REPORT DOCIHIMENTATION PAGE Fom Approved

OPM No. 0704-0188

: P eport Pones, including the Sme for reviewing instructions, searching existing data S0urces gatharing and mantaining e Gala

i rasded, wd timase or any other aspect of this collection of informasion, inckuding suggestions for reducing this burden, 1o Washington
: Headquamn 38 078 s Highway, Suble 1204, Aringson, VA 22202-4302, and 10 the Ofice of Inlomation and Reguisiory Aflars, Office of
= O e
% \n Final: 09 Jan 1991 to 01 Mar 1993

i (4. TITLE AND SUBTITLE. 5. FUNDING NUMBERS

Tartan Inc., Tartan Ada Sunv96MC, Version 4.0, Sun3/60 (Host) to intel ICE960/25
on an SunOS vers 4.0.3 (Target), 90121011.11122

b

IABG-AVF
Ottobrunn, Federal Republic of Germany

@ ELECTE

JUL 02 19913
* 8. PERFORMING ORGANIZATION 1
IABG-AVF, lndustneanlagen Betriebsgeselschaft c REPORT NUMBER
Dept. SZT/ Einsteinstrasse 20 IAGB-VSR 081
D-8012 Ottobrunn o
FEDERAL REPUBLIC OF GERMANY
0. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY |
Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
[77. SUPPLEMENTARY NOTES
' 753, OISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION CODE |

Approve tor public release; distribution unlimited.

13. ABSTRACT {Maximum 200 words)

Tartan Inc, Tartan Ada Surv96MC Version 4.0, Sun 3/60 (Host) to Intel ICE960/25 on an SunQS vers 4.0.3 (Target), ACVC
1.11,

74, SUBJECT TERMS

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-260-850 Standard Form 298, (Rev. 2-89)

91 01 036 Prescribed by ANS! SK. 239-128

Certificate Informasion

£5llowing Ada implementation was tested and determined tc pass ACZVC
Testing was completed on December 10, 159C.

Compiler Name and Version: Tartan Ada Sun/936JMC version 4.0

Host Computer System: Sun 3/60 Sun0OS version 4.0.3
Target Ccomputer System: Intel ICEY¢J/ZZ on an Intel EXV8I25IMT pcarz

3ee Secticn 3.1 for any additional information about the testing
anvironment.

As a result 3£ :nis validation effor=, Validation Certificate
821210I1.11122 is awarded to Tartan Inc. This certificate expires o¢on
Z March, 1993.

bl 1o L

Michael Tonndorf
Zinsteinstr. 20
w-8C12 Cttobrunn
Sermany

sZa Joint Program Cffice

-z. John Seclemend,

ecartment cf Zefarse
anman
cC3lt

Washington DC

(G

AVF Control Number: ABG-VSR 081
Ja

9 nuary, 1991

== based on TEMP_ATE Version 90-08-15 ==

Ada COMPILER
VALIDATICN SUMMARY REPORT:
Certificate Numrer: 9301210I1.11122

Tarzan Inc

Tar-an Ada $un %60MC version 4.0
Sun 3s68 => Intel ICE960/25 on an
3unls vers 4.0.3 Intel EXV8(960MC board

srepared By '
IAR3, A27. ITE

DECLARATION OF CONFORMANCE

Customer: Tartan, inc.
Certificate Awardee: Tartan, Inc.
Ada Validation Facility: __'ABG
ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: Tartan Ada Sun/960MC Version 4.0

Host Compi]er System: Sun 3/60 SunOS Version 4.0.3

Target Computer System: Intel ICE960/25 on an Intel EXV80960MC Board

Declaration:

[/we] the undersigned, declare that [l/we] have no knowiedge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed above.

dzy/ W Date: /Z/¢/70

~Customer Signature

)
o
Ry
&)
[
i)
PN

o e

CHAPTER 2

[N

CHAPTER 3

w

w
N

APPENDIX A

APPENDIX B

APPENDIX C

W N

¥

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES e e e e
ACVC TEST CLASSES
DEFINITION OF TERMS
IMPZLEMENTATION DEPENDENCIES
WITHDRAWN TESTS
INAPPLICABLE TESTS

TEST MODIFICATIONS
PROCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTION

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

.

)
(R

www
1
N

ZHAPTER

INTRCZUCTION

The Ada implementation described above was tested according o the Ada
Ja_isa-icn frocedures [Pro90) against the Ada Standard [Ada8?] using zhe
surrent Ada Campiler Validaticn Clapability (ACVC) . This Validat:ion Summary
Repers (VSR) gives an account ¢Z the testing of this Ada implementation

Ter anv -—ecanizal terms used in this repor:z, the reader is referred to
"Pra6ll. A Ze-ailed descripticon cf the ACVC may be found in the current
ACVC TUser’s Guide [UGS89]).

1.1 USET CT THIS VALIDATION SUMMARY REPORT

Coensistent with the national laws £ the originating country, the Ada
Cer=if:zatisn Body may make full and free public disclosure cf this report.
In the United States, this is provided in accordance with the "Freedom of
z (5 U.S.C. #552). The results of this validation apply

3
TS
(9]
g
V]
ot
}o-
(o)
3
I
(8]
a2l

only tc the zomputers, operating systems, and compiler versions icd=ntified in

zaticns represented c¢n the signature page of this report do not
esent or warrant that all statements set forth in this report are
ratc and complete, or that the subject implementation has no
onformities to the Ada Standard other than those presented. Copies of
re available to the public from the AVF which performed this
from:

a
be

National Technical Information Service
528% Port Royal Road
Springfield VA 221¢€1

¢ this repcrt or =he validation test rasults should be

»

which perfcrmed this wvalidation cr <o

~3a Validaticn Crganizatzicn
' Inszitute fzr Cefense Ana.vses
; L&C1 North Beauregari Streel
Alexandria VA 22310

TRODUCTICH

.2 REFERENCES

2% Ada .p;eme“,a_-,us is tested by means cf the AIVI. The &7.C

:c;lec:ion 2f zest programs structured into sSix test classes:
E, and L. The first letter of a test name idenzifies the class
belongs. Class A, Z, 2, and E tests are executable. Class =

’
and class L tests are expectecd =0 produce errors at compile time and link

t.me, respectively.

The executacle tests are written in a self-checking manner and prcduce a
PASSED, FTAILED, or NCT APPLICAEBLE message indicating the result when theyv
are executed. Three Ada libraryv units, the packages REPCRT and SPPRT13,
and the procedure CHECK_FILE are used for this purpose. The package REPCRT
2lsc provides a set cf identity functions used to defeat some compiler
cpzimizaticns allcwed by the ada Standard that would circumvent a test
cojective. The package SPPRTL3 is used by many tests £or Chapter 13 of the
Ada Standarzd The procedure CHECK_FILE is used to check the contents cf
text £f£iles written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, wvalidatien

~
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
8 tests are not executable. Each test in this class is compiled and the

resclting ccmpilaticn listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada

ccde which must not be flagged iilegal by the compilexr. This behavior is
a.s> verified.

Zlass 1 tests check that an Ada implementaticn correctly detects viclatiseo
s the Ada Standard invclving multirple, separately zsemciled units. EZrror:

[+

re ezpested at link time, and execution is attemptad.

v
remcve unfcreseen conflicts between the tests and implementaticn-
characteristics., The modifications T i T
ementation are describdes in Section 2.3.

INTRCCUCTICON

Ffor each Ada implemen*a ion, a customized test suite is produced bty the AVF.

This customization consists of making the mod‘fzcatzons described in zhe
preceding parag:r ap“, —emov_ng withdrawn tests (see Section 2.1) anrs,
pcssibly some inapplicable tests (see Secticn 2.2 and [UG89)).

in .rZler tc zass an ACVC an Ada implementa:;cn must process each test 2%

PO S —

1.4 DEFINITION JF TERMS

: Ada Compiler The scftware and any needed hardware that have tfo be added
T a given host and target computer system ¢ allow
! -ransfcrmation of Ada programs into executable fcrm and
i execution thereof
Ada Compiler The means for testing compliance of Ada implementatiorns,
’ validation ccnsisting ¢f the test suite, the support programs, the ACVC
Capability - user’s ¢z2ide and the template for the validation summary
{ACVC) reccre.
Ada An Ada ccmpiler with its host computer system and its

Implementaticn tTargset computer system.

Ada The part of the certification body which carries out the
validation frccedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
validation guidance for operations of the Ada certification system.

! Crganization

: (AVO)

Cempliance ¢f The ability of the implementation to pass an ACVC version.

an Ada
Implementaticn
Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part
of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
iser-designated programs; perform user~designated data
marncraolatzion, including arithmezic operations and logic
= ; and <that can exezut: programs <that modify
es during executicn, A computer system may Dpe &
ne unit or may ccnsist cf several inter-connected
Conformity Tulfillment by a product, process or service c¢f all

requrrements specified.

Customer

[\
"
1]
o
t
©
4]
O
th

Targe:
Computer
System

Validated Ada
Compiler

Validated Ada
Implementaticn

Validation

Withdrawn
Test

INTRODUCTION

An individual or corporate entity who enters inct: an agreement
with an AVF which specifies the terms and zondiz:izns for AVF
services (of any kind) tc be performed.

A fcrmal statement from a
is realized or attainarle
which validation status is

customer assuring that

on the Ada implemenzazion
realized.

A computer system where Ada ransfcrmed

into executable form.

source programs are

A test that contains one or more test cbiectives found to be

irzelevant for the civen Ada implementaticn.

Software that controls the execution of programs and that
crovides serv s such as resource allocaticn, scheduling,
input/output ccn--cl, and data management. Us .y, cperating
systems are predomirantly software, but partial c¢r complete

hardware implementations are possible.

A computer system where the executable form

are executed.

¢f Ada programs

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or contains
erroneous or illegal use c¢f the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

P

3

WNITHDRAWN TESTS

t
[]

The £ollowing tests have been withdrawn by the AVC. The rationale £for
withdrawing each test is availarlie from either the AVO or the AVF. The
publicazion date for this list cf withdrawn tests is November 21, 1990.

E28005C B2800s8C C34006D C35702Aa B41308B C43004A
C45114A C45340a Ca5€l12B C456351A C46022A B49008Aa
A74206a C74308A 3830228 B83022H B83025B B83025D
: BE83026B B8S00LL cg3026a C83041A c97116a C98003B
' BAZ01l CB70CA C37001B CB7004A CCl223A BCl226A
Cllz2e6B BC3009B AD1BOSA BC1lB02B BD1BO6A BD2A02A
| CD2Aa2lE CC2AZ3E CD2A32A CD2A41A CD2A41E CD2AB7A
' co2B1sc BD3006A BD4008A CcD4022Aa C04022D CD40248B
€24024C CD4024D> CD4031a CD4051D CDS1llla cD7004C
ED7005D CD70CSE AD7006A CD7006E AD7201A AD7201E
CD7204B BD8OC2A BDB004C cD9005a cD9%00sSB CDA201E
CE21071 CE2117A CE2117B CE2119B CE220SB CE2403A
CE31llC CE231li6A CE31l8A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

INAPPLICABLE TEETS

[9]

A -est is inapp.icacle .f .t ccntains test cblectives which are lrrelevant
£sr a given Ada implementatzion. Reasons for a test’s inapplicability may
De suppcrzed Dby dosuments issued by ISC and the AJPO known as Ada
Zcmmentaries and commeonly referenced in tne format Al-cdddd. Tor this
imgplementation, the fcllcwing tests were determined to ze inapplicabie f:or
the reasons indicated:; references to Ada Commentaries are included as

- appropriate.

