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ABSTRACT

The effect of constant acceleration, prior to the establishment of a steady uniform

flow, on some of the characteristics of the resulting time-dependent flow about a circular

cylinder has been investigated numerically. It is shown that the occurrence of a local

maximum drag is dependent on the parameters characterizing the non-impulsive nature

of the ambient flow. However, the onset of the wake asymmetry and the evolution of the

lift and drag forces during the transient period depend on the characteristics of the

numerical perturbation used to initiate the asymmetric vortex shedding. It is concluded

that the numerical methods can predict, to varying degrees of accuracy, the behavior of the

symmetric state and the quasi-steady-state, but not of the intermediate state.
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NOMENCLATURE

AP = Acceleration parameter = 1/(S/R),

A,, = "(d,,U/dt,)/V '

CD = Drag coefficient = 2F/pDV2

CDM = Maximum drag coefficient

C, = 4F/(ipD2dU/dt)

CL = Lift coefficient = 2L/pDV2

D = Diameter of circular cylinder = 2R

F = Drag of in-line force per unit length

L = Lift or traverse force per unit length

R = Radius of the circular cylinder

Re = Reynolds number = VD/v

R..t = Radius of the outer boundary

S = Displacement of fluid

S/R = Relative displacement of fluid

(S/R), = Relative fluid displacement at which CDM occurs

(S/R)v = Relative displacement of fluid during the acceleration period

=0.5(dU/dt)t!/R = V2/(DdU/dt)

=1lAp = 0.5(Vt,/R)

St = Strouhal number = D/VT

T = Period of vortex shedding

t = Time

tv = Time at the end of the acceleration period
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U = Time-dependent velocity

V = Constant velocity at the end of the acceleration period

At = Time step

Aao = Disturbance oscillation applied to ambient flow, (in Degrees)

A F = Streamfunction perturbation applied to cylinder

A = Computational grid spacing

AX = Plot grid spacing
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I. INTRODUCTION

Unsteady flow past bluff bodies has attracted a great deal of

attention since a number of problems of practical importance are

unsteady. Among the numerous theoretical, numerical, and

experimental investigations, impulsively-started steady flow about

a circular cylinder has occupied a prominent place partly because

of its intrinsic interest towards the understanding of the

evolution of separation, vortex formation, growth, and partly

because it provided the most fundamental case for the comparison

and validation of various numerical methods and codes. However,

neither impulsive start nor impulsive stop is physically

realizable. The flow must be accelerated from rest to a constant

velocity, in a prescribed manner. This fact gives rise to a series

of new questions such as:

1. What is the effect of the initial acceleration, prior to
the establishment of a steady uniform flow, on the
characteristics of'the resulting time-dependent flow?

2. Are there critical values of the governing parameters above
or below which the flow may be regarded as almost
impulsively-started?

3. How does the rate of accumulation of vorticity, as well as
its cross-wake transfer, depend on the initial history of
the motion?

The purpose of this investigation is to explore some of these

questions through the use of a numerical scheme based on finite-

difference methods.



II. BACKGROUND STUDIES

There is a large volume of literature which deals with

fluctuating forces and associated vortex shedding from bluff bodies

subjected to steady ambient flow. The circular cylinder has

attracted by far the greatest attention. Numerous computational

studies have been performed on flow about circular cylinders in an

attempt to predict the Strouhal number in steady ambient flow and

the shape and growth of the wake region in impulsively started

steady flow. Here, only the more recent and relatively more

accurate examples will be cited. Ta Phuoc Loc (Ref. 1] solved the

complete unsteady Navier-Stokes equation in vorticity/stream-

function form using a combination of second and fourth-order

compact finite-difference schemes. He obtained short-time

symmetric-wake solutions at Reynolds numbers of 300, 550, and 1,000

and achieved good agreement with flow visualization results for

both vortex size and center position. His calculations also showed

clearly the small secondary vortices just behind the separation

points.

Lecointe and Piquet [Ref. 2] used several compact schemes with

the Navier-Stokes vorticity/stream function formulation to solve

laminar flows around circular cylinders up to a Reynolds number of

9500. They studied both start-up and unsteady periodic phenomena.

The predicted wake-region shape showed good agreement with

experimental flow visualizations. Ta Phuoc Loc and Bouard [Ref. 3]

2



performed calculations at Re = 3,000 and 9,500 using a fourth-order

finite-difference technique to solve the Poisson equation for the

stream function and a second-order technique for the vorticity-

transport equation. They found good agreement between their

predictions and flow visualization. The calculations were

confined, out of necessity, to relatively short times during which

the wake became neither asymmetrical nor turbulent. Chamberlain

[Ref. 4] used a second-order fast Poisson solver based on FFT

methods and found an accurate solution which agreed well with

experiment and the previous computations. Rumsey [Ref. 5] used an

upwind-biased implicit approximate factorization algorithm to

calculate the impulsively-started unsteady flow over a circular

cylinder at a Reynolds number 1200 and a Mach number of 0.3.

Rumsey's results were in very good agreement with the previous

calculations and showed, predictably enough, only a slight

compressibility effect.

All numerical calculations using finite-difference, finite-

element, or vortex-element methods (see e.g., Sarpkaya and Shoaff

[Ref. 6], van der Vegt [Ref. 7], Sarpkaya [Ref. 8], Chang and Chern

[Ref. 9]) have assumed an impulsively-started flow. No

computational attempt was made to investigate the effect of the

initial acceleration, prior to the establishment of a steady

uniform flow, on the characteristics of the resulting time-

dependent flow.

