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INTRODUCTION

A previous study of projectile in-bore motion in electromagnetic railguns (ref)
concluded that in-bore motion affects the lateral impact of the projectile on the barrel,
muzzle jump, intermediate and terminal ballistics, and consequently the accuracy of
hitting the target. Lateral forces also affect the contents of the projectile such as its
electronic package. The force structure and in-bore projectile dynamics are an impor-
tant concern in the development of an armament system for an electromagnetic
launcher. In addition, unlike for a conventional gun, the circumferential construction of
the barrel is not uniform, complicating the analytic work.

To make the problem easier to understand, it was decided to analyze the problem
on several levels. Beginning from the basic simple model which computes only the
axial motion, more complicated models will be introduced to include as many lateral
forces and gun tube vibration effects as possible. This is the first of three basic reports
documenting the in-bore forces acting on the electromagnetic railgun projectile..

Only the axial motion of the projectile package inside the barrel is considered in
this report.. The analysis is simplified by ignoring many complicated effects, such as the
compression effect of the projectile, barrel expansion, gun vibration, thermal effect, and
the rotational motion and related effects. The propulsion force is assumed to be a
known quantity. The friction force betwern the projectile package and the barrel is
included. The effect of armature and projectile weights and the drag force of air resis-
tance are considered. Consequently, the equations of motion are formulated by consid-
ering the projectile in a linear dynamic equilibrium under the action of the above-
mentioned forces.

The solutions to the derived equations are obtained by either closed form or
numerical methods. The first step is to compute the acceleration versus time profile.
After this, velocity and travel down the rails are obtained by the integration technique.
This gives a basic knowledge of the in-bore motion.

Sample calculations are given with the available data. Figures are included to
show projectile displacement, velocity and acceleration as a function of time.



DISCUSSION

Assumptions

The projectile and the armature are assumed to be integrated into one projectile
package. The propulsion force is applied uniformly to the rear face of the armature, so
that its resultant is acting at the armature base center. It is coinciding and directed
along the barrel centerline as is the mass center of the projectile package. All comp-
onents such as the barrel, projectile and armature are considered rigid bodies.

The axial components of the resultant forces of friction, projectile package weight,
propulsion force and air resistance are considered to act along the barrel centerline,
since only the axial linear motion is analyzed. The resultants of the forces normal to the
barrel centerline and their moments are ignored. The normal motion and rotation are,
therefore, not considered in this simple basic model.

Governing Equations

From the above-mentioned conditions equations of equilibrium are derived from
forces along the x-axis which is also the centerline of the barrel. The projectile
package, the rails and the resultant acting forces are shown in figure 1.. The x-axis or
the barrel may have an inclination angle, a, with respect to the horizon.

armature projectile rail

F /fr f fk 1 fb D mg ;ina•
r a81 8 b

Figure 1. Barrel and projectile package configuration and axial forces

The governing equation is formulated from Newton's second law of motion as
follows

ma = F- far" fai f" - D- mgsina (1)
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where

m = mass of projectile package or sum of masses of armature and projectile
a = axial or x-direction acceleration of projectile package
F = total propulsion or Lorentz force
for = resultant friction force between armature and rail due to uniform circum-

ferential compression
f. = resultant friction force between armature and insulator due to uniform

circumferential compression
fa = friction force between armature and rail due to projectile package weight

f b = friction force between bourrelet and rail due to projectile package weight
D = drag force of air resistance
g = gravitational constant = 9.81 m/sec/sec
a• = inclination of x-axis or barrel with respect to the horizon (angle of

elevation)

Friction forces (far' fa,' fa and fb) will be determined from the friction coefficients and

the design or actual contact pressure at the armature-rail, armature-insulation,
bourrelet-rail and bourrelet-insulation interfaces. They are difficult to determine and

some simplified approximations from experiments are recommended. The friction
equations are derived from geometrical conditions, force reactions, and the friction law
as follows-,

far = 29arabpr3 (2a)

fag = 2giRbp,(ir - P) (2b)

f = gar---+ mgcosh (2c)

fb = 4b mgcosa (2d)

where

gar = friction coefficient of armature on rail

I'ai = friction coefficient of armature on insulation

iRb = friction coefficient of bourrelet on rail

b = width of armature circumferential contact

Pr = contact pressure between armature and rail

pI = contact pressure between armature and insulation

3



R = radius of barrel bore
= angle subtended by rail with respect to barrel center

it= 3.141593
2. = distance between center of gravity and base of armature
h = distance between bourrelet and center of gravity

However, these frictions may be ignored if the coefficients of frictions are low, which are
the usual cases.