[3]
]
fury

IMPLEMENTATION DEPENDENCIES

The following .59 -ests have floating-point type declarations requiring mcre
digits than SYSTEM.MAX DIGITS:

C24113Z..¥Y (1L rtests) C387C5C..Y (11 tests)
C327ls2 {21 cests) C22727C..Y (L. rests)
C3377:2..7 {11 tests) C38Z25..2 (12 tests)
J432312..Y (11 tests) C48321C..Y (1l tests)
TaI2llC..Y (11 zests) C4S321C..2 (12 tests)
C43324C..2 (12 tests) C4562.C..2 (12 tests)
C4a564.2..Y (11 tests) C46012C..2 (12 tests)

C35713B, C42423B, B86001T, and C86005H <check for the predefined <ype
SHORT_FLOAT.

C4S331M. P s) and C45522M..P (4 tes=s) check fixed-pcint

f£or tyres == uire a SYSTEM.MAX MANTIZZA cf 47 or greater:
implementatlicn, tnere g nc such type.

T4583%4, T450L38, 460318, C460338, and C46034B contain ‘SMALL
representatilcn tlauses wnich are not powers of two or ten.

C45624A and CT45624E are not applicable as MACHINE COVERFLOWS is TRUE fcr

386CC1lY checks £cr a predefined fixed-pcocint type other than DURATION.

CR200SA, CAZI23C..0 (2 tests), CA2C09F and BC2709C instantiate generic units
vefore their codies are compiled: this implementation creates a dependence cn
generic units as allowed by AI-C04C8 & AI-00506 such that the compilation cof
the generic unit bodies makes the instantiating units obsolete. (see 2.3.)

CC10CS8C uses a representation clause specifying a non-default size Zor a
floating-point type.

CD2AS53A crhecks operations of a fixed-point type for which a length clause
specifies a power-of-ten type’small: this implementation does not support
decimal smalls. (see 2.3.)

CD2AB4A, CTICAB4EZ, CTZAB4I..C0 (2 tests), and CD2AB40 use representation

her. the storage size specified
a single value of the designatecd type:

~han what the length <clause

oLicwing 144 t2sts check f£or seguential, text, and direct access files:

CE2IC2A..T (%) SEILIIZLLH (D) CE2IC2K CE21C2N..Y (12)

CE2103C..D0 (&) JELllsALD () Cz2105%A..B () CE2106A..B (2)

CE2ICT7A..H %) ZEZlITL Cz2l08Aa..H (8) CE21C9%A..C (3)
2-2

IMPLEMENTATION TEFENDENCIES

CE2il0A..D (&) CE2111A..I (9) CEZI15A. (2) CE2120A..B (Z)
CE2202A..C (3) EE2201D..E (2) CEZZC1F..N (9) CE2203A
CE2204A..D (4 CE2205A CEZ206A cezeolis
TEZ40LA..C (D) EE2401D CEZSTIEL.F (2) EE24CT1C
CE240LH.LL (D) CE2403A TEZ4LTAALLB (D) CEZ4CE2
CEZZ8lRA CE2407A..8B () CEZ4CBA..B (2) CE24C79%A..3 .Z
TESSIIALLE (D) CE2411A CE3l02A..C (3) CEZLC2F..E (3
CE3LIZI.E (D) CE3103A CE31l4A..C (3) Cz3l0sa..8 (D
CE3ll78 CE3108A..B (2) CE3109A CE31.CaA
CE31lIA..B (D) CE3111D..E (2) CE3112A..D (4) CE3114A..8 (D)
CE31l3A CE3119A EE32C3a EE3204Aa
CE32CTA CE3208A CE33ClA EE33ClB
CEZ3IIA CE3304A CE3303A CE34Cla
Zzzalla EE3402B CE34C2C..D (2) CZ34C03x..2 (:
CZZ4lELE T CE3404B..0 2 CE34l2A EE34CSE
S oICE-Rok- ol pag CE3406A..2 (4 CE3407A..C (3) CE3408A..C {3
CE347°%A CE3409C..E 2 EZ2409F CE242Ch
CEISIICLE (D EE3410F CE241A CE34.1C
CE34.2a EE341z2C CE341ZA..C (3} CE3414A
TE3STLALLD (4) CE3603A CE3¢C4A..B (2) CE36CEA..E (8)
TTIslsAL B (D) CE3704A..F (98!} CEITC4M. .0 (3) CE370SA. .2 (%)
ZEITIAC CE37C6F..G (2) CE3804A..P (16) <CE3803A..3 (2)
CE38CCA. .2 () CE3806D..E (2) CE38C6G. .H (2) CE3%04a..2 (2)
CE3SCSA..C () CE3905L CE390€¢A..C (3) CE390€E..T (2)
CEZIT32A, TEZLZZE and CE31(7A reguire NAME_ERRCR to be raised when an attempt
is made tc create a file with an illegal name; hzs implemertatilon does not
gporc external files and so raises USE_ERRCR. (see 2.3.)

2.3 TEST MCDIFICATIONS
Meodifications (see Section 1.3) were required for 114 tests.
The following tests were split intc two Or more tests because this

implemenzaricn did not report the violations of the Ada Standard in the way
expectei 2y the original tests.

g B24007A 224009A 8250028 B32Z27la B3IZ204A
E B3S701A ESELTIA B362Cla B37.71a B37.C02A
2 237202 3372734 837302a B3232ZA p380038
2 3387088 B38LT9A 8380098 BIE8L13A 23810238
El 2385030 B3811ZE B432027 B4qCliA B530C2a
E 3480020 B48702% 8480023 B4ETICE E43003A
3 24530C¢€A 33%00¢8 B49007A 8463178 2490C03%A
2 B54A20A RELA2EA B858002A BrEzTCCR B320CLA
2 2590011 BE2ClC06C B67C00LA BeTCllE BgT70ClLC
BEICILD 374103E B74104A B74307B REIECIA B83ECLB
3egs2l°C 2850086 388CC2H B91004A B81CT3Aa BY53C3A
B9C173 255031A B&3C74E BC1002A BIL10%A BCL109C

IMPLEMENTATION DEPENDENCTIES

. BC1206A BC2001E BC3005B BD2A06A BD2BO3A BD2D03A
BD4003A BD4006A BD8003A

222223 was graded .naprliceble by Evaluaticn and Test Mcdificaticn as
direzted by the AVC. This test checks that pragmas mayv have unresclvac.le
arguments, and it includes a check tnat pragma LIST has the required effect
cuz Zor this implementaticn, pragma LIST has nc effect if the compilaticn
results in errcrs cr warnings, which is the case wnern the test is processed
without modification. This test was also processed with the pragmas at lines
4¢, 58, 70 and 71 commented cut sc that pragma LIST had effect.

Tests C4E5324A..N (14 ctests) were graded passed by Test Modificaticn as
Zirected by the AVI. These tests expect that a repeated divisicn will resulz

put the standard cnly reguires that the rzesult lie in the smalles:
. s s were modified zc check that the result was
chin the sma--es: safe :interval by adding the £fcllowing code after line
o s

ELSIF VAL <= F/Sart _SMALL THEN COMMENT ("UNDERTLCZW SEEMS GRADUAL");

CE3030C and CE6lC7A were graded passed by Test Modification as directed by
o C. These tests were mcdified by inserting "PRAGMA ELABORATE (REPORT) ;"
tefcre the package declaraticns at lines 13 and 1., respectively. Without the

cragma, the packages may pe e.aborated prior tc package report’s body, and
thus the packages’ calls =2 function Report.Ident_Int at lines 14 and 13,

ressectively, will raise PROGRAM_ERROR.

BE3EC1B was graded passed by Evaluation Modification as directed by the AV
This test checks that a generic subprogram’s formal parameter names (i.e.
both generic and subprogram formal parameter names) must be distinct; the
dup.icated names within the generic declarations are marked as errors,
whereas their recurrences in the subprogram bodies are marked as "optional”
errcrs--except for the case at line 122, which is marked as an error. This
implementation does not additicnally flag the errors in the bodies and thus
~he expected error at line 122 is not flagged. The AVO ruled that the
lementaticn’s behavicr was acceptable and that zhe <est need not be splic

- 1

(Su:: a split would sumply duplicate the case in B:2ETLA at line 13).

TAITTEA, CTRICTSZ..Z (2 =wests), CA20C9F and BC3CLST were graded inapplicatle
oy Zwvascaticn Moziflicaz:icn as directed by the AV:. Tnese tests instantiate
zenerls units cefcre <hncse units’ bodies are :cmp;;ed: whis implementat:icn
creates dependences as allcwed by AI-00408 & -20506 such that the
2ompllaticn c¢f <ne gener:is unit bodies makes :he instantiating wun:its
zzsc.lete, and the ctceztives of these tests cannct be met.

-4

IMPLEMENTATION DEP-NDENCIES

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVC. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal :f the generic
bodies contain uses of the types that reguire a constraint, However, tn

generic bodies are ccmpiled after the units that contain the instantiazions
and this imclementation creates a dependence of the instantiating unizs on
the gener:: s as allowed by AI-00408 & AI-00506 such that the ccmpilation
¢f the genesic rodies makes the instantiating units obsolete~-nc errxcrs are
detected. The processing of these tests was modified by compiling the
seperate files in the following order (to alliow re-compilation of cbsolete

o
units), and all intended errors were then detected by the compiler:

o

2

3C3204C: C, <., TZ, C3M, C4, CS, 6, C2M .

C3233C were graded passed by Test Modification as directed by
e =2s5ts are similar to BC3204C and BC3205D above, except that
aticn units are contained in a singie compilation. For these twe
ts, a c2py £ the main procedure (which later units make obscliete) was
all expected errcrs were then detected.

v
0
o)

o

o]

[¢2

[1:3

.

ot

O

(.

[

1]

ot

1

(7]

o

(7]

CD2AS3A was graded inapplicable by Evaluation Modification as directed by the
AVO. The =est ccntains a specification of a power-cf-ten value as small for
a f£ixed-pecint tvpe. The AVO ruled that, under ACVC 1.11, support of decimal
smalls may be cmitted.

AD90013 and AD90C4A were graded passed by Processing Modification as directed
by the AVO. These tests check that various subprograms may be interfaced to
external routines (and hence have no Ada bodies). This implementation
requires that a file specification exists for the foreign subprogram bodies.
The following command was issued. to the Librarian to inform it that the
foreign bodies will be supplied at link time (as the bodies are not actually
needed-by the program, this command alcne is sufficient:

adal:c96C> interface -sys ~L=library ACS004A

107A were graded <inapplicable by Evaluation
the AVO. The zests abort with an unhandied
N

aised on the atwtempt TC create an external £il
because <his implementation dces nct suppirIt

[]
]
w

CHAPTER 3

PROCESSING INTORMATION

The Ada implementation ctested In this wvalidation effcrz is described
afdeguate.y v zhe Iinformation given in the initial pages ¢f this report.

cf contact <fcr technical informaticn about this Ada
system, see:

Mr Ron Juursma

Directcr cof Ada Products
Tartan Inc

338, Oxford Drive,
Monroeville, PA 15146,
USA

Tel. (412) £56-36CC

r a pcant cf

ccnatact for sales information about this Ada implementation

Mr Bill Geese
Director of Sales
Tartan Inc.

