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A geometric proof {or the following theorem due to Martelli and Busenberg is

given. Integral geometry is used to discuss special cases and related results.

Theorem. Let z,,...,z, be r points on the unit sphere S of a normed space.
Assume that the convex hull of z;, ..., z, is at distance d {rom the origin measured
with respect to the norm. Then

2o llzi =zl 2 2(r = 1) (1 - 4).

1<J

Let X be a real normed linear space. For each finite subset {zy,...,z,} C X let s =
s(zy,...,z,) denote the sum of all distances determined by pairs from {z,...,z,}. That is,

let

‘S(zh--'vzr):Z”mi—Ile (1)

where the sum is taken over all integers, 1, j, satisfying 1 <1< j <r. Let § = {z: ||z|] = 1}
be the unit sphere of X.
Martelli and Busenberg (8] use inequalities in connection with work on autonomous sys-

tems of differential equations to prove the following theorem.




Theorem 1. Let z,,...,z, be r points on the unit sphere S of a normed space. Assume
that the convex hull of z;,...,z, is at distance d from the origin measured with respect to

the norm. Then

s(zyy..yz,) 2 2(r —1)(1 —d). (2)

To prove Theorem 1 we use the following theorem which was conjectured by Griinbaum

and proved in [1].

Theorem 2. Let z;,...,z, be points in a real normed linear space X. Suppose p belongs
to the convex hull of {z,,...,z,}. Then
3(31,...,3?,.) Z (2r—2)min||x,-—p||, (3)

where the minimum is taken over all ¢ satisfying 1 <i <r.

Proof of Theorem 1. There is a point p with distance d from the origin which belongs to
the convex hull of {z,,...,z,}. There is an integer j, 1 < j < r, such that min||z; — p|| =

||z; — pll. By Theorem 2 and the triangle inequality
$(Trye .oy xp) 2 2(r — 1)rn£in||:c,~ —pll =2(r - Dllz; = pl| > 2(r - 1)(1 - d),

where the last inequality is obtained by applying the triangle inequality to a triangle with
vertices p, z; and the origin. Thus the proof of Theorem 1 is completed. B

In the following we review results related to the inequality (2). Consider r points
T1,Z2,...,Z, in a real normed linear space X with norm || - ||. The convex hull of mi-r.oints
of line segments joining z; and z; for all ¢ and j, i # j, is called the midpoint polyhedron for

ry,...,Z,. Chakerian and the author [3] proved the following.

Theorem 3. Let p belong to the midpoint polyhedron of {z;,...,2,} C X. Then

(2r—2)zr:||p—a:.-|| < rs(zyy...,2p). (4)

=1

As a consequence of the above the following is shown in [3].
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Theorem 4. Let z,,...,z, be points on the unit sphere S of a normed linear space X, and

suppose that the origin o belongs to the convex hall of {z,,...,z,}. Then
s(z1,...,2,) 2 2r — 2. (5)

Theorem 4 is due to Chakeriar and Klamkin [4], which they proved for Euclidean spaces
and for the Minkowski plane. Wolfe [10] proved Theorem 3 using the concept of metric
dependence.

Figures 1 and 2 give examples where equalities are attained in Theorems 3 and 4. In the
remainder of this article we use techniques from integral geometry to prove special cases of
Theorem 2 in two and three-dimensional Minkowski spaces. Minkowski spaces are simply
finite dimensional normed linear spaces. Smoothness assumptions on the boundary of the
unit disk £ for a Minkowski plane will enable us to use Crofton’s simplest formula from
integral geometry to give a proof of (4) for three points {x,,z2,z3}. If the unit ball for a
3-dimensional Minkowski space is a zonoid, then we use integral geometry to prove (4) for
the case of four points z,, z2, 73, and z4 forming a simplex. A zomnoid is a limit of sums of
segments. Bolker [2] discusses equivalent conditions for a convex subset of R" to be a zonoid.

Santal6 [9] is a good reference for integral geometry in the Euclidean spaces. Given a

curve C in the Euclidean plane, let L denote the length of C. Crofton’s simplest formula is

/ / ndpdd = 2L. (6)

where the integral is taken over all lines intersecting C, the pair (p, 8) is the polar coordinate
representation of the foot of perpendicular from the origin to the line, and n is the number
of intersections of a line with coordinates (p,8) with C. The differential element dG = dpdf
is the integral geometric density for lines.

Chakerian [5] treats integral geometry in the Minkowski plane. We sketch the definitions
he uses to develop Crofton’s simplest formula in the Minkowski plane. Assume the unit circle

E is “sufficiently” differentiable and has positive finite curvature everywhere. Parameterize




E by twice its sectorial area ¢, and write the equation of F as
t=t(¢), 0<¢<2r, |tfl=|t-0}=1.

