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Computer Science Department
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Abstract

Global load balancing, if practical, would allow the effective use of
massively-parallei ensemble architectures for large soft-real-time prob-
lems. The challenge is to repiace quick global communications, which is
impractical in a massively-parallai system, with statistical techniques.
in this vein, we propose a novzl approach to decentralized load bal-
ancing based on statistical time-series analysis. Each site estimates
the system-wide average load using information about past loads of
individual sites and attempts to equal that average. This estimation
process is practical because the soft-real-time systems we are interested
in naturally exhibit loads that are periodic, in a statistical sense akin to
seasonality in econometrics. We show how this load-characterization
technique can be the foundation for a load-balancing system in an
architecture employing cut-through routing and an efficient multicast
protocel.

“To appear in condensed formin Frontiers '88: The Second Symposium on the Frontiers
of Massively Parallel Computatson. This material is based upon work supported under
a National Science Foundatior Graduate Fellowship. Any opinions, findings, conclusions
or recommendations expressed in this publication are those of the author and do not
necessarily reflect the views of the National Science Foundation. This work was also
supporied by DARPA Contracts F30602-85-C-0012 and MDA903-83-C-0335, NASA Ames
Contract NCC 2-220-51, Boeing Contract W266875, and Di_.tal Equipment Corporation.




1 Introduction

Our research group, the Stanford Knowledga Systems Laboratory Advaaced
Architectures Project, is exploring the construction of massively-paraliel,
object-oriented, knowledge-based, soft-real-time signal-interpretation sys-
tems. It seemed clear early on that sonie sort of adaptive load-distribution
scheme would be necessary to allocate resources to such dynamic systems.
Otherwise, in order to assure acceptable real-time periormance, the system
could only be lightly loaded, and the large-scale signal-interpretation prob-
lems the massive parallelism was intended to allow would not be possible.
The remainder of this section explains why we desire a scheme which globally
balances loads by migrating objects, and how we can exploit the somewhat
periodic nature of our systems’ loads to do global balancing in a manner
appropriate to thousands of processing elements.

Much discussion in the load-distribution literature recently has centered
on the choice of load balancing vs. load sharing {14]. While load balancing
strives to keep all sites equally loaded, load sharing merely tries to prevent
unnecessary idleness. Loa? balancing is appropriate to object-oriented real-
time systems because

o real-time systems re~l to prevent long waits for processing---load bal-
ancing. by reducing the variance as well as the average of waiting times
better achieves this; also,

e migrating objects to balance current load tends to also balance the
future arrival of additional work at sites.

Tra 'itionally, decentralized adaptive load-balancing systems have bzen
iocal: th=v balance loads in small neighborhoods (the neigkborhoods may
be logical rather than physical), and rely on repeated local adjusiments to
achieve global balance. {For a clear ex -nple. see the descriptions of diffusion
in 112.13].; We find this inappropriate to our circumstances because

¢ modern interconnec.ion networks employing cut through or wormhole
routing red .ce the imgortance of locality {7},

¢ local techniques can fall prey to oscillation and wave-front-like propa-
gation in the face of ron-ideal conditions. and

e local techn'ques | ave d: ficulty responding quickly enough for dynainic
and time-critical systems.




A global load-balancing system must somehow allow each site to estimate
the current (or near-future) system-wide total load, in order that it may ac-
quire or jettison sufficient work to bring its own load to the system-wide av-
erage. This seems incompatible with the constraints of a massively-parallel
system: a site in a massively-parallel system must wait a considerable time
to acquire global knowledge.

This apparent contradiction can be reconciled by using a stochastic time-
series model ‘o use prior load information to predict current loads. However,
this approach is useless in most computer systems, as their loads are not very
predictable.

Luckily, the real-time systems we are interested in (and many others)
exhibit a different behavior. Their loads are periodic—not rigidly so, but
rather in the same loose, statistical sense as many economic variables are
seasonal. This periodicity is :nduced by sampled or scanned inputs and by
sample-to-sample or scan-to-scan consistency in the outside world. Period-
icity makes the loads more predictable, at least for lead times not greater
than the period. As the period is generally relatively long, each site can
have complete knowledge of loads at least through one period ago. This al-
lows reasonably accurate prediction of current (or near-future} system-wide
loads.

Notice that the statistical nature of this approach makes it appropriate
to massively-parallel systems with thousands of processing elements:

o The large number of sites makes more straightforward methods em-
ploving global communications impractical.

¢ On the other hand. the large number of sites is necessary to make the
statistical methods valid.

We are not suggesting this approach for real-time systems which are
rigidly periodic; more direct use can be made of their periodicity. For exam-
ple, Yan's “post-game analysis” method (17} could be used to successively
refine a quasi-static mapping.

2 An Example Time Series

In this section we examine the evolution over time of the system-wide load in
one of our real-time systems—an aircraft tracking and classification system
i16]. We show that a simple stochastic model reasonably approximates this
time series. that it is consistent with a common-sense understanding of the
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Figure 1: A sample of a load time series.

system. and that it allows moderately accurate prediction without recent
complete information. Two notes are in order:

o Only the earliest. simplest, most data-driven stage of the system was
operational when this data was taken; this results in a more regular
time series than would otherwise be the case. In particular, diagnostic
tests show our modei to be incomplete. in that it misses a couple of
sub-periods caused by the structure of the computation. We expect
the structure of a complete system to be complex enough not to show
through in the load time series.

¢ The plots in Figures 1 and 4 below show only a typical interval out of
the larger time series which was analyzed.

Figure 1 shows the ioad over ten periods; each period is ten time quanta
long, and the load value for each quantum is an average total of task queue
lengths over that quantum. Notice that the pattern gradually shifts from
period to period. Also. notice that as the observed activity diminishes. the
system’s performance varies from not quite keeping up with the input to
having a reiatively long period of quiescence between cycles. It is charac-
teristic of real-tir:2 systems that they are sized so as to perform acceptably
during peak pe«-d. >ven if this means idleness at other times: this allows
the periodicit' f the input to show through as a periodicity of the load.
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The sub-periods referred to above are also visible in the graph—the coarse
sampling and small excerpt obscure it somewhat, but each major peak is
followed by two smaller peaks whose sizes correlate with each other znd that
of the major peak.

2.1 Stochastic model

We analyzed this series using the methods of Box and Jenkins {3]!, and iden-
tified as a suitable first-cut model for it a multiplicative integrated moving
average {IMA) process of orders (0,1,1) x {(0,1,1)10. This model has the
form:

-

vt = Tgay T Iimg & I

-1l + @ ~ o,y — Oaeio + 04a,_1,,
where z. is the svstem-wide load. ¢, is a3 white-noise series. and # 2ad O
are parameters. '{ue structure of this process is more evident when written

H

using the backwards shift operator B:

(1-Bj{1-B%:z={1-6

Adding the constraint thzt loads must be non-negative improves this basic
model.

This model. while suggested by statistical evidence, is ziso piausible in
terms of the mechanism of the system. The norn-periodic component of the
model essenticlly states that the load persists, except that it is subject to
random perturbations. Some fraction {4} of each random perturbation is of
short-term effect only, while the remzinder lasts until counteracted: this fits

well with a birth-death view of processes. The pericdic component of t
model is identical in form. and can be similarly justified: the aircraft amder
observation {and thus the load pattern) remain constant except for -aﬁéom
perturbations. some fraction {1 — O} of which are long-lasting en
departures from the field of observatiosn.

This model belongs to the broad class of stochastic processes known as
ARMA (autoregressive-moving average) processes. It is interesting to ask
why this particular ARMA pracess shouid be chosen—might others not fit
as well? The aaswer is partially that this is the simplest periodic ARMA
process whose periodic ;sfd non-periodic components are both:

o non-stationary {i.2.. they have no fixed level),
*The equations in this section are reproduced with minot changes 1n sotatisn from {31




o stable (i.e., they don’t grow explosively). and
e homogeneous {i.e., everywhere seif-similar excont for level}.

Naturally a higher-order process could be used. which would fit better.
nge"er. it is generally preferable to use the simplest suitable model. An-
her possibility would be to0 ércp z%xe requirement of level independence
by expanding the model to include a stationary autoregressive operator,
i.e. by makingt 3&&&.-3 {auto rsgre,,swe-*ﬁ ﬂg 2ted moving average]) rather
ousier system will spawn more
un more processes to
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Figure 2: Normalized cumulative periodogram of residu

2.2 Forecasting

The non-periodic component of the model is that which is conventionally
used for aperiodic computer systems; it gives rise to the familiar exponen-
tially-weighted average forecast function. The periodic component in effect
adds an exponentially-weighted average of corrections to this forecast, de-
rived from the experience at corresponding points in earlier periods. For-
mally, the best one-step-ahead forecast possible for the model is found by
assigning weights 7, to the loads j steps earlier, where

o= 7Y 1-6),j=1,...,9

o = 6°(1-6)+(1-0)

o= 0'°%(1-6)+(1-6)(1-90)

Ty o= O+ 0Om_y0 - 00m,_yy, j2 12

Depending on the relationship between § and @, the heaviest weight
in the forecast may either be on the most recent value, or on the one a
period ago. In the aircraft tracking case (and many others, we speculate),
there is more consistency from period to period than from instant to instant
(as aircraft are more inertial than processes). This leads tc the weights




welght

0.18=

Figure 3: Weights of previous loads in best forecast.

illustrated in Figure 3, which were computed from the values for 4 and ©
that best fit our sample series.

Forecasts can also be computed directly from the difference equation we
used to define the model. In either case, forecasts for greater lead times can
be calculated by repeated use of the step-ahead formula. (By lead time we
mean the time from when the total load is last known to when the forecast
is for.)

Since the period (in this case, the scan time of a radar) is long relative to
the communication latencies of the system, it is reasonable to suppose that
each site can have complete knowledge of all other sites’ loads at least up
until one period earlier, with diminishing knowledge thereafter. It should
be possible in principle to make some use of the more recent, incomplete,
information to improve the forecast, given a model of the load distribution
with load balancing. In the next section we address this problem and show a
heuristic solution. However, Figure 4 shows that even forecasts made using
only data up through one period in advance are usually moderately accurate.
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Figure 4: Load forecast from data through one period earlier.

2.3 How typical is this example?

Though this section presented a case study of a single time series taken from
a single application, we believe the basic features are common to other sys-
tems as well. Preliminary results from experimentation with a passive radar
interpretation system [4] confirm this belief. The IMA (0.1,1) x (0,1,1),
model used here may well suit many such systems, though its suitability
should of course be tested in each case. As well as testing the suitability of
the model to a particular application, it is necessary to tune the parameters
using sample time series. Systems with more than one period, for example
from heterogeneous sensors, would necessitate a straightforward extension
of the model.

One potential stumbling block in generalizing this technique to more
realistic systems is that higher-level processing tends to be triggered by
significant changes in the input (or by the lack of expected changes), rather
than by the input itself. For example, a system that not merely tracks
aircraft, but also attempts to deduce possible objectives, would reconsider
the objective of an aircraft that sharply turned, or that failed to turn when
it was expected to. This reduces the scan-to-scan consistency of the load. It
remains to be seen how troublesome this is; clearly this depends on how much
of the processing is special-case. When this issue came up in a discussion
with a group familiar with actual systems, the consensus was that the load
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on present-day systems is indeed quite periodic [15}.

3 Incorporating Incomplete Information

The simple stochastic model presented in the preceding section only allows
load information old enough to be complete (i.e. available from all sites) to
be used. In this section we refine our model to allow incomplete information
(i.e., more recent loads from some sites) to be employed. We formulate the
problem, show an exact but impractical solution, and then present provably
good practical heuristic approximations.

3.1 The problem

In order to understand what use a site can make of recent but incomplete
information, we must refine our model to include how the system-wide total
load is divided among the N sites. A simple, plausible version of this is to
assume that the sites are independent instantaneously, but in the longer-
term are successfully balanced. Formally, the model we have in mind is

Zi_t + Zpe10 ~ Zt—11 — 081 — Qa0 + 60,1
b ]
N

Zip =a, +

where we use 2,; for the load of site i at time ¢ (with z, = };2,,) and
similarly for a,; and a; (the a;; are independently normally distributed,
with variance o2).

As long as all z,; are known, the ¢, can be calculated, and thus used
for forecasting. When the information is incomplete, the deviation of the
known z;; from the step-ahead forecasts can no longer be attributed solely to
their corresponding a; ;, but rather will also include the persistent fraction of
earlier unknown perturbations. The problem is to find the expected division
between these two sources of perturbation, as the expected value of each a;;
should be incorporated into the forecast in its own way.

3.2 Exact solution

This problem can be solved by applying Bayes’s theorem:

s We are given as a prior distribution for the a,, that they are indepen-

dently normally distributed with some variance 2.




e We make observations which imply a joint likelihood for the a;, that
is uniform where certain linear combinations of them (given below)
equal the known z;¢ and zero elsewhere.

o We would like to find the posterior joint distribution of the a; ., specif-
ically its expected value, for use in forecasting.

The non-zero regions of the likelihood function can be found by rewriting
the equation for z;; in terms of the a; alone, using the summation operators
§S=(1+5B)and S1o=(1+ S10B19):

((1 - 8)SB + (1 - ©0)510B'° + (1 - 6)(1 -~ ©)55108')a;
N '

The posterior distribution can readily be written using Bayes’s theorem,
provided one is willing to leave some messy integrals in it. Unfortunately,
this leaves numerical integration as the only way to find the needed expected
value. This seems to be too much work to expect a load-balancing system
to perform each time interval. What is needed is a pre-posterior analysis—a
general analysis done in advance, into which specific numbers can be plugged
at run time. Unfortunately, we know of no such approach to this problem in
the general case. In the next subsection we consider heuristic approximations
appropriate to our intended implementation. The analysis above serves as
the standard by which the heuristics are judged, as well as suggesting them.

Zig = Q¢ +

3.3 Heuristic approximations

The simplest heuristic is to simply assume that the full deviation of each
kiown load 2,4 from its step-ahead forecast is purely its corresponding a; .
This heuiistic is actually the truth (given our model) for the first time-
quantum with incomplete information, and can be shown to be a conser-
vative approximation provided there is less than a period of incomplete
information. By 2 conservative approximation, we mean that this heuris-
tic is guarantead to be mcre aceurate than simply ignoring the incomplete
infermation. This is beczuse mistaking the retained portion of prior pertur-
bations for current parturbation leads toit's being srroneousiy re-multiplied
by (1 = 8), i.e. underestimatad.

We can improve this approximation by taking advantage of one feature
of our intended implementation. The implementation we suggest in section 5
uses a randomized styie of information spreading known as “rumor monger-
ing” which spreads each site’s load information to an exponentially widening




fraction of the other sites. Thus the amount of load information a site has
drops off exponentially with recency, and only the earliest incomplete load
information is of any real significance.

In particular, for realistic parameters (e.g. a spreading factor of eight)
the only significant improvement that could be made in the above simple
heuristic would be to better account for the deviations observed in the sec-
ond incomplete-information time-quantum. Moreover, this division between
the first two incomplete-information time-quanta need not make use of in-
formation from later time-quanta, as such information would be very weak
under these assumptions. This leaves a tractable two-quanta version of the
general problem of the preceding subsection.

The a;; from the N, non-reporting sites of the first quantum can be
lumped together, as can those from the N, reporting sites of the second
quantum. This is because of the symmetry amongst them. We will call the
contribution of the former to the second-quanta deviations X and that of
the latter Y. Our prior distributions for them are independent, normal, both
have mean zero, and (by elementary probability theory) have the variances

2 N? 2 2
g, = 72'(1 - 0) N,,aa
03 = .’V,Uz.

We know that X and Y sum to the observed deviation, 4, of the second-
quantia loads from their step-ahead forecasts. Therefore, the posterior dis-
tribution from Bayes's theorem gives us the following posterior expected
values:

, [, e 2= (62 25 gy
E(X) = R R

M
—
gt
Al
e’
Il
<

Thus we can readily at run time use the observed values of 4, V,, and N, 10
calculaie a very good approximation to the best forecast possible with the
avaiiable information.
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4 Preci-icer of Forecasts

In this se't-— v arayze the potential for practical utility of cur load-
character: 'z .het . We show that for the la:ge numbers of sites char-
acteristic of massively arallel architectures, our scheme provides load esti-
mates which are accu;: zte enough to be useful for load balancing.

We can use the model of section 2 to calculate probability limits of
forecasis—that is, the region around the forecast in which the actual system-
wide loay will lie some specified fraction of the time. Additionally, the more
detailed model of section 3 specifies how the individual sites’ loads can be
expected to be distributed about the system-wide average load. What is
most iuieresting is combining these two, in order to determine

e what fraction of the sites ca. be expected to be over- or under-loaded
at some significance level, and

e how much relative error can be expected in the amount of work trans-
ferred between sites, due to erroneous forecasts.

Happily, we show that the accuracy of the forecasts relative to the standard-
deviation of the site loads goes up with the square-root of the numoer of
sites, so that for massively-parallel systems the uncertainty in the forecasts
is unproblematic (assuming the validity of the model).

4.1 Probability limits of forecasts

The conditional probability distribution of the system-wide load about its
forecast value is simply the sum of those of the a; not included in the forecast.
The error in the forecast will thus be normally distributed with mean zero
and variznce increasing with lead-time. For the IMA (0,1,1) x (0.1,1),
model, if the forecast is made using complete information only, with lead
time ! < p, the variance is

Vi) =(1+ I-1)(1-8)Y)Ne2

We can use the ahove formula to calculate approximate probabilic, ..aits
for the {oiecasts by substituting an estimate for ¢,. One approach wonld be
to estimate it using the sample standard deviation from prior tuns. Prior to
the introduction of load balancing, the detailed model of section 3 certainly
doesn’t appiy, bu¢ the system-wide model of section 2 presumably does, at
least approximately. Therefore, the sample variance of the system-wide load




should be used as an initiai estimate for No2, rather than starting with the
sample variznce of individual site loads.? if the system-wide lcad sample
standard d- viation is s, then we can estimate that w.'> probability e the
actual load differs from the lead [ forecast by more t%

wpsyf1+ (1= 1)(1— 6

where u ; is the ¢/2-tail-area point of the urit normas stribution. Notice
that thes: bounds are for the total load-~the standard ¢ viation, and hence
probabilit- limits, for the average load are smaller by worof N.

4.2 C-mparison with the distribution of si. # loads

Our modei asserts that the loads of the individual sites at any time are
normally distributed about the system-wide average load with standard de-
viation ¢,. We can compare this with the standard deviation of the lead /
conditional probability distribution of the average load, which we derived iz
the previous subsection. The latter is larger by a factor of

vieIEsend
VN '

the factor of V'V restlts from averaging N independent deviates.

This implies that for large systems the forecasts will be accurate enough
to be useful. For example, if the system of section 2 could be spread among
1024 sites, even one-period-ahead forecasts would have a {actor of 27 lower
standard [eviation than the site loads. Thus virtually ail apparent over- or
under-loacs would be statistically significant, and the relative error in the
amount of work transferred wonld be small (roughly 1/27).

5 Loac-balancing Mechanism

In this section we outline a load-balancing scheme employing the load-
characterization methodology of the preceding sections. Our scheme relies
on a “rumor mongering” style of information spieading {9], which :¢ appro-
priate to our architecture. Wz show th:i the mechanism not only allows
sites to assess theis load with ruspect to the system-wide average, but also

. B . - .
2Wa 5atv «rote t+e tormula in terms of the per-site o3 in order to be notationally
coneisrznt with section 3.




2llows overloaded sites to rrliably find sufficiently underloaded sites to whica
objects can be migrated.

If each site stores its knowledge of all sites’ load histories, then they can
spread their information around by a process of “rumor mongering”—that
is. by randomly sharing information [10,1,2,9]. Naturally, the histories can
be compressed by discarding inforraation old enough to e scarcely relevant
and by combining together loads from all sites where they all are known.
Some information may be young enough to relevant to forecasting, but old
enough to be well-known. This information can be retained but not passed
on' (3 has a good discussion of such issues.

Our CARE ensemble architecture [8] uses a cut-through interconnec-
tion network, so latency is not proporcional to distance (in the absence of
contention). Additionally, it supports an efficient multicast protocol (5].
Therefore, we suggest that the information spreading be achieved by each
site periodically multicasting its information to a random sample of the
other sites. While the number of sites that each site will hear from in any
given period varies, it can be shown that the distribution {a binomial distri-
bution, rapidly approaching a Poisson distribution) is such that a paucity of
information will be rare, even witl 1 quite moderate sample size, e.z. eight.

Upon receiving a load-information message, a site sheuld inegrate the
information into its own knowledge, and then use the time-series model (pro-
vided a priori based on experiients with the particular system) to estimate
the current system-wide avs rage load with probz .iity limits. It should then
compare this predicted avr rage with its own curient load, and with the load
of the sender at the time +.f the sending. If the recipient appears significantly
underloaded and the sender appears significantly overloaded, a request for
work should be sent back. :

This is a combination of random gossiping to distribute the information
needed to decide whether and how much work to transfer, together with
polling/bidding to .catch up the participating sites. As with all bidding
schemss, some procautions are needed to avoid races. The underloaded
site should not place any other requests for work until it receives work or
an apology from the overloaded site. As the inter-arrival time for messages
from overloaded sites should be high relative to the round-trip message time,
few conflicts should occur.

The bidding could be reversed (overloaded sites could ask uaderloaded
sites to accept work), but this would require that an extra message be sent.
The system as we present it can best be classified as receiver-initiated [11],
though in a sense the sender initiates the procsss by multicasting its load




information. This confusion of terminology resuits from our integration
of the global-information-spreading a:.d partner-seeking components of the
mechanism.

It should be rare that an overloaded site cannot find enough total un-
derload among the sites it samples to match its own ovetload. For example,
suppose that the loads are normally distributed (as they are in the model
of section 3), and that the sample size is eight. Of the eight sites sampled,
it can be expected that four will be un lerloaded. The expected value of the
absolute value of a riormal deviate is 2/v/2r, or about .8 standard devia-
tions, so the four underloaded sites will 2u the average have approximately
3.2 standard deviations worth of underload. But the originating site must
realiy be far out on the tail of the distribut;on to have more than 3.2 stan-
dard deviations worth of overload. Notice that it is impossible t7 make as
strong a statement in the reverse direction—this is an additional reasnn to
favor a receiver-initiated transfer (it is more important for overloaded sites
to reliably find underloaded sites than the converse).

The only aspect of load balancing not addressed by this mechanism is the
choice of which objects to migrate. Here again the real-time rnature of the
system must be addressed. In general neither the highest- nor lowest-priority
objects are best migrated, so as to neither unfairly advance a low-priority
object nor hold up (due to migration time) a high-priority object. Chang
addresses these issues in [6].
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Abstract

We developed a problem solving framework called ConClass capable of classifying

continuous real-time problems dynamically and concurrently on a distributed system.

ConClass provides an efficient development environment for describing and decomposing

d classification problem and synthesizing solutions. In ConClass, designed concrrrency of

decomposed subprobler.  effectively corresponds io the aciual disiributed compuidtion

componenis. This scheme is useful for desigring and implementing efficient distributed
(3

ing, making it easier to anticipate and evaluate the system bekavior. ConClass

3y sien frs « ct repiication feature in order 1o prevent a particular object from being
. Foa. . Y

L H
f execution mechanism is implemented without using schedulers or
‘iable to be bottlenecks. In order to deal with an indeterminate
a, ConClass dyrnamicaily creates object nerworks o jusiify

nd thus ackieves a dynamic load distribuzion. We confirmed the
iancing of ConClass with an
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We implemented an experimental classification system in ConClass to evaluate the
performance of ConClass. This system classifies observed aircraft by using continuous
abstract radar signal data.

This research is a part of the Advanced Architectures Project at the Knowledge Systems

Laboratory at Stanford University, a section of which has been dedicated for research of
distributed processing [Rice 89].

In subsequent sections we describe the methodology of parallel classification problem

solving, the implementation of ConClass on a distributed system, and finally, an evaluation
using the experimental application.

2. Parallel Classification Methodology

2.1. Problem Decomposition

A cl ssification problem can be structured as a directed acyclic graph whose nodes are
decomposed subproblems. A classification solution of decomposed subproblem can be
supplied to other subproblem solvers. A solver may synthesize other classification

solutions. Propagation of problem data and solutions is hierarchically organized in this
manner. Thus, classification problem solving can be organized intrinsically hierarchical and

distributed.
Aircraft
Behavior
Aircraft
Type
Origin
Estimation I @

Flight Course

Recognition
Predicted
Destinatio

O Classifiers
Iiput-Interfaces

O Global Information

Platform
Class

~ Platform .
Interface:

Figure 2.1, Hierarchical Classification Configuration
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Figure 2.1 shows an example of a problem solving system which classifies aircraft
represented by radar signals. We denote such an aircraft problem object a platform. This
system solves classification subproblems such as aircraft type and flight course recognition
and then provides final classifications such as commercial, military, or a smuggler's
aircraft. Example solutions are shown in Figur. 5. Attribute values of platforms change
over time and the classification state of the sy: m varies according to these data. The
solutions may change due to global informaiion such as flight plans and ground
circumstances as well. Classification system can accept different kinds of problem inputs
such as aircraft location and velocity, observed maneuverability, and radar signature.

Thus, classification problem solving has characteristics suitable for parallel processing
using decomposed subproblem solvers especially for continuous dynamic problems. We
implemented ConClass using such inherent characteristics.

The parallel processing in ConClass is designed using decomposed classification
subproblem solvers. The ConClass system represents those problem solvers as parallel
processing elements and allocates them directly on computational hardware components.
This decomposition scheme makes designed concurrency effectively correspond to actual
parallel computation. The scheme makes it easier to anticipate and evaluate the system
behavior for obtaining efficient concurrency. We call a decomposed problem solver a
classifier. We call the problem solving network consisting of the classifiers the classifier
network. A classifier whose classification is derived by other classifiers is denoted a super-
classifier of those classifiers. A classifier whose solutions is synthesized in other classifiers
is called a sub-classifier of those classifiers. Classifiers can act concurrently and
dynamically when problem data and solutions are propagated over time.

Problems in ConClass may be created dynamically such as an aircraft platform captured by
a radar system. In addition, ConClass is capable »f manipulating multiple sources of a
continuous problem. ConClass has an object which linis problem ovjects to the entrance
classifiers. We call the linking object an interface-objecr. When a problem is created
dynamically, the problem object receives references to the entrance classifiers from an
interface-object and starts sending them problem data.

A classifier has known classes of phenomena into which problem object- are classified as
solutions. We call such a class a classification-category. If a classific. cuwceeds in
classifying, it sends the solution to its abstract classifiers, that is, super-classiiic . The
abstract classifiers classify the problem by using the solution and propagate their
classification solutions in the same manner. Each classification computation is a
decomposed subproblem solving mentioned above. The ConClass classification system
may have more thain one of the most abstract classifiers to obtain different kinds of
solutions to the entire classification problem.

2.2. Load Distribution

The research goal of ConClass is to implement efficient distributed processing as well as to
develop a framework for describing and decomposing classification problems. In order to
distribute decomposed problem solvings, we have two schemes: replication of objects and
dynamic distribution of problem solving tasks.

A classifier acts when it teceives a solution from its sub-classifier and when the sub-
classifier changes the solution. Therefore, classifiers that are lower in the hierarchy usually
execute a larger amount of classifications than those higher in the hierarchy. Even in the
same level of the hierarchy, classification computations may differ between the classifiers.
v+ rvder to achieve efficient load balancing to such objects which can have varying
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Figure 2.1 shows an example of a problem solving system which classifies aircraft
represented by radar signals. We denote such an aircraft problem object a platform. This
system solves classification subproblems such as aircraft type and flight course recognition
and then provides final classifications such as commercial, military, or a smuggler's
aircraft. Example solutions are shown in Figur. 3. Attribute values of platforms change
over time and the classification state of the sy: m varies according to these data. The
solutions may change due to global informaiion such as flight plans and ground
circumstances as well. Classification system can accept different kinds of problem inputs
such as aircraft location and velocity, observed maneuverability, and radar signature.

Thus, classification problem solving has characteristics suitable for parallel processing
using decomposed subproblem solvers especially for continuous dynamic problems. We
implemented ConClass using such inherent characteristics.

The parallel processing in ConClass is designed using decomposed classification
subproblem solvers. The ConClass system represents those problem solvers as parallel
processing elements and allocates them directly on computational hardware components.
This decomposition scheme makes designed concurrency effectively correspond to actual
parallel computation. The scheme makes it easier to anticipate and evaluate the system
behavior for obtaining efficient concurrency. We call a decomposed problem solver @
classifier. We call the problem solving network consisting of the classifiers the classifier
network. A classifier whose classification is derived by other classifiers is denoted a super-
classifier of those classifiers. A classifier whose solutions is synthesized in other classifiers
is called a sub-classifier of those classifiers. Classifiers can act concurrently and
dynamically when problem data and solutions are propagated over time.

Problems in ConClass may be created dynamically such as an aircraft platform captured by
a radar system. In addition, ConClass is capable of manipulating multiple sources of a
continuous problem. ConClass has an object which links problem oujects to the entrance
classifiers. We call the linking object an interface-object. When a problem is created
dynamically, the problem object receives references to the entrance classifiers from an
interface-object and starts sending them problem data.

A classifier has known classes of phenomena into which problem object- are classified as
solutions. We call such a class a classification-category. If a classific. succeeds in
classifying, it sends the solution to its abstract classifiers, that is, super-classificiz. The
abstract classifiers classify the problem by using the solution and propagate their
classification solutions in the same manner. Each classification computation is a
decomposed subproblem solving mentioned above. The ConClass classification system
may have more than one of the most abstract classifiers to obtain different kinds of
solutions to the entire classification problem.

2.2. Load Distribution

The research goal of ConClass is to implement efficient distributed processing as well as to
develop a framework for describing and decomposing classification problems. In order to
distribute decomposed problem solvings, we have two schemes: replication of objects and
dynamic distribution of problem solving tasks.

A classifier acts when it receives a solution from its sub-classifier and when the sub-
classifier changes the solution. Therefore, classifiers that are lower in the hierarchy usually
execute a larger amount of classifications than those higher in the hierarchy. Even in the
same level of the hierarchy, classification computations may differ between the classifiers.
.+ rder to achieve efficient load balancing to such objects which can have varying
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instantiates the classification-category corresponding to the hypc thesis as a newly creat.*
computation object. This production sche x: 5f an initial kypothesis tor a given probiem on
the classifier networl is the initial hypothesis formation as shown in Figure 2.2. We call an
instantiated coject of a classification-category ¢ classified-instance.

Dynat.ac Hypothrsis Maintenance:

One of the wmost abstrac: classifiers, which forms a hypothesis, makes its sub-classifiers
instantiz e the classificatior.-csiegories which derive inis hypotiiesis. These classifiers
propaa e the instundation uf ¢lassiiication categories 10 their sub-classifiers in the s2me
manner. When the crirance classifieis make classified-instances, the probiein: object which
reccives the hypothesis obtains litks = those classificd-instances The reason for creating
clossified-instances backwards in wis method is so that only required classified-instances
are instantiated. The set of created classiiied-instances is an instance network.

Aircraft
Behavior

5 Aircratt ; —_—
= e ——— 4
Plattorm ] Type :
interface G

Platlorm
Cilass

< .igin
Estimation

<
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N Class
Prudit e d
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(IEFRN ERTereey)

T ¢
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hght Course

Recognition X4
-m-—. -

L RO

P2 evasive
a platform i

Spawned Objects: Classified Instances

Figure 2.3. Dynamic Hypothesis Maintenance
Problem data is propagated through its instance network to justify the classification

solutions in the classified-instances. If a classification of a classified-instance gets
disproved. the classified-instance discards itself, propagates the negated solution to its
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supcr—classxfzcrb and supe -classified-instances, and notifies its sub-classific. of s

uninatsn. These sub-classiiers discard their ciassified-instances which hiave derive ! only
the disproved ciassification solution. ff u sub-clzsg:fed-instance dcrwes ancthcr
classification s~iution, it is retzined. I & super-classificd-instance is discarded by the
n»ga'i-;m it execuies the same r.rocedure. &ner the most absifavi classified-instance 18
disc., J=d, the hypotnesis as a problem sotution is dcmed This schieme of instansiating,
‘usiifying, and discardin 1 4n insiance network is the aysamic hypothesis maintenance an
shown in Figure 2.2.

While instantiating and discarding ar instance neiwork, ;r.** moblem may vary
continizously. When 2 ciassifier receives  <olution from its sub-classifier after creating an
classified-instanze, the probiem data for the correspending classification-categery is
forwarded 10 the ciassified-instance. After a classifier recognizes an instantiation in its
super-classifier, it sends the problem data to the super-classified-insisnce virectly, If a
Ciaasified .nstance is climinated, the problem data is forwarded to irs cizssifizr. A
classifiea-insiance is acting for a while Jor the data forwarding even after it is discaroed
The classified-instance is actually discarded when its sub-classifier discards its reference.

A problem which has a hypothesis may sucteed in forming ancther hypothesis so that the
classifier network centinues to work classifying the problem. In this circumstance a
c"assifier does not irvcke clsssifications for the instantiated classification-categories.
sherefore, the classifier network can reduce its computation load after the hypothesis has
been formed. When a problem has more than one hypothesis simultaneously, those
clasaxfi;d-mstancps needed for hoth of these kypotheses are shared on the same instance
network.

An instance network is organized only after a solution is formed in one of the most abstrac.
ciassifiers, i1 order 1o create longer-lived classified-instances. Less abstract classification
. acts more trequently due to the problem propagation scheme of ConClass. If a classifier
lower in the hierarchy instantiates a classified-instance, it may be quickly eliminated by a
reclassification. Creation of such an ephemeral distributed object is expensive to manage.

3. Implementation of Con(iass
3.1. Computational Environment

We developed ConClass on a simulated distributed-memory multiprocessor system called
CARE [Delagi 87a] on a Lisp machine, Explorer!, and implemented ConClass in a
distributed processing language called LAMINA [Delagi 87b].

CARE is a distributed-memory, asynchronous message-passing architecture. CARE is
simulated by a general, event driven, highly irstrumented system called SIMPLE. CARE
models 1 to 1000 processor-memory pairs communicating via a packet-switched cut-
through interconnection network. Message delivery between processing elements is
reliable, but messages are not guaranteed to arsive in the order of origination.

LAMINA is the basic language interface to CARE and consists of Common Lisp [Steele
84] and Flavors [Weinreb 80] with extensions. The extensions provide primitive
mechanisms and language synt- for expressing and manag'ng computational locality in
each processing element and ¢ .currency between processing :lements. Three styles of

1 CARE currently runs on Explorer, Symbolics, Sun-3, and DEC Station 3100.
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1

prog.amming are supported: functional, shared-variable, and objet-oriented. ConClass
systemn is implemented in the object-oriented language subset of LAMINA where we
rcpresented ConClass objects such as classifiers by means of LAM:NA objects.

Appolication (Conceptual)
Application Developer / Input Interface
Application Specification (Specification Language)

ConClass Compiler

~

\}
Specificatior ".epresentation (System Language)

System Compiler
 /
g System Specification (Internal Language Object)
Initizlizer

Executable Code

Figure 31 Representation Specification Hie:archy
3.2. Problem Description and Solving

Figure 3.1 shows the hierarchy of representation specifications and execution components
in ConClass system. ConClass provides application developers with an eavironment for
describing and decomposing classification problems. Figure 3.2 shows an example
classifier definition in the application specification. The ConClass compiler translates
application descriptions to object definition representations.? The initializer initiates
LAMINA objects according to the definitions and allocates them on CARE processing
elements.

ConClass system provides a development environment whcre application developers can
specify classifier definitions and relationship between classifiers and interface-objects.
Classification in a classifier is composed of classification-categories. A known class of
phenomenon into which unknown phenomera are classified is defined by describing
templates in the classification-category. A template is a conjunction of attribute values used

2 We dc ot have the ConClass compiler implemented to date. We specificd the cxperimental system
described in section 4 duccily in the object specification representation. However, the scheme for
representing and decomposing problems was efficient for development.

3-27




in the classification-catcgory and its classifier. An attribute can specify its condition by
means of a value, a set of values, or a range of numerical values. A template succeeds in
matching a problem object when the problem object's attrioutes satisfy the template value
conditions. An attribute is problem data or a classification solution brought by thc other
classifiers or problem objects. An attribute can also be computed from other attributes anew
in a classifier. A classification-category may have more than one template and it succeeds in
classifying if the conditions of one of the templates are satisfied.

#1 daesifier-cefindtion 1#
(Speed
:Class:fication-Categories (Slcw-Current—Speed
Medium—Current-Speed
Fast-Current-Speed
Slow-Max-Speed
Medium~-Max—-Speed
Fast-Max-Speed)
:Classifier-Inputs ((X-Position Input-Interface)
(Y~Position Input-Interface)
(z2-Position Input-Interface)
(X-Velocity Input-Interface)
(Y-Velocity Input-Interface)
(Z-Velocity Input-Interface))
:Classifier-Database ()
:Classifier-Attributes (Current-Speed Max-Speed)
:Super—Classifiers (Track-Type Current-Platform-Behavior)
:Interface-Objects (Input-Interface)
:Output—-Objects ()
:Locations (25 26 27 28)
:Dynamic-Site-Positions ())

#] dasslfication-categxy-definktion 1#
(Slow-Current~-Speed
:Classifier Speed
:Category-Inputs ()
:Category-Database ()
:Category-Attributes ()
:Classification-Templates
;5 templates: (template ...)
;3 template: (template-slot ... )
;u template-slot: (var (capture-values lock-values)
(capture-confidence lock-confidence))
o values: (setvalue ... ),
(:range (copen value) (:close vzluc)),
(:range t (:open vaiuc)), ..
{1.0 (Current-Speed ({(:range {(:open :infinity-) (:close 5000C)}
(:range {:open :infinity-) (:close €000C)))
(.7 .5)1))

Figure 3.2. Sample Classifier Definition

Problems manipulated in ConClass can be continuous and dynamic. If problem data causes
attributes 1o vary around the threshold of template conditions, a classification may change
frequently. Therefore, a template condition can be specified by a set of two kinds of values
whichi we call capture value and lock value. A capture value and a lock value are used when




unknown problem objects are classified and when classified solutions are justified,
respectively. The range of a lock value needs to be larger than that of a capture value.

Classification solutions and attributes can carry confidence values. When a template's
condition is satisfied, its classification confidence is the minimum value of attribute
confidences in the template. A template can specify a minimum requirement on its
confidence value, which must be satisfied for a successful classification. If the conditions
of more than one template are satisfied, the classification confidence takes the maximum
value of those template confidences. Some kinds of symbolic confidences are allowed to be
used. This scheme is one of the most conservative methods to calculate confidences. A
detailed description of confidence is iilustrated in [Buchanan 84].

When a classifier succecds in classifying, if it is one of the most abstract classifiers, it
instantiates an initial ‘rypothesis. Otherwise, it propagates the classification solution with
specified attribute values to its super-classifiers. When a classification confidence is
changed significantly, the change is propagated to the super-classifiers or to the super-
classified-instances.

Application developers describe definitions of classifiers involving classification-categories
and relationships between classifiers and interface-objects. Developers also define attributes
of interface-objects. Developers need to define procedures for evaluating attributes and
those confidences used in matching problem objects to the templates. ConClass generates
the definition of a classified-instance according to the definitions of the corresponding
classification-category and its classifier. The example shown in Figure 3.2 is the definition
of a classifier with one of its classification-categories, which is to classify aircraft speed.
This is a definition used in the experimental application described in Section 4.

3.3. Speciil Internal Controls

ConClass does not use physical synchronization schemes which may result in a saturation
effect. ConClass incorporates embedded control features to manage a variety of
asynchronous aspects of distributed processing.

We can use managers or schedulers responsible for creating and maintaining dynamic
objects, synchronizing different processes, and coordinating searches. However, such
agents may limit the system throughput when managing synchronization. Our related work
reports ~ arious problems about such scheduling [Noble 88, Muliawan 89]. Schedulers can
be overloaded, however, there are no clear-cut rules for the decomposition of such objects.
ConClass uses no scheduler objects and handles no physical synchronization between
objects.

In ConClass, variation of a problem object is propagated on the classifier network and
instance networks by classifying and reclassifying the problem. The creation and
eliminaiion of instance networks are achieved by means of the propagation of creation and
discard requests of classified-instances between objects, respectively. These propagation
schemes do not require synchronization. However, such propagations may occur

simultaneously and cause state conflicts in an object. For example, a classifier may receive
a request for a cjassilied- nstance creation from its super-classifier ~i.ile its sub-classifier is
sending « message of disproving the classification. Each object of ConClass manages
various requests efficiently cornsidering the state transitions of instantiation and use no
synchronization which may make other objects idle.

Classifiers and interface-objects are represented by means of LAMINA objects as described
above. Classifiers and interface-objects communicate with each other using the message
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passing facilities of CARE and LAMINA. Messages between objects in ConClass are not
guaranteed to arrive in the order of origination because the message passing on CARE is
asynchronous. For example: An object may receive stale data later than brand-new data.
When a classified-instance is discarded shortly after being created, its sub-classifier may
receive a discard request earlier than a creation one for its related classified-instances.
ConClass adopts embedded features to properly manipulate all messages that are in the
wrong order.

Classified-instances and problem objects are created dynamically and those references are
propagated to other objects. A dynamic object is typically created on a different processing
element than that of the creator acco.ding to the object allocation scheme described below.
Although the creator does not receive a created object's reference until a later time, it keeps
indirect reference to the new object, which can be used to send messages. The creator
sends the indirect reference to other objects if the new object is being created so that the
messages from those objects to the created one are sent via the creator indirectly. The direct
reference is later propagaied to those objects that hold an indirect reference automatically.

These features were useful for implementing the ConClass system.
3.4. Load Balancing

It is one of the goals of parallel distributed processing to allocate objects over processing
elements such that the work they do is balanced as evenly as possible. We adopted the
same modified random load balancing used by our related work [Nakano 88] to allocate
classified-instances. This scheme involves random selection for dynamic objects from the
set of all processing elements excluding those used by static objects if there are fewer static
objects than processing elements. Otherwise, the dynamic object is allocated randomly
from the set of all processing elements. The random allocation of classified-instances is
reasonable because it is difficult to predict that any given classified-instance will be busier
than another and because it is not suitable to allocate on the basis of statistics concerning
non-permanent objects. In fact, empirical evidence suggests that in the absence of such load
knowledge, random allocation is optimal [Nakano 88].

We allocated another sort of dynamic object, problem object, evenly on the processing
elements dedicated to dynamic objects. Because problem objects, for example, aircraft
platforms, exist more permanently, processing elements are assigned using a round-robin
method.

Static objects, classifiers and interface-objects, can be replicated as much as desired as

described above. These objects are allocated to the processing elements dedicated to static
objects in advance according to domain knowledge, statistics, and user definition3.

4, Performance Evaluation

We implemented an experimental application system in ConClass and confirmed the
efficiency of the ConClass system.

3 We defined the allocation of static objects in implementing the experimental application system because
of the absence of the ConClass compiler.
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4.1. Experimental Problem

We have been developing an aircraft radar signal interpretation system called AirTrac for
tracking and classifying aircraft. The AirTrac system is composed of three major modules:
Data Association, Path Association, and Platform Interpretation. Data Association accepts
aircraft signal reports of multiple radar systems at regular time intervals and periodically
abstracts the radar signal reports into observation records for individual signal tracks
[Nakano 88]. Path Association reports hypothesized platforms to which the periodic
observation records are associated to form tracks for the same aircraft [Noble 88, Muliawan
89]. Platform Interpretation analyzes and interprets information contained in platforms and
provides continuous real-time assessments about the observed aircraft.

Sum
Maneuver
Track
Altitude
Change v

Platform
Class

Platform
Interface

Current
Altitude

Figure 4.1. Experimental Classification System

The problem selected for our experiments is a simplified experiraental implementation of
AirTrac's Platform Interpretation module. The configuration of :he experimental system is
shown in Figure 4.1. Each sub-problem solver is implemented by means of a classifier and
its classification facilities. This system consists of eight classifiers which have between two
and ten classification-categorics. The system input is a series of simplified emulated aircraft
platforms which have aircraft position and sizes information.

The experimental application requires the following:

+ The classification system is a hierarchy of classifiers which have multiple fan-in and
fan-out.

» The classifier network has cut-through connections.

» The problem data is continuous and problem solving in each classifier is potentially
dynamic.
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These requirements are in order to evaluate the experimental system in an environment
where configuration and computation are uneven between problem solvers. The
experimental system meets these requirements.

4.2. Experimental Results and Analysis

We experimented with the data of 50 aircraft platforms which appeared in real-time
successively and were classified and reclassified typically three times in the classifications
lower in the hierarchy. The experiment has two parameters: the number of processing
elements and the data rate. The numbers of processing elements used were 8, 16, 32, 64,
and 256. The data rate is the frequency at which problem data is fed into the application
system. We can change the data rate by altering the sampling frequency of observed
problem data. This scheme, however, will change the frequency of classification in relation
to the da*a rate. In order to maintain the classification quality between the data rates, we
changed the data rate by altering the time interval of feeding the same set of data. Thus, the
experimental application system was performed using the time of the emulated data while
we evaluated the performance of ConClass system using the simulation time of the CARE
system.

161--

DataRate 4

16 32 64 128 256

Number of Processing Elements

Figure 4.2. Speedup Curve (based on sustainable data rate)

The experimental system achieved a linear speedup against the number of processing
elements as shown in Figure 4.2. The speedup was based on the sustainable data rate, the
maximum data rate for which all measured latencies stabilize and do not increase over time.
See appendices for the observed latencies from which the speedup was evaluated. The load




balancing in ConClass uses two methods: replication and allocation of static objects, and
the assignment of processing elements for dynamic objects. We assumed that we could
optimize these factors using domain knowledge and statistics. Therefore, we fine-tuned the
factors in the experiment so as to optimize the results. Another reason for the optimization
was to evaluate the processing speed with respect to achieving an efficient concurrency. In
addition, we implemented the CenClass system paying attention to even the execution
efficiency of Lisp functions. This was to more precisely evaluate the system overhead for
parallel processing.

The CARE simulation system Las an user interface where we can observe a variety of
statistics and latencies of CARE components. Figure 4.4 shows the processor utilization
graph whose upper half specifies utilization of evaluators which execute actual data
computation. The lower half sp: cifies that of operators which manage the communication
between processing elements. 'n a typical classification situation, for example, ConClass
was able to use 28 to 30 processing elements at a time out of a possible 32. Including the
initialization of ConClass, which brought about considerable computation, the overall
average of concurrent utilization was 21 processing elements. Because the classification
computation in ConClass is coarse-grained, the opcrators are not busy.

In ConClass, the concurrency designed by an application developer can correspond
effectively to actual computational hardware components. We were able to implement the
experimental application system efficiently using this scheme. It was easy to estimate
replication and allocation of objects and assign processing elements. The ConClass
development environment for describing and decomposing classification problems was
useful. ConClass execution facilities excluding schedulers and various synchronization
schemes improved the efficiency of parallel distributed processing.
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Figure 4.3. Processor Utilization

Table 4.1 shows the frequencies of messages sent between objects to solve the
experimental problem. These frequencies correspond to sustainable data flows. Most
messages are propagated between classifiers and between classified-instances. Messages
can be sent between the classifier network and instance networks while creating and
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discarding classified-instances. Data propagation messages can be sent from classified-
instances to their related but uninstantiated classification-categories. The former messages
are not frequent because classified-instances are leng-lived according to the instantiation
scheme of ConClass as described above. The latter situation is fairly rare due to the
classification problem’s structure. The ratio of number of messages to classified-instances
decreases as the number of processing elements increases. This is because the instantiation
time becomes longer compared to the experimental simulation length. However, this is not
a factor which can affect the independence between the classifier network and nstance
networks. Although more dynamic problems may increase the interactions between the two
kinds of networks, the experimental results show the efficiency of a dynamic load
distribution of ConClass.
Table 4.1. Message Frequencies

Number of Messages (Percentage)
Messages .
Processing -
Elements 16 2 64 2%
To Classifiers 5448(51.0) 5445(51.2) 5527(56.1; 5409(79.3)
From Instances 313(2.9) 268 (2.5) 389(4.0) 131(1.9)
To Classified-instances 5248(49.0) 5181(48.8) 431743.9) 1409(20.7)
From Classifiers 167(1.6) 180(1.7) 273(2.8) 206 (3.0)

5. Conclusions

In this paper we have described the parallel solution of classification problems. The
developed framework, ConClass, is capable of classifying continuous real-time problems
dynamically and concurrently.

ConClass provides a high-level structure for describing and decomposing classification
problems. The ConClass classification system can handle multiple sources of problem
inputs as well as dynamic global information. A ConClass application can use static
knowledge to solve problems in the system. Such a high-level framework was useful in
implementing the experimental applicaton in ConClass.

Classification pioblem solving can be structured hierarchically by means of decomposing
problem and syntnesizing solutions. We implemented the ConClass framework based on
this characieristic so that decomposed problem solving modules were directly represented
as distributed processing components. Therefore, the concurrency designed by developers
is effectively reflected in the actual parallel computation and this scheme makes it easier to
anticipate and evaluate the system behavior. Moreover, a decomposed classification
problem solver, consisting of a classifier and its classified-instances, is very uniform in
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terms of its basic structure and execution mechanism. These features are useful in the
design of concurrency and the implementation of efficient distributed processing. The
classification exccution in ConClass is intrinsically paralle!, in contrast 10 our previous
problem solving frameworks [Brown 86, Nii 89, Saraiya 89] which report various
problems of parallel processing.

We implemented the replication fearures of static objects for preventing a particular object
from being overloaded. The dynamic creation of problem ot:jects may cause the system
load to increase. We incorporated the load distribution schzme by means of dyna 1ically
creating instance networks which maintain hypotheses as solutions of problem objects. We
implemented an efficicnt execution mechanism for ConClass without using schedulers or
synchronization schemes which are liable to be bottlenecks. We confirmed the efficiency of
the paraliel processing and the ioad balancing of ConClass by an experiment.

ConClass is a concurrent problem solving framework using a structural hierarchy of
classification problem and continuity of problem data. Real-time problem solving systems
are increasing in importance and we realize the advantage of the ConClass framework.
Furthermore, ConClass suggests a construct for dynamic information fusion and maultiple
assessments. AirTrac, a part of which we selected as an experimental application, is an
example: AirTrac fuses information such as radar signal. flight plans, ground information,
aircraft knowledge, and geography. AirTrac reports real-time assessments such as aircraft
classifications and predictions of flight courses and aircraft actions. The hierarchical
structure of decomposing a problem and synthesizing solutions are useful and effective for
implementing these functions.
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Appendices

Al,

Problem Data Profile

Figure Al.1 specifies the data used in the experimental classification system. This figure
shows the numbers of total and new problem objects at every data input.
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Figure Al.I. Problem Data Profile
A2. Latencies

The following are observed latencies from which we evaluated the sustainable data rates.
We observed the latencies of forming initial hypotheses, making other hypotheses, and
disproving those hypotheses. We compared the latencies with the same object allocation on

each

€

t of processing elernents. We denote a processing element a PE and use the legend
-d in Figure A2.1 for the latency figures in this section.
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Figure A2.1. Legend for Latency Figures

A2.1. Latencies at Sustainable Data Rates
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Figure A2.1.1. Hypothesizing Latency on 16 PEs
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A2.2. Sample Latencies at Overioaded Data Rates
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Abstract

This paper discusses the quantitative and qualitative performance
of a module of a parallel knowledge-based system for tracking and
classifying aircraft, cailed Airtirac. The Airtrac system is built 10 gain
some understanding of the potentiai spee-up through concu:rency of
reasonably iarge and complex continuous signal understanding systems.
Airtrac runs on CARE, a simulated distributed-memory, asynchronous
message-passing muiticomputer.

Evaluating the performance of a continuous parallel knowledge-
based system such as Airirac ‘s difficult. The simple appreach of limig
its execution would not work, since tne system is continuous.
Furthermore, the performance is usually muitidimensional and cannot
easily be expressed info a single number. The noticns of /atency, excess
ratio, sustainable data rate, »nd capacity are instead used to rate the
perform2nce of the system.

The paper reports the effects of important high-level control
strategies on the sysiem performance, the effects of varying the
frequency and width of the input data across different numbers of
processcrs, and some possible speedup curves of the overaii sysitem
performan.e as a functicn of tFe number of processors.

Finally conclusions are presented in the reiationship between th
quantitative and qualitative performance of Airfrac, and in the pclential
speedup of large and complex paraiiel knowledge-based systems.
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1. Introduction

This report documents the enhancement and performance evaluation of a module of
Airtrac, a parallel knowledge-based system for tracking and classifying aircraft. The <ystem is
baeing developed within the Advanced Architectures Project (AAP) at the Knowledge Systems
Laboratory at Stanford University [S, 7]. John Delaney of the MIT's Lincoin Laboratory create.
the system's conceptls in 1985-87 while he was a visiting scholar at the KSL.

The primary goal of the AAP is to realize parallel software and hardware architectures
to achieve significant speedup in the performance of knowledge-based systems. For s-me such
systems, projected performance limits of uniprocessors fall short of the speed required by as
much as a couple orders of magnitude. Multiprocessor parallel computing must be attempted to
attain the necessary levels of psrformance.

The approach taken by the AAP to achieve this goal is to s('udy all levels of the
computational hierarchy, from hardware to programming languages ‘o problem-solving
frameworks to applications. The AAP is performing many experiments to understanc the
computational characteristics and potential speedup of reasonably large and complex parallel
knowledge-based systems. Each experiment represents a narrow, vertical slice through the
space of design alternatives.'

Airtrac represents the application level of the vertical dasign slice. The experiment has
the following two goals:

+ To investigate the potential speedup via concurrent processing of
reasonably large and complex knowledge-based systems.

« To understand useful software constructs for parallel signal
undarstanding systems.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the Airtrac application as a whole. Section 3 gives a dntailed description of the Airtrac Path
Association moduie (or PA for short). Section 4 discusses the experiment design. Section § .

1A summary of systemz and experiments done within the AAP can be found in (8].
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describes and axplains the performance of PA. Section 6 presents some high-level coriclusions,
and Section 7 describes future work.

2. Overview of the Airtrac Application

This section provides a general description of the Airtrac application. Its motivation,
functionality, architecture, and implementation will be discussed. Much of the material in this
soction can originally be found in [7].

2.1, Motivation

The underlying motivation is to gain some understanding of the potential speedup through
concurrency of relatively large and complex continuous signial data interpretation systems. A
similar application to Airtrac called ELINT [1] was built earlier within the AAP. That
experiment demonstrated a speedup via concurrency of up 1o two orders of magnitude. However,
ELINT is simple and unrealistic in its reasoning. This motivates the attempt to build a more
complex and realistic signal understanding system, and investigate its potential speedup through
concurrent processing. Airtrac is the resuit of this attempt.

2.2. Airtrac's Functionality

Given continuous track data from one or more radar and signal processing systems in a
particular region .1 _irspace, the Airtrac system monitors and classifies, in real time, the
flight of aircraft - nin the region, and interprets and predicts their behavior. Airtrac
processes data as soon as they are available. It is essentially a knowledge-based information
fusion system. Data are collected from multiple sources at different times to create a consistent
and comprehensive picture of aircraft in the given region of airspace. Airtrac uses heuristics to
deal with incomplete and errorful information.
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2.2.1.  Airtrac's Input

The inputs to Airtrac are (simulated) output data from one or more active radar and
signal processing systems tracking aircraft in a given region of airspace. Each piece of input
data, called a Radar Track Report (RTR), represents the observation of an aircraft from one
radar site during a periodic time interval (scantimel). Each radar observation is processed by
the radar and sigral procassing system so that an RTR provides the information listed in Table
2.1,

Table 2.1 Airtrac's Input
Each Radar Track Report contains the following:

observation scantime the time of the observation

radar I1D the identifier of the radar site observing
the track
track 1D an integer (unique to the radar site)

assigned by the radar 1o the track to which
the observation belongs

aircraft type the type of the aircraft under observation,
indicated by signal characteristics

position the location (x, y) of the aircraft at the
time of the observation

.

position cavariance the (E, E,) estimate of the error associated
with the reported position

velocity the velocity (Vy V) of the aircraft
calculated at the time of the obsaervation

velocity covariance  the (E E,) estimate of the error associated
with the reported velocity

A radar assigns a unique track /D to an aircraft track when the radar observes the track
for the very first time. The radar continues to assign the same track /D to subsequent

1 In this axperiment 1 scantime = 10 data time units, which are usualy interpreted as seconds.
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observations if it determines, usually by a simple track extension algorithm, that those
obsarvations correspond to the previously-detected track.! Otherwise, the track is considerad
finished and its track /D is dropped. Consequently, when a radar fails to continuously keep track
an aircraft's full flight path, the path may be represented by several tracks. The radar is
assumed to be capable of determining the type of each aircraft under observation from the
particular characteristics of signals it receives. The algorithm employed by the radar also
calculates covariance figures for the position coordinates and velocity vectors that it reports,
providing a measure of the probability of error associated with each of these values. This error
information is based on factors such as the strength of the signals and the distance between the
aircraft and the radar site. All of this information is passed along as input to Airtrac in the
form of an RTR.

