
Form Aprved

REPORT DOCUMENTATION PAGE OAto1
Puc rep ' mesp .ime fltd% de On. r relwo ig .ww rucibm, ,wr'rg xzzsn daa "- o ww ri d mwinki ft dm
nndad. a n ,tngm. or any otho aeps M thei cobcin of dormatlo includfg Sufoh for redirg Uti hodmn. to W40*q
Headqug o- 7 n Da. HlVuay, Suke 12041. A*on. VA 20-4X02. and to toe Office of kfttlnalin and RDF Atgia n ~i. Office ofmana AD-A2389 074
1. AGE DATE 3 REPORT TYPE AND DATES ERED

I 11111111I111111111 hii 11111 1,1111111111 1J~ Final: 18 Apr 1991 to 01 Mar 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IBM Canada, Ltd., AIX Ada/6000 Release 2, Preliminary Version, RISASy0 r/10O
model 7013-530 (Host & Target), 901127W1.11085 U II

6. AUTHOR(S) "

Wright-Patterson AFB, Dayton, OH JUL 0 2 1
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-438.0491
Wright-Patterson AFB
Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

IBM Canada, Ltd., AIX Ada/6000 Release 2, Preliminary Version, Wright-Patterson AFB, OH, RISC SystemV600, model
7013-530, (Hos & Target), ACVC 1.11.

91-03870

14. SUBJECT TERMS 15. NUMBER.OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE COOE

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED) UNCLASSIFED UNCLASSIFIED _________

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 27 November 1990.

Compiler Name and Version: AIX Ada/6000 Release 2, Preliminary Version

Host Computer System: RISC System/6000, model 7013-530
under AIX 3.1

Target Computer System: RISC System/6000, model 7013-530
under AIX 3.1

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901127W1.11085 is awarded to IBM Canada, Ltd. This certificate expires on
1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada ral ation Organization
Directof omputer & Software Engineering Division
Institute for Defense Analyses A swlk 'For

Alexandria VA 22311

AaJoint Program Offce I j
Dr. John Solomond, Director Distributon

Department of Defense
Washington DC 20301 , .o

val&adf or
k , ;Dist Spoal

AVF Control Number: AVF-VSR-438.0491
18 April 1991

90-09-13-IBM

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901127W1.11085
IBM Canada, Ltd.

AIX Ada/6000 Release 2, Preliminary Version
RISC System/6000, model 7013-530 => RISC System/6000, model 7013-530

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright Patterson AFB OH 45433-6503

DECLARATION OF CONFORMANCE

Customer: IBM Canada Ltd.

Ada Validation Facility: Wright Patterson AVF
ASD/SCEL
WPAFB OH 45433
USA

ACVC Version: 1.11

Ada Implementation:
Compiler Name and Version: AIX Ada/6000 Release 2, Preliminary Version
Host Computer System: RISC System/6000, model 7013-530, AIX 3.1
Target Computer System: RISC System/6000, model 7013-530, AIX 3.1

Customer's Declaration

7, the undersigned, representing IBM Canada Ltd., declare that IBM Canada Ltd.
nas no knowledge of deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A in the implementation listed in this declaration.

__ ._______ _ --- _ Date: A) j,7,
Alan A. Adamson
!BM Canada Ltd. Laboratory
844 Don Mills Road
North York, Ontario
CANADA M3C 1V7

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83J using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90l. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89J.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD- 5A, F u-ary 1983 and ISO 62-87.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

lUG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
aie executed. Three Ada library units, the packagesREPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implemeut-i 7acustomized test suite is produced by the
AVF. This cit.,tion consists of making the modifications described in
the 8ng paragraph, removing withdrawn tests (see section 2.1) and,

- -ostbly some inapplicable tests (see Section 2.2 and [UG891).

In order to pass an ACVC an Ada implementation must process each test of
the-customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer.system and its
Implementation target computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity Fulfillment by a product, process or service of all
requirements specified.

1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90.