300, Oxfcrd Drive,
Monroeville, PA 15146,
Usa,

Tel. (412) 856-3600

Testing of =his Ada implementaticn was conducted at the customer’'s site by
a valld the AVFE.
T.0 ZUMMAERY LT TEST RESULTS

ation passes a given ACVC version if it processes each test
ed zest suite in accordance with the Ada Pregramming

dard, whether the =est 1s applicaktle or inapplicable;
se, -ne Ada Implemenzaticrn fails the ACVC [PreSCj.

PROCESSING INFORMATICN

For all processed tests (inapplicable and applicable), a result was
sbtained that conforms to the Ada Programming lLanguage Standard.

a) Total Number 2f Applicable Tests 3g2€
b) Tctal Number of Withdrawn Tests 83
¢c) frocessed Inapplicable Tests 36
d) Non-Prccessed I/C Tests 264
e) Non-Prccessed Floating-Point
Precision Tests i5¢
f) Total Number cf Inapplicable Tests 459 (c+d+e)
g) Tctal Number c¢f Tests for ACVC 1.11 4170 la-b+&)

Tne above number cf I'C tests were not processed because this implementaticn
crc a f£ile system. The above number ¢f floating-point tests were
nct processed because they used floating-point precision exceeding thac
taticn. When this compiler was tested, the tests

isted in Secticn L.l had been withdrawn because cf test errors.

po

3.3 TEST EXECUTICN
version 1.1l £ <he ACVC ccmprises 4170 :tests. When this compiler was

zsted, the tests listed in Secticn 2.1 had reen withdrawn because of test
errors. The AVF determined that 459 tests were inapplicable to <this
implementation.. All inapplicable tests were processed during validaticn
testing except for 159 executable tests that use floating-point precision
exceeding that supporced by the implementation and 264 executable tests that
use file operations not supported by the implementation. In addition, the
medified tests mentioned in Section 2.3 were also processed.

3}
"

A 1/4" Data Cartridge containing the customized test suite (see Section 1.3)
was taken on-site by the validation team for processing. The contents of the
~ape were lcaded directly onto the host computer.

After the test fiies were loaded onto the host zcmputer, the full set ¢
tests was processed by the Ada implementation.

The <tests were <ccmpiled and linked on the ntst Icmputer system, as
agcrcopriate. The =xecutakble images were transferred TC the target computer
swetem Ly tne sommunizatisns link, an RS232 interface, and run. The results

red Zn tne hcst computer system.

: ided by the custcmer ani
reviewed by the wval:dation team, See Appendix B fcr a complete listing of
~he processing opticns fcr this implementation.

default optiocns. The cptisns invoked explicitly £for validation testi
during this ces:t were:

3-2

PROCESSING INFCRMATION

Options used fcr compiling:

-£ forces the compiler to accept an attempt to compile a uriz imgcrred
from another library, which is ncrmally prohibited.

-g gulez, stcps output of all cempiler phase names. Not sosumenzed in
groduct version as it is the default setting. Option -v was the
zefault setting for the wvalidaticn run.

-c ncrmally the compiler creates a registered copy of the user’s sourc
code in the library directory f£or proper operation of the remake and
make subcommands to Adalib.

-La fcrzes a compiler to produce a listing even if nc errcrs were found.

No explicit linker Cptions were used.

est output, compiler and linker listings, and job logs were captured on a
arzridge and archived az the AVF., 7The listings examined cn-s:ite
vy the validazizn zZeam were alsc archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for custcmizing the ACVC.
The meaning and purpose of these parameters are expilained in [UG89). The
rarameter values are presented in two tables, The first tatle lists the
values that are defined in terms of the maximum input-line length, which is
the value fcr SMAX_IN_LEN--alsc listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line

leng:th.
Macrc Parameter Macro Value
S2IG_ID1 (L..V=1 => 'p’, V. => 1)
SBIG_ID2 (1..V=-1 => rpr, y => 727
$BIG_ID3 (1..v/2 => 'A") & '3’ &

(1..V=-1-V/2 => 'A’)

SBIG_ID4 (1..V/2 => 'a%) & "4’ &
(1..V=1-V/2 => "A’)

SBIG_INT_LIT (1..v=3 => r0’) & "298"

SBIG_REAL_LIT (1..v-5 => Q") & "690.0"
SBIG_STRING1 rerog (1..V/2 => TR & 0
SBIG_STRINGZ rerog (1.Vel-V/2 => "AT) & L o8t
SBLANKS (L..V=20 => " ')

$MAX_LEN_REAL_BASEC_LITERAL
"16:" & (1..V-7 => '0') & “"F.E:"

SMAX_STRING_LITERAL el (1..V-2 => Ay & '

MACRC PARAMETERS

The following takble lists all of the other macro parameters and their

respective values.

SALIGNMENT

$SCOUNT_LAST

SFIELD_LAST
SFILE_TERMINATOR
SFIXED NAME
SFLOAT_NAME
SFORM_STRING
$FORM_STRING2

SGREATER_THAN_DURATICN

SGREATEF _THAN_DURATION_BASE_LAS
.
-l

2147483646
2097152

8

1960MC

2#1.0#E-31

SYSTEM.ACZRESS’ (16#0000_00C8#)

SYSTEM.ADDRESS’ (16#0000_00C9#)

SYSTEM.ADDRESS’ (16#0000_00Ca¥)

20

NO_SUCH_TYPE

EXTENDED_FLOAT

"CANNOT_RESTRICT_FILE_CAPACITY"

100_00C.9

~

laal
N
S0 ¢

100_000_

.TER_THAN _TLIAT_BASE_LAST

1.80141E-38

SGREATER_THAN_FLOAT_SAFE_LARGE

1.0E+38

A=2

MACRQ PARAMETERS

o, —

SGREATER_THAN_SHORT_FLOAT_SAFE_LARGE
1.0E+28

SHIGH_PRICRITY 17

3IL1ZGAL_EXTERNAL_FILE NAMEL
3AL_SXTERNAL_FILE_NAMEL

$ILLEGAL_EXTERNAL_FILE_NAME
LLEGAL_EXTERNAL FILE_NAMEZ

SINZLIUCE_PRAGMAL "PRAGMA INCLUDE ("A28006CL.TST™)"

SINZLUDE_PRAGMAZ “PRAGMA INCLUCZ ("B2800&FI.TSTM)"
SINTEIZER_FIRST -2.47463549

SLESS_THAN_DURATION =-100_000.0

SLESS_THAN_DURATION_BASE_FIRST
-100_000_060.0

SLINE_TERMINATOR re
3LOW_PRIQRITY 2

SMACHINE_CODE_STATEMENT
Two_Format’ (MCV, (Reg_Lit,), (Reg,RIV):

SMACZEINE ZCDE TYPE Mnemonic
SMANTISZA DOC 3L
i
s memmmn .
SuRN TI3ITS L8
! IMax o INT $223372026854775827

SMAX_INT_PLUS_1 ©3223372036854775808

IMIN_INT ~92232372036334775808

A-3

MACRC PARAMETERS

SNAME BYTE_INTEGER

% SNAME_LIST I583MC

: SNAME_SPECIFICATICINI /:lsunaZ/acvcl_llfvalida:i:n xll2%a
SNAME_SPECIFICATIONZ /tlsunal/acvcl_ll/validatizn, x212Ckp

SNAME _SPECIFICATICN? /tlsunal/acvcl_ll/validation/x3119%a

SNEG_BASED_INT l6#FFFFEFFFFEFFFFFE#

SNEW_MEM SIZE 2097132

SNEW_STOR_UNIT g

SNEW_SYS_NAME I%60MC

SPAGE_TERMINATOR !

SRECORD_DEFINITIO reccord Operation: Mnemonic:
Cperand_l: Operand: Clperand_I: Tperand;
end record;

SRECCRD_NAME Twe_Format

STASK_SIZE 22

STASK_STORAGE_SIZE 4C36

STICK C.C15625

SVARIABLE_ADDRESS SYSTEM.ADDRESS' (16#000C_10C3#)

SVARIABLE ADDRESS1 SYSTEM.ADDRESS’ (16#0CJ3C_1004¢)

SVARIABLE ADDRESS?2 SYSTEM.ADDRESS'(lG#OOOO_iOCB&)

SYQUR_PRAGMA NC_SUCH_PRAGM
A-4

APPENDIX B

COMPILATION SYSTEM CPTICNS

e +:s Ada implementaticn, 3S described :5n tnis
agpendix, are provided by the zustcmer. Unless specifically noted otherwise,
-eferences in this appendix are o compiler dorumentation and not t2 <h:S

-C

-Cl

-e=<integer>

Compilation switches for Tartan Ada Sun 960.

Ganerate an assembly code file. The assembly
code file has an extension .s for a body or
.88 for a specification (see Section
FILES-LEFT).

Generate an assembly code file with
interleaved source code. The assembly code
file has an extension .s for a body or .ss
for a specification.

Normally, the compiler creates a registered
copy of the user’'s source code in the library
directory for proper operation of the remake
and make subcommands to AL960.

This option suppresses the creation of this
copy .

Controls the type of calls generated by the
compiler through the option supplied. With
this option, the compiler generates all long
calls in the compiled code. With the default,
the compiler generates short calls within ap-
Plication cods and long calls from applications
to runtime routines.

Controls the type of calls generated by the
compiler through the option supplied. With
this option, the compiler generates all short
calls in the compiled code. Inappropriate use
of this switch will cause a failure at link
time. With the default, the compiler generates
short calls within application code and long
calls from applications to runtime routines.

When compiling a librazy unit, datermine
whether the unit is a refinement of its
previous version and, if so, do not make
dependent units obsolete. This check is not
done by default.

Stop compilation and produce a listing after
n errors are encountered, where n is in the
range 0..255. The default value for n is
255. The -e qualifier cannot be negated.

Forces the compiler to accept an attempt to
compile a unit imported from another library,
which is nommally prohibited.

Cénpilc with debugging information for
AdaScope.

Cause compiler to omit data segments with the

~L=(project:]library

~Mw

taxt of enumeration literals. This text is
normally produced £0r exported enumeration
types in order to support the text attributes
('IMAGE, 'VALUE and 'WIDTH). You should use
-i only when you can guarantee that no unit
that will import the enumeration type will
use any of its text attributes. However, if
you are compiling a unit with an enumeration
type that is not visible to other compilation
units, this option is not needed. The
compiler can recognize when the text
attributes are not used and will not generate
the supporting strings.)

Select library and/or project for this
compilation. This option takes effect after
all commands from the .adalibrec file have
been executed, thereby possibly overriding
its effects.

Generate a listing, even if no errors were
tound. The default is to generate a listing
only if an error is found.

Never generate a listing. The default is to
generate a listing only if an erxror is found.