2.2.2. Airtrac’'s Output

Airtrac is intended to provide continuous information about all aircraft in the given
region of airspace. The information may include: a complete track history of all aircraft in the
monitored region based on fused data from all radar sites, a classification of all aircraft based on
their behavior (e.g., commercial, military, private, smuggler), and an intelligent prediction of
the future fiight paths and actions of observed aircraft. The current stage of Airtrac provides
the first type of information.

2.3. Airtrac's Organization

The Airtrac system is composed of three major modules: Data Association (completed),
Path Association (the main focus this paper), and Path Interpretation (yet to be developed). As
shown in Figure 2.1, each module takes as input the output from the previous module. Airtrac,
then, can be viewed as an application that employs several distinct levels of abstraction and
reasoning leading to its final output.

! Basically, this algonthm predicts, based on a s.imple lnear projection of observation points already
received for that track, an area where the next observation for a track should appear.
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Figure 2.1 Airtrac's modules' interaction and functionality

2.3.1. Data Association

The Data Association (DA) module was completed in June of 1987 by Russell Nakano and
Masafumi Minami [5).

The primary function of DA is to accept and process, at scantimes, RTR's from all radars
in the given region. It identifies and collects together, in time-ordered sequence, all RTR's
which belong to the same aircraft track, i.e. all RTR's which have the same track ID.
Periodically, DA abstracts the individual RTR's it has gathered for a particular aircraft
track into a Periodic Obssrvation Record (POR), and forwards it to the Path Association module




for further processing. A track may consist of several POR's. A POR reprasents a regular
portion of an aircraft's flight path as seen from a single radar.

Radar Track
Reports — & o °

@
\ ¢ time2

°
® ——
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(for scantime interval
[time1,time2])

Figure 2.2 How Data Association creates a Periodic Observation Record

The abstraction process in DA is depicted in Figure 2.2. DA creates a POR by fitting one
or more line segments, or line estimates, through the RTR coordinates.! More than one line
segment in a POR reflect large changes in course executed by the aircraft. The error envelope
radius of a POR is conservatively calculated so as to completely contain the position covariances
of each of the RTR's. The complete information contained in a POR is listed in Table 2.2.

One notable attribute of a POR is its status, a keyword that DA assigns to a POR indicating
its temporal position within an aircraft track. A status of create means that the POR is the first
(in data time) of a track. Similarly, an inactivate status signals the last POR of a track. A POR
with a status of update is part of a continuing track, neither first nor last. A status of create-

1 A line estimate is represanted as a sequence of its endpoints and corresponding error radius.
However, to make it more intuitive, a line estimate in this paper 1S depicted as a full line with an error
envelope or a full fine with error radii at its endpoints.
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Table 2.2 POR Information

A Pariodic Observation Record contains the following:

track 1D

radar 1D

status

dircraft type
report start time
report finish time
actual start time

actual finish time

line estimates

velocity vectors

the identifier of the aircraft track assigned
by the radar tc the RTR's in this POR

the identifier of the radar site

the observation status of this POR; one of
create, update, inactivate, or create-and-
inactivate

the type of the aircraft

the beginning scantime of the POR period
covered by this POR

the end scantime of the POR period covered
by this POR

scantime of the earliest RTR of the track
within this POR

scantime of the latest RTR of the track
within this POR

the error snvelope radius and the sequence
of line segments fitted through the RTA'S
for this POR

veiocities (V, V) for the aircraft at the
beginning and end of the POR

and-inactivate means that the POR represents a whole aircraft track.!

The POR period is the length, in scantime units, of a POR generated by DA, i.e., the
interval of time in which RTR's for a track are processed and abstracted into a POR.2 The POR
period is uniform across all POR's in the system. Furthermore, the beginning and ending times
of POR's, report start times and report finish times, are synchronized. If the first RTR of a
track is received during a POR period (the POR's status is create), then the actual start time of

! From here on, a .create POR means a POR whose status :s either create or .cinate-and-inaclivate.
Likewite, an :inactivate POR means ore with stalus inactivate or :create-and-inactivate.

2 in this experiment the POR period 1s 5 scantmes or 50 data time un-s.
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the POR may be diffarant than the report start time. The same applies to the actual finish time
and the report finish time of an inactivate POR. For update POR's the actual and report begin
and end times are the same.

Nakano and Minami showed that the quantitative performance of DA improves
significantly with additional (up to 100) processors. The quality of the resuits can be
maintained in spite of a high degree of problem decomposition and highly overloaded input data
conditions.

2.3.1.1. Data Association Simulator

Due to system and input-output incompatibilities, the real Data Association module was
not used together with the Path Association module [7]. The POR's are generated, instead, by an
object called the Data Association Simulator (DAS).

2.3.2. Path Association

Most of the functionality of the Path Association (PA) module was developed by Alan
Noble and Chris Rogers during the 1987-1988 academic year [7].

The functionality of PA can be described in three stages: Distribution, Connection, and
Fusion, as depicted in Figure 2.3. In Distribution, POR's of the same aircraft track and reported
from the same radar site are grouped together into objects called Flight Path Segments (FPS's).
in Connection, all FPS's reported from the same radar site that seem to belong to the same
aircraft's flight path are associated together into objects called Observed Flight Paths (FPQ's).
Finally in Fusion, FPQ's reported from different radar sites that appear to be equivaient
representations of a single aircraft's flight path are fused into objects called Platforms (P's).

it is important to note that as input POR's come to the system, FPS's, FPQ's, and P's grow
together over time, i.e. the system does not wait for all data to be available before performing

any of the three stages. For example, Distribution immediately creates an FPS once a POR of a
new track is available. Distribution does not wait for all POR's of the track. Similarly for
Connection and Fusion.
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Figure 2.3 Distribution, Connection, and Fusion in Path Association

Platforms represent hypothesized aircraft in the real world as seen from one or more
radar sources. As shown in Table 2.3, a Platform incorporates all information about a single
aircraft available through its individual FPQ's. Platforms are dynamic entities that are
continuously being created, updated, and terminated to reflect the rapidly changing state of the
monitored region, in which aircraft are constantly appearing and ieaving.




Table 2.3  Platform
The information in 2 Platform includes the following:
aircraft type the type of the aircraft

FPO attributes list of names and attributes of all Obsarved
Flight Paths that make up the P

composite flight path the composite flight path computed from a
best-fit of all line estimates of individual
FPO'sof the P

A detailed description of the functionality and architecture of PA appears in Section 3.

2.3.3. Path Interpretation

The final module of Airtrac, which is not yet implemented, is Path Interpretation (P!).
Pl is intended to analyze and interpret information contained in Platforms generated by the PA
module. P! will provide continuous and reai-time assessments and predictions about the
observed aircraft represented by these Platforms. These assessments and predictions will
include: a classification of all aircraft based on their behavior (e.g., commercial, military,
private, smuggler), and a prediction of the future flight paths and actions of the observed
aircraft.

2.4, Airtrac’'s Implementation

The Airtrac application is implemented on a simulated parallel architecture called CARE
[3]. CARE (Concurrent ARchitecture Emulator) is a distributed-memory, asynchronous
message-passing architecture. CARE models 1 to 1000 processor-memory pairs, or sites!,
communicating via a high-speed network. Each site operates on its own instruction stream,

1 Throughout this paper the term site 1s used to describe a CARE processing element.
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asynchronously with respect 10 other sites. Massage delivery betwsen sites is reliable (never
lost), but messages are not guaranteed to arrive in the order of origination.

CARE is simulated using = 7jeneral, eventdriven, highly-instrumented system called
SIMPLE [4]. SIMPLE is written in Zetalisp and runs on a Texas Instruments Explorer Lisp
machine.

Airtrac is written in LAMINA with ELMA. LAMINA is the basic language interface to CARE
and consists of Zetalisp with extensions that provide primitive mechanisms and language syntax
for expressing and managing concurrency and locality [2]. Three computational styles are
supported: functional, shared-variable, and object-oriented. All three are based on the notion
of a stream, a data type which represents the promise oi a potentially infinite sequence of
values.!

As in other object systems, objects in object-oriented LAMINA (hereafter referred to
simply as LAMINA) encapsulate state (instance variables) and behavior (methods). Methods
are invoked by message sending. But unlike the case of sequential systems, this involves
transmitting a packet containing the message from one LAMINA object to another, typically on a
different site. Message sending is non-blocking and the time required for communication is thus
visible to the LAMINA programmer. Methods run atomically within processes which are
restartable but not resumab!e..2 An object and its methods can be considered a non-nested
monitor; exclusion is guaranteed by the fact that only one method is ever scheduled to run at a
time, and then runs to completion. The time required to create a LAMINA object is also visible
to the programmer.

ELMA (Extended Lamina for Memory-management Applications) is a high-level parallel
programming interface to CARE based on LAMINA [6]. ELMA is a specialized interface for
applicaticns which involve extensive dynamic object creation and Jeallocation and require some

! LAMINA's predecessor, CAOS (1], was based on the notion of a future, the promise of a single value
rasulting from a .smputation. It was cbserved, howsver, thal communication between objecls was
fairly ragular; a given object, having communmicated with another, invanably communicated with that
same object again. The stream ncton captures this behavior much more naturaily, and was thus chosen
as the basic data type for LAMINA. In LAMINA, a future 15 the special case of a siream witn only cne
valus.

2 Thers is also a more gxpensive rasumable cousin.




form of memory management. lis syntax and constructs facilitate programming in the object-
oriented style at a higher level than LAMINA.

3. Path Association

Path Association (PA) is the second of the three-module Airtrac system. PA takes as
input Periodic Observation Records (POR's), which are periodic abstractions of radar signals
generated by the Data Association (DA) module. PA processes these POR's and generates
Platforms (F's), the hypotheses of real-world aircraft passing through the given region of
airspacs. The following subsections describe the functionality and architecture of PA.

3.1. PA's Functicnality

The functionality of PA can be described in three stages: Distribution, Connection, and
Fusion.

3.1.1, Distribution

This is the simplest of the three stages. This stage involves the distribution of POR's of
the same, unbroken aircraft track and reported from the same radar site into dynamic objects
called Flight Path Segments (FPS's) by manager objects' called Flight Path Managers (FPM's).

An FPM handles only POR's of a particular aircraft type reported from a particular
radar site. Using these two invariants, the functionality of an FPM is replicated into the number
of distinguishable aircraft type times the number of radar sites. So, for example, in & scenario
(simulated input data) with three aircraft types and three radar sites, up to nine distributions
cab be paerformed in paraliel.

i Managers in Airtrac are objscts zllccated at nmitiahization tme, and are typically responsible for
‘asks involving dynamic cbjects. Those lasks .ncluce maintaining free pools of dynamic objects,
crealing from and deallocating dynamic sojects into the free poals, synchromzing different processes,
and coordinating searches. For more details, see 71

-~
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When an FPM receives a POR from DA, the FPM creates an FPS for the POR if the POR is
part of a new track. Otherwise, the FPM forwards the POR 1o its associated FPS. The FPM does
not wait for all POR's of the track to create an FPS for it. The FPM registers all FPS's it has
created for the input POR's.! If the POR represents the beginning or the end of a track, i.e. a
create or inactivate POR, the FPM teils the FPS to report to its associated Connection manager,
called a Flight Path Connector (FPC), to start the Connection stage.2

The information contained in an FPS is listed in Tabie 3.:. An FPS is active if it
continues 1o receive POR's, inactive otherwise.2 The FPO parent is the name of the Observed
Flight Path this FPS and other FPS's are associated with to represent the complets flight path of
an aircraft as seen from one radar site.

3.1.2. Connection

The Connection stage is needed because an aircraft's complete flight path may be broken
into several tracks due to a radar's tracking errors, radar shadows*, or the aircraft's shamp
maneuvers. In any cass, the radar fails to recognize the continuation of an ongoing track, and
instead treats the continuation as part of a new track. The goal of this stage is to connect, using
some hedristics, those broken tracks that are actuaily parts of the same fiight paths. That is, to
connect FPS's into Observed Flight Paths (FPQ's).

' In a real, instead of simulated, continuous system, there must be a mechanism !0 get rid of old
dynamic objects. Airtrac naver deallocates objects during its execution, since they are needed for
post-run analysis. However, Airirac uses some heuristics o Xesp 1S conscious knowiedge, and the
amount of reasoning involved, from growing exponentially. This is not deait in Distribytion, because e
dynamic FPS's are not involved in any reasoning. This wili be an issue, however, in Conneclicn and
Fusion,

2 The reason for this double-directed conrection searcn is given in the rext section.

3 Nermally an FPS stays :active if it continues to receive :update POR's, and becomes :inactive if it
recsives ils inactivate POR. However, since some messages may be out of order, ifus 1§ not aiways
true.

4 A radar shadow is part of the monmitored region not cbservable from a radar site due 10 some
obsiacles such as mountains.
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Table 3.1 Flight Path Segment

A Flight Path Segment contains the following information:

track 1D the dentifer assigned o this irack by the
radar

radar 1D the dentifier of the radar sits from which
the track is being cbserved

status irack status; one of active or i~ active

aircraft type the type of the aircraft

Ire eastimates the sequence cf PCR fing estimales

initial vaiocity velccity {Vy V,) of track at time of creation

final velocity veiccity (V. V,} of track at time of
tgrmunation

AC name of Fiight Path Connecior this FPS
800NS I X7 connecion

FPO parent name of Chsarved Fight Path parent

Connection is coordinated by manager objects called Fiigh* Fath Connecltors (FPC's). The
same two invariants used in Distribution, aircraft type and radar site, are 1 sed !o repiicate the
functionality of an FPC. This means that an FPC only handies the connections cof aircra¥; of the
same lype reported from 3 particular radar sile. So there is a one-loc-one correspondence
between FPM's and FPC's. Although there are up !o the number of distinguisable aircralt types
times the number of radar sites Connection processes run in paraliei, there is oniy cne
Connection process at a lime per FPC.

An FPC maintains a list of all FPO's it has created. It also keeps a fist of FPS's waiting for
connections. But since Airtrac is a continucus system, it can cnly siore a fimited amount of
history. Sc Airtrac has a history ning buffer mechanism to store those FPS's requesting for
csithections that are created in the latest 7 scantimes, where 21 is the length of the b.Her. So the
number of FPS's in tie buffer is lims

io the actual number of tracks in any 7 conseculive
scantimes. The buffer is typically full after some initialization time. In that case, if an EPS of 2
new scantime is added o the buffer. the first set of FPS's in tha buffer {the earliest ones}.
aithough stili connectable with later FPS's. have lo be discarded. and the new FPS is added at the

S
o
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and of the buffer.! Otherwise, the FPS is just Insarted to the appropriate scantime slot already
in the butfe:. The length of the ring buffor is set prior to a simulation run. The ring bufer
mechanisn is not used for the FPO's created, because they are needed for post-run analysis and
are rot involved In any reasoning in this level. The waiting FPS's, on the other hand, have to be

ecked one by one for connections. it would be undesirable in terms of quantitative
performance to keep a growing and unlimited number of them.

Two FPS's are connacted to ».-:h other if the later FPS's creation time is within some
connection search interval from the sarlier FPS's termination time, and if the later FPS's
creation location ligs within the earlier FPS's termination continuation region. Connection
search interval is a heuristic, set before a simulation run, that lir.. ts the time gap between
connected FPS's to a reason‘ e length. The continuation region, as shown in Figure 3.1, is
determined by the termination location and veiocity of the earlier FPS, the time gap between the
two FPS's (At), and some performance figures of the aircraft invoived.

The | "ocess starts whan an FPS, a representation of a single track, reports for
connection 10 its corresponding FPC. An FPS requests for a connection when it receives the
beginning (creation) or end (termination) of its track.2 Usually only the creation connection ,
0. the connection process in which an FPS looks for a conr ‘ion with a logically earlier FPS,
is needed. Howerer, since messages can and do get ou* of awver in CARE, wtien an FPS, cail it
FPS-2, searchas for a connection with a logically earlier FPS, call it FPS-1, the latter FPS
may not be ready for a connectior jet. #I'S-1 may have yet to receive the end of its track, or in
tha worst case, it may not yet exist. So the craation connection fails and a termination
connection, i.e. a connectich process in which an FPS looks for a connec’on with a logically
la;ar TPS, has to be parformed when FPS-1 receives the end of its track. Consequently every
FP3 nas to checs both ¢ ~tioni and termination connecticns.

' This assumas that the new scantime is the one after the laiest scantunia in the ring buffar If not,
more than one gt of FPS's liave 10 be discarded o accommadgale *he time gap.

2 The terms creation and terminaton ara usec througr.out «nis paper 10 denate the beginning and end,
respectivay, of a track or flight path When usad in conjunction with Airtrac's rapresentations of
tracks ard flight paths, the ierms always dsrote the properties of the raal objects. For example, an
FPS's creatiun time means the tho scantime associated .ith the beginning of tne track represented by
the FPS.
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Figure 3.1 Continuation region

Both connection processes are similar. It will be described as a single process unless
noted otherwise. After a request for connection from an FPS is received, the FPC adds the FPS to
its ring buffer of FPS's reporting for connections, and searches the buffer for possible
connection. There are three possible results:

« It no connection is found, a new FPO is created for the FPS.! This is
usually not necessary in termination connection, since the FPS should
have tried creation connection and been associated with an FPO (unless
some message disordering happens).

» It there is exactly one connecting FPS, the FPS is associated with the FPO
of the connecting FPS.

! Right after the creation, the FPO reports for fusion to its Fusion manager, called Chief Platform
Manager (CPM).

L
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« If there are more than one possible connecting FPS, a new FPO is created
for the FPS (if not yet associated with one), and the connection is
parformed at the FPO, instead of FPS, level. The FPQ's of the possibly
connected FPS's are linked to each other as to indicate possible
connections, and called connected FPO's. PA relies on Fusion to resoive
this kind of ambiguity.

In Distribution, POR's of continuing tracks are forwarded by the FPM's to the FPS's. As
soon as an FPS is associated with an FPQ, the FPS also starts forwarding this new information
about the *~ack to the FPQO. The FPO, in turn, forwards all update information tc its associated
higher-level object in the Fusion stage.

The information contained in an FPO is listed in Table 3.2, An FPO becomes inactive if it
is no longer involved in the Connection process, i.e. it fails to make new connections with newly
craated FPS's after some period (the length of the ring buffer). This usually means that the FPO
does indeed represented a complete flight path. UFP (Unfused Flight Path) parent and P
(Platform) parents are the names of higher-level objects associated with this FPO in the Fusion
stage.

3.1.3. Fusion

Fusion is the most complex of the three stages of PA. Fusion, unlike Distribution and
Connection, collects information from multiple radar sites to produce a consistent and
comprehensive picture of aircraft activities in the monitored region. Fusion is used to resolve
some missing data (breaks in a flight path) and amwiguities (multiple connections to the same
track) among tracks of a flight path that Connection fails to resolve with information from one
radar source only. It is also used to track flight paths that fly across different areas covered by
different radars. In this stage, FPC's of different radar sites are fused into Platforms (P's).

The Fusion process is coordinated by two layers of managers, Chief Platform Managers
(CPM's) and Platform Managers (PM's). A CPM only coordinates the fusion of aircraft of a
particular type. So the number of CPM's is equal to the number of aircraft types. Each CPM is
helped by a same number of PM's. The number of PM's per CPM is set at initializaiion. Unlike
Connection, in which there is only one Connection process per manager at a time, in Fusion
there are potentially unlimited number of Fusion crocesses per manager at a time. Fusion takes
place in a distributed search method coordinated by the CPM's,
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Table 3.2 Observed Flight Path

The Information in an Observed Flight Path includes the following:

radar 1D the identifier of the radar site from which
the track is being cbserved

status flight path status; one of active or inactive

aircraft type the type of the aircraft

FPS children list of names of FPS's that make up this FPO

creation connections  list of names of earlier FPQ's connected to
this one

termination connections list of names of later FPO's connected
to this one

UFP parent name of associated Unfused Flight Path (if
any)

P parents list of names of Platforms of which this
OFP is a pant

CPM name of Chief Platform Manager that
handles fusion searches for aircraft of this
type

An earlier version of PA had only one layer of managers for Fusion. Preliminary
performance evaluation of the system showed that the managers were overioaded. Their task
queues were growing and unacceptably long. So an additional layer of managers were introduced
to help the overloaded managers with their tasks.

A CPM maintains a list of P's it has created. On the other hand, a PM is totally dependent
on its CPM for its knowledge of P's in the system. This is to ensure data consistency among all
PM's of a CPM. The CPM does all the creation and registration of P's. The two operations are
atomic to make sure that the list of P'~ it always consistent.

Although all created P's are kept in CPM's for post-run analysis, not all of them are
involved in the Fusion process itself. This is because Airtrac is a continuous input system, and
it must have a mechanism to cope with history. So PA classifies P's into three classes with
respect to their history: active P's are those P's whose supporting FPO's are still involved in
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Connection, inactive P's are those P's whose supporting FPQ's are not involved in Connection,
and finished P's are those P's that have been inactive for some waiting period set at
initialization.! The Fusion process only includes the active and inactive P's. This way Fusion is
limited only to recent P's. Aircraft come and go within the monitored region, and PA must
disregard those aircraft that the system is confident have left the region.

Fusion takes place betwsen an FPQ and a P. The line estimates of the FPS's of ihe
supporting FPQO's of a P are fusaed to form a composite flight path. When a P is created, its
composite flight path consists of the line estimates of the FPS's of the FPO that triggers its
creation. An FPQ fuses with a P if all of the following conditions are satisfied:

1. The FPO and P intersect in time for at least one scantime.

2. The FPO and P intersect in space for every point in which they intersect
in time. The error envelopes of the line estimates and composite flignt
path are used to check this spatial intersaction.

3. The FPO and P do not intersect in time at any point for which the P has
already incorporated another FPO reported from the same raclar. This
indicates that the two FPQ's represent twd distinct aircraft.

An FPO cannot possibly fuse with a P if the second or third condition above is violated.
However, the resuit is uncertain if only the first condition, temporal intersection, is violated.
As the FPO and P receive new information about their continuing flight path, they may
eventually be able to fuse.

Figure 3.2 gives a before-and-after look at the successful fusion of corresponding
portions of an FPO and a P. The resulting new composite point for each pair is a weighted
average of the locations of the two points. The weight of a composite point is the number of
contributing radars whose reports are already represented in that point. The error radius for
each new composite point is compuied from the location of the new point and the two intersecting
radii. Note that as each new FPO is fused with a P, the composite flight path for that P becomes
more defined as the error radii of its constituent points become smaller.

1 An inactive P can become active again 1if it 1s fused with a new FPO that 1s stll involved in
Connaction. In .1at case the waiting pericd is resst. But once it is marked finished, it stays that way.
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Figure 3.2 Fusing portions of an FPO and a P

The Fusion process starts right after an FPO, a representation of a full flight path, is
created. Since the FPO does not duplicate the information contained in its supporting FPS's, the
FPO multicasts a message to the FPS's requesting their line estimates for fusion. Instead of
waiting for the replies, the FPO spawns a continuation process! to collect the replies from the
FPS's. Once all FPS replies are received, the FPO continuation notifies its CPM that it is ready
for fusion. The CPM forwards the fusion request along with its list of active and inactive P's to
one of its PM's in a round-robin fashion. The PM then broadcasts a message to the active and
inactive P's asking them to try to fuse with the FPO. To collect the P replies, the PM spawns a
continuation. Each P checks whether the FPO can fuse with its composite flight path, and relays
the result to the PM continuation. There are three cases:

! A continuaticn of a method occurs in the context of the object exa-uting the method. The method
which spawns the continuation fimshes normally. The continuation executes each time values are
received on specified input streams. For more details on the continuation mechanism in LAMINA, see

(2].
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« If one or more P's can fuse with the FPO, each of the P's merges the FPO
into its composite fiight path. If more than one P fuse with the FPO, this
is an ambiguous case. Fusion relies on the future data of the continuing

flight paths io resolve this kind of ambiguity.

+ It no P can possibly fuse with the FPO, the PM continuation forwards the
result to the CPM. The CPM has to check the FPQ for fusion with P's
created during the current iusion process. Since the CPM (usually)
coordinates more than one fusion procass at a time, P's may be created as
results of the of the other fusion processes. The FPQ may very well fuse
with one of these recently created P's. The maximum number of this FPO
fusion retrigs is set at initialization. If after so many retries no P can
fuse with the FPO, a new P is finally created for it.!

* If no P can fuse with the FPQ at the moment but some P's_are uncartain
because the FPO and the P's do not intersect in time, the PM continuation
tells the PM2 to create an Unfused Flight Path (UFP) for the FPO. It is
uncertain at this point if the UFP can fuse with an existing P or if it needs
its own P. Fusion once again relies on the future data of the continuing
flight paths to resolve this ambi~uity. Every time the UFP receives a new
piece of information about the flight path, it tells the CPM to check for
fusion again with the uncertain P's from the previous fusion process, and
with new P's created since then. The limit of this UFP fusion retrigs is
also set at initialization. .The resuit of this UFP fusion retry can be one of
the following:

+ It one or more P's can finally fuse with the UFP, the UFP is no
longer needed and deallocated.

TA probably more powerful mechanism involves variable FPO fusion retries. The maximum number of
retries is allowed to vary within a certain range. This solves a probable case in which tws FPQO's that
should fuse into each other are involved in the same nth retry at the same time. Without variable
maximum retries, the two FPO's will likely end up as two different Ps.

2 Since no manager registers the UFP's created, a PM, instead of a CPM, can create them without
jeopardizing any data consistency among the CPM and PM's.
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« 1f no P can fuse with the UFP but some P's are still uncertain, the
UFP waits for new data for its next fusion retry.

- If no P can possibly fuse with the UFP, or if the limit of the UFP
fusion retrigs is exceeded, the UFP tells the CPM to create a P for
its FPQ, and deallocates itself.

As soon as an FPO is associated with a P, the FPO starts forwarding new information
about the continuing flight path to the P. (Similarly if the FPO is associated with a UFP as
described in the previous paragraph.) The P immediately tries to fuse the new information, in
the form of line estimates, to its composite flight path through the same fusion process
described above. The P has to make sure that all its supporting FPQ's remain consistent with one
another. If the FPO's new line estimate fails to fuse with the P's composite flight path, the FPO
is split from the P. A platform split happens when two or more airplanes fly across the
monitored region so close that their early flight paths are fused into one P. But when they no
longer fly so close to each other, their later flight paths are no longer fusable, causing the P to
split. As a result, all of the P's supporting FPQ's have to be disassociated from the P, and the P
is deallocated. If the FPO's are still associated with one or more other P's, they do not have to do
anything else. In fact, the platform split has resolved (part of) the ambiguity mentioned earlier
when an FPO is associated with more than one P. (See the first case of the fusion process.)
Howavaer, if the FPO's are not associated with any other P's, they have to go through the fusion
process one more time. This time, the greater amount of line estimates information the FPQ's
possess usually allows them to unequivocally fuse with the right P's.

P's are the final output of the PA module. They contain the information listed in Table
3.3. The output of PA may still contain some ambiguities. This is not necessarily the fault of
poor reasoning on the part of PA; rather, it often has more to do with the incompieteness of the
input data. One of the tasks of the Path Interpretation module, the module after PA, would be to
resolve the remaining ambiguities present in the P's.

3.2. PA's Architecture

Figure 3.3 presents the manager architecture in the PA system. As mentioned above, the
number of managers in PA is determined by the number of distinguishable aircraft types, the
number of radars reporting in the monitored region, and the number of PM's per CPM in the
Fusion stage. Figure 3.3 shows the relationships among managers in a scenario with 3 aircraft
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Table 3.3 Platform

The information in a Platform inciudes the following:

status status of the hypothesized aircraft
represented by the P; one of active,
inactive, or finished.

2ircraft type the type of the aircraft

FPO attributes list of names and atinbutes of all FPO's
that make up the P

composite flight path  the composits flight path computed from &
best-fit of all line estimates of individual
FPQO's of the P

CPM the name of the CPM in charge of P's of this
aircraft type

types, 3 radars, and 3 PM's per CPM.! There is only 1 DAS in any scenario, since the manager
is only simulating the functionality of the DA module. There are 9 FPM's and 3 FPC's in this
scenario because there are 3 aircraft types and (multiplied by) 3 radars. There are 3 CPM's
because of the 3 aircraft types. Finally each CPM is heiped by 3 PM's, set at initialization, in a
rounc >bin fashion.

Note that the diagram only shows how a manager is related conceptually with another. It
doss not necessarily imply any control or data flow. For example, the left most FPM in the
diagram above handies a particular aircraft type, say Type A, observed from a particular radar,
say Radar 1. The FPM is linked to the left most FPC which also handles aircraft of Type A seen
from Radar 1. This FPC is then linked to the left most CPM which handles aircraft of Type A
observed from all radars in the monitored area. The CPM is helped by a number of PM's in
handling aircraft of Type A.

Figure 3.3 also shows graphically how parallelism is achieved in PA via pipelining and
replication. Each row of managers is essentially a stage in the pipeline. The output of one stage

! In fact, all scenarios in this expenment have hesa characleristics. See Section 4.3.
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Figure 3.3 Manager architecture involving 3 aircraft types, 3 radars, and 3 PM's per CPM

PMs

is the input of the next stage. The number of managers in each row shows how many
times the functionality of that stage has been replicated. Managers in a row have the same
functionality but deal with distinct parts of the data.

The system architecture of the PA module is shown in Figure 3.4. Pictured are all of the
manager and dynamic objects of the system along with the paths of message-passing
communication among them, and how they fit into the three stages of PA. Each circle above, with
the exception of DAS, represents a ciass of objects, not a single entity. Continuations objects are
omitted from the picture and collapsed into the objects that spawn them.
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Figure 3.4 System architecture

4. Experiment Design

This section discusses the PA experiment design. The following sub-sections describes
the goals of the experiment, the criteria used to evaluate the performance of PA, and the
experiment plan. Section 5 will present the results of the experiment.

4.1. Goais and motivation
This experiment is condycted with the following goals:

» To understand how the performance of PA is affected by its paremeters.
The PA parameters studied in this experiment are:

« Free pool lengths (7], which are the initial and threshold lengths!
of free pools maintained by the FPM's, FPC's, CPM's, and PM's, An

1 A threshoid length indicates when a ree pocl reeds to be replenished.
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containing FPS's waiting for connections.

+ Connectlon search interval, which is the time gap allowed between
connectable FPS's.

* Maximum FPO fusion retry, which is the maximum fusion retries
an FPO has to do with P's created during the previous fusion
search.

+ P waiting period, which is the duration inactive P's remain in the
system before being deallocated.

« To understand how the performance of PA across different grid sizes, i.e.
different numbers of processors, is affected by the frequency and width of
input data.

- —— —— e — —
FPM maintains a free pool of FPS's, an FPC FPQO's, a CPM P's, and

a PM UFP's.

« PM multiplier, which is the number of PM's par CPM. |
« FPS history ring buffer length, which is the iength of ring buffer
+ To generate possible speadup curves of the performance of PA.}!

4.2. How to Evaluate the Performance of PA

Evaluating the performance of a continuous parallel knowledge-based system such as
Airtrac is difficult. The simple approach of timing its execution would not work, since the
system is continyous. Furthermore, the performance is usually multidimensional and cannot
easily be expressed into a single number. So other forms of measurement are needed to know
how the system keeps up with its input both quantitatively and qualitatively.

! several speed-up curves are pessible due o different performance criteria.
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4.2.1. Quantitative Performance

The performance of PA is measured quantitatively in terms of /atency. Latency is defined
as follows:

Latency is the duration between the time when the system receives a datum
and the time when it actually uses that datum to assert some fact.

For example, if 3 POR enters PA at time ¢, and triggers the creation of an FPS at time
t+x, then the FPS creation latency at lime tis x.

PORs
Distribution
1. FPS Creation Latency FPSs
2 FPS Update Latency
Connection
3. FPO Creation Latency ]
FPOs
4. FPO Update Latency
Fusion
5. P Creation Latency jps
6. P Update Latency

Figure 4.1 The measured iatencies in PA

Six types of latencies, as shown in Figure 4.1, are measured in PA; two at each of the
three s ,es of PA. Those latencies are:

1. FPS Creation Latency, which is the time between a POR for a new FPS
enlering the system and being incorporated into an FPS.

A
)
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2. FPS Update Latency, which is the time between a POR for an existing FPS
entering the systemn and being incorporated into that FPS.

3. FPO Creation Latency, which is ihe time between 3 PCR for a new FPO
entering the system and being incorporated into an FPQ for the very first
tims.

4. FPO Update Latency, which is the time betveen a POR for an existing FPO
entering the system and being incorporated into that FPO.

. P Creation Latency, which is the time between a POR for a new P entering
the system and being incorporated into a P for the very first time.

(3]

6. P Update Latenc; which is the time between a POR for an existing P
entering the system and being incorporated into that P.

The iatencies are recorded in intervais of 5 scantimes, which is the length of POR's. In
each interval, the minimum, average, maximum, and the number of reported latencies in that
interval are recorded. A reported latency of x at time interval t means that a POR entering the
system at time interval { has a lalency of x simuiation time units.

4.2.2. Quatitative Performance

Measuring the qualitative performance of PA is a harder probiem. ideally, .he quatity of
PA should be measured by the quality of its final output, the P's. That is, by comparing the P's
with “ground truth.® But this would require reimpiementing the PA system serially, and
comparing the parallel results with the serial resulis. Given the size of the system, this would
be very time consuming. So excess ratio is instead used as a qualitative measurement.

Excess ratio is the numter of excess oulput objects created over the number
of the actual objects they represant in the real world.!

The output objects are . e FPS's, FPQ's, and P's. The FPS, FPO, and P excess ratics
measure the numbers of disirib 1. 1. connection, and fusion, respectively. that PA misses. For

' The number of the actual obiects 1§ xrov~ < ~¢e simuiated data are used.




axample, in a ccanarlo which has 00 FPO's, and each FPO consists of two FPS's, there e 100
connections ‘o do. 1! PA missut 3 out of the 100 connections, there would be 1023 FPQ's instead

of 100. So the FPO excess ratio is -1133- - 0.03.

The notion of excess ratio is based on the assumption that PA will not undercreate FPS's,
FPO's, and P's, but may overcreate them. In other words, PA will not do distributions,
connections, and fusions it should not do, but PA may miss to do some of the distribytions,
connections, and fusions it should do. This is because PA is very conservative in its reasoning. It
is much more likely for PA to creais, for example, a new FPO for an FPS rather than connecting
that FPS with a wrong FPO.

4.2.3. Performance Evaluation

Now that latencies an~ excese ratios are available as forms of performance
measurement, tha question is how t0 use them so that performanca comparison and evaluation
can be made.

4.2.3.1. Sustainable Cata Rate

Subsequant work refining the ELINT application nas led io the notion of sustainable data
rate:

Sustainable data rate is the maximum data rate for which designated
latencies do not increase vver time (9).

Sp=edup is determined by plotting sustainable data rate, rather than latency, versus grid
iza. This way the differcor iatencies can now be expressed as a single number. However, the
defiri:: n has some disadvantages:

+ The deiinition does not take into account any latency upper bounds. A
sustainable input data rate of, say, 25 Hz, may t-.ve 3 latency of 100 or
500 ms. Under this definition, both cases are considered to have the sam«
leve' of performance, but clearly they do not.




+ The definition fails to include the qualitative aspect of the performance.
Unless the system is always and absolutely correct, it is necessary to
include the qualitative performance as part of the overail performance
evaluation.

Partly to remedy the first disadvantage, Alan Noble and Chris Rogers redefine
sustainable data rate as foilows:

z

Sustainable data rate SDR, p is the input data rate for which absolute
latencies are below a threshold a at least b percent of the time [7].

Although this definition introduces a latency upper bound, it also has several important
disadvantages:

+ The definition may not allow the svstem to settle down in the beginning of
the simulation run, in which the latencies tend to be high. The duration of
high laisncies in the beginning may exc ed the tolerance (100-b Fercent
ot the time), but the system may actually sustain the input data rate. As a
result, either the result is classified as unsustainable or the a and/or b |
are compromised to suit to the result. |

+ The definition fails to detect any increase in latencies over time. The

system may actually fail to sustain the input data rate if a longer scenario
is simuinted.

* Again the qualitative aspect of the performance is not directly tied to the
overall performance evaluation.

To remedy the above disadvantages, the following definition of sustainable data rate is
instead used:

Sustainable data rate SDFign,qi is the maximum data rate for which all
measurad latencies stabllize at or below gn and do not increase over time,
and for which the excess ratios of output objects are less than or equal to g.1

' gn and gl are vectors or matrices.

3-79




This definition permits the latencies to be higher than gn in the beginning. It allows the
System to settle down or stabilize.! But the latencies are not permitted to increase over time.
The definition requires all reported latencies, rather than just the average of reported latencies
in each time interval, to stabilize at or below gn. If the system keeps up with the input data
rate, the deviation of reported !atencies in each time interval shouldn't be significant. In
addition, some quality attribute g/ is attached to the definilion and tied to the overall
performance evaluation.

4.2.3.2. Capacity

Another way of evaluating the performance of PA is through its capacity 2, which is
defined as follows:

Capacity Cgqn,q/ is the maximum number of input data per data time unit,
i.e. POR's per scantime, for which all measured latencies stabilize at or
below gn and do nct increase over time, and for which the ‘excess ratios of
output objects are less tnan or equal to gl.

While sustainahle data rate is clearly a simulation-oriented evaluation form, capacily is
more a real-world-c~"2nted one. Sustainable data rate evaluates how frequent input data can be
fed into the system without overloading it. Capacity evaluates how wide input data per data time
unit can be fed into the system without overloading it.

4.2,3.3. Performance Requirement

Real world systems are built to performance specifications. In PA. gn and q/ are vectors,
and should be viewed as its quantitative and qualitative performance requirements,
respectively. For the purposes of this experiment, gn and g/ will have the following forms:

1 The latencies are alluwed to be higher than gn for the “rst 20% of the scenarios descnbed in Section
4.3.

2 This idea onginated from Max Hailpenn (7).
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FPS-CL
FPS-UL
FPO-CL
qn = | EpO-UL
P-CL
P-UL

where object-CL means object Creation Latency and object-UL means object Update Latency,
and
FPS-ER
q/ = | FPO-ER
P-ER
where object-ER means object Excess Ratio.

The values for qn and g/ vary with different performance requirements. The variation in
values will affect the sustainable data rate and capacity of the system. This in turn may generate
different speedup curves of the system.

4.3. Scenarios

A scenario is simulated input data ed to the PA system. A scenario must be long enough,
in data time units, to enable the system *o settle down into steady-state behavior. It must also be
wide encugh, i.e. contain enough simultaneously observed aircraft as manifested in POR's per
scantime, to provide sufficient data parallelism and thus opportunities for parallel computation.

Seven different scunarios are used in ihis experiment. They basically have the same
characteristics, except their widths, which are expressed in the numbers of aircraft, or POR's
per scantime, in the scenarios. The common characteristics are:

+ The size of the monitored region is 300,000 by 300,000 data area units.
* There are 3 radar sites in the region, known as Radars 1, 2, and 3.

* The raoars can distinguish 3 aircraft types, known as Type. A, B, and C. A
scenario contains the same number of airc:aft of each type.

* The length of each scenario is approximately 4,000 data time units.
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The average langth of full fiight paths is 750 data time units. Each flight
path consists of, on the average, 2.65 tracks.

The radars fail to detect approximately 1% of all tracks.

The radar scan period, i.e. 1 scantime, is 10 data time units.

The POR period is 5 scantimes.

The seven scenarios and their specific characteristics are:

C-40 has 40 aircraft in 2,039 POR's (5.08 POR's/scantime).

C-65 has 65 aircraft in 3,277 POR's (8.11 POR's/scantime).

» C-90 has 90 aircraft in 4,574 POR's (11.76 POR's/scantime).

« C-110 has 110 aircraft in 5,558 POR's (14.00 POR's/scantime).
+ C-130 has 130 aircraft in 6,391 POR's (15.74 POR's/scantime).
+ C-150 has 150 aircraft in 7,539 POR's (18.61 POR's/scantime).

« C-170 has 170 aircraft in 8,518 POR's (20.93 POR's/scantime).
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Figure 4.2 Scenarios and their widths
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The scenarios and their widths are shown in Figure 4.2. The C-130 scenario is the main
scanario in this experiment. More details on the scenarios can be found in Appendix Al.

4.4. Experiment Plan

The following sub-sections discuss the steps to achieve the experiment goals described in
Section 4.1.

4.4.1. Generating a Standard

In order to investigate the effects of the parameters of PA, a standard, with which other
experiment results are compared, is needed. The C-130 scenario is used for this pu'rposa. It
will be simulated on grid size 128 with an input data rate of 20 Hz, i.e. data come every S0 ms
into the system. The values assigned to the parameters of PA are:

+ Free pool lengths: 5,4; 5,4; 5,4; 2,1
+ PM muiltiplier: 3

+ FPS history ring buffer length: 10

+ Connection search interval: S

+ Maximum FPO fusion retry: 2

« P waiting period: 120 ms

These values may later be changed if it turns out that other values can yield better
performancs. Section 4.4.3 discusses this subject.

1 The first pair is the imitial length and threshold of the FPS {ree pool mantained by an FPM. The sscond
pair i3 of the FPQ free pool maintained by an FPC, the third parr is of the P free pool maintained by a
CPM, and the last pair is of the UFP frea pool maintained by a PM.
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4.4.2. Varying the Parsmeters of PA

To investigate the effects of the parameters of PA, the vaiue of each parameter will be
varied individually, while the other parameters are kept constant. Each result is then compared
with the standard generated above. Changes in the quantitative and qualitative performance will
be observed. As in the previous step, the C-130 scenario will be used and simulated cn grid size
128 with an input data rate of 20 Hz (unless otherwise noted). The values fo be used for each
parameter are as follow:!

« Free pool lengths: 0, 0; 0,0; 0,0; 0,0, 5 4; 5§ 4 5 4, 2
1, 10, 8; 10, 8; 10,8, 2,1, 15,12, 15, 12; 15, 12; 2,12

+ PM multiplier: 1, 2, 3. 4
« FPS history ring buffer length: 1, 5, 10, 15, 20, 50
+ Connection search interval: 1, 5, 10, 20, 50

» Maximum FPO fusion retry: 0,1, 2, 3,4

P waiting period: 0, 80, 100, 720, 140, 1,000, 6,000 ms

4.4.3. Generating a Revised Standard

| The results from the previous step may suggest that some parameter values yield better
performance than the standard. So a revised standard will be generated with these new values.
These values will be used in the next steps of the experiment. This step assumes the following:

« The combined effects of the new parameter values on performance are at
least as good as the individual effect of each of the new parameter values.

+ The new parameter values also yield better performance when used with
different scenarios on different grid sizes with different input data rates.

! The standard values of the parameters are in :aiic boid.
2 The length of the UFP free pools is kept low since UFPs are rarely created.
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4.4.4. Varying the Frequency and Width of the Input Data

Four g.i4 sizes, 361, 64, 128, and 256, will be used to study the effects of the
frequency and . \Jth of the input data across different grid sizes. The C-130 scenario will be
used to in.astina. & the effects of the input data rate on the performance. Five different input data
rates will b3 Czad for each grid size to generate latency and excess ratio vs. input data rate
curves. The ‘n.* Jala rates used on each grid size should find the knees of the speedup curves.

To stuay the effects of the width of the input data, different scenarios with different
numbers ot PCH's per scantime will be used. Four to six out of the seven scenarios will be
simulated on sa.ix grid size with an input data rate of 20 Hz. The results would be latency and

excess ratio v¢ w2th of input data curves. The different scenarios used on each grid size should
also find the krig«: of the speedup curves.

4.4.5. Generating Possible Speedup Curves
An SDR-based or Capacity-based speedup curve is generated by the following procedure:
1. Specify a quantitative and qualitative performance requirement,

2. Find the corresponding sustainable data rates or capacities for all grid
sizes from the curves generated in the previous step, and

3. Plot the =~ size (x-axis) vs. sustainable data rate or capacity (y-axis)
curves.

Different speedup curves may be generated by the two different evalsation approaches,
the SDR and Capacity. Furthermore, tightening or relaxing the performance requirement will

very likely produce different speedup curves. So multiple, instead of a single, speedup curves
can be generated.

! Since managers have dedicated s.tes ;Seci.on 4 5), grid sizes 32 ard smaller are tco small. The total
number of managers :s 72 4 (3 * r}, where n 2 1 1s the PM muitiplier.
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4.5. Load balancing

The goal of load balancing is to distribute objects over CARE sites such that the work they
do is as evenly balanced as possible. A preliminary PA experiment shows that the performance
of PA improves significantly when all of its manager objects have dedicated sites [7]. So. in this
experiment, every manager has its own site and does not share it with any other objects in the
system. The same modified random load balancing used by Data Association [S] is used lo place
the dynamic objects in PA. The scheme essentially involves random selection from the set of all
sites excluding those used by managers (providing the muitiprocessor is large enough). This is
reasonabie since there is no way of knowing a priori whether any given dynamic object will be
busier than another. In fact empirical e.idence suggests that in the absence of such load
knowlgdge, rardom allocation is optimal. Excluding dynamic objects from manager sites works
we!l, although it is likely that some managers do not actually require dedicated sites.

4.6. Experiment Repeatability

Simulation results on CARE are not always repeatable due 1o its non-deterministic
nature. This is especially true when some random load balancing is invoived. Some of the
simulation runs will be repeated to verify the results, in which case the mean of the results
would be reported. However, time constraint prohibits the extensive verification of ali
results.!

5. Experimental Results

This section presents the results of the experiment aone to understand the effects of the
PA parameters, and of the frequency and width of input data on the performance of the system.
Some possible speedup curves of the PA system are presented at the end.

1 The simulaticns done in this expsnment 1oCX 2nywhere between 3 o 1 hours.
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5.1. The Effects of the Parameters of PA

The following sub-sections describe the eifects on performance of each of the six PA
parameters studied in this experiment. For each parameter, two main graphs are presented: one
contains the latency curves, i.e. the quantitative performance curves, and the other one contains
the excess ratio curves, i.e. the qualitative performance curves. The latency curves represent
the highest latency reported. The FPS Excess Ratio is not included in the graphs because it is
always 0, i.e. PA never misses any distribution tasks.

5.1.1. Free Pool Lengths

One of the goals of implementing a free pool mechanism in PA is to reducs dynamic object
creation latency {7]. The hypothesis is that by creating a dynamic object before it is needed,
only an initialization, instead of a more expensive object creation, is required when the object
is needed. Thus, by cutting the cost of creating objects, the free pool machanism should reduce
the object creation latency.

Figure 5.1 shows how the latencies and excess ratios are affected by the length of irce
pools. The x-axis shows the initial length of the free pools, except for the UFP free pools which
a'ways have the initial length of 2, unless when they are initialized empty. The threshold length
is 80% of the initial length, except for the UFP free pools which always have the threshoid
length of 1, unless when they are always kept empty.

Contrary to the hypothesis, the potential reduction in object creation !atencies never
materializes. Empty free pools are just as good as long ones. Empty free pools do not cause the
FES, FPO, and P creation latencies to be higher than usual. This is because the free pool
mechanism as is used now is not fully exploited. Cne main advantage of free pool is its ability to
recycle objects. Recycling saves time and space. But there is no real recycling in the PA system.
Dynamic objects are deallocated only when they are the results of a wrong chain of reasoning;
this is very rare. Otherwise they are never deallocated since they are needed for post-run

analysis. As a resuit, all the free pocls are busy creating dynamic objects all the time. Available
dynamic objects are requested as soon as created. Or even worse, managers have to wait for the
free pools to create the dynamic objects. Consequently, it does not matter hew long the free pools
are.
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Figure 5.1 The effects of the length of free pools

Moreover, the cost of crealing objecls is insignificant in comparison with the object
creation latencies. As shown in Figure 5.1, the ozject creation latencies are between 40 and




180 ms. But the object creation cost, exemplified by the cost to create P's shown in Figure 5.2,

is only around 5 ms.

P Crestion Cost (ms)
N [#] » [4,]

9 10090 2C00 3000 4000

Simuistion Time (ms)

Figure 5.2 The cost o create P's

5.1.2. PM Multiplier

PM's are intreduced to the manager architecture 1o heip CPM's coordinate Fusion. The
main goal is {0 remove the bottieneck present at the Fusion level as demonstrated in the eariier
experiment [7]. Without the PM's, the CPM's was severely overloaded. Figure 5.3 shows how
additional PM's help the CPM's with their tasks at the input data rate of 28.57 Hz, i.e. POR's
come every 35 ms into the system. The y-axis represents the peak of the longest CPM task
queue. The PM's significantly reduce the CPM task queue length. The reduction is, however, less
dramatic at siower data rate.
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Figure 5.3 The CPM task queus length is reduced with additional PM's

The advantage of PM's is also demonst ated by the their effects on fusion cost Fusion cost
is the time elapsed between a fusion req” st and its result. Figure 5.4 shows that the maximum
fusion cost is dramaticaily reduced wilh ad. .tional PM's. The input data rate used is the same as
above, 28.57 Hz. Fusion is quicer with more PM's because there are more managers 10
coordinate the process.
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Figure 5.4 Fusion cost is reduced with additicnal PM's




Figures 5.5 and 5.6 show how additional PM's a’izct the performance of PA at the input
data rate of 20 Hz and 28.57 Mz, respectively. Both ficuiss show that the °© Creation Latency is
reduced with additional PM's. The reduction is again o3 significant at the higher input data
rate. Since fusion cost is reduced with additional PM's, axd sa.ce a new P is created only after a
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Figure 5.6 The effects of PM Multiplier with a 28.57-Hz input data rate

fusion process fails, the P Creation Latency is aiso reduced proporti:nally with additional
PM's.!

! The cost figures presented in this paper may be higher than their corresponding latency figures
because the latter are the maxima of the last 80% of the scenario. See Section 4.2.3.1. The cost
figures, on the other hand, are the absoiute maxima.
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The P Excess Ratio is also reduced with more PM's as shown in Figure 5.6. It is
interesting to note that the P Excess Ratio, a qualitative measurement, and the P Creation
Latency, a quantitative measurement, are proportionally, not inversely, related. When fusion
cost is high, an FPO frequently comes back from the last fusion retry empty handed because its
matching FPQ is still involved in its own last fusion search.! As a result, different P's are
created for both FPO's, although they can actually fuse. Consequently, the P Excess Ratio
becomes high. However, when fusion cost is low, an FPO can quickly decide if it needs a new P.
So when a matching FPO reports for fusion, the P is very likely ready to be fused with the FPO.
Hence, the P Excess Ratio would be relatively lower.

Since managers in this experiment have dedicated sites, the more PM's in the system,
the less sites available for dynamic objects. More PM's in the system reduce the fusion cost and
improve the performance. But at the same time, more PM's mean less computational resources
for the dynamic objects such ‘as P's. So there is a trade-off. When tha grid size is relatively
large, such as 128 in this case, the disadvantages of additional PM's are relatively insignificant.
However, further experiment needs to be done on smaller grid sizes.

5.1.3. FPS History Ring Buffer Length

The history ring buffer is the mechanism used to store history in the Connection stage.
The ring buffer keeps the =PS's 1o be checked for connection. The length of the ring bufter limits
the amount of history saved. If the buffer is short, few FPS's need to be checked for connection,
and connection cost, the time elapsed between a connection request and its resuit, is low. This is
shown in Figure 5.7, whose y-axis shows the maximum connection cost. The connection cost is
higher when the ring buffer is longer, because there are more FPS's to be checked for
connection.2

! This is possible since there are usually more than one fusion search at a time in one set of fusable P's
and FPO's, i.e. P's and FPQ's of the same aircraft type. In contrast, there is only one connection search
at time In one sat of connectable FPO's and FPS's, 1.e. FPO's and FPS's of a paricular aircraft type
observed from a particular radar.

2 Since the connection search among one set of connactable FPO's and FPS's is performed serially, the
connection cost is directly linked to the number of FPS's to be checked for connection. In contrast, the
fusion search among one set of fusable P's and FPO's 1s performed concurrently. So the fusion cost is
not directly affected by the number of P's to be checked for fusion. However, the greater the number of
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Figure 5.7 The connection cost goes up with longer history

The effect of longer history ring buffer is also reflected on the FPO Creation Latencly as
shown in Figure 5.8. Since connection cost increases with longer ring buffer, and since a new
FPO is creatad only after a failed connection process, the FPQO Creaticn Latency also increases
with longer ring buffer. Furthermore, since Fusion happens after Connection, and since the POR
that triggers a P creation in Fusion is generally! the sama2 POR ::xt triggers an FPO creatiion in
Connection,2 higher FPO Creation Latency means higher P Creation Latency.

The yuality of Connection, represented by the FPO Excess Ratio shown in Figure 5.8,
improves with longer history in the ring buffer. So the more knowledge stored in the ring
buffer, the lass connections missed by the system. But the price to pay is the higher creation
latencies described above. It is the typical case: the quantitative and qualitative aspects of the
performanca are inversely related.

the P's, the more ikely that some of them reside on the same sites, and hence the fusion process takes
lunger. See Appendix A3 for the kinds of objects on each site.

! This would always be true if messages are always in order in CARE.

2 Not all POR's that trigger FPO creations will trigger P creations, since a P usually consists of several
FPO's.
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Figure 5.8 The effects of the length of FPS history ring buffer

5.1.4. Connection Search Interval

The connection search interval is the maximum time gap allowed between two connected
FPS's. It is a heuristic used to determine ternporally if two tracks, -epresented by the two
FPS's, are part of the same flight path. If no time gap :5 allowed, no cennectior; needs to be done,
and the connection cost is 0, as shown in Figure 5.9. The longer the ume gap allowed, the more
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connactions are possibie, The mora connsctions ndeds 1o be pericrmed (serially), the higher the

connsction cost.
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Figure 5.3 The wider the time gap ailowed, the higher the connection cost
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The increased possible connections pe’ track introducy unnecsssary ambiguities into the
systam. Fusion has to attempt to resolve these ambiguities. Censequently, as shown in Figure
5.10, the fusion procass becomes more expensive as the time gap allowed becomes wider.

The effacts of the connection saarch interval on the latencies and excess ratios are shown
in Figure 5.11. The higher connecticn cost caused by larger connection search interval is
directly reflected as higher FPO Creation Latency. This is because an FPO is created only after a
failed connection process. Furthermore, since Fusion happens after Connectian, and since the
POR that triggers a P creation in Fusion is usually the same POR that triggers an FPO creation
in Connection, higher FPO Creation Latency means higher P Creation Latency. The higher fusion
cost caused vy wider connection search intarval contributes to even higher F Creation Latency.

If no time gap is allowad, no ccnrnection is performed. As a result, each FPS is
represented by a different FPC. Hence, the FPO Excess Ratio becomes very high as depicted in
Figure 5.11. The FPO Excess Ratio drops <ramatically when connections are performed.
However, as the connection search interval becomes wider, mora connections per FPS are
possible. Recall that when an FPS has multipla possible connectionrs, Connection creates 2 new
FPO for the FPS and links them together as connected FPQO's. Fusion may fail to resoive
ambiguities such as this one, and the excess FPQO's ramain in the system. Consequently, as the
connection searcn interval becomes wic2r than necessary, the FPO Excess Rato uecomes higher.

The effects on the P Excess Ratio is similar. |. no connection is performed, Fusion may
fail to fuse soma of the excess FPQ's and creates different P's for them instead. As a result, the P
Excess Ratio is rather high when no connection is performed, as shown in Figure 5.11. The
quality of Fusion improves when connections are performed. However, as more excess FPO's are
created due to wider connection search interval, Fusion may again fail o fuse some of them
properly. Consequently, the P Excess Ratio rises again.

