
imported from another library which is normally prohibited.

/nosave-source suppresses the creation of a registered copy of the source

code in the library directory for use by the REMAKE and MAKE

subcommands.

/list=always forces a listing to be produced, default is to only produce

a listing when an error occurs.

No explicit Linker options were used.

Test output, compiler and linker listings, and job logs were captured on a

Magnetic Tape Reel and archived at the AVF. The listings examined on-site by

the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.

The meaning and purpose of these parameters are explained in [UG89]. The

parameter values are presented in two tables. The first table lists the

values that are defined in terms of the maximum input-line length, which is

the value for SMAX IN LEN--also listed here. These values are expressed

here as Ada string aggregates, where "V" represents the maximum input-line

length.

Macro Parameter Macro Value

$BIGIDi (i..V-1 => 'A', V => 'i')

$BIGID2 (1..V-. => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(1..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-1-V/2 => 'A')

$BIGINTLIT (l..V-3 => '0') & "298"

SBIG REAL LIT (I..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (I..V/2 => 'A') & '"'

SBIGSTRING2 '"' & (1..V-l-V/2 => 'A') & 'I' & '"'

SBLANKS (i..V-20 => ' ')

SMAXLENINTBASEDLITERAL

"2:" & (l..V-5 => '0') & "Ii:"

SMAXLENREALBASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAXSTRING LITERAL '"' & (1..V-2 => 'A') & '"'

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

SMAXINLEN 240

SACCSIZE 32

$ALIGNMENT 1

SCOUNTLAST 2147483646

$DEFAULTMEMSIZE 16777216

SDEFAULTSTORUNIT 32

SDEFAULTSYSNA-ME T1320C30

SDELTADOC 2#1.0#E-31

$ENTRYADDRESS SYSTEM.ADDRESS' (16*809803*)

SENTRYADDRESS1 SYSTEM.ADDRESS' (16*809804*)

SENTRY ADDRESS2 SYSTEM.ADDRESS' (16*809805*)

SFIELDLAST 20

$FILETERMINATOR II

$FIXED-NAME NOSUCHTYPE

SFLOATNAME NO SUCHTYPE

SFORMSTRINGftf

SFORMSTRING2 "CANNOTRESTRICTFILECAPACITY"I

SGREATERTHANDURATION

100_000.0

$GREATERTHANDURATIONBASELAST
131_073.0

$GREATERTHANFLOATBASELAST
3. 50282E+38

$GREATERTHAN FLOATSAFELARGE
1 .OE+38

A-2

MACRO PARAMETERS

SGREATERTHANSHORTFLOATSAFELARGE
1. OE-438

$HIGHPRIORITY 100

$ILLEGALEXTERNALFILENAMEI
ILLEGALEXTERNALFILENAME1

S ILLEGALEXTERNALFILENAME2
ILLEGALEXTERNAL FILENAME2

S INAPPROPRIATELINE LENGTH
-1.

$ INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMA1 "PRAGMA INCLUDE ("A28006Dl.TST.")"

SINCLUDEPRAGMA2 "PRAGMA INCLUDE ("B28006F1.TST")"

SINTEGERFIRST -2147483648

$INTEGERLAST 2147483647

SINTEGERLASTPLUS_1 2147483648

S INTERFACELANGUAGE TiC

SLESSTHAN DURATION -100_000.0

SLESSTHANDURATIONBASEFIRST

-131_073.0

SLINETERMINATOR ff

SLOWPRIORITY 10

$MACHINECODESTATEMENT
TwoOpids' (LDI, (Imrn,5), (Reg,RO));

SMACHINECODE TYPE Instruction Mnemonic

$MANTISSADOC 31

SMAXDIGITS 9

SMAXINT 2147483647

SMAXINTPLUS 1 217834

SMININT -2147483648

A-3

MACRO PARAMETERS

$NAME NO SUCH TYPE AVAILABLE

$NAMELIST T1320C30

$NAMESPECIFICATIONi DUA2: (ACVC11.C30.TESTBED]X2120A. ;1

SNAMESPECIFICATION2 DUA2: [ACVC11.C3O .TESTBED]X212OB. ;2

SNAMESPECIFICATION3 DUA2: fACVC11 .C30 .TESTBED]X311.9A.; 1

SNEGBASEDINT 16#FFFFFFFE#

$NEWMEMSIZE 16777216

$NEWSTORUNIT 32

SNEWSYSNAME T1320C30

SPAGETERMINATOR f

SRECORDDEFINITION record Operation: InstructionMnemonic;

operand_-1: operand; Operand_2: Operand;
end record;

$RECORDNAME Two_Opnds

$TASKSIZE 32

$TASKSTORAGESIZE 4096

STICK 0.00006103515625

$VARIABLEADDRESS SYSTEM.ADDRESS' (16#809800#)

$VARIABLEADDRESS1 SYSTEM.ADDRESS' (16#809801#)

SVARIABLEADDRESS2 SYSTEM.ADDRESS' (16#809802#)

SYOURPRAGMA NOSUCHPRAGMA

A-4

APPENDIX B'

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-i

Compilation switches for Tartan Ada VMS C30.

/NOCROSS-REFERENCE [default]
Controls whether the compiler generates a
cross-reference table of linknames for the
compilation unit. The table will be placed in
the file unit-name.XRF (See Section 3.6).

/CALLSHORTRANGE Generates 16-bit PC-relative conditional call
instructions. By using this option, the user
asserts that the program space for the final
program will be small enough for all calls to
use the 16-bit PC-relative conditional call
instruction. If the assertion is in fact
incorrect, erroneous code could result.

/ERRORLIMIT-n Stop compilation and produce a listing after
n errors are encountered, where n is in the
range 0..255. The default value for n is
255. The /ERROR LIMIT qualifier cannot be
negated.

/FIXUP[=option] When package MACHINECODE is used, controls
whether the compiler attempts to alter
operand address modes ,when those address
modes are used incorrectly. The available
options are:

QUIET The compiler attempts to generate
extra instructions to fix incorrect
address modes in the array ag-
gregates operand field.

WARN The compiler attempts to generate
extra instructions to fix incorrect
address modes. A warning message
is issued if such a ''fixup'' is
required.

NONE The compiler does not attempt to
fix any machine code insertion that
has incorrect address modes. An
error message is issued for any
machine code insertion that is
incorrect.

When no form of this qualifier is supplied in
the command line, the default condition is
/FIXUP=QUIET. For more information on
machine code insertions, refer to section
5.10 of this manual.

/LIBRARYlibrary-name Specifies the library into which the file is
to be compiled. The compiler reads any

2

ADALIB.I13 files in the default directory.

/LIST[=option]
/NOLIST Controls whether a listing file is produced.

If produced, the file has the source file
name and a .LIS extension. The available
options are:

ALWAYS Always produce a listing
file

NEVER Never produce a listing
file, equivalent to /NOLIST

ERROR Produce a listing file only
if a compilation error or
warning occurs

When no form of this qualifier is supplied in
the command line, the default condition is
/LIST=-ERROR. When the LIST qualifier is
supplied without an option, the default
option is ALWAYS.

/MACHINE CODE
/NOMACHINE_CODE [default]

Controls whether the assembly code files
produced by the compiler are retained in the
user's directory after compilation is
complete. This qualifier is useful if the
user wishes to inspect the compiler output
for code correctness and quality. The
default is /NOMACHINE which deletes these
machine language files.

/NOENUMIAGE Causes the compiler to omit data segments
with the text of enumeration literals. This
text is normally produced for exported
enumeration types in order to support the
text attributes ('IaMGE, 'VALUE and 'WIDTH).
You should use /NOENUMIMAGE only when you can
guarantee that no unit that will import the
enumeration type will use any of its text
attributes. However, if you are compiling a
unit with an enumeration type that is not
visible to other compilation units, this
qualifier is not needed. The compiler can
recognize when the text attributes are not
used and will not generate the supporting
strings.The /NOENUMIMAGE qualifier cannot be
negated.

/NOHUGELOOPS Inform the compiler that no loops will iter-
ate more than 2**23 times. This includes non-
user specified loe s, such as those generated
by the compiler to operate on large objects.
If the assertion is in fact, incorrect,

3

erroneous code could result.

/NODELAYEDBRANCHES Do not generate delayed branch instructions.