When package MACHINE CODE is used, contzols
whether the compiler attampts to alter operand
address modes when those address modes are used
incorrectly. With this option, The compiler

does not attempt to fix any machine code insertion
that has incorrect address modes. An error
message is issued for any machine code insertion
that is incorrect. With the default, the compiler
attempts to generate extra instructions to fix
incorrect address modes in the array aggregates
operand field.

The compiler attempts to generate extra
instructions to fix incorrect address modes. A
warning message is issued if such a ‘'‘fixup’’
is required. With the default, the compiler
attempts to generate extra instructions to fix
incorrect address modes in the array aggregates
operand field.

Control the level of optimization performed
by the compiler, requested by n. The
optimization levels available are:

n =20 Minimum - Performs context
datermination, constant fold-
ing, algebraic manipulation,
and short cirzcuit analysis.

3

n=1 Low - Performs level 0 op-
timizations plus common sub-
expression elimination and
equivalence propagation within
basic blocks. It also op-
timizes evaluation order.

n=2 Best tradeoff for space/time -
the default level. Performs
level 1 optimizations plus flow
analysis which is used for
comnon subexpression elimina-
tion and equivalence propaga-
tion across basic blocks. It
also performs invariant expres-
sion hoisting, dead code
elimination, and assignment
killing. Level 2 also performs
lifetime analysis which is used
to improve register allocation.
It also performs inline expan-
sion of subprogram calls in-
dicated by Pragma INLINE, if
possible.

n=3 Time - Performs level 2
optimizations plus inline ex-
pansion of subprogram calls
which the optimizer decides are
profitable to expand (from an
execution time perspective).
Other optimizations which im-
prove execution time at a cost
to image size are performed
only at this level.

n={ Space - Performs those
optimizations which usually
produce the smallest code,
often at the expense of
speed. This optimization
level may not always produce
the smallest code, however,
another level may produce
smaller code under certain
conditions.

Causes the compiler to accept non-Ada input,
necessary to repl-ce package SYSTEM. This
qualifiar should not be used for compiling
user-defined packages containing illegal
cocde. Changes of package SYSTEN must fully
conform to the requiremants stated in ARM 4-5
13.7 and 13.7.1, and must not change the
given definition of type ADDRESS, in order to
preserve validatability of the Ada system.

. -r For internal use only, this option is used by
AL960 when it invokes the compiler in
(re)make mode.

-S[ACDEILORSZ] Suppress the given set of checks:
A ACCESS_CHECK
c CONSTRAINT_CHECK
D DISCRIMINANT CHECK
E ELABORATION_CHECK
I INDEX_CHECK
L LENGTH CHECK
) OVERFLOW_CHECK
R RANGE_CHECK
s STORAGE_CHECK
z “ZERO"DIVISION CHECK

The -S option has the same effect as an
equivalent pragma SUPPRESS applied to the
source file. If the source program also
contains a pragma SUPPRESS, then a given
check is suppressed if either the pragma or
the switch specifies it; that is, the effect
of a pragma SUPPRESS cannot be negated with
the command line option. See LRM 11.7 for
further details. Supplying the -S option
significantly decreases the size and execu-
tion time of the compiled code. Examples

are:

-S0z Suppress OVERFLOW_CHECK and
"ZERO"DIVISION CHECK.

-S Suppress all checks.

-SsC Suppress CONSTRAINT ERROR, equiv-~
alent to -SADILR. (Note that -SC
is upward compatible with Version
2.0)

-s Parses a unit and reports syntax errors, then
stops compilation without entering a unit in
the library.

-v Print out compiler phase names. The compiler

prints out a short description of each
compilation phase in prograss.

-w Suppress va:nihq messages.

-x Include cross reference information for the
source in the object file.

In addition, the output from the compiler may be redirected using the
redirection facility including ‘&’ for stderr; for example

t
l
[% tada60mc tax_spec.ada >& tax_spec.txt
¥

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,

are prcovided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
repor<.

B-2

Linker switches for Sun hosted Tartan Ada compilers.

COMMAND QUALIFIERS

This section describes the command options available to a user who directly
invokes the linker. The option names can be abbreviated to unique prefixes:
the first letter is sufficent for all current option names. The option names
are not case sensitive.

~CONTROL file The specified file contains linker control commands.
Only one such file may be specified, but it can
include other files using the CONTROL command. Every
invocation of the linker must specify a gontrol file.

-QUTPUT £file The specified file is the name of the <first output
object file. The module name for this file will be
null. Only one output file may be specified in this
manner. Additional output files may be specified in
the linker control file.

-ALLOCATIONS Produce a link map showing the section allocations.

~UNUSEDSECTIONS Produce a link map showing the unused sections.

~SYMBOLS Produce a link map showing global and external
symbols.

~RESOLVEMODULES This causes the linker to not perform unused section

elimination. Specifying this option will generally
make your program larger, since unreferenced data
within object files will not be eliminated. Raefer to
Sections RESOLVE_CMD and USE_PROCESSING for infor-
mation on the way that unused section elimination
wozrks.

-MAP Produce a link map containing all information except
the unused section listings.

Note that several listing options are permitted. This is because link maps
for real systeams can become rather 1large, and writing them consumes a
significant fraction of the total link time. Options specifying the contents
of the link map can be combined, in which case the zesulting map will contain
all the information specified by any of the awitches. The name of the file
containing the link map is specified by the LIST command in the linker control
tile. If your control file does not specify a name and you request a listing,
the listing will be written to the standard output stream.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allcwed implementaticn dependencies correspond tc implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
Chapgter .3 2f <he Ada Standard, and to certain allowed restrictions on
regresentazion clauses. The impiementation-dependent characteristics of this

Ada implementation, as described in this Appendix, are prsvided by the
sustomer. Unless specifically noted ctherwise, references in this Appendix
are =c comciler documentation and not to this report. Implementation-
specific pertions of the package STANDARD, which are not a part of this
ndix F, are:

cackage STANZARD is

type BYTE_INTEGER is range -128 .. 127;
type SHORT_INTEGER is range -32768 .. 32767;
type INTEGER is range =-2147483648 .. 2147483647;

type LCNG_INTEGER is range -9223372036854775808 .. 9223372036854775807;

tvpe FLJIAT is digits 6 range
-Z#7,21211111111111111111223#%#e226 .. 2#1.11111111111111122231122#4el26;
type LING_FLOAT is digits 1S5 rcange

. -Z#1.32222111121121111111222222231313131233132z2131111222112124e2022
Ssl.lllLlliliiiililiiiiisooliliiiliiililiiiiliiiiiilillisellla:

AT is digits 18 range
2 1121212212312212123121213113112112331232121122221211selC282
z 1111310012021 0100112311332331111112210011li1%el6382;
cdelta 0.0CC. range -86400.0 .. 854CC.C:

s

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F 1o the LRM which is Military Standard, Ada Programming
Language, ANSUMIL-STD-1815A (American National Standards Institute, Inc., February 17, 1983) .

3.1. PRAGMAS

5.1.1. Predefined Pragmas
This secton summarizes the effects of and restrictions on predefined pragmas.

e Access collections are not subject (o automatc storage reclamation so pragma CONTROLLED has no effect
* Space deallocaied by means of UNCHECKED_DEALLOCATION will be reused by the allocation of new
objects.
* Pragma ELABORATE is supporied.
¢ Pragma INLINE is supported.

* Pragma INTERFACE is supporied. A particular Ada calling sequence is associated with a subprogram
whose implementation is provided in the form of an object code module. Language_Name may be
either Use_Call or Use_Bal as described in Section 5.1.2.2. Any other Language_Name will be
accepted, but ignored, and the default, Use_Call will be used.

* Pragma LIST is supported but has the intended effect only if the command qualifier LIST=ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or wamings.

* Pragma MEMORY_SIZE is accepied but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

e Pragma OPTIMIZE is supported, but on a subprogram basis only. It does not affect code at the block
level. K

¢ Pragma PACK is supported.

« Pragma PAGE is supported but has the intended effect only if the command qualifier LIST=ALWAYS was
supplied for comptlanion, and the lisung generated was not due to the presence of errors and/or warnings.

¢ Pragma PRIORITY is supporied.

¢+ Pragma STORAGE_UNZIT is accepied but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

¢ Pragma SHARED is not supported. No warning is issued if it is supplied.
¢ Pragma SUPPRESS is supported.

¢ Pragma SYSTEM_NAME is accepied but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

i
f
' .
. ‘; .

USER MANUAL FOR TARTAN ADA SUN 960

5.1.2. Implementation-Defined Pragmas
Implementation-defined pragmas provided by Tartan are described in the following sections.

5.12.1. Pragma LINKAGE_NAME

The pragma LINKAGE_NAME associates an Ada entity with a string that is meaningful externally; e.g., 0 a
linkage editor. It takes the form

pragma LINKAGE_NAME (Ada-simple-name, string-constant)
The Ada-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a runtime representation; e.g., a subprogram, exception or object. It may not be a named number or
string constant. The pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user 1o guaraniee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

This pragma has no effect when applied to a library subprogram or 10 a renames declaration; in the later case,
no warning message is given.

When determining the maximum allowable length for the external linkage name, keep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name has S fewer significant characters than the lower limit of other tools that need to process
the name (e.g., 40 in the case of the Taran Linker).

5.12.2. Pragma FOREIGN_BODY

In addition 10 Pragma INTERFACE, Tartan Ada supplies Pragma FOREIGN_BODY as a way 10 access
subprograms in other languages.

Unlike Pragma INTERFACE, Pragma FOREIGN_BODY allows access 10 objects and exceptions (in addition
to subprograms) to and from other languages.

Some restrictions on Pragma FOREIGN_BODY that are not applicable to Pragma INTERFACE are:

¢ Pragma FOREIGN_BODY must appear in & non-generic library package.
* All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
* Types may not be declared in such a package.

Use of the pragma FOREIGN_BODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided (o the library using the AL960 foreign command described
in sections 3.3.3 and 13.5.5. The pragma is of the form:

pragma FOREIGN_BODY (Language name [, elaboration_routine_name))

The parameter Language_name is a string intended to allow the compiler to identify the calling convention used
by the foreign module (but tis functionality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by

the Tartan Ada compiler. Subprograms called by tasks should be reentrant

The optional elaboration_routine_name string argument is a linkage name identifying a routine 10 initialize
the package. The routine specified as the elaboration_routine_name, which will be called for the elabaration of
this package body, must be a giobal routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior t0 any declarations within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a waming
is generated.

APPENDIX F TO MIL-STD-1815A

The foreign body is entirely responsible for initializing objects declared in a package utilizing pragma
FOREIGN_BODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, certain
record types and compasite types containing componeats of the preceding kinds of types.)

Pragma LINKAGE_NAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names.