The FPO Creation Latency and FPO Excess Ratio are inversely related if tive connection
search interval is low. However, as the interval incireases, the relationship becomes
proportional. The P Creaticn Latency and P Excess Ratio show proportioral reiationship
throughout.
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Figure 5.11 The effacts of connection ,aarch interval

5.1.5. Maximum FPO Fusion Retry

" The notion of FPO fusion retry was originally implemented just as a safequard against
the possibility that a fail-to-fuse FPO may fuse with new P's created during the FPQO's fusion
search. The possibility was first thought to be quile small. However, this is noc true. It turns
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out that many FPO's that fail to fuse in the first fusion try eventually fuse i subsequent tusion
ratries. Many of the P's created during the FPO's previous fusion searches can actually fuse
with the FPO's in the following fusion try. Since a new P is created every time an FPO fail to
fuse, the P Excess Ratlo is high when no retry is performad. As shown in Figure 5.12, the ratio
is reduced significantly when a number of fusion retriss are performed.
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Figure 5.12 shows that the P Excsss Ratio is once again proportionally related to the P
Creation Latency, If no fusion relry is performed, a lot of excess P's are created. As a resuit,
there are aiso many P's to be checked for fusion. The probabilitv that the P's reside on the same
sites becomes high.! P's on the same site can only be checked for fusion serially. Consequently,
the fusion cost becomes high, as shown in Figure 5.13. This also results in high P Creation
Latency. When fusion retries are performed, however, few excess P's are created, therefore the
number of P's to be checked is lower, and so are the fusion cost and P Creation Latency.
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] L -+ Highest fusion cost
8 g after the first few
[ -4
2 100
=
[T

0 1

0 i 2 3 T4 5

FPO Maximum Fusicn Retry

Figure 5.13 The effects of fusion retries on the fusion cost

The maximum fusion cost becomes relatively high when too many fusion retries are
performed. But the maximum cost only represents the cost of the first few fusion searches.
Since the first few FPO's reporting for fusion cannot be fused with any P'= (since there is
none), the FPQ's are forced to keep trying to fuse before P's are finally created when the retry
limit is reached. Consequently, the fusion cost is high. But afterwards, as more and more fysable
P's are actually present in the system, the high retry hmit would rarely be reached, and the
fusion cost decreases. As shown in Figure 5.13, in the case of maximum fusion retry of 4, the

T See Appandix A3 for a sample of the kinds of objects on sach site.
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highest fusion cost after the first few data (in simulation time) is significantly lower than the
overall maximum fusion cost. The higher the retry limit, the wider the gap between the two
curves.

5.1.6. P Walting Period

The P wailing period is used to limit the number of P's to be checked for fusion. P's that
have been inactive for the duration of the wuiting period are retired from the system, and no
longsr involved in any fusion process. The retired P's represent aircraft that have left the
chserved region of airspace. So the P waiiing pericd is @ mechanism used to discard old and
cbsolete data.

The effects of the P waiting period on the fusion cost is shown in Figure 5.14. At a
waiting period of 6,000 ms, the P's in this simulation are essentially never retired. So every
fusion process involves all P's the system has seen. Every P, cbsolete or recent, has to be
checked for fusion. The larger the number of P's to be checked, as explained eariier, the highcr
the fusion cost. As the waiting period becomes shorter, obsolete P's are retired more quickly,
and therefore less P's are involved in any fusion process. Hence, the fusion cost becomes lower.
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Since a new P is created only after a failed fusion process, the effects of the P waiting
period on the P Creation Latency is assentially the sams as its effect on the fusion cost. The P
Creation Latency rises as the P waiting period goes up, as shown in Figure 5.15.
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Figure 5.15 The quantitative effects of the P wailing pencd

The P Excess Ratio is also affected the same way. as shown in Figure 5.16. So the P
Excess Ratio and P Creation Latency is once again proportionally related. As expiained earlier,
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when the cost is high. fusion frequently fails. Many excess P's are created as a result. But when
the cost is low, fusion is likely to succeed, and few excess P's are created.
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Figure 5.16 Tre qualitasve effects of the P waiting pericd
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created for FPQO's that siould fuse with those P's, because the supposedly inactive P's, now
retired, are no longer checked for fusion. The P Excess Ratio becomes relatively high, and so do
the fusion cost and P Creation Latency. A short delay in retiring inactive P's is necessary to
make sure that no more track updates are to be recaived. Recall that the updates do have some
latencies associatea with them. Indeed the update laiencies are part of the overali performance
evaluation.

5.1.7. Optimal Parameter Values

The results above suggest that some parameter values yield better performance than the

standard. Listed below are the parameter values of the new standard. New values are in italic
boid.

+ Free pool lengths: 0,0; 0,0; 0,0; 0,0
+ PM multiplier: 3

« FPS history ring buffer length: 10

» Connection search interval: &

s Maximum FPO fusion retry: 3

P waiting period: 120 ms

The new values are chosen primarily because they yield better P-related performance
measurements, i.e. lower P latencies and excess ratio. The P's, after all, are the final output of
PA. The performance figures of the old and new standards are compared in Figure 5.17. The P

Excess Ratio is reduced dramatically in the new standard. Other differences are small and/or
insignificant.

5.2. The Effects of the Frequency of Input Data

The effects of the input data rate are investigated on grid sizes 36, 64, 128, and 256
using the C-130 scenario. The results are exemplified by the effects on the P Creation Latency
and P Excess Ratio. The complete results can be found in Appendix A4. Other results are similar
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Figure 5.17 The old standard vs. the new standard

to the ones presented here, except for the FPS Excess Ratio, which is always 0, i.e. PA never
missas any distribution tasks.

The effects of the frequency of input data across grid sizes on the P Creation Latency are
shown in Figure 5.18, with a close-up on the lower range in Figure 5.19. The curves represent
the highest latency reported. On any grid size, the latency goes up as the input data rate rises.
The quantitative performance deteriorates very rapidly when the system is stressed at high
input data rata.

Across grid sizes, the latency increases much more quickly on grid size 36 than on any
other grid sizes. The smaller the grid size, the quicker the performance degrades as the input
data rate rises. For any given level of latency, i.e. quantitative performance, the maximum data
frequency achievable is higher for a higher grid size. Similarly, for any given input data rate,
the latency decreases with grid size, i.e. the quantitative performance improves with more
processing units.
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Figure 5.18 The effects of the input data rate on the P Creation Latency

P Creation Latency (ms)

3000 + %

200 !
o P.CL-38
7}' / - P-CL-64
- P-CL-128
]/ / -+ P.CL-256
1000

O T 1

0 10 20 30 40

Data Frequency (Hz)

Figure 5.19 A close-up on the effects of the input data raie on the P Creation Latency
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However, the knees of latency curves for grid sizes 64, 128, and 256 are about the
same. Although the grid size 256's latency at 28.57 Hz is substantially lower than the grid size
64's at the same data frequency, the former latency is still relatively high. For a low range of
latency, .e. a desired level of performance, any significant reduction in the latency stops at grid

size 64,
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Figure 5.20 The effects of the input data rate on the P Excess Ratio

The effects of the input data rate on the P Excess Ratio, shown in Figure 5.20, are the !
same. The qualitative performance also degrades quickly when the system is stressed at high data
rate. There is a conclusive and substantial performance improvement from grid size 36 to 64 at
any given data frequency. The additional sites at grid sizes 128 and 256 do not seem to add much
to the performancs.

5.3. The Etfects of the Width of Input Data

The effects of the width of input data are also studied on grid sizes 36, 64, 128, and
256. The scenarios described in Section 4 3 are simulated at 20 Hz, i.e. POR's coné every 50
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ms into the system. The results are once again exemplified by the effects on the P Creation
Latency and P Excess Ratio. The complete resuits can be feund in Appendix AS. Other results are
similar 1o the ones presented here, except for the FPS Excess Ratio, which is always 0, i.e. PA

never misses any distribution tasks.

The effects of the width of input data across grid sizes on the P Creation Latency are
shown in Figure 5.21, with a close-up on the lower range in Figure 5.22. The curves represent
the highest latency reported. The effects are similar to the ones described in the previous
section. On any grid size, the quantitative performance deteriorates rapidly at high input data
rate. Across grid sizes, the latency once again increases much more rapidly on grid size 36 than
on the larger grid sizes. The knees of latency curves for grid sizes 64, 128, and 256 are about
the same, too. For a desired level of performance, any substantial reduction in the latency stops
at grid size 64.

The effects of the width of input data across grid sizes on the P Excess Ratio, shown in
Figure 5.23, are the same. The qualitative performance degrades rapidly at high data rate. The
performance improves significantly from grid size 36 to 64 at any given data width, but the
additional sites at grid sizes 128 and 256 do not seem to add much to the performance.
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Figure 521 The effects of the width of input data on the P Creation Latency
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5.4. Possible Speedup Curves

A speedup curve is generated by plotting sustainable data rate or capacity versus ;rid
size. A performance requirement must first be specified to find the sustainadle data rate and
capacity of each grid size. A sustainable data rate or capacity that satisfies a given pair of gn and
g/, the performance requirement, is the lowest sustainable data rate or capacity iiiat satisfies
each slement of gnand g/.

Figures 5.24 through 5.29 show the sustainable data rate achievable, on the grid sizes
28, 64, 128, and 256, for a selected range of latency requirement. Each figure corresponds to
an eiement of gn, except for FPS Excess Ratlo which is always 0. Figures 5.30 and 5.31 show
the data frequancies on the four grid sizes that correspond to differant FPO and P excess ratios.
These data frequencies are not necessarily sustainable, since the notion of sustainability is tied
to the notion of "not grov«ing in time.” There is no way, however, to know whether an excess
ratio grows in time.
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Figure 5.24 Sustainable data rates of FPS Creation Latency
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Figure 5.31 Data frequencies that corraspond to different P Excess Ratios

Figure 5.32 sho"~ the sustainable data rates of each element of the following
performance requirement:

"'FPS-CL'l C1007

FPS-UL 80
FPO-CL 200

n an =1 FPO-UL| =100 ™
P-CL 300
Lp-UL 150
(FPS-ER]  [0.20)
LP-ER L0.20

The sustainable data rates of grid size 36 that satisfy the elements of the performance
requirement vary from 6.67 lo 11.66 Hz. For ¢rid size 64, the sustainabie data rates vary
from 22.22 to 24.21 Hz; for grid size 128, 22.28 to 28.57 Hz; and for grid size 256, 23.25
to 28.57 Hz.! Hence, the overall sustainable data rates for grid sizes 36, 64, 128, and 256 are
6.67, 22.22, 22.28, and 23.25 Hz. respectively.

! These numbars are generated by :nterpoiation from Figures 5.24-31
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Figure 5.32 The sustainable data rates of each element of gn and g/

The SDR-based speedup curve that corresponds to the performance requirement above is
shown i Figure 5.33. As indicated in the previous two sections, there is a significant
nerfore =i ce gain from grid size 36 o 64, hut not beyond 64. The overall speedup of grid size
25€ ov- 36 is 3.49. The theoretical speecup limit of grid size 256 over 36, i.e. a linear

25% . . .
355° = 7.11. Since 31 sites out of those grid sizes are dedicated for

specci, i not exactly

manajg2:s, only 5 sites are available for dyna~ic objects on grid size 36, but 220 are available

fa s . ey 2
2¢ gid sizs 256. So the actual theoretical iimit is probably closer to —;‘9- = 44. Hence, a

speedup of 3.49 is very small compared to the theoretical fimit.!

! For gnd size 64, the demonsirated speedup cver gnd size 36 is 3.33. The theorstical fimit is

33 - . L 87
prabably about _5— = 6.6. For gnd size 128, he speedup is 3.34, and *he iimut is prebably —5— =
19.4,
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Figure 5.33 A possibie SDR-based speedup curve

The corresponding capacity-based speedup curve can similarly be derived. Appendix A6
contains the details of the derivation. Figure 5.34 shows the capacities of each element of th
performance requirement. The capacities of grid size 356 vary from 5.60 to 8.55
POR's/scantime; grid size 64, 16.40 10 18.61 POR's/scantime; grid size 128, 17.35 to 20.23
POR's/scantime; and grid size 256, 16.90 to 18.61 POR's/scantime. So the overall capacities
for grid sizes 36, 64, 128, and 256 are 5.60, 16.40, 17.35, and 16.90 POR’s/scantime,
respectively.

Figure 5.35 shows the capacity-based speedup curve that corresponds to the
performance requirement. This curve also shows a significant improvement from grid size 36
to 64, but not much beyond 64. The speedup of grid size 128 over 36 is 3.10.! It is also very
small compared to the theoretical limit.

1 The speedup cf grid size 256 cver 36 1s scmawhat smaller, 3.62. The speedup of gnd size 64 over
36 is 2.93. Ail thess capacity-based spsedup figures are siight'y lower than their corresponding SDR-
based figures.
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The SDR-based and capacity-based speedup curves can be normalized in terms of the
number of POR's processed per simulation time unit (second), as shown in Figure 5.36. The
SDR-based ﬂgures are multiplied by the width of the scenario used, C-130, which is 15.74
POR'v/scantime. The capacity-based figures are multiplied by the frequency of input data used,
which is 20 Hz.

400 -
-— o 3

300
g [ @ SDR-Based
g 200 I ¢ Capacity-Based

100 #

0
0 64 128 192 256
Grid Size

Figure 5.36 The two speedup curves are normalized in terms of POR's per simulation time unit

Of course, the speedup curves above are very much dependent on the performance
requirement specified. A tighter performance requirement will eventually eliminate much of
the performance gain achieved on larger grid sizes. For example, if the P Excess Ratio is
required to be very close to 1.0, as shown in Figure 5.31, the speedup is reduced to only about
1.25. If the performance requirement is too tight, it will not be achievable on any grid size at
any data rate or width. A more relaxed performance requirement, if tolerable, can lead to
slightly higher speedup. But there is a limit: higher data rate or width that leads to higher
latencies and excess ratios is eventually no longer sustainable. At that point, a looser
performance requirement does not change anything.
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We feel that the small gain in performance across grid sizes is intrinsic to the PA
system. Its complex reasoning leads to coarse process granularity. As a result, the level of
concurrency achievable is relative’ «ww. The system fails to fully utilize the additional sites
available on larger grid sizes.

5.5. Summary of Results

Six parameters of the PA system are studied: free pool lengths, PM multiplier, FP3
history ring buffer length, connection search interval, maximum FPO fusion retry, and P
waiting period. The free pool mechanism was implemented to reduce dynamic object creation
latencies, but the experiment shows that the latencies are not reduced no matter how long the
free pools are. The experiment also shows that the PM's help the fusion process by reducing
both the P Creation Latency and P Excess Ratio. However, long FPS history ring butfers in the
connection process increase the FPO Creation Latency while at the same time decrease the FPO
Excess Ratio. A wide connection search interval also causes high FPO Creation Latency, but a too
narrow ccnnection search interval causes high FPO Excess Ratio. The FPO fusion retry process
is shown to be very critical in improving the speed and quality of the fusion process. Finally,
the experiment shows that obsolete P's have to discarded to prevent the fusion performance
from dateriorating.

All of the latencies and the excess ratios, except t»e FPS Excess Ratio which is constantly
zero, go up as the input data frequency or width increases. Th¢ latencies and scess ratios
increase much more quickly on grid size 36 than on any larger gi.g sizes. T <nee: of the
latency and excess ratio curves for grid sizes 64, 128, and 256 are about the saine ~ernc foi 4
desired lavel of performance, any significant improvement stops at grid sizes 64.

An SDR-based and a capacity-based speedup curves are generated by plotting susta:nahle
data rate and capacity, respectively, versus grid size, after a performance requirement is
specified. Both speedup curves show substantial improvement from grid size 36 to 64, but not
beyond grid size 64. The overall SDR-based speedup over grid size 36 is 3.49, while the
capacity-based speedup is 3.10. Both figures are small compared to the theoretical limit.
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6. Conclusions

Evaluating the performance of a continuous parallel knowledge-based system such as PA
proves to be very difficult. The performance cannot be measured in execution time, since the
system is continuous. The notion of latency proves to be very useful in indicating how the
system keeps up quantitatively with the input data. Excess ratio is also useful as a measure of
the quality of the result, but it fails to indicate whether it grows in time. A harder problem is in
defining the notion of sustainability. Different definitions could lead to different conclusions of

the sama experimental results.

For many of the heuristics in PA, the qualitative and quantitative aspects of ihe
performance are proportionally related. This is especially true when the heuristics deal with
how much history or knowledge have to be processed. With long history, the system sparids toc

much time to do useless processing with obsolete data. As a result the system cannot keep up
with its input data: both the quantitative and qualitative aspects of the performance deteriorate.

The potential speedup via concurrent processing of large and complex systems such as PA
is relatively small. While the DA module can achieve 2 order of magnitude speedup [5], PA can
achieve only about 1 order of magnitude. The large speedup in DA is due to its simpie reasoning.
It consists of small and relatively independent processes. PA, on the other hand, is much niore
complex. PA cannot be decomposed irto smaller processes without introducing a high gsgise of
dependency and synchronization among the processes that would be enough 10 offset the potential
gain.

The results in this experiment lead to a conclusion that there is an inverse reiationship
between the potential speedup via conéurrency of a system and its reasoning compiexity. This is
very unfortunate, since systems are unmistakably becoming more compiex and larger. Yet,
concurrent processing does not seem to be the answer for a large speedup in their performance.

7. Future Work

Many interesting enhancements and experiments are worth pursuing with the current
system. These include:

+ Implement and evaluate the effects of variable FPO fusion retries (Seztion
2.3.3).
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» Exploit the fra nool thechanism 1o cuycle obsolels dyrz~ic objscts
{Bectlon 5.3.1}.

- Measure and svziuats © 1 mance of PA ¢n a grig size i which there
ic cnly cne site wvailabia for all dvnamia objecis. THis perormance ig o
o i3nd v calculaie a more ascurate spesdup figurs over the number of
sites available for dynamic objects (Seciion 5.4),

The naxt step n the Airtrac development is the dssign and implementation of the iast
module, Peth Interpretation {(Pl). As described earlier. the P{ module will analyze ang
in‘arpret information stored in the P's ¢~ “erated by the PA module. Additional sources of
information such as aircraft flight plans and intelligence reports are nseded 10 provide
osnlinuous and real-time assessments and predictions about aircraft in the ronitored airspace.
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A2. Sample Simulation Resuits

The following figures show sample simulation results: latency reports, ccst reports, and
queue lengths.
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A3. Sampie Load Summary

The foilowing is a sample load summary of a simulation run on the grid size 128. Each

line starts with the location of a site, the total number of objects or processes that reside on
that site, and the kinds of cbjects or processes and their comresponding numbers. The first 31
siles listed are reserved for managers; they are ailocated statically at initialization. The rest
re for dynamic objecls, which are aliccated dynaracally and randomly 1t run time.

(16 8): 2 processes ({{PAl . 1} (DAS . 1))

(18 7): 1 processes ((FFM . 1})

(16 6} | processes ((FPM . 1}}

(16 5): 1 processes ({FPM . 1)}

(18 4): 1 processes ((FPM . 1)}

{16 3): 1 processes ({FPM . 11}

(16 2): 1 processes {(F7M _ 11}

(16 1): 1 processes ({FPM . 1}

(1S B): 1 processes {{FPM _ 11

{15 7): 1 processes ({FPM . i}

{15 6): 1 processes [FPC _ 1.

(15 5): 1 processes {{FPC . 1))

(15 4): t processes ({(FPC . 1))

{1S 3): 1 processes {FPC . 1}

(15 2): 1 processes ((FPC _ 1}

{15 1) 1 precesses  {(FPC . 1}}

(14 8): 1 processes ({{FPC _ 1)}

(14 7). 1 processes (FPC . i)}

{14 6): 1 processes ([FPC _ 1}}

114 332 1 processes ({CPM . 1)}

(14 4): 1 processes ({CPM . 1}}

(14 3): t processes ({(CPM _"1}}

(14 2): © processes ((PM . 1)}

(14 1)° 1 processes ({{PM . 1))

(13 8): 1 processes ({(FM _ 1)}

(13 7): 1 processes (iFM . 1))

(13 6): 1 processes 'PM . 1))

{13 5): 1 processes (IPM _ 1))

(13 4): 1 precesses ((PM . 1)}

(13 3): t processes . 1)

(13 2): 1 precesses
(13 1): 14 processes
(12 8): 27 processes

5
.8} {FPO . 5} P _ 33}
.14 IFPO L 113 (P . 21

(12 7): 22 processas PO .51

(12 8): 27 processes iFPC . 6} (P . 4))

(12 5): 23 processes FPO . & {UFP _ 1} P | 15
{12 4): 17 procasses (FPC . 4} iP . 2 (UFP _ 1
(12 3): 22 processes FPO .Y IP. 2

{12 2): 21 processes ¢ 13 FPO .51 {P . 2} (UFP | 1}
{12 1): 18 processss 151 iFPO . 31

Kook
]

-

Stk




11 8): 17 processes ((FPS . 11) (FPO . 4) (P . 2))

§11 7;: 20 :rocomc ((FPS . 14) (FPO . 4) (P . 2))

(11 6): 11 processes ((FPS . 10) (FPO . 1))

(11 5): 19 processes ((FPS . 12) (FPO . 6) (P . 1))

(11 4): 16 processes ((FPS . 10) (FPQ . 5) (P . 1))

(11 3): 17 processes ((FPS . 7) (FPO . 6) (P . 4))

(11 2): 19 processes ((FPS . 13) (FPO . 5) (P . 1))

(11 1): 18 processes ((FPS . 13) (FPO . 1) (P . 1))

(10 8): 11 processes ((FPS . 7) (FPO . 4))

(10 7): 16 processes ((FPS . 10) (FPO . 5) (P . 1))

(10 8): 18 processes ((FPS . 12) (FPO . 4) (UFP . 2))

(10 5): 12 processes ((FPS . 8) (FPO .3} (P . 1))

(10 4): 25 processes ((FPS . 16) (FPO . 8) (P . 3))

(10 3): 18 processes ((FPS . 9) (FPO ., 5) (P . 3) (UFP . 1))
{10 2): 15 processes ((FPS . 9) (FPO . 5) (P . 1))

(10 1): 17 processes ((FPO . 7) (FPS . 6) (P . 3) (UFP . 1))
(9 8): 14 processes ((FPS . 9) (FPO . 4) (P . 1))

(9 7): 16 processes ((FPS . 9) (FPO . 6) (P . 1))

(9 6): 11 processes ((FPS . 9) (P . 1) (FPO . 1))

(9 5): 21 processas ((FPO . 9) (FPS . 9) (P . 2) (UFP . 1))
(9 4): 17 processes ((FPS . 11) (FPO . S) (P . 1))

(9 3): 18 processes ((FPS ., 15) (FPO . 3))

(9 2): 23 processes ((FPS ., 15) (FPO . 5) (P . 3))

(9 1): 18 processes ((FPS . 9) (FPO . 5) (P . 4))

(8 8): 17 processas ((FPS . 9) (FPO . 6) (P . 2))

(8 7): 11 processes ((FPO . 5) (FPS . S) (P . 1))

(8 6): 18 processes ((FPS . 11) (FPO . 4) (P . 2) (UFP . 1))
(8 5): 20 processes ((FPS . 10) (FPO . 7) (P . 3))

(8 4): 18 processes ((FPS . 9) (FPO . 5) (P . 4))

(8 3): 12 processes ((FPS . 9) (FPO . 2) (P . 1))

(8 2): 20 processas ((FPS . 12) (FPQ . 6) (P . 2))

(8 1): 23 processes ((FPS . 15) (FPO . 4) (P . 3) (UFP . 1))
(7 8): 23 processas ((FPS . 168) (FPOQ . 6) (P . 1))

(7 7): 16 processes ((FPS . 10) (FPO . 4) (UFP . 1) (P . 1))
(7 6): 10 processes ((FPS . 7) (P . 2) (FPO . 1))

(7 5): 12 processes ((FPS . 8) (FPO . 4))

(7 4): 17 processes ((FPS . 11) (FPO . 6))

(7 3): 23 processes ((FPS . 13) (P . 8) (FPO . 4))

(7 2): 16 processes ((FPS . 11) (FPO . 4) (P . 1))

(7 1): 14 processes ((FPS . 9) (FPO . 3) (P . 2))

(6 8): 21 processas ((FPS . 13) (FPO . 4) (P . 3) (UFP . 1))
(6 7): 16 processes ((FPS . 9) (FPO . 5) (P . 2))

(6 8): 26 processes ((FPS . 12) (FPO . 9) (P 5))

{6 5). 15 processes ((FPS . 14) (FPO , 1))

(6 4): 10 processes ({(FPS . 7) (FPO .2) (P . 1))

(6 3): 10 procasses ((FPS . 7) (FPO . 3))

(6 2): 14 procasses ((FPS . 10) (P . 2) (UFP . 1) (FPO . 1))
(8 1): 25 processes ((FPS . 16) (FPO . 6) (P . 3))

(5 8): 13 processes ((FPS . 8) (FPO . 2) (P . 2) (UFP . 1))
(5 7). 12 processes ((FPS . S) (FPO . 4) (P . 3))

(5 6): 23 processes {(FPS . 11) (FPO . 10) (P . 2))

(5 5): 18 processes ((FPS 10) (FPO 6) (P . 2))

(5 4). 23 processes ((FPS . 15) (FPQ . 7) (P . 1))

(5 3): 25 procasses ((FPS . i8) (FPO . 7))
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(5 2):
(5 1)
(4 8):
47):
(4 8):
(4 5):
(4 4).
(4 3):
(4 2):
(4 1)
(3 8):
(37):
(3 6):
(3 5):
(3 4):
(3 3):
(2 2):
(3 1)
(2 8):
27
(2 6):
(2 9):
(2 4).
(2 3):
(2 2)
(2 1)
(1 8):
(1 7)
(1 6):
(1 5):
(1 4):
(i 3):
(1 2):
(1 1)

16 processes
14 processes
13 processes
18 processes
20 processes
18 procasses
11 procasses
16 processes
22 processes
13 processes
13 processes
24 processes
21 processes
20 processes
13 processes
15 procasses
24 processes
15 processes
19 processes
13 processes
21 processes
10 processes
22 processes
22 processes
10 processes
20 processes
12 processes
20 processes
22 processss
18 procsssas
16 processes
14 processes
11 processes
18 processes

((FPS .

((FPO .

((FPS .
((FPS .
((FPS .
((FPS .
((FPS .
((FPS .
((FPS .
((FPS .
{(FPS
((FPS .

{(FPS .

((FPS .
((FPS .
((FPO .
((FPS .
((FPS .

{(FPS .
((FPS .
((FFO .
((FPS .
((FPS .
((FPS .

((FPS .

((FPS .

((FPS .

((FPS .

((FPS .
{(FPS .

((FPS .
((FPS .
((FPS .

((FPS .

10) (FPO . S) (P . 1))
7) (FPS . 5) (P.2)
6) (FPO . 4) (P . 3))
11) (FPO . 5) (P . 2))
12) (P . 4) {FPO . 4))
12) (FPO . 5) (P . 1)
6) (FPO . 3) (P . 2)
12) (FPO . 3) (P . 1))
15) (FPO . 5) (P . 2))
7Y(FPO .5 (P . 1))

.9) (FPO . 3) (P . 1))

16) (FPO . 6) (P . 2))
15) (FPO . 8))

11) (FPO . 5) P. 4))
7) (FPO . 3) (P . 3))

7) (FPS . 6) (UFP . 1) (P . 1))
15) (FPO . 6) (P . 3))
9) (FPO . 3) (P . 3)

13) (FPO . 5) (P . 1))
11) (FPO . 2))

11) (FPS . 10);

7) (FPO . 3))

15) (FPO . 4) (P . 3))
16) (FPO . 5) (P . 1))
8) (P . 2) (FPO . 2))
12) (FPO . 5) (P . 3))
10) (UFP . 1) (FPO . 1))
10) (FPO . 7) (P . 3))
13) (FPO . 8) (UFP . 1))
8) (FPO . 7) (P . 2) (UFP 1))
11) (FPO . 4) (P . 1))
8) (P . 3) (FPO . 3))

8) (FPO . 5))

9) (FPO . 6) (LEXICAL-CLOSURE . 2) (P . 1))
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A4. The Effects of the Frequency of Input Data

This appendix contains the complete graphs of the effects of the frequency of input data
on the quantitative and qualitative performance of PA.

2000 -
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e 1000 7 - FPS-CL-256
S
G /
/)
Q.
) Ddi(
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Data Frequency (Hz)

Figure A4.1 The effacts of the input data rate on the FPS Creation Latency

3-134




2000 -
% o FPS-UL-36
) <+ FPS-UL-64
8 2 FPS-UL -128
e 1000 -+ FPS-UL- 256
w
2
)
g P
0 ‘""‘#fér )
0 10 20 30 40
Data Frequency (Hz)
Figure A4.2 The effects of the input data rate on the FPS Update Latency
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Figure A4.3 The effects of the input data rate on the FPO Creation Latency
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Figure A4.4 The effacts of the input data rate on the FPO Update Latency
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Figure A4.5 The effects of the input data rate on the P Creation Latency
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Figure A4.6 The effects of the input data rate on the P Update Latency
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Figure A4.7 The effacts of the input data rate on the FPO Excess Ratio
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Figure A4.8 The effecis of the input data rate on the P Excess Ratio
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A5. The Effests of the Width of Input Data

This appendix - sntains the complete graphs of the effects of the width o input data on the
quantitative and qualita.ve performance of PA.

2000 4
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= 1000 - FPS-CL-256 ]
[}
Q
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A
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10 20 30
Data Width (POR/scantime)
¥ Figure AS.1 The effects of the input data width on the FPS Creation La'ency
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Figure A5.2 The effects of the input data width on the FPS Update Latency
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Figure A5.3 The effacts 3f the input data width on the FPO Creation Latency
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FPO Update Latency (ns)
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Figura A5.4 The sffects of tre :nput data width on the FPO Update Latency
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Figure A5.5 The effacs of the :nput data width on the  Creation Latency
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Figure A5.6 The effects of the input data width ¢n the P Update Latency
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A6. Derivation of a Capacity-Based Speedup Curve

This appendix shows how a capacity-based speedup curve is derived. Figures A8.1
through A6.6 show the capacity achievable, on the grid sizes 36, 64, 128, and 256, for a
selected range of latency requirement. Each figure corresponds to an element of gn. Figures A8.7
and A6.8 .how the data widths on the four grid sizes that correspond to different FPO and P
exc,ess ratios. These data widths are not necessarily sustainable, since the notion of
custainability is tied to the notion of "not growing in time.* There is no way, however, to know
whether an excess ratio grows in tims.
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Figure A6.9 shows the capacities of each element of the following performance

requirement:

~FPS-CL ~1007
FPS-UL 80
FPO-CL 200

gn = | gpo-yL | * | 100| ™
P-CL 300
Lp.UL L1504
"FPS-ER r0.007

ql = FPO-ER} =1]0.15
LP-ER Lo.20d

The capacities of grid <ize 36 vary from 5.60 to 8.55; grid size 64, 15.40 to 18.61;
arid size 128, 17.35 to 20.93; and grid size 256, 16.90 to 18.61. So the overall capacities for
grid sizes 36, 64, 128, and 256 are 5.6, 16.40, 17.35, and 16.90, respectively.

Figure A6 0 shows the capacity-based speedup curve that corresponds to the
performance requirement.
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Abstract

This paper documents the results we obtained and the lessons we learned in the
design, implementation, and executon of a simulated real-ume application on a simulated
parallel processor. Specifically, our parallel program ran 100 times faster oo a 100-
processor multiprocessor compared to a 1-processor multiprocessor,

The machine architecture is a distributed-memory multiprocessor. The target
machine consists of 10 to 1000 processors, but because of simulator limitations, we ran
simulations of machines consisting of 1 to 100 processors. Each processor is a computer
with its own local memory, executing an independent instruction stream. There is no
global shared memory; all processes communicate by message passing. The target
programming environment, called Lamuna, encourages a programmung style that stresses
performance gains through problem decomposition, allowing many process 'rs 0 be
brought to bear on a problem. The %<y is to0 distribute the processing load over replicated
objects, and to increase throughput by building pipelined sequences of objects that handle
stages of problem solving,

We focused on a knowledge-based application that simulates real-time
understanding of radar tracks, called Airtrac. This paper describes a portion of the Air.dac
application implemented in Lamuna and a set of expenments that we performed. We
confirmed the following hypotheses: 1) Performance of our concurrent program improves
with additonal processors, and thereby anains a significant level of speedup. 2)
Correctness of our concurrent program can be maintained despite a high degree of problem
decomposition and highly overloaded input data conditions.
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1. Introduction

Thus paper focuses on the problems confronting the programmer of a concurrent
program that runs on a distributed memory multiprocessor. The primary objective of our
experiments is to obtain speedup from parallelism without compromising correctness.
Specifically, our parallel program ran 100 times faster on a 100-processor multiprocessor
compared to a 1-processor multiprocessor. The goal of this paper is to explain why we
made certain design choices and how those choices influence our result.

A major theme in our work is the tradeoff between speedup and correctness. We
artempt to obtain speedup by decomposing our problem to allow many sub-problems to be
solved concurrently. This requires deciding how to pamition the data structures and
procedures for concurrent execution. We take care in decomposing our problem; to a first
approxunation, more decomposition allows more concurrency and therefore greater
speedup. At the same time. decomposition increases the interactions and dependencies
berween the sub-problems and makes the task of obtaining a correct solution more difficult.

This paper focuses on the implementation of a knowledge-based expert systerm in a
concurrent object-oriented programming paradigm called Lamina [Delagi 87a]. The target
is a distributed-memory machine consisting of 10 to 1000 processors, but because of
simulator limitations, our simulations examine | to 100 processors. Each processor is a
computer with a local memory and an independent instruct.on stream.! There is no global
shared memory of any kind.

Airtrac is a knowledge-based application that simulates real-time understanding of
radar tracks. This paper describes a portion of the Airtrac application implemented in
Lamina and a set of experiments that we performed. We encoded and implemented the
knowledge from the domain of real-time radar mack interpretation for execution on a
dismbuted-memory message-passing multiprocessor system. Our goal was to achieve a
significant level of problem-solving speedup by techniques that exploited both the
characteristics of our simulated parallel machine, as well as the parallelism available in our
problem domain.

The remainder of this paper is organized as follows. Section 2 introduces
definitions that we use throughout the paper. Section 3 describes the model of the parallel
machine that we simulate, and the model of computation from the viewpoint of the
programmer. Section 4 outlines a set of principles that we follow in our programming
effort in order to shed light on why we take the approach that we do. Section 5 describes
the signal understanding problem that our parallel program addresses. Secton 6 describes
the design of our experiments, and Section 7 presents the results. Section 8 discusses a
number of design issues, and Section 9 summarizes the paper.

Each processor 1§ roughly comparable to a 32-bit microprocessor-based system equipped with a
mulutasking kernel that suppons nterprocessor commumcation and restartable processes (as opposed to
resumable processes). The hardware system 1s assumed to support high-bandwidih, low-latency inter-
processor commugicatons as descnbed w Byrd et.al. {Byrd 87).
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2. Definitions

Using the definitions of Andrews and Schneider {Andrews 83], a sequennal
program specifies sequential execution of a list of statements; its execution is called a
process. A concurrent program specifies two or more sequential programs that may be
executed concurrendy as parallel processes.

T
We define S, , speedup as the ratio ,r.“l, where 'I'k denotes the time for a given
n
task to be completed on a k-processor multiprocessor. Both 'I‘m and T n epresent the same

concurrent program running on m-precessor and n-processor multiprocessors,
respectively. When we compare an r-processor mwltiprocessor to a l-processor

multiprocessor, we obtain a measure for Sp/; speedup which should be distinguished
*
from rrue speedup, defined as the ratio ;!;—-, where T* denotes the time for a given task to

1
n
completed by the best implementation possible on a uniprocessor.? In particular, T*

excludes overhead tasks (e.g. message-passing, synchronization, etc.) that TI counts.

We define correctness to be the degree 1o which a concurrent p: dgram ez.scuting on
a k-processor multiprocessor obtains the same solution as a conventional uniprocessor-
based sequential program embodying the same knowledgs as contained in the concurrent
program. We call the lanter solution a reference solution, We use a serial version of our
system to generate a reference solution, to evaluate the correctness of the parallel
implementation.

MacLennan [MacLennan 82] distinguishes batween value-oriented and object-
oriented programmuing styles. A value has the following properties:

* A value is read-only.
* A value is atemporal (i.c. timeless and unchanging).

» A value exhibits referential transparency, that is, there is never the danger of one
expression altering something used by another expression.

These properties make values extremely attractive for concurrent programs. Values
are immutable and may be read by many processes, either directly or through “copies” of
values that are equal; this facilitates the achievement of comrecmess as well as concurrency.
A well-known example of value-oriented programming is functional programming
[Henderson 80]. Other examples of value-oriented programming in the realm of parallel
computing include systolic programs [Kung 82] and scalar data flow programs [Arvind 83,
Dennis 85], where the data flowing from processor to processor may be viewed as values
that represent abstractons of various intermediate problem-solving stages.

Zp 1-processor multiprocessor executes the same parallel program that russ on a o-processor
multiprocessor  In partcular. 1t creates processes that communicate by sending messages. as opposed to
shanng a common memory.

3Unfortunately. our reference program is oot a valid producer of T* estimates, and we cannot use it

to obtain true speedup estimates. Project resource limitations prevented us from developing an opumized
program to serve as a best serial implementadon.
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In contrast, MacLennan defines objecrs in computer programming to have one or
more of the following properues:

» An object may be created and destroyed.
» An object has state.

+ An object may be changed.

+ An object may be shared.

Computer programs often sinulate some physical or logical situation, where objects
represent the entities in the simulated domain. For example, a record in an employee
database comresponds to an employee. An entry in a symbol table corresponds to a variable
in the source text of a program. Variables in most high-level programming languages
represent objects. Ob;ects provide an abstraction of the state of physical or logical entities,
and reflect changes that *hose entities undergo during the simulation. These properties
make objects partcuiarly useful and artractive to a programmer.

Objects in a concurrent program introduce complications. In particular, many
parallel processes may attemnpt to create, destroy, change, or share an object, thereby
causing potential problems. For instance, one process may read an object, perform a
computation, and change the object. Ancther process may concurmrently perform a similar
sequence cf actions on the same objec:, leading to the possibility that operations may
interleave, and render the state of the object inconsistent. Many solutions have been
proposed, including semaphores, conditional critical regions. and monitors; all of these
techniques stive to achieve correctness and involve some loss of concurrency.

Our programming paradigm. Lamina. suppors a variation of monitors, defined as a
collection of permanent variabies (we use the term instance variables), used to store a
resource’s state, and some procedures, which implement a set of allowed operations on the
resource [Andrews §3]. Although monitors provxdc murtual exclusion, concurrency
considerations ferce us to abandon mutual exclusion as the sole technique to obtain
correctness.

We classify techniques for obtaining speedup in problem-solving into two
categories: replication and pipelining. Replicarion is Jefined as the dccomposmon of a
problcm or sub-problem into many independent or pattially mdependcnt sub-problems that
may be concurrently processed. P;pelmmg is defined as the decomposition of a problem or
sub-problem 1nto a sequence of operations that may be performed by successive stages of a
processing pipeline. The output of one stage is the input to the next stage.

3. Computational model

3.1. Machine model

Our machine architecture, referred to as CARE [Delag’ 87a], may be modeled as an
asynchronous message-passing distributed system . :zliable datagram service
[Tanenbaum 81j]. After sending a message, a process mmay continue to execute (i.e.
message passing is asynchronous). Arrival order of messages may differ from the order in
which they were sent (i.e. datagram as opposed to viral circuit). The network guarantees
that no message is ever lost (i.e. reliable), although it does not guarantee when a message
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will arrive. Each processor within the distributed system is a computer that supports
interprocessor communication and restartable processes. Each processor operates on its
own instruction stream, asynchronously with respect to other processors.

In synchronous message passing, maintaining consistent state between
communicating processes is simplified because the sender blocks until the message is
received, giving implicit synchronizaton at the send and receive points. For example, the
receiver may correctly make inferences about d3c 'SPndCl‘ s program state from the contents
of the message it has received, without the possibility that the sender program continued to
execute, possibly negatng a condition that held at the time the original message was sent.

In asynchronous message passing, the sender continues to execute after sending a
message. This has the advantage of introducing more concurrency, which holds the
promise of additional speedup. Unfortunately, in its pure form, asynchronous message
passing allows the sender to get arbitrarily far ahead of the receiver. This means that the
contents of the message reflects the state of the sender at the time the message was sent,
which may not necessarily be ue at the time the message is received. This consideradon
makes the maintenance of consistent state across processes difficult, and is discussed more
fully in Sectdon 4.

3.2. Programmer modei

Our programming paradigm. Lamina, provides language conszucts that allows us
to exploit the disaibuted memory machine architecture described earlier [Delagi 87b]. In
particular, we focused our programming efforts on the concurrent object-oriented pro-
gramming model that Lamina provides. As in other object-oriented programming systems,
objects encapsulate state information as instance variables. Instance variables may be
accessed and manipulated only through methods. Methods are invoked by message-
passing.

However, despite the apparent similarity with conventional object-oriented systems,
programming within Lamina has fundamental differences:

-« Concurrent processes may execute during both object creation and message
sending.

» The tme required to create an object is visibie to the programmer.
* The tme rrquired to send a message is visible to the programmer.
« Messages may be received in a different order from which they were sent.

These differences reflect the scong emphasis Lamina places on concurrency. While
all object-oriented systems encounter delays in object creation and message sending, these
elays are significant within the Lamina paradigm because of the other activides that may
proceed concurrently during these periods. Subte and not-so-subtle problems become
apparent when concurrent processes communicate, whether to send a message orto create a
new object. For instance, a process might detect that a particular condidon holds, and
respond by sending a message to another process. But because processes continue to
execute during message sending, the condition may no longer hold when the message is
received. This example illustrates a siruation where the recipient of the message cannot
correctly assume that because the sender rzsponds to a particular condition by sending a
message, that the condition still holds when the message is received.




Regarding message ordering, partly as a result of our experimentation, versions of
Lamina subsequent to the one we used provide the ability for the programmer to specify
that messages be handled by the receiver in the same order that they were sent [Delag 87¢].
Use of this feature imposes a performance penalty, which places a responsibility on the
programmer to determine that message ordering is truly warranted. In the Airrac
apolication, we believed that ordering was necessary and imposed it through application
level routines that examined message sequence numbers (time tags) and queued messages
for which all predecessors had not already been handled.

In Lamina, an object is a process. Following the definition of a process provided
earlier, we make no commimmnent to whether a process has a unique virrual address space
associated with it. Each object has a top-level dispatch process that accepts incoming
messages and mnvokes the appropriate message handler; otherwise, if there is no available
message, the process blocks. Sending a message to an object corresponds to
asynchronous message-passing at the machine level. A method executes atornically. Since
each object has a single process, and only that process has access to the internal state
(instance variables), mutual exclusion is assured. An object and its methods effectively
constirute a non-nested monitor.

Our problem-solviig approach has evolved from the blackboard model, where
nodes on the blackboard form the basic data objects, and knowledge sources consisting of
rules are applied to wansform nodes (i.e. objects) and create new nodes [Nii 86a, Nii 86b].
Brown et. al. used concepts from the blackboard model to implement a signal-interpretation
application on the CARE muitiprocessor simulator {(Brown 86]. Lamina evolved from the
experiences from that effort. In addition, lessons leamed in that earlier effort have been
incorporated into our work, including the use of replication and pipelining to gain
performance, and improving efficiency and correctmess by enforcing a degree of consis-
tency control over many agents computing concurrenty.

4. Design principles

i-—-ﬁ

amira represents a programming philosophy that relies on the concepts of
replication and pipelining to achieve speedup on parallel hardware. The key to successful
applicaticn of these principles relies on finding an appropriate problem decomposition that
exploits concurrent execution with minimal dependency between replicated or pipelined
processing elements.

The price of concurrency and speedup is the cost of maintaining consistency among
objects. When writing a sequenual program, a programmer automatically gains mutual
exclusion berween re.:d/write operations on data souctures. This foliows directly from the
fact that a sequential program has only a single process: a single process has sole control
over reads and writes to a variable, for instance. This convenience vanishes when the
Jrogrammer writes a2 concurrent program. Since a concurrent program has many
concurrently executing processes, coordinating the activities of the processes becomes a
sigruficant task.

In this section. we develop the concept of a dependerce graph program to provide a
framework in which wadeoffs between alternate problem decompositions may be
examuined. Choosing a decor.zosition that admits high concurrency gives speedup, but it
may do so with the expense of higher effort in maintaining consistency. We inzroduce
dependence graph programs to make the wadeoffs more expiicit.
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4.1, Speedup

Researciars have debated how much speedup is obzainable_: on parallel hardware, on
both theoretical and empirical grounds; Kruskal has surveyed this area [Kruskal 85]. ‘_:Vc
take the empisical approach because our goal is to test ideas abou parallel problem solving
using multiprocessor architectures. Our thinking is guided, however, by a number of
principles describing how to decompose problems to obtain speedup.

4.1.1. Pipelining

Consider a concurrent program consisting of three cooperating processes: Reader,
Executor, and Printer. The Reader process obtains a line consisting of characters from an
input source, sends it to the Executor process, and then repeats this loop. The Executor
performs a similar function. receiving a line from the Reader, processing it in some way,
and sending it to the Printer. The Printer receives lines from the Executor, and prints out
the line. These processes cooperate 1o form a pipeline; see Figure 1. By using
asynchronous message passing, we obtain concurrent operation of the processes; for
instance, the Printer may be working on one line, while the Executor is working on
another. This means that by assigning each process to a different processor, we can obtain
speedup, despite the fact that ecach line must be inputted, processed, and ourtput
sequentially. By overlapping the operations we can achieve a higher throughput than is
possible with a single process performing all three tasks.

Reader Executor Printer
H
L

Figure 1. Decomposing a problem to obtain pipeline speedup.

By decomposing a problem in sequeantial stages, we can obtain speedup from pipelining.

4.1.2. Replication

Consider a variaion of Reader-Executor-Printer problem. Suppose that we are able
to achieve some overla, in the operations, but we discover that the Executor stage
consistently takes longer than the other stages. This causes the Printer to be continually
starved for data, while the Reader completes its task quickly and spends most of its time
idle. We can improve the overall throughput by replicating the function of the Executor
stage by creating many Executors. See Figure 2. By increasing the number of processes
performing a given function, we do not reduce the time it takes a single Executor to
perform its function, but we allow many lines to be processed concurrently, improving the
utilization of the Reader and Printer processes, and boosting overall throughput. This
principle of replicating a stage applies equally weli if the Reader or the Printer is the
bottleneck.




Executor-1

Reader Printer

. >
[ 2

Executor-n

Figure 2. Decomposing a problem to obuain replicauon speedup.

Sy duplicaung identical problem soiving stages, we can obtain speedup from meplication.

4.2. Correctness
4.2.1. Consistency

In order to achieve speedup from parallelism, we dec 'mpose a problem into smaller
sub-problems, where each sub-problem is represented by an object. By doing this, we
lose the luxury of mutual exclusion between the sub-problems because of interactions and
dependencies that typically exist between sub-parts of a problem. For example, in the
Reader-Executor-Printer problem, the simplest version is where a line may be operated
upon by one process truly independently; we might want to perform ASCI to EBCDJC
character conversion of each line, for instance. We organize the problem solving so that
the Reader assembles fixed-length text strings, the Executor performs the conversion, and
the Printer does output duties. This problem is well-suited to speedup from the simple
pipeline parallelism illustrated in Figure 1. In Maclennan's value/object terminology, a
“fixed-length text string” may be viewed as a value that represents the i-th line in the input
text; the text string is read-only and it is atemporal. The trick 15 1o :w the ASCII and
EBCDIC versions of a text strings as different alues corresponding to the i-th line; the
Executor’s role is to take in ASCI values and wransform them into EBCDIC values of the
same line. As we will see, value passing has desirabie properties in concurrent message-
passing systems.

In a more complicated example. we might want to perform text compression by
encoding words according to their frequency of appearance, where the Reader process
counts the appearance of wceds and the Executor assigns words to a variable length output
symbol set. The frequency table is a source of trouble: it is an object which the Reader
writes and updates, ~nd which the Executor reads. Unfortunately, the semantics we
impose on the text ccmpression task requires that the Reader complete its scan of the input
text before the Executor can begin its encoding task. This dependency prevents us from
exploiting pipeline parallelism.

As another example, we might want to compile a high-level language source
program text (e.g. Pascal. Lisp, C) into assembly code. Suprose we allow the Reader to
build a symbol table for functions and variables, and we et the Executor parse the

3-157




tokenized output from the Reader, while the Printer outputs assembly code from the
Executor's syntax graph stucturss. In the scheme outlined here, the symbol table resides
with the Reader, so whenever the Executor or Pnnter needs to access or update the symbol
table, it must send a message to the Reader. Consistency becomes an important issue
within this setup. For instance, suppose that the Executor determines on the basis of its
parse, that the variable x has been deciared global. VWithin a procedure, a io_cai variabie is0
named x is defined. which requires that expressions referring to x within this procedure use
a local storage location. Suppose the end of the procedure is encountered, and since we
want all subsequent occurrences to X to refer to the global location, the Executor marks the
enwy for x accordingly (via a message to the Reader). When the Printer sees a reference to
X, it consults the symbol tabls (via a message 1o the Reader) to determine which storage
location shouid be used: if by misfortune the Printer happens to be handling an expression
within the procedure containing the local ¥, &iid e symbol tabie has already been updated,
incorrect code will be generated. The essenual point is that the symbol table is an object; as
we defined earlier, it is shared by several parallel processes, and it changes. A number of
fixes are possible. including distinguishing variables by the procedure they are occur
within. but this example illustrates that the presence of objects in concurrent program raises
a need to deal with consistency.

Consistency is the property that some invariant condition or conditions describing
correct behavior of a program holds over all objects in all narallel processes. This is
tyrically difficuit to achieve ir: a concurrent program, since the program itself consists of a
sequenual list of statements for each individual process or object. while consistency appiies
to an ensemble of objects. The field of distributed systems focuses on difficuities anising
from consistency mamntenance [Comafion 85, Weihl 85, Filman 84]. Smith [Smith 31]
refers to this programming goai as the development of a probiem-solving protocol.

The work of Schlichting and Schneider [Schlichting 83 :s particularly relevant for
our situation: they study partai correciness properties of unrei:adie datagram asynchronous
message-passing dismibuted systems from an axiomatic poin: of view. They describe a
number of sufficient conditions for partial correctness on an asynchronous diszibuted
systen:

 monotonic predicates,
« predicate transfer with acknowledgements.

An predicate is monotonic if once it becomes tue, it remains so. For exampie, if
the Reader process maintains a count of the iines in the variable <czaZZ:nes, and &t
«ncounters the last line in the input text, as well having seen all previous lines, then it might
send the predicate P, "=czaZz:z = 15" to the Executor and to the Printer. The Printer
process might use this informat. . even before it has -eceived all the lines, to check if
sufficient resources exist to complete the job. for instar..e. Intuitively, it is valid to assert
the total nurnber of lines in the input text because that fact rersiains unchanged (assuming
the input tex: remains fixed for the duration of the job). Formaliy, the Reader maintains the
following invariant condidon on the predicate P:

Invariant: “message no:sent” or “P is wue
i n : 3 = . PR M it - - Y A3 T
In contrast, an asseriion that the currentiine is 12, asin "zuzzentlzine = 12,7 changes as

each line is processed by the Reader. The monotonic crniterion cannot be used 10 guasanice
he correctness of this assertion.
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Within the res—~tion of non-nested monitor calls, the programme:. :nay use Lamina
monitors to define a.omic operations. If correctness were the sole concem, the
programmer could develop the entire problem solution within a single method on a single
object; but this 1s an extreme case. Ths entire enterpnse of designing programs fo.
multiprocessors s motivated by a desire for speedup, and monitors provide a base level of
murual exclusion from which a correct concurrent program may be censtructed.

The critical design task is to determir.c the dara structures and methods which
deserve the atomicity that monitors provide. The choice is far from obvious. For ex.mpie,
in the ASCII-t» .EBCDIC translator example, we assumed the Executor process
sequentially sca.uing through the string, translating one character at a time. We see that the
translation of each character may be performed independently, sc a finer-grained problem
decompositina is tc have many Executor processes, each translating a section of the text
line. In the exoeme, we can arrange for each character to be translated by one of many
replicated Executor processes. Choosing the oest decomposition is a function of the
relative ~-ists of perfozming the character translation versus the overhead associated with
partitioning the line, sending messages, and reassembling the translated text fragments (in
the correct order!). The answer depends on specific machine performance parameters and
the type of task ‘nvolved, which in our example is the very simple job of character
transiation, but might in general be a time-consuming operation. Unfortunately, the
programmer often lacks the specific performance figures on which to base such decisions,
and must choose a decomposition based on subjective assessments of the complexity of the
task at hand, weighed against the perceived run-time overhead of decomposition, tegether
with the run-time worries associated with consistency maintenance. On the issue of ii-
choose the best “grain-size” for problem sclving, we can offer no specific guidanc:
However, since the CARE-Lamuna - mulator is heavily instrumented, it lets the
Lsogrammer ouserve the relative ame  of tirne spent in actual computation versus
overhead activities.

In addition to providing mutual exclusion, Lai.1ina also encourages the structured
programrning style (at results from the use of objects and methods. In particular, mutual
exclusion may be exploited without necussarily building large, monolithic objects and
methods that might reflect poor software engineering practice. Since Lamina itself is built
on Zg:2lisp’s Flavors sysiem [Weinreb 80], it is easy fo the programmer to define object
“favers” with instan~ variables and assoc*ated methods to be atomically executed within a
Lamin? ionitor. This can provide important benefits of modularity and structure to the
scfvare enginearing eficat.

To summarize, Lamira objects and methods may = viewed as non-nested monitor
constructs tpac provide the programmer with a base level of mutual exclusion. The
poterntial for additional concumrcacy and problem-solving speedup increases as finer
u tomposivons of data and metnods are adopted. However, these benefits must be
weighed 2 zainst the difficulties of main:aining consistencv berween objects in a concurrent
progfam. Two techniques for mauritaining consistency have been described, differing in

seir applicability and impact on concuniency

4.3. Denendence grapi: piograuis

The previous sectious have defined concepts reievant to the dual goals of achieving
sperdup and correcness. This section vuilds upon those coricepts to provide a framework
in which wradecffs betweea speedup ani| cr.rectness may be sxamined. A dependence
graph program is an abstri~t -epreseniation of a solution to 2 given problem in which
values flow between nodes in a directed graph, where each node applies a function to the
values arriving on 1ts ircon.ing edg:s anc sends out a value on zero or more oLizoINg
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edges. The edges correspond to the dependencies which exist berween the functions
[Acvind 83]. A pure dependence graph program is one in which the functions on the nodes
are free from side effects; in particular, a pure dependence graph program prohxblgs a
function from saving state on any node. (Note that this definition does not preclude a
system-level program on a node from handling a function £ (x, v) by saving the value of x
if the value of x arrives before the value for v. Stricily speaking, an implementation of an £
function node must save state, but this state is invisible to the programmer.) A hybrid
dependence graph program is one in which one or more nodes save state in the form of
local instance variables on the node. Functions have access to those instance variables.

Gajski et. al. [Gajski 82] summarize the principles underlying pure data flow
computation:

» asynchrony
« functionality.

Asynchrony means that all operations are executed when and only when the required
operands are avaiiable. Funcrionaliry means that all operations are functions, that is, there
are no side effects.

Pure dependence graph programs have two desirable properties. First, consistency
is guaranteed by design. As v ¢ have defined it, there are only values and transformations
applied to those values. There are no objects to cause inconsistency problems. Second,
we can theoretically achizve the maximal amount of paralleiism in the solution, and if we
ignore overhead costs, maximize speedup in overall performance. This follows from the
asynchrony principle, which means tha. in the ideal case. we can arrange for each
computation on a node to proceed as soon as all values on the incoming edges are available.

Hybrid dependence graph programs allow side effects to instance variables on
nodes, thereby making it more convenient and straightforward to perform certamn
operations, especially those associated with lookup and matching. This immediately
introduces objects into the computational mode] and raises the usual concerns about
consistency and correctmess.