/OPT=n Controls the level of optimization performed
by the compiler, requested by n. The /OPT
qualifier cannot be negated. The optimiza-
tion levels available are:

n = 0 Minimum - Performs context

determination, constant
folding, algebraic manipula-
tion, and short circuit
analysis. Inlines are not
expanded.

n = 1 Low - Performs level 0
optimizations plus common
subexpression elimination
and equivalence propagation
within basic blocks. It
alsv optimizes evaluation
order. Inlines are not
expanded.

n = 2 Best tradeoff for space/time
- the default level. 'Per-
forms level 1 optimizations
plus flow analysis which is
used for common subexpres-
sion elimination and equiv-
alence propagation across
basic blocks. It also
performs invariant expres-
sion hoisting, dead code
elimination, and assignment
killing. Level 2 also
performs lifetime analysis
to improve register alloca-
tion. It also performs
inline expansion of sub-
program calls indicated by
Pragma INLINE, if possible.

n =3 Time - Performs level 2
optimizations plus inline
expansion of subprogram
calls which the optimizer
decides are profitable to
expand (from an execution
time perspective). Other
optimizations which improve
execution time at a cost to
image size are performed
only at this level.

n = 4 Space - Performs those

4

optimizations which usually
produce the smallest code,
often at the expense of
speed. This optimization
level may not always produce
the smallest code, however,
another level may produce
smaller code under certain
conditions.

/PHASES
/NOPHASES [default] Controls whether the compiler announces each

phase of processing as it occurs. These
phases indicate progress of the compilation.
If there is an error in compilation, the
error message will direct users to a specific
location as opposed to the more general
/PHASES.

/SUPPRESSE=(option, ...)]
Suppresses the specific checks identified by
the options supplied. The parentheses may be
omitted if only one option is supplied. The
/SUPPRESS qualifier has the same effect as a
global pragma SUPPRESS applied to the source
file. If the source program also contains a
pragma SUPPRESS, then a given check is
suppressed if either the pragma or the
qualifier specifies it; that is, the effect
of a pragma SUPPRESS cannot be negated with
the command line qualifier. The /SUPPRESS
qualifier cannot be negated.

The available options are:

ALL Suppress all
checks. This
is the default
if the
qualifier is
supplied with
no option.

ACCESSCHECK As specified in
the Ada LRM,
Section 11.7.

CONSTRAINTCHECK Equivalent of
(ACCESSCHECK,
INDEXCHECK,
DISCRIMINANTCHECK,
LENGTH-CHECK,
RANGECHECK).

DISCRIMINANTCHECK As specified in

6

allocator as a
result of a new
operation.

/WAITSTATES=[I..7] Specify the number of wait states for the
memory in which the branch code will be gen-
erated. It affects the code generated for
the delayed branches and for loops. The
default value is 2 wait states.

/WARNINGS [default]
/NOWARNINGS Controls whether the warning messages

generated by the compiler are displayed to
the user at the terminal and in a listing
file, if produced. While supressing warning
messages also halts display of informational
messages, it does not suppress Error,
FatalError.

5

the Ada LRM,
Section 11.7.

DIV SION_CHECK Will suppress
compile-time
checks for
division by
zero, but the
hardware does
not permit ef-
ficient runtime
checks, so none
are done.

ELABORATIONCHECK As specified in
the Ada LRM,

Section 11.7.

INDEXCHECK As specified in
the Ada LRM,
Section 11.7.

LENGTH-CHECK As specified in
the Ada LRM,
Section 11.7.

NONE No checks are
suppressed.
This is the

default if the
qualifier is
not supplied on
the comand
line.

OVERFLOW CHECK Will suppress
compile-time
checks for
overflow, but
the hardware
does not permit
efficient run-
time checks, so
none are done.

RANGE CHECK As specified in
the Ada LRN,
Section 11.7.

STORAGE_CHECK As specified in
the Ada LRM,
Section 11.7.
Suppresses only
stack checks in
generated code,
not the checks
made by the

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,

references in this appendix are to linker documentation and not to this
report.

B-2

Linker switches for VMS hosted Tartan Ada compilers.

COMMUM QUALIFIERS

This section describes the command qualifiers available to a user who directly
invokes the linker. The qualifier names can be abbreviated to unique
prefixes; the first letter is sufficent for all current qualifier names. The
qualifier names are not case sensitive.

/CONTROL=file The specified file contains linker control commands.
Only one such file may be specified, but it can
include other files using the CONTROL command. Every
invocation of the linker must specify a control file.

/OUTPUT=file The specified file is the name of the first output
object file. The module name for this file will be
null. Only one output file may be specified in this
manner. Additional output files may be specified in
the linker control file.

/ALLOCATIONS Produce a link map showing the section allocations.

/UNUSEDSECTIONS Produce a link map showing the unused sections.

/SYMBOLS Produce a link map showing global and external
symbols.

/RESOLVEMODULES This causes the linker to not perform unused section
elimination. Specifying this option will generally
make your program larger, since unreferenced data
within object files will not be eliminated. Refer to
Sections RESOLVE-CMD and USE-PROCESSING for infor-
mation on the way that unused section elimination
works.

/MAP Produce a link map containing all information except
the unused section listings.

Note that several listing options are permitted. This is because link maps
for real systems can become rather large, and writing them consumes a
significant fraction of the total link time. Options specifying the contents
of the link map can be combined, in which case the resulting map will contain
all the information specified by any of the switches. The name of the file
containing the link map is specified by the LIST command in the linker control
file. If your control file does not specify a name and you request a listing,
the listing will be written to the default output stream.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-

dependent pragmas, to certain machine-dependent conventions as mentioned in

Chapter 13 of the Ada Standard, and to certain allowed restrictions on

representation clauses. The implementation-dependent characteristics of this

Ada implementation, as described in this Appendix, are provided by the

customer. Unless specifically noted otherwise, references in this Appendix

are to compiler documentation and not to this report. Implementation-

specific portions of the package STANDARD, which are not a part of Appendix

F, are:

package STANDARD is

.o.........

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range
-2#1.000000000000000000000000#e+128
2#0.111111111111111111ll1111#e+128;

type LONG FLOAT is digits 9 range
-2#1.00000000000000000000000000000000#e+128 .
2#1.11111111111111111111111111111111#e+128;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

°..........

end STANDARD;

C-1

Chapter 4
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to the LRM which is Military Standard. Ada Programming
Language, ANSVMIL-STD-1815A (American National Standards Institute, Inc., February 17, 1983).

4.1. PRAGMAS

4.1.1. Predefined Pragmas
This section summarizes the effects of and restrictions on predefined pragmas.

" Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect
Space deallocated by means of UNCHECKEDDEALLOCATION will be reused by the allocation of new
objects.

* Pragma ELABORATE is supported.

" Pragma INLINE is supported.

* Pragma INTERFACE is supported. The Language-Name TIC is used to make calls to subprograms
(written in the Texas Instruments C language) from Tartan Ada. Any other LanguageName will be
accepted, but ignored, and the default will be used.

" Pragma LIST is supported but has the intended effect only if the command qualifier LIST-ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Pragia MEMORYSIZE is accepted but no value other than that specified in Package SYSTEM (Section
4.3) is allowed.

* Pragma OPTIMIZE is supported except when at the outer level (that is, in a package specification or
body).

* Pragma PACK is supported.

" Pragma PAGE is supported but has the intended effect only if the command qualifier LIST-ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

" Pragma PRIORITY is supported.

* Pragma STORAGEUNIT is accepted but no value other than that specified in Package SYSTEM (Section
4.3) is allowed.

* Pragma SHARED is not supported. No warning is issued if it is supplied.

" Pragma SUPPRESS is supported.

" Pragma SYSTEMNAME is accepted but no value other than that specified in Package SYSTEM (Section
4.3) is allowed.

4-1

USER MANUAL FOR TARTAN ADA VMS C30

4.1.2.1. Pragma LINKAGENAME

The pragma LINKAGE NAME associates an Ada entity with a string that is meaningful externally; e.g., to a
linkage editor. It takes theform

pragma LINKAGENAME (Ada-simple-name, string-constant)
The Ada-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a runtime representation; e.g., a subprogram, exception or object. It may not be a named number or
string constant. The pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

This pragma has no effect when applied to a library subprogram or to a renames declaration; in the latter case,
no warning message is given.

When determining the maximum allowable length for the external linkage name, keep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name has 5 fewer significant characters than the lower limit of other tools that need to process
the name (e.g., 40 in the case of the Tartan Linker).

4.1.2.2. Pragma FOREIGNBODY

In addition to Pragma INTERFACE, Tartan Ada supplies Pragma FOREIGNBODY as a way to access
subprograms in other languages.

Unlike Pragma INTERFACE, Pragma FOREIGNBODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

Some restrictions on Pragma FOREIGNBODY that are not applicable to Pragma INTERFACE are:

* Pragma FOREIGNBODY must appear in a non-generic library package.
" All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
" Types may not be declared in such a package.