In the following example, we want 10 call a function plmn which computes polynomials and is wrinen in C.

package MATH_FUNCTIONS is
pragma FOREIGN_BODY ("C");
function POLYNOMIAL (X:INTEGER) return INTEGER;
~-Ada spec matching the C routine
pragma LINKAGE NAME (POLYNOMIAL, "plmn");
--Force compiler to use name "plmn" when referring to this
~- function
end MATH_FUNCTIONS;

with MATH_FUNCTIONS; use MATH_FUNCTIONS:
procedure MAIN is
X:INTEGER := POLYNOMIAL(10):
-- Will generate a call to "plmn"
begin .
end MAIN;

To compile, link and run the above program, you do the following steps:
1. Compile MATH_FUNCTIONS
2. Compile MAIN
3. Obain an object module (¢.g. math . TOF) containing the compiled code for plmn.
4. Issue the command
AL960 foreign math_functions math.TOF
S. Issue the command
AL960 link main
Without Step 4, an attempt o link will produce an error message informing you of a missing package body for
MATH_FUNCTIONS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user 10 replace a foreign body
with an Ada body without recompiling the specification.

The user can ecither compile an Ada body intw the library, or use the command AL960 foreign (see
Sections 3.3.3 and 13.5.5) to use an Ada body from another library. The Ada body from another library must
have been compiled under an identical specification. The pragma LINKAGE _NAME must have been applied to
all entities declared in the specification. The only way to specify the linkname for the elaboration routine of an
Ada body is with the pragma FOREIGN_BODY.

5.12.3. Pragma INTERFACE

The pragma INTERFACE associates a particular Tartan Ada calling sequence with a subprogram whose
implementation is provided in the form of an object code module.

The form of the pragma is:
pragma INTERFACE (Language_ Name, Subprogram_Name)

-

USER MANUAL FOR TARTAN ADA SUN 960

Language_Name may be cither Use_Call or Use_Bal as described in Section 5.1.2.2, _Any other
Language_Name will be accepted, but xgnored and the default, Use_Call will be used.

While the BAL calling convention is faster than the standard calling convention, be aware that BAL must be
used carefully. In particular, when a routine is called with BAL:
¢ No new stack frame is allocated. This means that the called routine must not change the stack pointer, or
must at least ensure that the stack pointer is restored before the routine returns.
¢ No new local registers are allocated.

¢ The cailed routine must returm via a bx (reg) instruction. The BAL instruction will automatically store
the return address in register g1 4.

¢ If a called routine has more than 12 words worth of parameters, the compiler will store the argument block
pointer in g14. Since the BAL instruction will place the return address in g14, the called routine could
find that its argument block pointer has been trashed.

Please see Chapter 6 for a complete list of BAL calling convention restrictions.

5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES
No implementation-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM
The parameter values specified for the 80960MC in package SYSTEM [LRM 13.7.1 and Appendix C] are:

package SYSTEM is
type ADDRESS is new Integer;
type NAME is (I960MC);

SYSTEM_NAME : coustant name := I960MC;
STORAGE_UNIT : coustant := 8;
MEMORY_SIZE : coustant := 2_097_152;

MAX_INT : comstant := 9 223 372_036_854_775_807;
MIN_INT : constant := -MAX INT - 1;

MAX DIGITS : constant := 18;

MAX MANTISSA : constant := 31;

FINE_DELTA : constant := 2#1.0#e-31;

TICK constant := 0.015625;

subtype PRIORITY s INTEGER range 2 .. 17;
DEFAULT_PRIORITY : constant PRIORITY := PRIORITY'FIRST;
RUNTIME_ERROR : exception;

end SYSTEM:

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES

The following sections explain the basic restrictions for representation specifications followed by additional
restrictions applying w specific kinds of clauses.

5.4.1. Basic Restriction

The basic restriction on representation specifications [LRM 13.1) is that they may be given only for types
declared in terms of a type definition, excluding a generic_type_definition (LRM 12.1) and a
private_type_definition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler; an ervor message is issued.

| S -

-

APPENDIX F TO MIL-STD-1815A

Further restrictions are explained in the following sections. Any representation clauses violating those restric-
tions cause compilation to stop and a diagnostic message to be issued.

5.4.2. Length Clauses .
Length clauses [LRM 13.2] are, in general, supported. For details, refer to the following sections.

5.4.2.1. Size Specifications for Types
The rules and restrictions for size specifications applied to types of various classes are described below.
The following principle rules apply:
1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

* An object that is not 2 component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example

type My Enum is (A,B);
for My_enum’size use 1;
V,W: My_enum; -- will occupy two storage
== units on the stack
== (if allocated at all)
type rec is record
V,W: My_enum;
end record:;
pragma Pack(rec):
0: rec: -- will occupy one storage unit

e A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameier passing take place
automatically and are transparent to the user.

* Adjacent bits to an object that is a component of a composite object, but whose size is
non-referable, may be affecied by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational sizes in different contexte.

Note: A size specification cannot be used to force a certain size in value operations of the type; for
example
type my_int is range 0..65535;
for my_int’size use 16; -- o.k.
A,B: my_int;
..A + B,.. -~ this operation will generally be
-~ executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In contrast, for types without a
length clause, such components may be representad in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

5
-

USER MANUAL FOR TARTAN ADA SUN 960

type MY_INT is range 0..2**15-1;

for MY_INT’SIZE use 16; -- (1)

subtype SMALL_MY_INT is MY_INT range 0..255;
type R is record

X: SMALL MY_INT;

enc.i. .".ecord;
the component R.X will occupy 16 bits. In the absence of the length clause at (1), R,X may be
represented in 8 bits.
Size specifications for access types must coincide with the default size chosen by the compiler for the type.
Size specifications are not supported for floating-point types or task types.

5.4.2.2. Size Specification for Scalar Types

The specified size must accommodate all possible values of the type including the value O (even if 0 is not in
the range of the values of the type). For numeric types with negative values the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus

type my_int is range 100..101;
requires at least 7 bits, although it has only two values, while
type my_int is range -101..-100;
requires 8 bits to account for the sign bit.

A size specification for a real type does not affect the accuracy of operations on the type. Such influence
should be exerted via the accuracy_definition of the type (LRM 3.5.7, 3.5.9).

A size specification for a scalar type may not specify a size larger than the largest operation size supported by
the target architecture for the respective class of values of the type.

5.4.2.3. Size Specification for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy. Any alignment constraints on the component type (see Section 5.4.7) must be met.

The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up 10 a referabie size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5.4.2.4. Size Specification for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bdits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neithadnﬁzedcanpmmtlypu.noiﬂ\emwemuﬁmofcommmsubtypescanbéinﬂumoedbya
length clause for a record.

The only implementation-dependent components aliocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record or contain relative offsets of components within a
record layout for record components of dynamic size. These implementation-dependent components cannot be
named or sized by the user.

APPENDIX F TO MIL-STD-1815A)

A size specification cannot be applied 1o a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.42.5. Specification of Collection Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any attempt to aliocate more objects than the collection can hold causes a STORAGE_ERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible 0 use all memory locations of the allocated collection. No matter what the requested
object size, the allocator must allocate a minimum of 2 words per object. This lower limit is necessary for
administrative overhead in the allocator. For example, a request of 5 words results in an allocation of 5 words; a
request of 1 word results in an allocation of 2 words.

Furthermore, the aliocator must round non-word sized requests up to the nearest word. For example, a
request of 11 bytes is rounded up to 12 bytes (3 words).

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGE_ERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

5.4.2.6. Specification of Task Activation Size

The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

If the storage specified for a task activation (T’ Storage_Size) is not a multiple of 4096 (one page), the
compiler allocates the next higher multiple of 4096, as permitted by the language.

Any autempt to exceed the activation size during execution causes a STORAGE_ERROR exception to be
raised. Unlike collections, there is no extension of task activations.

5.42.7. Specification of * SMALL
Only powers of 2 are allowed for ' SMALL.
The length of the representation may be affected by this specification. If a size specification is also given for

tle type, the size specification takes precedence; the specification of * SMALL must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses
For enumeration representation clauses [LRM 13.3), the following restrictions apply:

o The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of atributes on enumeration types with user-specified encodings is costly at run time.,

¢ Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumeration type.

USER MANUAL FOR TARTAN ADA SUN 960

5.4.4. Record Representation Clauses

The alignment clause of record representation clauses [LRM 13.4] is observed.

Static objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the
minimum alignment of the record type, unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is already more stringent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants

of swatically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then

the discriminants and components wi*out component clauses are allocated after those with component clauses;
no attempt is made to utilize gaps boi1 by the user-provided allocation.

5.4.5. Address clauses
Address clauses [LRM 13.5] are supported with the following restrictions:

* When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
accepted but meaningless. Please refer to section 8.10 for details on how address clauses relate to linking;
refer to section 12.2 for an example.

® Address clauses applied to local packages are not supported by Tartan Ada. Address clauses applied to
library packages are prohibited by the syntax; therefore, an address clause can be applied to a package only
if it is a body stub.

¢ Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value identifies an interrupt in a manner customary for the target
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt. Refer to section 10.2.7 for more
details. A specified address must be an Ada static expression.

¢ Address clauses specify virtual, not physical, addresses.

* When specifying absolute addresses, please note that the compiler will treat addresses as an INTEGER
type. This means that specifications of addresses may raise arithmetic overflow errors; i.¢., addresses must
be in the range INTEGER’FIRST..INTEGER’LAST. To represent an address greater than
INTEGER’ LAST, use the negated radix-complement of the desired address. For example, to express
address 16#C000_000, specify insicad -1644000_000.

5.4.6. Pragma PACK
Pragma PACK [LRM 13.1] is supported. For details, refer 10 the following sections.

5.4.6.1. Pragma PACK for Arrays

If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,
refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If, in addition, a length clause is applied to

APPENDIX F TO MIL-STD-1815A

1. The array type, the pragma has no effect, since such a length clause aiready uniquely determines the array
packing method.

2. The component type, the array is packed densely, observing the component’s length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-

ponent type.

5.4.6.2. The Predefined Type String
Package STANDARD applies Pragma PACK 1o the type string.

However, when applied to character arrays, this pragma cannot be used to achieve deaser packing than is the
default for the target: 4 characters per 32-bit word.

5.4.6.3. Pragma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that the default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage 10 the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types

Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-
tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed. '

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically, restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in .
contexts involving array indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

¢ No object of scalar type including components or subcomponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object’s value to be performed by two
or more extractions.

55. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

i
|
|

USER MANUAL FOR TARTAN ADA SUN 960

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task
entries. Tartan Ada implements the address clause

for TOENTRY use at intID; _
by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of int ID is both machine and compiler dependent.

The Ada runtimes provide interrupts that may be associated with task entries. These interrupts are of type
System.Address in the ranges 8..243, 252..255, 264..499, and 508..511.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Tanan supports UNCHECKED_CONVERSION with a restriction that requires the sizes of both source and
target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will v truncated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKED_CONVERSION are made inline automatically.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES

Tanan Ada supplies the predefined input/output packages DIRECT_I0, SEQUENTIAL_IO, TEXT_IO, and
LOW_LEVEL_IO as required by LRM Chapter 14, However, since 80960MC processor is used in embedded
applications lacking both standard IO devices and file systems, the functionality of DIRECT_I0,
SEQUENTIAL_IO, and TEXT_IO is limited.