E is called the indicatriz. Define the isoperimetriz T by the parametric representation

di(¢)
- — <o < .
n(4) 6’ 0<¢<2r
Define A(¢) by —-(—)-di :) = —A"Y(#)t(#). Then the density for lines in two- dimensional Minkowski

spaces is defined as follows. Let G = G(p, ¢) be parallel to the direction ¢(¢). The equation
of G is

[t(¢), 2] = p,

where [z, y] == Z1y, — £291. Then the density dG for lines is
dG = A7 (¢)dpdé.
It is then shown in Chakerian {5] that the simplest formula of Crofton holds:
[ndG =2¢ (7)

where n is the number of intersections of a line G with a curve C, integration is taken over
all lines intersecting C and ¢ in the Minkowskian length of C. We use Crofton’s simplest
formula to prove the following Corollary of Theorem 3. Recall that we defined the midpoint
polyhedron of r points earlier. In the case of three points the midpoint polyhedron is called

the midpoint triangle.

Corollary 1. Consider a point p in the midpoint triangle of a triangle with vertices z,, z,,

and z3. Then

3
Slp-zll <3 T llei il ®

i=1 1<i<<3

Integral geometric proof. Let £;, ¢ = 1,2,3 be the line segment joining p to z;. Let

¢, = ||p — zi||- Let u; be the measure of lines which intersect £; only. Assume u;; is the
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measure of the lines which intersect £; and £; and let 4(T") denote the length of the triangle

with vertices z,, T, r3. Then

UT) = pr+ p2 + pa+ paz + pas + pa1 = p1 + paz + gz + g2 + poy + pos + (43 — p12)-

Hence

UT) = 28, + 285 + (p3 — p12).
Similarly,

UT) = 20, + 265 + (p1 — pa3),
and

UT) =26, + 25 + (p2 ~ p3)-

Adding the last three inequalities we obtain,
36(T) = 4(€y + €2 + &) + (pa — pa2) + (1 — pa3) + (B2 — t13) 2 4(6; + €3 + €3)

since (g3 — p12) > 0, (1 — pa3) 2 0, (u2 — p13) > 0. To prove, for example, that u; > s,
we reflect £, through p and notice that any line which intersects £, and £3 will intersect
the reflection of £;, but there are lines which intersect the reflection of £, and miss £, and
L3. We are using the fact that the measure of the lines which intersect the reflection of £,
only have the same measure as the lines which intersect £, only. Note that equality holds if
and only if reflection of £, will coincide with £, and £;. B

As a consequence of the above we obtain the following result of Laugwitz (7]

Corollary 2. A triangle inscribed in the unit circle of a Minkowski plane and having the
center as an interior point has perimeter greater than 4.
For curves in three dimensional Euclidean spaces, the integral geometric analogue of

Crofton’s simplest formula is

/ / / n(8, 4, p) sin 0 dddgdp = 7L 9)
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where n(8,4,p) in the number of intersections of a plane of coordinates (8, ¢,p) with the
curve C and integration is taken over all planes intersecting C. See Santalé [9]. For the
case where the unit ball is a zonoid, Chakerian [6], Appendix, gives the analogue of (9) for
a Minkowski space. With this in mind we sketch a proof of the following special case of

Theorem 2 (see Figure 3).

Corollary 3. Consider a tetrahedron with vertices z,, z,, 3, and 4 in a three-dimensional

Minkowski space. Let p be a point in the midpoint polyhedron. Then

glnp—zfnﬁ T e -zl (10)

3 1<i< <4

Proof. Denote the line segment joining p to z; by £; and let ¢; = ||p — z;||. Let y; be the
measure of planes intersecting £; only. Suppose p;; is the measure of planes intersecting L;
and £; only and similarly define y;;. Then,

20, = 2+ 212 4 2p13 + 2p04 + 2124 + 21134 + 2123,

20 = 2pp 4+ 2p91 + 2p23 + 2p04 + 20213 + 2214 + 2p234,

203 = 2p3+ 2p31 + 2p30 + 234 + 2314 + 2p324 + 2p3n
The sum of the edge lengths of the tetrahedron is denoted by L(T) and is given by
UT) = 3ur+3p2+3ps+ 3123 + 3124 + Jp134 + 3p23s
+4{pa + praa + paa + pz + prra + padl-

The expression in brackets is multiplied by 4 since any line intersecting £; and £; intersects

the tetrahedron in 4 points. Hence,
(T) -2t +b+6) = (p1— p2sa) + (2 — p13a) + (B3 — 124
+3(1a — p123) + 2(paa + pra + p24)-

But using reflection (u; — pjee) 2> 0, i # j, k,f. Hence ¢{(T) > 2(¢, + {2 + €3). Similarly
UT) > 2(€ + &3 + &), UT) > 2(&, + €3 + €,) and (T) > 2(¢y + €, + ¢4) which yields
44T) 2 6(€1 + €2 + €3 + {4), proving (10). W
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