We will use dependence graph programs to serve two purposes. First, we depict
the dependencies cont~ued within a problem. Second, we explain why we made certain
design decisions in solving the Airtrac problem; in particular, we show why we impose
certain consisiency requirements on the problem solving protocol. A dependence graph
serves as an abstract representation of a problem solution, rather than a blueprint for actual
implementation. Specifically, we want to avoid the pitfall of using a dependence graph
program to dictats the actual problem decompositicn. Overhead delays associated with
message rounng/sending and process invocaton degrade speedup from the theoretical ideal
if the actual implementation chooses 0 decompose the problem down to the grain-size
tvpically found in a d2pendence graph representation. Given an arithmetic expression, for
instance, it may not .. desirable to define the grain-size of primitive operations at the level
of add, subtract, and multiply. This may lead to the undesirable situatica where excessive
overhead time is consumed in message packing, tagging, routing, packing, matching,
unpacking, and so forth, only to support a simple add operation.

Consider the following numerical example from Gajski et. al. [Gajski 82). The
pseudo-code representation of the problem is as follows:
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One possible dependence graph pregram for this problem is shown in Figure 3. This is the
same graph presented by Gajski et. al. They assume that division takes three processing
uruts, multiplication takes two units. and addition takes one unit. As noted in their paper,
the critical path is the computational sequence aj, by, ¢y, ¢, €3, ¢4, €5, €6, €7, cg; the
lower bound on the execution time is 13 -ime units.

di, et d2, o2 d3, 3 d4, o4 ds, e5 36, 86 d7, €7 ds, e8
1 L 2 } 3 L 4 5 L 16 } {7 {8 L
/ / / / / / / /
at a2 a3 aéd a5 a6 a7 a8 ;

[} . - - - - [ ] -

bly b2y iy b 59 b8 b7 b8
- -+ 1+ B+ b s 0 . ] P+ >
c0 ¢l c2 c3 cé cs c6 c7 c8

Figure 3. A dependence graph program for a sumple numerical computation.

A possible concurrent program implementation would be to assign eight processes
to compute the quantities by,...,bg, and a ninth to combine the b; and output ¢y,...,cg.

Such an arrangement maximizes the decomposition of the problem into sub-problems that
may run concurrently, while minimizing the communication overhead. For instance, there
is no loss in combining the computation of ¢y,...,cg into a single process because of the

inherently serial nature of this particular computation.

Another concurrent program might choose a slightly different decomposition and
partition the computation of C1»--,Cg into, say, three processes: €1-C-C3, €4-C5-Cg, and
¢7-cg. This arrangement uses 11 processes versus the 9 processes in the previous

xample. While this leads to no improvement in the lower bound of 13 time units for a
single computation with d, e, and f, it shows an improvement with repeated computations
with different values of the input arrays, d, e, and f. For instance, this allows one
computation to be summing on the ¢7-cg process while another is summing on the C4-C5-Cg
process. Depending cn the complexity of the computation relative to the overhead costs, it
might even be worthwhile to define one process for each of the €€, giving 16

processes overall. This illustrates two points. First, a strictly sequendal computation gives
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an opportunity for pipeline concurrency if many such computations are required. Second,
given a dependency graph, many possible problem decompositions are pussible.

Gajski et. al. also present a different dependence graph program that is optmized to
eliminate the “ripple” summation chain by a more efficient summation nerwork. The
dependence graph program for this scheme is shown in Figures 4 and 5. Figure 4 is the
“top-level” definition of the program. We use the convention of using a single box,
optimized summation, in Figure 4 to represent the subgraph that performs the more
efficient summation. Figure 5 shows the expansion of that box as a graph. Showing a
dependence graph program in this way is merely a convenience; one should envision the
subgraphs in their fully expanded form in the top-level dependence program definition.

The associative property of addition is used to derive the optimized summation
function. For instance, the computation of cg is rewrirten as follows:

By regrouping the addition operations, this dependence graph program has more
parallelism, and reduces the lower bound on execution time from 13 to 9 execution time
units. It is important to realize that the second program is truly different from the first; it
cannot be obtained from the first by graph transformations or syntactic manipulations that
do not rely cn the semantics of the functions on the nodes.

di, o1 d2, 82 d3, e3 a4, ed ds, 85 a6, 66 d7, e/ d8, e8
f1 l f2 f3 L 14 L 5 L t6 l 7 t8
} Y
/ / / / / / / /
at ; a2 * a3 ady as l' a6 l' 371 a8
b1 b2 L b3 | b4 £ b5 b6 | b7 L b8 |
v \ 4 \4
c(.)-‘_.{ optimized summaton

I

Figure 4. A dspendence graph program for the simple numencal computanon.

This uses optimization of the recurrence relauon using the associative property of
addition. This represents the “top-level” defimunon of the soluton. The opumized
summation subgraph 1s shown here 2 single box, and 1s shown in expanded form
Figure 5.
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optimized summaton is defined as...

b1 b2 b3 b4 b5 b6 b7 b8
e+ + —— + +
82 a3 sé4
__A_. ; I
¢0 y - y - g
- M 2 ma e \ 4 t3 t4
———é——b + I~
'} > - \ 4 {3 >— +
f i} % : 'f !f f b
ct c2 c3 c4 cs cé c7 c8

Figure 5. Definition of the “optmized summation” subgraph.

This example highlights several points. First, a given problem may have more than
one valid dependence graph program. In the example presented here, the use of knowledge
about the underlying semantics of the addition function allows more parallelism. Second,
the dependence graph program serves as a intermediate representation from which the
solution may be defined for a parallel machine. Third, the dependence graph program does
not necessarily make a commitment to the form of the concurrent program. Fourth, for

convenience we may describe a dependence graph program as a top-level graph, together
with several subgraph definitions.

5. The Airtrac problem

In Airtrac, the problem is to accept radar track data from one or more sensors that
are looking for aircraft. Figure 6 depicts a region under surveillance as it might be seen on
a display screen at a particular snaoshot in time. (Whereas Figure 6 shows many reported
sightings, an actual radar would probably show only the most recent sighting.) Locations
are designated as eiher good or bad, where a bad location is illegal or unauthorized, and a
good location is legal. The “X” and Y™ symbols represent locations of a good and bad
airport, respectively. The locations of radar and acoustic sensors are also shown. The

small circles represent track reports that show the location of a moving object in the region
of coverage.

Track reports are generated by underlying signal processing and tracking system,
and contain the following informadon:

» location and velocity estimate of object (in x-y plane)
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+ locaton and velocity covariance
» the time of the sighting, called the scantime

» rrack id for identification purposes.

We would like to answer the following questions in real-time:
« Is an aircraft headed for a bad destination?
« Is it plausible that an aircraft is engaged in smuggling?
By “smuggling” we mean the act of transporting goods from a region or location desig-

nated as bad to another bad location. For instance, flying from an illegal airstrip and
landing at another illegal airstrip constitutes smuggling.
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Figure 6. Inputto Airtrac.

This shows the inputs that the system receives. The small circles represent estimated
positions of objects from radar or acoustic sensors tagged by their identification number
and observation time; the goal of the system is to use the time history of those sightings
to infer whether an aircraft exists, 1ts possible destinations, and its strategy.

it

This paper describes our implementation of a solution of a portion of the Airrac
problem. We refer to this portion as the dara association module. Figure 7 depicts the
desired output of the data association step: groupings of reports with the ame wack id into

straight-line, constant-speed sections. These are called Radar Track Segments, ind have
four properties:

+ If the Radar Track Segments contains three or more reports, a best-fit line is
computed. If the fit is sufficiently good, the segment is declared confirmed.

+ If a best-fit line has been computed, each subsequent report must fit the line
sufficiently closely. If so, the Radar Track Segments remains confirmed.
Otherwise, the report that failed to fit (call it the non-fitting report) is treated
specially, and the track is declared broken. '

+ A broken track causes the non-firting report and subseguent reports to be used to
form a new Radar Track Segment.
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+ The last report for a given wack id defines that a wrack is declared inacrive.

The remaining parts of the Airrac problem have not yet been implemented as of this
writing, but are described more fully elsewhere [Minami 87, Nakano 87].

time = 100

Figure 7. Grouping reports into segments in data association.

This shows the first step in problem solving, grouping the reports into straight-line sec-
tons cailed Radar Track Segments.

5.1. Airtrac data association as dependence graph

Figure 8 shows the Airtrac data association problem as a dependence graph
program. On a periodic basis, track reports consisting of position and velocity information
for a set of track ids enters the system. Two operations are performed. First, the system
checks if a track id is being seen for the first time. If so. a new track-handling subgraph is
created. A track-handling subgraph is shown in Figure 8 as a functional box labeied
“handle track 1,” which expands into a graph as shown in Figure 9. Second, the system
checks if any track id seen in a previous time has disappeared. If so, it generates an
inactivation message for the handle :raczx subgraph for the pamicular wack id that
disappeared. If the wack id has been seen previously, then it is sent to the appropriate
handle tra2:k Subgraph.

We distinguish between pure functdonal nodes, shown as rectangles, and side-effect
nodes, shown as rounded rectangles. One use of side-effect nodes is o keep mrack of
which mack ids have been seen at the previous time. For instance, by performing set
difference operations against the current set of track ids, it is possible to determune the
disappeared and new tracks:

disappearediracks = gravigcusTracks ~ curreniTracks
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newTracks = currentTracks = previousTracks

One way to implement this scheme is to have the ids disappeared? and id prev:
seen? nodes update local variables called previcusTracks and cuzzenzTracks, as
successive oack reports arrive.

- - % A N e .G E R WO R OR R CE R E R R RR AR RN \ .‘ ALY N S e \
* 1]
N S
[ \
LY . N N
: nactivate A \ ]
track report | iracx A : :
\ ]
[ N \ N
N \ \ nandie |+
A ]
N M iacx N
. . \ .
\ . 2
N R1.R2 A3, .. . .
\ inactivate v . *
L3
, message : * .
\
: \ \ hangle *
\ . v track j *
. save track's \ .
\ handie \ [y
v . N
L3
A -
: (Y Radar TrECKS, ¢
\ Rader Track *
' Rage: Track Managers N
N Segmenis |
TR e R ERR . R R R R R R R R OE R RN oW SR W R . \ AR R U R R v

Figure 8. Dependence graph program representation of Airtrac data association.

The dashed boxes indicate the problem decomposition used .a the Lamina
implementadon.

Besides detecting new and disappeared tracks, side-effect nodes are used to create a
new track-handling subgraph, and maintain the lookup tabie between track id and the
message pathway to each track-handling subgraph. xew =zack creates a new track handler
subgraph. Whenever a new track is encountered, send rezcrtz tc apgropriase track
is notified, so that subsequent reponts will be routed correctly. This arrangement requires
that one and only one track handler exist for each track id. Sezd rzegers ==
appropriate track saves the handle* to the wack handler created by new «rack, sons
the incoming repor:s, and sends reports tc their proper destinations.

In this abstract program, we implicitly assume that only one wack repor: may be
processed at a time by the four side-effect nodes in Figure 8. If we allow more than one
track report to be processed concurrently, we may encounter inconsistent situations that
allow, for instance, a track id 10 be seen in one track repor, but the send regorz o
appropriate track node does not yet have the handle to the required track handler
subgraph when the next track reporm arrives. We define the program semantics to avoid
these simations.

Handle track receives mack reporns for a paricular id, as well as an inactivation
message if one exists. It is further decomposed into a subgraph as shown in Figure 9. The

4A handle is analogous to a mail address in a t{pbysical) postal system: a Lamina object may use
another object’s handle to send messages tc that object. Since the message passing sysiem unlizes dypamuc
rounng and we assume that an object remamns stanonary ooce created. the bandle does not need to encode
any information about the particular path messages should follow.
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nodes in the handle track subgraph pass a structured value between them, called track
segments. A track segment has the following intemal swructure:

« report list (a list of rack reports, initally empty)

« best-fit line (a vector of real numbers describing a swraight-line constant-velocity
path in the x-y plane)

Each node may transform the incoming value and send a different value on an outgoing
edge. Add appends a report to the report list of a track segment. Linef:z computes the
best-fit line, and if the confirmation conditions hold, sends the wack segment to cenfirm
~snf:i-m declares the wack segment as confirmed. and passes the list to check £:c. If
~inefiz fails to confirm, the earliest report in the list is dropped by <zop, and another
acdd, .inefit= box awaits the arrival of the next report to restart the cycle. The
inacs:vate funcdon waits undl all reponts have arrived before declaring the track inactive.
Conceptually, we view the operations of confirm and inactivate as being monotonic
assertions made to the “outside world,” rather than value transformations to the track
segmment.

*hancle rack’ 1s defined as...
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Figure §. Decomposition of the "handie wack™ sub-probiem.

Toe dashed boxes indicate the probiem decomposition used in the Lamina
implementaton.

Theck £:i: itself is further decomposed into more primitive operations, as shown
in Figure 10. The >:nechecx operation is similar to the Z:ze£x: function previously
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described, except that it compares a new report against the best-fit line computed during the
linefit opc:ad?:z if the new rg.pon maintains the fit. the report list is seat to the ox box, and
this cycle is repeated for the next report. If the linecheck operaton ffu,'s, then the track is
declared broken, a new track segment is defined. This track segment is s2n:

»n: che report that
failed the linecheck operation, in addition to all subsequent reponts for this particular track

id. The mack handling cycle is repeated as before.

“check fit" is defined as...
*
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Figure 10. Decomposition of the “check fit” sub-problem.

The dashed boxes indicate the problem decomposition used in the Lamina
impiementation.

A number of observations may be made about the dependence graph program
described in this section. First, the sequence of the reports matters. The graph structure
clearly depicts the requirement that the incorporation of the Ri-th report into the mack

segment by the add operation must wait until all prior reports. R1...., Ri-1, have been
processed. This is true for the 1:inefi= iinecheck, and inacuivacze functions.

Second, this program avoids the saving of state information except in the operations that
must determine whether a given track id has been previously seen, and in the sorting
operarion where mack repons are routed to the appropriate wack handler. Except for these,
we find that the problem may be cast in terms of a sequence of value transformations.
Third, the program admits the opportunity for a high degree of paralielism. Once the wack
handler for a given track id has been determined. the processing within that block is
completely independent of all other tracks. Fourth, the opportunity for concurrency within
the handling of a parmicular track is quite low, despite the outward appearance of the
decompositions shown in Figures 8 and 9. Indeed, an analysis of the dependencies shows
that reports must be processed in order of increasing scanume. Fifth, unlike certain
pordons of the dependence graph that have a structure that is known a priori, the wack

.
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handler portions of the graph have no prior knowledge of the track ids that will be
cncoumci,d during processing, implying that new tracks need to be handled dynamically.

§.2. Lamina implementation

In this section, we express the solution to th.= data association problem as a set of
Larnina objects, together with a set of methods on th. se objects which embody the abstract
solution specification presented in the previous section.

Figure 11 shows how we decompose the Airtrac problem for solution by a Lamina
concurrent program. We define six classes of objects: Main Manager, Input Simulator,
Input Handler, Radar Track Manager. Radar Track, and Radar Track Segment. Some
objects, referred to as szaric objects, are created at initialization time, and include the
following object classes: Main Manager, Input Simuiator, Input Handler, and Radar Track
Manager objects. Others are referred to as dynamic objects. are created at run-time in
response to the particular input data set. and inciude the following object classes: Radar
Track and Radar Track Segment.

inputSimulator
radar reporns frmati
in penodic vatches RT-1 RYS-1-1 conhirmation,
P — =& inactivation
InputHandier RacarTrack R7-2 ]7Ts-2-1 RTS-2-2 | —P
-1 Marager-1 —> r’
L 3 2 L 3 [
- 3 - L J
inputHancier RadarTrackl_g, RT-n RTS-a-1 RTS-n-2 |—P
-K LManager-m ’ l '
sispaich sreate, son
rQOIZer, CTRAS  reCIler. rgorder,
detect Treaxs, caiect Dreaxs,
?; /‘cl.'ea!.s managers create create
Main Marager
Figure 11. Object swucture in the data associaton module.,

B

Each object is implemented as a Lamina object, which 1n Figure 11 comesponds to a
separate box. The problem decomposition seeks to achieve concurrent processing of
independent sub-protlems. The Lamina message-senaing system provides the sole means
of message and value passing between objects. Wherever possible, we pass values
between objects 10 minumize consistency problems, and to minimize the need for protocols
that require acknowledgements. For example, we decompose our problem solving so that
we require acknowledgements only dunng initialization where the Main Manager sets up
the communication pathways between stauc objects.

With respect to the dependence graph program. the Lamuna implementation takes a
straightforward approach. AL of the side-effect functions contained in Figure 8, together
with some operations to support rzplication, reside in the Input Handler and Radar Track




Manager object classes. Objects in these two classes are static; we create a predetermined
number of them at initialization time to handle the peak load of reponts througn the sysiem.
Replicarion is supported by partitioning the task of recognizing new and disappeared rack
ids among Radar Track Managers according to a simple modulo caicuianon on the track id.
Given the partitioning scheme, each Radar Track Manager operatss completely
independenty from the others. Thus, aithough it needs to maintain a set of objects {e.g.
the current tracks, previous tracks), the objects are encapsulated in a2 Lamina object.
Access to and updarng of these objects is atomic, providing the mutual exclusion required
to assure correcmess as specified by the dependence graph program.

Functions in Figures 9 and 10 reside mostly in objects of the Radar Track Segment
class, with the inactivation function being performed by objects of the Radar Track ciass.
Objects of these two classes are dynamic: we create objects at run-iyme in response to the
specific track ids that are encountered. For any particular ack 1d. one Radar Track object
together with one or more Radar Track Segment objects are created. A new Radar Track
Segment is created each time the track is declared broken, which may occur more than once
for each track id. Unlike the dependence graph program where we postulate a track
segment as a value successively wansformed as it passes through the graph, the Lamina
implementation defines a Radar Track Segment object with instance variables to represent
the evolving state of the track segment. We implement ail the major functions on track
segments a, Lamina methods on Radar Track Segment objects. Again, Lamina objects
provide mutual exclusion to assure correcmess.

Although nothing in the probiem formulation described here indicates why we
create multipie Radar Track Segments for a given mack, we do >o in anticipation of adding
functionality in future versions of Airrrac-Lamina From exarrunation of Figure 10, we see
that given any sequence of reports Ri, and anyv panem of -roken tracks. we obtain no
additional concurrency by creating a new Radar Track Segment when a track is declared
broken. This is because in the dependency graph program preseated herz, no acuvity
occurs on one Radar Track Segment after it has created another Radar Track Segment.
However, we anticipate that in subsequent versions of Airtrac-Lamina, 2 Radar Track
Segment will continue to perform actions even after a twack is deciared broken. such as to
respond to queries about itseif, or to participais in operations that search over exising
Radar Track Segments.

Logically, the semantics of the dependency graph program and the Lamina progran
are equivalent, as they must be. The difference 1s that the former requires a graph of
indefinite size, where its size corresponds o0 the number of reports comprising the Tack.
The lanter requires a2 quantity of Radar Track Segment objects equal 1o one plus the number
of ames the mack is declared broken. Although we can easily conceptualize a graph of
indefinite size in a dependency graph program. we cannot create such an enuty in pra.tice.
Because object creation in Lamina takes ame, we oy to minimize the number of objects that
are created dynamicaily, especially since their creation tme impacts the crineal path Zme. A
poor solution is to dynamically create the objects comresponding to an indefinite-sized graph
a> we need them. A better solution is to create a finite network of objects at wnitialization
time, with an impiicit “folding” of the infinite graph onto the finite nerwork, thereby
avoiding any object-creation cost at run-time. Our Lamina pregram. in fact, eses a hybnd
of these two approaches, folding an indefinite “handie ack™ graph onto each Radar Track
Segment object, and creating a new Radar Track Segment object dynamicaliy whenaa
track is declared broken. By this mechamusm. we mode: Tansiormanons of values berween
graph nodes by changes t0 instance variabies on a Lam:na object. The effect on
periormance is beneficial. Relative 1o the first solution. we incw
sending between objects because we have fewer objects. Relatve: !
we create objects that correspond to rack ids tnat appear in the .nput data stream as they are
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Both the Radar Track and Radar T'aci; Segment coliect reports in i
scantime sequence. They do so because of the ordering dictated by the CtDC:.GC.u.\. zra;m
program, and because the Lamina impiementation at the ame the experiments were
performed did hoz provide avtomatic message ordering. Moreover, we know that simply
cm.cctmz reporss in order of receipt leads to severe correctness degradation. For instance,

if the scanumes are not \,osuga.oas the scheme by which a Radar Track Segment computes
the iine-fit leads to nonsensical results because best-fit lines will be ccrz%.su{ed based on
non-consecutive position estimates. leading 1o erroneocus predictions of aircraft movement.
To circumvent these prodiems. we use app‘z\.aﬂof:-icvcﬁ routines o examine the scantime
assoc.atcs with a rrpo.‘. and gqueue repors for which ail p'ce:cctsors have not aiready
been handied. These routines effectively insulate the rest of the application from message

receipt disorder, and allow the Lamina program to successfully use the ::.iowicegc
embodied in the dependency graph program

£

To indicate the size of the problem. a wpical scenaric that we experimented wit
contzined approximately 800 radar mack Topors comprising about 70 radar macks. At as
peak. there is data for approximatelv 30 radar iracks amiv ing simultaneously, which
'c.ig;.i* corresponds ¢ 30 aircraft fiying in the area of coverage.

The correspondence berween the Lamina objects in the impiementation presented
ere and the ﬂr::mmc operations cwnc{zzcé int the dependence graph program is ‘shewn in

T‘

l'..‘

he Table 1. The functons described in the dependence graphs are implemented on Radar
'E':acé: Manager, Radar Track, and Rm Track Sem-hg obwecis. The Main Manager and

Input Sirnulator perform tasks not menticned in the sm:—:::a: graph program. Their
asks may be viewed as overhead: the Main Manager performs inidalizarion, and Input
Simulator szmuiates the input data port. 'I'\. Input Handler s /0D 1s to dispaich incoming
reports to the correct Radar Track Manager. therebs :-*eﬁsar“'%z the replication of the Radar

~y

é

Track Manager function across several obiecss. In it ¢ task of the Input Handler

may be viewed as a funcdonal exiension of the

Track ‘\ée_.:.z" tasks.




Table 1. Correspondence of Lamina objects with functions i the dupendence grap

program
Lamina object Corresponding dependence graph pro ration
Main Manager -none- » .
(Create the manager objects in the system at initialization
time.)
Input Simulator -none-

(Simulate the input data port that would exist in a real
system, This function is an artifact of the simulation.)

Input Handler -none-
(Allows replication of the Radar Track Manager oojects; this
may be viewed as a functional extension of the Radar Track
Manage:.)

Radar’i ick Manager :d4s disappeared?, id previou:zly seen?, new track,
send report- to appropriate track

Radar Track add, inactivate

Radar Track Segment add, linefit, confirm, drop, Linactivat:,
linecheck, OK, break, new segment

Table ! alsc shows that we siecompcse the problem to a lesser extent than mj sht be
s' - ,ested by the dopendence graph program, but the overali level of decomposition is still
hign. We “fold” the dependence graph onto a smaller number of Lamina objects, but we
nonetheless obtain a high degree of concurrency from the independent handling of separate
tracks. Additional concurrency comes from the pipelining of operations between the
following sequence of objects: Input Handler, Radar Track Manager, Radar Track, and
Radar Track Segment.

6. Experiment design

Given our experimental test scwp, there are a large number of parameter sstrings,
ircluding the number of nrocessors, the choice of the input scenario to use, the rate at
which the input data is fed into the system, the number of manager objects to utlize; for a
reasonable choice of variations, trying to run all combinations is futile. Instead, based on
the hypotheses we attempted to coufirm or disconfirm, we made explicit decisions about
which experiments to try. We chose to explore the following hypotheses:

» Performance of our concurrent program improves wid: :’ditional processors,
thereby attaining significant levels of speedup.
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+ Correctness of our concurrent program can be maintained despite a high degree of
problem decomposition and highly overloaded input data conditions.

» The amount of speedup we can achieve from additional processors is a function
of the amount of parallelism inherent in the input data set.

Long wallclock times associated with each experiment and limited resources forced
us to be very selective about which experiments to run. We were physically unabie to
explore the full combinatorial parameter space. Instead, we varied a single experimen:tal
parameter at a time, holding the remaining parameters fixed at a base setting. This strategy
relied on an intelligent choice of the base settings of the experimental parameters.

We divided our data gathering effort into two phases. First, we took measurements
to choose the base set of parameters. Our objective was to run our concurrent program on
a system with a larg= number of processors (e.g. 64), picking an input scenario that feeds
data sufficiently quickly into the system to obtain full but not overloaded processing
pipelines. We used a realisti scenanc thai has parallelism in the number of simultaneous
awrcraft so that nearly all the vrocessors may be udlized. Finally, we chose the nuribers of
manager objects so the manazers themselves do not limit the processing flow. The goal
was to prevent the masking of phenomena necessary to confirm or disconfirm our
kvpotheses. For example, if we fail=d to set the input daca rate »igh enough, we would not
fully utilize the processors, making it impossible that additional processors display
speedup. Similarly, i1f we failed to use enough manager objects, the overall program
performance would be strictly limited by the overtaxed manager objects, again negating the
effect of additional processors.

Based on measurements in phase one, we chose the foilcwing settings for the base
set of para. 1eter settings:

* 64 processoars,

* Many-aircraft scenario (described more fully below),
« Four input handler objects, .
» Four radar wack manager objects,

+ Input data rate of 200 scans per second.

These settings give system performance that suggests that processing pipelines are
full, but not overloaded, where nearly all of the processing resources are utilized (although
not at 100 percent etficiency), and the manager objects are not themselves limiting overall
p<.formance.

The input data rate govems now quickly track reports are put into the system. As
reference, the Airwrac problem domain prescribes an input data 1ate of 0.1 scan per second
(one scar. every 10 seconds), where a scan represents a collection of track reports
per.odically generated by the tracking hardware. For the purpose of imposing a desired
processing load on our simulated multiprocessor. our simulator allows us .0 vary the input
data rate. With a data rate of 20C scans per second, we feed dara into our simulated
multiprocessor 2000 umes faster than orescribed by the domain to obtain a processing load
where parallelism shows benefits. Equivalently, we can imagine reducing the performance
of each processor and message passing hardware in the mulaprocessor by a factor of 2000
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to achieve the same effect, or with any combination of input data rate increase and hardware
speed reduction that results in a net factor of 2000.

In the second phiase, we vary a single parameter while holding the other parameters
fixed. We perform the following set of three experiments:

» Vary the number of processors from 1 to 100.
+ Vary the input scenario to use the one-aircraft scenario.
« Vary the number of manager objects.

Figure 12 shows how the many-aircraft and one-aircraft scenarios differ in the
number of simultaneous active tracks. In the many-aircraft scenario, many aircraft are
active simultaneously, giving good opportunity to utilize parallel computing resources, In
contrast, the one-aircraft scenario reflects the extreme case where only a single aircraft flies
through the coverage area at any instant, although the total number of radar track reports is
similar between the two scenarios. Although broken tracks in the one-aircraft scenario may
give rise to multiple track ids for the single aircraf:, the resulting radar tracks are non-
overlapping in time.
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Figure 12. Companson of the number of active wacks in the many-aircraft and one-
aircraft scenarios.

This shows the number of active tracks versus the scan. The scan number corresponds to
scepario time it increments of 0.1 seconds.

7. Resulits

7.1. Speedup

Our performance measure is latency. Larency is defined as the duration of time
from t).e point at which the c;stem receives a datum which allows it to make a particular
conclusion, to the point at which the concurrent program makes the conclusion. We use
latency as our performance measure instead of total running time measures, such as “total
time to process all track reports,” because we believe that the 'atter would give undue
weight to the reports near the end of the input sequence, rather than weigh performance on
all rrack reports equally.

We focus on two types of latencies: confirmation latency and inactivation latency.
Confirmanon latency measures the duration from the time that the third consecutive report
is received for a given track id, to the time that the system has fitted a lir.e through the
roints, determined that the fit is valid, and it asserts the confirmation. [nactivation latency
measures the duration from the time that the system ..ceives a track report for the time
following the last report for a given track id, to the time when the syster- detects that the
wack is no longer actve, and asserts the inactivation. Since a given input scenario contains
many track reports with many distinct track ids, our results report the mean toge ther with
plus and minus one standard deviation.

Figures 12 and 14 show the effects on confirmation and inactivation latencies,
respectively, from varying the number of processors from 1 1o 100. Boxes in the graphs
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indicate the mean. Error bars indicate one standard deviation. The dashed line indicates the
locus of linear speedup relative to the single processor case; its locus is equivalent to an
Syy1 speedup level of n for n processors.

Confirmation Latency vs Number of Processors
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Figure 13. Confirmadon latency as a function of the aumbe: of processors.

This measures the duration from the time that the third coase~utive report is received for a
given track id, to the ume that the system has fitted a line th:ough the points, and
determined that the fit is vaiid.

The results for both the confirmation and inactivaton show a nearly linear decrease
in the mean latencies, corresponding to S((/1 speedup by a factor of 90 for the

confirmation latency, and to Sj(qy] speedup by a factor of 200 for the inactivatior latency.

The sizes of the error bars make it difficult to pinpoint a leveling off in speedup, if there is
any, over the 1 to 100 prccessor range.
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Inactivation Latency vs. Number of Processors
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Figure 14. Inactvarion latency as a function of the number of processors.

This measures the duration from the ume that the system recerves a track report for the
tne following the last report for a given irack id, to the dme when the system detects
that the track is no longer active, and assens that conclusion

7.2. Effects of replication

By replicating manager n~des, we measure the impact of the number of manager
objects on performance, as measured by the confirmation latency. In one experiment we
fix the number of Radar Track Managers at 4 while we vary the number of Input Handlers.
In the other experiment we fix the number of Input Handlers at 4 while we vary the number
of Radar Track Managers.

Figures 15 and 16 show the results. We plot the ¢onfirmation latency versus the

number of managers, instead of against the number of processors as done in Figures 13
and 14.
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Effect of Radar Track Managers on Confirmation Latency
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Figure 15. Confirmation latency as a function of the number of radar track
managers.

We see that replicating Radar Track Manager objects improves performance; this is
because increasing the number of processors does not improve performance in the single
Radar Track Manager case, but does in the 4 and 6 Radar Track Managers cases (see
Figure 16). Pu: another way, if we had not used as many as 4 Radar Track Manager
objects, then our system performance would have been hampered, and might even have
precluded the high degree of speedup displayed in the previous section. Comparing
Figures 15 and 16, we also observe that using more Radar Track Managers helps reduce
copfirmation latency more significantly than using more Input Handlers.

An interesting phenomenon occurs in the 16-processor case. Although the
cenclusion is not definitive given the size of the error bars, increasing the number of both
types of managers from 2 to 4 and 6 increases the mean latency. The likely cause is the
current object-to-processor allocation scheme: because each manager object is allocated to a
distinct processor, increasing the number of manager objects decreases the number of
processors available for other types of objects. Given our allocation scheme (described
more fully in Section 8.2), using more managers in the 16-processor case may actually
impede spesdup.

3-180




Effect of Input Handlers on Confirmation Latency
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Figure 16. Confirmation latency as a function of the number of input handlers.

The optimal number of manager objecis appears to sometimes depend on the
number of processors. For Radar Track Managers, 2 or 4 maragers is best for the 16-
processors array, and 4 or 6 managers is best for the 36 and 64-processor arrays. For
Input Handlers, the number of managers does not appear to make much diffesence, which
¢~ .sts that Input Handlers are less of a throughput botutleneck than Radar Track
Muutagers. This suggests that in practice it ™! be necessary to consider the intensity of the
managers’ tasks relative to the total task in order to make a program work most efficiently.
Overall these experimznts confirm that replicating objects appropriately can improve
performance.

7.3. Less than perfect correctness

Our Lamina program occasionally fails to confirm a track that our reference solution
properly confirms. This arises because the concurrent program does not always detect the
first occurrence of a report for a given wack in the presence of disordered messages. We
notice the following failure mechanism. Suppose we have a track consisting of scantimes
100, 110, 120, ..., 150. Suppose that the rate of data =rrival is high, causing message
order to be scrambled, and that  ports for scantimes 110, 120. and 130 are received before
the repont for 100. As implemented, the Radar Track object notices that it has sufficient
number of reports (in this case three), and it proceeds to compute a straight line through the
reports. When a repont for scantime 140 or higher is received, it is tested against the
computed line to determine whether a line-check failure has occurred. Unformanately, when
the report for scantime 100 eventually arrives, it is discarded. It is discarded because the
track has already been confirmed, and confirmed wacks only grow in the forward direction.
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| Correctness vs. Number of

Figure 9 reveals why this error causes discrepancies between the Lamina program
and the reference serial program: the handle Erack operation in the Lamina program is given
a different set of reports compared to the reference program, leading to a different best-fit
line being computed. To be certified as correct, we require that the reports contained in a
confirmed Radar Track Segment must be identical between the Lamina solution and the
reference solutdon.

The lesson here is that message disordering does occur, and that it does disrupt
computations that rely on strict ordering of wrack reports. In our experiments, the
incorrectness occurs infrequently. See Figure 17. We believc thar with minimal impact on
latency, this source of incorrectness can be eliminated without significant change to the
experimental resuits.
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Figure 17. Correctmess plotted as a funcuon of the nwnber of processors for the

ore-aircraft and many-aircraft scenarios.

7.4. Varying the input data set

The results from using the one-aircraft scenario highiight the difficultes in
measuring performance of a real-time sysiem where inputs artive over an uiterval instead of
in a batch. Before experimentation began. we hypothesized that the amount of achievabie
speedup from additional processors is a function of the amount of paralielis:m inherent in
the input data set. The resuits relaiive to this hypothesis are inconciusive. Figure 18 piots
the confirmation latency against the number of processors for two input scenanos. h

many-aircraft scenano (30 wacks per scan) and the one-aircraft scenario (1 wack per scan;.
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Confirmation Latency vs. Number of
Processors for Different Scenarios
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Figure 18. Confirmation latency as a function of the number of processors varies

with the input scepario.

The one-aircraft scenario displays two distinct operating modes- one in which processor
availability and waiting ume determunes the latency. and ancthzr o which data can be
processed with lintle waiung.

The one-aircraft scenario displays interesting behavior: see Figure 18. While the
confirmaton latency decreases from the [-processor to 4-processor case, just as in the
many-aircraft scenario, there is distinctly different behavior for 16, 36 and 64 precessor
cases, where the average latency is constant over this range. The kev 10 understanding this
phenomenon is to realize that inputs to the system arrive periodicaily. The many-aircraft
scenario generates approximately 800 reports comprising 70 radar tracks over a 200
millisecond duration. In contzast, the one-aircraft scenario generates approximately 1300
reports comprising 70 radar tracks over an 8 second duration. Thus. although the volume
of reports is roughly equivaient (800 versus 1200}, the duration over which thev enter the
system differs by 2 Jactor of 40 (0.2 seconds versus 8 seconds). In terms of radar Tacks
per second, which is 2 good measure of the object-creation workioad, the many-aircraft
scenario produces data at a rate of 33 tracks per second. while the one-aircraft scenario
produces data at a rate of 8.8 wacks per second. This disparity causes the many-aircraft
scenric to keep the system busy, while the one-aircraft scenario meters a comparable
inflow of data over a much longer period. during which the sysiem may become quiescent
while it awats additonal inputs.

The one-aircraft scenario displays two distinct operating modes: one in which
processor availabiiity and wainng ume determines the latency. and ancther in which data
can be processed with linle waiting. For the i-processor and 4-processor cases, the system
cannot process the input workload as fast as it enters, causing work 1o back up. This
explains why the average confirmation latency for the 70 or so radar wacks is nearly as long
as the scenario itself: most of the latency is consumed in tasks waiting to be executed. In
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contrast, for the 16-processor. 36-processor and 64-processor cases. there are sufficient
computing resources available to allow work to be handled as fast as it enters the system.
This explains why the average latency bottoms out at 18 milliseconds, and also tends to
explain the small variance.

Recalling that this particular experiment sought to test the hypothesis that the
amount of achievabie speedup from additional processors is a function of the amount of
parallelism inherent in the input data set, we se¢ that these experimental results cannot
confirm or disconfirm this hypothesis. The problem lies in the design of the one-aircraft
input scenario. The reports should have been arranged to occur over the same 20
millisecond duration as in the many-aircraft scenario. instead of over an 8 second duration.
Had that bezn done, the two scenarios would present to the system comparable workloads
in terms of reports per second, but would differ intermnally in the degree to which sub-parts
of the problem can be soived concurrently.

The distinction between the one-aircraft and many-aircraft scenarios can be
described in Figure 19. This graph is an abstract representation of Figure 12 presented
cariier, and plots the input workload as a function of aime. The many-aircraft scenario pre-
sents a high input workload over a very short duration, while the one-aircraft scenario
presents the same total workload spread out over a much ionger interval. If we imagine the
dashed lines to represent the workload threshold for which an n-processor system is able to
keep up without causing waiting times to increase, we see that the many-aircraft scenario
exceeded the ability of the system to keep up even at the 100-processor level. but the one-
aircraft scenario caused the system to transition from not-able-to-keep-up to able-to-keep-
up somewhere between 4 and 16 processors. A more appropriate one-aircraft scenario,
then, is one that has the same input workload profile as the current many-aircraft scenario.
Such a scenario would allow an experiment to be performed tnat fixes the input workload
profile, which our experiment inadvertently varied, thereby coniaminating its resuits.
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Toe workioad threshoid above which the work becomes incre singly backiogged varies
according to the cumber of processors.

8. Discussion

This section discusses how we achieved our experimental results using the concepts
developed in Section 4. Specifically, we focus on the relationships between problem
decomposition. speedup, and achievemnent of correctness.

8.1. Decomposition and correctness

In this section we analyze the problem solving knowiedge embodied in the data
association module. We use the dependence graph program to represent inherent
dependencies in the problem. This is contrasted with the Lamina implementation to shed
light on the rauonale behind our design decisions. The goal is to identify the general

rinciples that govem the iransition from a dependence graph program to 2 runnabie
Lamina implementation.
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8.1.1. Assigning functions to objects

We obrained speedup from both independent handling of tracks. and possibly from
pipelining withun a wack, without the nccessity to decompose the protiem o the small
functional pieces suggested in Figures 9 and 10. One mught be tempted to beiieve that a
direct wanslation of the nodes and edges of the dependence graphs into Lamina objects and
metheds might vield the maxumal speedup. but careful study of the dependencies in Figures
9 and 10 reveals that there is very littie concurrency to be gained.

In Figure 9. the entire graph is dependent on the arrival of report Ri. For instance.
before a track is declared broken. the top-ievel “handle wack™ graph requires the arrival of
reports RI, R2.... Riast. The iefunos: a<z node needs Ri. and the remainder of the graph
is dependent on this node. The azz node to the right of this one is dependent on the arrival
of R2, and the remaining nght-hand subgraph is dependent on this node. T.us pattern
holds for the entire graph. implying that compuration may only proceed as far as
consecutive reports beginning with Rl have arnived. Thus, littde concurrency may be
gained from the “handle ack™ operation: in particular, no pipeiining is possible because the
entire graph receives only one set of reports. R1....Rlast. Figure 10 is simiiarly
dependent on sequentiai processing of reports. We conclude that lumping 21 of the
fancdons of Figures § and 10 into a small number of objects does not L cur a grea: expense
in concurrency. Given the overhead costs associated with message sending and process
invocation, we speculate that one or two objects might yield the best possible design. In
fact, our design uses k+I obiects. where k is the number of times a track is declared
broken: k is typicaily  ver than three. giving us fewer than Sve objects for each “handle
track” graph.

The depn.uence graph program provides several use™:! insights regarding a good
probiem decomposition. First, it justifies a decomposition :nat treats the “handle wack”
function as primitve funcgon, rather than a finer-grained decomposition. Second, it cleariy
shows the independence between tracks, suggesting a relatively painiess problem
decomposition along these lines. Third. it shows the need o maintain consistent state
about which racks have been seen. and those which have not. suggesting a decomposition
according t0 track id number, which is the approach that our Lamina program takes.

8.1 2. Why message order matters

A sigmficant part of the [.amina concurrent program implements techniques to allow
a Lamina object receiving messages from a single sender to nandle them as i they were
received in the order in which they were originally sent. without gaps the in the message
sequence. By doing this. we incur a performance cost because the receiver waits for amval
of the next appropriate message, rather than immediately handling whatever kas been
received.

The dependence graphs help to justfy such costs because the dependancies impiy
ordering. Inceed. in preliminary work in a different framework. one author discoversd that
: ing coastraints were imposed duning Alrrac data association
processing, and it iditional heuristics nor knowledge was usad. in
conclusions resulted in cases when the inut data rate was high. The incomrect conclusions
arose from perfomming the ii computaton on other reports dfferent from the firs
consecutive & he incomecmass refiected eraciion berween message
disordering arising in C. and the particular Al rather than the spaciiic
problem solving
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We emphasize that althoug? 13- parucular protiem that we studied showed strong
correctness benefits from impos..:3 @ strict ordering of reports, tus should not be
interpreted as a claim that all proc. =75 need or require message ;sz'%c ing. As the
dependence graphs make strikingly <.2 - dge that we mmpiement dictates

ordering. Another problem may not we arécring. but require a sTIct massage tagging
protocol, for instance. As 2 IC;—C:‘&; s:)ac'a we believe that the pro g’ amer should
’C?“CS-G:&; {;":c ’E}VC’i v&ccivsl us 4. r\;-— ,;% "!") ss lem. S ‘..."&C; % : 3_‘ {G CX?Og {rxe
required set of écncn@cnc*cs and let th ~serall pattern of C’CDC"GC“V. suggest the kind
of écccmnosmm and consistency reg i ""‘i"ts that mught prove best.
8.1.3. Reports as values rathzr than objects

In the dependence graph prograr: »e represent reports as values sent Tom node
node. Similarly, in the Lamina i s_-s,,seme‘.;azzo&- we use a design where mCporis az vat*cs
sent from object to object. This works wel because reporis never change, enabling us to

Teat reports as values. The cost of ail: -ﬁ’:: a;, object 1o cbtair the value of 2 reportis 2
fairly inexpensive one-way message. where u.;v-:}a_ssag is viewed as a MOROIONIC

wansfer of a predicate. ’E'I*‘cs approach works because we know ahead of time which
objects need 1o read the value of 2 report. namely the objects that consurute b2 processin
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8.1.4. Initialization




During initialization of our appli-ation. we create many objects, typically managers.

At run-time, these objects communicate among themselves, which requires that we collect
handles during creation, and distribute them after all creation is complete. Specifically, the
Main Manager collects handles during the creation phase; in essence, each created object
sends a monotonic predicate to the Main Manager asserting the value of its handle. The

invariant condition may be expressed as follows:

Invariant (asserting own handle): “handle not sent” or “my handle is X”

The Main Manager detects the fact that all creation is complete when each of the
predetermined number of objects respond; at this point, it distributes a table containing all
the handles to each object. It waits until an acknowledgement is received from each object
before initiating subsequent problem solving activity. This is important because if the
Main Manager begins too soon, some object might not have the handle to another object
that it needs to communicate with. In essence, the table of handles is asserted by a
predicate transfer with acknowledgement. The invariant condition is described as follows:

Invariant (distribudng table of handles):
*“table not sent”
or “problem solving not initiat7 3"

or “all acknowledgements received”

Main-manager

return
- nwn handle
initate Input-simulator >
node
creation
Input-handler-1 > Input-handier-m >
' L N
RTMgr-1 > RTMgr-n > !
¢ 0 e ’
]
Figure 20. Creanng stauc objects during imidalizanon.

Correctness is crucial during inidalization because a missing or incorrect handle, or
a rmussing or improperly created object causes problems at run-time. These problems can
compound themselves, causing performance or correcmess degradation to propagate. By

2-188




using an initialization protocol that is guaranteed to be correct, these problems may be
avoided.

8.2. Other issues
8.2.1. Load balance

We define load balance as how evenly the actual computational load is distributed
over the processors in an array over time. Processing load is balanced when each
processor has a mix of processes resident on it that makes all the processors equally busy.
If a balanced processing cannot be achieved, the overall performance of a multiprocessor
may not reflect the actual number of processors available to perform work due to poor load
balance. In our experimentation, we discovered the critical importance of a good load
balance algorithm.

We encountered two kinds of problems. The first problem deals with where to
place a newly created object. Since we want to allocate objects to processors so as to
evenly distribute the load, and because we want to avoid the message overhead associated
with a centralized object/processor assignment facility, we focused on the class of
algorithms that make object-to-processor assignments based on local information available
to the processor creating the object. The second problem deals with how objects share
limited processor resources. It turns out, for instance, that extremely computation-
intensive objects can severely impair the performance of all -~ ner objects that share its
processor.

At one point in our experimentation, for instance, we observed a disappointing
value of unity for the Sg4/16 speedup factor, where we instead expected a factor of 4.
Moreover, we noticed an extremely uneven mapping of processes to processors: the
approximately 200 objects created during the course of problem solving ended up crowded
on only 14 of the 64 available processors! The culprit was the algorithm that decided
which neighboring processor should be chosen to place a new object. The algorithm
worked as follows. Beginning with the first object created by the system, a process-local
data structure, called a locale, is created that essentially records how many objects are
already located at every other processor in the processing array. When a new process is
spawned, the locale data structure is consulted to choose a processor that has the fewest
existing processes. This scheme works well when a single object creates all other objects
in the system; unfortunately in Airtrac many objects may create new objects.

Given the locale for any given process, when the process spawns a new process,
we arranged for the new process to inherit the locale of its parent. The idea is that we want
the new process to “know” as much as its parent did about where objects are already placed
in the array. This scheme fails because of the mee-like pattern of creations. Beginning with
the initial manager object at the root of the wee, any given object has inherited a locale
through all of its ancestors between itself and the root. Therefore the locale on a given
object will only know about other objects that were created by the ancestors of the object
before the locale was passed down to the next generation. Put another way, the locale on a
given object will not reflect creations that were performed on non-ancestor objects, or
creations that were performed on ancestor objects after the locale was passed down. This
leads to extremely poor load balance.

The same problem occurs even if we define a single locale for each processor that is
shared over all processes residing on that processor. Unfortunately, that locale will only
know about other objects that were created by objects residing on that processor. That is,
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the locale on a given processor will not reflect creations tha: were performed by osjects that
reside on orher processors.

In contrast, ideal load balance occurs when each object knows about all creations
that have taken place in the past over the entire processing array. This ideal is extremely
difficult to achieve. First, we want to avoid using a single globally-shared data structure.
Second, finite message sending ume makes it impossible for many cbjects performing
simultaneous object creation to acce.s and update a globally-shared stucture in a perfectly
consistent manner.

We changed to a “random” load balance scheme which r. ndomily selected a
processor in the processing array on which to create a new object [Hailperin 87]. Running
the base case on a 64 processor array with approximately 200 objects, we n.anaged to use
nearly all the available processors. Processor utdlization improved dramatically.

Random processor allocation gave us good performance. In fact, we can argue
from theoretical grounds that a random scheme is desirable. First, we deliberately
constrain the technique to avoid using globa information that would need to be shared.
This immediately rules out any cooperative schemes that rely on sharing of information.
Second, any scheme that artempts (o use local information available from a given number of
close neighbors and performs allocations locally faces the risk that some small
neighborhood in the processing array might be heavily used, leaving entire sections of the
array underutilized. We are left therefore, with the class of schemes that avoids use of
shared information but allows any processor to select any other processor in the entire
array. Given these constraints, a random scheme fits the criteria quite nicely and in fact
performed reasonably well.

Further experimentation revealed more problems. Manager objects have a
particularly high processing load because a very small number of objects (typically 5 to 9)
handles the entire flow «.f data. When a non-manager objects happens to rz~ide on the
same processor as a manager object, its performaice suffers. For example, a K+ .ar Track
objecr is responsible for creating a Radar Track Segment object, and the time taken for the
crea:?. operation affects the confirmation performance. Unfortunately, any Radar Track
object that happens to b~ situated on the same procussor as a manager object (e.g. Input
Handier, Radar “rack M:nager) gets very little processor time, and thereby contributes
significant creation dmes to the overall latency measure.

Wherzas in the rar.dom scheme the probability that a given precessor wil! be chosen

o . .
for a new object is Y for n processors, cur modified random scheme does the following:

» If there are fewer stadc objects (e.g. managers) than processors, then place static
objects randomly, which can be thought of as sampling a random variabie without
replacement. Place dynamically created objects uniformly on the processors that
iave nc static objects, this time sampling with replacement.

s If there are as many or more static objects than processors, then place roughly
equai numbers of static objects on each processor in the array. Place dynamically
created objects uniform'y over the entire array, sampling with replacemen:.

This scheme keeps the high procassing load associated with manager objects from
degrading the performance of non-manager objects. This scheme performs well for our
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cases. We typically had from 5 to 9 static objects, approaimately 150 dynarni: objects, and
from 1 to 100 processors in the array.

There are other considerations that might lead to further improvement is load
balance performance that we did not pursue. These are listed below:

» Account for the fact that not all staric objects need a dedicated processor. (In our
scheme, we gave each static object an entire processor to itself whenever possi-
ble.)

« Account for the fact that a processor that hosts one or more static objects may
sdll be a desirable location for a dynamically created object, although less so than
a processor without any static objects. (In our scheme, we assumed that any
processor with a static object should be avoided if possible.)

* Relocate objects dynamically based on load information gathered at run-time.

8.2.2. Conclustion retraction

This section explores some of the thinking behind our approach toward
consistency, which is to make conclusions (e.g. confirmation, inactivation) only when they
were twue. This is an extremely conservative stance, and possibly incurs a loss in
concurrency and speedup. An alternative approach which might allow more concurrency is
to make conclusions that are not provably correct: the programmer would allow such
conclusions to be asserted, retracted and reassened freely until a commitment regarding that
conclusion is made. Jefferson has explored this compuational paradigm, known as virtual
rime [Jefferson 85]. The invariant condition describing the truth value of a conclusion P
under such a scheme is shown below:

Invariant: “no commimment made” or “P is ue”

In sssence, this invariant condition says that the program may asser that P is true, but there
is no guarantee that P is true unless it is accompanied by a commirment to that fact. The
benefits of such an approach is that assertions may precede their corresponding
commitments by some time interval. This interval may be used 1) by the user of the system
in some fashion, or 2) by the program itself te engage in further exploratory computation
that may be beneficial, perhaps in reducing computation later. In Airtrac-Laminz, we did
not investigate the benefits from exploratory computarion.

For the user of the system, he or she must dec’d~ how and when to act unzn
uncommitted assertions rendered by the system. On one hand, the uset coulc 1w
asseruons as true statements even before a commimment is made, with the a a- ,prtio™ thei
retraction may be forthcoming. On the other hand, the user could vic v an assertion as oz
only when accompanied by a commitment; this latter approach places emphasis on the
commitment, since only the commitment assures the truth of the conclusion.

We decided against using the sciieme outlined here. As a technique to allow
concurrent programs to engage in exploratory computations, there might be some merst if
the power of such computations can be exploited. As a iogical statement to the user 0i the
system, such an uncormnmitted conclusion is meaningless, since it may later be remracte2. As
a probabilistic statement to the user of the system. a conclusion without commitmenr -ight
indicate some likelihood that the conclusion is true. However, we believe that a betier way
to handle probabilistic knowledge is to state it directly in the problem tather than in the
consistency conditions that characterize the solution technique. This unclear separation
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benveer, domain knowiedge and concurrent progranming .schaigues steersd us av-ay from
the approach of making assernons \.ith the possibility of sub-equent .eract.i.

9. Summary

Lamina programming is shaped by the rarget machine architecture. Lamina is
designed to run on a distributed-memory multiprocessor consisting of 12 to 1000 proces-
sors. Each processor is a computer with its own local memory and insguction stream.
There is no global shared memory; all processes cornmunicate by message passing. This
target machine environment encourages a programming style that stresses performance
gains through probiem decomposition, which allows many processors to be brought to
bear on a problem. The key is to distribute the processing load over replicated 2bjects, and
to increase throughput by building pipelined sequences of objec.s that handle stages of
problem sulving.

For the programmer. Lamina provides a concurrent object-criented programming
model. Programming within Lamina has fundamental differences wiil reszect to con-
vennonsl systemns:

« Concurrent processes may execute during both object creation and message
sending.

» The time required to create an object is visible to the programmer.
« The time required to send a message is visible to the programmer.
» Messages may be received in a different order from which they were sent.

The many processes which must cooperate to accomplish the overall problem-
solving goal may execute simultaneously. The programmer-visible time deiay. are
significant within the Lamina paradigm because of the activites thar may go cn during these
periods, and they exert a strong influence on the programming style.

"Tzis paper developed a set of concepts that allows us to understand and analyze the
lescons that we learr.ed in the design, implementation, and execution of a surulawcd real-
tims apphcation. We confirmed the follewing experimental hypotheses:

¢ Parfornuan e of our concurrent program improves with additional pro:essors. we
artain siznificant levels of speedup.

» Currecmiess of our congurrent program can be maintained despite a high degree of
problemn decomp.csitics: and highly oveloaded input deta conditions.

An inappropriate desigr of our ~1=-aircraft scenario precluded us from confirming
or discenfirmiing the fchoning ~xperimernr-al hypotiizsts:

» The amount of specdus w= ca, achieve from additional procassors is a fusciicn
of the amount v: parrilelism inhersnt in the input data set.

In building a simulated rea’-*ime amplication in Lamina, we focused on improving
performance of a data-drivan . 2hiem drawn from the domain of reai-time radar track
understanding, where the ..ize~ ‘s rhroughput. We leamed how to recognize the
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syrptoms of throughput bottienecks: our solution replicates objects and thereby improves
throughput. We applied concepts of pipelining and repiication to decompose our problem
to obtain concurrency and speedup. We maintained a high level of correcness by applying
concepts of consistency and murual exclusion 1o analyze and implement the techniques of
monotonic predicare and predicate transfer vith ~cknowledgements. We recognized and
repaired load balance problems, discovering ir the process that a modified random
processor selection scheme does {airly well.

The achievement of linear speedup up to 100 times that obtainable on a single
processor serves as an imponant validation of our concepts and techniques. We hope that
the concepts and techniques that we developed, as w1l as the lessons we learned through
our experiments. will be usefal to others working in the field of symbolic paraliel
processing.
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CAGE and POLIGON: Two Frameworks for
Blackboard-based Concurrent Problem Solving!

H. Penny Nii

Abstract

This paper is interded to serve as an introduction to two other papers: User-Directed Control
of Parallelism: Thz CAGE System [1]; and POLIGON: A System for Farallel Problem
Solving [6], Two different skeletal systems, representing two models of concurrent probliem
solving, are descrived in those reports. Both systems are designed for parallel execution of
application programs built with the systems. This paper describes the context in which these
systems zre being developed and summarizes the differences between the two systems.

The Context

The POLIGON and the CAGE systems are being developed within the context of two different
families of experiments within the Advanced Architectures Project.  Ezch family of
experiments consists of a vertically integrated set of programs from each level of system
hier rchy outlined in the project proposal (ie. application, problem-solving framework,
knowledge representaticn and retrieval, implementation language, and hardware/system
architecture levels). POLIGON and CAGE are two systems at the problem-solving framework
jevel. The design of both the POLIGON and the CAGE systems are based on the Blackboard
preblem soiving model [5].

The Experiments
Each fumily of experiments starts with a different set of high-level constraints:

Hardware/system architecture: The POLIGON system is designed for disiributed-memory,
multi~processor systems. [t assumes that the underlying system has a large number (100's to
1000's) of processor memory pzirs with very high bandwidth inter-processor communication.
The CAGE system, on the other h.td, assumes a shared-memory, multi-processor system with
tens to hundreds of processors. - aderlying system architecture influences the additional
constructs at the programming lz2* ,:~.¢ level needed to support parallel executions. [t also has
significant affect on the design of » «¥’ sard frameworks.

This researct was supported by DAr P+ £ O (F30602-85-C-0612), by NASA (NCC 2-220), a~d by Boeing
Computer Servi , (W-266375).
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CAGE and POLIGON

Control of paraifelism: The POLIGON system is designed with an assumption that the
underlying problem solving framework on which the application is to be mocunted must be
intrinsically parailel. The POLIGON system is designed so that predefined constructs 1a t'he
framework always run in parallel. For example, all rules zre evaluated in parziiel and ali
?argfs to blackboard nodes are made in perailel. The user has some zbility 0 introduce

alization. CAGE, on the other hand, assumes tha! the user needs ¢¢-irol over #hal s 1o
run in parallel. Thuw., everything in CAGE runs serially unless specified otherwise by the user.
There are orespecified piaces where the user can introduce parzi'elism. For example, the user
can specify that the condition parts of rules be evaluated
executed in series.