Use of the pragma FOREIGN BODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the ALBC30 FOREIGNBODY command
described in Section LIB-FOREIGN. The pragma is of the form:

pragma FOREIGNBODY (L.znguage name C, elaboration routine name])
The parameter Languagename is a string intended to allow the compiler to identify the calling convention used
by the foreign module (but this functionality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reentrant.

The optional elaboration routine name string argument is a linkage name identifying a routine to initialize
the package. The routine specified as the elaboration routine name, which will be called for the elaboration of
this package body, must be a global routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior to any declarations within the package specification., If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

The foreign body is entirely responsible for initializing objects declared in a package utilizing pragma
FOREIGN BODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

4-2

APPENDIX FTO MILZSTD-1815A

Pragma LINKAGENAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names. If pragma LINKAGENAME is
not used, the cross-reference qualifier, /CROSSREFERENCE, (see Section 3.2) should be used when invoking
the compiler and the resulting cross-reference table of linknames inspected to identify the linknames assigned by
the compiler and determine that there are no conflicting linknames (see also Section 3.5). In the following
example, we want to call a function plmn which computes polynomials and is written in C.

package MATHFUNCTIONS h
pragma FOREIGN BODY ("C");
fUnCtion POLYNOMIAL (X: INTEGER) return INTEGER;

--Ada spec matching the C routine
pragma LINKAGE NAME (POLYNOMIAL, "plmn");

--Force compiler to use name "plmn" when referring to this
-- function

end MATHFUNCTIONS;

with MATH FUNCTIONS; use MATH-FUNCTIONS;
procedure MAIN i
X:INTEGER :- POLYNOMIAL(10);

-- Will generate a call to "plmn"
begin ...

end MAIN;

To compile, link and run the above program, you do the following steps:

I. Compile MATH_FUNCTIONS

2. Compile MAIN

3. Obtain an object module (e.g. math. TOF) containing the compiled code for plmn.

4. Issue the command

ALBC30 FOREIGNBODY math-functions MATH.TOF

5. Issue the command

ALBC30 LINK MAIN

Without Step 4, an atempt to link will produce an error message informing you of a missing package body for
MATH FUNCTIONS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command ALBC30 FOREIGNBODY
(see Section LIB-FOREIGN) to use an Ada body from another library. The Ada body from another library must
have been compiled under an identical specification. The pragma LINKAGENAME must have been applied to
all entities declared in the specification. The only way to specify the linkname for the elaboration routine of an
Ada body is with the pragma FOREIGN.BODY.

4.2. IMPLEMENTA TION-DEPENDENT ATTRIBUTES

No implementation-dependent attributes are currently supported.

4-3

USER MANUAL FOR TARTAN ADA VMS C30

4.3. SPECIFICATION OF THE PACKAGE SYSTEM

The parameter values specified for the Texas Instruments 320C30 processor family target in package
SYSTEM [LRM 13.7.1 and Annex C) are:

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (T1320C30);
SYSTEM NAME : constant NAME :- T1320C30;
STORAGE UNIT : constant :- 32;
MEMORY _IZE : constant :- 16 777 216;
MAX INT : constant :- 2 Y47 _83 647;
MININT : constant : -AX INT - 1;
MAXDIGITS : constant : 9;

MAX MANTISSA : constant : 31;
FINEDELTA : constant :- 2#1.0#e-31;
TICK : constant :, 0.00006103515625 -- 2-*(-14)
subtype PRIORITY is INTEGER range 10 .. 100;
DEFAULT PRIORITY : constant PRIORITY :- PRIORITY'FIRST;
RUNTIMEERROR : exception;

end SYSTEM;

4.4. RESTRICTIONS ON REPRESENTATION CLAUSES
The following sections explain the basic restrictions for representation specifications followed by additional

restrictions applying to specific kinds of clauses.

4.4.1. Basic Restriction

The basic restriction on representation specifications [LRM 13.1] is that they may be given only for types
declared in terms of a type definition, excluding a generictype_definition (LRM 12.1) and a
private typedefinition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler, an error message is issued.

Further restrictions are explained in the following sections. Any representation clauses violating those restric-
tions cause compilation to stop and a diagnostic message to be issued.

4.4.2. Length Clauses

Length clauses [LRM 13.2] are, in general, supported. For details, refer to the following sections.

4.4.2.1. Size SpectrIcadons for Types

The rules and restrictions for size specifications applied to types of various classes are described below.

The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

* An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example

4.4

APPENDDC FTO MIL-STD-I11SA

type MyEnum is (A,B);
for Myenum'size use 1;
V,W: My_enum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V, W: Myenum;

end record;
pragma Pack(rec);
0: rec; -- will occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing take place
automatically and are transparent to the user.

e Adjacent bits to an object that is a component of a composite object, but whose size is
non-referable, may be affected by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are

stored with differing representational sizes in different contexts.

Note: A size specification cannot be used to force a certain size in value operations of the type; for
example

type my-int is range 0..65535;
for my_int'size use 16; -- o.k.
A,B: my-int;

.A + B... -- this operation will generally be
-- executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In contrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

type MY INT is range 0. .2**15-1;
for MY INT'SIZE use 16; -- (1)
subtype SMALLMY INT is MY_INT range 0..255;
type R is record

X: SMALLMY INT;

end record;

the component R. X will occupy 16 bits. In the absence of the length clause at (1), R. X may be
represented in 8 bits.

Size specifications for access types must coincide with the default size chosen by the complier for the type.

Size specifications are not supporte-' for floating-point types or task types.

No useful effect can be achieved by using size specifications for these types.

4.42.2. Size Specifcation for Scalar Types
The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in

the range of the values of the type). For numeric types with negative values the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus

type my-int is range 100..101;

requires at least 7 bits, although it has only two values, while

4-5

USER MANUAL FOR TARTAN ADA VMS C30

type my_int is range -101..-100;

requires 8 bits to account for the sign bit.

A size specification for a real type does not affect the accuracy of operations on the type. Such influence
should be exerted via the accuracy_definition of the type (LRM 3.5.7, 3.5.9).

A size specification for a scalar type may not specify a size larger than the largest operation size supported by
the target architecture for the respective class of values of the type.

4.42.3. Size Speciicaton for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy. Any alignment constraints on the component type (see Section 4.4.7) must be met.

The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

4.4.2.4. Size Specificadion for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types, nor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record or contain relative offsets of components within a
record layout for record components of dynamic size. These implementation-dependent components cannot be
named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

4.42.5. Specification of Collecdon Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGE ERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. No matter what the requested
object size, the allocator must allocate a minimum of 2 words per object. This lower limit is necessary for
administrative overhead in the allocator. For example, a request-of 5 words results in an allocation of 5 words; a
request of 1 word results in an allocation of 2 words.

In the absence of a specification of a collection size, the collection is extended automat. ally if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGEERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

4-6

APPENDX F TO MIL-STD-1I5A

4.4.2.6. Specif cadon of Task Acdvaion Size

The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

Any attempt to exceed the activation size during execution causes a STORAGE_ERROR exception to be
raised. Unlike collections, there is no extension of task activations.

4.42.7. Spectfication of' SMALL
Only powers of 2 are allowed for ' SMALL.

The length of the representation may be affected by this specification. If a size specification is also given for
the type, the size specification takes precedence; the specification of ' SMALL must then be accommodatable
within the specified size.

4.4.3. Enumeration Representation Clauses
For enumeration representation clauses [LRM 13.3], the following restrictions apply:

* The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified encodings is costly at run time.

" Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumeration type.

4.4.4. Record Representation Clauses

The alignment clause of record representation clauses [LRM 13.4] is observed.

Static objects may be aligned at powers of 2. The specified alignment becomes the minimum alignment of
the record type, unless the minimum alignment of the record forced by the component allocation and the
minimum alignment requirements of the components is already more stringent than the specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the rcord type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses;
no attempt is made to utilize gaps left by the user-provided allocation.

4.4.5. Address clauses

Address clauses [LRM 13.5] are supported with the following restrictions:

9 When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
meaningless. Address clauses applied to local packages are not supported by Tartan Ada. Address clauses
applied to library packages are prohibited by the syntax; therefore, an address clause can be applied to a
package only if it is a body stub.

4-7

USER MANUAL FOR TARTAN ADA VMS C30

* Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value identifies an interrup in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt.

* A specified address must be an Ada static expression.

4.4.6. Pragma PACK

Pragma PACK [LRM 13.1] is supported. For details, refer to the following sections.

4.4.6.1. Pragma PACK for Arrays

If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,
refer to the explanation of size specifications for arrays (Section 4.4.2.3).

If, in addition, a length clause is applied to

1. The array type, the pragma has no effect, since such a length clause already uniquely determines the array
packing method.