DIRECT_IO and SEQUENTIAL_IO raise USE_ERROR if a file open or file access is atempied. TEXT_IO
is supported to CURRENT_OUTPUT and from CURRENT_INPUT. A routine that takes explicit file names raises
USE_ERROR. LOW_LEVEL_IO for 80960MC processor provides an interface by which the user may read and
write from memory mapped devices. In both the SEND_CONTROL and RECEIVE_CONTROL procedures, the
device parameter specifies a device address while the data parameter is a byte, halfwcrd, word, or doubleword of
data transferred.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Program

Any Ada library subprogram unit may be designated the main program for purposes of linking (using the
AL960 LINK command) provided that the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for termination as other tasks [described in
LRM 9.4 (6-10)). Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

5.9.2. Implementation of Generic Units

All instantiations of generic units, except the predefined generic UNCHECKED_CONVERSION and
UNCHECKED_DEALLOCATION subprograms, are implemented by code duplications. No atiempt at sharing
code by multiple instantiations is made in this release of Tartan Ada.

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will casue any units that
instantiated this generic unit o become obsolete.

APPENDIX F TO MIL-STD-1815A

5.9.3. Attributes of Type Duration
The type DURATION is defined with the following characteristics:

Atribute Value
DURATION'DELTA | 0.0001 sec
DURATION’ SMALL | 0.000061 sec
DURATION'FIRST | -86400.0 sec
DURATION’ LAST | 86400.0 sec

5.9.4. Values of Integer Attributes

Tartan Ada supports the predefined integer type INTEGER. The range bounds of the predefined type
INTEGER are:

INTEGER’ FIRST is -2**31
INTEGER’ LAST is 2**31-1

LONG_INTEGER' FIRST is -2**63
LONG_INTEGER’ LAST is 2**63-1

SHORT_INTEGER'FTRST is -2**15
SHORT_INTEGER' LAST is 2**15-1

BYTE_INTEGER’FIRST is-128
BYTE_INTEGER’ LAST is 127
The range bounds for subtypes declared in package TEXT IO are:
COUNT’ FIRSTis 0
COUNT’ LAST is INTEGER' LAST - |

POSITIVE_COUNT’FIRSTis 1
POSITIVE_COUNT’ LAST is INTEGER’ LAST - |

FIELD'FIRSTis0
FIELD' LAST is 20
The range bounds for subtypes declared in packages DIRECT_IO are:
COUNT'FIRSTis0
COUNT’ LAST is INTEGER' LAST

POSITIVE_COUNT'FIRSTIis)
POSITIVE_COUNT' LAST is COUNT’ LAST

5.9.5. Ordinal Types

Ordinal types are supported via a separate package, which is included with the standard packages. Package
Ordinal_Support provides support for unsigned arithmetic, including functions which convent between
Integer and Ordinal types, and a complete set of Ordinal arithmetic operations. The specification of package
Ordinal_Support may be found in the appendix.

USER MANUAL FOR TARTAN ADA SUN 960

5.9.6. Values of Floating-Point Attributes '
Tartan Ada supports the predefined floating-point types FLOAT, LONG_FLOAT, and EXTENDED_FLOAT.

Attribute Value for FLOAT

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000_000#E-4
approximately 9.536743£-07

SMALL 16#0.8000_000#E-21
approximately 2.58494E-26

LARGE 16#0.FFFF_F80#E+21
approximately 1.93428E+25

SAFE_EMAX 126

SAFE_SMALL 16#0.2000_000#E-31
approximately 5.87T4TE-39

SAFE_LARGE 16#0.3FFF_FEO#E+32
approximately 8.50706+37

FIRST -16#0.TFFF_FFCH#E+32
approximately -1.70141E+38

LAST 16#0.TFFF_FFC#E+32
approximately 1.70141E+38

MACHINE_RADIX 2

MACHINE MANTISSA 24

MACHINE_EMAX 126

MACHINE_EMIN -126

MACHINE_RCUNDS TRUE

MACHINE_OVERFLOWS TRUE

Attribute
DIGITS
MANTISSA
EMAX

EPSILON
approximately

SMALL
approximately

LARGE
approximately

SAFE_EMAX

SAFE_SMALL
approximately

SAFE_LARGE
approximately

FIRST
approximately

LAST
approximately

MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS

MACHINE_OVERFLOWS

APPENDIX F TO MIL-STD-1815A

Value for LONG _FLOAT

15
51
204

16#0.4000_0000_0000_000#E-12
8.8817841970013E-16

16#0.8000_0000_0000_000#E-51
1.9446922743316E-62

16#0.FFFF_FFFF_FFFF_EOOH#E+51
2.5711008708143E+61

1022

16#0.2000_0000_0000_000#E-255
1.1125369292536-308

16#0.3FFF_FFFF_FFFF_FBO#E+256
4.4942328371557E+307

-16#0.7FFF_FFFF_FFFF_FE#E+256
-8.988465674312E+307

16#0.7FFF_FFFF_FFFF_FEOKE+256
8.9884656743115E+307

2

51
1022
-1022
TRUE

TRUE

USER MANUAL FOR TARTAN ADA SUN 960

Attribute
DIGITS
MANTISSA
EMAX

EPSILON
approximately

SMALL
approximately

LARGE
approximately

SAFE_EMAX

SAFE_SMALL
approximately

SAFE_LARGE
approximately

FIRST
approximately

LAST
approximately

MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS

MACHINE_OVERFLOWS

Value for EXTENDED FLOAT

18
61
244

16#0.1000_0000_0000_0000_0#E-14
8.67361737988403547E-19

16#0.8000_0000_0000_0000_O#E-61
1.76868732008334226E-74

16#0.FFFF_FFFF_FFFF_FFF8_(O#E+61
2.82695530364541493E+73

16382

16#0.2000_0000_0000_0000_0#E-4096
1.6810515715560467SE-4932

16#0.3FFF_FFFF_FFFF_FFFF_OH#E+<096
2.97432873839307941E+4931

-16#0.7TFFF_FFFF_FFFF_FFFF_8#E+4096
-5.94865747678615883E+4931

16#0.7FFF_FFFF_FFFF_FFFF_8#E+4096
5.94865747678615883E+4931

2

63
16382
-16382
TRUE

TRUE

APPENDIX F TO MIL-STD-1815A

5.10. SUPPORT FOR PACKAGE MACHINE_CODE

Package MACHINE_CODE provides the programmer with an interface through which to request the genera-
tion of any instruction that is available on the 80960. The Tartan Ada Sun 960 implementation of package
MACHINE_CODE is similar to that described in Section 13.8 of the Ada LRM, with several added features. Refer
to appendix A of this manual for the specification for package MACHINE_CODE.

5.10.1. Basic Information

As required by LRM, Section 13.8, a routine which contains machine code inserts may not have any other
kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

5.10.2. Instructions

A machine code insert has the form TYPE_MARK’ RECORD_AGGREGATE, where the type must be one of the
records defined in package MACHINE CODE Package MACHINE CODE defines four types of records. Each
has an opcode and zero to 3 operands. These records are adequate for the expression of all instructions provided
by the 80960.

5 10.3. Operands

An operand consists of a record aggregate which holds all the information to specify it to the compiler. "Al
operands have an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the instruction being generated.

5.103.1. Address Modes

Each operand in a machine code insert must have an Address_Mode_Name. The address modes provided in
package MACHINE _CODE provide access to all address modes supported by the 80960.

In addition, package MACHINL_CODE supplies the address modes Symbolic_Address and
Symbolic_Value which allow the user to refer to Ada objects by specifying Object ' ADDRESS as the value
for the operand. Any Ada object which has the ' ADDRESS auribute may be used in a symbolic operand.
Symbolic_Address should be used when the operand is a true address (that is, a branch target or the source
of an LDA instruction). Symbolic_Value should be used when the operand is actually a value (that is, one of
the source operands of an ADD instruction).

When an Ada object is used as a source operand in an instruction (that is, one from which a value is read), the
compiler will generate code which feiches the value of the Ada object. When an Ada object is used as the
destination operand of an instruction, the compiler will generate code which uses the address of the Ada object as
the destination of the instruction. See section 5.10.10 for further details.

5.10.4. Examples

The Tartan Ada Sun 960 implementation of package MACHINE_CODE makes it possible to specify
both simple machine code inserts such as
two_format’ (MOV, (Reg_Lit, 5), (Reg, RS))
and more complex inserts such as
three_format’ (MULI,
{Symbolic_Value, Array_Var(X, Y, 27)'ADDRESS),

(Lit, 123456),
(Symbolic_Address, Parameter 1’ADDRESS))

In the first example, the compiler will emit the instruction mov 5, r5. In the second example, the compiler
will first emit whatever instnuctions are needed 1o form the address of Array_Var(X, Y, 27), load the
valuefmmdltdmaddreumwlmgmu load 123456 into a register, and then emit the MULI instruction. If
" Paramater 1 ic not fonnd in a register. the comniler will nut the result of the multinlication in a temnorary

USER MANUAL FOR TARTAN ADA SUN 960

register and then store it t0 Parameter_1’ADDRESS. Note that the destination operand of the MULI instruc-
tion is given as a Symbolic_Address. This holds true for all destination operands. The various esor checks
specified in the LRM will be performed on all compiler-generated code unless they are suppressed by the
programmer (¢ither through pragma SUPPRESS, or through command qualifiers).

5.10.5. Incorrect Operands

Under some circumstances, the compiler attempts to correct incorrect operands. Three modes of operation
are supplied for package MACHINE_CODE: -Fixup=None, -Fixup=Warn and -Fixup=Quikt. These
modes of operation determine whether corrections are atempted and how much information about the necessary
corrections is provided to the user. -Fixup=Quiet is the default.

In -Fixup=None mode, the specification of incorrect operands for an instruction is considered to be a fatal
error. In this mode, the compiler will not generate any extra instructions to help you to make 8 machine code
insertion. Note that it is still legal to use ' ADDRESS constructs as long as the object which is used meets the
requirements of the instruction. ‘

In -Fixup=Quiet mode, if you specify incorrect operands for an instruction, the compiler will do its best
to fix up the machine code 1o provide the desired effect. For exampie, although it is illegal to use a memory
address as the destination of an ADD instruction, the compiler will accept it and try to generate correct code. In
this case, the compiler will allocate a iemporary register 10 use as the destination of the ADD, and then store from
that register to the desired location in memory.

In -Fixup=Warn mode, the compiler will also do its best to correct any incorrect operands for an instruc-
tion. However, a waming message is issued stating that the machine code insert required additional machine
instructions to make its operands legal.

The compiler will always emit the instruction named in the machine code insert — even if it was necessary 10
fix up all of its operands. In extreme cases this can lead to surprising code sequences. Consider, for example, the
machine code insert

Two_Format’ (MOV, (Reg_Ind, GO), (Reg_Ind Disp, G1l, 128))
The MOV instruction requires two registers, but both operands are memory addresses. The compiler will generate
a code sequence like

ld (g0), gl2
mov gl2, g13
st gl3, 128(gl)

Note that the MOV instruction is generated even though a LD ST combination would have been sufficient. Asa
result of always emitting the instruction specified by the programmer, the compiler will never optimize away
instructions which it does not understand (such as SENDSERV), uniess they are unreachable by ordinary control
flow.