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn hy the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C97116A C98003B
BA2O11A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BDlB02B BDlB06A ADIBOBA BD2AO2A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONG INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55BO7A B55B09C B86001W C86006C
CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or
SHORT INTEGER.

C35508I..J and C35508M..N (4 tests) include enumeration representation
clauses for boolean types in which the specified values are other than
(FALSE => 0, TRUE => 1); this implementation does not support a change
in representation for boolean types. (See section 2.3.)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT.

C35713D and B8600lZ check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORT-FLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 48 or
greater.

C45624A checks that the proper exception is raised if MACHINEOVERFLOWS
is FALSE for floatiDg point types with digits 5. For this
implementation, MACHINEOVERFLOWS is TRUE.

C45624B cks that the -roper exception is raised if MACHINEOVERFLOWS
is FA, E for floating point types with digits 6. For this
i ,ementation, MACHINEOVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT 10, and hence
package REPORT, obsolete. For this implementation, the package TEXTIO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

2-2

IMPLEMENTATION DEPENDENCIES

CA2009C and CA2009F instantiate generic units before the generic bodies
are compiled. (See section 2.3).

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F check for
pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8O11A use machine code
insertions.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method:

Test File Operation Mode File Access Method
CE2l02D CREATE IN FILE SEQUENTIAL I0
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO0-
CE2102F CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 1O
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL 10

CE21020 RESET OUT FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT 10
CE2102T OPEN IN FIEE DIRECT-IO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT 10
CE3102E CREATE IN FILE TEXTI
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT_10
CE3102I CREATE OUT FILE TEXT_10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

EE2401D uses an instantiation of package DIRECT 10 with unconstrained
array types. An attempt to create a file of this type raises USE ERROR
at run-time since the size of the file exceeds the capacity of this
implementation.

2-3

IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USEERROR is raised when this
association is attempted.

CE21O7B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for the external
file. THis implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 26 tests:

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

BA1OO1A BA2001C BA2001E BA3006A BA3006B
BA3007B BA3008A BA3008B BA3O13A

C35508I..J and C35508M..N (4 tests) were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests attempt to change the
representation of a boolean type. The AVO ruled that, in consideration of
the particular nature of boolean types and the operations that are defined
for the type and for arrays of the type. a change of representation need
not be supported; the ARG will address this issue in Commentary AI-00564.

C52008B was graded passed by Test Modification as directed by the AVO.
This test uses a record type with discriminants with defaults and that has
array components whose size depend on the values of some discriminants of
type INTEGER. On compilation of the type declaration, this implementation

2-4

IMPLEMENTATION DEPENDENCIES

raises NUMERIC ERROR as it attempts to calculate the maximum possible size
for objects of-the type. Although this behavior is a violation of the Ada
Standard, the AVO ruled that the implementation be accepted for validation
in consideration of intended changes to the standard to allow for
compile-time detection of run-time error conditions. The test was modified
to constrain the subtype of the discriminants. Line 16 was modified to
declare a constrained subtype of INTEGER, and discriminant declarations in
lines 17 and 25 were modified to use that subtype; the lines are given
belw:

16 SUBTYPE SUBINT IS INTEGER RANGE -128 .. 127;
17 TYPE RECl(D1,D2 : SUBINT) IS

25 TYPE REC2(D1,D2,D3,D4 : SUBINT := 0) IS

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-O0408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete--no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected.

CD1009A, CD1009I, CDlCO3A, CD2A21C, CD2A24A, and CD2A31A..C (3 tests) were
graded passed by Evaluation Modification as directed by the AVO. These
tests use instantiations of the support procedure LENGTHCHECK, which uses
UNCHECKED CONVERSION according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instantiations of LENGTH CHECK--i.e., the allowed Report.Failed messages
have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

IBM Canada, Ltd
844 Don Mills Road
North York, Ontario
Canada M3C IV7
ATTN: Graham Peace

21/199/844/TOR

For a point of contact for sales information about this Ada implementation
system, see:

IBM Canada, Ltd
844 Don Mills Road
North York, Ontario
Canada M3C IV7
ATTN: Bob Gerber

21/634/844/TOR

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programning Language Standard.

a) Total Number of Applicable Tests 3777
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 109
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 310

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 310 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
when appropriate during this test were:

Option Effect

-1 Produce a listing file containing the lines
from the Ada source code interspersed with
any errors the compiler finds.