Several experimental investigations [Refs. 10-12] of

impulsively-started flow around circular and rectangular cylinders

3



have been carried out. Bouard and Coutanceau [Ref. 10]

investigated the shape and growth rate of the wake region behind

the cylinder for Reynolds number between 40 and 10,000. Sarpkaya

[Ref. 11-12] examined the evolution of the wake region and the

development of the lift and drag forces with time for cylinders

between Reynolds numbers of 15,000 and 120,000. Nagata et al.

[Ref. 13] studied the start-up flow at Reynolds number between 250

and 1200, with the majority of the experiments performed at Re =

1200. They gave detailed results for the time-evolution of the

vortical region, boundary-layer parameters, and profile shapes at

this Reynolds number. Sarpkaya and Kline [Ref. 14] examined the

impulsively-started flow about four types of bluff bodies.

Sarpkaya and Ihrig [Ref. 15] performed experiments and vortex-

element analysis of impulsively-started flow about rectangular

prisms and pointed out emphatically that other than numerical

experiments, there is no mechanical system which is capable of

generating a truly impulsive flow. In fact, efforts to generate

i.,ipulsive or uniformly-accelerated flow at high Reynolds numbers

may be hampered by the generation of compression and rarefaction

waves and regions of intense cavitation (in liquids). Because of

this reason one or more acceleration parameters such as

dt
V2

4



or

dnU

dtn 
(2)

will have to be added to the list of the parameters governing the

phenomenon in order to account for the initial history of the fluid

motion. The other parameters are the Reynolds number Re = VD/v and

the relative displacement of the ambient flow, given by

=0.5 =0.5( Vt for tt v  (3)

R R (Rt v )

and

s 0 5( v)+ (t-t) v
0 5 (V- ( for t>tv (4)

where U is the time-dependent velocity in the interval (0<t<t,), V

is the constant velocity arrived at the end of the acceleration

period, R is the radius of the cylinder, t is the time, and t, is

the duration of the acceleration period. Introducing the

dimensionless parameter defined by

:v- t  (5)
R

5



and

S Vt _ v_ 1 (6)
V (2R) 2 Ap

and taking V = R = 1, Equations (1) through (4) may be reduced to

S=(-!L )=-IL for t< v  (7)

and

S=Sv+( -rv) for '>- v  (8)

where ,=2S, .

A systematic numerical variation of the governing parameters

for an arbitrary U(t) is extremely difficult. Thus, to make

progress one must begin with the simplest possible unsteadiness,

namely, with constant dU/dt, so as to be able to incorporate

progressively more complex variations of velocity with time.

6



III. NUMERICAL REPRESENTATION

A. INTRODUCTION

The fluid is assumed to be two-dimensional, incompressible

and viscous. The governing equations for the solution are the

Navier-Stokes equations with the stream function and the

vorticity as independent variables. To achieve a higher

density of mesh points near the cylinder surface, the

computational domain is transformed from the physical plane

(polar coordinates) to a rectangular plane. In the

rectangular plane, the mesh is maintained at a uniform grid

spacing. It is necessary to have more mesh points closer to

the cylinder surface because in this region the gradients of

both the vorticity and the stream function are the largest.

A third-order in time, second-order in space, three-level

predictor-corrector finite-difference scheme is used to solve

the vorticity-transport equation. A Fast Poisson Solver based

on the High Order Difference approximation with Identity

Expansion (HODIE) and the Fast Fourier Transformation (FFT)

provided by the IMSL mathematics library is used to solve for

the stream function.

B. GOVERNING EQUATIONS IN THE PHYSICAL DOMAIN

Here only a brief description of the computational

method is presented. A more in depth description is given by

7



Wang [Ref. 16]. The unsteady Navier-Stokes equations in the

polar coordinates, as defined by the vorticity transport

equation and the vorticity/stream-function equation are,

a---l- (W_- (Waa_k)] =vV2W (9)

at r ar a3 a ar

and

V2,1 (10)

where

V a2  _i. 1 a (11)
ar 2 rar r 2 M 2

and I are the vorticity and the stream function, V is the

kinematic viscosity, t is the time and, r and E) are polar

coordinates directions (see Figure 1). The velocity

components in the r and E directions are defined by

U_ (12)

and

v_ (13)

8



The boundary conditions for the physical problem are:

(1) no slip and zero normal velocity on the surface of the

cylinder

on r=R (14)
a3r

and; (2) the potential flow at infinity is defined as

*=U(r--E) sin8 (15)

r

and

0=0 atr=o

where U is the external flow and R is the radius of the

cylinder.

The ambient flow is prescribed by

S=0 U=oR

0S f S) U (AU) t (16)
R R dt

-S> (-f U=1R RV

in which SIR is the relative displacement of the fluid and

(dU/dt) is the constant acceleration.