2. The component type, the array is packed densely, observing the component's length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

4.4.6.2. The Predefined Type String

Package STANDARD applies Pragma PACK to the type string. However, because type character is deter-
mined to be 32 bits on the C30, this results in one character per word.

4.4.6.3. Pragma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that the default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragnma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

4.4.7. Minimal Alignment for Types

Certain alignment properties of values of certain types arc enforced by the type mapping rules. Any represen-
tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically, restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in
contexts involving array indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

4-8

APPENDDC F TO MIL STD-1815A

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

No object of scalar type including components or subcomponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object's value to be performed by two
or more extractions.

4.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS
The only implementation-dependent components allocated by Tartan Ada in records contain dope information

for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

4.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES
Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task

entries. Tartan Ada implements the address clause

for TOENTRY use at intID;
by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of intID is both machine and compiler dependent.

4.7. RESTRICTIONS ON UNCHECKED CONVERSIONS
Tartan supports UNCHECKEDCONVERSION with a restriction that requires the sizes of both source and

target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will be truncated. If narrower, it will be zero-extended. Calls or instantiations
of UNCHECKEDCONVERSION are made inline automatically.

4.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supplies the predefined input/output packages DIRECTIO, SEQUENTIALIO, TEXTlo, and

LOW LEVELio as required by LRM Chapter 14. However, since the 320C30 chip is used in embedded
appliations lacking both standard I/O devices and file systems, the functionality of DIRECTIO,
SEQUENTIALIO, and TEXTIO is limited.

DIRECT IO and SEQUENTIAL_ raise USEERROR ifa file open or file access is attempted. TEXT 10
is supportedt CURRENT OUTPUT and from CURRENT-INPUT. A routine that takes explicit file names raises
USEERROR.

4.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

4.9.1. Definition of a Main Program
Any Ada library subprogram unit may be designated the main program for purposes of linking (using the

ALBC30 LINK command) provided that the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for termination as other tasks (described in
LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

4-9

USER MANUAL FOR TARTAN ADA VMS 00

4.9.2. Implementation of Generic Units
All instantiations of generic units, except the predefined generic UNCHECKED CONVERSION and

UNCHECKED DEALLOCATION subprograms, are implemented by code duplications. No attempt at sharing
code by multiple instantiations is made in this release of Tartan Ada.

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will casue any units that
instantiated this generic unit to become obsolete.

4.9.3. Attributes of Type Duration

The type DURATION is defined with the following characteristics:

Attribute Value

DURATION' DELTA 0.0001 sec

DURATION' SMALL 6.103516E-5 sec

DURATION' FIRST -86400.0 Sec

DURATION' LAST 86400.0 sec

4.9.4. Values of Integer Attributes
Tartan Ada supports the predefined integer type INTEGER. The range bounds of the predefined type

INTEGER are:

Attribute Value

INTEGER' FIRST -2**31

INTEGER' LAST 2*31-1

The range bounds for subtypes declared in package TEXTI0 are:

Attribute Value

COUNT'FIRST 0

COUNT' LAST INTEGER' LAST - 1
POSITIVECOUNT'FIRST 1

POSITIVECOUNT'LAST INTEGER'LAST-1

FIELD'FIRST 0

FIELD' LAST 20

The range bounds for subtypes declared in packages DIRECT IO are:

Attribute Value

COUNT' FIRST 0

COUNT' LAST INTEGER' LAST

POSITIVE COUNT'FIRST "

POSITIVE COUNT'LAST COUNT'LAST

4-10

APPENDIX FTO MIL-STD-1815A

4.9.5. Values of Floadng-Point Attributes
Tartan Ada supports the predefined floating-point types FLOAT and LONGFLOAT.

Attribute Value for FLOAT

DIGITS 6

MANTISSA 23

EMAX 92

EPSILON 16#0.000_OO#E-4 (approximately 9.53674E-07)

SMALL 16#0.8000_00#E-21 (approximately 2.58494E-26)

LARGE 16#0.FFFF8F8#E+21 (approximately 1.93428E+25)

SAFEEMAX 126

SAFE-SMALL 16#0.2000_00#E-31 (approximately 5.87747E.39)

SAFE LARGE 16#0.3FFFjFE#E+32 (approximately 8.50706E+37)

FIRST -16#0.1000_0#E+33 (approximately -3.40282E+38)

LAST 16#0.FFFF_.FF#E+32 (approximately 3.40282E+38)

MACHINERADIX 2

MACHINEMANTISSA 24

MACHINE EMAX 128

MACHINEEMIN -126
MACHINE-ROUNDS FALSE

MACHINEOVERFLOWS TRUE

4.11

USER MANUAL FOR TARTAN ADA VMS 00

Attribute Value for LONGFLOAT

DIGITS 9

MANTISSA 31
EMAX 124

EPSILON 16#0.4000_0000_0#E-7 (approximately 9.31322575E-10)

SMALL 16#0.8000_OOO0O_#E-31 (approximately 2.35098870E-38)

LARGE 16#0.FFFFFFFE_0#E+31 (approximately 2.12676479E+37)

SAFEEMAX 126

SAFESMALL 16#0.2000_OOOO._#E-31 (approximately 5.87747175E-39)

SAFELARGE 16#0.3FFFFFFF_.8#E+32 (approximately 8.50705917E+37)

FIRST -16#0. 00.000 #E+33 (approximately -3.40282367E+38)

LAST 16#0.FF7_FFFF 0#E+32 (approximately 3.40282367E+38)
MACHINE-RADIX 2

MACHINEMANTISSA 32

MACHINEEMAX 128
MACHINEEMIN -126

MACHINEROUNDS FALSE

MACHINEOVERFLOWS TRUE

4.10. SUPPORT FOR PACKAGE MACHINECODE

Package MACHINE CODE provides the programmer with an interface through which to request the genera-
tion of any instruction iat is available on the C30. The implementation of package MACHINE CODE is similar
to that described in Section 13.8 of the Ada LRM, with several added features. Please refer to appendix A for the
Package MACHINE-CODE specification.

4.10.1. Basic Information
As required by LRM, Section 13.8, a routine which contains machine code inserts may not have any other

kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

4.10.2. Instructions

A machine code insert has the form TYPE_MARK' RECORDAGGREGATE, where the type must be one of the
records defined in package MACHINE-CODE. Package MACHINECODE defines seven types of records. Each
has an opcode and zero to 6 operands. These records are adequate for the expression of all instructions provided
by the C30.

S4.10.3. Operands and Address Modes
An operand consists of a record aggregate which holds all the information to specify it to the compiler. All

operands have an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the instruction being generated.

Each operand in a machine code insert must have an Address Mode Name. The address modes provided in
package MACHINE-CODE provide access to all address modes supported by the C30.

4.12

APPENDIX F TO MIL-STD-1815A

In addition, package MACHINECODE supplies the address modes SymbolicAddress and
SymbolicValue which allow the user to refer to Ada objects by specifying Object' ADDRESS as the value
for the operand. Any Ada object which has the ' ADDRESS attribute may be used in a symbolic operand.
SymbolicAddress should be used when the operand is a true address (that is, a branch target for example).
SymbolicValue should be used when the operand is actually a value (that is, one of the source operands of
an ADDI instruction).

When an Ada object is used as a source operand in an instruction (that is, one from which a value is read), the
compiler will generate code which fetches the value of the Ada object. When an Ada object is used as the
destination operand of an instruction, the compiler will generate code which uses the address of the Ada object as
the destination of the instruction.

4.10.4. Examples

The implementation of package MACHINE-CODE makes it possible to specify both simple machine code
inserts such as

TwoOpnds' (LDI, (Imm, 5), (Reg, RO))

and more complex inserts such as
ThreeOpnds' (ADDI3,

(Imm, 10),
(SymbolicValue, Array_Var(X, Y, 27)'ADDRESS),
(Symbolic Address, Parameterl'ADDRESS))

In the first example, the compiler will emit the instruction LDI 5, RO. In the second example, the compiler
will first emit an instruction to load the immediate value 10 into a register, next emit whatever instructions are
needed to form the address of Array_Var(X, Y, 27) and then emit the ADDI3 instruction. If
Parameter_1 is not found in a register, the compiler will put the result of the addition in a temporary register
and then store it to Parameter-1' ADDRESS. Note that the destination operand of the ADDI3 instruction is
given as a Symbolic Address. This holds true for all destination operands. The various error checks
specified in the LRM will be performed on all compiler-generated code unless they are suppressed by the
programmer (either through pragma SUPPRESS, or through command qualifiers).