-b UnitName Produce an executable file using UnitName as
the main program unit.

-m Compile a source file and produce an
executable file. The main unit of the
program is the last compilation unit in the
source file. NOTE: This option is mutually
exclusive with the -b option.

-u Unlock the working sublibrary so that the
compiler can access it and update it.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIG IDI (l..V-i => 'A', V => 'I')

$BIGID2 (1..V-1 .> 'A', V -> '2')

$BIG_ID3 (1..V/2 W> 'A') & '3' &
(1..V-I-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-1-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (l..V/2 => 'A') & '"'

$BIG STRING2 '"' & (1..V-1-V/2 => 'A') & 'I' & 'll

$BLANKS (1..V-20 => '

$MAXINLEN 200

SMAXLENINTBASEDLITERAL
"2:" & (1. .V-5 => '0') & "11:"

$MAX LEN REAL BASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

A-I

MACRO PARAMETERS

SHAX STRINGLITERAL "'& (1. .V-2 .> 'A') & '

The following table lists all of the other macro parameters and their
respective values:

Macro Parameter Macro Value
--

SACCSIZE 32

$ALIGNMENT 4

$COUNT-LAST 2_147 483 646

$DEFAULTMEMSIZE 268_435_456

SDEFAULT STOR UNIT 8

SDEFAULTSYSNAME AIX_6000

$DELTADOC 2#1.0#E-31

SENTRYADDRESS ENTRYO'ADDRESS

$ENTRY ADDRESS1 ENTRY1' ADDRESS

$ENTRY ADDRESS2 ENTRY21ADRS

$FIELDLAST 1000

$FILE-TERMINATOR 0,

$FIXED-NAME NOSUCHFIXEDTYPE

SFLOATNAME NOSUCH TYPE

$FORM-STRING fl

$FORM-STRING2 "CANNO'TRESTRICT FILECAPACITY"

SGREATER_-THANDURATION

100000.0

$GREATERTHANDURATION BASE LAST
131_073.O

$GREATER THAN FLOATBASELAST
1. 80141E-.38

SCREATER THAN FLOATSAFELARGE

1.0E308

A-2

MACRO PARAMETERS

$GREATERTHANSHORTFLOAT SAFE LARGE
1.01308-

$HIGHPRIORITY 255

$ ILLEGALETERAL-FILE NAME 1

$ILGLETENLFL NAME2
TB

$INAPPROPRIATE LINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDfPRAGMA1 'PRAGMA INCLUDE ("A28006D1 .TST");f

$INCLUDEPRAGMA2 'PRAGMA INCLUDE ("B28006Fl.TST");'

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS 1 2147483648

$ INTERFACELANGUAGE FORTRAN

$LESSTHANDURATION -100_000.0

$LESSTHAN DURATIONBASE FIRST
-1073.0

$LINETERMINATOR ASCII.LF

SLOWPRIORITY 0

$MACHINECODESTATEMENT
NULL;

$MACHINE CODE TYPE NO SUCH TYPE

$MANTISSADOC 31

SMAXDIGITS 15

SMAXINT 2147483647

SMAXINT PLUS 1 2147483648

$MININT -2147483648

A-3

MACRO PARAMETERS

$NAME NOSUCHTYPEAVAILABLE

$NAME-LIST AIX_6000

SNAMESPECIFICATIONi /u/acvclll/nev/run/tmp/ctests/ce/X2120A

SNAMESPECIFICATION2 /u/acvclll/new/run/tmp/ctests/ce/X2120B

$NAMESPECIFICATION3 /u/acvclll/nev/run/tinp/ctests/ce/X3119A

$NEGBASED INT 16#FOOOOOOE#

$NEWMEMSIZE 65535

$NEWSTORUNIT 16

SNEWSYSNAME AIX_6000

$PAGE-TERMINATOR ASCII.FF

$RECORDDEFINITION "NEW INTEGER;"