C. TRANSFORMATION FROM PHYSICAL TO COMPUTATIONAL DOMAIN

The coordinate transformations required to go from the

physical domain to the computational domain are:

9



r = R exp(a ) and 0 = al

where R is the radius of the cylinder, a is a transformation

parameter (see Figure 2). After non-dimensionalizing the

vorticity-stream function equations the transformed equations

reduce to:

r) aE a1 al 3 Re

and

V2i-g() (18)

where

v a a2 (19)
a 2 N2

and

g(E) =a 2exp (2aE) (20)

The non-dimensional fluid velocity components in the E and 11

directions are given by

- u_ (21)

10



and

V V (22)

with U and V defined as

U= (23)anI

and

v=?iqI (24)

The boundary conditions in the computational domain are:

ij=0~ ~ (25)

at =0 ;and

W=2Usinh (at) sin (ail), (26)

and

(0=0 (27)

at ~=0;and



, = 27c ,(28)
a

and

i.( ,r ) = .(W ,,T1+2 ) (29)
a

The effect of the transformation upon the mesh spacing in

the physical is seen in Figure 1. The bar over the non-

dimensional quantities will no longer be used for the sake of

simplicity. All further quantities should be understood to be

non-dimensional.

D. DESCRIPTION OF FINITE DIFFERENCE SCHEME

The finite difference scheme is really a combination of

two different schemes as previously described. The use of a

central difference scheme to spatially discretize equation

(17) leads to

g( r) U 1  28+ - 28I (30)

+ . - 2w.,+w .,_1 + w1,1,. -2w,; _.)

Re 8E 2  8T2

where i, j represent the ith node in the 71 direction and the

jth node in the direction. The nodal velocities are

represented by:

12



Ui, 1 (31)2811

and

, -Vi, - (3 2 )

For further simplification define

1 1 Ui j+l(Cai)j--Ui j-l(')i'j-i VI.Ij(a)i-I J-Vi-Ij(Oi-I'j
fiJ- g1) 28& 28i (33)

+ 2 ( 6)i'j*l-2owi'J+(Ai'j- + (aij-21, j- 
2 w W I

Re 8 2 8r1 2

then equation (30) can be simply written as

a. - ,(34)

Taking the central difference approximation for vorticity

and applying a two step, three level, predictor corrector,

finite difference scheme with a third order accuracy in time,

temporal discretization determines the vorticity in the

computational domain. Expanding W"+I into a Taylor Series and

substituting into equation (34) the equation arrived at is

n'l - j nff jAT a f;. A- O
_ A___-_ j'J -- j _ + ' + +O(AT. (35)

13



The second and third order terms of the right hand side of

equation (35) is discretized and becomes

n~ n 5fn,*+8+fnj-fn-i
-i .' - +O(AT 3) (36)

At 12

The predictor used is given by the second order Adams-

Bashforth method, as shown

i~ A-n  n, j - j fn, (37)

where n is defined as the nth time step and the superscript *

indicates the predicted value. The corrector is given by

n.1 +j A . ,+8 -f.jf). (38)

The term f'-' is eliminated using equations (37) and (38),

leaving the predictor-corrector as,

.=-J (w " +5o') + 5A' (f 1.j-fp1,) (39)

In order to calculate the first time step, the Euler forward

method is used to find (d?. The predictor is

(40)

and the corrector is

14



2 AT
(0 , A -0 'j 2 (f +f 'J)" (41)

The non--dimensional time scale is defined by the relative

displacement S/R, as noted previously.

Z. CALCULATION OF VORTICITY ON THE CYLINDER WALL

Vorticity on the cylinder wall is determined using a

Taylor Series expansion of the stream function,

41 (2) =4t (1) +(- I) A +( ) 12! (42)
cl a2 2!(42)

(- A- -!+O (AE4).

Equations (18) and (19), and the boundary condition (25) gives

(@- ) =g(1) (')( ) (43)

and

( -)a 1 ((.o)) g- g(2) w(2) -g (1) w(1)A +0( (44)

on the surface of the cylinder. Substituting equations (43)

and (44) into equation (42) and using the no slip boundary

15
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condition, equation (14) gives

(i) = 3 (2) _ g(2) ( (2) +o(A&2) .(45)
Ak 2g(1) 2g(1)

F. CALCULATION OF THE LIFT AND DRAG COEFFICIENTS

The lift and drag coefficients are determined from the

contribution of the viscous forces tangential to the flow and

the pressure forces acting normal to the surface of the

cylinder. The viscous forces are calculated from To=Jg0. This

relationship gives the total drag force as

FD=-f2 pScos (0) RdO-f2" sin (w0) RdO, (46)

and the total lift force as

FL:-f pin(0)Rd()+f owcos (0) Rd0. (47)

After dividing both the total drag and total lift equations by

(0.5 p U2 D) and defining

Ps- (48)(- pU )

the drag coefficient reduces to

16



CD - Ue:sin (0) dO, (49)2 --j ,~coo (0) dO ef

and the lift coefficient is given

f 'R'Uco (()50)
cL 2-f:.psiln(0) ,O 4cos(). (50)

The pressure coefficient is determined from the Navier-Stokes

equation in terms of dimensionless vorticity. Once integrated

with respect to 9, the equation is

-- 4 f211 d-
p (0) =T (0) + 0 (-) Ir d. (51)

Equation (51) is substituted into equations (49) and (50) to

determine the numerical scheme for the total lift and drag

coefficients,

cD=---f' ([f' (-N:) 1,_,d] co,(e)
Reo o - (52)

-asin (0) }WO,

and

CL=_. -f ; 'I [f(- Id 1 I sin (6)
Re 0 r 5

-i 1cos (O)HO
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The radial derivative of the vorticity on the surface of

the cylinder, used in the lift and drag coefficient

calculations, is determined using a discrete pointwise

approximation,

-3wi+4u-)j )1+2) +O(A 2 ) (54)
2A
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IV. DISCUSSION OF RESULTS

A. INTRODUCTION

The numerical experiments were carried out through the use

of a VAX-2000 system and the IMSL library. It became quickly

evident that the type of calculations performed would require

a computer of greater capacity and speed. Nevertheless it was

deemed necessary to proceed with the existing system partly to

delineate the limitations of the numerical scheme, partly to

determine the limits of the disposable parameters, and partly

to compare the results of the physical experiments with those

of the numerical predictions during the early stages of flow.