4.10-5. Incorrect Operands
Under some circumstances, the compiler attempts to correct incorrect operands. Three modes of operation

are supplied for package MACHINECODE: /FIXUP-NONE, /FIXUP-WARN, and /FIXUP-QUIET. These
modes of operation determine whether corrections are atempted and how much information about the necessary
corrections is provided to the user. /FIXUP-QUIET is the default.

In'/FIXP-NONE mode, the specification of incorrect operands for an instruction is considered to be a fatal
error. In this mode, the compiler will not generate any extra instructions to help you to make a machine code
insertion. Note that it is still legal to use ' ADDRESS constructs as long as the object which is used meets the
requirements of the instruction.

In /FIXUP-QUIET mode, if you specify incorrect operands for an instruction, the compiler will do its best
to correct the machine code to provide the desired effect. For example, although it is illegal to use a memory
address as the destination of an ADDI instruction, the compiler will accept it and try to generate correct code. In
this case, the compiler will load the value found at the memory address indicated into a register, use this register
in the ADDI instruction, and then store from that register back to the desired memory location.

TwoOpnds'(ADDI, (Imm, 10), (ARI, ARI))

will produce a code sequence like

LDI *ARI, RO
ADDI 10, RO
STI RO, *AR1

4-3

USER MANUAL FOR TARTAN ADA VMS C30

The next example illustrates the correction required when the displacement is out of range for the first
operand of an ADDI 3 instruction. The displacement is first loaded into one of the index registers.

ThreeOpnds' (ADDI3, (IPDA, AR3, 2), (Reg, RO), (Reg, R1))

will produce a code sequence like

LDI 2, IRO
ADDI3 AR3(IRO), RO, R1

In /FIxUP-WARN mode, the compiler will also do its best to correct any incorrect operands for an instruc-
tion. However, a warning message is issued stating that the machine code insert required additional machine
instructions to make its operands legal.

4.10.6. Assumptions Made in Correcting Operands

When compiling in /FIXUP-QUIET or /FIXUP-WARN modes, the compiler attempts to emit additional
code to move "the right bits" from an incorrect operand to a place which is a legal operand for the requested
instruction. The compiler makes certain basic assumptions when performing these corrections. This section
explains the assumptions the compiler makes and their implications for the generated code. Note that if you want
a correction which is different from that performed by the compiler, you must make explicit machine code
insertions to perform it.

For source operands:

e Symbolic_Address means that the address specified by the 'ADDRESS expression is used as the
source bits. When the Ada object specified by the' ADDRESS instruction is bound to a register, this will
cause a compile-time error message because it is not possible to "take the address" of a register.

* SymbolicValue means that the value found at the address specified by the ' ADDRESS expression will
be used as the source bits. An Ada object which is bound to a register is correct here, because the contents
of a register can be expressed on the C30.

* PcRel indicates that the address of the label will be used as the source bits.

- Any other non-register means that the value found at the address specified by the operand will be used as
the source bits.

For destination operands:

* SymbolicAddress means that the desired destination for the operation is the address specified by the
' ADDRESS expression. An Ada object which is bound to a register is correct here; a register is a legal
destination on the C30.

* Symbolic .Value means that the desired destination for the operations is found by fetching 32 bits from
the address specified by the ' ADDRESS expression, and storing the result to the address represented by the
fetched bits. This is equivalent to applying one extra indirection to the address used in the
Symbolic_Address case.

• All other operands are interpreted as directly specifying the destination for the operation.

4.10.7. Register Usage
Since the compiler may need to allocate registers as temporary storage in machine code routines, there are

some restrictions placed on your register usage. The compiler will automatically free all the registers which
would be volatile across a call for your use (that is, RO..R3, ARO..AR2, IRO, IR1, RS, RC RE, BK, and DP). If
you reference any other register, the compiler will reserve it for your use until the end of the machine code
routine. The compiler will not save the register automatically if this routine is inline expanded. This means that
the first reference to a register which is not volatile across calls should be an instruction which saves its value in a
safe place. The value of the register should be restored at the end of the machine code routine. This rule will
help ensure correct operation of your machine code insert even if it is inline explaned in another routine.

4-14

APPDIx FTO MIL-STD-1815A

However, the compiler will save the register automatically in the prolog code for the routine and restore it in the
epilog code for the routine if the routine is not inline expanded.

As a result of freeing all volatile registers for the user, any parameters which were passed in registers will be
moved to either a non volatile register or to memory. References to PARAMETER' ADDRESS in a machine code
insert will then produce code that uses this register or memory location. This means that there is a possiblity of
invalidating the value of some' ADDRESS expression if the non volatile register which it is bound to is used as a
destination in some later machine code insert. In this case, any subsequent references to the 'ADDRESS
expression will cause the compiler to issue a warning message.

The compiler may need several registers to generate code for operand fixups in machine code inserts. If you
use all the registers, corrections will not be possible. In general, when more registers are available to the
compiler it is able to generate better code.

4.10.8. Data Directives
Two special instructions are included in package MachineCode to allow the user to place data into the

code stream. These two instructions are DATA32 and DATA64. Each of these instructions can have I to 6
operands.

DATA32 is used to place 32-bit data into the code stream. The value of an integer or 32-bit float, and the
address of a label are the legal operands (i.e. operands whose address mode is either unm, Floatmm, or
Symbolic.Address of an Ada label).

<< Li >>
ThreeOpnds' (DATA32, (SymbolicAddress, L2'Address),

(Symbolic-Address, L3'Address),
(SymbolicAddress, L4'Address));

<< L2 >>
<< L3 >>
<< L4 >>

will produce a code sequence like

Li: .word L2
.word L3
.word L4

DATA64 is used to place a 64-bit data into the code stream. The only legal operand is a floating literal (i.e
operand whose address mode is Float Inmm).

4.10.9. Inline Expansion
Routines which contain machine code inserts may be inline expanded into the bodies of other routines. This

may happen under programmer control through the use of pragma INLINE, or at optimization levels 2 and 3
when the compiler selects that optimization as an appropriate action for the given situation. The compiler will
treat the machine code insert as a call: volatile registers will be saved and restored around it, etc.

4.10.10. Unsafe Assumptions
There are a variety of assumptions which should not be made when writing machine code inserts. Violation

of these assumptions may result in the generation of code which does not assemble or which may not function
correctly.

The compiler will not generate call site code for you if you emit a call isuction. You must save and
restore any volatile registers which currently have values in them, etc. If the routine you call has out
parameters, a large function return result, or an unconstrained result, it is your responsibility to emit the
necessary instructions to deal with these constructs as the compiler expects. In other words, when you emit
a call, you must follow the linkage conventions of the routine you are calling. For further details on call
site code, see Sections 6., 6.5 and 6.6.

4.IS

USER MANUAL FOR TARTAN ADA VMS 0

e Do not assume that the 'ADDRESS on Symbolic Address or SymbolicValue operands means
that you are getting an ADDRESS tO operate on The Address- or Value-ness of an operand is determined
by your choice of SymbolicAddress or SymbolicValue. This means that to add the cotents of
x to ARO, you should write

TwoOpnds' (ADDI, (Symbolic Value, X'ADDRESS),
(Reg, ARO))

but to add the address of x to ARO, you should write
TwoOpnds' (ADDI, (SymbolicAddress, X'ADDRESS),

(Reg, ARO));

4.10.11. Limitations
The current implementation of the compiler is unable to fully support automatic correction of certain kinds of

operands. In particular, the compiler assumes that the size of a data object is the same as the number of bits
which is operated on by the instruction chosen in the machine code insert. This means that the insert

TwoOpnds' (ADDF, (SymbolicValue, LongFloatVariable'ADDRESS),
(Reg, RO))

will not generate correct code when Long Float_Variable is bound to memory. The compiler will assume
that LongFloat_Variable is 32 bits, when in fact it is stored in 64 bits of memory. If, on the other hand,
Long_FloatVariable was bound to an extended-precision register, the insertion will function properly, as
no correction is needed.

Note that the use of X' ADDRESS in a machine code insert does not guarantee that x will be bound to
memory. This is a result of the use of ' ADDRESS to provide a "typeless" method for naming Ada objects in
machine code inserts. For example, it is legal to say (Symbolc_Value, X'ADDRESS) in an insert even
when X is found in a register.