()

ey

n parailel and the action paris be

The family of experiments of which CAGE iz a part consists of CAGE (3;’@3.
framework) implemented in Qlisp [3] (implementation !

architecture (sysiem arcnitecture) simuiated on CARE [2
of experiments consists of POLIGON (problem solving fran

and Zetalisp (implementation language) ruaning on
architecture) simulated on CARE. Both CAGE
imulation program znd share iis sofiware measuremeni 100Gis.
the same application progiem

~-memory arc%:;{ecruw {s¥stem

N run on the same system
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In keeping with the gozls of our Project, the primary objective o
experiments is o discover m i

appiication prcgrams. There zre

to the primary objective:

To compzre the pe
multiprocessor syst frss.

To provide input io the inm
concurrent Lisp ianguages);

le.el (QLisp, CAOS and other

To gzin some understanding
POLIGON and CAGE. More
easier/better 16 let the user have
and as a coroilary, to determine th
z framework, and the kinds of
e expressed by the user.

To de.ermine the extent ¢

of ded in both systems in order
to solve 2 class of problems,

-

he needad conirol.

Tv ermine if muly

gele a knowledge sourc
ules, znd lower e‘vef

grrencigs,

Comparisen of the CAGE and POLIGON Svstems
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CAGE and POLIGON are concurrent blackboard systems with two different und..:ying design
philosophies. CAGE is an extension of the AGT [4] system with primitives to express parailel
execution of knowledge sources, ruies, and purts of rules. It is a cor rvative, incremental
approach to building parallel systems. POLICON is a2 demon-iriven system in which ail
blackboard nodes are viewed as active agents (and thes eac %Eacinear- aode can potentially be
a processor/memory pair). A change made 1o 2 node czuses zpprorriate rules (0 be evzivated
znd executed. POL'GON represents a shift in the way we view g%zc:md systems.
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Both systems have programming ed with them, the POLIGON lznguzge 2nd
the CAGE ianguage. The first of i izanguage at the problem solving level
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CAGE

There are several obvious places for concurrency in blackboard systems, the knowledge sources,
rules within the knowledge sources, and the components of the rules.

Knowledge Source concurrency: Knowledge sources are logically independent partitions of
domain knowledge. Each knowledge source is event-driven and becomes active when changes
relevant to the knowledge source are made to the blackboard. Theoretically, therefore, all
knowledge sources can be active at the same time as long as events relevant to each of the
knowledge sources occur at the 'same time'. However, knowledge sources are often serially
degondent in order to solve a problem. At run time some synchronization (i.e. serialization)
must be enforced.

In the class of applications we are considering, the solution generation process characteristically
occurs in a pipeline fashion up the blackboard hierarchy. That is, the knowledge source
dependencies form a chain from the knowledge sources working on the most detailed level of
the blackboard to those working on the most abstract level. When the program is model-
driven, the pipeline works in the reverse direction. The task for CAGL in exploring
concurrency at this level of granularity is to determine what percentage of the knowledge
sources can be active at the same time in the pipe.

Rule concurrency: Each knowledge source is composed of many rules. The condition part of
the rules are evaluated for a non-NIL condition (a match) and the action part of those rules
that match are executed. The condition-part of all the ruies in a knowledge source can be
evaluated in parallel. In those cases where the action part of all the rules that match are to be
executed, the action part can be executed as soon as the match is completed. However, if only
one of the rules is to be fired (single-hit), then the system must wait until all the condition
parts are evaluated, and onz rule must be chosen whose action part will be executed. (Note
that this is very similar to the OPS conflict-resolution phase.) In addition, one can imagine
evaluating all of the condition parts in parallel ind executing the appropriate action parts in
series.

The situation in which all rules are evaluated and fired concurrently will result in the most
speed-up, since many rules will be in the state of being evaluated and being executed at the
same time. However, if the rules need access to the same blackboard item, memory contentions
become a hidden point of serialization. At the same time, the integrity of information on the
blackboard cannot be guaranteed. The condition which triggered the action part of the rule
may not be the same by the time it is executed. CAGE needs to address these problems,
determine the effect on solution quality and overall performance gain of the application
program.

Condition-part concurrency: Each condition part of a rule consists of many clauses to be
evaluated. These clauses can be computed in parallel. Often these clauses involve relatively
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large numeric computation (eg.  calculating a track), making parallel clause evaluation
worthwhile. On the other hand, often the clauses refer to the same data item, making the
clause evaluation appear to be parallel, but in fact forcing serialization at the data-access level
with no gain (and most likely a loss) in speed of computation. The task at this level of
granularity is to determine if parallelism at this level is worthwhile. It may be that what is
needed at this level is a fast algorithm for matching the condition parts and an appropriate
knowledge representation scheme.

Action part concurrency: Often, when a condition part matches, there are many actions to be
executed. This is one place where no difficulty is anticipated in parallel execution.

Combining the concurrencies: The action parts of rules generate events, and the knowledge
sources are activated by occurrences of these events. In the AGE system events were posted on
an event-list and a control monitor invoked the knowledge sources based on those events. In
orjer to eliminate the serialization inherent in this control scheme, a mechanism to activate
the knowledge source upon the -ompletion of the action parts of rules is needed. The
immeiate activation of a knowledge source after action part execution (for example, by
broadcasting an ‘event message' to all the knowledge sources) results in the loss of global
control over knowledge source activation. In some cases, this is acceptable. In other cases, for
example when knowledge sources need to be activated on a priority basis (exemplified by the
need for the Agenda mechanism in AGE), some control mechanism is needed. The task here
is to determine the best (least overhead) control meckanism appropriate to the application.

POLIGON

As mentioned earlier, the application programs are event-driven in blackboard systems. Events
are normally defined by the user and expressed as changes to the blackboard nodes. Because a
knowledge source is activated by the occurrences of events, and because knowledge sources are
collections of ruies, one can view the rules as being activated (indirectly) by changes to some
blackboard nodes. We can take this line of reasoning one step further and say that a rule is
activated by changes to particular slots of blackboard nodes. If we associate a set of rules
directly with a slot on a node and evaluate and execute the rules whenever the slot is changed,
we have a system with active blackboard nodes.

Conceptually, at least, every blackboard node can be thought of as a processor-memory pair.
Each node contains a data structure to store the partial solutions, and the rules are activated
whenever a particular slot is changed. Slots with a property that enable rule triggering are
called "trigger slots”. When the action part of a rule is executed, the changes to the blackboard
are made via messages to the nodes to be changed. If the change to is to a trigger slot, then
the condition part of the "triggered rules” are evaluated; changes to non-trigger slots do not
cause processing.

A major difficulty with this approach is the loss of contrc!, specifically, an ability to control
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the order of rule firing. By bypassing the intermediate control step where manipulation of the
events and selection of knowledge sources occurs, the system has no global control. The rules
will be firing almost indiscriminately all over the blackboard as solution state changes. There
is no way to implement problem solving strategies, for example. In addition, rules will not be
evaluated in situations when the non-occurrence of a change to the blackboard is significant.
Such ability is important in signal interpretation programs.

In spite of many anticipated difficulties, we have developed a demon-driven system in hopes
of gaining experience with such a system and discovering solutions to the problems. Although
there is a substantial shift in the problem solving behavior, POLIGON is being evolved out of
the functionalities that were present in AGE. At this point POLIGON is characterized by the
following:

Knowledge sources exist only as a conceptual aid in partitioning the problem space.

Levels of in the blackboard data exist as a class hierarchy. A level is a class and a
node is an instance of a class. There is also a super-class that knows about the
classes. (For clarity, the class will be referred to a more familiar term, the level.)

All nodes are active entities.

Each rule must specify, in addition to the condition and action parts, the level and
the node with which it is to be associated, i.e. it must designate a 'trigger’. A trigger
consists of a slot name and a trigger-conditioit, which are to be interpreted as
follows: whenever the value of the slot is changed, avaluate the trigger condition. If
the trigger condition is non-nil then the rule becomes triggered. A triggered rule is
put on 2 process queue for later evaluation.

The rules can use data futures, and for the time being all bindings are made through
lazy evaluation. This means that all bindings are made only when needed. In
addition, processing can continue while values are being fetched from other nodes.

The major control problem to be addressed in demon-systems is the serialization of
demon activations. Potential for control in POLIGON exists in three places: (1) On
the node, where action parts of the rules can be serialized, for example. (2) In the
level manager, which knows about the all the nodes on the level. (3) In the super-
manger which knows about all the level managers. The level manager that can create
and garbage collect the nodes, and knows which rules to attach to a newly created
node. The level manager is the only agent that knows about all the existing nodes
on its level. Thus, to send a message to all the nodes on 2 particular level, a
message is sent to the level manager which forwards it to all its nodes.

In addition to the parallel evaluation of the condition parts of rules, the actions in
the action part of the rules are executed in parallel.

Because of POLIGON's uncontrolled parallelism the solution to a problem will be
indeterminate. That is, every execution of an application problem can potentially result in
different answers. The challenge is to organize the knowledge in such a way that "acceptable”

solutions are produced each time.

Most of the same concurrencies made available to the user in CAGE are built into the system
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in POLIGON. The major challenge in POLIGON is the serialization of rule execution. For
example, the ability to synchronize the execution of actions in CAGE has no counterpart in
POLIGON. Since the system is demon-driven at the rule level, there are very few handles
available to control the activation of rule evaluation.

Summary

CAGE and POLIGON thus are two very different approaches to the expression of parallelism
at the problem solving framework level. As we develop and test applications using these
frameworks, we expect to gain a more concrete understanding of their relative strength and
weaknesses with respect to usability, application characteristics, and speedup. Each system is
discussed in more detail in the papers by Aiello and Rice.
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Abstract

This paper describes the ways in which blackboard systems can be made to
operate in a multi-processor environment. Cage and Poligon, two
concurrent problem solving systems based on the blackboard model are
described. The factors which motivate and constrain the design of parallel
systems in general and parallel problem-solving systems in particular are
described.

1. Background

A Concurrznt Problem Solving System is a network of autonomous, or
semi-aufonumous, computing agents that solve a single problem. In
building concurrent problem solvers, our objectives are twofold: (1) to cvolve
or invent models of problem solving in a multi-agent environmentand (2) to
gain signifi.ant performance mprovement by the use of multi-precessor
machines. Within the ¢community of researchers in artificial intelligence,
there is an interest in understa. ding and building programs that ¢xhibit
cooperative problem-solving behavior among many intelligent agents,
indepsndent of computational costs (see [Corkill 83], [Lesser 831, [Smith 81]
for some examples). But, one of the important pragmatics of using many
computers in parallel is to gain computational speed-up.! Often, methods
useful in a serial (single) problem solver in obtaining a valid solution and
coherent problem-solving behavior, usually a centralized control, are not
compatible with performance gain in a multi-agent envircument. Cage
and Poligon attempt to find 2 balance — to achieve adequate coherence with
minimal global control and to gain performance with the use of multiple
Processors.

1.i. Problem Solving and Concurrency

Those problems that have been successfully solved in parallel, such as
partial differential equations and finite element analysis. share common
characteristics: they frequently used vectors and arrays; solutions tc the
problems are very regular, using well understood algorithms; and the
computational demands, for example, for matrix inversion, are relatively
easy to compute. In contrast, the class of applications we are addressing
(and Al problems in general) are ill-structured or ill-u.fine? "There is
often more than one possible ssiution; paths to a soluti - anuot be
predefined and musi{ be dynamically generated and tried, generally data
cannst e encoded in a regular manner as in arrays — the data struciures
are often graph structures that must be dynamically created, precluding
static allocation and optimization. These differences indicate that to run
problem solving programs in parallel, current techniques for parallel
programs must be augmented or new ones invented. It is worth reviewing

IMultiple computers are also used for other reascns besides speed-up — redundancy, mix of
speciati-ed hardware, need for physical separation, and so on.

Ans
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some of the key points to be addressed in building concurrent. problem-
solving programs. ‘

1.1.1. Problem Solving Issues

Problem solving has traditionally meant a process of searching a tree of
alternative solutions to a problem. Within each genecrate-and-test cycle,
alternatives arc generated at a node of a tree and promising alternatives
selected for further processing. Knowledge is used to prune the tree of
alternatives or to select promising paths through the tree. It is an axiom
that the more knowledge there is the less generation and testing has to be
done. In the extreme, many knowledge-based systems have large
knowledge bases containing pieces of knowledge that recognize
intermediate solutions and solution paths, thereby drastically reducing, or
even eliminating, search. These two types of problem-solving techniques
have been labeled search andrecognition [McDermott 83]. In the search
technique the majority of computing time is taken up in generating and
testing alternative solutions; in the recognition technique the time is taken
up in miatching, a process of finding the right piece of knowledge to apply.
Most applications use a combination of search and recognition techniques.
A concurrent problem solving framework must be able to accommodate
both styles of problem solving.

In serial systems meta-knowledge, or control knowledge, is often used to
reduce computational costs. One common approach decomposes a problem
into hierarchically organized sub-problems, and a control module selects
an efficient order in which to solve these sub-problems. Closely related is
the introduction of contextual information, or domain knowledge, to help in
the recognition process. Both approaches enhance performance — reduce
the number of alternatives to search or the amount of knowledge to match.
In concurrent systems meta-knowledge and control modules become fan-in
points, or hot-spots. A hot-spot is a physical location in the hardware
where a shared resource is competed for, forcing an unintended
serialization. Does this imply that problem solving systems that rely
heavily on centralized control are doomed to failure in a concurrent
environment? Can control be distributed? If so, to what extent? If more
knowledge results in less search, can a similar trade-off be made between
knowledge and control? In concurrent systems where control, especially
global control, is a serializing process, can knowledge be brought to bear to
alleviate the need for control?

1.1.2, Concurrency Issues

The biggest problem in concurrent processing was first described by
Amdahl [Amdahl 67]. Simply stated, it is as follows: The length of time it
takes to complete a run with parallel processes is the length of time it takes
to run the longest process plus some overhead associated with running
things in parallel. Take a problem that can be decomposed into a collection
of independent sub-problems that can run concurrently, but which
internally must run serially, If all of these components are run
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concurrently, then the run-time for the whole problem will be equal to the
run-time for the longest running component, plus any overhead needed to
execute the sub-problems in parallel. Thus, if the longest process takes 10%
of the total run time that the parallel processes would have taken if run
end-to-end (serially), then the maximum speed-up possible is a factor of 10.
Even if only one percent of *he processing must be done sequentia’iy this
limits the maximum speed-up to one hur.dred, however hard one tr.es and
however many processors are used. This is a very depressing result, siace
it means that many orders of magnitude of speed-up are only available in
very special circumstances.

This raises the issue of granularity, the size of the components to be run in
parallel. Amdahl's argument indicates the need for as small a granularity
as possible. For example, is a ruis a good candidate grain size for
computatirn? On the other hand, if the process creation and process
switching time is expensive, we want to do as much computation as
possible once a process is running, thst is, favor a larger granularity. In
addition, in a multi-computer architecture a balance must be achieved
between the load on the communication network and oa the processors. It
is often the case that as process granularity decreases, the processes
become more tightly coupled — that is, there is a need for more
communication between them. The communication cost is of course a
fiszuon of the hardware-level architecture, including bandwidth, distance,
topology, and so on. Finding an optimal grain size &t the problem sclving
level is a multi-faceted problem,

Even if one is able to find an optimal granularity, there are forces that
inhibit the processes from runriag arbitrarily fast in parallel. Some of the
more common problems are:

* Hot-Spots and Boitleneck s: It is frequently the case thati a piece of data
must be shared. In any real machine multiple, simultaneous
requests to access the same piece of data cause memory contention.
The act of a number of processes competing for a shared resource —
memory or processors — causes a degradation in performance.
These processor ud memory hot-spots cause bottlenecks in the
processing of datx: they restrict the flow of data and reduce
parallelism.

e Communications: Muiti-computer machines do not have a shared
address space in which to have memory bottlenecks of the kind
mentioned above. However the communications network over which
he processing elements communicate still represents a shared
resource which can be overloaded. It has a finite handwidth.
Similarly, multiple, asynchronous messages to a single processing
element will cause that element to become a hot-spot.

* DProcess Creation: Execution of the sub-problems mentioned above

require that they run as processes. The cost of the creation and
management of such processes is non-trivial. There is a process
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grain size at which it does not pay to run in parailel, k2cause
executing it sequentially is faster than executiny it in parailei.

Having introduced some issues and constraints associated with
parallelizing programs, we now introduce some o*’ier concepts that are
impertant in writing concurrent prog: ams, an understanding of which is
useful to appreciate the discussions later in this paper fully.

* Atomic operation: This refers to a piece of code -which is executed
without interruption. In order to have consistent results (data) it is
important to have well defined atomic operations. For instance, an
update to a slot in a node might bc defined to be atomic. Primitive
atomic actions are usually defined at the system level.

¢ C(Critical sections: Critical sections ar. usually programmer-defined
and refer to those parts of the program wkich are uninterruptible,
that is. atomic. The term is usually used to describe large, complex
operations that must be performed without interruption.

e Synchronization: This term is used to describe that event which
brings asynchronous, parallel processes together synchronously.
Synchronization primitives are used to enforce serializatinn.

¢ Locks: Locks are mechanisms for the implementation of critical
sections. Under some computational models, a orocess that executes
a critical section must acquire a lock. T1f another process has the
lock, then it is required to wait until that lock is released.

* Pipeline: A pipeline is a series of distinct operations which can be
executed in parallel but which are sequentially dependent; for
instance, an automobile assembly line. The speed-up that can be
gained from a pipeline is proportional to the number of stages,
assuming that each stage takes the same amount of time, that is, if
the pipe is "well balanced.” Pipeline parallelism is a very importaiu:t
source of parallelism.

1.2. Background Motivation

In experiments conducted at CMU [Gupwa 86], Gupta showed that
applications written in OPS [Forgy 77] achieved speed-up in the range of
eight to ten, the best case being about a factor of twenty. The experiments
ran rules in parallel, with pipelining between the condition evaluation,
conflict resolution, and action execution. The overhead for rule matching
was reduced with the use of a parallelized Rete algorithm. (In programs
written in OPS, roughly 9% of the time is spent in the match phase.) The
speed-up factors seem to reflect the amount of relevant knowledge chunks
(rules) available for processing a given problem solving state; this number
appears to be rather small. Although the applications were not written
specifically for a parallel architecture, the results are closely tied to the
nature of the OPS system itself, which uses a monolithic and homogeneous
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rule set and an unstructured working memory to represent problem
solving states.

The premise underlying the design of Cage and Poligon is that this
discouraging result could be overcome by dividing and conquering. It is
hoped that by partitioning an application into loosely-coupled sub-problems
(thus partitioning the ruie set into many subsets of rules), and by keeping
multiple states (for the different sub-problems), multiplicative speed-up,
with respect to CGupta's experimental results, can be achieved. If, for
example, a facto .i seven speed-up cculd be achieved for each sub-problem,
the simultaneous execution of rule s ts could result in a speed-up of seven
times the number of sub-problems. We are looking for methods that can
provide at least a two ord:rs-of-magnitude speed up. The challenge, of
course, is to coordinate the resulting asynchronous, concurrent, problem
solving processes toward a meaningful solution with minimal overheads.

1.3. The Blackboard Model ar.d Concurrency

The foundation for most knowledge-based systems is the problem-solving
framework in which an applicaticn is formulated. The problem-solving
framework implements a computational model of problem solving and
provides a language in which an application problem can be expressed. We
begin with the blackboard model of problem solving [Nii 86], which is a
problem-solving framework for partitioning problems ints many loosely
coupled sub-problems. Both Cage and Poligon have their roots in the
blackboard model of problem : ‘ving. The blackboard framework seems, at
first glance, to admit the natural exploitation of concurrency. Some of the
possible parallelism that can be exploited are:

* knowledge parallelism — the knowiedge sources and rules within
each knowledge source can run concurrently;

* pipeline parallelism — transfer of information from one level to
another allows pipelining; and

* data parallelism — the blackboard -an be partitioned intoc solution
components that can be operated on concurrently.

In addition, the dynamic and flexible con'rol structure can be extended to
control parallelism.

These characteristics of blackboard systems have promp:ed investigators,
for example Lesser and Corkil} [Lesser 83] and Ensor and Gabbe [Ensor 85],
to build distributed and/cs parallel blackboard systems. The study of
parallelism in blackboard systems goes back to Hearsay-1I [Fennell 77].

The blackboard problem-solving metaphor itself is very simple; it entails a
collection of intelligent agents gathered around a blackboard, looking at
pieces of information written on it, thinking about them and writing their
conclusions up as they come to them. This is shown in Figure 1.




Fig. 1. The Blackboard Metaphor.

There are some assumptions made in this model that c.e so obvious that
they might be missed. An understandirg of the implications of these
assumptions is vital to an understanding of the problem of achieving
parallelism in blackboard systems.

¢ All of the »gents can see all of the blackboard all of the time. and
what thr.; se.. represents the current state of the solution.

¢ suy agent “u-. write his conclusions on the llackboard at any time,
without gei ' & in anyone else’s way.

* The act »i" 2, :gent writing on the blackboard will ~nt confuze any of
the other ng<, s as they work.

The impli~s tinvs of these assumptions are that a single problem is being
solved asynchroncusly and in parallel. However, the problem solving
behavior. *7 it were to be emulated in a computer, would result in very
inefficient computation. For example, for every agent to "sec” everything
would entail stopping everything until every agent has looked at everything.

Existing, serial blackboard systems make a number of modifications to the
pu.e blackboard metaphor in order to make a reasonable implementation
on conventional hardware. In effect, they modify the blackboard metaphor
so that it cannot be executed in parallel. Some of these inodifications are
shown in Figure 2 and are described below.
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Fig. 2. The Serial Blackboard System.

* Agents are represented as knowledge sources. These knowledge
sources are schedulable entities and only one can be running at any
time. .It will be shown later that one of the possible sizes for
computational grains is the knowledge source.

* To coordinate the execution of knowledge sources, a scheduling or
control mechanism is implemented. This is, in many ways, an
efficiency gaining mechanism, which uses control knowledge to
select only the most "valuable” knowledge source at any given

moment to work on the problem.

* The blackboard is not truly "globally visible” in the sense prescribed
by the blackboard metaphor. Instead, the blackboard is implemented
as a data structure, which is sufficiently interconnected that it is
pcssible for a knowledge source to find its way from one data item to a
related one easily. Knowledge sources can only work on a limited
area of the blackboard — knowledge sources and their context of
invocation are, in fact, treated as self-contained subproblems.

* An implicit assumption is made that a knowledge source operates
within a valid, or consistent, context and that the “ordered” execution
of knowledge sources, even when the ordering is done dynamically,
preserve the consistency of the blackboard data.

Trying to parallelize serial blackboard systems characterized above directly
has certain limitations. First, only a modest speed-up can be achieved by a
central scheduler determining the knowledge sources to be run in parallel.
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performance with respect to the number of processors, the effects of
different computational granularity on the quality of solution and on
executlion speed-un, ease of programming, and so on. The results of one
such family of experiments have been reported by Brown and Schoen
[Brown 86, Schoen 86].

Within the context of this AAP organization, Cage and Poligon are two
systems that are implemented to study the problem-solving level. Both
Cage and Poligon use frames and condition-action rules to represent
know'edge. The target system architecture for Cage is a shared-memory
multi-processor; the target architecture for Poligon is a distributed-memory
multi-processor, or multi-computer.

Both Cage and Poligon aim to solve a particular, but broad, class of
applications: real-time interpretation of continuous streams of errorful
dat ., using many diverse sources of knowledge. Each source of knowledge
contributes pieces of a solution which are integrated into a meaningful
description of the situation. Applications in this class include a variety of
signal understanding, information fusion, and situation assessment
problems. The utility of blackboard formulations has been successfully
demonstrated by programs written to solve problems in our target
application class [Brown 82, Mccune 83, Nii 82, Shafer 86, Spain 83,
Williams 84].

Most of the systems in this class use the recognition style of problem solving
with knowledge bases of facts and heuristics; numerical algorithms are
also included as a part of the knowledge. Some search methods are
employed but are generally confined to a few of the sub-problems.

In designing a concurrent blackboard system for the AAP, two distinct
approaches seemed possible — one, to extend a serial blackboard system,
and the other, to devise a new architecture to exploit the event-driven
nature of blackboard systems. Each has its own problems and its own
advantages, which will be described in the following sections.

3 Fxtending the Serial System - Cage

Cage is a concurrent blackboard framework system, based on the (serial)
AGE [Nii 79] blackboard systeni. AGE uses a set of rules as a
representation for its knowledge sources; it uses a set of event tokens as
preconditions (a trigger) for the knowledge sources, and each sigrificant
change to the blackboard posts an event in a global data structure. The
controller selects an event and executes a knowledge source whose
precondition matches the selected event.? In addi*ion to the basic
functionality found in AGE, Cage allows user-directed control over the
concurremt execution of many of its constructs (see Figure 3). Otherwise,
the two systems are functionally identical.

IThere are more elaborate constructs in AGE, vut this description suffices for the current
purpose.
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Fig. 3. Parallel Components of Cage
3.1. The Cage Architecture
The basic components of a system built with Cage are:
* A global data store (the blackboard) on which emerging solutions are
posted. Objects on the blackboard are organized into hierarchical

levels, and each object is described with a set of attribute-value pairs.

* QGlobally accessible lists on which control \»formation is posted (for
example, lists of events, expectations, and so omn).

¢ An arbitrary number of knowledge sources, each cousisting of an
arbitrary number of rules.

=

* Control information that can help to determine (1) which blacsinard :
elements are to be the focus of attention and (2) which knowledge ‘
sources are to be used at any given point in the problem solving
process.

o Declarations that specify which components are to be executed in
parallel (knowledge sources, rules, condition and action parts of
rules), and at what points synchronization is to occur.

The user can run Cage serially (at which point Cage behavior is identical to
that of AGE), or can run with one or more of the components running
concurrently. In the serial mode, the basic control cycle begins with the
selection and execution of a kncwledge source. A resulting change to the
blackboard may cause several knowledge sources to become relevant and
candidates for execution. Cage uses a global list structure to record the
changes to the blackboard, called events. The controller selects one of the
events. The user can specify how the event is to be selected, such as FIFO,
~I70, or any user defined best-first method. The event in focus is then
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matched against che knowledge source preconditions. The knowledge
sources, whose precor.ditions match the focus events, are then executed in
some predeterwined order. The rules within each knowledge source are
evaluated, and the action part of the rule is executed for those rules whose
condition parts are satisfied. The user may choose to allow only one rule to
fire per kncwledge source activation or many rules to fire. Each action part
may cause one or more changes on the blackboard and a corresponding
number of events is recorded on the event list. Figure 4 shows the serial
Cage control cycle.

Initial
KS ~a.

. DR Select new
\ N _ - =W _Focus

Biackboard

KS KS Event List

KS KS KS Determine
- Relevant
¥Ss
KS KS KS
Fig. 4. Cage Serial Control Cycle

Using the concurrency control specifications, the user can alter the simple,
serial control loop of Cage by requesting the concurrent execution of
application components. Cage allows for a range of granularity for these
concurrent processes; from knowledge sources all the way down to
predicates in the condition parts of rules. The various concurrency
operations that can be specified, together with the serial version, are
summarized below and shown in Figure 4. '

Knowledge Source Control
Serial:
Pick an event and execute the associated knowledge sources.
Parallel:
1. As each event is generated execute the associated knowledge
sources in parallel, OR
2. Wait until all active knowledge sources complete execution,
generating a number of events, and then execute the knowledge
sources relevant to those events concurrently, OR
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3. Wait until several event: are generated then select a sLﬂ set and
execute the relevant knowiadge sources for all the subzet cvents i
parallel.

Withia Each Krewiedge Sourcs
Sevial
1 Pecform coniext °vdi uation.
Z. Hvalvate the ~ndinon pares, th n execu"p the sction part of one
rule whose congition side maiched, OR
3. Evalaaie ail the vondirion parés then exec te
those rules whose “snu.cion side matched, serially.
Paruliel:
1. Perform context evaluation in parallel.
2. Ywaluate all condition parts in paral‘f‘\ then
4. synchronize (that is, wait for all the condition side evaluations
to complete) and choose one action part, OR
b. synchronize and execute the actions serially (in lexical order),
CR
c. execute the # :tions in paraliel as the cc . dition parts match.

Withiv Ru:es
Sexial
Zvaluate each clause then execute each action.
Parailel:
Evaluste the conditioa-part clauses in parallel then execute the
actions of the action nart in parallel.

3.2. Inscussion of the Concurrent Coiyponents
Each of the putential concurrent components are discussed below.
2.2.1. Knowledge Sourve concurrency:

Know‘edge sources are logically independent partitions of the domain
knowiedge. A knowledge source is selected and executed when changes
made to the blackboard are relevant to that knowledze source.
Theoretically, many different knowledge sources c¢ar be executed at the
same time as lcng as the relevant blackboard changes occur close to each
other. But, the knowledge sources are often serially dependent and some
syn:chronization must be introduced.

In the class of spplications under consideration, the solution is built up in a
pipeline-like fashion tip the blackboard hierarchy. That is, the knowledge
soi. .2 dependencies form a chain from the knowledge sources working on
the mos. detailed level of the blackboard to those working on the most
abstract level. (When the program is model-driven, this plpelme works in
the reverse direction.) Knowledge sources can be running in parallel,
processing the data along the pipe.
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hidden po;r;t of serialization. At éi“ sams ume t'we imegnty of the
information on the blac sz-)a d cannot be guaranteed. The pm:?iem is of two
tvpes: timeliness and consistency. b‘zr , the state whlch trigger-d the rule

may be modified by the time the acti n part is executed. The question 1s
then; is the action still relevant a d correct? Second, if a rule accesse:
attributes from different biackbeard objects, there is no guarantee that the
values from the objects are consistent witn respect to each other.

Condition-part concurrerncy: Each conaition part of a rule may consist of a
number of clauses to be evaluated. These clauses can often be evaluated
concurrently. In the chosen class o7 applications, these clauses frequently
involve relat. rcly large numeric computations, making parailel evaluation
worthwhile. However, as discussed above, if the clauses refer to the same
data item, memory contention would force a serializaticn.

Action-part concurrency: Often, when a condition part matches, more than
one potentially independent action :s called for, and these can often be
executed in parallel.

This problem of data consistency occurs both in Cage and in Poligon. It can
be partially alleviated by defining an atomic operation that includes both
read and write. This ensures that between the time that an item of data is
read, proces:ed, and the result stored, there is no change in the state of the
node.?2 However, this makes a commitment to a certain level of granularity,
for example, read the data for the condition part of a rule and execute the

INote that this is very similar to tue OPS zonflict-resolution phase Refer to [Gupta 86} for
the results of running OPS rules in parallel.

2In Lamina [Delagi 86), a another programming framework develc >« d for the AAP project,
the atomic action is read-process-write.




rui¢. (n order fo enable experimentation with granularity. atomic actions
are kept small and locks, block reads, and blsck writas are provided in
Cagc. Although an atomic read/write operation does not solve the problems
of timeliness or of global coherence, it does assure th<, the data within the
nodes ace consi~tent. And, although locks have a pctential for causing
deadlocks, they arc provided for the user to const-uct larger critical
sectiouns.

3.2.2. Concurrency Control

The action parts of rules generate even‘s, and knowledge sources are
activated by the occurrences of these events. In the (serial) AGE system
events ar¢ posted on & global event list and, working on these events, a
control monitor activates one or more knowledge sources. In order to
eliminate the serialization inherent in this control scheine, a mechanism
tc activate the kpowiclge source immediately upc : event generation is
neaded. This iromediat . Zotivation of knowledge sources bypasses the
coi-troi module and «r _uvely eliminates global control. In some cases,
iz is acceptable. In other cases where knowledge scurces are serially
dependont, scue control mechanism is nseded. Centralized control
imechanisius, sucii as selecting many ¢vents to be processed i.. parallel,
~ausing many knowicage sources to run concurrently, are also provided.

Some =zi3wers to the man, guestions raised about Cage's architecture are
embedded in the system. Howeve, much of the kirden is passed on to the
application: programmer. Some .=aful programming techniques that
were discovered are discussed below.

3.3. FProgramming with Cage

There are a number of prokblems that crop up during concurrent execution
that do not appear during se-ial execution. The solutions to esme of these
problems involved reformulating the application problem; scme involved
tne use of programming techniques not commonly used in serial systems.
Both Cage and Poligon have been used to implemen: a signal
understanding system called Elint [Brown 86]. It is described br.efly below.

3.3.1. The Elint Application

The problem is one of receiving muitiple streams of reports from radar
systems, abstracting these into hypotnetical radar emitting aircrafts and
tracking them as they travel through the menitored airspace. These
aircraft are themselves abstracted into clusters — perhaps formations —
which are themselves tracked. Scmetimes an aircraft in a cluster would
split off, forcing the splitting of the cluster node and rationalization of the
supporting evidence. The nature of the radar emissions from the
aircrafi(s) are interpreted in order to determine the intentions and degree of
threat of each of the clusters of emitters.




The Elint applicaticn has a number of characteristics which are of
significance.

* The system must be able to deal with a continuous data stream It is
not acceptable to wait until all of the data has been read in and then
figure out what was going on.

* The application domain is potential ly very datia parailel. The ability
to reason about a large number of aircrafi 51mult(.neous]y is very
important.

* The aircrafi themselves, as objects, in the solution space, are quite
loosely coupled.

3.3.2. Pitfalls, Problems and Solutions

The following programming techniques arose while implementing Elint in
Cage.

i. When the computational grain size is limited to a knowledge source, it is
possible to read all the slots of a node that are referenced in the knowledge
source by locking the node once and reading all of the slots at once. This is
in contrast to locking the node every time a slot is read by the rules. This is
equivalent to reading all of the blackboard data accessed from a knowledge
source before any rules are evaluated. This approach accomplishes two
important things: (1) It reduces the number of references to the blackboard,
thereby reducing the opportunities for memory contention, and (2) it
ensures that all the rules are looking at data from the same poin. in the
evolving solution.

2. In a serial blackboard system one precondition may serve to describe
several changes to the blackboard adequately. For example, suppose one
rule firing causes three changes to be made serially. The last change, or
event, is generally a sufficient precondition for the selection of the next
knowledge source. In a concurrent system, all three events must be
included in a knowledge source's precondition. This is to ensure that all
three changes have actually occurred before the knowledge source is
executed.

In general, a simple precondition consisting of an eveni tuken iz not
sufficient for Cage. Either a sophisticated scheduler with detaiied
specification of the activation requirements of the knowledge sources, or a
complex, knowledge-source precondition that contain the same
requireiments is needed.

3. It is important when writing the conditicns of rules for a Cage
application to keep in mind the feasibility of running the conditicn clauses
concurrently, that is, keeping them independent ¢f each other in the sense
of not ac\,essmg the same data.
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4. Occasionally two knowledge sources running in parallel may attempt to
change a slot at almost the same time. It is possible that the first change
would invalidate the firing of the second rule. To overcosine this type of race
coudition, a conditional action — an action which checks the value of a slot
before making a change — was added. It allows the action to check the
most recent updates before making further changes. The alternative would
have been to lock a nodz for an entire knowledge source execution whick
would seriously limit parallelism:.

3.3.3. A Probiem with Continuous Input Streams

Since Elint is a reai-time system, it is time dependent. Processing a
continuous stream of data can lead to out-of-order events caused by delay of
one kind or anotker; an example might be a knowledge source stuck in a
memory queue delaying its changes to the blackboard. This means that
new data at time { may have to be analyzed before all the ramifications of
data from an earlier time {¢ - n) have been executed — at any point the data
can be out of order. The Elint application had to be reformulated to address
this problem. Time tags had to be associated with each event and
blackboard value, and the rules had to be re-written to use the time tags to
reason about unordered events.

3.34. Incremencal Introduction of Parallelism

Experin.ents with Cage indicate that it is much more difficult to program a
parallel system than a serial one. It lends subjective support to our
supposition that an incremental approach to parallelism is easier to
program than ai: all-at-once approach. We began with a serial version of
Elint and turned on clause level concurrency first and debugged it, then
experimented with rule level, and finally knowledge source level
concurrency. Only after Elint was working correctly with each of the these
concurrent operations, were they combined.

As discnussed earlier, Cage can execute multiple sets of rules, in the form of
knowledge sources, concurrently. If the rule parallelism within each
knowledge source can provide a speed-up in the neighborhood cited by
Gupta, and if many knowledge sources can run concurrently without
getting in each other's way, we can hope to get a speed up in the tens. The
extra parallelism comes from working on many parts of the blackboard, in
other words, by solving many sub-problems in parallel. It was found,
however, that the use of a central controller to determine which knowledge
sources to run in parallel drastically limits speed-up, no matter how many
knowledge sources are executed in parallel. Amdahl's limit and
synichirenizaion come strongly into play. The implication for Cage is that

newledge-source 1avecation should be disiribuied, without
synchronization. This wili ¢liminate two major bottlenecks — a data-hot
spot at the event list, and waiting for the slowest process to finish during
synchronization. Still, within a shared-memory, multi-processor system,
the interface to the blackboard is a bottleneck. One solution to this is to
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distribute the blackboard, which is one of the main characteristics of
Poligon.

4. Pursuing a Daemon-drive 1 Blackboard System — Poligon

Control in the blackboard model could be summarized as follows:
knowledge sources respond opportunistically to changes in the blackboard.
A5 discussed earlier, in reality, and especially in serial systems, the
blackboard changes are recorded and a control module decides which
change to pursue next. In other words, the knowledge scurces do not
respond directly to changes on the blackboard. A control module generally
dictates the problem-solving behavior. This is a serializing process.

The basic question that led to the design of Poligon is: What if we attach the
knowledge sources to the data elements in the blackboard which, when
changed, would result in the activation of those knowledge source? Instead
of waiting until a control module activates a knowledge source, why not
immediately execute the knowledge source as the relevant data are
changed, and get rid of the control module? A blackboard change would
serve as a direct trigger for knowledge source activations. Next, assign a
processor-memory pair for each blackboard node, and have the knowledge
sources (now on the blackboard processing element) communicate changes
to other nodes by passing messages via a communication network. (see
Figure 5)

Node Rules
Pi PE Update — ; D
~
Node Rules Node Rules
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Because a knowledge source is activated by a blackboard change, and
because a knowledge source is a collections of rules, one can view the rules
as being activated (indirectly, to be sure) by a change to some blackboard
node. A rule could be activated by a change to a particular slot on a
blackboard node. Slots with a property that trigger rules are called "trigger
slots". When the action part of a rule is executed, the changes to the
blackboard are communicated to the nodes to be changed. If a change is
made to a trigger slot, then the condition parts of the "triggered rules” are
evaluated; changes to non-trigger slots do not directly cause any
processing.

Poligon was designed from the start to exploit "fine"-grained parallelism —
"fine" grain here referring to parts of rules. It is generally thought that a
shaicd-memory hardware architecture is not able to deliver increasing
performance as more processors are added. This is a result of memory
contention and of physical limits in the bandwidths of the busses and
switches used to connect the processors to the memory. Thus, Poligon was
designed from the start to be run on a form of distributed-memory
multiprocessor, the elements of which communicate by sending messages
to one another. Its match to the hardware will be seen clearly in the next
section where we discuss the structure of Poligon and what makes it
different from existing, serial implementations of blackboard systems.

4.1. The Structure of Poligon

In this section we describe the key features of Poligon. Instead of a detailed
description of the implementation, a number of points which are central to
Poligon's computational model are highlighted and contrasted with
conventional blackboard implementations.

As has been mentioned above, Poligon is designed to run on hardware
which provides message-passing primitives as the mechanism for
communication between processing elements. It is important to note that
the way in which information flows on the blackboard can be viewed, at an
implementation level, as a message-passing process. This allows a tight
coupling between the implementation of a system suck as Poligon and the
underlying hardware.

Poligon has no centralized scheduler., This was motivated by a desire to
remove any bottlenecks that might be caused by the serial execution of such
a scheduler and by multiple, asynchronous processes trying 1o put events
onto the scheduler queue, causing memory contention. (The problems was
clearly manifested in Cage.) This required the definition of a different
knowledge invocation mechanism. Not only was a centralized scheduler
eliminated but all global synchronization was eliminated as well. This
means that it is likely that different parts of a Poligon program will run at
different speeds and will have have different ideas of how the solution is
progressing.
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Having eliminated the scheduler, there is clearly no need for any —
presumably serializing — separation of the knowledge sources from the
blackboard. The Poligon programmer, therefore, specifies at compile-time
the classes of blackboard node that a particular piece of knowledge is
interested in. At compile-time and at system initialization time, knowledge
is associated directly with the nodes on the blackboard that might invoke it.
This eliminates any communication delay and memory contention that
might be caused by having to find a matching rule in a remote knowledge
base.

In conventional blackboard systems, knowledge sources are taken to denote
both units of knowledge and units of scheduling. If all that a system
attempted to execute in parallel was its knowledge sources then a great deal
of potential parallelism might be lost by the failure to exploit parallelism at
a finer grain. In Poligon, therefore, knowledge sources are not scheduling
units, they are simply collections of knowledge. All of the rules in a
knowledge source can, in principle, be invoked in parallel and parallelism
at a finer grain than this can al.o be exploited during the execution of
rules.

Having eliminated the scheduler a new mechanism was needed that would
cause the application's knowledge to be executed. It was decided to go for a
very simple mechanism. Poligon’s rules are triggered as daemons by
updates to slots in nodes. The association between rules and .he slots that
trigger their invocation is made at compile-time, allowing efficient,
concurrent invocation of all eligible rules after an event on the blackboard.

The message-passing metaphor for the implementation and the
distribution of the knowledge base over the blackboard mentioned above,
allowed the development of a computational model which views a
blackboard node as a process, responsible for its own housekeeping and for
processing messages, for instance, for slot updates and slot read
operations.

Serial blackboard systems generally don't have a significant problem with
the creation of new blackboard nodes. This is because of the atomic
execution of knowledge sources. Such systems can usually be confident
that, when a new node is created, no other node has been created that
represents the same object. In parallel systems multiple, asynchronous
attempts can be made to create nodes which are really intended to represent
the same real-world object. Poligon provides mechanisms to allow the user
to prevent this from happening.

It was found necessary occasionally to share data between a number of
nodes. Poligon allows no global variables at all so it was necessary to find a
suitable way of defining sharable, mutable data, whilst still trying to reduce
the bottlenecks that can be caused by shared data structures. Poligon, like
many frame systems, has a generalized class hierarchy with the clesses
themselves being represented as blackboard nodes. rfoligon uses class
nodes as managers, not only for node creation, as mentioned above, but also
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to store data to be shared between all of the instances of a class and to
support operations which apply to all members of a class.

Most blackboard systems represent the slots in nodes simply as value lists
associated with the name of the slot. The serial operation of such systems
allows the programmer to me:ke assumptions about the order of elements
in the value list. This assumption allows operations on all of the elements
of the value list in the knowledge that no modification will have happened to
the value list since it was read, because knowledge source executions are
atomic. In Poligon, because a large number of rules can asynchronously be
attempting to perform operations on a slot simultaneously, it was
imperative to find mechanis ns that would help to keep the operation of the
system coherent without slowing down the access to slots too much,
causing large critical sections and reducing parallelism. Poligon,
therefore, provides "sma: ¢’ slots. They can keep their values in the correct
order and index them for flexible und focused data retrieval. They can also
have user defined behavior which allows them to make sure .hat operations
performed on them leave them consistent.

4.2. Shifting the Metaphor

Poligon's design looks very much like a frame-based program specialized
for a particular implementation of the blackboard model. The expected
behavior of the system is much closer than the serial systems to the
blackbozard problem-solving metaphor in one respect — the knowledge
sources respond to changes in the blackboard directly.! As in Cage there
are two major sources of concurrency in this scheme: (1) Each blackboard
node can be active simultaneously to reflect data parallelism — the more
blackboard nodes, the more potential parallelism. (2) Rules attached to a
node can be running on many different processing elements
simultaneously providing knowledge parallelism. This daemon-driven
system with a facility for exploiting both data and knowledge parallelism
poses some serious problems, however. First, it is easy to keep the
processors and communication network busy, but the trick is to keep them
busy converging toward a solution. Second, solutions to a problem will be
non-deterministic — that is, each run will most likely produce different
answers. Worse, a solution is not guaranteed since individual nodes
cannot determine if the system is on the right path to an overall solution —
that is, there is no global control module to steer the problem solving.
Within the AI paradigm that looks for satisficing answers, non-
determinism, per se, is not a cause for alarm; however, non-convergence or
an incorrect solution is. One remedy to these problems is to introduce some
global control mechanisms. Another solution is to develop a problem-
solving scheme that can operate without a global view or global control. We
have focussed our efforts in Poligon on the latter approach.

1As an historical note, this takes us back to Selfridge’s Pandemonium {Selfridge 591,
which influenced Newell's ideas of blackboard-like programs [Newell 62]. It also has
some of the flavor of the actor formalism [Hewitt 73].
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4.2.1. Distributed, Hierarchical Control

A hierarchical controi mechanism is introduced that exploits the structure
of the blackboard data. The levels, in the AGE sense, of the blackboard are
organized as a class hierarchy. Each level is a class and a blackboard node
is an instance of that class. Class nodes contain information about their
instances {number of instances, their address, and so onj, and knowledges
sources can be attached to class nodes to control their instance nude.. To
minimize confusion, class nodes will be referred to using a more concrete
term, level manager. Similarly, a super-manager node can control the
class nodes.

1. Within Poligon, the potential for control is located in three types of
places:Within each node, where action parts of the rules can be
executed serially, for example.

2. In the level manager which can, for example, be used to monitor the
activities of its nodes. Since the level manager is the only agent that
knows about the nodes on its level, a message that is to be sent to all the
instance nodes must be routed through their manager node. The level
manager also controls the creation and garbage collection of the nodes,
and attaches the relevant rules to newly created nodes.

3. In the super-manager, whose span of control includes the creation of
level managers and their activities, and indirectly their offspring.

The introduction of control mechanisms solves some of the difficulties, but
it also introduces bottlenecks at points of control, for example, at the level
manager nodes. One solution to this type of bottleneck is to replicate the
nodes, that is, create many copies of the manager nodes. The CAOS
experiments, mentioned earlier, took this approach [Brown 86]. Although
Poligon supports this strategy, our research is leading us to try a different
tactic.

4.2.2, A New Role for Expectation-driven Reasoning

It was initially conjectured that model-driven and expectation-driven
processing would not play a significant role in concurrent systems — at
least not from the standpoint of helping with performance. One view of top-
down processing is that it is a means of gaining efficiency in serial systems
in the following way: In the class of applications under consideration, the
interpretation of data proceeds from the input data up an abstraction
hierarchy — the amount of information being processed is reduced as it
goes up the hierarchy. Expectations, posted from a higher level to a lower
level, indicate data needed to support an existing hypothesis; data expected
from prediction:: and so on. Thus, when an expected event does occur, the
bottom-up analysis need not -ontinue up — the higher level node :s merely
notified of the event and it does the necessary processing, for example,
increases the confidence in its h;pothesis. When the analysis involves a
large search space. this expectation-driven approach can save a substantial
amount of processing time in serial systems.
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has. At the same time, it must avoid propagating changes to other nodes if
its confidence in its output data or inferences is low.

Put another way, each node mus: be able to compute with incomplete or
incos rect data, and it must ‘know’ its objectives to enable it to evaluate the
resulting computation. A result is passed on only if it is known to be an
improvement on a past result. This represents a change from the problem-
solving strategies generally employed in blackboard systems where the
control/scheduling module evaluates and directs the problem solving. With
ne global control module to evaluate the overall solution state and with
¢ synchronous problem-solving nodes, a reasonable alternative is to make
ea 1 10de evaluate its own local state. Of course, there is no guarantee that
the sum total of local correctness will yield global correctness. However,
the way that blackboard systems are generally organized — each
blackboard level representing a class of solution islands, the span of
knowledge sources being limited to a few levels, and having functionally
independent knowledge sources — appears at this point, to provide an
appropriate methodology for creating loosely-coupled nodes that can be
provided with local objectives and a capability for self-evaluation.l. The
"smart" slots mentioned earlier are used to implement this strategy.

I'he design of Poligon poses an interesting question — is it still a blackboard
system? There is a substantial shift in the problem-solving behavior and in
the wa; he knowledge sources need to be formulated. The structure of the
solution is not globally accessible. There is no control module to guide the
problem solving at run time. The metaphor shifts to one in which each
"blackboard” node is assigned a narrow objective to achieve, doing the best
it can with the data passed to it, and passing on information only when the
new solution is better than the last one. The collective action of the "smart"
agents results in a satisficing solution to a problem.2

Although there is a substantial shift away from the conventional problem
solving metaphor, Poligon evolved out of the mechanisms that were present
in AGE. Most of the same opportunities for concurrency made available to
the user in Cage are built into the system in Poligon. The Poligon language
forces the user to think in terms of blackboard levels and knowledge
sources. But the underlying system has no global data. Whether such a
formulation makes the job of constructing concurrent, knowledge-based

11t is interesting to r.>te that the need for local goals does not seem to change with process
granularity. Although the methods used to generate the goals are very different, Lesser's
group has foand that each node in its distributed system needs to have local goals [Durfee
85. In this system each node contains a complete blackboard system; each system (node)
monitors the activities in a region of a geographic area which is monitored collectively by
the system as a whole.

2In retrospect, these characteristics for concurrent problem solving seem obvious. When a
group of humans solve a problem collectively by subdividing a task, we assume each
person has the ability to evaluate his or her own performance relative to the assigned task.
When there are "uncaring” people, the overall performance is bad, both in terms of speed
and solution quality.
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systems easier or more difficult for the knowledge engineer still remains to
be seen. A difficulty might arise because the semantics of the Poligon
language, that is, the mapping of the blackboard model to the underlying
software and hardware architecture, is hidden from the user. For
example, there is no notion of message-passing or of a distributed
blackboard reflected in the Poligon language. In contrast, the choice of
what, and how, to run concurrently is completely under user control in
Cage.

5. Conclusions

In this paper we discussed the relationship between the blackboard model,
its existing serial implementations, and the degree to which the intuitively
inherent parallelism is really present.

Cage and Poligon, two implementations of the blackboard model designed to
operate on two different parallel hardware architectures, were described
briefly, both in terms of their structure and the motivation behind their
design.

Our framework development, application implementations on these
frameworks, and initial performance experiments to date has taught us
that: (1) it is difficult to write a real-time, data interpretation programs in a
multi-processor environment, and (2) performance gains are sensitive to
the ways in which applications are formulated and programmed. In this
class of apjlication, performance is also sensitive to data characteristics.

The "obvious" sources of parallelism in the blackboard model, such as the
concurrent processing of knowledge sources, do not provide much gain in
speed-up if control remains centralized. On the other hand, decentralizing
the control, or removing the control entirely, creates a computational
environment in which it is very difficult to control the problem-solving
behavior and to obtain a .asonable solution to a problem. As granularity is
decreased, to obtain more potential parallel components, the
interdependence among the computational units tends to increase, making
it more difficult to obtain a zoherent solution and to achieve a performance
gain at the same time. We described some of the methods employed to
overcome these difficulties.

In the application class under investigation, much of the parallelism came
from data parallelism -— both from the temporal data sequence and from
multiple objects (aircrafts, for example) — and from pipe-lining up the
blackboard hierarchy. The ELINT application was unfortunately
knowledge poor, so that we were unable to explore knowledge parallelism,
except as a by-product of data and pipeline parallelism. ELINT has been
implemented in both Cage and Poligon, and experiments are now being
performed. The experiments are designed to measure and to compare
performance by varying different parameters: process granularity, number
of processors, data rate, data arrival characteristics, and so on.
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It is clear that much more research is needed in this area before a
combination of a computational and problem-solving model can be
developed that is easy to use, that produces valid solutions reliably, and that
can increase performance by a significant amount.
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Abstract

Some ways in which blackboard systems can be made to operate in a multi-

processor environment are described in this paper. Cage and Poligon are
two concurrent problem solving systems based on the blackboard model.
The facters which motivate and constrain the design of parallel systems in
general and parallel problem-solving systems in particular are discussed.
Experiments performed on these two software architectures are described
and their results and implications enumerated and explained.

1. Introduction

In this paper we introduce two software systems, Cage and Poligon. Cage
and Poligon are two blackboard systems designed to exploit multiprocessor
hardware with the intent of achieving computational speed-up. Blackboard
systems, although architecturally well suited for problems requiring the in-
terpretation ¢© multiple streams of signal and symbolic data, are often
computationally too expensive {0 perform reasonably in a real-time envi-
ronment. Cage and Poligon, the results of two sub-projects of the Advanced
Architectures project at the Knowledge Systems Laboratory of Stanford
University, are attempts to produce high performance parallel blackboard
systems.

The Cage system is a conservative attempt to introduce parallelism into the
existing, serial blackboard architecture AGE. The Cage architecture rep-
resents an experiment into what could reasonably be achieved given the
current state of commercially available multiprocessors, most of which are
shared-memory machines with from several to a few tens of processors.

An example of such a machine might be the BBN Butterfly™ machinel.

Joligon, which makes a radical shift from conventional blackboard sys-
tems, anticipates future developments in parallel hardware architectures.
It is designed to work on the next generation of distributed-memory ma-
chines using hundreds or thousands of processors.

A general background and the general motivations for the development of
Cage and Poligon are discussed in Sections 2 and 3. The rationales for the
design of Cage and Poligon are discussed in Sections 4 and 5 respectively.
Since both systems run on simulated machines, the simulation system,
CARE, is discussed briefly in Section 6.

Experiments have been performed on these two systems, some of which are
described in Section 8 together with their results. The application problem,
Elint, which drove the experiments, is described in Section 7. Since Cage
and Poligon are very different systems, both from the standpoint of software
design and hardware requirements, it is difficult to compare the per-

1Butterfly is a registered trade mark of Bolt Beranek and Newman Corporation.
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formance of the two system:. In addition, since the research goals for the
two system architectures are different, the set of experiments performed on
them are different. To facili‘ ate some form of compariscia between the two
types of system, however, ouc particular experiment was designed to be per-
formed, as closely as reasor.obly possible, on both systems. The relative
performance of the two systems will be discussed in Section 9 in the context
of these particular experimental results.

2. Background

A Concurrent Problem Solving System is a network of autonomous, or
semi-autonomous, computing agents that solve a single problem. In build-
ing concurrent problem solvers, our objectives are twofold: (1) to evolve or
invent models of problem solving in a multi-agent environment and (2) to
gain significant performance improvement by the use of multiprocessor
machines. One of the important practical concerns of using many comput-
ers in parallel is to gain computational speed-up!. Centralized control is
useful in a serial (single) problem solver for obtaining a valid solution and
coherent problem-solving behavior, but it is not compatible with perfor-
mance gain in a multi-agent environment. Cage and Poligon attempt to
find a balance; to achieve adequate coherence with minimal global control
and to gain performance with the use of multiple processors.

2.1. Problem Solving and Concurrency

Those problems that have been successfully solved in parallel, such as par-
tial differential equations and finite element analysis, share common char-
acteristics. They frequently use vectors and arrays; solutions to the prob-
lems are very regulai, using well understood algorithms; and the computa
tional demands, for example, for matrix inversion, are relatively easy tc
compute. In contrast, the class of applications we are addressing (and Al
problems in general) are ill-structured and/or ill-defined. There is often
more than one possible solution. Paths to a solution cannot be predefined
and must be dynamically generated and tried, and generally, data cannot
be encoded in a regular manner in array-like structures. The data struc-
tures for the solution states are often graph structures that must be dynam-
ically created, precluding static allocation and optimization. These
differences indicate that to run problem solving programs in parallel, cur-
rent techniques for parallel programs must be augmented or new ones in-
vented. It is worth reviewing some of the key points to be addressed in
building concurrent, problem-solving programs.

2.1.1. Problem Solving Issues

Problem soiving has traditionally meant a process of searching a tree of al-
ternative solutions to a problem. Within each generate-and-test cycle, al-
ternatives are generated at a node of a tree and prom:sing ones selected for

IAithgugh multiple computers can be used because of the need for redundancy, a mix of
speciaiized hardware or a need for physical separation, and so on.
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further processing. Knowledge is used to prune the tree of alternatives or to
select promising paths through the tree. It is an axiom that the more
knowledge there is, the less generation and testing has to be done. In most
expert systems pieces of knowledge recognize intermediate solutions and
solution paths, thereby eliminating szarch. These two types of problem-solv-
ing techniques have been labeled search and recognition [McDermott 83;.
In the search technique the majority of computing time is taken up in
generating and testing alternative solutions; in the recognition technique
the time is taken up in metching, a process of finding the right piece of
knowledge to apply. Most applications use a combination of search and
recognition techniques. A concurrent problem. solving framework must be
able to accommodate both styles of problem solving.