Typically, a numerical experiment requires about 50,000 times

more time than a physical experiment (50,000 sec/i sec).

The fundamental objective of the calculations was to

determine the ranges of flow which can be calculated

accurately. The extensive literature that exists on the

impulsive flow has either concentrated on the initial

symmetric state or on the asymmetric late time vortex

shedding. However, no systematic attempt was made to

determine the upper limit of the early stages, the upper and

lower limits of the intermediate indeterminable state, or the

lower limit of the quasi-steady-state, in terms of the

parameters characterizing the artificial disturbance imposed
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on the flow. It has long been recognized that the symmetric

state becomes increasingly unstable and the flow sooner or

later bifurcates into an asymmetric state. This bifurcation

is not an instantaneous event but takes place rather gradually

even if the disturbance is imposed suddenly. However, the

interesting feature of all the numerical calculations is that

the numerical noise and truncation errors are ever present and

continue to work on the propensity of the flow to become

naturally asymmetrical even though the results are far from

being natural. Had one been able to devise a sufficiently

accurate numerical scheme and a greater-precision computer,

one could maintain a longer symmetric state. Evidently, the

onset of asymmetry in calculations depends on the

characteristics of the physical disturbances. The two types

of disturbances used can never be made identical, but they may

be made to mimic each other. Thus, it is the hope of the

numerical experimenter that the early stages of an impulsively

started flow is relatively immune to truncation errors and the

imposed, reasonable, artificial perturbation can, therefore,

be expected to compare with the physical experiments.

However, once the flow becomes asymmetrical the period of

transition into a quasi-steady-state depends, to varying

degrees of intensity, on the parameters characterizing the

numerical disturbance. For small perturbations, the quasi-

steady-state may eventually be arrived at smoothly without the

lift and drag overshooting first and then reducing to their
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terminal values. The rather unfortunate aspect of the

numerical dilemma is that the quasi-steady-state is not just

a function of the characteristics of the perturbation. If it

were, one would have conducted a series of numerical

experiments, arrived at a fairly stable state, and would have

concluded that the flow no longer remembers how it was started

and how it :ver became asymmetrical. Even though this is the

ultimate goal of the numerical experiments, the effects of the

unavoidable truncation errors are ubiquitous and continue to

influence the entire history of the computed flow. Thus, one

may never be able to arrive at an accurate solution.

It is in view of the realization of the foregoing facts

that the results reported herein dealt with extensive

sensitivity calculations to determine the effects of the type

and intensity of the perturbations, the grid size, the time

increment, and the effect of the outer boundary of the

computational domain on the numerical experiments. In view of

resources and time limitations noted earlier calculations were

confined to standard runs and their variations. For the sake

of brevity and for the ease of future reference a run made

with:

1. Reynolds number = 1000

2. Disturbance strength = 0.5

3. Sinusoidal disturbance

4. Run time = 40
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5. Time step = 0.02

6. Computational grid spacing = 1/64

7. R,, t = 51R

8. Disturbance interval, SIR = 3-5

9. (S/R)., = 10

will henceforth be referred to as the standard run.

B. CHARACTERIZATION OF PZRTURBATIONS

The problem associated with the assignment of a

perturbation is not the making of suitable choices among a

limited number of equally sound characterizing parameters, but

rather the difficulty of choosing a reasonable one from among

an infinite set of perturbations and applying it at the right

time interval. Faced with this problem, previous

investigators used many types of artificial disturbances. In

fact, there are as many original disturbances as there are

original papers. In the present study, two types of

disturbances with varying intensities were used. The first,

devised by Wang [Ref. 16], was used to perturb the

streamfunction on the cylinder from S/R=3 to 5. The shape of

the disturbance was a step function. The amplitude of the

step (AT) was the only parameter varied while keeping

everything fixed, including all other flow features (Re, At,

R0.J-
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The second type of perturbation was to change the

direction of the ambient flow one full sinusoidal cycle in the

said S/R range. The amplitude of the sine wave (Aa) was the

only free parameter. It is worth noting that the second type

of disturbance is less shock-like and gradually returns the

perturbed quantity to its initial state.

Figures 3a and 3b show CD versus S/R for the first type,

step wise disturbance of the streamfunction, with an amplitude

of 0.0025. Clearly CD increases at first, almost impulsively,

and then gradually to a maximum value of about 1.25, decreases

sharply at the end of the acceleration period ((S/R),=10),

then begins to undergo lift-induced oscillations at S/R=18.

The mean drag continues to increase for a number of reasons,

the least of which may be the limited extent of the outer

boundary and the reflection there from. The lift reaches a

large amplitude after the shedding of the third vortex at an

approximate Strouhal number of about 0.23. One must hasten to

add that no special accuracy is implied in the stated Strouhal

number. It was derived from only a few cycles of oscillations.