4.10.12. Example
with machine code; use machinecode;
procedure machexample is

type arytype is array(l..4) of integer;

a: arytype :- (1,2,3,4);
b: integer;

procedure casestatement(a: in integer; b: in out integer) is
begin
-- implements case a is
-- when I=> b : 0;
-- when 2 >b :-b + 1;
-- when 3 => b := b b;
-- when others => null
-- end case;

ThreeOpnds' (SUBI3, (Imm, 1, (Symbolic Value, a'Address), (Reg, IRO));
Two Opnds' (LDI, (Symbolic Address, LlAddress), (Reg, ArO));
TwoOpnds' (LDI, (IPrIA, Ar0, IRO), (Reg, Arl));
OneOpnds' (casejump, (Reg, Arl));
<< 7 >>
ThreeOpr.ds' (DATA32, (Symbolic_Ad~ress, L2'Address),

(Symbolic Address, L3'Address),
(Symbolic Address, L4'Address));

<< L2 >>
TwoOpnds'(LDI, (Imm, 0), (Symbolic_Address, b'Address));
One Opnds' (BU, (PcRel, L5'Address));
<< L3 >>
Two Opnds' (ADDI, (Im, 1), (SymbolicValue, b'Address));
One Opnds' (BU, (PcRel, L5'Address));
<< L4 >>

4-16

APPENDIX F TO ML-ST-1S1A

TwoOpnds' (MPYI', (Symbolic-Value, b'Address), (Symbolic-Value, b'Address))
<< L5 >>
ZeroOpnds' (NOP); -- since label can't be last statement in procedure

end casestatement;

pragma inline (case statement);

begin
if a(l) >- 0 then
casestatement(aC3), b); -- will be inline expanded

end if;

end mach-example;

Assembly code output:
.global mach_example

;mach example.tmp from mtests/manualexample.ada
;Ada Sgun/C30 Version V11.631293001 Copyright 1989, Tartan Laboratories
1986

.global xxmchxmpleOO8

.text

xxmchxmpleO08: PUSH AR3
LDIU SP,AR3
PUSH AR3
ADDI 4,SP
PUSH R6
PUSH R7
PUSH AR7
LDIU @DEF1,ARO
STI ARO,*+AR3(l)

LDIU @DEF2,ARO ;line 7
LDIU AR3,AR1
ADDI 2,AR1
LDIU *ARO++(l),R1
RPTS 2
LDI *ARO++(l),Rl
11 STI Rl,'AR1++C1)
STI Rl,*AR1
LDI *+AR3(2),RO ;line 43
BLT L22
LDIU *+AR3(4),AR7 ;line 44
LDFU R6,R7
LDIU R6,R7.
LDIU 1I,Rl line 18
LDIU IRO,ARO
SUB13 R1,AR7,R2
STI R2,*ARO
LDI @DEF3,RO ;line 19
STI RO,*ARO
LDI *+AROCIRC),R2 ;line 20
STI R2,-ARI
BU ARI line 21

.word L15

.word L16

.word L17

L15: LDI 0,R7 ;line 27

BU L18 line 28

4.17

USER MANUAL FOR TARTAN ADA VMS C30

LM6: ADDI 1,R7 ; line 30
BU LB ; line 31

L17: MPYI R7,R7. ; line 33
LIB: NOP ; line 35

LDIU R7,R6 ; line 44
L22:

LDIU *+AR3(6),R6
LDIU *+AR3(7),R7
LDIU *+AR3(8),AR7
LDIU AR3,SP
POP AR3
RETSU

Total words of code in the above routine = 46

.data
DEF3: •word L14
DEFI: .word L22

.text

casestatement$00: RETSU

Total words of code in the above routine = 1

•data

.text

.data
DEF2: .word DEF4
DEF4: .word 1

.word 2

.word 3

.word 4

Total words of code = 47
Total words of data = 7

.end

4.11. DELAYED BRANCHES
A feature of the C30 architecture is the inclusion of delayed branching. Because of the processor pipelining,

normal branch instructions require four cycles to execute. During that time the pipeline is emptied and no other
useful instructions may be executed. However, a second set of branch instructions is provided that allow three
more instructions to be executed after initiation of the branch and before actual transfer of control. It is very
important to use delayed branches whenever possible in order to achieve maximum processor throughpuL

4.11.1. Generating Delayed Branches
A special machine-dependent optimization phase attempts to generate delayed branches by seeking to identify

instructions that can be scheduled within the three-instruction branch delay. An instruction may be scheduled
during the branch delay if it is:

1. An instruction that currently precedes the branch in the basic block and produces no result or side effect
that could be used by any instruction preceding its potential location within the branch delay.

2. An instruction that currently follows a conditional branch, providing it has no side effects if the branch is
taken and produces no result or side effect that could be mis-used by any instruction between its potential
branch delay location and its current location.

4-18

APPENDDC F TO M-TD-1815A

3. A replication of an instruction that is currently at the address of the branch destination. If the branch is
conditional, this instruction must have no side effects if the branch is not taken. The branch target address
must be changed to point to the next address if such an instruction is discovered.

Instructions which are themselves branches may not be scheduled within the branch delay.

As an example, in the following code fragment, as presented to the delay branch optimization, can the BEQ be
usefully transformed into the delayed version, BEQD?

No. Instruction

10 LDI O,RO ; RO :-0;
11 ADDI 1,R1 ; R :- R1 + 1;
12 CMPI Rl,R2 ; compare R1 to R2
13 BEQ Li ; branch if equal to L1
14 LDI *-AR1(1),R3 ; R3 :- some memory value

11 LDI *AR7++(IRO),R4 ; and in parallel also load R4
15 ADDI R7,R5 ; R5 : R5 + R7;

21 LI: LDI 33,R3 ; R3 : 33;
22 LDI R4,R5 ; R4 : R5;

Searching for instructions in the first class above, the delayed branch optimizer discovers that instruction 10
can be moved down to the branch delay because its results are not used by instructions 11 or 12. Instruction 12 is
not moveable since its result is used by the conditional branch. Likewise, instruction lI's result is used by
instruction 12 and so it cannot be moved.

Applying the rules for the second type of delayed branch candidate, the delayed branch optimizer discovers
that instruction 14 (a two operation parallel instruction) cannot be moved up into the branch delay since it loads
R4 and the contents of R4 are read by instruction 22 if the branch is taken. Instruction 15 can be moved up into
the branch delay because it produces no result that can affect instruction 14 and its results are voided by
instruction 22 if the branch is taken.

While searching for the members of the third class, it is detected that instruction 21 can be replicated in the
branch delay and the branch retargeted, because its result is voided by instruction 14 if the branch is not taken.
Instruction 22 cannot be moved since it will leaveR5 in the incorrect state for instruction 15.

After the transformations are made, the code is:

No. Instruction

11 ADDI 1,Ri ; R1 :- Ri + 1;
12 CMPI Rl,R2 ; compare R1 to R2
13 BEQD L2 ; delay branch if equal L2
10 LDI 0,RO ; RO :-0;
15 ADDI R7,R5 ; R5 :- R5 + R7;
21 LDI 33,R3 ; R3 :-33;

; branch takes effect here
14 LDI *-AR1(1),R3 ; R3 :- some memory value

11 LDI *AR7++(IRO),R4 € and in parallel also load R4

21 Li: LDI 33,R3 ; R3 : 33;
22 L2: LDI R4,R5 ; R5 :-R4;

Note that the code is now very obscure. Maintaining assembly code of this nature will indeed be difficult,
and here we see a true advantage to the automated approach offered by the Ada compiler.

4.19

USER MANUAL FOR TARTAN ADA VMS C30

Many modern processor architectures contain delayed branch instructions. However, because the C30 allows
for three instructions during the branch delay instead of the usual one, this feature is no longer transparent to the
casual user of any C30 compiler. For example, the compiler may discover that only a single useful instruction
can be executed during the branch delay and must "fill" the other two slots with no-op's. While this strategy
may speed up the algorithm by one cycle, it also increases code size by two words. The tradeoff with two useful
instructions and one no-op is a possible speed-up of two cycles for a code increase of one word. The Ada
compiler allows the user to specify a global speed vs. space tradeoff strategy. This assertion combined with loop
depth and other static program measurements will cause the compiler to bias against marginal delayed branch
opportunities that expand the code. The compiler's stategy is discussed in detail below.

4.11.2. Delayed Branch Strategy

Certain conditions determine whether the delayed branch optimizer will actually transform a standard branch
into its delayed branch equivalent. These conditions include whether or not the code is in fast memory, the
optimization level used to compile the source code, how many useful instructions have been found to fill the
delay slots, and where these instructions came from (i.e., above the branch, below the branch, or from the label).
The compiler will transform a branch instruction only if the resulting code is guaranteed to be at least as fast as
the original code.

The delayed branch optimizer makes decisions based on instruction fetch time. A program compiled with the
switch /WAITSTATES-0 tells the compiler that the code will be in fast memory. The compiler can also detect
that an insruction will reside in the cache by checking if it is in a loop that completely fits in the cache. If the
three delay slots that follow a delayed branch will not reside in fast memory or the cache, then three useful
instructions must be found to fill the delay slots. No no-op instruction will be inserted to fill a delay slot because
the resulting code could end up being slower than the code with the standard branch.