In serial systems meta-knowledge, or control knowledge, is often used to
reduce computational costs. One comu.en approach decomposes a problem
into hierarchically organized sub-problenis, and a control component se-
lects an efficient order in which to solve these sub-problems. This approach
enhances the performance of search and recognition problem solving by re-
ducing the number of alternatives to search or the amount of knowledge to
match. In concurrent systems meta-knowledge and controllers become
fan-in points, or hot-spots. A hot-spot is a physical location in the hardware
where a shared resource is competed for, forcing an unintended serializa-
tion. Do ; this mean that problem bol"inv systems that rely on centralized

fordea "'"’

is '1buted.’ If so, to what ext,ent? If more kriowledge rebults in less search,
a similar trade-off be made between knowledge and control? That is, in
current systems where control, especially global control, is a serializing
ess, can knowledge be brought to bear to alleviate the need for control?
s¢ are some of the basic questions that studies in concurrent problem
‘ing need to address.
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2.1.2. Concurrency Issues

est problem in concurrent processing was first described by Am-
Amdahl 67}. Simply stated, it is as follows: The length of time :. takes
complete a run with parallel processes is the length of time it takes to run
e ¢ ser al process plus some overhead as:aomated with running
parallel. Take a problera that can be decomposed into a collection
lependent sub-probiems that can run concurrently, but which inter-
serially. If all of these components are run concurrently,
the run-time for the who}e problem will be equal to the run-time for tne
unning component Plc.l:: any overhead needed to execute the sub-
in paraiiel. Thus, if the IOﬂngt process takes 10% of the total run

pv‘ocesses were run end-to-end (serially), then the maximum
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spee d Up | ossxbi is a factor of 10. Even if only one percent of the processing
musf b > done sequentially this limits the maximum speed-up to one hun-
E‘Eﬁ"{i. swever hard one tries and however many processors are used. This
is a very depressing result, since it means that many orders of magnitude
=peed-up are only available in very special circumstances.
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This raises the issue of granularity, the size of the components to be run in
parallel. Amdahl's argument indicates the need for as small a granularity
as possible. But, if the overhead cost of process creation and process switch-
ing is expensive, we want to do as much computation as possible once a
process is running, that is, favor a larger granularity. In addition, in a
multi-computer architecture a balance must be achieved between the load
on the commurnication network and on the processors. It is often the cuse
that as process granularity decreases, the processes become more tightly
coupled, that is, there is a need for more communication between them.
The communication cost is, of course, a function of the hardware-level
architecture, including bandwidth, distance, topology, and so on. Finding
an optimal grain size at the problem solving level is a multi-faceted
problem:.

Even if one is able to find an optimal granularity, there are forces that in-
hibit the processes from running arbitrarily fast in parallel. Some of the
more common problems are discussed below.

* Hot-Spots and Bottlenecks: 1t is frequently the case that a piece of
data must be shared. Multiple, simultaneous requests to access the
same piece of data cause memory contention. A number of processes
competing for a shared rescurce — memory or processors — causes
a degradation in performance. These processor and memory hot-
spots restrict the flow of data and reduce parallelism.

» Communications: Multi-computer machines do not have a shared
address space in which to have memory bottlenecks of the kind men-
tioned above. However, the communications network over which the
processing elements communicate represents a shared resource
which can be overloaded. It has a finite bandwidth. Similarly, mul-
tiple, asynchronous messages to a single processing element will
cause that element to become a hot-spot.

¢ Process Creation: Execution of the sub-problems, into which the over-
all problem is divided, requires that they run as processes. The cost
of the creation and management of such processes is non-trivial.
There is a process grain size at which it is faster to run many sub-
processes sequentially than to execute them in parailel.

Seme issues and constraints associated with parallelizing programs wer»
introduced above. We now introduce some concepts that are important in
writing concurrent programs, an understanding of which is useful to sub-
sequent discussions.

* Atomiz operation: This refers to a piece of code which is executed
without interruption. In order to have consistent results (data) it is
impertant to define appropriate atomic operations. For instance, an
upaate to a slot in an object might be derined to be atomic. Primitive
atomic actions are usually defined at the system level.




e Critical sections: Critical sections are usually programmer-defined
and refer to those parts of the program which are uninterruptible,
that is, atomic. The term is usually used to describe large, complex
operations that must be performed without interruption.

o Synchronization: This term is used to describe that event which
brings asynchronuus, parallel processes together synchronously.
Synchronization primitives are used to enforce serialization.

s Locks: Locks are mechanisms for the implementation of critical sec-
tions. Under some computational models, a process that executes a
critical section must acquire a lock. If another process has the lock,
then it must wait until that lock is released.

e Pipeline: A pipeline is a series of distinct operations which can be
executed in parallel but which are sequentially dependent; for in-
stance, an automobile assembly line. The speed-up that can be
gained from a pipeline is proportional to the number of pipeline
stages, assuming that each stage takes the same amount of time.
Such a pipe is "well balanced." Because reasoning consists of se-
quentially dependent inference steps, pipeline parallelism is a very
important source of parallelism in problem solving programs.

2.1.3. Background Motivation

In ~xperiments conducted at CMU [Gupta 86], Gupta showed that ap-
plica-ions written in OPS [Forgy 77] achieved speed-up in the range of eight
to ten, the best case being about a factor of twenty. The experiments ran
rules in ,.arallel, with pipelining between the condition evaluation, conflict
resolution, and action executions. The overhead for rule matching was re-
duced with il.e use of a parallelized Rete algorithm. (In programs written
in OPS, rough’+ 90% of the time is spent in the match phase.) The speed-up
facturs seem to -~flect the amount of relevant knowledge chunks (rules)
available for proce: ing a given problem solving state, and thi< number ap-
pears to be rather =waall. Although the applications were n.t written
specifically for a paralie’ architecture, the results are closely tied to the na-
ture of the OPS system ::.~If, which uses a monolithic and horr ngeneous
rule set and an unstructured working memory to represent pro .lem solv-
ing states.

The premise underlying the design of Cage and Poligon is that this dis-
couraging result could be overcome by dividing anc conquering. It is hoped
that by partitioning an application into loosely-coupled sub-problems (thus
partitioning the rule set into many subset: of rules), and by keeping mult:-
ple ctates (for the different sub-problems), multiplicative speed-up, with re-
spect to Gupta's experimental results, can be achieved. If, for example, a
factor of seven speed-up could be achieved for each sub-problem by the si-
multaneous execution of its rules, it is possible to obtain an overall speed-up
of seven times the number of sub-problems. The challenge, of course, is to
coordinate the resulting asynchronous, concurrent, proiv'em-solving pro-
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cesses toward a meaningful solution with minimal overheads. The focus of
Cage and Poligon has been on the methods and techniques required to ob-
tain coherent solutions irom many independent sub-problem solvers.

2.2. The Blackboard Model and Concurrency

The foundation for most knowledge-based systems is the problem-solving
framework in which an application is formulated. The problem-solving
framework impic...onts a computational model of problem solving and pro-
vides a language in which an application problem can be expressed. We be-
gin with the Blackboard Model [Nii 86a], which is a problem-solving
framework for partitioning problems into many loosely coupled sub-prob-
lems. Both Cage and Poligon have their roots in the blackboard model of
problem solving. The blackboard approach seems, at first glance, to admit
the natural exploitation of concurrency, such as:

* Knowledge parallelism, in which the knowledge sources and rules
within each knowledge source can run concurrently;

* Pipeline parallelism, in which transfer of information from one level
to another (one method of implementing a reasoning chain) forms
pipelines; and

¢ Data parallelism, in which the blackboard is partitioned into solution
components that can be operated on concurrently.

Figure 2.1.  The Blackboard Metaphor

In addition, the dynamic and flexible control coiaponent can be extended to
control the parallel execution of different components of the system.




These characteristics of blackboard systems have prompted investigators,
for example Lesser and Corkill [Lesser 83] and Ensor and Gabbe [Ensor 85],
to build distributed and/or parallel blackboard systems. The study of paral-
lelism in blackboard systems goes back to Hearsay-II [Fennell 77].

The blackboard problem solving metaphor is very simple: A collection of in-
telligent agents gather around a blackboard, look at pieces of information

written on it, think about them, and add their conclusions as they come to
them. This is shown in Figure 2.1.

There are some basic assumptions made in this model, an understanding
of the implications of which is vital to an understanding of the difficulties of
achieving parallelism in blackboard systems.

All of the agents can see all of the blackboard all of the time, and
what they see represents the current state of the solution.

Any agent can write his conclusions on the blackboard at any time
without getting in anyone else’s way.

The act of an agent writing on the blackboard will not confuse any of
the other agents as they work.

Blackboard

Knowiedge Base
KS

Noce §> Rule
1

Rule
< | ] il Rul
= Huie S
| Rule
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The Serial Blackboard AMode!

These assumptions zmsi:; that a single problem is i}ﬂing solved asyn-
chronously and in parailel. Hgﬁexcv “the problem solving behavior, if it
were to be emulated in a computer, would result in very inefficient compu-
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the slots — keeping the value being evaluated from ct .ging before the
evaluation is completed (data consist:sinay).

3. The Advanced Architectures Project

Cage and Poligen, two frameworks for concurrent problem solving, are be-
ing developed within the Advanced Architectures Project (AAP) [Rice 88] at
the Knowledge Systems Laboratory of Stanford University. The objective of
the AAP is the development of broad system architectures that exploit
parallelism at different levels of a system's hierarchical construction. To
exploit concurrency one must begin by looking for parallelism at the app’i-
cation leel and be ab” : to formulate, express, and utilize that parallelism
within a problem-solving framework. A framework must, in turn, be sup-

ported by an appropriate language and software/hardware system. The
system levels choser and some issues for study are:

« Application leval: How can concurrency be recognized and exploited?

e Problem solving level: Is there a need for a new probler-solving
metaphor to deal with ¢oncurrency? What is the best process and

data granularity? What is the trade-off between knowledge and con-
trol?

* Programming language level: What is the best process and data
granularity at this level? What are the implications of choices at the
language level for the hardware and system architecture?

* System/hardware level: Should the address spaces be common or
disjoint? What should the processor and memory characteristics and
granularity be? ~ 'hat is the best communication topology and mech-
anisms? What should the memory-processor organization be?

At each system level one or more specific methods and approaches have
been implemented in an attempt to address .he problems at that level.
These programs are then vertically integrated to form a family of experi-
mental systems — an application is i...plemented using a problem-solving
framework using a particular knowledge representation method, all of
shich use a speciuc programming language, which in turn runs on a spe-
cific system/hardware architecture simulated in detail on the Lisp-based
CARE simulator [Delagi 86a] (see Section 6). Eech family of experiments is
designed to evaluate, for example, the system's performance with respect to
the number of precessors, the effects of different computational granularity
on the quality of solution and on execution speed-up, ease of programming,
and so on. The results of one such family of experiments have been re-
ported by Brown and Schoen [Brown 86, Schioen 86].

Within the context of this AAP organization, Cage and Poligon are two
frameworks (or shells) implemented to study the problem-solving level.
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Bceth Cage and Poligon use frames and condition-action rules to represent
vnowledge. The target system architecture for Cage is shared-memory
multiprocessors; the target architecture for Poligon is distributed-memory
multiprocessors, or multi-computers.

Both Cage and Poligon aim to solve a particular, but broad, class of applica-
tious: the interpretation of continuous streams of errorful data, using many
diverse sources of knowledge. Each source of knowledge contributes pieces
of a solution which are integrated into a meaningful description of the situ-
ation. Applications in this class include a variety of signal understanding,
information fusion, and situation assessment problems. The utility of
blackboard formulations has been successfully demonstrated by programs
writ.en to solve problemsi. ur target application class [Brown 82, McCune
83, Nii 82, Shafer 86, Spaix  », Williams 84].

Most of the systems in this class use the recognition style of problem solving
with knowledge bases of facts and heuristics; numerical algorithms are
also included as a part of the knowledge. Some search methods are em-
ployed, but they are generally cunfined to a few of the knowledge sources.

An example problem in this class, called Elint (described in Section 7), was
implemented in both Cage and Poligon.

In designing a concurrent blackboard system for the AAP, two distinct ap-
proaches seemed possible; one, to extend a serial blackboard system, and
the other, to devise a new architecture to exploit the event-driven nature of
blackboard systems. Each has its advantages and problems; they will be
described in the following sections.

4, Extending the Serial System: Cage

In this section we discuss the Cage system, its origins and its architecture.
In order to put this into a proper perspective, we first give a brief descrip-
tion of the (serial) AGE system [Nii 79], upon which Cage (Cage = Concur-
rent AGE) i« “\ssely modelled. The AGE and Cage systems are functionally

identical ¢i - <chan that Cage allows parts of the system to be executed in
paralle] .

4.1. The AGE system

The AGE system is one implementation of the blackboard problem-solving
model [Nii 86] mentioned in Section 2.2. The knowledge in an AGE applica-
tion is expressed both in the structure of the blackboard — the declaration
of the blackboard levels — and in the knowledge base itself. An AGE
knowledge base is composed of a number of knowledge sources, each of
which contains a number of rules. Rules are condition-action paivs, as 1s
the case in most blackboard systems.




Knowledge sources are invoked by the scheduler, which is user pro-
grammable. The selection of applicable knowledge sources is performed by
the use of Events.

An event is a symbolic token, which is posted by AGE after a knowledge
source makes a significant modification to the blackboard. For instance, a
chess playing blackboard system might, after placing the opponent in
check, post an event indicating that the opponent was in check. This event
is recorded by the system on a global event queue along with information
about the posting agent and the cause of the event. This allows the system
to focus its attention on the parts of the blackboard which are active and
provides the appropriate context in which to invoke any appropriate knowl-
edge sources. The event tokens are defined by the user and posted automat-
ically by the AGE system any time a node on the blackboard is changed.

The knowledge sources are labelled with the event tokens in which they are
interested. This allows the user specified scheduling mechanism to invoke
only those knowledge sources whose label matches the event token. The la-
bel on the knowledge source is referred to as the knowledge source
precondition.

Within the knowledge sources rules can be invoked in two ways:

* The condition parts of the rules are evaluated until a match is found.
This search for an applicable rule is performed serially in the lexical
order of the rules. This mechanism is referred to as Single-Hit.

* The condition parts of all of the rules are evaluated and all rules that
match are executed. The execution of the action parts of the matched
rules is performed serially in the lexical order of the rules. This
mechanism is referred to as Multiple-Hit.

These rule invocation strategies are peculiar to the AGE system and its
derivatives.

4.2. 'The Cage Architecture

The basic components of the Cage system are:

* A global data store (the blackboard) on which emerging solutions are
posted as object, attribute, and value triples. Objects on the black-

board are organized into levels of abstraction.

* Globally accessible lists on which control information is posted (for
example, a list of events, a list of expectations, and so on).

» An arbitrary number of knowledge sources, each consisting of an ar-
bitrary number of rules.




¢ Control information that can help to determine at any given point in
the problem-solving process which blackboard node is to be in focus
and which knowledge sources are to be executed.

* Declarations that specify which components are to be executed in
parallel and at what points synchronization is to occur. The compo-
nents for potential concurrency are knowledge sources, rules, condi-
tion parts of rules, and action parts of rules.

The user can run Cage serially (at which point Cage behavior is identical to
that of AGE), or with pre-specified components running concurrently. In
the serial mode, the basic control cycle begins with the selection and execu-
tion of a knowledge source. Cage uses a global list structure, called the
event list, to record the changes to the blackboard. The scheduler selects one
of the events (the user can specify how the event is to be selected, such as
FIFO, LIFO, or any user-defined best-first method). The resulting event in
focus is then matched against the knowledge source preconditions. The
knowledge sources, whose preconditions match the focus event, are then
executed in some predetermined order. The condition parts of the rules
within each knowledge source are evaluated, and the action parts of the
rules, whose conditions are satisfied, are executed. Each action part may
cause one or more changes on the blackboard which are recorded on the
event list. Figure 4.1 shows the Cage control cycle in the serial mode.

Initial
KS
N
\ . e - Select new
~
\ L _ - =P _Focus
Blackboard
KS KS Event List
KS KS KS Determine
- Relevant
KSs
KS KS KS

Figure 4.1.  Cage Serial Control Cycle

By selecting one of the concurrency control options, the user can alter the
simple, serial execution of knowledge sources and their parts to execute in
parallel. The various concurrency options shown in Figure 4.2 are sum-
marized below.
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Figure 4.2.  Parallel Components of Cage

Knowledge Source Control
Serial:
Pick an event and execute the associated knowledge sources.
Parallel:
As each event is generated execute the associated knowledge
sources in parallel

Or Wait until all the active knowledge sources complete exe-
cution and invoke the knowledge sources relevant to all the re-
sulting events concurrently.

Within Each Knowledge Source
Serial:
Perform context evaluation and then,
Evaluate the condition parts, then execute the action part of the
first rule whose condition side matched (Single-Hit)

Or  Evaluate all the condition parts then execute serially all the
action parts of those rules whose conditions side matched
(Multiple-Hit).

Parallel:
Perform context evaluation in parallel.
Evaluate all condition parts in parallel, and then,
synchronize (that is, wait for all the condition side evaluations
to complete) and choose one action part

Or  synchronize and execute the actions serially (in lexical or-
der)

Or  execute the actions in parallel as the condition parts match.

Within Rules
Serial:
Evaluate predicate in the condition part, then execute each action.
Parallel:

Evaluate the predicates in the condition parts in parallel, then exe-

cute the actions in the action part in parallel.
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4,3, Discussion of the Concurrent Components

We described the mechanisms for concurrency in Cage. We now discuss
where and how these mechanisms can be used to gain speed-up.

4.3.1. Knowledge Source concurrency

Knowledge sources are logically independent partitions of the domain
knowledge. A knowledge source is selected and executed when changes
made to the blackboard are relevant to that knowledge source. Theoreti-
cally, many different knowledge sources can be executing at the same time.
But, knowledge sources are often serially dependent, reflecting the reason-
ing process.

In the class of applications under consideration, the solution is built up in a
pipeline-like fashion up the blackboard hierarchy. That is, the knowledge
source dependencies form a chain from the knowledge sources working on
the most detailed level of the blackboard to those working on the most ab-
stract level. The implication is that knowledge sources can run in parallel
along pipes formed by the blackboard data. (When the program is model-
driven, this pipeline works in the reverse direction.)

There are two potential ways for knowledge sources to run in parallel: (1)
knowledge sources working on different regions of the blackboard asyn-
chronously (working on sub-problems in parallel) and (2) knowledge
sources working in a pipelined fashion exploiting the flow of information
up, or down, the data hierarchy (pipeline the reasoning). Both sources of
parallelism are possible due to data parallelism inherent in the application.

4.3.2. Rule concurrency

Each knowledge source is composed of a number of rules. The condition
parts of these rules are evaluated for a match with the current state of the
solution, and the action parts of those rules that match the state are exe-
cuted. The condition parts of all the rules in a knowledge source, being
side-effect-free by design, can be evaluated concurrently without fear of un-
pleasant interactions. In cases where all the matched rules are to be ex-
ecuted (Multiple-Hit), the action parts can be executed as soon as the condi-
tion part is matched successfully. If only one of the rules is to be selected
for execution (Single-Hit), the system must wait until all the condition parts
are evaluated, and one rule, whose action part is to be executed, must be
chosen.! The situation in which all of the rules are evaluated and executed
concurrently potentially has the most parallelism. However, if the rules
access the same blackboard data item, memory contention becomes a hid-
den point of serialization.

The asynchronous firing of rules is associated with two types of problem:
timeliness and coherence. First, the state which triggered the rule may be

IRefer to [Gupta 861 for the results of running OPS rules in parallel.
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modified by the time the action part is executed. The question is then: is the
action still relevant and correct? Second, if a rule accesses attributes from
different blackboard objects, there is no guarantee that the values from the
objects are consistent with respect to one another.

Condition-part concurrency: Each condition part of a rule may consist of a
number of predicates to be evaluated. These predicates can often be evalu-
ated concurrently. In the chosen class of applications these predicates fre-
quently involve relatively large numeric computations, making parallel
evaluation worthwhile. However, as discussed above, if the clauses refer to
the same data item, memory contention would force a serialization, nullify-
ing the apparent benefits of concurrent execution.

Action-part concurrency: Often, when a condition part matches, more
than one potentially independent action is called for, and thess can be e.ce-
cuted in parallel.

The problem of data consistency occurs hoth in Cage and in Poligon. It can
be partially alleviated by defining an atomic operation that ircludes both
read and write on an object. This ensures that between the t:me that an
item of data is read, processed, and the resull stored, there is no change in
the state of the objectl. For this to be possible there are twe requirements :
(1) all the data needed by the knowledge source is stored in an object and {2)
a commitment is made about the granularity of the critical section — for
example, "read the data for the condition part of a rule and execute the ac-
tion part.” However, for most applications a knowledge source needs data
stored in more than one node; and given the goal of the research, it is unde-
sirable to commit to any particular process grain size. in order to c¢nable
cxperimentation with granularity, atomic actions in Cage are kept small
and locks, block reads, and block writes are provided. Although an atomic
block-read or -write operation does not solve the problems of timeiiness or of
global coherence, it does ensure that the data within each node is consis-
tent. And, although locks have a potential for causing deadlocks, they are
provided for the user to construct larger critical sections, for example, the
object creation process is made atomic using locks.

4.3.3. Concurrency Control

The action parts of rules generate events, and knowl:dge sources are acti-
vated by the occurrences of these events. In the (serial) AGE system events
are posted on a global event list and, based on the type of these events, a
scheduler invokes one or more knowledge sources. In order to eliminate
this serial control scheme, a mechanism to activate the relevant knowledge
sources immediately upon event generation is needed. This immediate
activation of knowledge sources still requires a scheduler in Cage, but it is
very small, and, from a problem solving perspective, effectively eliminates
global control. In some cases this is acceptable, but for those cases where a

i, Lamina [Delagi 86bl, another programming framework developed for the AAP project,
the comparable atomic action is read-process-write.
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more elaborate control is needed a centralized scheduler/control mecha-
nism is provided. For instance, one mechanism allows the accumulation
of events, after which all knowledge sources relevant to a subset of the
events can be invoked in parallel.

Some answers to the many questions raised about concurrent problem solv-
ing are embedded in Cage's architecture. However, much of the burden is
passed on to the applications programmer. Some useful programming
techniques that were discovered are discussed below.

4.4. Programming with Cage

There are a number of problems that crop up in concurrent systems that do
not appear in serial ones. The solutions to some of these problems involve
reformulating the application problem; some involve the use of program-
ming techniques not commonly used in serial systems. The techniques
discussed below fall into the second category.

4.4.1. Pitfalls, Problems and Solutions

A need for the following programming techniques arose while implement-
ing Elint (see Section 7) in Cage.

* When the only things to run in parallel are the knowledge sources, it
1s possible to read all the attributes of an object that are referenced in
a knowledge source by locking the object once and reading all of the
attributes. This is in contrast to locking the object every time an at-
tribute is read by the rules. In other words, all necessary blackboard
data is collectcd into local variables in the knowledge source's activa-
tion context before any rules are evaluated. This ensures that all the
rules are looking at data from the same time.

* In a serial blackboard system one precondition may serve to describe
several changes to the blackboard adequately. For example, suppose
the firing of one rule causes three changes to be made serially. The
last change, or event, is generally a sufficient preconaitiois for the se-
lection of the next knowledge source. In a concurrent system, how-
ever, all three events must be included in a knowledge source's pre-
condition to ensure that all three changes have actually occurred be-
fore the knowledge source is executed.

In general, a simple precondition consisting of an event token is not
sufficient as it would be in a serial system. A detailed specification of
the activation requirements of the knowledge sources must be avail-
able. either in their preconditions or in the global scheduler.

* It is important for the programmer, when writing the condition
parts of rules, to keep in mind the possibility of running tlie predi-
cates cuncurrently. This involves keeping predicates from accessing
the same data.




* Occasionally two knowledge sources running in parallel may at-
tempt to change an attribute at almost the same time. It is possible
that the first change would invalidate the later changes. To over-
come this race condition, a conditional action — an action which
checks the value of a slot before making a change — was added. An
alternative solution to the race condition is to lock a node for an entire
knowledge source execution, which would seriously limit parai-
lelism.

5. Pursuing a Daemon-driven Blackboard System: Poligon

Control in the blackboard model can be summarized as follows: knowledge
sources respond opportunistically to changes in the blackboard. As dis-
cussed earlier, in reality, and especially in serial systems, the blackboard
changes are recorded and a control component decides which change to
pursue next. In other words, the knowledge sources do not respond directly
to changes on the blackboard. A central scheduler generally dictates the
problem-solving behavior. This is a serial process.
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Figure 5.1. The Organization of Poligon
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The basic questicn that led to the design of Poligon is: What happens if you
get rid of the scheduler? Instead of waiting until a scheduler aciivates a
knowledge source, why not execute the knowledge source immediately as
the relevant data is changed by attaching the knowledge source to the data?
A blackboard change can then serve as a direct trigger for knowledge
source activations. To accomplish this, assign a processor-memory pair for




each blackboard object (called a node in Poligon), and have the knowledge
sources (now on the bla:kboard processing element) communicate changes
to other nodes by passiig messages via a communication network. (see
Figure 5.1).

Because a knowledge source is now activated directly by a blackboard
change, and because a knowledge source is a collections of rules, one can
view the rules as also being activated by that change. As a further refine-
ment, a rule can be activated by a change to a particular slot (an attribute)
of a blackboard node. If a change is made to a slot to which rules are at-
tached, the condition parts of the triggered rules are evaluated; changes to
other slots do not initiate any prccessing. Rule activation under these con-
ditions are reminiscent of active values in object-oriented programming.

Poligon was designed from the start to exploit "medium”-grained paral-
lelism; "medium"” grain here referring to parts of rules, but not to small
expressions. It is generally thought that in a shared-memory architecture
performance gain levels off rather quickly as a result of physical limits in
the bandwidths of the busses and switches ccnnecting the processors and
the memory. Thus, Poligon was desigaed from the start to be run on a form
of distributed-memory multiprucessor. Because Poligon was designed for
this form of hardware architecture, it differs considerably from existing se-
rial implementations of blackboard systems.

5.1. The Structure of Poligon

In this section we describe the key features of Poligon. Instead of a detailed
description of the implementation, a number of points which are central to
Poligon’'s computational model are highlighted and contrasted with con-
ventional blackboard implementations.

It should be noted that the user's cognitive model of the Poligon system and
the system's implementation model are not necessarily closely connected.
For instance, the Poligon system is implemented on an object-oriented sub-
strate, which sees uses message passing to invoke methods. No sign of this
message-passing behavior is visible to the user, who views the Poligon sys-
tem very much like a conventional blackboard system.

As has been mentioned above, Poligon is designed to run on distributed-
memory machines — hardwarz which provides message-passing primi-
tives as the mechanism for co.umunication between processing elements.
It is important to note that the way in which information flows on the black-
board can be viewed, at an implementation level, as a message-passing pro-
cess. This allows a tight coupling between the implementation of a system
such as Poligon and the underlying hardware. It also allows the de-
velopment of a computational model which views a blackboard node as a
process, responsible for its own housekeeping and for processing messages.

e Poligon has no centralized scheduler. This was motivated by a desire
to remove any bottlenecks that might be caused by multiple, asyn-
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chronous processes trying to put events onto a single scheduler
queue. (This problem is clearly manifested in Cage.) The elimination
of a central scheduler requires a new knowledge invocation mecha-
nism. Poligon’s rules are iriggered as daemons by updates to slots in
nodes. The associaticn between rules and the slots that trigger their
invocation is made at compile-time, allowing efficient, concurrent
invocation of all eligible rules after a blackboard event.

When the centralized scheduler is eliminated, it also eliminates all
global synchronization and any mechanism for focus of attention.
This means that different parts of a Poligon program will run at dif-
ferent speeds, and each part will have a different idea of how the so-
lution is progressing. The application writer is required not to make
any assumptions concerning the global coherence or state of the solu-
ticn.

Having eliminated the scheduler, there is clearly no need for the sep-
aration of the knowledge sources from the blackboard. The Poligon
programmer, therefore, specifies at compile-time the types of black-
board node with which a particular piece of knowledge is to be asso-
ciated. At compile-time and at system initialization time, knowledge
is associated directly with the nodes on the blackboard that might in-
voke it. In faci, when Poligon is running in its most optimized state
the knowledge base is block-compiled and the rules are wired directly
to the slots of the nodes, in which they are interested, eliminating all
knowledge search.

In conventional blackbvard systems, knowledge sources are units of
scheduling, If a system atstempts to execute only its knowledge
sources in parallel a great deal of potential parallelism will be lost by
the failure to exploit parallelism at a finer grain. In Poligon, there-
fore, knowledge sources are simply collections of smaller pieces of
knowledge in the form of rules. All of the rules in a knowledge
source can be executed in parcllel. Indeed, knowledge sources are
compiled out by the Poligon compiler.

Seorial blackboard systems generally don't have a significant problem
with the creation of new blackboard nodes. This is because of the
atomic execution of knowledge sources. Such systems can usually be
confident that, when a new node is created, no other node has been
created that represents the same object. In parallel systems multi-
ple, asynchronous attempts can be made tv create nodes which are
really intended to represent the same real-world object. Poligon pro-
vides mechanisms to allow the user to prevent this from happening.

It is occasionally necessary to share data between a number of nodes.
Since Poligon allows no global variables, it is necessary to find a way
to define sharable, mutable data, while still trying to reduce the bot-
tlenecks that can be caused by shared data structures. Poligon, like
many frame systems, has a generalized class hierarchy with the
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classes themselves being represented as user defined blackboard
nodes. One way to view this is that the level structure on the black-
board is replaced by a class structure. The nodes belonging to a level
are instances of a class. In addition, the classes nodes are active,
serving as managers that create instance nodes. This level manager
also stores data shared between all of the instances to support op-
erations which apply to all members of a class. Shared data can
therefore be implemented in a distributed manner by using slots on
the level-manager (class) nodes.

Most blackboard systems represent the slots of nodes simply as lists
of values associated with the name of the slots. Because knowledge
source executions are atomic in serial systems, programs can as-
sume that no modification will have happened to the value list since
it was read. Ir. Poligon, because a large number of asynchronously
running rules can be attempting to perform operations on the same
slot siinultanecusly, a mechanism is needed to assure data consis-
tency without slowing down the access to slots (a large critical section
would reduce parallelism). Poligon provides "smart” slots. They are
smart in the sense that they can have associated with them user de-
fined behavior which can make sure that operations performed on
the data leave the data consistent.

The problem of data consistency within a slot is reduced by the slot be-
ing able to determine cheaply and locally whether a modification is
reasonable. Global solution coherency can be enhanced by tue same
process — slots can evaluate wheither a modification will lead to a
more precise solution. This causes a sort of distributed hill-climbing
which helps the system evolve towards a coherent solution.

5.2. Shifting the Metaphor

Poligon’'s design looks very much like a frame-based program specialized
for a particular implementation of the blackboard model. The expected be-
havior of the system is much closer to the blackboard problem-solving
metaphor than serial systems, in one respect: the knowledge sources re-
spond to changes in the blackboard directly!. There are two major sources
of concurrency in this scheme, which are similar to those in Cage:

Each blackboard node can be active simultaneously to reflect data
parallelism — the more blackboard nodes, the more potential paral-
lelism.

Rules attached to a node car be running on many different pro-
cessing elements simultaneowsly providing knowledge parallelism.

las an historical note, this takes us back to Selfridge’s Pandemonium {Selfridge 591

which influenced Newell's ideas of blackboard-like programs {Newell 62]. It also has

some of the flavor of the actor formalism [Hewitt 731
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This daemon-driven system with a facility for exploiting both data and
knowledge parallelism poses some serious problems, however. First, it is
easy to keep the processors and communication network busy; the trick is to
keep them busy converging toward a solution by doing useful work. Second,
solutions to a problem will be non-deterministic, that is, each run will most
likely produce different answers. Worse, a solution is not guaranteed since
individual nodes cannot determine if the system is on the right path to an
overall solution. That is, there is no global control to steer the problem solv-
ing. Within the Al field where we look for satisficing answers, non-deter-
minism, per se, is not a cause for alarm. However, non-co.vergence to a so-
lution or an incorrect solution is not acceptable.

One remedy to these problems is to introduce some global control mecha-
nisms. Another solution is to develop a problciu-sviving scheme that can
operate without a global view or global control. We have focussed our efforts
in Poligon on the latter approach.

5.2.1. Distributed, Hierarchical Control

In Poligon, an hierarchical control mechanism is introduced that exploits
the structure of the blackboard data. The level structure, in the AGE sense,
of the blackboard are, as mentioned earlier, organized as a class hierarchy.
Each level is a class and a blackboard object is an instance of that class.

Class nodes, or level managers, contain information about their instances
(numbe: of instances, their addresses, and so on), and knowledges sources
can be attached to level managers to control their instance nodes. Simi-
larly, a super-manager node can control the level managers.

Within Poligon, the potentizl for control is located in three types of places:

1. Within each node, where action paris of the rules can be, though are
generally not, executed serially. This is the only point at w hxch the
user can explicitly request serialization.

In the level manager which can, for example, be used to monitor the
activities of its nod Since the level manager is the only agent that
knows about the nodea on its level, a message Lha; is to be sent to all the
nodes on that level must be routed zhrough their manager node. The
level manager also controls the creation and garbage collection of the
nodee =and it attaches the relevant rules to newly created nodes.

3. In the super-manager, whose span of control includes the creation of

level managers and their activities, and indirectly their offspring.

o

The introduction of these conirol mechanisms solves some of the diffi-
culties, but it also introduces bottlenecks at points of control, for example, at
the level manager nodes. One solution to this type of bottleneck is

cate the nodes, that is, create many cog,u,s of the manager nuodes.
CAOS experiments, mentioned earlier, took this appre:ch gg,nm 86].
though Poligon supports this strategy, our research is leading us to try a
different tactic.
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with it. That is, the wider the fan, the less communication is allowabl
from each node to the fan-in point. | 3 r ienting the
serizl Elint application in gon, that the highest level nodes had to be up-
dated for every new data item. Such a formulation of the problem, while
posing no problem in serial systems, produces hot-spots and reduces par-
a in concurrent problem solvers.
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need to be written in the form of case-like conditionals (with the condition
checking being atomic) to ensure ~ 2 consistency. In these rules, at most
one of the selectable action parts will be executed. Since the need for pro-
cess creation and ivs maintenance is reduced by combining rules, this form
of rule also helps to speed up overall rule execution. It does mean, how-
ever, that the grain size of the rules is generally bigger, at least at the
¢ource code level, and the programmers must think differently about rules
than they do in current expert systems.

5.24. Agents with Obje~-ves

At any given point in the computation, the data at different nodes can be
mutually inconsistent or out of date. There are many causes for this, but
one cause is that blackboard changes are communicate ~ by messages and
the message transit time is unpredictable. In the applications under con-
sideration, where there are one or more streams of continuous input data,
the problem appears as scrambled data arrival — the data may be out of
temporal sequence or there mcy be holes in the data. Waiting for earlier
data does not help, since there is no way to predict when that data might
appear. Instead, the node must do the best it can with the information it
has. At .he same time, it must avoid propagating changes to other nodes if
it has a low confidence in its output data or in its inferences.

Put another way, each node must be able to compute with incomplete or in-
correct data, and it must 'know’ its objectives to er “le it to evaluate the re-
sulting computation. A result is passed on only i, . is known to be an im-
provement cver a past result. This represents a change from the problem-
solving strategies genera'ly employed in blackboard systems where the con-
troller/scheduler evaluates and dirvects the problem solving. With no global
controller to evaluate the ovir-all solution state ard with asynchronous
problem-solving nodes, a reasonahle alteinative is to make each node evalu-
ate its own local statc. Of course, there is ne guarantee that the um total of
local correctness will yield global orrectness. However, the organizations
e blackboard aoplicatious seem to helr in this matter. Blackboard systems
are generaily org nized into sub-problems, and each blackboard level
represents a class af intermeaiate solitions. The knowledge < ~nrces are
functionaliy independeut, and the'r spen of knowledge is limite ¥ to a few
levels. This type of probie:n decompositicn: creates subnroblem nodes (with
celevant, knowledge sources) which can have local abjectives and a
capability for seli-evisiu:.tionl. The "smart" -Juts mentioned in Section 5.1
are used t¢ imples~<m ‘his straiegy.

Huis interesting to note that the need for local goals, docs not secm to change with process
sranularity. Although the methods used o geneiate the goals are verr different, Lesser's
grour has found that each node *n its distributed cyscem needs to have local goz's [Durfee
85]. In this system eacl. node contains a comoplete blazkbrard system; each system tnode)
monitor.- the activities in ¢ ragicn of a geographic :ea which is monitored collectively by
the system as a whole.
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The design of Poligon poses an interesting question — is it still a blackboard
system? There is a substantial shift in the problem-solving behavior and in
the way the knowledge sources need to be formulated. The structure of the
solution is not globally accessible. There is no control mechanism to guide
the problem solving at run time. The metaphor shifts to one in which each
"blackboard” node is assigned a narrow objective to achieve, doing the best
it can with the data passed to it, and passing on information only when the
new solution is better than the last one. The collective action of the "smart”
agents results in a satisficing solution to a probleml.

Although there is a substantial shift away from the conventional imple-
mentation of the blackboard metaphor, Poligon evolved out of the mecha-
nisms that were present in AGE. Most of the same opportunities for user-
defined concurrency availahle in Cage are built into the system in Poligon.
The Poligon language forces the user to think in terms of blackboard levels
and knowledge sources. But the underlying system has no global data.
Vhether the divergence between the problem solving model (in the form of
the Poligon language) and the computational model (in the form of its
implementation in a particular form of hardware) makes the job of con-
structing concurrent, knowledge-based systems easier or more difficult for
the knowledge engineer still remains to be seen. A difficulty might arise
because the semantics of the Poligon language, that is, the mapping of the
blackboard model to the underlying software and hardware architecture, is
hidden from the user. For example, there is no notion of message-passing
or of a distributed blackboard reflected in the Poligon language. In con-
trast, the choice of what, and how, to run concurrently is completely under
user control in Cage.

6. The CARE Simulation System and Machine Architecture

CARE [Delagi 86a] is the name given both to the simulator used on the Ad-
vanced Architectures Project and to the hardware designs being developed
on that simulator.

The CARE software system consists of a kit of components with which the
user can construct simulated multiprocessors. The processor components
and their behavior and interconnection topology are easily defined and spe-
cialized by the user. CARE allows experimentation with a large number of
simulated machines each with a differing numbers of processors. In addi-
tion, a number of system parameters can be used to investigate the perfor-
mance of different hardware variants. For the purposes of the Cage and
Poligon experiments, system parameters were held constant while the
number of processors was varied for each experiment.

r. retrospect, these characteristics for concurrent problem solving seem obvious. When a
group of humans solve a problem collectively by subdividing a task. we assume each
person has the ability to evaluate h's or her own performance relative to the assigned task.
When there are "uncaring” people, the overall performance is bad, both in turms of speed
and solution quality.




| [

I

Figure 6.1.  The CARE system's instrument toolkit. Collections of
circuit components are wired to make mulitiprocessors. A variety of probes
and instruments allows the flexible monitoring of voth system and ap-
plication.

One of the most important features of the CARE system is the in-
strumentation that it provides (see Figure 6.1). The user can plug simu-
lated probes onto the simulated multiprocessor. These probes take various
measurements and are connected to instruments that display the different
system characteristics. The instrumentation toolkit allows the user to
watch the behavior of the system both from the point of view of hardware
performance and the application program. This, for instance, allows the
identification of bottlenecks and hot-spots during system execution. An ex-
ample of a CARE instrument is shown in Figure 6.2.

The CARE machine architecture will not be discussed in any detail in this

paper, but some elucidation at this point should allow better understanding
of the references made to the underlying hardware in forthcoming sections.
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Figure 6.2.  One of the instruments provided by the CARE system. This
~ne shows the lengths of the Evaluator’s process queue over time for each
processing element (Site)

Each processing element in the CARE machine is made up of two pro-
cessors; one the Operator, whose purpose is to execute operating system
functions and to perform the task of inter-processor communication, and
the Evaluator, whose task is the execution of user code (see Figure 6.3).
This design allows the user application to continue with its work, while
communication is taking place.

The communication behavior of the simulated hardware used by Poligon
and that used by Cage are different. In the Poligon system the CARE simu-
lator is used to simulate an array of the processing elements, connected in
a toroidal manner, such that each processing element can talk to its eight
neighbors (up/down, left/right and diagonal).

The Cage system uses an array wired in a similar manner, but in this case
half of the processing elements in the array are specialized to act solely as
memory controllers/servers, that is the Evaluators are not used. This
scheme combined with the dynamic, cut-through routing communication
protocol [Byrd 87] used by C 7 =nsures that each of the processors execut-
ing user code has equal acce.. . she memory-only processing elements. In
this way Cage uses the distributed CARE architecture to simulate a shared-
memory machine.




Network Por

Buffers

¢

Operator[4—® Memory

¢

Evaluator[€—

\ Processing Element )
Figure 6.3.  The CARE machine processing element

7.  The Elint Application

The Elint Application is a situation understanding application used in our
experiments. It is, in fact, part of a larger signal understanding system
called Tricero, developed by ESL [Williams 84]. It was selected as an appli-
cation, not only because is was in the problem domain in which we were in-
terested, but also because it is a system of moderate complexity. It is
complex enough to stress our software architectures and to give us a rea-
sonable understanding of the problems of implementing real concurrent
blackboard applications, yet simple enough that we could concentrate on
the development of Cage and Poligon, rather than the application itself.

The Elint task is to integrate reports from multiple, geographically dis-
tributed, passive radar collection sites in order to develop an understanding
of the position and intentions of aircraft travelling through the monitored
airspace (see Figure 7.1). As the aircraft travel, they use a number of dif-
ferent radar systems for such tasks as ground tracking/altimetry and tar-
get acquisition and tracking. The passive radar receivers in the Elint ap-
plication are able to detect the bearing of the radar emissions (the position of
the emitter must be deduced from more than one radar system, since these
are passive devices) and the type of radar system which is making the
emissions.
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Site 2 Border

Figure 7.1.  The Elint problem. The radar collection sites must track the
aircraft using the bearings of the received emi-s sas. In this case the
system must distinguish between the real positions of the aircraft and

positions which are imposs.ble.

The application takes the multiple streams of reports from the collection
sites, abstracts them into hypothetical radar emitters (perhaps aircraft),
and tracks them as they travel through the monitored airspace. These
emitters are themselves abstracted into clusters (perhaps formations of air-
craft or single aircraft using multiple radar systems), which are them-
selves tracked (see Figure 7.2). Sometimes an aircraft in a cluster would
split off, forcing the splitting of the representation of the cluster and ratio-
nalization of the supporting evidence. The nature of the radar emissions
from the aircraft are also used to determine the intentions and degree of
threat of each of the clusters.

The Elint application has a number of characteristics which are of signifi-
cance.

* The system must be able to deal with a continuous input data stream,
and there is a need for real-time processing. (The Elint application
on both Cage and Poligon is a soft real-time application, processing
continuous input data as fast as possible. It is not a hard real-time
application, since it does not guarantee any specific response time.)

* The application domain is potentially very data parallel. The ability
to reason about a large number of aircraft simultaneously is very im-
portant.




e The aircraft themselves, as objects in the solution space, are loosely
coupled.

(Blackboard nodes )

3

Emitters

6

[Observations

nput Data

Figure 7.2.  The Elint Application. Sernsor data is abstracted into
hypothetical radar emitters, which are tracked as clusters of emitters.

An artifact of the application, which should be well understood, is the idea
of an input data sampling interval. Since the Elint application is, in some
sense, a simulation of the real world, it has a clock of its own which ticks at
a constant rate with respect to the time in the real world. The data that
comes into the system is timestamped. When the application’s clock has
reached a time which is the same as the timestamp on the input data
record, the data is introduced into the system. The simulated time between
two of these ticks can in certain circumstances be used to provide a mea-
sure of the throughput of the system. Thus, the tick interval is a parameter
that can be varied to measure the system's potential throughput. For any
given experiment the input data that was being used defines the number of
radar emissions detected in that timeslice. From here on in this paper,
therefore, we will use the term timeslice to indicate a period whose length
is equal to one domain clock tick and input data sampling interval or sam-
oling interval, for short, as the length of one timeslice in simulated time.
The sampling interval will typically be quoted in simulated milli or mi-
croseconds!.

IThis is one aspect in which the Elint application is not realistic. In the real world, reports
arrive at Elint data collection sites at a rate of one every few seconds. In order to stress our
systems we had to turn up this rate until reports were arriving, in the case of Poligon, every
300 microseconds.
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8.  Experiments and Results

In this section we describe the experiments performed on the Poligon and
Cage systems using the Elint application described in the previous section.
We explain the reasons for performing the experiments, present the results
of the experiments in detail, and draw conclusions from them.

It should be noted that the experiments mentioned here do not represent all
of the experiments performed, but are simply those which we performed af-
ter learning from earlier ones. The earlier experiments taught us how
better to perform the experiments and helped us to {ind numerous infelici-
ties in both the Poligon and Cage systems and their respective Elint imple-
mentations.

8.1. Understanding the Graphs

In the following sections a large number of graphs will be shown, most of
which will have the same format. The graphs plot either speed-up or both
speed-up and input data sampling interval against the number of proces-
sors on which the experiment was performed. When both sampling inter-
val and speed-up are plotted on the same graph, the sampling interval will
always be labelled on the left Y-axis and the speed-up on the right Y-axis.
A typical speed-up graph is shown in Figure 8.1.

Speed-up

0 T T T 1
0 16 32 48 64
Processors

Figure 8.1.  An example showing speed-up plotied against the number of
processors used.

In the best of all possible worlds, linear speed-up would result; that is, for
each new processor that was added, the speed-up would increase linearly.
The plot would be a straight line. In practice, however, the amount of real-
izable speed-up often tails off as the number of processors increases, giving
the characteristic shape for the curve in Figure 8.1.




For the sake of completeness, the sampling interval will often be shown
along with the speed-up. The speed-up is, in fact, simply calculated by di-
viding the sampling interval for the uniorocessor :ase by that for the N pro-
cessor case. The display of the sampling interval shows how the system's
throughput is affected by the number of processors. This is typically a de-
creasing curve as is shown in Figure 8.2 — the system speeding up as the
sampling interval is going down.

100 - ~ 10
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80 4 L 8
® 60 - -6 Q
.g. o Interval 2
g - Speed-up ?
o 40 - - 4 (%
c
20+ 5
0 ¥ 1 o R ] M H ¥ 0
0 16 32 48 64
Processors
Figure 8.2.  An example showing sampling interval and speed-up

plotted against the number of processors used.

8.2. Experimental Method

An important part of these experiments is the method used to derive the
measurements. Extensive experimentation was conducted before a method
evolved, which could both define and measure the speed-up of these sys-
tems.

A simplistic method for measuring the speed-up of a parallel system would
be to take the run-time for the application on a uniprocessor and then divide
it by the run-time measured for different numbers of processors. This ap-
proach works well for non—real-time systems in which the behavior of the
system is not affected by the speed of the computation. In a real-time system
with continuous streams of input data, however, the behavior of the system
changes according to the degree to which the system is leaded. For exam-
ple if more processors are added to a system it can become data starved,
failing to deliver the speed-up of which it is capable.

To counter this phenomenon a different methodology was devised. A series

of experiments is performed, during which the input data sampling inter-
val is established such that on the largest processor network size the system
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is never data starved. The speed-up is measured using this sampling in-
terval for other processor configurations, knowing that the delivered speed-
up for the large multiprocessor configuration would not be data starved. We
found, however, that with all system parameters held constant (except for
the number of processors) the application program was still behaving
differently for the different experiments. This was because for small num-
bers of processors the system was getting backed up, and it was spending a
significant amount of time queue-thrashing. That is, it was trying to keep
data in order which, if the system had not been so overloaded, would not
have got out of order in the first place. This had the effect of making the ap-
plication seem 1o run slower on smaller numbers of processors, thus giving
an artificially high apparent speed-up.

What was needed, therefore, was a method for measuring the system's
speed-up, while making sure that the system was always operating under
the same load conditions. To accomplish this, the speed of the application
on any particular processor configuration is defined as the lowest sampling
interval (i.e. highest throughput) that still gives non-increasing latencies in
the results. The latency measure is defined to be the time between the data
coming into the system and the system emitting any reports concluded
from the data.

>
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Time
Figure 8.3.  Showing increasing measured latency over domain time.

Examples of increasing and constant latencies are shown in Figures 8.3
and 8.4. If the system can keep up with the sampling interval specified, the
latency value should be largely constant, otherwise latencies increase over
time as the system backs up.
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In summary, the following method is used to measure the system's speed:
for any given number of processors, the application is run with different
sampling intervals until one is found that produces non-increasing laten-
cies. This sampling interval defines the processing speed for a given pvo-
cessor configuration. For a speed-up experiment, the above process is r»-
peated for different processor configurations until the speed-up curve levels

off.
4 9
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o T Y -—
0 i¢ 20 30
Time
Figure 8.4.  Showing constant measured latency over domain time.
8.3. DataSets

An important aspect of the experiments on the Elint application is the sce-
nario used to drive the experiment. A scenario represents the simulated
radar information that a "real” system would have received. In a real sys-
tem, one would expect that the number of received radar emissions would
vary over time. Although realistic, this sort of scenario is very hard to per-
form experiments on, since there are bound to be times when the system is
either data starved or overloaded. Because of this, two of the data sets used
for the experiments have the particular property that they have a constant
density of input data over time.

The important characteristics of these data sets, therefore, are the number
of radar emissions detected in each time unit, the number of radar emit-
ters, and the number of clusters (see Section 7).

It should be noted that these data sets are used to measure the overall peak
system performance for a given data set having the characteristics men-
tioned below. The system’'s response to transients in the amount of input
data in a timeslice was not measured, nor was its performance for input
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data with less 'typical” characteristics; for instance, a small number of
aircraft, each using a large number of radar systems, or a large number of
aircraft, each using very few radar systems.

The characteristics of the three data sets used are enumerated below.

Fat 240 Observations, 4 Emitters, 2 Clusters, 8 Observations
per time-slice, 30 time-slices, 2 Observations per Emitter
per time slice.

Thin 60 Observations, 1 Emitters, 1 Clusters, 2 Observations per
time-slice, 30 time-slices, 2 Observations per Emitter per
time slice.

Lumpy 186 Gbservations, 12 Emitters, 1 Cluster (which splits), 2
inconsistent observations, 1 ID error, variable number of
Observations per time-slice, 30 time-slices.

In the description of the experiments to follow, these data sets will be re-
ferred to by the names "Thin”, "Fat” or "Lumpy” to save time, space and
confusion.

8.4. Experiments with the Cage System

Seven separate sets of experiments, labeled C-1 to C-7, were run using the
Elint application on Cage. The objectives of the first two sets of experiments
were to compare Cage with Poligon, and to evaluate the efficiency and effi-
cacy of the blackboard model for parallel execution. The third experiment
compared different process granularity within Cage. The last four experi-
ments were attempts to improve the performance of C-3 with different re-
source allocation schemes, more available processors, and a mere efficient
and accurate underlying simulator.

Application
Cage
Qlisp
CARE
Figure 8.5.  System: Structure.

Cage is simulated on CARE as described in Section 6. In addition, Cage
uses Qlisp [Gabriel 84], a queue-based multi-processing Lisp, which pro-
vides parallel evaluation of Let expressions and Lambda closures (see Fig-
ure 8.5). Each processor in the simulation is a multi-process machine.




Processes are assigned to available processors by a e'mple, non-preemptive
round-robin scheme.

8.4.1. Experiment C-1; Basic Speed-up
8.4.1.1. Description

Experiment C-1 simply measures the spead-up attainable for a varying
numbers of processors. For this experiment the scheduler started many
knowledge source executions in parallel, waiting until they were done be-
fore selecting another set to run in parallel. Using a mixed data set with
clusters, splits, inconsistencies, and id errors (the "Lumpy"” data set) this
experiment exercised all the problem solving capabilities in the Eiint appli-
cation. Experiment C-1 was run serially on one processor and on multipro-
cessors ranging from 2 to 16 processors. By comparing the time required to
run the data set on one processor with the time required to run with the
multiprocessors, a measure of speed-up was obtained. This is the simplis-
tic speed-up measurement described in Section 8.2.

Purpose

The main purpose of this first experiment is to get a base-line speed-up
measurement for a simple concurrency configuration. The concurrency op-
tions used were concurrent knowledge source execution with synchro-
nization control. This measurement can be used as a basis for comparing
the performance of the system using more complex concurrency configu-
rations.

8.4.1.2.

8.4.1.3. Results

The results of this first experiment are shown in Table 8-1 and Figure 8.6.

ST, £ O - P an
Prosessors Speed up at ?0 ms Speed .up at 80 ms
Sampling Interval Sampling Interval
0.9 1.5
1.7 1.8
2.4 1.96
— 2.03
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amF H
of Experiment C-1.
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Figure 8.5. peed-up derived in Experiment C-1.

8.4.14. Interpretation

The basic speed-u p began to level off with 4 processors and reached a factor
of 2 with 8 processors. To explain why oxﬂ} a factor of two speed-up was
achieved, we nead to look at the control cycle of a serial case. In the serial
case {see Figure 8.7} the scheduler selects one knowledge source {o execute
from among all the knowledge sources applicable at that time.

Control W KS 84 Controi —9 KS —®1 Conirol —9 KS+—9
re

Figure 87.  Basic Control Crcle for Serial Execution.

In Exgerﬁmest C-1 all ihe pending knowledge sources are executed in par-
allel, as seen in Figure 8.8.

K8 KS
Contrat KS Control S ass
I 0% o saer ] s

Figure 3.8. 1'v o Cycle with Seriai

Although the iﬂogi s:‘ii«; . urces were run in parallel "Amdahl’s limit”
iuﬁ;;t‘_ iha speed-up o i 1 Zest serial component, in this case the sched-
Yhen all component parts of the




execution were individually tiused, it was found that slightly less than hal?

of the tutal execution cycie lime was being spent in the serial, synchroniz-
ing scheduler.

Experiment C-1 demonstrates that when knowledge source invocation is
synchronized, speed-up sains are limited by the combined grain size ¢f the
scheduler and the largest knowledge source, no matter how many know!-
edge sources are run in parallel. It should be noted, however, that the grain
size of the knowledge sources, as well as that of the scheduler, is very appli-
cation dependent. In the following experiment knowledge sources were exe-
cuted in parallel without synchronization, but knowledge sources were still
invoked by a central scheduler.

8.4.2. Experiment C-2: Speed-up Measurement using a Smooth Data
Set

8.4.2.1. Descripticn

The second experiment also measured speed-up, but in a manner that was
felt to be more fair than the basic speed-up experiment, as explained : Sec-
tion 6.2. Experiment C-2 was run with 1, 4, and 8 processors. 1n Experi-
ment C-2 the knowledge ources were executed without synchronization,
reducing the time spent waiting within the scheduler. As each knowledge
source corapleted, the scheduler immediately :nvoked successor knowledge
sources - ‘thout waiting for any other knowledge sources to tnisk..

8.4.2.2. Purpose

The purpose of this experiment was to see if eliminating synchronization
resul.s in improved speed-up. Experiment C-2 also provides standardized
measurements of speed-up and throughput to compare with results from
Poligon, as was mentioned in t! ¢ Introductior.. This and subsequ.nt exper-
iments used the .’at” data set.

8.4.2.3. Results

Processors Sampling Interval (rns] Speed-up
1 700 1
: 4 225 3.11
! 8 180 3.89

Table 8-2, The results of Experiment C-2.
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Figure 8.9.  Resulis of Experiment C-2.
8.4.24. Interpretation

The Cag> implementation of Elint has six different knowledge sources.
During run-time many copies of the knowledge sources can be running
concurrently. Theoretically, if the pipelines formed between the levels on
the blackboard are well-balanced, no ove-head for process creation or pro-
cess switching is incurred, and the scheduler takes zero time (all cf which
are impnssible), a spe-d-up of 1 + P(#KSs) should be possible with knowl-
edge source concurrency, where P is the number of pipes and #KSs is the
number of knowledge sources in each pipeline. The Fat data set allows the
creation of four pipes, so the maximum speed-up that is theoretically possi-

ble in this case is 25x%.