It must also be clarified that the evolutions of two

integrated quantities like lift and drag are not the only

means to judge the sensitivity of the predictions to the

disturbance characteristics. Nevertheless, they serve to

accentuate the said sensitivity better than other quantities

such as pressure distribution, vorticity distribution,

streamlines or vorticity contours, or velocity and pressure
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distributions within the flow field. It is because of this

reason, that the lift and drag plots will continue to be the

only plots referred to during the discussion of the

disturbance characteristics.

Figures 4a and 4b show a repeat of the above example with

the sole exception that the disturbance strength is doubled.

As expected, the stronger the intensity of the disturbance the

sooner the inception of the lift and drag oscillations.

Otherwise, CD for S/R<15 remains essentially unchanged.

A more extensive series of numerical experiments were

conducted with the second type of disturbance partly because

it was more natural and more importantly because unlike the

first type, this disturbance does not at any time violate the

boundary conditions.

Figures 5a-5b through i0a-10b show the drag and lift

coefficients for (S/R),=10 varying only the amplitudes of the

sinusoidal disturbance. Figures 5a and 5b are interesting in

the sense that the strength of the disturbance is specifically

assigned to be zero, and yet the asymmetry is perceptible for

S/R>35 (see Figure 5b). As noted earlier, this is due to the

inherent truncation errors, and its onset could have been

delayed even further had one used higher order or more stable

numerical schemes. The remainder of the Figures from 6a to

10b show what one would normally anticipate: the asymmetry

sets in sooner, and the oscillations in the drag and lift

manifest themselves at SIR values closer to (S/R),. The
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interesting feature of the larger disturbances is that the

onset of instability does not start at proportionally smaller

S/R values. In fact, the differences between the lift and

drag curves for disturbances of Aa = 1.0 and 2.5 are rather

negligible. This may be interpreted as the optimum

disturbance to be used to mimic the natural disturbances.

However, this is not quite true since the three dimensionality

of the disturbances as well as the resulting instabilities

encountered in nature may result in significantly different

flow characteristics during the transition period. As far as

the calculations to be reported herein, a disturbance

amplitude of AcL = 0.5 was chosen.

C. GRID SIZE, TIME-STEP, AND BOUNDARY EFFECTS

These will be discussed in conjunction with each other

because of the simple fact that none can be independently

varied without violating either the stability constraints or

the reflections from the outer boundary.

Figures 11a through lid show the drag and lift

coefficients, and the pressure and vorticity distributions as

obtained from a standard run with the exception of the run

time equal to 120 and Rout equal to 150R. The outer boundary

was extended to examine the long term effect of the

disturbances on the quasi-steady-state region of the flow.

This required the use of a large run time and, in turn, the

need to minimize the reflections from the outer boundary.
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This way, it was possible to carry out the calculations to

S/R=120. Figure 11a shows that the drag coefficient exhibits

relatively large lift-induced fluctuations in the region of

S/R values from approximately 40 to 60. These fluctuations

have twice the period of those of lift, as expected. However,

for S/R>60 the drag oscillations revert to the same period as

the lift oscillations, and synchronize with the vortices

shedding from one side of the cylinder. This tends to show

that the vortices shed from the cylinder are larger in

strength on one side than those from the other side. This is

most likely due to the fact that the grid size at large SIR

becomes too coarse and the gradients of the various vorticity

terms become increasingly inaccurate. It is the realization

of this somewhat anticipated fact that led to the decrease of

the grid size.

Normally, it would have been desirable to decrease the

grid size and at the same time, maintain the outer boundary at

the same distance as it was for the coarser grid.

Unfortunately, the speed and size constraints of the computer

have precluded the need to maintain the size of the

computational domain as large as Ro,,=150R. Instead, for an

otherwise standard run, the grid spacing was reduced to 1/128,

the time step was reduced to 0.01 (to maintain the stability

of the computer code), nd Ru, was reduced to 80R. The

results of this calculation are shown in Figures 12a thLough

12d. For the purposes of comparison the drag and lift
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coefficients obtained with the two grids (A =I/64, At=0.02 and

A4=1/128, At=0.01) are shown in Figures 13a and 13b. Clearly

for S/R<10, the results are indistinguishable. For larger

values of S/R, there are some differences which do not

continue to increase, indicating that both calculations are

understandably different and relatively stable at least for

S/R<60. Also shown in these figures are the results of a run

with a grid size of 1/128 and At=0.005. Surprisingly enough,

the two runs with the grid size 1/128 and At=0.01 and At=0.005

are virtually identical and shows that At is optimum and the

results are dictated by the grid size, as expected.

In summary, the analysis of the sensitivity of the

calculations to the variation of the disposable parameters has

shown that a standard run is capable of producing sufficiently

stable results for S/R<40 with an outer boundary of kt=51R.

In the section to follow the results obtained with the

numerical model will be compared with selected experimental

results, obtained at much higher Reynolds numbers (40,000 to

60,000).