The compiler will not transform any standard branches into delayed branches at optimization levels 0 or I. At
optimization level 4 (Space), a standard branch is transformed into a delayed branch only if three instructions
have been found to fill the delay slots. Optimization level 2 (Custom Mix) requires at least two useful instruc-
tions to fill the delay slots. Optimization level 3 (Speed) requires only one useful instruction. At these two
levels, no-op instructions will be added to fill the remaining delay slots only if the code is in fast memory or the
cache. If the code is not in fast memory or the cache, and three instructions have not been found, then the branch
will not be transformed.

As stated above, the position of an instruction that can be moved to a delay slot with respect to the branch
instruction itself has an effect on whether the branch will be transformed. It is always best to fmd useful
instructions that would be executed regardless of the condition on the branch. Instructions that precede the
branch fall into this category. Likewise, if the branch is an unconditional branch, instructions at the branch target
address will also always be executed, so they also fall into this category. However, instructions that follow a
conditional branch will only be executed if the branch is not taken, and instructions at the branch target address
of a conditional branch will only be executed if the branch is taken. Therefore, it is not always beneficial to fill
the delay slots with these kind of instructions. These instructions will fill a delay slot only when the resulting
code is at least as fast as the orignal code regardless of whether the branch is taken or not. The exception to this
is that instuctions below a conditional branch will be considered as always being executed when the delay branch
optimizer can determine that the condition on the branch will not be satisfied a large percentage of the time.

4.12. PACKAGE INTRINS ICS

The Intrinsics package is provided as a means for the programmer to access certain hardware
capabilities of the 320C30 in an efficient manner.

The package declares generic functions which may be instantiated to create functions that have particularly
efficient implementations. A call to such a function usually does not include a hardware subroutine call at all, but
is implemented inline as a few 320C30 instructions. (Often a single instruction!)

4-20

APPENDDC FTO MIL-STD-1815A

4.12.1. Native Instructions
The following group of generic functions allows specific 320C30 instructions to be applied to Ada entities.

The user must instantiate the generic function for the types that will be used as the operand(s) and result of the
operation. These generic functions have been given the same name as the assembler's name for the correspond-
ing instruction. In some cases this convention leads to a conflict with an Ada reserved word. This conflict is
resolved by using the instruction name with an " i" appended to it.

F'r details of the operation applied by calling an instance of one of these generic functions see the
TMS32OC30 User's Guide. Examples of their use are given in figures 4-1 and 4-2. Refer to appendix B for the
signatures of all intrinsics. The available operations are shown in the following table.

Name Meaning

ANDi bitwise logical-AND.
ANDN bitwise logical AND-NOT.
ASH arithmetic shift
FIX floating point to integer conversion
FLOATi integer to floating point conversion
LDE load floating point exponent
LDM load floating point mantissa
LSH logical shift
MPYF 32-bit x 32-bit -> 40-bit floating multiply
MPYI 24-bit x 24-bit -> 32-bit integer multiply
NORM floating point normalize
RND round floating point
NOTi bitwise logical complement
ORi bitwise logical OR
ROL rotate left
ROR rotate right
SUBC subtract integer conditionally
XORi bitwise exclusive OR

with intrinsics; use intrinsics;
with int io;
with text io;
with flt_-io;

procedure test(a : float; b : integer; c : integer) is

function "-" is new MPYI(integer,integer,integer);
-- All integer multiply operations in this subprogram
-- will be done with the 24-bit native instruction.

function SQRT is new SQRT 32;
begin

textio.put_line("The square root of a is ");
flt io.put(SQRT(a),8,6,0)
textio.newline;

text io.putline("b x c (24-bit x 24-bit -> 32 bit) is ");
int io.put(b * c, 2);
text_io.new line;

end test;
Figure 4-1: Example Use of Intrinsics

4-21

USER MANUAL FOR TARTAN ADA VMS C0

with intrinsics; use intrinsics;

function shift(
ShiftMe : integer;
ShiftCount : integer;
Signed : boolean) return integer is
-- Try writing this without these intrinsics!

function LogicalShift is new LSH(integer,integer);
function ArithmeticShift is new ASH(integer,integer);

begin
if Signed then return ArithmeticShift(ShiftMe, ShiftCount);
else return LogicalShift (ShiftMe, ShiftCount);
end if;

end test;

Figure 4-2: LSH and ASH Used To Define a General Purpose Shift Routine

4.12.2. Circular Addressing
The 320C30 circular addressing modes are made available through a set of generic functions that model the

entire process with ai, iterator object and a set of subprograms to

9 initialize the iterator,
oread an object specified by the current value of the iterator,
• advance the iterator to a new object, and
* release the iterator for later use.

These generics are documented using the same names and terms as in section 6.3 of the TMS32OC30 User's
Guide.

A fixed number of iterators are available for use in circular addressing. Iterators are named by the enumera-
tion literals of the type CircIteratorNameType. More than one iterator may be active at any given
time.

There are certain very important rules to keep in mind when using circular iterators.

1. Initialization of an iterator must occur prior to usage both in execution order and textual order in the
source code.

2. Similarly, release of an iterator must occur after last usage both in execution order and textual order in the
source code.

3. The iterator is known only within the procedure in which it is defined.

4. Finally, because these functions are considered to be free of side effects, optimization may unfortunately
remove a call to one if the result of the call does not seem necessary for the execution of the program. In
particular, for each of the functions that returns a Boolean value, the call should be used as the
condition in an if statement whose then part is an assignment to a non-local variable. The call will not
be removed and the useless assignment will be correctly optimized away. See figure 4-3 for an example
of how this is done.

The 320C30 hardware places certain requirements on the addresses used in circular addressing operations.
The values passed to an instantiation of InitCircIter, the iterator initialization function, must obey these
rules. This normally means that it is necessary to use an address clause to position the entity whose address is
passed as the first parameter of InitCircIter.

4-22

APPENDI FTO MIL-STD-I1SA

-- FIR package demonstrating circular iterators

with System;
package FirPackage is
generic

N : Integer; -- instantiate on a per-buffer-size basis
type Vector is array (Positive range <>) of Float;

procedure Fir (H: in Vector;
AddressOfNextElement: in out System.Address;
Y: in out Float);

Dummy : Boolean;
end FirPackage;

with Intrinsics; use Intrinsics;
with System;
package body FirPackage is
procedure Fir (H: in Vector;

AddressOfNextElement: in out System.Address;
Y: in out Float) is

function Init is new Init CircIter;
function Release is new Release Circ Iter;
function ReadThenAdd is new Read ThenCircAdd(Float);
function EBPlusIndex is new CircIterEBPlus-Index;
function CircAdd is new CircAdd;

begin
y :- 0.0;

if not Init(AddressOfNextElement, 1, N, Circ Iter_1) then
Dummy :- False; -- no code generated

end if;

for Step in 0 .. N-I loop
Y :- Y + ReadThenAdd(CircIter_1) * H(Step);

end loop;

if not CircAdd(CircIter_1) then Dummy :- False; end if;

AddressOfNextElement :- EBPlusIndex(CircIter_1);

if not Release(CircIter_1) then Dummy :- False; end if;
end Fir;

end Fir-Package;

Figure 4-3: FIR Package Demonstrating Circular lIterator Intrinsics

4-23

USER MANUAL FOR TARTAN ADA VMS C30

The functions that operate on circular iterators are:

Name Meaninn

Init CircIter Allocate and initialize an iterator. From left to right, the parameters are:

EBPlusStart Index
Usually Array (StartIndex) ' address. Given n
such that n is smallest value where 2*.n > BK, then
Array' address mod 2**n) mt = 0, which can be
guaranteed only if Array is placed in memory using an
Ada address clause.

Step Usually Array (0) ' size/32.

BK Usually Array' size

Name OneofCircIteratorNameType

ReleaseCircIter Returns boolean true. Releases the iterator resources to the compiler
for other use.

ReadCircIter Returns the value pointed to by the current value of the iterator, plus
some arbitrary integer offset.

ReadThenCirc Add Returns the value pointed to by the current value of the ierator, then
advances the iterator in accordance with the Step and BK specified in
the initialization.

ReadThenCirc Sub Returns the value pointed to by the current value of the iteraor, then
advances the iterator in accordance with the Step and BK specified in
the initialization.

WriteCircIter Returns boolean true. Writes the location pointed to by the current
value of the iterator, plus some arbitrary integer offset.

WriteThen CircAdd Returns boolean true. Writes the location pointed to by the current
value of the iterator, then advances the iterator in accordance with the
Step and BK specified in the initialization.