5.10.6. Assumptions Made in Correcting Operands

When compiling in /Fixup=[WARN, QUIET) modes, the compiler attempts to emit additional code to
move *‘the right bits"* from an incorrect operand to a place which is a legal operand for the requested instruction.
The compiler makes certain basic assumptions when performing these fixups. This section explains the assump-
tions the compiler makes and their implications for the generated code. Note that if you want a correction which
is different from that performed by the compiler, you must make explicit machine_code insertions to perform
it

For source operands:

® Symbolic_Address means that the address specified by the ' ADDRESS expression is used as the
source bits. When the Ada object specified by the / ADDRESS instruction is bound 10 a register, this will
cause a compile-time error message because it is not possible to ‘‘take the address'’ of a register.

® Symbolic_Value means that the value found at the address specified by the / ADDRESS expression will
be used as the source bits. An Ada obiect which is bound to a rerister is correct here, because the contents

C i e s -t e = e e e e

APPENDIX F TO MIL-STD-1815A

e Label indicates that the address of the label will be used as the source bits.

e Any other non-register means that the value found at the address specified by the operand will be used as
the source bits.

For destination operands:

e Symbolic_Address means that the desired destination for the operation is the address specified by the
* ADDRESS expression. An Ada object which is bound to a register is correct here; a register is a legal
destinatior on the 960.

e Symbolic_Value means that the desired destination for the operations is found by fetching 32 bits from
the address specified by the ' ADDRESS expression, and storing the result to the address represented by the
fewched bits. This is equivalent to applying one extra indirection to the address used in the
Symbolic_Address case.

¢ All other operands are interpreted as directly specifying the destination for the operation.

Table 5-1 below describes the correction attempted for each possible instruction-operation combination. The
actions shown in the table have the following meanings:

Load to Register 1 The operand given represeats a memory location, but the instruction requires a register.
The operand is used as a source. The compiler will load from the operand to a tem-
porary register.

Load to Register 2 The operand given represents a register, but the instruction requires a memory location.
The operand is a destination. The compiler will store the result value to a scratch
memory location, and then load it into the specified register.

Store 1o Memory 1 The operand given represents a register, but the instruction requires a memory location.
The operand is a source. The compiler will store the value to a scratch memory location
so that it will be in the proper place for the instruction.

Store to Memory 2 The operand given represents a memory location, but the instruction requires a register.
The operand is a destination. The compiler will allocate a scratch register, use that as
the destination for the instruction, and then store the result value to the specified
memory address.

Store to Memory 3 The operand given is not the address of a label. The operand will be stored to a scratch
memory location, and then used as the indirect branch target.

Error 1 The only incorrect operand for the source of an LDA is a register. It is not possible to
take the address of a register on the 960.

Error 2 The operand must be a Label’ Address.
Inst Opndl Opnd2 Opnd3
addo, addi, addc, addr,
addr] Load to Register 1 Load 1w Register 1 Store to Memory 2
alterbit Load 10 Register 1 Load to Register 1 Store to Memory 2
and, andnot Load to Register 1 Load to Register 1 Store to Memory 2
atadd Load 10 Register 1 Load w0 Register 1 Store 10 Memory 2
atanr, atanrl Load 10 Register 1 Load to Register 1 Store 10 Memory 2
atmod Load to Register 1 Load to Register 1 Store to Memory 2

Table 5-1: Machine_Code Fixup Operations

,4..-7 Te—e— . -
e trpa—— L i

L ——— e ——— = —

USER MANUAL FOR TARTAN ADA SUN 960

Inst Opndl Opnd2 Opnd3
b Emor 2
bx Store 10 Memory 3
bal Emor 2
balx Store 1o Memory 3
bbc, bbs Load to Register 1 Load to Register 1 Error 2
BRANCH IF Error 2
call Ermror 2
calls Load to Register 1
callx Store to Memory 3
chkbit Load to Register 1 Load to Register 1
classr, classrl Load to Register 1
clrbit Load to Register 1 Load to Register 1 Store to Memory 2
cmpi, cmpo Load to Register 1 Load 10 Register 1
cmpdeci, cmpdeco Load to Register 1 Load to Register 1 Store to Memory 2
cmpinci, cmpinco Load to Register 1 Load to Register 1 Store to Memory 2
cmpor, cmporl Load to Register 1 Load 10 Register 1
cmpr, cmprl Load to Register 1 Load o Register 1
cmpstr Load to Register 1 Load to Register 1 Load to Register 1
COMPARE AND
BRANCH Load to Register 1 Load to Register 1 Error 2
concmpi, concmpo Load 1o Register 1 Load to Register 1
condrec Load to Register 1 Load 10 Register 1
condwait Load to Register 1
cosr, cosrl Load 10 Register 1 Store 1o Memory 2
Cpyrsre, Cpysre Load 10 Register 1 Load 10 Register 1 Store to Memory 2
Load 10 Register 1 (64
cviilr bits) Store 10 Memory 2
cvtir Load 10 Register 1 Store 10 Memory 2
cvtri Load 10 Register 1 Store 0 Memory 2
Store 1o Memory 2 (64
cvtril Load to Register 1 bits)
cvizni Load 10 Register 1 Store 10 Memory 2
Store o Memory 2 (64
cvtzril Load to Register 1 bits)
daddc Load 10 Register 1 Load 10 Register 1 Store to Memory 2
divo, divi, divr, divii | Load 10 Register 1 Load 10 Register) Swore to Memory 2
ol B X RS Sy . DO PR £ ISP o VA

—-—

— ————

B .

APPENDIX F TO MIL-STD-1815A

Inst Opadl Opnd2 Opnd3
dmovt Load to Register 1 Store to Memory 2
dsubc Load to Register 1 Load to Register 1 Store to Memory 2

Load to Register 1 (64 | Store to Memory 2 (64
ediv Load to Register 1 Bits) bits)

Store to Memory 2 (64

emul Load to Register 1 Load 1o Register 1 bits)
expr, exprl Load 10 Register 1 Store to Memory 2
extract Load 10 Register 1 Load to Register 1 Store 1o Memory 2
FAULTIF
fill Load to Register 1 Load w Register 1 Load t0 Register 1
flushreg
fmark
inspacc Load to Register 1 Store to Memory 2
LOAD Store 10 Memory 1 Store to Memory 2
Ida Ermor 1 Store 1o Memory 2
ldphy Load to Register 1 Store to Memory 2
ldtime Store 1o Memory 2
logbar, logbnrl Load to Register 1 Store 1o Memory 2
logepr. logeprl Load to Register | Store to Memory 2
logr, logrl Load to Register 1 Store to Memory 2
mark
modac Load to Register 1 Load to Register 1 Store to Memory 2
modi Load to Register 1 Load to Register 1 - | Store to Memory 2
modify Load to Register 1 Load to Register 1 Store to Memory 2
modpc Load 10 Register 1 Load w Register 1 Store to Memory 2
modtc Load 10 Register 1 Load to Register 1 Store o Memory 2
MOVE Load to Register 1 Store 10 Memory 2
MOovgstr, movstr Load to Register 1 Load to Register 1 Load to Register 1
mulo, muli, mulr,
mulr} Load to Register 1 Load w0 Register 1 Store to Memory 2
nand Load to Register 1 Load 1o Register 1 Store to Memory 2
nor Load 10 Register | Load o Register 1 Store to Memory 2
not Load 10 Register 1 Store 0 Memory 2
notand Load 10 Register 1 Load to0 Register 1 Store to Memory 2
notbit Load 10 Register 1 Load w Register 1 Store to Memory 2

Table 5-1: Machine_Code Fixup Operations

USER MANUAL FOR TARTAN ADA SUN 960

Inst Opndl Opnd2 Opnd3

notor Load to Register 1 Load to Register 1 Store to Memory 2
or, arnot Load to Register 1 Load 10 Register 1 ‘Store to Memory 2
recieve Load to Register 1 Load to Register 1

remo, remi, remr,

remrl Load to Register 1 Load to Register 1 Store to Memory 2
resumprcs Load to Register 1

ret

rotate Load to Register 1 "| Load to Register 1 Store to Memory 2
roundr, roundrl Load to Register 1 Store to Memory 2

savepres

scaler, scalerl Load to Register 1 Load to Register 1 Store to Memory 2
scanbit Load to Register 1 Store to Memory 2

scanbyte Load to Register 1 Load to Register 1

schedprcs Load to Register 1

send Load to Register 1 Load to Register 1 Load to Register 1

sendserv Load to Register 1

setbit Load to Register 1 Load to Register 1 Store to Memory 2
SHIFT Load to Register 1 Load to Register 1 Store to Memory 2
signal Load to Register 1

sinr, sinrl Load 1o Register 1 Store 10 Memory 2

spanbit Load to Register 1 Store to Memory 2

sqrir, sqrirt Load to Register 1 Store 10 Memory 2

STORE Load to Register 1 Load To Register 2

subo, subi, subc, subr,

subrl Load to Register 1 Load 10 Register 1 Store to Memory 2
syncf

synld Load to Register 1 Store 10 Memory. 2

Synmov, synmovl, syn-

movq Load To Register 1 Load 10 Register 1

tanr, tanr| Load to Register 1 Store 1o Memory 2

TEST Store 10 Memory 2 i
wait LoadtoReg 1

xnor, xor Load to Register 1 Load to Register 1 Store to Memory 2

Table 8-1: Machine_Code Fixup Operations

APPENDIX F TO MIL-STD-1815A

5.10.7. Register Usage

Since the compiler may need to allocate registers as temporary storage in machine code routines, there are
some restrictions placed on your register usage. The compiler will automatically free all the registers which
would be volatile across a call for your use (that is, g0..g7, g13, and g14). If you reference any other register, the
compiler will reserve it for your use until the end of the machine code routine. The compiler will not save the
register automatically. This means that the first reference to a register which is not volatile across calls should be
an instruction which saves its value in a safe place. The value of the register should be restored at the end of the
machine code routine. This rule will help ensure correct operation of your machine code i insert even if it is inline
expanded in another routine.

The compiler may need several registers 1o generate code for operand fixups in machine code inserts. If you
use ail the registers, fixups will not be possible. If a fixup is needed, the compiler may require up to three
registers 10 guarantee success. In general, when more registers are available to the compiler it is able to generate
better code.

5.10.8. Inline Expansion

Routines which contain machine code inserts may be inline expanded into the bodies of other routines. This
may happen under programmer control through the use of pragma INLINE, or at Optimization Level 3 when the
compiler selects that optimization as an appropriate action for the given situation. The compiler will treat the
machine code insert as though it was a call; volatile registers will be saved and restored around it, etc.

5.10.9. Unsafe Assumptions

There are a variety of assumptions which should nor be made when writing machine code inserts. Violation
of these assumptions may result in the generation of code which does not assemble or which may not function
correctly.

¢ Do not assume that a machine code insert routine has its own set of local registers. This may not be true if

the routine is inline expanded into another routine. Explicitly save and restore any registers which are not
volatile across calls. If you wish to guarantee that a routine will never be inline expanded, you should use
an Ada separate body for the routine and make sure that there is no pragma INLINE for it.