D. SOME EXPERIMENTAL RESULTS

Sarpkaya [Ref. 17] investigated experimentally the effect

of constant acceleration prior to the establishment of a

steady uniform flow on some of the characteristics of the

resulting time-dependent flow about a circular cylinder. It

was shown that the occurrence of a local maximum drag, the
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onset of wake asymmetry, and the evolution of the transverse

force are dependent on the parameters characterizing the non-

impulsive nature of the ambient flow. The experiments were

conducted in a vertical water tunnel at Reynolds numbers

considerably larger than those which could possibly be

predicted numerically without using a turbulence closure

model. Even for the flow with a Reynolds number of 10UO the

vortices become turbulent. It is for this reason that the

majority of the previous calculations were confined to

Reynolds numbers in the order of 100. There are a number of

other fundamental differences between the experiments and the

numerical model. In computations the flow is strictly laminar

and two dimensional. The cylinders in nature have ends. The

three dimensionality of the flow induced partly by the

instability of the vortices and partly by the cylinder ends

may cause differences of varying degrees even if the

experiments were performed at Reynolds number corresponding to

the calculations.

Figures 14a through 14b for (S/R),=I, Figs 15a through 15b

for (S/R),=5, and Figures 16a throu.gh 16b for (S/R),=10 show

respectively the drag coefficient with and without the use of

a numerical perturbation. A careful perusal of the

corresponding figures show that for the standard disturbance

used, the numerical results do not differ from each othei. As

noted earlier, the effect of the disturbance exhibits itself

for S/R<40. The reason for the selection of the S/R range
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from 0 through 15 was to confine the comparison with

experiments through a region relatively unaffected by the

parameters characterizing the initial disturbances. Even

though this statement is verified within the scope of the

numerical calculations, it may not be correct for the physical

experiments. Since, strictly speaking, there is no impulsive

flow (numerical or experimental) a relatively large

acceleration over a prescribed time period will have to be

imposed onto the flow about a large enough cylinder to achieve

a large enough terminal Reynolds number yielding accurately

measurable lift and drag forces. Among the numerous obstacles

to these objectives, one particularly stands out: vibrations.

Thus, the very early stages of the flow (the first 0.1 or 0.2

seconds) is accompanied not by a constant acceleration but by

an acceleration, with a finite rate of change, superimposed on

vibrations of high frequency. Thus, comparing the results

with experiments one must bear in mind that the Reynolds

numbers are not identical and the numerical and experimental

flows are not created in the same manner.

Figures 17 through 19 show plots of the numerical and

experimental drag coefficients on the same graph for (S/R),=I,

(S/R),=5, and (S/R),=I0. The experimental results presented

were obtained by Sarpkaya [Ref. 17]. It must be emphasi-ed

that the discussion refers to th plots shown in the same

graph not to their comparison.
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For (S/R),=l the experimental data exhibits a drag

overshoot at S/R=4 and then the drag decreases gradually to

its steady-state value, commonly accepted in the literature.

It is important to note that the flow is still nearly

symmetrical below S/R=7, the drag overshoot is not merely due

to the symmetry of the vortices or the accumulation of

vorticity in the symmetric vortices. Leaving aside a

comparison of their magnitudes, but concentrating on the

physics of the evolution of the drag coefficient in Figure 17,

one realizes that as the vortices grow symmetrically and as

the vorticity accumulates the drag increases to a maximum.

Then, the elongation of the vortices the downstream motion of

the center of vorticity, plus some mutual annihilation of

oppositely-signed vorticity along the axis of symmetry lead to

the decrease of the drag coefficient. Thus, it is clear that

the drag overshoot has nothing to do with the onset of

asymmetry. It depends on only when a symmetric pair of

vortices will acquire optimum vorticity at an optimum

distance. Since in the experiments, these depend on the

initial conditions of imposed acceleration it is not

surprising that the measured and predicted drag overshoots do

not occur at the same S/R.

Figures 18 through 19 show the effect of the imposed

acceleration with greater clarity primarily because of the

duration of the acceleration and the relatively smaller

amplitude of the initial vibrations. In both figures, the
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experimental values of the drag coefficient are somewhat

smaller for S/R values smaller than (S/R) . This is

explainable in terms of the nature of the acceleration and its

time rate of change. For S/R values larger than (S/R),, the

measured values are larger than those calculated. Without

attaching undue significance, one may note in passing that CD

(steady) equal to 1.2 for Reynolds number of 10,000 to 100,000

and C, (steady) equal to 1.0 for a Reynolds numbers of 1000

[Ref. 18]. As far as the rise period of the drag is

concerned, calculations contemplated in the near fu,-iie will

use the instantaneous imposed acceleration as input into the

numerical code rather than a constant acceleration, averaged

so as to arrive at the same (S/R), values.

E. STREAMLINES AND VORTICITY CONTOURS

To provide visual descriptions of the evolution of the

velocity and vorticity fields a number of plots with varying

degree of close-ups were made. Figure 20 shows for a standard

run, but with no disturbance, the symmetric vortex pattern at

S/R=5, Figures 21a through 21c show at S/R=15 the streamlines,

determined at various grid spacings (AX) about symmetrically

evolving vortices. Figure 21c is of some importance in the

sense that it shows two phenomenon. The first is physical and

related to the so called o phenomena near the downstream

shoulders of the cylinder. The other is purely numerical and

shows the instability that evolves in the interpolation scheme
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in a fine grid (here plot grid spacing is 1/160). The said

instability has nothing to do with the flow instability but

may eventually lead to sufficiently large asymmetries to cause

vortex shedding as S/R>40 (see Figure 5b).