$RECORD-NAME NOSUCH MACHINE CODETYPE

$TASKSIZE 32

$TASKSTORAGESIZE 8192

STICK 0.00006

SVARIABLEADDRESS VARIABLE'ADDRESS

$VARIABLEADDRESS 1 VARIABLE 1'ADDRESS

$VARIABLEADDRESS2 VARIABLE21'ADDRESS

$YOUR PRAGMA EXPORT-OBJECT

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this Appendix are to linker documentation and not
to this report.

B-1

SUMMARY OF COMPILER OPTIONS

The following figures list compiler options by function. From left to right,
the columns show:

1. The syntax you use to specify the option on a command line. Some options
require you to enter another parameter separated by a blank. For
example, the -b option requires that you also specify an Ada compilation
unit:

ada -b UnitName FileName

2. A short description of the option's function.
3. The default. This is what happens if the option is not specified on the

command line.

NOTE: Before using the AIX Ada/6000 compiler, it is important that the
programmer first read the descriptions of the compiler options to understand
the correct operation and limitations of this product.

. .

I Table 1-1 Options for Compiler Output I
+---

COMPILER OPTION DESCRIPTION I DEFAULT
+---------------.---

---------------------------I -v Display all messages. Compile witho -
displayinga I
copyright notice or
progress messages. I

--

-o Name Name the executable or object I The name of the I
output file Name. executable or object I

output file is
a.out.

+--.--------------------------------------

-i Produce a listing file Display error
containing the lines from the listings on screen
Ada source files interspersed only.
with any errors the compiler
finds. The listing file has a
suffix of ".1st".

--

-a Produce an assembler code . I Do not generate an
listing. The assembler output assembler listing. I
file has a suffix of ".s".

--- +
-G Produce optimized code. The Do not perform code

level of optimization does not optimization.
prevent you from debugging this
code, but some source
information may be removed or
changed during compilation.

------------------.--- -+------------------------------------

-0 Produce highly optimized code. Do not perform code
The level of optimization optimization.
prevents the debugger from
working with this code because
much of the organization present
in the source is changed. The
optimizations include all those
done by the -G option, so do not
specify both options.

------------------ 4--- -+------------------------------------

-p Produce profiled code. Specify Do not produce
this option for each compilation profiled code.
operation on a compilation unit,
whether or not an executable
file is generated.

-- +-----------------------------------

-Q I If all single-precision
floating-point overflows must be I
detected, use this option.

4------------------4---4-------------------------------------

Table 1-2 Options for Linking
+--+--------------------------------------

COMPILER OPTION I DESCRIPTION I DEFAULT
+--+--------------------------------------

-b UnitName Produce an executable file using Do not compile all
UnitName as the main program the way to an
unit. You can omit the Ada executable file.
source file name if you want to
produce an executable file from
compilation units that have all
been compiled.

+--+--------------------------------------

-m Compile a source file and Do not produce an
produce an executable file. The executable file.
main unit of the program is the
last compilation unit in the
source file.

+--+--------------------------------------

-e I Produce an object file if -b or Produce an
-m is specified. The file has a executable file when
default name of a.out and is put -b or -m is
in your current directory. specified on the

command line.
+--+--------------------------------------

-i FileName I During linking, include an The executable
I object file containing output file contains
subprograms written in other only modules written
languages. The object file in Ada.
should have a suffix of ".o" or

ta
--- -+------------------------------------

+ -

Table 1-3. Options for Libraries
----------------- +---+-------------------------------------

ICOMPILER OPTION I DESCRIPTION I DEFAULT
-- +-------------------------------------

I-L LibraryList IUse the file LibraryList as the IThe default library I
Ilibrary list file. Ilist name is

alib.list.
--

I-u IUnlock the working sublibrary so IStop compiling if
Ithat the compiler can access and Ianother compilation
Iupdate it. Istopped without . I

