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ABSTRACT .

A geometric proof for the following theorem due to Martelli and Busenberg is

given. Integral geometry is used to discuss special cases and related results.

Theorem. Let xj,... , x be r points on the unit sphere S of a normed space.

Assume that the convex hull of xl,... , x, is at distance d from the origin measured

with respect to the norm. Then

EZflxi -xI jj 2(r -1) (1 -d).
'<3

Let X be a real normed linear space. For each finite subset {71 . ..r') C X let S =

s(ZI,..., X) denote the sum of all distances determined by pairs from {zx,... i Z}. That is,

let

(X,---,Xr) = jfX, - XylI, (1)

where the sum is taken over all integers, i, j, satisfying 1 < I < j < r. Let S = {x : I xj = 11

be the unit sphere of X.

Martelli and Busenberg [81 use inequalities in connection with work on autonomous sys-

tems of differential equations to prove the following theorem.
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Theorem 1. Let X1,... , x, be r points on the unit sphere S of a normed space. Assume

that the convex hull of x1 ,..., x, is at distance d from the origin measured with respect to

the norm. Then

S(Xl,... ,Xr) 2(r- 1)(1 -d). (2)

To prove Theorem 1 we use the following theorem which was conjectured by Griinbaum

and proved in [1].

Theorem 2. Let xl,...,x, be points in a real normed linear space X. Suppose p belongs

to the convex hull of {x 1,...,x,}. Then

S(Xi,...,Xr) >> (2r- 2)min ixi-p1, (3)

where the minimum is taken over all i satisfying 1 < i < r.

Proof of Theorem 1. There is a point p with distance d from the origin which belongs to

the convex hull of {x1,... , x,}. There is an integer j, 1 < j :_ r, such that min I xi - pII =

II[xj - pl1. By Theorem 2 and the triangle inequality

s(x,...,x,) 2(r- 1)minllxi -pl = 2(r- 1)llxj- piI >_ 2(r- 1)(1 -d),

where the last inequality is obtained by applying the triangle inequality to a triangle with

vertices p, xi and the origin. Thus the proof of Theorem 1 is completed. N

In the following we review results related to the inequality (2). Consider r points

X1 , x 2,.. . , x, in a real normed linear space X with norm I I-1. The convex hull of mi'roints

of line segments joining xi and xi for all i and j, i $ j, is called the midpoint polyhedron for

x1 ,... , x,. Chakerian and the author [3] proved the following.

Theorem 3. Let p belong to the midpoint polyhedron of {x 1,..., x, I C X. Then

(2r - 2) - <(4)

As a consequence of the above the following is shown in [3].
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Theorem 4. Let xj,..., x, be points on the unit sphere S of a normed linear space X, and

suppose that the origin o belongs to the convex hall of {xl,..., x,}. Then

s(xl,... ,x,) > 2r - 2. (5)

Theorem 4 is due to Chakerian and Klamkin [4], which they proved for Euclidean spaces

and for the Minkowski plane. Wolfe [101 proved Theorem 3 using the concept of metric

dependence.

Figures 1 and 2 give examples where equalities are attained in Theorems 3 and 4. In the

remainder of this article we use techniques from integral geometry to prove special cases of

Theorem 2 in two and three-dimensional Minkowski spaces. Minkowski spaces are simply

finite dimensional normed linear spaces. Smoothness assumptions on the boundary of the

unit disk E for a Minkowski plane will enable us to use Crofton's simplest formula from

integral geometry to give a proof of (4) for three points {X1,X 2, X3}. If the unit ball for a

3-dimensional Minkowski space is a zonoid, then we use integral geometry to prove (4) for

the case of four points X1 , x 2, x3 , and x4 forming a simplex. A zonoid is a limit of sums of

segments. Bolker [2] discusses equivalent conditions for a convex subset of R' to be a zonoid.

Santal6 [9] is a good reference for integral geometry in the Euclidean spaces. Given a

curve C in the Euclidean plane, let L denote the length of C. Crofton's simplest formula is

Jf ndpdO = 2L. (6)

where the integral is taken over all lines intersecting C, the pair (p, 0) is the polar coordinate

representation of the foot of perpendicular from the origin to the line, and n is the number

of intersections of a line with coordinates (p, 0) with C. The differential element dG = dpdO

is the integral geometric density for lines.

Chakerian [5] treats integral geometry in the Minkowski plane. We sketch the definitions

he uses to develop Crofton's simplest formula in the Minkowski plane. Assume the unit circle

E is "sufficiently" differentiable and has positive finite curvature everywhere. Parameterize
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E by twice its sectorial area 0, and write the equation of E as

t = t(O), 0 < 0 ___ 21, Iltil -- lit - Oil = 1.

E is called the indicatrix. Define the isoperimetrix T by the parametric representation

n()=t() 0 < < 2r.