WriteThenCircSub Returns boolean true. Writes the location pointed to by the current
value of the iterator, then advances the iterator in accordance with the
Step and BK specified in the initialization.

Circ Add Returns boolean true. Advances the iterator in accordance with the
Step and BK specified in the initialization.

CircSub Returns boolean true. Advances the iterator in accordance with the
Step and BK specified in the initialization.

CircIterEBPlusIndex Extracts and returns the "EB+Index" part of the ierator

CircIterStep Extracts and returns the Step part of the iterator.

CircIterBK Extracts and returns the BK part of the iterator.

Hints for Improved Object Code Quality:

For improved code, initialize the "most important" iteraors first in textual order in the source code.

4-24

APPENDIX F TO MIL-STD-1815A

* If all BK's of all active iterators are not proveably the same at compile-time, generated code will degrade
considerably.

" Always release iterators when they are no longer needed.

4.12.3. Bit-Reversed Addressing

The 320C30 bit-reversed addressing modes are made available through a set of generic functions that model
the entire process with an iterator object and a set of subprograms to

* initialize the iterator,
e read an object specified by the current value of the iterator,
e advance the iterator to a new object, and
* release the iterator for later use.

These generics are documented using the same names and terms as in section 6.4 of the TMS320C30 User's
Gide.

A fixed number of iterators are available for use in bit-reversed addressing. Iterators are named by the
enumeration literals of the type Brev_IteratorNameType. More than one iterator may be active at any
given time.

The same rules regarding the use of circular addressing iterators apply to bit-reversed addressing iterators.

The functions that operate on bit-reversed iterators are:

InitBrevIter Allocate and initialize an iterator. From left to right, the parameters are:

BaseAddrPlus Start Index

Usualy Array (StartIndex, 0) ' address, as-
suming that the second dimension of the array holds the
data points to be addressed between each change in the
bit-reverse iterator. Array' address mod
TwoToN must = 0. This can be guaranteed only if
Array is placed in memory using an Ada address
clause.

Two To N Usually Array' size/2. Must be a power of two.

Name OneofBrevIteratorNameType.

ReleaseBrevIter Returns boolean true. Releases the iterator resources to the compiler
for other use.

ReadBrevIter Returns the value pointed to by the current value of the iterator, plus
some arbitrary integer offset.

ReadThenBrevAdd Returns the value pointed to by the current value of the iterator, then
advances the iterator according to the TwoToN specified in the in-
itialization.

WriteBrevIter Returns boolean true. Writes the location pointed to by the current
value of the iterator, plus some arbitrary integer offset.

WriteThenBrevAdd Returns boolean true. Writes the location pointed to by the current
value of the iterator, then advances the iterator in accordance with the
TwoToN specified in the initialization.

BrevAdd Returns boolean true. Advances the iterator in accordance with the
TwoTo_ N specified in the initialization.

4-2S

USER MANUAL FOR TARTAN ADA VMS C30

BrevIterBAPlusIndex Extracts and returns the "BaseAddres!- + Index" part of the
iterator.

BrevIterTwoToN Exacts and returns he "TwoToN" part of the iterator.

The example given for circular iterators (figure 4-3) is a good guide for the use of bit-reversed iterators as
well.

4.12.4. Mathematical Funcions
Access to a limited set of standard floating-point functions is provided by the following generic functions.

generic function SQRT_32 (X : Float) return Float;
generic function ALOG_32 (X : Float) return Float;
generic function ALOG70 32(X : Float) return Float;
generic function EXP 32 (X : Float) return Float;
generic function TENTO 32 (X : Float) return Float;
generic function POWER_32 (X,Y:Float) return Float;

generic function SIN 32 (X : Float) return Float;
generic function COS -32 (X : Float) return Float;
generic function TAN_32 (X : Float) return Float;
generic function COT-32 (X : Float) return Float;
generic function ASIN 32 (X : Float) return Float;
generic function ACOS-32 (X : Float) return Float;
,generic function ATAN_32 (X : Float) return Float;
generic function ATAN2 32 (X,Y:Float) return Float;
generic function ACOT _2 (X : Float) return Float;
generic function ACOT2 32 (X,Y:Float) return Float;
generic function SINH _2 (X : Float) return Float;
generic function COSH_32 (X : Float) return Float;
generic function TANH-32 (X : Float) return Float;
generic function COTH--32 (X : Float) return Float;
generic function ASINH 32 (X : Float) return Float;
generic function ACOSH_32 (X : Float) return Float;
generic function ATANH-32 (X : Float) return Float;
generic function ACOTH_32 (X : Float) return Float;

with intrinsics; use intrinsics;
with text io;
with fltio;

procedure test(a : float) is
function "**" is new POWER 32;
function ALOG10 is new ALOG10_32;
b : float;

begin
textio.put line('test: a, 10**a, alogl0(10**a):");
fltio.put(a,8,6,0);
b :- 10**a;
flt io.put(b, 8,6,0);
flt io.put(aloglO(b),8,6,0);
text io.newline;

end test;

Figure 4-4: Using the Intrinsic Math Functions

APPENDDC FTO MIL-SD-11S5A

Figure 4-4 shows an example of the use of POWER 32 instantiated as the "**" operator for floats. A call to
an instance of any of these results in a call to an extremely fast-executing function to perform the computation.
These are "shared-code" generics in the sense that there will be only one object-code version of each function
created no matter how many instantiations are made.

The code generator contains built.in knowledge that these function calls are free from side effects and thus do
not cause optimizations to be blocked. The code generator also knows exactly which of the volatile registers are
used by each routine and will not save active values from registers that are not used by the routine being called.

Algorithms for the routines were adapted from Software Manual for the Elementary Functions;, Cody and
Waite, Prentice Hall 1980; and Handbook of Mat:ematical Functions with Formulas, Graphs, and Mathematical
Tables, Milton Abramowitz and Irene A. Stegun, National Bureau of Standards (Applied Mathematics Series 55),
Washington D.C., 1964 (reprinted 1970); and the TMS320C30 User's Guide. Some algorithms were developed
internally.

All routines are accurate to single (32-bit) floating precision. An augmented set of Cody-Waite accuracy tests
has been used to test them. Loss of precision was found to be limited to about 2 bits of the 24-bit mantissa for
almost all of the functions. Test results are available from Tartan on request.

Every attempt has been made to -avoid raising an exception for any input value. Reasonable values are
returned under all conditions. It is assumed that most signal processing applications work in a "press on" mode.

In the table that follows, cycles were counted by hand and are based on 0-wait state memory for both program
and data spaces. The min count is for non-trivia! case(s). The range over which each count holds in usually
documented. The "typical" count assumes uniform distribution of input values across stated range. When range
is not declared, the typical count holds for range of all 32-bit floating numbers.

4-27

USER MANUAL FOR TARTAN ADA VMS C30

Routine Min Cycles Max Cycles Typical Cycles

SQRT 37 37 37

ALOG 35 107 s2ml<Ix[<s2 37 lxl <- 100

ALOG10 36 1Q8 s2ml<Ixl<s2 38 lxl <- 100

EXP 31 31 31

TENTO 35 35 35

POWER 119 124 122

SIN 29 lxi < ts 34 29 IxI <- ts

Cos 28 lxi < tc 33 28 lxl <- tc

TAN 51 lxi < tt 56 53 lxl <- tt

COT 53 58 53

ASIN 56 lxl <- .5 74 lxl > .5 65

ACOS 57 lxi <- .5 75 lxl > .5 66

ATAN 33 63 48

ATAN2 75 105 90

ACOT 35 65 50

ACOT2 78 108 93

SINH 48 lxi <- 1.0 83 1<Ixl<-te 66 lxl <- 2.0

COSH 38 te<IxI<te69 79 Ixl<-te 79 lx[<- te

TANH 53 [xi<-.549 82 75 lxi <- 2.196

COTH 86 115 108 lxi >- 0.455

ASINH 19 ixl<-.5,else 97 169 -1 < x < -0.5 97 lxi <- 100

ACOSH 87 159 x < tac 87 x <- 100

ATANH 25 lx[<- .5 85 lxl > .5 55

ACOTH 54 lxi >- 2 85 lxi < 2 70

KEY:

s2ml - SQRT(2) - 1.0
s2 - SQRT(2)
tc - 2**24 * PI - PI/2 - 52707176.96 ~- 52707000
tS - 2**24 * PI - 52707178.53 -- 52707000
tt (2"'24 -.5) * PI/2- 26353588.48 ~- 26353000
te - 88.71875
te69 - 88.71875 + 0.69316 - 89.41191
tac - 3*SQRT(2) / 4 - 1.060660172

4.28.