Ifinishing and left
Ithe sublibraryI
Iinaccessible.I

---------------------- --------------------- +--------------------------------------

A d Store information for debugging IDo not storeI
in the working sublibrary. Iinformation for

Idebugging in the
Iworking sublibrary. I

--- +--------------------------------------

i Table 1-4 Options for Other Compiler Features
+--+--------------------------------------

i COMPILER OPTION DESCRIPTION I DEFAULT

-I Read a list of file names from Name of a single I
I standard input and compile them file to compile is
one after another. Do not specified on the I

I update the working sublibrary if command line.
I any compilation errors occur in I
I any file.

--- +--------------------------------------

I -S Suppress checks on all data Do full checking.
I types as if pragma SUPPRESS was
applied.

+------------------ --- +

I -t Use the special memory layout Use the memory I
I required to support pragma layout of the
I OS_TASK. default tasking I

facility. I
+--------------+-- -------- +--------------------------------------

I -V Number Specify the number of pages for 3000 pages, 1K uytes I
I the compiler to use in managing each.
memory storage. -

+---

DETAILED DESCRIPTION OF COMPILER OPTIONS

Following are more detailed descriptions of the compiler options. The
descriptions include information about how the options interact with each
other, and any restrictions on their use.

Options for Compiler Output

-v Print the compiler banner and version notice, then display progress
messages during compilation. By default no notices or progress
messages are displayed.

-o Name Specify the name for the executable output file. If you do not use
this option, the file name is a.out.

Because this option only has an effect when you generate an
executable or object file, do not specify it unless you also specify
the -b or -m options.

-1 Create a file (with the suffix ".1st") containing a source listing
and a list of all syntax and semantic errors the compiler finds in
the Ada source file. The Ada source lines are preceded by line
numbers to make it easier to locate specific places within the source
file. Any errors the compiler finds are printed below the line where
the error was found.

The listing file also contains the compiler banner message and
compilation statistics.

-a Write assembler code to an output file that has a suffix of ".s".
Note that the resulting file contains a concatenation of all
assembler code produced together with information to map source lines
to assembler statements, and so may not be in a legal format for the
AIX assembler. This occurs most often in the case of main unit
compilations, where the main elaboration code and the main program
code are concatenated into the same file.

The generated assembler code is most useful in locating problems, or
in verifying how the compiler is optimizing certain constructs.

-G Perform a moderate level of code optimization. Specify the -G option
to make the compiler analyze the source as it compiles and generate
code that is faster and possibly smaller. The compiler takes longer
to process each compilation unit when you specify this option.

The debugger can work with code compiled at this level of
optimization, but information that comes from Ada source files (such
as which source line corresponds to a set of machine instructions)
may not be entirely accurate due to reorganization done during
optimization.

-0 Perform extensive code optimizations, including inline expansion.
The optimizations done by the -G option are done at a higher level by
the -0 option. If you use -0 there is no need to specify -G.

Code compiled with the -0 option does not work with the debugger at
all because the structure of the generated code differs substantially
from that of the Ada source.

-p Produce code that records profiling information by calling system
profiling routines. To view the profile data:

Run a program compiled with this option; this produces a file
called "gmon.out".
Use the AIX Ada/6000 aprof command to produce a profile report.

NOTES:

1. The compiler performs special operations in each phase of
compilation when you compile with profiling. Thus if you compile
a unit without generating an executable file, then later compile
with the -b or -m options to produce an executable file, specify
the -p option each time you run the compiler.

2. Your final program can contain a mixture of profiled and
unprofiled compilation units. For units compiled without the -p
option, the profile report only contains partial information.

3. Profiled units may run more slowly that unprofiled units. This
is true even if you do not specify -p for the final compilation
phases along with -b or -m.

-Q Generate floating-point no-op instructions to cause detection of
overflow in rounding floating-point intermediate results to single
precision.

Options for Linking

-b UnitName
Produce an executable file from previously compiled code. The
UnitName parameter tells the compiler which compilation unit is the
main unit.