Define A(O) by d(") = -A ' (€)t(O). Then the density for lines in two- dimensional Minkowski

spaces is defined as follows. Let G = G(p, 0) be parallel to the direction t(O). The equation

of G is

[t¢,X] = p,

where [x, y] = x1 y2 - x2yI. Then the density dG for lines is

dG = A -(¢)dpd¢.

It is then shown in Chakerian f5] that the simplest formula of Crofton holds:

I ndG = (7)

where n is the number of intersections of a line G with a curve C, integration is taken over

all lines intersecting C and t in the Minkowskian length of C. We use Crofton's simplest

formula to prove the following Corollary of Theorem 3. Recall that we defined the midpoint

polyhedron of r points earlier. In the case of three points the midpoint polyhedron is called

the midpoint triangle.

Corollary 1. Consider a point p in the midpoint triangle of a triangle with vertices x 1, x 2,

and X3. Then
3 33'lip- zII < 3 F~, -lixi ll. (8)

i=1 4 1<i<j<3

Integral geometric proof. Let 4i, i = 1,2,3 be the line segment joining p to xi. Let

1i = lip - xill. Let u, be the measure of lines which intersect £, only. Assume pii is the
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measure of the lines which intersect Li and L. and let t(T) denote the length of the triangle

with vertices Xl, X2, X3. Then

I(T) = PI + P2 + p13 + P12 + .P23 + ,P31 = I + A12 + P13 + 12 + P21 + P23 + (P3 - /12).

Hence

t(T) = 2t + 212 + (3 - PL12).

Similarly,

t(T) = 22 + 2 3 + (1 - /12),

and

t(T) = 2t, + 2 3 + (P2 -P13).

Adding the last three inequalities we obtain,

3(T) = 4(el + 2 + 63) + (p3 - P12) + (PI - P23) + (P2 - P113) 2! 4(f4 + t2 + 6)

since (p3 - P12) _ 0, (PI - P23) _> 0, (P2 - P13) > 0. To prove, for example, that PI _> P23,

we reflect Ll through p and notice that any line which intersects £2 and £3 will intersect

the reflection of fl, but there are lines which intersect the reflection of Cl and miss £2 and

£3. We are using the fact that the measure of the lines which intersect the reflection of £L

only have the same measure as the lines which intersect Ll only. Note that equality holds if

and only if reflection of £L will coincide with £2 and £3. U

As a consequence of the above we obtain the following result of Laugwitz [7]:

Corollary 2. A triangle inscribed in the unit circle of a Minkowski plane and having the

center as an interior point has perimeter greater than 4.

For curves in three dimensional Euclidean spaces, the integral geometric analogue of

Crofton's simplest formula is

J J fn(O,,p)sine dOddp= 7rL (9)



where n(O, 0, p) in the number of intersections of a plane of coordinates (0, 0, p) with the

curve C and integration is taken over all planes intersecting C. See Santal6 [9]. For the

case where the unit ball is a zonoid, Chakerian [61, Appendix, gives the analogue of (9) for

a Minkowski space. With this in mind we sketch a proof of the following special case of

Theorem 2 (see Figure 3).

Corollary 3. Consider a tetrahedron with vertices xI, X2, x3 , and x4 in a three-dimensional

Minkowski space. Let p be a point in the midpoint polyhedron. Then

4 21ip - 4: 3 < - IIX - Xjl. (10)
i=1 -- <i<j<4

Proof. Denote the line segment joining p to xi by £i and let e, = IIp - xi I. Let i be the

measure of planes intersecting i only. Suppose yiij is the measure of planes intersecting i

and Cj only and similarly define pi. Then,

2t1 = 21t, + 2yI12 + 2/113 + 2/114 + 2y1124 + 2134 + 2y1123,

212 = 2112 + 21121 + 2/123 + 2/124 + 211213 + 21L214 + 211234,

23 = 2It3 + 21131 + 21132 + 2 p34 + 211314 + 211324 + 211321

The sum of the edge lengths of the tetrahedron is denoted by L(T) and is given by

t(T) = 3ptl + 3P12 + 3113 + 3t23 + 31124 + 3t134 + 31t234

+4[J1i2 + L23 + 1134 + 1113 + 14 + 1124].

The expression in brackets is multiplied by 4 since any line intersecting £i and Cj intersects

the tetrahedron in 4 points. Hence,

t(T) - 2(t + 12 +13 ) = (Jt1 - t1234) + (A2 - UI34) + (L3 - 1t24

+3(P14 - 11123) + 2(p34 + 114 + 124).

But using reflection (pi - yj1ke) > 0, i 6 j, k, 1. Hence 1(T) > 2(t, + 12 + e3). Similarly

I(T) > 2(12 + 13 + t4), t(T) > 2(t, + t3 + 4) and I(T) > 2(4 + 12 + t4 ) which yields

41(T) > 6(1 + t2 + 63 + 14), proving (10). N
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