* Do not atempt to move multiple Ada objects with a single long instruction such as MOVL or STT.
Although the objects may be contiguous under the current circumstances, there is no guarantee that later
changes will permit them to remain contiguous. If the objects are parameters, it is virtually certain that
they will not be contiguous if the routine is inline expanded into the body of another routine. In the case of
locals, globals, and own variables, the compiler does not guarantee that objects which are declared tex-
tually “‘next’’ to cach other will be contiguous in memory. If the source code is changed such that it
declares additional objects, this may change the storage allocation such that objects which were previously
adjacent are no longer adjacent.

* The compiler will not generate call site code for you if you emit a call instruction. You must save and
restore any volatile registers which currently have values in them, eic. If the routine you call has out
parameters, a large function return result, or an unconstrained result, it is your responsibility to emit the
necessary instructions to deal with these constructs as the compiler expects. In other words, when you emit
a call, you must follow the linkage conventions of the routine you are calling. For further details on call
site code, see Sections 6.4, 6.5 and 6.6.

¢ Do not assume that the ‘ ADDRESS on Symbolic_Address of Symbolic_Value operands means
that you are getting an ADDRESS (o operate on. The Address- or Value-ness of an operand is determined
by your choice of Symbolic_Address or Symbolic_Value. This means that to add the comtents of
X to 13, you should write
Three_Format’ (ADDI, (Symbolic_Value, X'ADDRESS),
{Reg, R3) + (Reg, R3)):

A T . [e.. - . v.ovy

et A pp—— - <

USER MANUAL FOR TARTAN ADA SUN 960

B e e AL

Three_Format’ (ADDI, (Symbolic_Address, X’'ADDRESS),
(Reg, R3) ’ (Reg, R3) y:

e The compiler will not prevent you from writing register r3 (which is used o hold the address of the current
exception handler). This provides you the opportunity to make a custom exception handler. Be aware,
however, that there is considerable danger in doing so. Knowledge of the details on the structure of
exception handlers will help; see the Tartan Ada Runtime Implementor' s Guide.

5.10.10. Limitations

e When specifying absolute addresses in machine_code inserts, please note that the compiler will treat
addresses as an INTEGER type. This means that specifications of addresses may raise arithmetic overflow
errors; i.e., addresses must be in the range INTEGER' FIRST. .INTEGER’LAST. To represent an
address greater than INTEGER' LAST, use the negated radix-complement of the desired address. For
example, to express address 1 6#C000_000, specify instead -16#4000_000.

» The current implementation of the compiler is unable to fully support automatic fixup of certain kinds of
operands. In particular, the compiler assumes that the size of a data object is the same as the number of
bits which is operated on by the instruction chosen in the machine code insert. This means that the insert:

Three_Format’ (ADDO, (Symbolic_ Value, Byte_Variable’ADDRESS),
(Reg, RO), (Reg, Rl))
will not generate correct code when Byte_Variable is bound to memory. The compiler will assume
that Byte_Variable is 32 bits, when in fact it is only 8, and will emit an LD instruction to load the
value of Byte_vVariable inlo a register. If, on the other hand, Byte_Variable was bound 10 a
register the insertion will function properly, as no fixup is needed.

* The compiler generates incorrect code when the BAL and BALX instructions are used with symbolic
operands which are not of the form Routine’ ADDRESS. To get the effect of an unconditional branch,
use the B or BX instructions instead.

* Note that the use of X’ ADDRESS in 8 machine code insert does not guarantee that X will be bound to
memory. This is a result of the use of ' ADDRESS to provide a ‘‘typeless’’ method for naming Ada aobjects
in machine code inserts. For example, it is legal 10 say to (Symbolc_Value, X’ADDRESS) in an
insert even when X is a formal parameter of the machine code routine (and is thus found in a register).

5.10.11. Example

package mtest is
type ary type is array(l..4) of integer;

procedure inline_into_me;
end mtesc;

with machine_code;
use machine_code:
package body mtest is

own_var : integer := -1;

procedure mach_test(x, Y, z: in integer; ary: in out ary_type) is

begin
== The next instruction is only OK if this routine is not INLINED,
== If the routine is inlined, there is no guarantee that parm X will
== be either A) in an even numbered register, or B) "next to" parm
== Y. If the programmer uses an instruction like MOVLp here, he is
-~ assuming too much about the generated code; his program is
== grronecus. On the other hand, the use of x'ADDRESS does guarantee
== that the instruction will use X even when this routine is inline
-~ expanded into a caller.

APPENDIX F TO MIL-STD-1815A

e ——

Two_Format’ (MOVL, (Symbolic_Value, x’'ADDRESS), (Reg, G6));
Two_Format’ (MOV, (Symbolic_Value, x'ADDRESS), (Reg, G6)):
Two_Format’ (MOV, (Symbolic_Value, y’ADDRESS), (Reg, G7)):
Two _Format’ (MOV, (Symbolic_Value, z'ADDRESS), (Reg, GB));
ThrEe_Format'(ADDI, (Symbolic_Value, x’ADDRESS), (Reg, GB8), (Reg, Gl));

Three_Format’ (MULI,
{Reg, G7),
(Symbolic_Value, y’ADDRESS),
(Reg, G12));

-- Note the use of a complicated Ada object in this instruction.
Two_Format’ (ST,

(Reg, Gl2),

(Symbolic_Address, ary(l)’ADDRESS)):

-- In this instruction, note that ary(1l)’ADDRESS is NOT kept in a

-- register and is thus NOT a legal source for XORp. That’s OK,

-- because the compiler can fix it up for the user.

Three_Format'’ (XORi, (Symbolic_Value, ary(l)’ADDRESS),
(Symbolic_Value, ary(2)*ADDRESS), (Reg, G12));

Two_Format’ (ST,
(Reg, G12),
(Symbolic_Address, ary(3)'ADDRESS));

Two_Format’ (ST,

(Reg, Gi2),

(Symbolic Address, ary(x)'ADDRESS));
Two_Format’ (ST,

(Reg, GO),

(Symbolic_Address, own_var'ADDRESS));

Two_Format’ (LDA,
(Symbolic_Value, own_var’ADDRESS),
(Reg, Gl4));

One_Format’ (CALLX, (Symbolic_Address, inline_into_me’ADDRESS)};
end mach_test;
pragma inline(mach_test):

procedure mtestl(first, second, third: in integer: fourth: out ary_type) is
begin

~= Note the use of fourth(l)‘ADDRESS as the destination of the MOV
== instruction. The compiler will understand that the user "really
-- wanted" something moved to fourth(l)’ADDRESS, and will make sure
i == that the bits get there. The compller does NOT assume that it
. -= knows enough to second guess the user’s choice of instructions.
~~ we generate the MOV, followed by a store to memory.
) Two_Format’ (MOV,
(Symbolic_Value, First’Address),
| (Symbolic_Address, fourth(1)’ADDRESS));
end mtestl;

procedure inline_into_me is
arrayl : ary_type := (1, 2, 3, 4);
begin
if arrayl(3) >= 0 then
== note that mach_test is inline expanded
mach_test (22, 41, arrayl(4), arraylj;
else
== but mtest is not at Op=2 (No pragma inline)
mtestl(l, 2, 3, arrayl):;

and £

USER MANUAL FOR TARTAN ADA SUN 960

end inline_into_me;

end mtest;

APPENDIX F TO MIL-STD-1815A

Assembly code output:

Generated from USEROl:[SMITHIMTEST.ADB:1l
by TARTAN Ada Compiler VMS 80960MC, Version Pre-Release

.data
.align 2
ADA.OWN: .space 4
.aiign 2
ADA.GLOBAL: .space 1

.globl =xxmtestSinline into_meS00
.globl xxmtestS$declare
.globl xxmtestSbody

.seto own_var$00,ADA.OWN, O
.globl xxmtestSinline_into_meSgoto$C0
.seto xxmtestSinline_into_meSgotoS00,ADA.GLOBAL, O

.text
.align 4
xxmrestSiniine_into me$S00:
mov 0,r3
s sp, 40 (sp)
lda 40 (sp),sp
st gl2,100(fp)
lda .L19,r3
mov 1,g13 # line 74
st gl3,80(fp)
mov 2,913
st gl3,84 (fp)
mov 3,913
st gl3,88(fp)
mov 4,913
st gl3,92(fp)
ldq 80 (fp}), g4
stq g4,64(£fp)
ld 72 (fp),gl3 » line 76
empibg C,gl3,.L17
id T6(fp),gl3 * line 78
mov 22,14
addc 31,10,
mcv gl3, ré
ida 64 (fp), B
mov. r4,g6
mov r4,q6
mov r$,q7
mov ré6,q98

addi r4,q98,4ql
mull g7,r5,9l12

st ql12,961fp)

ld 96 (£p),qgl3

[14 ql3, (x8)

ld 4(r8), 7

xXor gi3,r7,ql12

st gl2,8(r8)

subi 1,r4,9l13 L] line 46

empo ql3,3

USER MANUAL FOR TARTAN ADA SUN 960

faultg

st gl2,~-4(r8) [rd4*4]

st g0, ADA.OWN

lda ADA.OWN,gl4

callx xxmtest$Sinline_into_me$00

b .L19 # line 76
LL17: mov 1,q0 # line 81

mov 2,91

mov 3,52

ida 64 (fp), g2

bal mtest1S00
.219:

id 10C(fp),gl2

ret

Total bytes of code in the above routine = 216

.align 4
mach_test$00:
mov 3,3
st sp, 8 (sp)
addo 8, sp, sp
st gl2,68 (fp)
ida .L21,r3
movl g0,g6
mov g0,gb6
mov gl,qg?
mov g2,g8

addi g0,qg8,4g1
muli g7,gl,q9l2

st gl2,64 (fp)

ld 64(fp),gl3

st 913, (g3)

1d 4(g3),g5

xor gl3,g5,9l12

st gl2,8(g3)

subi 1,90,913] line 46

cmpo gl3,3

faultg

st gl2,~41(g3) {g0*4}

st g0, ADA . OWN

ida ADA.OWN,gl4

callx xxmtestSinline_into_meS00
L2:

ld 68 (£fp),qgl2

ret

* Total bytes of code in the above routine = 124

.align 4
mtest.500:

mov glé, g4

mov 0,914

mov g0,g913

st gl3, (g3)

hy a4y

—-—

Total bytes of code in the above routine = 20
.align 4

xxmtest$declare:
stob g14,ADA.GLOBAL
ret

Total bytes of code in the above routine = 12
.align 4

xxmrestSbody:
not 0,913 # line §
st g13, ADA.OWN
mov 1,913

stob gl3,ADA.GLOBAL
ret
Total bytes of code in the above routine = 28
.Text
.align 2
.align 2

4 Total bytes of code = 400
Total bytes of data = §

APPENDIX F TO MIL-STD-1815A

N .
5\
\3

CHBAPTER 1
INTRODUCTION

This Validation Summary Report @uctib« the extent to vhich a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1813A.
This report explains all technical terms used vithin it and thoroughly
reports the results o ting this compiler using the Ada Compiler
Validation Capability Y An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.)

-

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist betveen implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardvare, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
8 _report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardised tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.fAThe purpose of validating is to ensure conformity
of the compiler to the A¥a Standard by testing that the compiler properly
implements legal ¢ constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implemsentation-dependent is permitted by the Ada Standard. Six classes
of tests are used. These\tests are designed to perform checks at compile
time, at link time, and durikg execution.