With this option you can omit the Ada source file name at the end of
the command line. Omitting the name of the source file causes the
compiler to invoke the linkage editor to produce an executable file;
all compilation units must already be compiled. If you do specify an
Ada source file, that file will be compiled first, then UnitName will
be linked as the main unit.

UnitName can be any compilation unit in the working sublibrary. It
does not have to be part of the source file when you specify both a
unit name and a source file name.

-m Compile the Ada source file specified at the end of the command line,

and bind the last unit in that file as a main program.

NOTE: This option is mutually exclusive with the -I and -b options.

-e Permit the link step to complete successfully without necessarily
resolving all symbols. Instead generate an object file. The file is
named a.out unless you also specify the -o Name option, in which case
the object file is Name. This file has all Ada references resolved,
so that the only unresolved references are to subprograms specified
through pragma INTERFACE.

Use this option only if you are very familiar with linking operations
under the AIX operating system. You can use it to create an object
file that can be linked with several different versions of non-Ada
object modules, such as during development and testing of non-Ada
interface packages.

NOTE: When linking the object file to produce an executable file,
include the file "libada.a" in the link step. This file is in the
AIX system directory named "I/lib".

This option is valid only when the -m or -b options are also
specified.

-i FileName
Include the object archive file named by FileName in the linking of
the main program. Use this option to specify any non-Ada object code
files that you need to link with your Ada program.

The -i option is ignored if neither -m nor -b was specified for the
compilation. To specify multiple files to be linked with the Ada
program, use -i once for each one, for instance:

ada -m -i assembler functions.o -i c archive.a ada main program.ada

Only use the -i option with files that have ".o" or ".a" suffixes,
and specify the full name (including the suffix).

Options for Libraries

-L LibraryList
Specify the name for the library list file. The list of sublibraries
in the library list file determines where the compiler searches for
compilation units and dependency information, and the order in which
it searches sublibraries.

If this option is not given, the compiler defaults to a library list
named alib.list.

NOTE: The library name "liblst.tmp" is reserved by the compiler. Do
not use this name for your own files.

-u Unlock the working sublibrary. Use this option to allow the compiler
to use the working sublibrary again after a compilation has ended
prematurely. For example you can use the AIX "kill" command to stop
the compiler while it is updating the working sublibrary; then the
compiler will not use that sublibrary again until you have run the
compiler with the -u option.

As part of the unlocking, the compiler verifies that the sublibrary
is not corrupted. Use the alibinit command to initialize any
corrupted sublibraries.

You can specify other options along with -u; the compiler unlocks the
sublibrary, then acts on any other specified options.

-d Store symbolic debugging information in the working sublibrary. This
information makes it possible for the debugger to associate
abstractions like line numbers and variable names with locations
within a running program. Without it you cannot use the symbolic
debugger with your program.

NOTES:

1. The debugging information can make the sublibrary very large.

2. The information produced by this option consumes more space in
your working sublibrary and may cause your executable files to be
larger; it does not cause executable files to require more
run-time storage.

Options for Other Compiler Features

-I Direct the compiler to read a list of file names from standard input
instead of taking a file name as a command-line parameter. Note the
following restrictions:

" If you do not pipe or redirect standard input, the compiler will
pause and wait for you to type in the names of the files. Press
Enter after each file name, and type the end-of-file character
(usually Control-D) when you have entered all the file names.

o This option is mutually exclusive with the -m, -b, and -e
options. It only performs the initial compilation phase on each
source file, not the later linking phase that these other options
control.

" If any file cannot be successfully compiled, the working
sublibrary is not changed at all. The compiler stops processing
files as soon as one compilation is unsuccessful.

You can put comments in the lines the compiler reads from standard
input by using Ada comment syntax. The compiler ignores text on a
line from a double hyphen (--) to the end of that line.

-S Suppress run-time checks on all types, as if pragma SUPPRESS was
applied. This means that when error conditions such as constraint
violation or numeric overflow occur at run time, the Ada program will
not detect them and so will not raise the appropriate exceptions.
The program may run faster because the checking is not performed;
however you must take special care that no error conditions occur,
otherwise your program will continue to run but may produce incorrect
results.