Figures 22a and 22b show the streamlines and vorticity

contours at S/R=40 for a standard run but without artificial

disturbances. There is an almost imperceptibly small asymmetry

(see 8 and 10 O'clock positions) as anticipated on the basis

of Fig. 5b. Figures 23a and 23b show again at S/R=40 the

vortex shedding due to the imposed sinusoidal perturbation

with an amplitude of Aa = 0.1. A superposition of the

streamlines (see Figure 23a) and the vorticity lines (see

Figure 23b) shows that the center of vorticity is not at the

apparent vortex center, a fact which has been known for a long

time. This is entirely due to the time dependent nature of the

wake. Figures 24a and 24b show the streamlines and vorticity

lines at again S/R=40 for a larger sinusoidal disturbance (AC

= 0.5). The position of the separation points are not easily

identifiable in the foregoing figures because of the crowding

of the streamlines near the shoulder of the cylinder. It would

be preferable to plot the instantaneous velocity profiles

along radial lines to delineate the position of the excursion

of the separation points.

Finally, Figures 25a through 25d show the streamlines, the

vorticity contours, the pressure distribution, and the

vorticity distribution at S/R=40 for a standard run, but using
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the first type of numerical perturbation with a step amplitude

of AT = 0.005. The first two plots are similar to, but not

directly comparable, with those shown in Figures 24a and 24b.

The reason for this is obviously the non-unique nature of the

flow and its strong dependence on the characteristics of the

perturbation imposed. This is particularly true for large S/R

values shown in these figures. The asymmetric nature of the

pressure and vorticity is a consequence of the asymmetric

vortex development. The lowest pressure occurring at about 80

degrees from the stagnation point is comparable with those

calculated by others.
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V. CONCLUSIONS

The investigation reported here warranted the following

conclusions:

1. Even the higher order finite difference formulations of
the governing equations can be solved for only relatively
small Reynolds numbers. This is partly due to stability
and computer constraints, and in part due to the
difficulty of specifying appropriate perturbations
forcing the flow to bifurcate into an asymmetric quasi-
steady-state.

2. The imposition of various states of uniform acceleration
leads to results which have not been previously noted by
others. Namely, drag rises to a finite value due to the
added mass effect as soon as the acceleration is imposed,
then remains fairly constant for a relative displacement
less than about two and continues to rise to the end of
the acceleration period or until the drag overshoot
occurs, depending on whichever comes first.

3. For almost impulsively-started flows the drag overshoot
occurs near S/R=4. For (S/R),>5, this overshoot is
obsured by the effect of acceleration and continues to
increase the drag to values larger than the drag
overshoot at (S/R),=4.

4. The early stages of the flow, i.e. S/R<15 can be
calculated within the limits of the accuracy of the
computational scheme. The results are essentially
independent of the characteristics of the perturbation
even if they were imposed at the start of the motion.

5. The experimentally observed drag overshoot for almost-
impulsively started flow occurs in the range 4<S/R<5,
depending on the noise imposed on the flow at the early
stages of the motion.

6. There is a range of S/R values, for both impulsively and
non-impulsively started flows, which is not amenable to
correct numerical simulation. Because this region depends
on the parameters characterizing the perturbations which
are unknown and unknowable in physical experiments.
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7. There is a third region of the flow in which the
transient state evolves into a quasi-steady-state. It is
assumed, for all intents and purposes that the flow does
not remember how it arrived at the quasi-steady-state. It
is tacitly assumed that the final state does not depend
on the disturbances even though the nonlinear coupling of
the disturbances and truncation errors may lead to
somewhat different steady states. The existing computer
speed and capacity does not allow one to increase the
computational domain to arrive at a steady state at the
specified Reynolds number.

8. It is a fitting summary that where calculations can be
made accurately (S/R<15) experiments are contaminated
with noise, where the experiments can be relied upon
(S/R>15) calculations cannot be carried out at the
corresponding Reynolds numbers, and where the symmetric
state bifurcates into an asymmetric state the
computations and experiments cannot be compared because
the computation depends on the disturbance (15<S/R<40)
which cannot be imitated by the numerical perturbations
even at the smaller Reynolds numbers. Thus, future
researchers must concentrate on conducting numerical
experiments at the early and later stages of flow, at
Reynolds numbers smaller than 1000 and at carrying out
painstakingly difficult force and pressure measurements
on cylinders at the same small Reynolds numbers. It is
only then that it will be possible to carry out a
meaningful comparison between the numerical and physical
experiments.
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APPENDIX

Figure 1. Grid in the Physical Domain

36



e

S

Ooz

U-
0

Q

LL

0 16 32 48 64 80 96 112 128

RADIAL DISTANCE (Q)

Figure 2. Grid in the Computational Domain

37



z

0

0 5 1 15 2'0 28 3,0 3's 40

SiR

Figure 3a. C. vs. SIR for AT1=.0025

z

IL

0

a 10 15 20 25 so 35 40

SIR

Figure 3b. C. vs. SIR for ATI40.OO25

38



z

w

<0

o 5 10 15 20 25 30 35 40

SiR

Figure 4a. CD vs. S/R for AT=0.005

z
L°Q

L I
0

C)

0 5 10 1s 20 25 30 35 40

S/R

Figure 4b. CL vs. S/R for AT--0.005

39



z

0
V

<

0 0 1,5 20 2,5 3,0 3,5 40

SIR

Figure 5a. C,, vs. SIR for Aa=-0.O0

zLU

I0

04



0

cr

0 5 1 15 2'0 25 3,0 3'5 40

SIR

Figure 6a. CD VS' SIR for ACVb=O.O1

z
U

0

S/Ri

Figure 6b. C, vs. SIR for Acx=Q.O1

41



z

0

i' 5s 10 15 230 3 40
SIR

Figure 7a. CD s SIR for Aa=O. 1

z

0

is2- L

25 304
w -R

Fiue70,v. I o ~=~

04



In

4-

z
w

w
0

0 5 1 15 2,0 28 30 35s 40

SIR

Figure 8a. CD VS' S/R for AaO0.5

z
U

ILL

IL

0 5 1,0 1's 20 25 30 35 40

SIR

Figure 8b. C, vs. SIR for Ao=O.5

43



z

LL
LI.