The drag force of air resistance, D, may be computed from the aerodynamic drag
equation

D = .5pACDV' (3)

where

p = air density
A = bore cross-sectional area

= niR2

CD = drag coefficient
v = axial velocity of projectile

The Lorentz force, F, may be computed from a special formula using rail current
and inductance values

F = .5L'I 2  (4)

where

L" = rail inductance per unit length
I -= rail current

However, more complicated Lorentz force formulations may be used when they are
available.

Substituting the friction and air resistance equations (2 and 3) into equation 1, the
equation becomes

h
a = [F - 2gar RbprP-2gaiRbp,(r- n) gi.ar -A hmgcos"

- IPb• mgcosaz - .5pACD v2 - mgsincx]/m (5)

4



If the a• angle is small, then equation 5 may be further reduced to the following form:

a = [F - 2garRbPrp - 21•aRbP,(n - I]) - (9,arh + 9b1-,__- .5pACoV2]/m (6)

To get the upper bound of the acceleration, the friction forces, weight of projectile,
and air resistance may be also ignored. Consequently, equation 6 becomes

a = F/m (7)

Many engineers and scientists use this formula although the computed result is
usually 20 to 40 percent larger than obtained from experimental data. Sometimes an
empirical correction factor, C, is used which represents the effect (in proportion to the
Lorentz force) of the sum of the frictions, air resistance, and gravity forces on the right-
hand side of equation 5. This reduces the magnitude of the propulsion force in order to
make the computation more nearly agree with experimental results. The value of C
ranges approximately 0.2 to 0.4. Using the correction factor, C, the equation becomes

a = F(1 - C)/m (8)

The axial or x-direction velocity, v, and the travel or displacement ,x, of the projec-
tile are the first and second integration of acceleration with respect to time, respectively.
They are

ti
v = Jadt (9)

0

ti
x = Jvdt (10)

0

Solution of Governing Equations

The procedure to solve the governing equations is as follows:

Acceleration is computed first. Velocity and displacement then may be solved in a
closed form if it is easy to perform the first and second integrations of the acceleration
with respect to time.. Otherwise, standard numerical integration techniques may be
used to compute them.

When the acceleration is cot,.,tant, a closed form solution is obtained by integra-
tion. The velocity and displacement at any time, t, are

v = at (11)
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x = .5at2  (12)

and consequently,

t = v/a (13)

v =2--ax (14)

x=2 (15)

Sample of Computation

A simple example with no frictions or air resistance is presented below. It shows
the computation of the case where the input current versus time curve is shown in figure
2. The other data of input are

Barrel length = 4 m
Mass of armature, ma = 0.002 kg

Mass of projectile, mP = 0.003 kg

Rail inductance gradient, L = 0.35 gH/m

500
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TIME, MILLISECONDS

Figure 2. Rail current versus time

Using the numerical integration procedure, the acceleration, velocity and displacement
are computed and the results are plotted in figures 3 through 7.
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Figure 3. Acceleration versus time
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Figure 4. Acceleration versus displacement
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Figure 5. Velocity versus time
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Figure 6. Velocity versus displacement
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Figure 7., Displacemer~t versus time

When the rail current is constant, say 475 kA, the acceleration is also a constant.
Using equation 4, the propulsion force is

F = .5L'I
2

= 39.5 kN (16)

Substituting this value and the mass data into equation 7, the acceleration of the projec-
tile package, a, is computed as

a = F/m
= 805 kgees (17)

Then, the velocity, v, when the projectile pack•,je is at the muzzle, is computed using
equation 14, and the value is

8 km/sec (18)

The corresponding time is

t = v/a
1 ms (19)
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CONCLUSIONS

Utilizing Newton's second law of motion and making a number of logical assump-
tions on the various forces occurring within the electromagnetic railgun, a set of simple
basic equations has been derived. With thse equations it is possible, when the current
versus time profile is known, to calculate approximate values for the acceleration and
velocity of the projectile package as it moves along the railgun and the associated
values for time and travel (displacement). Plotting these calculated acceleration and
velocity values versus time or travel provides a good approximation of the axial motion
of the projectile package.

Further experimental data is necessary to enhance the ar.,uracy of the assump-
tions, e.g., the magnitude of the frictional forces within the railgun.

More complicated models will be introduced in subsequent reports which will
include lateral forces and gun tube vibration effects.
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