-t Configure the memory layout of an executable program so that the
special requirements of pragma OS TASK are met. This option makes it
possible for Ada tasks within a single program to run as separate AIX
processes.

Only use this option to compile programs that apply pragma OS TASK to
some or all of their tasks. Specify it when you generate an
executable program or object file, that is when you also specify the
-b, -m, or -e options.

-V NumPages
Specify the number of virtual pages used by the compiler's virtual
space manager. A larger number allows faster compilation speed, but
demands more memory from the host system. In general, decrease
NumPages if the compiler runs out of memory (raises a STORAGE ERROR
exception), and increase NumPages for systems with an abundance of
memory for page space. The default is 3000. Each page holds 1K
bytes.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2 147 483 648 .. 2 147_483_647;
type SHORTINTEGER is range -32_768 .. 32-767;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONG FLOAT is digits 15 range -1.79769313486232E+308

.. 1.79769313486232E+308;

type DURATION is delta 2**(-14) range -86400.0 .. 86400.0;

end STANDARD;

C-1

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

The Ada language definition allows for certain target dependencies in a con-
trolled manner. This appendix, called Appendix F as prescribed in the Ada
Language Reference Manual, describes implementation-dependent characteristics
of the AIX Ada/6000 compiler running under the AIX operating system Version
3.

IMPLEMENTATION-DEFINED PRAGMAS

Implementation dependent pragmas are:

PRAGMA COMMENT(StringLiteral);
-- Imbeds String_Literal into object code.

PRAGMA IMAGES(EnumerationType, immediate I deferred);
-- Generates a table of images for the enumeration type.
-- "deferred" causes the table to be generated only if
-- the enumeration type is used in a compilation unit.

PRAGMA LINKNAME(Interfaced_Subprogram_Name, Link Name);
-- When used in conjunction with pragma INTERFACE, provides
-- access to any routine whose name can be specified by an
-- Ada string literal.

PRAGMA OS TASK (Priority);
-- Appears within the declaration for a task or task type
-- (in the same context as pragma PRIORITY),
-- and causes the task or task type to be placed into
-- a separate AIX process.
-- The priority value is of type SYSTEM.PRIORITY, and is not
-- currently acted upon. To maintain upward compatibility,
-- always use a 0 for this parameter.

PREDEFINED PRAGMAS

Supported pragmas are INTERFACE, ELABORATE, SUPPRESS, PACK, PAGE, LIST,
INLINE, and PRIORITY.

All pragmas have conventional meanings except LIST, which suppresses listings
prior to pragma LIST(ON) regardless of the user request. Pragma INTERFACE
supports C, FORTRAN, and assembler.

Unrecognized and unsupported pragmas are ignored with the appropriate warning
message.

REPRESENTATION CLAUSES

Supported representation clauses include:

- Length Clause
- Enumeration Representation Clauses, except

for boolean types
- Record Representation Clause
- Address Clause- Interrupt support

Records are aligned by default on 32-bit boundaries. You can use a represen-
tation clause to force them to be aligned on 64-bit boundaries.

RESTRICTIONS ON UNCHECKED CONVERSION

The only restriction on unchecked conversion is that the two types (or sub-
types) A and B must be the same static size, and that neither A nor B are
private.

PACKAGE SYSTEM

The Package System has the following characteristics:

package System is

-- for integer use 32;

type Memory is private;
type Address is access Memory;

NullAddress : constant Address := null;

TYPE name IS (AIX_6000);

SystemName : CONSTANT name := AIX_6000;

StorageUnit : CONSTANT := 8;

MemorySize : CONSTANT := 1024*1024*256;
-- 256 Mb.