0
Q

0 1'0 1's 2'0 is 3'0 35 40

SIR

Figure 9a. C, vs. SIR for Acc=1.O0

z

0

0

-

S/R

Figure 9b. CL VS. SIR for Act=1.O

44



I-V

0

0

SI R

Figure 10a. CD VS* S/R for Aa=2. 5

z

U-
woI
0

U-

S/R

Figure 10b. C, vs. SIR for AX=-2.5

45



C4.

N-

z

0

01
L.--

Cz

O 20 40 60 so 100 120

sin
Figure lla. CD vs. SIR, (S/R) 1 .~,-12O, R0, t=15OR, and A =1/64

mA

IL
we
0

0 2 40 60 SO1 100 120

SIR

Figure lib. C, vs. SIR, (S/R)m=120, R0 ut=15OR, and Ak=1/64

46



4 4.
+ 4-

III 4- +

++

w -, 4

in +

4-

4-4

-r - H'%J 
i- 

HR
' 

4+"
4 -l

i4 4

TA-

0 45 g0 135 180 225 270 315 360

THETA

Figure llc. Pressure Distribution at S/R=120 with R.,=I50R

0

4C., 4' +

4 +

--
4

+ 4

44

1o +~ ''F~-

+ 4

o ° _ _ _ _ _ + + _ __, + 4

-4- +

0

0 45 g 135 IS 225 270 315 360

THETA

Figure 1d. Vorticity Distribution at S/R=I20 with Ro.t=I50R

47



In

LU
0 o

16 20__ 3 0 0 50

S/

Fiur 12.C/ s /,(/),=0 ,,,10adA=/2

z~ W!
a _ __ _

F.

0 10 2'0 30 4,0 50 s0

SIR

Figure 12b. CL VS- SIR, (S/R)mu=6O, R0,.,=1O andh A ,=1/128

N48



co

o - 4_@

>W +
o t

+ 4\

a 45 90 - 6 160 2i6 270 315 360

THETA

Figure 12c. Poressure Distribution at S/R=60 with R.=80R

49

0~. -4

4 -4

o 45 go 135 180 225 270 315 360

THETA

Figure 12d. Poressure Distribution at S/R=60 with R,,,t8OR

a 49



0

a 10 20 30 40 s0 60
SIR

Figure 13a. C. vs. SIR for At=0.02 and A =l/64 (full circle),
At=O.O1 and A4=1/128 (open circle), and At=O.005
and Ak=l/l28 (triangle)

15
LU

0
0

010 2'0 30 4'0 10 60

$IR

Figure 13b. CL VS. SIR for At=0.02 and A4=1/64 (full circle),
At=O.Q1 and A4=1/128 (open circle), and
At=O.005 and A4=1/128 (triangle)

50



WLI

0

0-.0

"00

0 2.5 5 7.5 10 12.5 1

SIR

Figure 14a. C, v's. SIR, (S/R)m~x15 for (S/R),,=
and No Disturbance

z

C,-

0

SIR

Figure 14b. CD, VS' SIR, (S/R),,,15 for (S/R),=.

with Acc=O.5

51



z
ILL

0

0

a

SiR

Figure 15a. C, vs. SIR, (S/R)m,=15 for (SIR),=5
and No Disturbance

C'4

zW

LU
0

%n

02.5 a 7.5 10 12.5 Is

SIR

Figure 15b. C. vs . SIR, (SIR),,a=15 for (S/R),=5
with Act=O.5

52



C4

z

0

0

0 00

SIR

Figure 16a. C, vs. SIR, (S/R)mx=15 for (S/R),=1O
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Figure 16b. C, vs. SIR, (S/R)MAX=15 for (S/R),=1O

with AOCO. 5
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Figure 17. CD vs. S/R for (S/R),=1, Numerical (open circles)
and Experimental (full circles)
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Figure 18. CD vs. SIR for (S/R),=5, Numerical (open circles)
and Experimental (full circles)
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Figure 19. C. vs. S/R for (S/R),=1O, Numerical (open circles)
and Experimental (full circles)

55



Figure 20. Streamlines at S/R=5 with No Disturbance
and AX=1/64
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Figure 21a. Streamlines at S/R=15 with No Disturbance

and AX=1/16
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Figure 21b. Streamlines at S/R=15 with No Disturbance
and AX=1/64
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Figure 21c. Streamlines at S/R=15 with No Disturbance

and AX=1/160
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Figure 22a. Streamlines at S/R=40 with No Disturbance

Figure 22b. Vorticity Contours at S/R=40 with
No Disturbance
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Figure 25a. Streamlines at SIR=40 with A'P=O.005

Figure 25b. Vorticity Contours at S/R=40 with
A,=Q. 005
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Figure 25c. Pressure Distribution at S/R=40 with
A =0.005
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Figure 25d. Vorticity Distribution at SIR=4Q with
A'P=0. 005
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