KS -9
KS - Contro!}—b KS —®{Control KS -
Contro KS ®{Control HP{KS 4 Control—®{KS ®control -
KS —4 Control KS Control F#1KS L
KS —®iControl ¥
Figure 8.10. Logical View of Unsynchronized Knowledge Source
Invocation.

The speed-up obtained by running knowledge sources concurrently without
synchroniz.ng was slightly less than 4. This is almost double the speed-up
obtained with synchronization. though some of this difference will have
been caused by the smoother data set used. The time spent in the scheduler
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was reduced by almost half of that in Experiment C-1. However, it should
be noted that the central scheduler is still a bottleneck. (See Figure 8.10)
Given the architecture of blackboard systems, the time spent in the sched-
uler can be reduced, but not eliminated, without a major shift in the way we
view blackboard systems. Poligon is one such shift.

One important result of Experiment C-2 was to confirm the ease with which
different concurrency options (see Section 4.2) could he used in Cage. Once
the Elint application was running with parallel knowledge sources and
synchronization, only one minor change to one rule was required to make it
execute parallel knowledge sources without synchronization correciy. No
change to Cage itself is required when changing the concurrency specifica-
tions.

8.4.3. Experiment C-3: Asynchronous Rules
8.4.3.1. Description

In Experiment C-2 all possible concurrency at the knowledge source level
was exploited. Experiment C-3 attempted to increase the speed-up by ex-
ploiting parallelism at a finer granularity. We hoped to gain an increase in
the overall speed-up for each knowledge source by executing the rules of
cach knowledge so'irce in parallel. There are several options in Cage for
executing rules in parallel and we selected those that we expected to yield
the most speed-up. The rules were executed with both condition and action
parts running concurrently and without synchronizing between the condi-
tion and action parts. Otherwise the experimental variables of Experiment
C-3 are identical to those of Experiment C-2 — the same data set, sampling
intervals, aud numker of processors.

8.4.3.2. Purpose

The purpose of Experiment C-3 was to measure speed-up with process
granu ity at the level of rules.

#4303, Results

Speed-up over ]
Processors Experiment C-2 Total Speed-up
1 1 1
-6% 2.92
8 5.8% 412
16 n/a 5.6

Table 8-3. The results of Experiment C-3.
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Figure 8.12. Experiments C-2 and C-3.

8.4.34. Interpretation

The results of Experiment C-3 were disappointing. For 8 processcrs only a
5.5% speed-up over Experiment C-2 was attained, for a to:al speed-up of
4.12. For 4 processors there was no speed-up at all over Experiment C-2.
The overhead of spawning processes offset any gains frrm more paral-
lelism.

There are several reasons for the small improvement in speed-up. In the
Cage implementation of Elint, there are an average of 3.5 rules per knowl-
edge source. Thus the maximum speed-up possible in Experiment C-3 is
limited to 3.5 of the time spcat executing knowledge sources in Experiment
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C-2. A detailed time trace revealed that in Experiment C-2 only 26% of the
execution time of a knowledge source was expended on actually running
the rules. A factor of 3.5 speed-up of only 26% of the total execution time,
can result in at most a total gain of 7.4% over the knowledge source execu-
tion time.

Number of processors 4 8

Change in speed-up . .
from C-2 to C-3 -6% 5.5%

Table 8-4. The change in speed-up of the Experiment C-3 results over
those of Experiment C-2.

These results are all for 8 processors. For 4 processors the gain was
negated by the overhead cost of process spawning and resource allocation.

The cost of spawning a rule v as approximately the same as that for spawn-
ing a knowledge source.

As a result of these disappointing results, we ran Experiment C-3 on a 16
processor system in hopes of alleviating the congestion on the smaller
grids. This resulted in slightly better results, a total speed-up of 5.6. This
extra speed-up is due to the greater availability of free processors to handle
the greater number of processes with rule level granularity.

8.44. Where Time is Being Spent in Cage

Throughout the Cage experiments with Elint, we had been troubled that the
throughput Cage could achieve was low relative to Poligon. The best sam-
pling intervals for Cage up to this point were around 120ms, while Poligon
showed best sampling intervals in the order of a few milliseconds. n this
section we explore the causes for the poor throughput .

8.44.1. Cage time Measurements

Nuring the experiments all the component parts of Cage were timed. In
.ddition, timings for various parts of Qlisp were also taken. Figure 8.13
shows the average times taken for the basic components of the Cage system
to process one data point in one time interval.

As expected, most of the time was being spent setting-up and executing
knowledge sources. Table 8-5 shows a breakdown of the timce spent within a
knowledge sonrce. The times are averages for an entire simulation of the
"Fat" data set, with 16 processors for Experiment C-3.




B /nput
Control
Bl Ks Setup
Rules

Figurz 8.13. Average Systern Usage per Input Data Point.

Knowledae Source Average [ms]| High [ms] | Low [ms]
Wait and <tart-up time 2.48 71.84 0.45
Instantiation 0.62 8.94 0.12
Definitions 27.52 184.92 0.90
Creation 17.56 123.90 0.95
Node Create 1.97 2.97 1.06
Match existing nodes 2.29 7.96 0.16
QLisp 15.23 120.67 0.95
Slot Reads 0.97 11.37 0.06
Rule wait and start-up 4.39 79.58 0.51
Rule execution 3.22 82.88 0.00'
Total KS__ Execution time 28.45 186.09 1.19
Table 8-5. Time distribution for Typical Knowledge Source Execu-
tionl.

8.4.4.2. Time Utilization
8.4.5. Experiment C-4: Process Allocation

While the averages in the table in Table 8-5 are interesting, pointing out ob-
vious places that need to be remedied, they do not tell the enti.e story. The
first trace files showed timings that were very spiky. For example, while
the average time for a knowledge source instantiation is 0.62ms, there were
times when instantiation took as long as 8.94ms and cother times when it
only took 0.12ms. An initial explanation was thai the spikes wcre caused by

IThe lowest time for rule execution was too short to register accurately on Care's clock
whichk has an error margin of 30 us.
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blocked and descheduled processes.! This is an indication of problems in
resource allocation.

If the spikiness is due to competition between processes for processors, then
we should see an increase in speed-up and a decrease in the spikiness by
increasing the number of processors available to run the processes. An
earlier C-3 experiment did show a significant improvement in speed-uyp be-
tween 8 to 16 processors and a reduction in spikiness. To prevent processes
from being descheduled when they block, a variation on Experiment C-3
was run. Certain processes were pre-allocated to specific processors which
were made unavailable for other processes; that is, some processors be-
came special purpose processors. The pre-allocated processes were the in-
put handler, the node creation/match handler, and the scheduler — all of
which are large and used often. This experiment was run only on a 16-pro-
cessor system, the minimum amount of hardware deemed necessary for
this configuration.

The results of this experiment were not conclusive.

Number of processors 16
Speed-up for C-3 5.6
Speed-up with allocation 5.7
Increase 3%

Table 8-6. Performance improvement over Experiment C-3 by spe-

cialized process allocation.

The increase in speed-up of 3% (see Table 8-6) falls within the margin of er-
ror for these experiments and is not significant. However, while speed-up
vas not significant there was a reduction in the spikiness observed in the
traces. The highs in Table 8-5 were reduced in every case, with an average
decrease of 5.4ms, or 8%. However, the queue lengths for knowledge
sources and node creation/match increased, indicating that (1) insufficient
numbers of processors were available for the knowledge sources because of
the three pre-allocated processors and (2) the node creation/match handler
probably needed two or more processors to handle its load.

8.4.6. Experiment C-5: Process Allocation
A second experiment involving specialized processor allocation was more

successful. In this case only one processor, the input-handler, was used to
execute the entire input procedure. Previously the creation of new input

{Qlisp will deschedule a biocked process by placing the blocked process on the local
processor queue and running the next process on that queue if there are other processes
waiting ¢ that queue. The blocked nrocess must then wait for the new process to finish
before the blocked process can resume.
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nodes (obie.ts on the observation level), one for each input data item, had
been haiid.cu by a separate creation handler. By eliminating the cost of
spawmn'-‘* i".e separate creation process, and with it the possibility of
blocking i input process while waiting for the creation to complete, the
input nod: .reation time was decreased by 59%. Alsc, spikiness in the
creatic n=asurement almost disappeared.

Ext e ment Average High Low
Irnous r.ode creation on 15.39 91.54 5.05
different processor [C-3]
Inpu. nade creation on 4.87 6.78  4.23
input z:6Cessor

Tabie »-7. Results of Experiment C-5, variation on Experiment C-3.

Although tus: g the apphcatlon by pre- allocatmg some processors for spe-
cial purposes. .oes gain some speed-up, an easier solution may be to use
more procebsor The last two experiments test this hypothesis by using an
additional 16 processors, 32 in all.

8.4.7. Experiment C-6: Muliiple Node Creators
Experiment ms % over Exp C-5
Experiment 5
Single creation processor 40 n/a

Experiment 6
Multiple creat’ u processors 31 22%

Experiment 7
Local creation 25 37%

Table 8-8. Throughput Results of Experiments C-5, C-6 and C-7.

In this and the final experiment the number of available processors was in-
creased to determine if an insufficient number of processors was limiting
the throughput. In this experiment the number of node creation process
handlers was also increased from 1 to 4 in an attempt to break-up the rode
creation bottleneck. A major disadvantage of using more than one proces-
sor for creation is the possibility of two processors creating the s»me node at
the same time. In order to bypass this p. blem, we dedicatec a processor
for each level of the blackboard to create its nodes. By tying the creation
processes to individual blackboard levels, we avoided the problem of dupli-
cate nodes. In preliminary runs of experiment C-6 we found that the addi-
tion of 16 processors, without specialized allocation of those processors, re-
sulted in a negligible improvement in throughput. Howaver, the allocation
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of some of those new processors specifically for node creation handling re-
sulted in a 22% improvement in throughput over the best results of Experi-
ment C-5, as shown in Table 8-8.

84.8. Experiment C-7: Local Node Creation

In the final experiment we tried to eliminate the node creation bottleneck
completely by doing all creation on the local processor, instead of on ¢ne or
more specially allocated processors. To prevent the creation of duplicate
nodes, the blackboard level node was locked by the knowledge source or the
rule requesting the creation, until either a new node was created or an
existing one was found. The use of local creation (on the same processor as
the knowledge source or the rule requesting the node creation) improved

throughput to 25ms, or a 37% improvement over Experiment C-5 (see Table
8-8).

8.4.9. Summary Discussion

There are two important measurements that can be considered the cumu-
lative results of the Cage experiments. These are the maximum relative
speed-up — comparing uniprocessor runs with multiprocessor runs, and
the minimum sampling interval — measuring the total thrcughput.

8.4.9.1. Speed-up

Speed-up is a relative measure, comparing the uniprocessor speed with
muitiprocessor speed, using the methodology discussed in Section 8. The
maximum speed-up achieved by Cage was 5.9 using a 32 processor grid
with knowledge sources and rules running concurrently without syn-
chronization. The factors limiting speed-up to 5.9 include:

e Existence of central scheduler.

Serial definition section of knowledge sources.

©

Inefficient allocation of processes to processors.

L

The high overhead of closures within knowicdge sources which
caused the copying of large amounts of local data combined with slow
communication between the processors and memories.

Serial Definitions: In Cage each knowledge source consists of a set of local
bindings, which we call definitions, and a set of condition-action rules
which can reference the loca! definitions. The definitions include refer-
ences to blackboard nodes, calculations with values retrieved from those
nodes, and the creation of new nodes. The definitions are the only part of
the knowledge sources executed serially during the Cage experiments. By
executing the definitions for each knowledge source in parallel we could
theoretically expect as much as a 40% increase in speed-up because there




are an average of 11.5 definitions per knowledge source and definitions ac-
count for about 89% of the total knowledge source cost.

Executing the definitions in parallel is an option in Cage. The speed of the
definitions would then be limited by the longest definition. A side-effect of a
definition can be the creation of a new node. From Table 8-5 we can see that
creation of a new node or matching for an existing node costs 63% of the to-
tal definition time. However, these definitions, as specified by the Elint ap-
plication, are likely to have a number of implicit points of serialization be-
cause of data dependencies and do not all make equal computational de-
mands. Thus the achievable improvement, in practice would be much less
than the 63% quoted above.

Resource Allocation: The second way to gain speed-up is to improve the re-
source allocation. However, in most Al programs it is not possible to pre-
specify optimal allocations because of the dynamic nature of the programs.
Given an application in Cage, a good resource allecation scheme can be
evolved through experimentation, as was seen in Experiments C-4 , C-5,
and C-6.

For Experiments C-1 to C-3 the identical allocation scherie was used re-
gardless of the number of processors used, statically assigning some pro-
cesses (input handler, for exampie} to specific processors but allowing them
to be used by other processes. For example, in Experiment C-5 data input
time was reduced from 15ms to 6.5ms with hand crafted processor alloca-
tions. Likewise, in Experiment C-6, which assigned separate processors to
each blackboard level for node creation, throughput improved by 22% over
Experiment C-5, which used a single creation process. This general
scheme could be used for specific applications and specific numbers of pro-
Cessors.

Qlisp: The final factor limiting speed-up for Cage is the high overhead
costs of the use of the Qlisp implementation, particularly Qiisp process clo-
sures. A Qlisp process closure is expensive for Cage, because Cage re-
quires the copying of the context (the local definitions of a knowledge
source) from the spawning processor to the executing processor. This over-
head accounts for approximately 2/3 of the total node creation time.

8.4.9.2. Throughput

Throughput is an absolute measure, measuring the rate at which input
Jata can be processed, or the sampling interval, as discussed in Section 7.
When the throughput that Cage can achieve is compared with that of
Poligon, it is relatively low. The minimum sampling interval for Cage is
about 10 times that of Poligon for the same number of processors. Cage was
limited to a best sampling interval of about 25ms.

The general rcasons that limit speed-up also apply to the relatively poor

throughput. First, a more efficient use of Qlisp, eliminating one unneces-
sary call, led to a 22% reduction in the sampling interval. Second, the latest
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test runs show a reduction in the sampling interval of 43% with the use of
the latest CARE simulator. Third, as seen in Experiment C-6, the sam-
pling interval was reduced to 31ms with 32 processors with some simple re-
source allocation optimization.

To summarize, Cage can execute multiple sets of rules, in the form of
knowledge sources, concurrently. If the rule parallelism within each
knowledge source could provide a certain speed-up, and if many knowledge
sources cculd be run concurrently without getting in each other's way, it
was hoped that we would get a multiplicative speed-up. The extra paral-
lelism coming from working on many parts of the blackboard, in other
words, by solving sub-problems in parallel. It was found, however, that the
use of a central scheduler to determine which knowledge sources to run in
parallel drastically limits speed-up, no matter how many knowledge
sources are executed in paraillel. This is primarily a function of the granu-
larity of the serial components. Nonetheless, a trade-off must be made be-
tween the high cost of process creation and switching, and granularity. We
were able to get a speed-up factor of 4 by running knowledge sources in par-
allel. However, we were not able to get any significant speed-up by running
the ruies within each knowledge source in parallel. due in part to: {1) the
large chunk of serial definitions in each knowledge source; (2) the fact that
there is only an average of 4.5 rules in each knowledge source, and (3) the
high overhead cost of process creation and switching. With more efficient
definitions, additional rules, and faster process switching we may be able to
get better relative speed-up and a higher throughput.

8.5. Experiments with the Poligon system
The following sections detail a number of experiments performed on the
Poligon system using the Elint application. The purpose of these experi-

nients was as follows:

* To measure the benefits of pipeline and data parallelism in the appli-
cation.

¢ To determine the ability of the system to exploit rule parallelism.

* Tec estimate the costs of running the system without system opti-
nizations, which reduce the ability of the programmer to debug ap-
plications.

¢ To determine whether some changes to the timing of the system were
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8.5.1.
8.5.1.1.

Description

Experiment P-1: Thin Data Set

This experiment simply used the experimental method elucidated in Sec-

tion 8.2. Nothing special was done to the system in order to perform it. The
data set wasrunon 1, 2, 4, 8, 16, 32, 64 and 128 processor systems. In order
tc determine each experimental data point, the input data sampling inter-
val was adjusted until the latencies for the reports generated were non-in-
creasing.
8.5.1.2. Purpose
Processors Sampling Interval [ms] Speed-up
1 9 1.0
2 55 1.6
4 4.5 2.0
8 4.0 2.3
16 3.1 2.9
32 2.6 3.5
64 2.5 3.6
128 2.5 3.6
Tabie 8-8. The results of Experiment P-].
The purpose of this experiment was threefold. First, it was to measure the
performance of the system by deriving both speed-up and minimum sam-
pling interval measures. Second, the experiment was intended to provide a
base-line for comparison with subsequent experiments. Third it was in-
8.5.1.3.
The

tended, to evaluate the speed-up provided by the Elint application as a result
of pipeline parallelism. This latter can be done using this data set because
subsequent experiments using the Fuf data set.
Results

the data set results in the creation of <aly one pipe in the solution, unlike
also shown in Figure 8.14.

results derived from this experiment are shown in Table 8-8 and are
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Figure 8.14. The results of Experiment P-].

Minimum sampling interval: 2. 5ms with 64 processors.

8.5.1.4. Interpretation

(Obsetvation )—{Rules )}

A simple pipe gives a maximum speed-up of
Three for a perfectly balanced pipe.

.
Interval [ms)
(V] okn o o
[ B s
W ]
o [«
-1 a
w0
m
O T
® - XY ©
v Speed-up

Concurrent execution of rules allows speed-up
greater than the number of stages in the pipe.

s
figure

M
hJ'I

From this experiment we can see that the Poligon system has produced a
speed-up of 3.6 as a result of pipeline parallelism. This is a fairly enceur-
aging result, since it shows that a certain amount of parallelism is being
achieved due to parallel rule execution. We can conclude this because the
pipes formed by the Elint gp&xcai;m have only three stages resulting in a
maximum speed-up of three for a simple pipe (see Figure %’i.ia).
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8.5.2. Experiment P-2: Fat Data Set
8.5.2.1. Description

This experiment was exactly the same as Ex3: ~ment P-1, except for the
data set used, which was the "Fat” data set.

8.5.2.2. Purpose

The purpose of this experiment was twofold. Fir: . .t was to provide a base-
line by which the Poligon system's performance ¢ uli be compared with the
implementations of the Elint application using :he Laminal and Cage sys-
tems. Second, it was intended to give a nieasure »f the ability of the Poligon

system to expioit paraﬂeiiam irn the data. This could not be determined
from the previous experiment because the data set cnly allowed the creation
of a single pipe durmg the execution of the program. in the Faf data set
there were multiple emitters and clusters, which caused, guite in-

tentionally, the creation of muliiple pipes during th= solution of the prob-
fem.

In the Fa¢ data set one would expect four pipes to be created. L;o;fevér thi
does not mean that one would necessarily expect the speed-up to be four
times greater than that delivered by a data set only one quarter as “wide”
{the Thin data set), although one might hope that it would be.

8.5.2.3. Results

s
$
r

Processors Sampling intervai [ms] Speed-up
1 31 1.0
2 18 1.7
8 16 1.9
16 10 3.1
32 4 7.8
64 2.9 10.7
128 2.7 11.5
Tapis 8.8 The resuits of Experiment P2,
T?‘té results derived from this experiment are shown in Table 8-9 and ir

=

*For a more information on these experiments, please see [Delagi 83!
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Figure 8.16. The results of Experiment P-2.
Minimum sampling interval: 2.7ms with 128 processors.
8.5.2.4. Interpretation

The minimum sampling interval shown above is a measure of the ap-
plication's ability to process data. This figure is compared to the best sam-
pling intervals of the implementations of Elint using the Cage and Lamina
systems in Table 8-10.

There are a number of reasons why the Poligon implementation of the Elint
system was not as fast as that using Lamina. These fall into two main
groups, those due to the encoding of the application and those due to the
framework itself.

System Best Sampling Interval [ms]
Lamina 0.5
Poligon 2.7
Cage 25

Table 8-10. A comparison of the peak throughputs of the Lamina,
Poligon and Cage implementations of the Elint application.

Application: The Elint application in Poligon was intentionally not tuned.
That is to say, the application was an attempt to make an implementation of
the original, serial implementation of Elint done using AGE. As a result of
this, the application was coarser grained than the Lamina implementation
(for example Lamina used seven-stage pipes). It was also not redesigned so
as to improve its efficiency, whereas the Lamina implementation went
through a number of different designs, so as to improve its efficier.cy and
the balance of its pipes. Similarly, the Lamina implementation of Elint
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used a carefully crafted resource allocation strategy, while Poligon used a
simple, random allocation strategy. Although effectively the only tuning
done to the Poligon implementation of Elint was the addition of type declara-
tions, this should not be taken as an indication that this is the sort of perfor-
mance that one might expect from an application written by a naive user.
The implementor of the application was, in fact, also the implementor of
the Poligon system.

Framework: It is clear that there are significant costs associated with
maintaining the abstraction model and mechanisms supported by Poligon.
This has a substantial effect upon the minimum grain size that the system
is able t¢ achieve. The granularity of the Poligon system will be discussed
below in greater detail. In short, the costs incurred by the Poligon frame-
work over those incurred by the Lamina implementation of Elint are: (1)
the cost of rule invocation, (2) the cost of reading slots (due to the complex
behavior of slots) and the cost of writing slots (due to the smart-slot proto-
col), and (3) the costs of communication.

The second conclusion that can be drawn from this experiment concerns
Poligon's ability to exploit data parallelism. The minimum sampling in-
terval for this experiment was not statistically different from that in Exper-
iment P-1 (see Table 8-11).

We can conclude, therefore, that almost linear speed-up results from in-
creasing the width of the input data stream.

Experiment Data Set Best Sampling
Interval [ms]
P-1 Thin 2.5
P-2 Fat 2.7

Table 8-11. The peak throughput of the Poligon Elint application for
different data sets.

8.5.3. Experiment P-3: Multiple Rules
8.5.3.1. Description

This experiment was performed using the Thin data set. All data points
were measured on a 128 processor network. The Poligon system was modi-
fied so that whenever a rule was triggered to fire it would actually fire N
rules, where N was a user definable parameter. Of these rules all but one
were specialized so that they performed all of their operations except for ex-
ecuting their action parts. This can be done because of the guaranteed side-
effect free semantics of rule condition parts.
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8.5.3.2. Purpose

The reason for performing this experiment was to try to find some measure
of the ability of the Poligon system to exploit "Rule" parallelism, that 1s,
achieve speed-up through the concurrent activation of rules. Unfortu-
nately, the Elint application was very sparse in knowledge and it is very
hard to determine whether a system with different amounts of knowledge is
solving qualitatively the same problem, so adding more knowledge would
not give a good measure. It was decided, therefore, to irv ;ke dummy rules
to simulate, as closely as poussible, the costz of rule invocat on without actu-
ally executing the action parts of the rules. This guarantee > that the system
still performs as it should. If the Pcligon system is able to exploit rule par-
allelism, then one would expect that the minimum input clata ampling in-
terval would remain constant, irrespective of the number of dummy rules
fired. The slow-down experienced by the application should, therefore, give
a rough measure of the usefulness of Poligon's architecture to exploit mul-
tiple, simultaneous rule activations.

8.5.3.3. Results

The results of Experiment P-3 are shown in Table 8-12 and Figure 8.17.

257 Linear Slow-down /
2.0 \
o -
s 1.5
2
s
o 1.0 2 Slow-down
7
.5+
0.0 T T T T 1
0 1 2 3 4

Number of Rules
Figure 8.17. The slow-down due to invoking dummy rules in the Elint
application. Values below the "Linear Slow-down” line indicate the ex-
ploitation of useful parallelism.
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Number of rules fired Sampling Slow-down |
(including non-dummy rule)] Interval [ms]
1 2.5 1
2 4.0 1.6
3 5.0 2.0
4 5.5 2.2

Table 8-12. The results of Experiment P-3.

8.5.3.4.  Interpretation

First, it should be noted that this experiment was performed on a fixed pro-
cessor network size to eliminate one more variable factor. However, as the
number of dummy rules activated increases, one would expect that the re-
sources would become more scarce, reducing the performance of the sys-
tem. This should be kept in mind when considering these results.

If one assumes that the amount of work performed by a dummy rule activa-
tion is approximately equivalent to the amount of work done by a non-
dummy rule, then we can conclude that the system slowed down by only a
factor of 2.2, while doing four times as much work. This is by no means a
perfect result, but it shows that the Poligon system can scale to cope with a
knowledge base at least four times as large as that used by the Elint system
and not clog up completely. In this case "Large” is taken to mean the aver-
age number of applicable rules for any given set of slot updates. Untrig-
gered rules cost nothing in terms of rule invocation overhead.

The slowing down of the system was due to the following:

* The serial execution of the code which invokes rules.

¢ Resource contention.

e Communication overhead.

8.5.4. Experiment P-4: Make-Instance

8.5.4.1, Description

In this experiment the 64 processor data point of Experiment P-2 was rerun

with the Poligon system modified so as to charge for the time taken during
the creation of Poligon nodes.

8.5.4.2. Purpose

During all of the other experiments reported here the creation of the >ctual
Lisp machine Flavors instance, which represents a Poligon node, ic taken
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to tale zero time. The reasor for tiis is thai Poligon nodes are in‘.ple-
meried as Flavors instances and eack of their wlots are also Flaoors in-
stances. In a "real” system one could, with suituble compilatien, imple-
ment these nodes simply as arrays. Even when the syster: does not charge
for this instantiation the simulation stiil charges for the initiz ization of the
node, which does not happen at Flavors instance creation t+x:ie, since this
occurs after the system's call to Make-Instance. In a real system, there-
{ore, trwe creation of a node could be accomplished simply by aliocating the
memory and BLTing! a template into it. This cculd be done in a time which
would be very small relative te the other times for operations in the system.
Thus, it was decided not to charge for this instantiation in the simulation,
b :cause Flavors instance creation is very expensive due to its init’alization
protccol.

This experiment, therefore, was a reality check to determine how much the
experilnental results were being affected by not charging for the creation of
instances.

8.54.2. Results
Minimum sampling interval achieved: 3.4ms.
8.5.4.4. Interpretation

When the Elint system charged for the instantiation of Flavors instances
the fastest sampling interval that the system could handle slowed down by
some sevenieen percent. From this one can conclude both that the experi-
ments were not vastly affected by not charging for instance creation and
that in a "real” system one would want to design the system s0 as to avoid
this extra cost which, although not vast, is still significant.

8.5.5. Experiment P-5: Gptimization
8.5.5.3 Description

T his> experiment was performed Ly rerunning the 64 processor cata point

token for the experiment on the Fat data set. But, before this wa: done the
Pn ‘i Zon systein ind the apphcatxon were recompiled so as to be runnmg in
Pohgon s ‘deveionment” mode, with all of the Poligon systemn's opti-
mizations turned off 1nd source c..de dchugging switched on.

8.5.5.2, Puarpose

This experiment was “das’gred < show the relative performances of appli-
cations running in Yoiger’s Adevelopment mode and in Pothn s
"production” maae. A dat.. vt of 1is nature would allow one to muke an
estimate of the h-ot casc perormance of one's system whiie still in the de-
velopment phase.

IBLT instructions are fast Blocn Transfer instructions.
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8.5.5.3. Results
Minimum sampling interval achieved: 9.0ms.
8.5.5.4. Interpretation

This experiment showed that the benefit in application performance of the
optimizations provided by Poligon over the development, unoptimized case
is about a factor of three.

8.5.6. Experiinent P-6: Granularity
8.5.6.1. Description

This series of expe-.ments was performed on the Poligon system without it
running under the CARE simulator. Experiments were performed which
timed a large number of the following:

e Slot reads.
¢ 3Slot writes.

* 3Slot writes, including the execution of rule invocation code up to but
excluding the actual triggering of the rule.

« Slot writes, including the execution of ruie invocation code including
the creation of che rule invocation context, but excluding the execu-
tion of the When! part of the rules

¢ Slot writes, which caused the triggering and evaluation of the When
parts of rules.

Each component was run by finding a useful set of arguments for the rele-
vant calls. It should be noted that this experiment ignored the cost of com-
munication. This was taken as a fixed characteristic of the system.

8.5.6.2. Purpose

These experiments were designed to measure the cost of th: fundamental
operations in the Poligon system. This should allow the developraent of
empirically derived formulae, which would allow the estimation of the
computational grain size of a Poligon program.

Rule activation in Poligon goes through a number of stages, each of which
wiil have associated costs. First there is the slot update, which causes the
rule activation. The cost of slot updates will vary according to whether
there were any attached rules or not. Second there is the context creation.
This is the point at which the system creates the environment in which the

IThe Wken pa-* of a rule is a sort of loznlly evaluated pre-precondition.
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rule will execute. It includes the copying of a template for the state infor-
meation used during rule activation. Finally there is the evaluation of the
When part of the rule. This is a piece of user code, which can clearly take
an arbitrarv amount of time. For this experiment, therefore, a
“representaiive” When part was taken from the Elint application.

The minutiae of these experiments will not be given here. Instead, the re-
sults will be shown in a manner which allows the reader to see the granu-
larity of the different measurzd components of the Poligon framework,
r.ithout having to wade througk a full explanation of the experiments
themselves. As a ~esult of these experiments, empirically derived formulae
will be shown, which denote either thw real performance or a "normal
case” measure taken from the Elint systn

8.5.6.3. Results and Interprefation

The time taken to read a slot was found to be independent of the length of
the slot's value list and linearly related to the number of slots read. Cor-
recting for the processo: spveed for a CARE machine we have the formula
for the calculation of the cost of slot reads in Poligon.

1.36 + 0.94n micruseconds. where n = the number of slots
being read.

The cost shown for slot reads is very low. Of course, this only gives ¢. mea-
sure of the cost of local reads in Poligon and the measurement does not ac-
count for the cost of communication at all. However, because of the nature
of blackboard systems, where rules tend to deal with data locally available
and then pass their conciusions sn to other nodes, most read operations
that happen are, in fact, local. Making this operation fast is one of the
main causes for the difference in performance between Poligon and Cage.
In Cage all slot accesses have equal cost, but that cost is much higher than
Poligon’s local slot accesses because of having to make a read to shared
M emory.

L:ke slot read operations, the cost of writing slots is linearly related to the
number of slots being written. The formula for the cost of non-rule invok-
ing slot updates is as follows, correcting for the spced of the processor as
above.

18 + 53.7n microseconds. where n is the number of slot
updates.

Because the user can supply arbitrarily complex code, which is executed at
slot update time, it should be noted that this figure only reveals the lower
bound for the cost of slot updates.

An expression was derived, by experiment, for the cost of rule invocation in
Poligon. Some of the values in the expression are bound to be case depen-
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dent, but this expression should, nevertheless, be representative of the
normal behavior of the system.

The cost of rule invocation is, therefore, given by the sum of the costs of the
following operations:

* Siot writes for a slot with an attached rule.

* (Creation of the rule activation context object.

* Copying of the definition template for the context object.
* Execution of a typical When part.

All but the first of these are application dependent characteristics. The re-
sults actually measured, therefore, are taken from a "representative” part,
of the Elint application. Substituting in measured values for the categoric¢s
above, we have the cost of rule invocation being:

128 + 160 + 370 + 400 = 1058 microseconds.

This expression should not be taken as a final figure describing the poten-
tial performance of the Poligon architecture, but rather a measure cf the
performance that could be achieved without a major rewrite of the system
and without spending a great deal of effort on the optimization of ihe sys-
tem. It should be easy to eliminate most of the time due {0 instance creation
and due to definition template copying in a production quality syste:n. Wiith
sundry other optimizations a figure better than half of the one miilisecond
quoted above should be readily deliverabse.

9. Discussion

In this paper we ‘iscussed the relationship between the blaczboard model,
its existing seria. tmplemeniations, and the degree to which the paral-
lelism intuitively tl ought to be inherent in the blackboard preklem soiving
model is really present.

Cage and Poligeun, two implementations of the blackboard model designed to
operate on two different parallei hardware architectures, were described,
both in terms of their stru ".ure and the motivation behina their design.

Our framework (or shell) development, application implementations on
these frameworks, and initial performance experiments to date has taught
us that: (1) it is difficul. to write "rezl-time,” data interpretation progroms
in a multiprocessor envi: )nment, a1¢ {2} performance gains are sensiiive
to the ways in which applications ar. fcrmulated and programuined. In this
class of application, performance s alco sensitive to data charact ristics.

The “obvious” sourres of parail.-lism in the blackboard model, suck as the
concurrent processing of knowledge sources, do not provide much gain ir
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speed-up if control remains centralized. On the other hand, decentralizing
the control, or removing the control entirely, creates a computational envi-
ronment in which it is very difficult to control the problem-solving behavior
and to obtain a reasonable solution to a problem. As granula-ity is de-
creased, to obtain more potential parallel components, the interdependence
among the computational units tends to increase, making it more difficult
to obtain a coherent solution and to achieve a performance gain at the same

time. We described some of the methods employed to overcome these diffi-
culties.

Ir. the application class under investigation, much of the parallelism came
from from pipe-lining the blackboard hierarchy and from data parallelism;
both from the temporal data sequence and from multiple objects (aircraft,
for example). Thne Elint application was unfortunately knowledge poor, so
that we were unable to explore knowledge parallelism extensively, except as
a by-product of data and pipeline parallelism and in the somewhat artificial
form described in Section 8.5.3. Elint has been implemented in both Cage
and Poligon, and a number of experiments have been performed. The ex-
perimenis were designed to measure and to compare performance by vary-
ing different parameters: process granularity, number of processors, sam-
pling interval, data arrival characteristics, and so on.

Cage can execute multiple seis of rules, in the form of knowledge sources,
concurreatly. If the rule parallelism within each knowledge source can
provide a speed-up in the neighborhood cited by Gupta, and if many knowl-
edge sources can run concurrently without getting in each other's way, we
can hope to get a speed up in the tens. Extra parallelism comes from work-
ing on many parts of the blackboard, in other words, by solving many sub-

probiems in parallel. Unfortunately. experiments to date have not yet
shown this (sece Section 8.4).

It was found that the use of a central controller to determine which knowl-
edge sources to run in parallel drastically limits speed-up, no matter how
many knowledge sources are executed in parallel. Amdahl's limit and
synchronization come strongly into play. The implication for Cage is that
knowledge-source invocation should be distributed, without synchroniza-
tion. This will eliminate two major bottlenecks; a data-hot spot at the event
list, and waiting for the slowest process to finish during synchronization.

One solution to this is to distribute the blackboard, which is one of the main
characteristics of Poligon.

nce of the Poligon system is limited by a different set of con-
cugh a Poligon programmer can, in principle, pick any de-
e aata grain size of the application’s blackboard nodes, there
optimal grain size for a given application. If the blackboard
nodes are smali, then there will be more of them and the rules in the sys-

tem will be more distributed. This should result in more potential paral-
lelism and more communication,

sired size for
wiil be some
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Poligon tries to shield tte user from the system cost associated with larger
data grain sizes by allowing the concurrent execution of all the rules that
may be interested in a given blackboard change. However, because of the
non-trivial cost of rule invocation, and because resources are always scarce
in the real world, it may be better {0 commit to a larger grain size and avoid
the extra cost of communication and process management. Finding the op-
timum grain size for a program is still an unsolved problem. The devel-
opment of a system, which can take a specification of the user's program
requirements and compile it intc che best grain size, is an important topic
for research as more multiprocessor systems become available and pro-
grammers strive for higher productivity.

It is zlear that much more research is needed in this area before a combi-
nation of a computational and problem-solving model can be developed that
is easy to use, that produces valid solutions reliably, and that can consis-
tently increase spesd-up by a significant amount without undue pro-
grammer effort.

10. Conclusions

We have described the purpose of the Advanced Architectures project at
Stanford University. In particular we have discussed the Cage and Poligon
sub-projects. Cage and Poligon are two different types of concurrent black-
poard system.

The same application, called Elint, has been mounted on each of these
frameworks and experiments have been performed. The experiments, the
experimentsi metnhod and the resulis have been enumerated and discussed.
From these experiments it has been: shown that:

Cage: A peak speed-up of 5.7x was achieved for 16 processors, and im-

proved t¢ 5.9~ for 32 processors. The :hroughput of the system was limited
by four main factors: an inherent s<rialization due to the centralized
scheduler, the unoptimized Cage system , the overheads due to the Qlisp
concurrent Lisp language, and the overheads due to using a simulator for a
distributed-memory multiprocessor as a simulator for a shared-memory
machine. The fastest input sampling interval achieved by Cage with min-
imal optimization and 32 processors was 25ms.

Poligon: A peak speed-up of 11.5< was achieved with a best input data sam-
pling interval of 2.7ms. Pipeline parallelism contributed about 3x of this.
The remaining speed-up v. - due to parallelism extracted from the data be-
ing processed. At least :. h'n the bounds of the experiments described,
near linear speed-up has .« 1« shown for increasing complexity of the input
data. It seems likely, th. rv ore that given more data the system would be
able to achieve beiter res .} . . has been shown that as the knowledge base
size increases, the Poligs: ¢ -cem should deliver significantly better than
linear slow-down, given ¢ :ficicat resorreces.




Comparing the two systems, Poligon out performs Cage by approximately a
factor of 10. (Note that the speed-up of 5.9x for Cage and 11.5x for Poligon
are not comparable, since the measurements are relative measures within
the same framework betweer. uniprocessor and multiprocessors. They in-
dicate different abilities to exploit parallelism.) This is no great surprise,
since the Poligon system takes a significantly more aggressive stance with
respect to performance.

It is not clear whether the speed-up factors we obtained w;uld apply to other
problems. As mentioned, throughout, the possible opportunities for con-
currency and granularity are very application dependent, and thus it is
very difficult to generalize from the results of one application. Nonetheless,
in both Cage and Poligon the speed-up for our apgiicatisn came from: (1)
data parallelism present in Elint, (2) pipelining of reasoning steps, (3) par-
allel matching for relevant rules, and (4) knowledge parallelism where
mor = than one picze of knowledge was applicable for a given state. These
sources of parallelism are fairly general and can be exploited by most appli-
cations.

Writing a “real-time” applications for Cage and Poligon was by no means
simple. Many problems arose rcgardmg timing measures, data consis-
tency and coherence, and test scenarios that would not have arisen in other
types of problem. Nonetheless, by attempting t6 solve a difficult problem. we
were able to devels op te::?mzqnea and metnoés;ogms that will be useful for
other apghca'*sns in this class as well as in broader classes of problems.

Much of what we learned has become a part of the frama'wovka, others were
described in Section 4.4 for Cage and Section 5.2 for Poligon. *. is cur belief

that both architectures represent viable ways of constructing concurrent
blackboard syste

Siems.
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Abstract!

In this paper we present the results of building and running a knowledge-based signal
interpretation program on multi-processors. A serial, knowledge-based program to
interpret passive radar signals from multiple sites was re-designed and re-implemented on a
framework for concurrent problem solving. The primary objective for ghc use of multi-
processors was to gain performance improvement. A number of experiments were per-
formed to evaluate the performance gains under varying circumstances. Factors that mou-
vate and constrain problem solving in parallel in general, and real-time signal interpretation
in particular, are discussed.

1. Introducticn

A few of the results from an experiment in speeding up a signal understanding program
using a concurreat approach to problem solving are described in this paper. This
experiment is one of several experiments conducted within the Expert Systems on Multi-
processor Architectures Project of the Knowledge Systems Laboratory at Stanford
University [6].

The Architectures Project is conducting several experiments to understand the
computational characteristics of complex knowledge-based, or expert, systems in a parallel
computational environment. The primary goal of this experiment is to exploit what
appears, at first glance, to be features inherently parallel in blackboard systems [3]. A
simple blackboard architecture AGE [5] was modified into a system called Poligon [7], a
concurrent problem solving and programming environment. A signal understanding and
information fusion systems was built using Poligon.

ELINT (Electronic INTelligence) is an application for interpreting pre-processed, passively
acquired radar emissions from aircraft was chosen. The ELINT application was a part of a
larger blackboard system called TRICEROQ, which interpreted and fused radar emissions
and voice data (COMINT) for the purpose of situation assessment [8].

The ELINT application was rewritten for Poligon. Poligon runs on a hardware system
simulation environment called CARE [2]. CARE is written in Common Lisp and runs on
Texas Instrument Explorer™ machines? and the Common Lisp platforms. The CARE
simulated machine uses dynamic cut-through routing through the communication grid for
inter-processor communication. Message transit time is not predictable. As a
consequence, without the imposition of expensive network protocols (with the
corresponding serialization of execution), communication and the processing that is
triggered by it is intrinsically non-deterministic in the sense that two executions of the same
progiam on the same input data can result in different problem solutions depending on
different message arrival orders [1]. The chzllenge for ELINT on Poligon was to produce
consistent solutions with minimum control (serialization), which reduces parallelism and
performance. One of the objectives of the experiment was to determine if there is a trade-
off between knowledge and control in blackboard systems. The second objective was to
exploit different types of parailelism in expert systems, namely data parallelism, knowledge
parallelism, and inference parallelism. The third objective was to determine whether linear
speedup, with respect to number of processors, could be achieved.

! This paper was presented as an wnvited talk at the Twenty Third Conference on Signals, Systems and
Computers, Asilomar CA October 1989.
2 Explorer is a trade mark of Texas Instruments Corporation,
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In the following sections we describe the serial ELINT system, followed Uy the concurrent
ELINT system written in Poligon. We then describe our speed-up measurement method
and some experimental results.

2. The Serial ELINT Application

ELINT was originally implemented in AGE (5], a software tool for developing blackboard
expert systems. Blackboard systems consist of three major components: (1) A global data
store, called the blackboard, which holds input data and intermediate results. The data on
the blackboard are hierarchically organized. (2) A collection of rules and procedures,
called knowledge sources, which derive the intermediate results. A knowledge source
operates on a particular portion of the blackboard, usually using data on one level of the
hierarchy as input, and producing results on another level. (3) The knowledge sources are
activated by a control module that dynamically determines the situation under which the
knowledge sources are to be applied. That is, the controller determines the line of reason-
ing, and the basic reasoning is opportunistic, that is, the most productive solution path is
chosen depending on the solution state at any given point in time. (See Figure 1 for an
example system.)

ELINT is a relatively simple, but non-trivial, application. The inputs to the ELINT system
are multiple, dme-ordered streams of processed observations from multiple collection sites,
some of which may be mobile. ELINT's objective is to correlate, on the blackboard
(which emulates the situation board), a large number of input data into individual radar
emitters producing those emissions (Figure 1). The emitters are then aggregated into a
smaller number of clusters. A cluster is defined as a collection of emitters which are co-
located over time. That is, if emitters have the same location fixes, with some resolution,
for some period of time, then they are considered to form a cluster. Conceptually, a cluster
is a single platform, or two or more platforms that are co-located over time (for example, an
aircraft and its wingman). The system must split a cluster when the fixes of co-located
emitters diverge,

Blackboard Knowledge Sources
Clusters %33 Evaluate Threat c
H 0o
= : Analyze Cluster dn
) Emiiters . <3 t
: r
: Analyze Emitter o
Observations O -l 1]
PoA A A4
Inpui Stream 4--=--de=drcmitoasl

Figure 1. Serial ELINT in AGE
The determination of whether iwu «:iiserved emissions are from the same switter, both for
intra- and inter-sites, is based on the eiccirunac characteristics of the emissions and on
signature analysis. This determination may be in error, ard the ELINT system must cope
with such an error.

The primary output of the ELINT system is periodic status reports about the tracks and
activities of the clusters of emitters.

The di‘feren analyses. inference, and reporting activities are performed by the knowledge
sources. The basic reasoning strategy in ELINT is a data-driven accumulation of evidence
in ine input data strean to support the existence of emitters and their tracks. The existence
nf a ciusi, ris inferred from the behavior of the emitters over time. Since data for an emitter




can be collected at different sites, the system must also determine whether input data from
multiple sites belong to the same eitter, that is, data fusions must be performed.

3. The Concurrent ELINT Application

As in the serial implementation, a concurrent versicn of ELINT must be able to deal with
continuous input data streams, and there is a need for real-time processing. However, itis
a soft real-time application, processing continuous input data as fast as possible. Itis nota
hard real-time application and does n.t guarantee any specific response time.

Some basic differences between the concurrent ELINT system mounted on Poligon and the
serial system described above is summarized below. The concurrent formulation of CLINT
is shown in Figure 2.
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. “ H .
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L] ‘t : ‘-
O: oi .
Observations Aalyte Arlyze Ana}'yzc Avatyze
Emitter Emitter Emufter Emitter
A A A A
' - : :
[nput Stream  ==i==--eccae= Lememccmeae R '

Figure 2. Concurrent ELINT in Poligon

+ There is no centralized control. This was motivated by a desire to remove any obvious
serial processing The elimination of a central control requires a new mechanism for acti-
vating the knowledge source modules. A knowledge source is activated as a daemon
when data associated with the knowledge source is changed on the blackboard. The as-
sociation between the knowledge sources (actually, rules in the knowledge source) and
the data (actually, properties of the objects on the blackboard) that trigger their
invocation is made at compile-time.

« When centralized control is eliminated, it also eliminates all global synchrcaization and
any mechanism for the focus of attention. This means that different parts of t.2 program
will run at different speeds, and each part will have a different idea of how the solution
is progressing. That is, no assumption about the global coherence of the situation board

can be made.

+ Having eliminated the centralized controller, there is no need for the separation of the
knowledge sources from the blackboard. Thus, the knowledge sources zie associated
directly with the objects on the blackboard that might be the source of ctivation of the
knowledge sources at compile-time. In this way, when a blackbeard object is changed,
a relevant knowledge source can be activated without the inters 2nticn of a controller.

s+ Inconventional, serial blackboard systems, knowledge sources zze wzits of scheduling,

If only the knowledge scurces are executed in paraliel. a great deal of pot:ntial paral-
lelism will be lost by the failure to exploit paralleiism at 2 finer rain. Therefore, rules in
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the knowledge sources are executed in parallel, and knowledge sources take no part in
the sequencing of rule invocatons.

« A knowledge source attached to an object communicates changes to be made on other
objects by sending messages.

« Poligon runs on a distributed-memory multi-processor. Shared-memory concepts such
as global variables are not supported. Because :10 global variables are allowed, a way is
needed to define sharable, mutable data, while still trying to reduce the bottlenecks that
can be caused by shared data structures. Poligon uses a generalized class hierarchy to
structure e blackboard. The objects belonging to a hierarchy level are instances of a
class. The classes are represented on the blackboard and are active, serving as managers
that create iustance objects. Level managers also store data shared between all of their
instan~es .o support operations which apply to all members of a class. Shared data can
therefore be implemented in a distributed manner.

+ Most blackbrar¢ systems represent the properties of an object simply as lists of values
associated with the property name. Because knowledge source executions are atomic in
serial systems, programs can assume thet no external modification will have happened to
a value between the time it is read and written by a knowledge source. In asynchronous,
paraliel systems, because a large number of rules can be attempting to perform
vperadons on the same property simultaneously, a mechanism is needed to assure data
consistency without slowing down the access to object properties (a large critical section
would reduce parallelism). As an aid in maintaining consistency, Poligon provides
smart properties. They are seiart in the sense that they can have as;ociated with them
user defined behavior which can make sure that operations performed on the data leave
that data consistent.

+ The problem of data consistency wi.hin any given object property is recauced by the
property being able to determine cheaply and locally whether a modification is
reasonable. Global solution coherency can be enhanced by the same process — objects
can evaluate whether a modification will lead to a more precise solution. That is,
knowledge can replace serial control used to maintain consistency. This causes a sort of
distributed hill-climbing which helps the system evolve towards a coherent solution.

3.1. CARE Simulation Machine

The multi-processor ELINT application written in Poligon runs on the CARE simulator.
CARE [2] is the name given both to the simulator used on the Advanced Architectures
Project and to the hardware designs being developed on that simulator. CARE ccnsists of
a kit of components with which to construct simulated multi-processc - ~~nfigurations.

The instrumentation toolkit in CARE allcws the user to watch the behavic + i ystem
both fromwn the point of view of hardware performance and the application ,.ugram. This
allows the Lizauiication of bottlenecks and hot-spots during system executinn,

Each processing element in the CARE machine is made up of two processors. the Cperator,
whose purnose is to execute operating system functions and to perform the task of inter-
processor communication; and the Evaluator, whose task is the execution of user code
(Figure 3). This desigr allows the application work and communication to go on
simultaneously.
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Figure 3. The CARE machine processing element

In the Poligon systern the CARE simulacor is used to simulate a network of processing
elements, connected in a toroidal manner, such that each precessing element can talk to its
eight neishbors (up/down, lefvright and diagonal). The basic idea is to assign blackboard
objects to the processors, create processor closures for activated rules within the
knowledge sources, and distribute these closwes to otner processors for execuion.

4. Measuring Real-Time Systems

Since the ELINT applicztion is, in some sense, a simulation of the real world, it has 2 cick
of its own which ticks at a constant rate with respact to the time in the real world. The data
that comes into the system is time-stamped. When the application's clock has reached a
time which is the same as the time stamp on the input data rzcord, the data is introduced
into the system. The simulated time between twc ot these ticks can, in certain cir-
cumstances, be used to provide a measure of the throughput of the system. Thus, tne tick
interval is a parameter that can be varied to measure the system's potential throughput.

A, simplistic method for measuring the speed-up of a parallel system would be to take the
run-time for the 2pplication on a uniprocessor and then divide it by the run-time measured
for different numoers of processors. This approach works well for nor-.eal-time systems
in which the behavio: of the system is not atfected by the speed of the computration. In a
real-time sysiem with a continuous stream of input data, nowever, the behavior of the
system changes accordirg to the degree to whick the system is loaded. For example if
more processors are added to a system it can becom# data starved, failing t deliver the
speed-up of which it is capabie.

To counter this phensmenon a Zirterent methodology was devised. A series of
expe iments is peif- twed, dizing which the input data sampling interval is established such
that on the iz 2 st processor network size the system is never data starved. The speed-up is
mezsus.d wing s sampling interval for other processor configurations, knowing that the
delivered speed-up for the large multi-processor confignration would not be data starved. It
was found, nowever, tha: -.ith all system parameters held constant (except for the number
of processors) the 2 slication program was still behaving differently for the different ex-
periments. Thi, was bzcause for small numbers of precessors the system was getting
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backed up, and it was spending a significant amount of time queue-thrashing. That is, it
was wying 1o keep data in order which, if the system had not been so overloaded, would
not have got out of order i the first place. This had the effect of making the application
seem to run slower on smaller numbers of processors, thus giving an artificially high ap-
parent spead-up.

What was needed, therefore, was a method for measuring the system's speed-up, while
making sure that the system was always operating under the same load conditions. To
accomplish this, the speed of the application on any particular processor configuration was
defined as the lowest sampling interval (that is, highest throughput) that still gives non-in-
creasing latencies in the results. The latency measuse is defined tc be the time between the
data coming into the system and the systern emitting any reports concluded from that data,

If the system can keep up with the sampling inrerval specified, the latency value should be
largely constant, otherwise latenc:es increase over tume as the system backs up.

In summary. i following method is used to measure the system's speed: For any given
nuber of processors, the application is run with different sampling intervals until one is
found that produces non-increasing latencies. T.us sampling interval defines the process-
ing speed for a given processor configuration. For a speed-up experimernt, the above
process is repeated for different processor configurations uniii the speed-up curve levels
off.

4.1, Data Sets

Ar fimgortant aspect of the experiments on the ELINT application is the scenario used to
drive the experiment. A scenario ;epresents the simulated radar information that a "real"
systen. would have received. In a real system, one would expect that the number of r2-
ceived radar emissions would vary over tirse, Although realisric. this sost of scenario is
very hard 1o perform experiments on, since there are bound to be times when the system is
either data starved or overlcaded. Becar:se of this, two of the da.a sets used for the exper-
iments have the particular property the. they have a constar _ensity of input data over time.

The important characieristics of *.aese data sets, thereiore, are the number of radar
emissions detected in each time vait, the number of radar emitters, and the number of
clusters.

It should be noted that these cata sets are used to measure the overall peak system
performance for a given data set having the characteristics mentioned below. The system's
response to transients in the amount of input data in a timeslice was not measured, nor was
its performance for input dz -2 with less "typical" characteristics; for instance, a smali
number of aircraft, each usirg 2 large number of radar systems, or a large number of air-
craft, each using very few radar systems.

The characteristics of the data sets used for experiments reported below are described be-

low.
Fat 240 Qbservations, 4 Emiuters, 2 Clusters, 8 Observations per time-slice, 30 time-
slices, 2 Observations per Emitter per time slice.

Thin 60 Observations, i Emitiers, 1 Clusters, 2 Observations per time-slice, 30 uime-
slices, 2 Observations per Emitter per time slice.

3. Experimental Results

A few of the experiments relevant to real-time signal interpretation and data fusion are
described below. Wherever reference is . de to absolute time, the measurement 1S in




terms of CARE simulated herdware. Each processing »lement of this machine has about
the performance of a TT Explorer II+ Lisp Machine.

5.1. Speed-Up and Throughput

The Thin data set creates one pipe on the blackboard, and the Fat set creates four pipes; that
is, its data is four times as dense. The small dc .a set can be thought of as representing one
platform; the second, four piatforms. The results from the two data sets allow us to: (1)
measure the peak throughput for the larger data set; (2) determine the contribution to speed-
up due simply to pipe-line parallelism; and (3) measure the sysiem's ability to exploit data
parallelism.

The results of the two data sets are shewn in Figure 4.
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Figure 4. Speed up for Fat and Thin data sets for different number of processors.
In this experiment, following was learned:

1. The peak speed-up shown in this application due to pipe-line parallelism was 3.6. This
showed that although the length of the pipe was three, speed-up was greater than three
due to the concurrent execution of rules by the different stages (blackboard objec’s) in
the pipe.

2. Almost linear speed-up was achieved with respect to the size of data set.

3. The peak throughput for the system measured in the Fat data set was about 340us per
signal data record. Because of the linear increase in performance with respect to data
density, it is believed that higher performance can be achieved with more data. By
comp:ﬁson, the serial ELLINT on AGE took about 3.7 second to process each data
record.

5.2. Exploiting Large Knowledge Bases

In this experimant, only the Thin data set was used. The system was modified so that,

whenever an ELINT rule was invoked, N rules would be invoked, rather just one. N-1 of

these rules had the special char.cteristic that they performed almost all of the procassing

required excep: for any blackboard modifications ~ that is, the side-effects in the action

parts of the rules were not executed. This gave a measure of the system's performance if

gle knowledge base was N times larger. while still giving the correct problem-solving
ehavior.

The results from this experiment are shown in Figure 5.
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If the system is able to exploit parallelism in the knowledge base to the full, one would
expect that the system would not slow down at all as new rules were added, that is, the line
shown in Figure 5 would be horizontal. If, on the other hand, the system bogged down
completely as more rules were added, cne would expect that the result would be worse than
linear slow-down, that is, the plot would appear above the "linear slow-down” line. As
can be seen, the performance was " -tter than linear. In order t» perform four times as
much work, it took only 2.2 times as long. The implication is that, as long as there are
sufficient computation resources, the system would deliver zood performance for a
knowledge base whose size is at least up to four times that of the current application.

5.3. Granularity of Rules

In this experiment some of the internal mechanisms in Poligon were timed to get some
empirical measure of the granularity of the system.

A number of mechanisms are of crucial importance to the performance of the system.
Among them are reading and writing of prope-ty values, and invoking rules. In order to
determine the costs of these operations, they we = performed repeatedly in a marner which
allowed the individual costs to be measured with some precision.

The results are described below. It should o2 noted that the results neglect any
communication overhead, so they are only representative of local operations.

1. Property value reads take 1.36 + .94n us, where n is the numbe- of properties being
read at once.
2. Property updaies take 18 + 53.7n ps, where n is the number of properties being
written, Since arbitrary user vode can be executed during the update operation, this 15 a
epresentative figure from the ELINT application.
3. The overhead cost of starting up a rule's execution is about 1 ms per invocation.

A substantial part of the time taken performing these operations could be optimized
considerably in a production quality system. This experiment shows, however, that there
is a lower bound to the granularity that the user can expect to achieve. For computations
taking less than a few milliseconds it may not be worth starting up a rule to perform the
computation, the cost of parallel execution would exceed the serial execution time.
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6. Conclusions

The serial and concurrent implementations of a real-time sidgnal understanding programs
were described. The results of experiments performed on the concurrent ELINT
application were discussed. The following improvement in performance was observed: A
peak speed-up of 11.5x was achieved with a best input data sampling interval of 2.7ms.
Pipeline parallelism contributed about 3x of this. The remaining speed-up was due to par-
allelism extracted from the data being processed. At least within the bounds of the ex-
periments described, near linear speed-up is possible for increasing complexity of the input
data.