-- System-Dependent Named Numbers:

Min Int : CONSTANT := 2.-31);
Max Int : CONSTANT (2 ** 31) -1;
Max Digits : CONSTANT := 15;
Max Mantissa : CONSTANT := 31;
Fine Delta : CONSTANT := 1.0 / (2 ** MAXMANTISSA);
Tick : CONSTANT := 0.00006;

-- Other System-Dependent Declarations

SUBTYPE Priority IS integer RANGE 0..255;

END System;

REPRESENTATION ATTRIBUTES

All defined representation attributes shall be supported.

IMPLEMENTATION-GENERATED NAMES

There are no implementation-generated names denoting implementation-dependent
components. Component names generated by the compiler shall not interfere
with programmer-defined names.

IMPLEMENTATION-DEPENDENT CHARACTERISTICS OF THE I/O PACKAGES

o Packages SEQUENTIALIO, DIRECTIO, and TEXTIO are supported.

o Package LOWLEVELI0 is not supported.

o Unconstrained array types and unconstrained types with discriminants may
be instantiated for I/O.

o File names follow the conventions and restrictions of the target oper-
ating system, except that non-printing characters, blank(' ') and
asterisk ('*1) are disallowed.

o In TEXT 10, the type Field is defined as follows: subtype Field is
integer range 0..1000;

o In TEXT 10, the type Count is defined as follows: type Count is range
0..16_394;

FORM PARAMETERS FOR FILE nP' RATIONS

Section 14.2 of the Tdr >age Reference Manual describes the Ada functions for
manipulating files. As stated in that section, the form string parameter
allows you to set ie protections when you create a file. The details of
file protections and privileges under the AIX operating system are described
under the "chmod" call in the AIX Calls and Subroutines Reference for IBM
RISC System/6000 (SC23-2198).

If you do not specify a form string, the default file protection is both read
and write privileges for the owner, group, and all others. If you do specify
a form string, it is interpreted in the following way:

o The form string consists of a series of substrings, separated by blanks.

o The order of the substrings does not matter.

o Some substrings control the file protection settings. These substrings
are case sensitive.

o Some substrings enable special AIX behavior for file opening, for example
opening with no delay and opening a file for append. These substrings
are not case sensitive.

o The list of recognized substrings is contained in the section entitled
"Input/Output" in the User's Guide for IBM AIX Ada/6000 (SC09-1321).

PREDEFINED NUMERIC TYPES

The current specification of package STANDARD includes:

type SHORTINTEGER is range -32768 .. 32767;

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;

type LONG FLOAT is digits 15 range -1.79769313486232E+308
1.79769313486232E+308;

type DURATION is delta 2**(-14) range -86400.0 .. 86400.0;

SHORT INTEGER
'First = -32768
'Last = 32767
'Size = 16

INTEGER
'First = -2147483648
'Last = 2147483647
'Size = 32

FLOAT
'Machine Overflows = TRUE
'Machine-Rounds = TRUE
'Machine-Radix = 2
'Machine-Mantissa = 24
'Machine-Emax = 128
'MachineEmin = -125
'Mantissa = 21
'Digits = 6
'Size = 32
'Emax = 84
'Safe Emax = 125
'Epsilon = 9.53674E-07
'SafeLarge = 4.25353E+37
'Safe Small - 1.17549E-38
'Small = 2.58494E-26
'Large = 1.934280389046203E+25

LONG FLOAT
7Machine Overflows = TRUE
'MachineRounds = TRUE
'Machine Radix = 2
'Machine Mantissa = 53
'Machine Ernax = 1024
'Machine Emin = -1021
'Mantissa = 51
'Digits = 15
'Size = 64
'Emax = 204
'SafeEmax = 1020
'Epsilon = 8.88178419700125E-16
'SafeLarge = 2.24711641857789E+4307
'Safe Small = 2.22507 3858507 20E-308
'Small = 1.94469227433161E-62
'Large = 2. 57110087081438329907E+61

DURATI ON
'Machine Overflows = FALSE
'Machine_ Rounds = FALSE
'Delta = 2**(-14)
'First = -86400.0
'Last = 86400.0

RESTRICTIONS ON MACHINE CODE INSERTIONS

Machine code insertions are not supported.