The following general observations can be made about concurrent problem solving, at
least, on the Poligon concurrent blackboard framework:

* Knowledge, or reasoning, concurrency can be achieved through pipe-lining, However,
reasoning, which consists of chain of inference, is inherently a sequential process.
Thus, reasoning speedup is limited to the length of the inference process; that is, the
number of inference steps determines the length of the available pipe.

« Data concurrency is application and data dependent, but, it is easiest to exploit. Data
parallelism manifests itself as multiple pipes on the blackboard.

* To exploit pipeline parallelism, the pipes must be balanced; that is, the knowledge
sources must be of uniform granularity and have the same data density. Additionally,
when data flows up a hierarchical pipe, the communication up the hierarchy must
decrease in proportion to the amount of branchiness.

* Problems can be solved without global control. This, however, depends on the
problems being decomposable into loosely-coupled or independent subproblems.
Furthermore, we found it necessary for each subproblem to have its own local goals and
evaluation function in order to do local hill-climbing to maintain local data consistency.

* Rules can run in parallel, and this parallelism contributes to speedup. In order to run
rules in parallel, data needed by the rules needs to be copied and encapsulated to prevent
contention on the blackboard objects,

+ Writing a real-time application was by no means simple. Many problems arose
regarding timing measures, data consistency and coherence, and test scenarios that
would not have arisen in other types of problem. Nonetheless, by attempting to solve a
difficult problem, we were able to develop techniques and methodologies that will be
useful for similar applications. A more detailed description of the concurrent problem-
solving architecture and experiments can be found in [4].
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Abstract

Very little is known about programming knowledge-based systems on
multiprocessors. To understand the effectiveness of parallel implementations
of such systems, programming problems and performance issues need to be
studied at all levels of the computational hierarchy, from hardware to
application.

AIRTRAC is a simulated radar signal interpretation system for
tracking and classifying aircraft, and runs on CARE, a simulated distributed-
memory multiprocessor architecture. CARE consists of 1 to 1000 processor-
memory pairs communicating via a network that provides reliable message
delivery but without message ordering. AIRTRAC is implemented in
LAMINA, an object-oriented applications progamming interface to CARE, and
ELMA, a high-level interface built on top of LAMINA. These are Zetalisp
extensions which provide mechanisms and language interface syntax for
expressing and managing concurrency.

This report documents the development of the Path Association
module of AIRTRAC, from design through implementation and testing, and
describes the features of the supporting ELMA interface, which was
developed in parallel with the application. We define the criterion of
sustainable data rate for quantitative performance evaluation and describe
experiments to determine performance under different conditions and their
results, We discuss the techniques and constructs we used and the lessons we
learned in the course of developing Path Association. We believe these
lessons and results will be useful to others working in the field of parallel
symbolic computation.
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1. Introduction

This paper describes the development d testing of a multiprocessor-based
continuous signal data interpretation system for tracking and classifying! aircraft,
cailed AIRTRAC. This work is motivated by the two following issues:

* Can we achieve significant speedup of large symbolic (knowledge-
based) applications through concurrency?

¢ What techniques and constructs are useful for application
software development for multiprocessors?

1.1. High-level Project Goals

AIRTRAC is one project within the Advanced Architectures Project (AAP)

of Stanford Univerity's Knowledge Systems Laboratory. The high-level goals of
the AAP are to realize:

* software architectures for symbolic applications using parallelism
to achieve high-speed computation

* hardware architectures to support those parallel coraputations

1.2. Research Methodology

Very little is known about programming knowledge-based systems on
multiprocessors. To best understand the effectivenes: »f parallel
implementations of such systems, programming problems and por armance
issues need to be studied at all levels of the computational hierarchy, from
hardware to application. The approach taken by the Advanced Architectures
Project has been to take a vertical slice though the space of design alternatives and
perform experiments with the resulting systems.

——— o——

1 The portion of AIRTRAC implemented to date does not classify observed aircraft.
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Table 1.1 Our Vertical Design Slice

The following are the design choices we are exploring in the AIRTRAC
project, from application down through hardware:

AIRTRAC continuous ¢ignal interpretation application

ELMA applications programming interface

LAMINA object-oriented parallel programming
language

CARE distributed-memory, message-passing

mulitprocessor hardware architecture

Table 1.1 outlines the slice through the space of design choices that we have
made. Each of the following four sections describes one level in this vertical slice,
with the application level being represented by AIRTRAC.

1.3. CARE--Hardware level

CARE (Concurrent ARchitecure Emulator) is a distributed-memory,
asynchronous message-passing architecture, simulated by a highly-instrumented
system called SIMPLE. CARE models 1 to 1000 processor-memory pairs, or sitesl,
commuricating via a packet-switched network. Message delivery between sites is
reliable, but messages are not guaranteed to arrive in the order of origination.

CARE and SIMPLE have been described at length elsewhere [Delagi87a,
Delagi 87b].

14. LAMINA-~Language level

LAMINA is the basic language interface to CARE and consists of Zetalisp
with extensions. The extensions provide primitive mechanisms and language
syntax for expressing and managing concurrency and locality. Three styles of
programming are supported: functional, shared-variable, and object-oriented. All
three are based on the notion of a stream, a data type which represents the

promise of a potentially infinite sequence of values.2

1 Throughout this paper the term site is used to describe a CARE processing element.

2 It is relevant to note that LAMINA's predecessor, CAOS, [Brown86] was based on the notion of
a futyre, or the promise of a single value (resulting from a computation). It was observed,
however, that communication beiween objects was fairly regular; a given object, hav.ng
communicated with another, invariably communicated with that same object again. The stream
notion captures this behavior much more naturally, and was thus chosen as the basic datatype
for LAMINA. In LAMINA, a future is the special case of a stream with only one value,
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As in cther object systems, ¢Dj > it objeatﬁ:)rie:}ted. LAMINA _(her\eaftsr
referred to simply as LAMINA} _ancaps::ﬁate state unsiang ?'anaalei; a«ﬁd
behavior (mathods). Methods are invoked by message sending but inlike ;?\e
case of _quential “ystems this invoives &> ~yting i gac:}ze*, contairung (he
message from one LAMINA object i antuer, fypicaliy on d:?fcgst sites.

Lassage sending is non-kigrking and -he time required for communication i<
thus vigizle to the LAMUA programmer. Methods run atomicaily withiin
processes whick are restartabl¢ but no: resumable.! An cbjeut and its methods
can be considered a nor-nestea monilor; exdusion is guaranised by ihe fact that
only one fasihod is ever scheduled i run at a ding, #nd then runs to completion.
The time required to czeate a LAMINA object i3 also visible to the programimer.

‘The reacer is referred te [Delagi 870! for mor  details avout LAMINA,

1.5, ELMA--High-level language jevel

ELMA (Extended Lamir s for Memory-managemer Applications) is a high-
leve! parallel p- jramumir 3 interface 1> CARE based on object-oriented LAMINA.
ELMA is a speaialized inte -face for applications which involve extersive dynamic
object craation and dealiocation and require some fosm of memory management.
This interface was developed in parallel with the application.

1.6. AIRTRAC-Application levei

AIRT2AC, our application, is tvpicai of continuous signal data
interpreiation problems, for which projected performance limits of uniprocessors
fall short of the speed requirad by ordza:s of magnitude. Multiprocessor parailel
computing must be used to attain the necessary levels of performance. This
motivates us to explore mountiing applications such as AIRTRAC on
multiprocessors.

1.7.  Overview of This Paper

Chapter 2 provides an overview of the AIRTRAC application as a whole.
Chapter 3 describes design techniques {or cuncurrent programs. Chapter 4
describes the design, implementation, and features of the AIRTRAC Path
Association module, and wiscusses the underlying approach and issues
motivating this effort. Chapter 5 describes tne ELMA programmirg interface
which embodies the techniques and constructs we found useful in the course of
developing Path Association. Chapter 6 describes performance issues for
corcwrent programs and measured performance results for Path Association. In
Chapter 7 we uiscuss the lessons we learned, and in Chapter 8, future work we
propose. Finally, Chapter 9 summarizes this work.

——

1 Thers is also a more expensive resumable cousin.
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2. AITRAC Applicakiz

f“s section iwe describe in more dekzil the apphication uiﬁ
~the A g;z'z'g §7 systere. We discuss the purpose of the system. i

In
f’ev ¢ lopmen ‘
108 and o Jmus, ana the componeitt levels #hst make up ARTRALC

npu
21 Purpose of AIRTRAC
The nigh-level goal of AIRTRAC is to monitor the (M

z,a"fia.?a: regmn cf aitspace and to interprat and predict :h
tracker data "o one or more radar sites within :he egion.

r-- .':ﬁ‘

’\
¥ E:a g vy, given

2.2, AIRTRAL input

The inputs to the AIRTRAC system are simulated output data from one or
mor~ active radar and signal procassing systeris tracking aircra®t in 2 given region
of awrspace.! Each piece of input dats, called a Radar Track Report {(RTR),
represents the observaticn of an aircraft from one radar site during a periodic
time interval (a scantime). Each radar observation is assumed io have been

pracessed by the radar tracking system so that an RTR provides the information
listed in Table 2.1.

'n our experiments we assume that the region is viewed from a small vut reasonable number
of radars, oz the order of two to four.
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Table 2.1 AIRTRAC input

Each Radar Track Report contains the following:

observation scantime the time of the observation

radar ID the identifier of the radar site otiserving the
track
track 1D an integer (unique to the radar site)

assigned by the -adar to the track to which
the observation belongs

aircraft type the type of the air.ra‘t under observation,
indicated by signal charscreristics

positicn the location (x,y) of the aircrr t at the time of
the observaticn

position cv. o it ag tha (Ex Ey) estimate of the error asscciated
with the reported position

veigoiiv the velccity (Vx Vy) of the aircraft calcujated

at the iime of the otservation

welocily covariance the {(Ex Ey; estimate of the error assc.iated
with the reportad veiccity

AT ety

Several impoztant characteristics of the clata that a radar tracker produces are
reflected in the list in Table 2.1. First, a trackss initiaily assigns a unique track
identifier to an aircraft track when the radar syste.> cbserves that track for the
first time. It continues to assign the same track ID to any subsequent observations
if it determines, usualiy by a simple track extensicn algcrithm, that those
observations correspond to the previously-detected track. As soon as no such
observation succeeds by this algorithm for a track during even a single scantim-,
that track is considered "lost" and its track ID dropped.!

Second, a radar tracker is assumed to be capable of determining the type of
each aircraft under observation from the particular characteristics of the signal it
receives. Finally, the algorithm employed by the tracker calculates covariance
figures for the position coordinaies and velocity vectors that it reports, providing
a measure of the probability of error associated with each of these values. This
error information is based on factors such as the sarength of the signal and the
distance from the aircraft to the radar site. All of this information is passed along
as input to AIRTRAC in the form of an RTR.

! Basically, .his algorithm predicts an area where the next observation for a track should
appear, vased on a simple linear projeciion of points already received for that track. If no
such observation is forthcoming in the predicted area, the track is lost.
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2.3, AIRTRAC Output

The ult-imate goal of the AIRTRAC' system i§ to prgvide =‘c:?.z‘..tim.u.)us
information about all aircraft in a momtgred region--a kind of sxtuam?n
assessment." Say, for example, authorities wished to keep a’watch on potential
drug smugghng activity near a border region. They .mxgh: use a system like
AIRTRAC to manage the acquisition and interpretation of radar data about
aircraft traveling across the border.

The types of cutput that we might e::pect from such a system could include,
among other things:

e track histories—a complete history of all aircraft platforms in the
region based on fused track data from different radar tracking
sources,!

* path prediction—~a determination of the future flight paths of
observed platforms

¢ event prediction--estimated times and/or locations of "notable”
events, such as airport landings or border crossings

 platform classification—a categorization of all hypothesized
aircraft, based on their histories and predicted future flight paths
(e.g., "smugglers” and "not smugglers"),

e strategy assessment--an interpretation of the motives of platforms
to support their classifications and predicted flight paths,?

* collision avoidance--warnings of potential danger for one or more
platforms in the system.

The work of specifving the exact content of the outprt of the entire AIRTRAC
system remains to be completed in future stages of the project, but these are the
current goals.

2.4, AIRTRAC Modules

The AIRTRAC system is decomposed into three major modules. The
modules are Data Association (aiready completed)}, Path Association (the main
focus of our research and the motivation for this paper), and Path Interpretation
(yet to be completed). As shown in Figure 2.1, each module takes as input the
output from the previous module. AIRTRAC, then, can be viewed as an

! The word "plarform” is the term used tc denote a hypothesized aircraft.

2 For instance, AIRTRAC might determine that an aircraft is attempting to avoid radar
surveillance because it has an erratic flight path, thereby supporung a classification of
"smuggler.”
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application that employs several distinct levels of abstraction and reasoning

leading to its.final output.
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Path * DISTRIBUTES
. . ¢ CONNECTS
Association FUSES
Periodic
Observation Reports
Da.ta‘ e INPUTS
Association e COLLECTS

Simulated Radar
Tracker Output

Figure 21 AIRTRAC Modules—Functions and Qutput

Let's now examine the function of each module individually.

2.4.1, Data Association

The Data Association module was compileied in june of 1957 by Russell
Nakano and Masafumi Minami {Nakano87].
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2.4.1.1. Function

The primary function of Data Association is tc accept, at reguiaxt time
intervals, output information from all rada‘r trackers that report on aircraft
visible within the region at a particular scantime. It then identifies and collects
together, in time-ordered sequence, all RTRs which belong to the same aircraft
track <have the same track identifier as given by the trackers). Periodically, Data
Association abstracts the individual RTRs it has gathered for a particular track
into a Periodic Observation Record for that track.

24.1.2. Output: Periodic Observation Records

The output of Data Association are Periodic Observation Records (PORs). A
POR is an abstraction of a sequence of RTRs from one radar for an individual
aircraft track. It represents a regular portion of an aircraft's flight path as seen
from a single radar. The POR period is the "length" (in scantime units) of every
POR produced by Data Association; that is, the interval of time in which RTRs
for a track are processed and abstracted into a POR.

Radar Track

Reports ——_,
@
o ®
® time2
®
Y o
o
timel
“envelope” Periodic
radius .
Observation
Record

(for scantime interval
(timel,time2])

Figr 2.2 How Data Association creates a Periodic Observation Record

Figure 2.2 presents a graphical representation of the abstraction process that
takes place in the creation of a POR. Stated simply, Data Association creates a
POR by fitting one or more line segments through the points given by RTR
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coordinates. These "segments,” or line estimates, are actually a sequence of <x-
position y-position time» points, where the terminal poir.t of one segment is also
the beginning point of the next; i.e., they have the form

((x y1 &) (X2 Y2 ) ... (Xn yn t))

where n is the number of line estimates.! The line estimate radius, or error
"envelope" of a POR, is conservatively calculated so as to completel)f contain the
position covariances of each of the RTRs represented by the line estimates. The
POR period is uniform across all PORs in the system; every POR represents a
sampling of the same number of RTRs. Furthermore, the beginning and ending
times of PORs are synchronized.

Part of the functionality of Data Association is detecting when an RTR with
a new track [D has first been received and when an RTR of a known track ID fails
to arrive during a scantime (when a track has been lost by the tracker). One of the
notable attributes of a POR is its status, a keyword that Data Association assigns to
a POR indicating its position (beginning, middle, or end) within an aircraft's
track.2 A status of :create means that the POR is the first (in data time) of a track,
representing the beginning portion of that track. Similarly, an :inactivate status
signals the final POR of a track. A POR with a status of :update is part of a
continuing track, neither first nor last. A status of :~reate-and-inactivate means
that both the first and the last RTRs of a track were received by Data Association
during a single POR period.3

The information contained in a POR is listed in Table 2.2.

1 In most cases the number of line segments fitted is exactly one. However, if there are
sufficiently large changes in course executed by the aircraft within a POR period, these are
reflected by additional line segmen:s in the POR for that period.

2 A keyword, in the usual sense of the term, is simply a constant symbol, commonly written
with a leading colon.
3 From here on, a ":create POR" is understood to mean a POR whose status is either ;create or

.creaie-and-inactivate, Likewise, an ".inactivate POR" means one with status :inactivate or
:create-and-inactivate.




Table 22 POR Information

A Periodic Observation Record produced by Data Association contains

the following:

rack ID

radar ID

status

aircraft type

period begin time
period end time
actual begin time
actual end time
line estimates

line estimate radius
velocity vectors

velocity covariances

the identifier of the aircraft track assigned
by the tracker to th: RTRs in this POR

the identifier of the radar site

the observation status of this POR; a
keyword, one of (:create :updatc :inactivate
:create-and-inactivate)

the type of the aircraft

the beginning scantime of the POR period
covered by this POR

the end scantime of the POR period covered
by this FOR

scantime of the earliest RTR of the track
within this POR1

scantime of the latest RTR of the track
within this POR

the sequence of line segments fitted
through the RTRs for this POR

the estimate (Ex Ey) of error associated with
points in the line estimates

velocities (Vx Vy) for the aircraft at the
beginning and end of the POR

estimates (Ex Ey) of the error associated with
the given velocities

2.4.13. Data Association: The Real Story

An important admission concerning Data Association is necesfary at this
point. As it happens, we are not using the full-blown implementation of Data
Association together with our Path Association module, for two very important
reasons. First, the pragmatics: Due to CARE system changes made since the time
Data Association was completed, the code for that module was rendered
unreliable without a non-trivial amount of translaticn. Also, simulation time

1 If the earliest RTR of a track is received during a POR period (the POR's stawus is :create),
then the actual begin time of the POR inay be different than the period begin time. Thne same
relationship applies to the actual end nume and the period end time of an :inactivate POR. For

:update PORs the actual and period begin and end times are the same.
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constraints made it impractical for us to run Path Association in conjunction
with Data Assoclation.

Second, the actual output of Data Association did not meet the demands of
Path Association. Whereas our module required the periodic updating of track
data, mostly for fusion purposes, Data Association produced only notification of
the creation or inactivation of entire radar tracks. We could have chosen to make
modifications to Data Association to make it produce the desired output, but
given the other problems we faced in trying to make continued use of the
module, we dedded not to sperd the time necessary for such an effort.

Instead, we simulate the otput of PORs from what we believe to be a more
appropriate Data Association. This is done by a manager object in the Path
Association system called, not surprisingly, the Data Association Simulator
(DAS).

2414 Summary of Data Association Results

The results of the Data Association experiments demonstrated that
performance of a concurrent program improves with additional processors,
achieving a significant level of speedup in execution time. A complete report on
Data Association and its experimental results can be found in {[Nakano87].

2.4.2. Path Association

The Path Association module of AIRTRAC has been the main focus of our
work this past year. This module completes the abstraction of radar output and
fuses together data acquired from different radar sources to produce information
that can be reasoned about by the next module, Path Interpretation.

2.42.1. Function

There are three main functions of Path Association:

* Distribution—accepting PORs from Data Association and
distributing them to objects called Flight Path Segments, which
collect all PORs with the same radar ID and track ID.

* Connection--"connecting” all Flight Path Segments with the
same radar ID that seem to belong to the same aircraft flight path
by associating them together in objects called Observed Flight
Paths.

* Fusion-"fusing" Observed Flight Paths with different radar IDs

that appear to be equivalent representations of a single aircraft's
flight path by grouping them together in objects called Platforms.
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2422, Output: Platforms

The output of Path Association is a collection of Platforms, representing
hypothesized aircraft in the real world as seen from one or more radar sources. -A
Platform incorporates all information about a single aircraft available through its
individual Observed Flight Paths. Platfcrms are dynamic entities that are
continuously being created, updated, terminated, and removed from the system
to reflect the rapidly changing state of the region under observation, i:. which
aircraft are constantly appearing and disappearing.

A detailed description of the Path Association module will be presented in
Chapter 4.

2.4.3. Path Interpretation

The final module of AIRTRAC, not yet implemented, is Path Interpretation.
We envision Path Interpretation as being the portion of AIRTRAC that performs
higher-level reasoning functiors.

2.4.3.1. Function

Path Interpretation responds to significant events that occur at the Platform
level. It analyzes and interprets data contained in Platformms and makes
assessments and predictions about the hypothesized aircraft represented by these
Platforms.

2.43.2. Cutput: Histories, predictions, classifications, assessments

As mentioned earlier in Section 2.3, the output of Path Interpretation comes
in the form of continuous information about aircraft within the region of
interest. As events occur at the Platform level, Path Interpretation interprets
these events, maintaining track histories and providing predictions,
classifications, and other assessments of platform activity.
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3. Concurrent Programming Techniques

This chapter describes design techniques for concurrent programs. We first
briefly discuss the general approaches to concurrency: pipelining and replication.
We then discuss a style of object-oriented programming vsell-suited to CARE-like
parallel architectures.

3.2. Parallelism

Two techniques are known for exploiting parallelism: pipeiining and
replication.! Both of these techniques are used extensively in AIRTRAC.

3.2.1. Pipelining

A pipeline is a computational structure which consists of a sequence of
stages through which a computation flows. It has the property that new
operations can be initiated at the start of the pipeline while other operations are
in progress through the pipeline. Thus any process which can be decomposed
into sequential steps can be pipelined; an n-stage pipeline for an n-step process.
Pipelining is therefore a very appropriate way of handling the flow of
information between the levels of abstraction in an interpretation system such as
Data Association or Path Association. On a multiprocessor, each stage is assigned
to a separate processing unit which inputs frcm the previous stage and outputs to
the next stage. An optimal n-stage pipeline has » times the throughput of one of
its constituent stages. tnfortunately, a pipeline will be less efficient, however, if
one or more stages in the pipeline

1) requires more time than other stages, or

2} depends on input from more than just the stage immediately
before,

since either of these conditions will make some stages busier than others. The
next section describes a remedy to the first conditicn.

3.22. Replication

Any computational structure, from a single process such as a stage in a
pipeline to an entire pipeline, can be copied, or replicated, for increased
performance. For example, search is well-suited to replication if the search space
can be cleanly divided. A gprobiem in which each of n replicated search
mechanisms optimaily handles

1inth of the search space can theoretically be

* Sez [Brown 86] for a more detailed exp
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i single search mechanism working through the entire
z:l:ﬁ: ;zp:g\:s fla;::ll'l;l: ac:xcl):currgncy gained through replication is orthogonal' to
concurrency gained through pipelining. Nevertheless‘, just as performance. gains
in pipelines are limited by inter-stage dependencies, perfprmance gains in
replicated structures are limited by inter-structure depenc?encx.es. In the case of
parallel search, for examvle, the need for synchronization in order to avoid
fruitless search is a limiting factor.

3,1, Programming Style

Ju this section we discuss a specialization of the object-oriented LAMINA
programming style which has evolved out of earlier work programming the
CARE family of architectures (some predating LAMINA) and used in AIRTRAC.
Applications are structured in terms of two types of objects--managers and
subordinates--which communicate via messages. Computation is accomplished
through the execution of explicit trigger methods executing on instances of these

object types, and also through the execution of implicit continuations of these
methods.

A general description of object-oriented LAMINA can be found in [Delagi
87b].

3.1.1. Manager objects

Managers, as the name implies, are objects which are responsible for tasks
involving many other objects such as distribution of data, coordination of
problem solving and dynamic object creation. Managers are often aliocated
statically, i.e.,, at initialization time, in which case the number required is
determined a priori and depends on the particular application and its input data.
Certain applications can benefit from the use of ephemeral or dynamically created
managers. Dynamic managers, however, require additional control since the

sphere of influence of each manager must be determined at run time and cannot
be hard-wired in advance.

3.12. Subordinate objects

In keeping with the corporate analogy, subordinates are objects subject to the
control of managers. Subordinates are created by managers; collectively, they
typically contain most of the state of the system. Their tasks are dictated by one or
more controlling managers. In general, subordinates can be allocated (created),
deallocated, and reallocated many times over in the course of program execution,
in response to prevailing needs of the application.

3-32k




3.1.3 Continuations

Most co}nputation takes the form of explicit (named) method execution on
explicit manager and subordinate cbjects. Computation can also occur as an
implicit continuation of a method. Such a continuation occurs in the context of
the object executing the method (as defined by the values of instance variables
and bindings in the environment). The method executing which spawned the
continuation finishes normally and executes its next task. The continuation
executes each time values are received on specified input streams. See page 12 of
[Delagi 87b] for more details of the continuation mechanism.
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4.  Path Association

" As described earlier, AIRTRAC is an attempt to develop a knowledge-based
system in a multiprocessor hardware environment. This effort decomposeg into
“two distinct, yet quite related, tasks: coming up with a solution to the aircraft
tracking problem (the knowledge-based portion), and determining the
appropriate software architecture to realize a correct implementation of our
solution in a parallel, distributed environment (the multiprocessor portion). It
must be stressed that we did not go about solving these tasks separately; rather,
design decisions in each dimension were necessarily made with consideration for
features and constraints of the other.

In this chapter we examine the Path Association module of AIRTRAC. We
first present a complete functional description of Path Association in the context
of a simple, yet non-trivial, example. This description involves the definition of
the various LAMINA objects and their associated tasks, as well as a discussion of
some of the important issues that arise in the problem domain. We then analyze
the overall system software architecture and its implementation in a distributed-
memory, message-passing multiprocessor environment. Next we describe the
underlying design philosophy motivating our programming approach. Finally,
we highlight the significant characteristics of Path Association that set it apart
from previous research in the AAP, including Data Association.

4.1. Functional Description

4.1.1. The Example Scenario

. The clearest way to explain the functionality of Path Association is to
provide an example of a typical domain scenario and walk through it step by step.
This will serve as the backdrop for the descriptions of the various objects in the
system and their responsibilities. The scenario we will employ throughout this
section is a relatively simple one: there are two radar trackers in our region
(hereafter radarl and radar2) observing aircraft of only one type (call it type-A).
Though we would expect greater numbers of both these quantities in a more
realistic situation, this example is quite appropriate for our expository purposes.

On the following page, Figure 4.1 shows a graphical representation of the
PORs provided by Data Association in our chosen scenario--the input to Path
Association.] The figure presents a "snapshot" of the current situation in the
region of airspace under observation as seen from a God's-eye view at some
particular time. There are two views of the region, one for each radar. The short

I This and future figures of the example scenario are actual screen images taken during an
AIRTRAC simulation,
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i <ent PORs-light-shaded ones are :create PORs, dark-
:;%:‘:é‘ tgnffi‘:e‘{i:gﬁ:fgﬁs, and black ones are :inactivate PORs. Beside each
POR is a string of three numbers. Though these strings tend to clutter the dstlay
somewhat, they are nonetheless meaningful: the first number in a string gives
the radar ID, the second the POR's track ID, and the third a scantime within the
POR. Together these keys offer clues as to when and where tracks begin and end.
For example, there are three tracks seen by both radarl and radar2 that begin at
the very bottom of the region at roughly the same time (around scantime 30). In
addition, the width of each POR gives some indication of its line estimates radius.

Examining the display in Figure 4.1, one may note that, at the time the
snapshot was taken (sometime after scantime 290), both radarl and radar2 had
been following a number of different tracks within the region. In fact, careful
evaluation of the two radar views allows one to deduce that the example scenario
involves the passage of 5 aircraft across the region. Of course, it is relatively
simple for us as humans to perform this sort of visual comprehension. We can
quickly and easily connect broken track segments and fill in missing pieces of
tracks in one radar view with information from the other radar in order to come
up with the "big picture” of the scenario--complete flight paths of all aircraft in
the region. This is precisely the sort of real-time information fusion and
interpretation that is so difficult to achieve in knowledge-based systems; it is the
primary goal of Path Association.

4.1.1.1. What is interesting about this scenario?

There are many aspects of the example scenario that lend themselves to
interesting observation. We shall choose a few of the these to examine closely as
we make our way through the different stages of Path Association. In Figure 4.1
there are 6 highlighted areas, labeled Al, A2, B1, B2, C1, and C2. Al and A2 are
actually the same physical area as seen from the two different radar views; the
same applies for B1-B2 and C1-C2. Let's see what's happening in each of these
areas at the POR level:

A1) Track 1-5 has been lost and track 1-6 has begun.
A2) Track 2-6 has been lost but no other track has been picked up.

B1) A busy area: tracks 1-1 and 1-2 both end and tracks 1-4 and 1-5
both begin.

B2) Track 2-1 shows no break while track 2-6 has begun.
C1) Track 1-7 has ended and track 1-9 has been picked up.

C2) Track 2-7 has been lost and track 2-9 has begun, with a large gap
in between (both spatially and temporally).
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4112 What does this example tell ue about radar capabilities?

Right away we can see that a radar tracker is not tremendously scphisticated.
It often produces information that is unclear or even incomplete. One reason for
this lies in the simple track extension algorithm the tracker uses to process
observations. Any change, however slight, in the regular observation of an
aircraft's track (a change in direc.ion, a sudden shift in velocity—even a tiny glitch
in the system) may result in a loss of the old track ID and the assignment of a new
one. The tracker simply cannot distinguish between a true break in a flight path
and a temporary loss of, or adjustment in, the observation of an aircraft; this sort
of reasoning is part of AIRTRAC's job. As evidence, tracks have been lost and
new ones started at several points during this scenario, even though the gap
between them appears very small (A1, B1, C1).

A second source of incompleteness in radar data is due to the possible
inability of a tracker to detect objects in a particular area--so-called radar
"shadows." This might happen, for instance, if there is a large mountain within
a radar's region of coverage. If the mountain lies between the radar site and a
certain area, a plane flying into that area seems to disappear. Perhaps its track is
picked up again with a new ID when the plane leaves the shadow, but the result
is usually a large gap in its visible flight path. Such a situation seems to exist in
our scenario in the output of radar2 near C2, where two crossing paths are lacking
large sections of track data not missing in the observations by radarl in area Cl1.

It is clear, then, that the information given to Path Association reflects the
limited characteristics of the individual radar tracking systems, each of which sees
the world in a different way. The purpose of the Path Association module is to
combine the information it gains from all radar sources to overcome local radar
shortcomings to produce a complete and accurate high-level description of the
aircraft in the region.

4.1.2. Distribution

The first phase of Path Association processing involves the distribution of
Periodic Observation Records from Data Association into dynamic objects called

Flight Path Segments. This task is performed by manager objects called Flight
Path Managers.

412.1 Flight Path Managers (FPMs)

A Flight Path Manager (FPM) handles the input PORs of a particular aircraft
type and radar ID. Data Association knows which FPM to send a POR to on the
basis of these two invariants. The number of FPMs in the system is thus equal to
the number of distinguishable aircraft types times the number of different radar
sources. (In a typical scenario, for example, in which we observe 3 different types
of aircraft from 3 radar trackers, there would be 9 FPMs.) The function of an FPM
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is to accept PORs from Data Association and to process them according to their
track ID and status.

Each FPM maintains a list of the track IDs for PORs it has received, along
with the names of the Flight Path Segments it has allocated for tracks. A new
track ID is one for which no previous POR has been received by the FPM.

4.12.2, Flight Path Segments (FPSs)

Flight Path Segments (FPSs) are dynamic objects subordinate to an FPM.
They represent a collection of PORs with the same track ID (and therefore same
radar ID and aircraft type). Among an FPS object's slots are those listed in Table
4.1. Included in this list is the FPS's status, a keyword which is either :active or
:inactive. The status :active reflects the fact that the FPS is continuing to receive
:update PORs by way of its FPM. An FPS sets its status to :inactive when it
receives an :inactivate POR.

Table 4.1 Flight Path Segment

The information in a Flight Path Segment includes the following:

track 1D the identifier assigned to this t. .ck by the
radar tracker

radar 1D the identifier of the radar site from which the
track is being observed

status track status; a keyword, one of (‘active
sinactive)

aircraft type the type of the aircraft

line estimates the sequence of POR line estimates

initial velocity velocity (Vx Vy) of track at time of creation

final velccity velocity (Vx Vy) of track at time of
termination

OFP parent name of Observed Flight Path parent

Why are FPSs not enough to represent an entire flight path of an aircraft?
The answer, of course, lies in the inability of a radar tracker to maintain a
consistent lock on the aircraft's position as it makes its way through the region.
As mentioned before, it is simply too common for a radar tracker system to lose a
track due to a number of reasons (sharp turn, radar shadow, etc.). There must be
some object superior to an FPS that represents a complete flight path, overcoming
the natural incompleteness of radar tracking systems; in fact, we will describe this
object shortly.




4.1.2.3. The Distribution i'ocess

Figure 4.2 shows the prowers of distribution in terms of the LAMINA objects

involved and the communicaton among them.

OManager Object
QO pymamic Object

el Single Message
. y,

Figure 42 The Distribution Process

When a POR arrives from Data Association at the FPM in a :distribute-POR
message [1]1, the following takes place:

a) If the track ID of the POR is a new one, then a new FPS is created
and sent an initialization message which contains the new POR
(2.

b) Otherwise, if the POR's track ID has previously been registered
with the FPM, then the POR is sent directly to the track’'s FPS in
an :add-new-POR message [2].

! In the description of the distribution process, and that of connection ana tusion to follow, a
bold number in brackets refers to the corresponding LAMINA message(s) in the figure for that

process. In this case, (1] denotes the message received by the FPM in Figure 4.2 (shown as an

arrow labeled "17).
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OR is either :create or :create-and-inactivate,

) g:??ifia?nsosjstﬁfafit has received the f@rst POR of the FPS.! In
this case a :connect-at-creation message is sent to the Flight Path
Connector associated with this FPM (the one that handles P'.PSs of
the same aircraét type and radar ID) [31. This message contains all
information pertaining to the beginning of the FPS (including
time, position, and velocity, as well as its name and remote
address), and initiates a connection procedure as discussed in
Section 4.1.3.

d) If the status of the POR is either :inactivate or :create-and-
inactivate, the FPM knows that it has received the last POR of the
FPS. In this case a :connect-at-termination message is sent to the
associated Flight Path Connestor with all POR information about
the end of the FPS in addition to its name and remote address [3].

4.1.24. Distribution in the Example Scenario

How does our example scenario appear at the distribution level? Figure 4.3,
on the next page, shows the graphical display of FFSs that exist in the system.2
Each FPS is seen as an unbroken line segment with an identifying string printed
near its origin. [Note: The boxes drawn in each region are graphical aids in the
connection process; ignore them for now.]

The display shows how the PORs given to Path Association have been
collected by the FPSs. As expected, each FPS line is drawn from the beginning of
its :create POR to the end of its :inactivate POR (as they appear in Figure 4.1). The
areas of interest we are following exhibit no further development at this point;
whenever a track is picked up an FPS begins, and whenever a track is lost an FPS

o ends. The really exciting stuff is yet to come.

4.1.3. Connection

Looking at Figure 4.3 we can see obvious locations where tracks were broken
for some reason and new ones picked up soon afterwards. To our eyes it is clear
that many of these individual tracks belong together in the same entire flight
path. It is the task of the next stage of Path Association, connection, to determine
which FPSs should be associated together to form complete observed flight paths.

l Note that the first POR of an FPS is not necessarily the one received earliest in time at the
FPM. It is possible, due 0 message disorder, for an :update or :inactivared POR of an FPS to
arrive t~fore the :create POR. “First,” in this context, always denotes a POR with status
:create ¢. creatz-and-inactivate. Likewise, the "last” POR of an FPS always has an :inactivate
or :create-and-inactivate status.

2 This and the other displays of Path Association graphics show the different levels of
computation at the same instant in time -- a system-wide snapshot.
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The coordination of this search is performed by manager objects called Flight Path
Connectors.

4.13.1. Flight Path Connectors (FPCs)

A Flight Path Connector (FPC) receives information about the creation ar}d
termination of all FPS tracks of the same aircraft type and radar ID from its
associated FPM. (There is a one-to-one correspondence between FPMs and FPCs.)
It attempts to "connect,” or match, pairs of FPSs that logically could be parts of the
same flight path by determining whether one FPS is potentially a continuation of
another's track, using criteria detailed below. All connected FPSs are grouped
under common objects called Observed Flight Paths.

An FPC handles only FPSs that share the same aircraft type and are reported
by the same radar tracker. It would not make sense to try to connect segments
from different aircraft types or across different radars (multi-sensor fusion of
corresponding path segments is performed in the final stage of Path Association).
Each FPC maintains a list of the FPSs it has been notified of, including all data
relevant to the beginning and/or end of each FPS (time, position, velocity). It
also keeps a list of the Observed Flight Path objects it has created, together with
the names of FPSs linked together under them.

4.13.2 Observed Flight Paths (OFPs)

Ar: Observed Flight Path (OFP) is a collection of one or more FPSs, connected
by an FPC, that constitutes a complete flight path as seen from a single radar
source. (Achually, the collection is not of the FPS objects themselves but of names
and handles t¢ these FPSs.) Every FPS is associated with exactly one OFP, even if
does not conneci with any other FPSs.

The information contained in an OFP object is listed in Table 4.2. Inciuded

in this list are slots for *connections” to other OFPs, a concept to be explained a bit
later.
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Table 42 Observed Flight Path

-

The information in an Observed Flight Path includes the following:

radar 1D the identifier of the radar site from which the
track is being observed

status flight path status; a keyword, one of (active
:inactive)

aircraft type the type of the aircraft

FPS children list of names of FPSs that make up this
complete OFP

creation conmections list of names of earlier OFPs connected to
this one

termination connections list of names of later OFPs connected to this
one

UFP parent name of associated Unfused Flight Path (if
one exists)

P parents list of names of Platforms of which this OFP
isa part

PM Platform Manager that handles fusion

searches for aircraft of this type

4.1.3.3. The Connection Criteria

What are the criteria an FPC uses to determine if two FPSs should be
connected and made part of the same OFP? Essentially, FPC combines data from
FPS endpoints with knowledge it has stored in a model of the aircraft to project
regions where it expects possible continuation for a track, which it then uses to
search for other FPSs whose beginnings or endings fall into that area.

4.1.3.3.1. Aircraft model

The aircraft model used in the connection process by an FPC is a frame-like
data structure that incorporates explicit knowledge about cruising characteristics
and maneuvering capabilities of the type of aircraft handled by the FPC. The
items found in the model of an aircraft are listed in Table 4.3




Table 4.3 Aircraft Model

The model of each aircraft type which is used by the Flight Path
Connectors during connection contains the following informaticn:
name the name of the aircraft type

min cruising speed the minimum straight-line velocity needed
to remain airbomne

max cruising speed the maximum straight-line velocity
capability

aog cruising speed the average (or expected) cruising speed for
an aircraft of this type

max landing speed maximum speed at which the aircra’t is
capable of landing

max acceleration the maximum possible straight-line
acceleration

max deceleration the maximum possible straight-line
deceleration

min turning radius the minimum possible turning radius (at

both minimum and maximum speeds)

tuming radius function  a function relating turning radius to speed

4.1.3.3.2. Continuation region

Given two FPSs, an FPC checks for possible connection between them in the
following manner. A pair of FPSs connect, of course, between the end of one
segment and the beginning of another. Therefore, the FPC needs to know the
latest reporred position and velocity of the earlier FPS and the scantime at which
it terminated. Likewise, the FPC needs to know the original position and velocity
and the time of creation for the later FPS.

The first check for possible connection is to see if the difference in scantime
units between the termination time of the earlier FPS and the creation time of
the later FPS (call it delta-T) is within 1 and some maximum connection search
interval, a preloaded system parameter that limits the time gap between
connected FPSs to a reasonable length. If this test is passed the FPC then uses

a) the termination position and velocity data of the earlier aircraft,
b) delta-T, the time gap between the segments, and

c) the performance figures from the aircraft model,




to compute a continuation region in which the creation position of the later FPS
must fall if it is to successfully cornnect, as shown in Figure 4.4.1 If the later FPS
does indeed begin within this continuation regior. then the two FPSs are

considered to have met the connection criteria.2

Returning to Figure 4.3, we now understand what the boxes drawn at
different points in the region represent—they are continuation regions computed
during :he connection process. By noticing the small circles (denoting FPS
creation positions) that lie within several of these continuation regions we can
predict FPSs that are likely candidates for the FPCs to connect. We shall see a
little later on how things actually turn out.
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Figure 4.4 Calculating a Continuation Region

4.1.34. The Connection Process

Figure 4.5 shows the process of connection in terms of the LAMINA objects
involved and the communication among them.
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Figure 4.5 The Connection Process

Connection takes place when an FPM receives either a :create POR or an
:inactivate POR for an FPS and notifies the FPC responsible for FPSs of the
corresponding aircraft type and radar ID in a :connect-at-cre~tion message or a

:connect-at-termination message, respectively. In the following two sections we
outline the steps taken in both of these cases.

For convenience, let us define a created FPS as an FPS for which a :connect-
at-creatior rnc-sage has been received and processed by the responsible FPC.

Similarly, a * minated FPS is an FPS for which a :connect-at-termination
message has beer received by the FPC.

4.1.3.4.1, Connect-at-Creation

When an FPC receives a :connect-at-creation message with information

about the beginning of a track from an FPS's :create POR [1], the following takes
place:
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a) The FPC searches its list of FPSs for those that have been
terminated but not yet connected with any later FPSs, collecting
those that connect with the newly created FPS.1

b) If there are no connecting terminated FPSs from a), then the FPC:

e creates a new OFP and sends to it an initialization message
that establishes the created <PS as its only child (2]

e sends a mew-OFP-parent message to the created FPS with the
name and handle of the new OFP [3]

c) If there is exactly one such terminated FPS from a), then that FPS
and the newly created one are connected by the FPC:

* an :add-new-FPS message is sent to the OFP parent of the
terminated FPS with the name and handle of the created FPS
2

* a mew-OFP-parent message is sent to the created FPS with the
name and handle of the terminated FPS's OFP parent (3]}

d) if there is more than one connecting terminated FPS from a),
then this is an ambiguous connection case [see Section 4.1.3.5.]

e) The FPC next searches its list of FPSs for those that have been
terminated and previously connected to a later FPS (not

including those from ¢) and d) ), again collecting those that
connect with the newly created FPS.

f) If there are any such terminated FPSs from e), then this is an
ambiguous connection case [see Section 4.1.3.5.}

4.1.3.4.2. Connect-it-Termination

Usually two FPSs that belong together in the same OFP arrive in order at the
FPC. More precisely, if two FPSs should connect with each other, it is usually the
case that the FPC knows about the termination of the earlier FPS before it learns
of the creation of the later FPS. However, because messages sometimes arrive out
of order, it is entirely possible that the FPC will be notified of these events in
reverse order. If we were just to rely on a method of establishing connections
between FPSs only when one was created, we would never be able to resolve such
an out-of-order situation; an FPC simply could not connect a created FPS with a
terminated FPS that it hasn't yet been told of.

Our solution to this difficulty is to perform connection between FI'Ss in both
directions in time. In the expected case, the FPC searches backward in time for

1 In this discussion two FPSs "conmnect” if they meet the connection criteria set forth in
Section 4.1.3.3.
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terminated FPSs that connect with an F‘PS given by a :connect-at-crcatiqn
message, as described in the previous section. The FPC also searches fm.'warc'i in
time for possible connection to created FPSs when a terminated FPS arrives in a
:conmect-at-termination message. The connect-at-termination procedure is
similar to that of connection-at-creation, and it ensures that slightly out-of-order
messages never results in a missed connection.

When an FPC receives a :connect-at-termination message with information
about the ending of a track from an FPS's :inactivate POR [1], the following takes

place:

a) The FPC searches its list of FPSs for those that have been created
but not connected with any earlier FPSs, collecting those that
connect with the recently terminated FPS.

b) If there are no connecting created FPSs from a), then the FPC does
nothing else, except in one case: if the terminated FPS is not yet
associated with an OFP (which can only occur, from the
perspective of the FPC, if the FPS was terminated before it was
created, another possible result of disordering). If this is the case,
then the FPC:

¢ creates a new OFP and sends to it an initialization message
that establishes the terminated FPS as its only child [2]

e sends a mew-OFP-parent message to the terminated FPS with
the name and handle of the new OFP [3]

c) If there is exactly one such created FPS from a), then that FPS and
the newly created one are connected by the FPC. This is more
difficult than in the connect-at-creation case c) because both FPSs
have a parent OFP (though it is possible, as in b), that the
terminated FPS has not yet been created and does not have an
OFP parent.). To execute the connection the two parent OFP's
must be merged, as follows:

* an :add-new-FPS message is sent to the OFP parent of the
created FPS with the names and handles of the terminated
FPS and its sibling FPSs of the current OFP parent [2]

* a mew-OFP-parent message is sent to the terminated FPS and
its transferred FPS siblings with the name and handle of the
created FPS's OFP parent [3]

¢ the old OFP parent of the terminated FPS is deallocated,
leaving only the terminated FPS's new OFP parent

d) If there is more than one connecting created FPS from a), then
this is an ambiguous connection case {see Section 4.1.3.5.]
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4.13.5. Ambiguous cases

Occasionally an FPC finds that there is more than one connection .possi.ble
for a given FPS, especially given the conservative nature of the. continuation
region, calculated so as to eliminate only thosg connection pairs which are c}early
unreasonable. A typical situation in which this might occur is when two _axrqraft
pass by a particular point in the region at roughly the same time and their flight
paths cross. From a radar tracker's perspective, a crossing often appears as a break
in both flight paths, resulting in the termination of one FPS and the creation of a
new one for each path. An example of this can be seen in area B1 of Figure 4.3.
The difficulty is that, by the connection criteria, the first FPS of one or both tracks
may connect with the second FPS of both tracks. There is no notion of a “best"
connection; any path extension passing the connection criteria is considered as
good as any other, so there is no way to determine which is the true connection.

What can the FPC do in such a situation? In our object definitions we
require that an OFP be composed of only a single path of connected FPS—it cannot
contain multiple connections between constituent FPSs.!I We deal with the
problem of ambiguity by introducing the concept of connected OFPs. In a case in
which there are multiple possible connections between an FPS and other FPSs,
each FPS is assigned to its own OFP and the different OFPs are then "connected"
on their own level by establishing a connection relationship between them. That
is, the earlier FPS's OFP is said to have the later FPS's OFP as a termination
connection, and the OFP of the later FPS has the OFP of the earlier FPS as a
creation connection. Each OFP maintains lists of its creation and termination
connections to other OFPs.

By letting any ambiguity present following connection remain unresolved
in the form of connected OFPs, we are counting on fusion to detect incorrect
associations and establish the true complete flight path using information from
other radar sources tracking the same aircraft. We shall see if fusion can, in fact,
resolve these ambiguous cases.

4.1.3.6. OFP Updates

After an FPS is notified that it has been associated with an OFP, it begins to
forward update messages to its parent OFP. These are messages that report when
new track information has been obtained by an FPS so that an OFP is kept up-to-
date of events at the FPS level. An :FPS-update message is sent to an OFP every
time the FPS itself receives an update message from its FPM in the form of an
:update POR. Included in each :FPS-update message from the FPS are the POR
lines estimates it is provided in the :update POR. The OFP, in turn, forwards all

! Tre reason for this strict definition 15, to a great degree, dictated by a cleaner
representation of platforms at the fusion level, but this 1s mostly an implementation issue
beyond the scope of this discussion.
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update information onto its associated higher-level object, a Platform cr Unfused
Fﬁght Path, as described in Section 4.1.3.6. An OFF does not save any FPS line

estimate informiaton within it own state.l

4,13.7. Connection in the Example Scenario

Let's now take a look at the results of the connection process in our example
scenario. On the following page, Figure 4.6 shows the graphical display of OFPs in
the system at the same snapshot in time. Each OFP is drawn as a continuous line
segment, with a string identifier near its origin. Of special note are the lighter-
shaded lines drawn between several of the OFPs near areas B1 and {1 of radarl.
They signify that the OFPs they join are connected OFPs, meaning there are a few
points of ambiguity present in the scenario at the connection level.

Looking at our areas of interest we notice the following:

A1) The two FPSs in Figure 4.3 have been together formed an OFP, a
straightforward case of connection.

A2) With the later FPS missing, the earlier FPS stands alone in its
own OFP.

B1) As expected, a bit of confusion. With several FPS connections
possible, both sides of the cross have their own OFPs, with OFP
connections established between them. Interestingly, there also
seem to be OFP connections made between one or both of the
higher OFPs in Bl and the OFP coming from the side of the
region in C1. This is a case in which the support for a connected
path seems weak but the connection criteria were met anyway.

B2) Nothing unexpected. One OFP passes over the point at which
another OFP is created, just as their corresponding FPSs did.

C1) What seems likely to us to be a strong connection of FPSs in an
OFP that travels straight across the region 1s dealt with at the
connection level as two connected OFPs. This is due to the
cross-over coincidence in Bl.

C2) A perfect example of the power of connection. Despite the big
gap between the two FPSs they were able to be connected into a
single OFP crossing the region.

1 The reason for not storing line estimates is an issue of cache consistency. The OFP can never
be certain that the line estimate information it has been presented is complete and up-to-date.
Therefore, in reporting this information to in:tiate the fusion process (described in Section
4.1.4), the OFP is forced to request current track data from its FPS, eliminating the need to
maintain this information itsslf.
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4.1.4. Fusion

In the distribution and connection phases all reasoning about flight path
data is performed on PORs and FPSs observed from the same radar source. Up to
now there has been no use of information from other radars to help resolve
missing data conflicts present in radar tracks from individual radars. In the
fusion stage of Path Association, however, information from all radar tracking
sources is brought together to form the best available estimaze of the flight of the
real-world aircraft.

The dynamic objects produced by the fusion process are abstractions called
Platforms. One of the main goals of fusion is to associate each and every OFP
with at least one Platform so that its flight path data can be used in later
AIRTRAC functions in Path Interpretation. Fusion takes place in a distributed
search method coordinated by manager objects called Platform Managers.

41.4.1. Platform Managers (PMs)

Platform Managers (PMs) are, in the truest sense of the word, managers.
They only oversee the real work that they delegate to their subordinates, unlike
FPMs and FPCs which handle the entire computationa! chore by themselves at
their level of processing.!] PMs control the creation of Platforms and coordinate
the fusion search among the many distributed, dynamic Platform objects; the
actual fusion of information from different radar sources is performed by the
Platforms themselves.

Each PM manages the fusion of OFP information for a particular aircraft
type. It maintains a list of existing Platforms representing ai-craft of that type in
the system. (In addition, a PM keeps a list of a second collectio.r of subordinate
objects called Unfused Flight Paths, the natur2 and function of which will be
presented later.)

4,1.4.2. Platforms (Ps)

A Platform (P) represents the hypothesis of a real-world aircraft passing
through the region of airspace. It is a collection of supporting OFPs that each
contribute their own radar’s view of the aircraft's flight path to form a composite
Flight Path (or simply compesite-FP). The composite-FP is calculated from the
track data from the FPSs of all individual OFPs using a best-fit approximation to

I The fact that the PMs are the only managers objects in the system that disz.oute a
significant amowunt of their workload :0 subordinate objects reflects a desiga decision that we
made to reduce the possibility of boulenecks (performance hotspots) at the PM during the
computationally more complex process of fusion. More is said about the consequences of this
decision in Chapter 6.
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arrive at the most informed estimate of the aircraft's complete and true flight
path.

Platforms are the final output of Path Association. They contain the
information listed in Table 4.3.

Table 4.3 Platform
The information in a Platform includes the following:

status status of the hypothesized aircraft

represented by the P; keyword, ons of
(:active :imactive)

dircraft type the type of the aircraft

OFP children list of names (and attributes) of all Observed
Flight Paths that make up the P

composite-FP the composite flight path computed from a
best-fit of all line estimates of individual
OFPs of the P

PM the name of the Platform Manager in
charge of Ps of this aircraft type

4.1.4.3. The Fusion Criteria

In this section we examine the criteria used to determine if tracks from
different radars represent equivalent views of the same aircraft's flight path and
should therefore be collected together in a single Platform. In the description of
the fusion processes to follow, mention is made several times of an OFP "fusing"”
with a P. What exactly does this mean?

When a new Platform is created, its initial composite FP consists of the line
estimate information from all of the FPSs in the OFP that caused its creation
during the fusion process. Thus, the composite is a sequence of line segments
(pairs of endpoints), each with its own estimate of error given by the POR line
estimate radius. There may be gaps in this sequence for which no track data is
available corresponding to scantimes between connected FPSs. In addition,
incdluded with each segment in the composite is a list of radar IDs represented by
that segment.

During the fusion process, Platforms are requested to try to fuse OFPs with
their current composite FP, and a fusion result signalling the success, failure, or
indeterminacy of the fusion is returned. A result of :MATCH is returned if all
three of the following conditions are satisfied:
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1) The OFP and the composite overlap in time for a minimum of one
scantime. That is, there exists at least one scantime which is represented in line

segments in both the OFP and the composite.

2) Every point in the OFP "matches” the corresponding (same scantime)
point in the composite; i.e., their error radii intersect at each and every point. (If
any missing point is between the endpoints of a segment in either flight path, it is
calculated by interpolation.)

3) The OFP and the composite do not overlap at any point in time for which
the composite already has incorporated data from the OFP's radar (the OFP's
radar ID is in the list for that particular segment). An OFP cannot possibly share a
Platform with another OFP observed from the same radar; a point conflict so
described would indicate two such OFPs.

Figure 4.7 gives a before-and-after look at the fusion of corresponding
portions of an OFP and a Platform’'s composite FP whose result is :MATCH. We
see that each point in the OFP matches the corresponding point in the composite
because their radii intersect. The resilliing new composite point for each pair is a
weighted average of the locations of the two points.! The radius of error for each
new point is computed from the new point location and the intersecting radii.
What is important to note in this process is that, as each new OFP is fused with a
P, the composite FP for that P becomes more defined as the error radii error of its
constituent points get smaller.

1 The “weight” of a composite segment is dictated by the number of radars already represented
in that segment.
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Figure 47 Fusing portions of an OFF and a Platform's composite FP to form part
of 2 new composite FP. The points of the new composite are weighted
averages of the two corresponding peints, and the new radii are
calculated from the intersections of the radii of the points.

A fusion result of :NO-MATCH is returned if either of conditions 2) and 3)
above is violated. An :UNKNOWN result is returned if neither :MATCH nor
:NO-MATCH holds; i.e., the OFP and the composite do not overlap in time for
even a single scantime, violating conditicn 1) above. These three fusion results
will be mentioned often in the discussions of the fusion processes, so it is
important to understand what each means.

4.14.4. The Regular Fusion Process
Figure 4.8 shows the regular process of fusion: the objects involved and the

communicaticz. paths between them. With reference to this figure, we now turn
to the description of the complicated fusion process.
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Figure 48 The Regular Fusion Process

When an OFP is created or when it is dropped from a Platform (discussed
later), it immediately begins the process of fusion:

1) Since the OFP does not duplicate FPS data by caching them
locally, that information must first be obtained for fusion. The
OFP multicasts a :send-line-estimates message to all its FPS

[ children [1]. It then spawns a continuation process to collect the

replies from the FPSs, giving it also a list of its OFP connections.

r
|
1

2) Each FPS responds to the :send-line-estimates request from its
OFP by returning all its current line estimates to the OFP
continuation {2].

3) When replies have been received from all of the FPSs, the OFP
continuation gathers all of the line estimates together with the
OFP's own OFP connections and sends a -match-OFP-to-platform
request to the appropriate PM (in charge of aircraft of this type) [3].

4) The PM broadcasts a ;fuse-OFP message to all Ps it has registered,
containing the line estimates information provided for the OFP
[4]. It then spawns a continuation to collect the fusion replies
from the Ps.




5) Each P checks to see whether the OFP fuses with its composite-
FP.1- If s0, the P merges the OFP into its composite and sends an
:add-P-parent message to the OFP, acknowledging successful
fusion [5]. Whatever the fusion result may be, it is relayed to the
PM continuation [6].

6) When all fusion results are in, the PM continuation examines
them and acts accordingly:

o If there is at least one :MATCH result, then fusion was
successful and no further action need be taken.

e If all results were :NO-MATCH, then the continuation sends a
:create-Platform message back to the PM [7], where anew P is
created for the unmatched OFP.2

o If there were no :MATCHes but at least one :UNKNOWN
result, then the fusion search was inconclusive. This is an
irregular case treated in Sections 4.1.4.8. and 4.1.4.9.

4.14.5. Platform Creation

The creation of a new Platform is requested for an OFP only in the case that
the OFP fails to fuse with any existing P during the fusion process (NO-MATCH
results received from all). A P creation is handled by the same PM that
coordinated the fusion search. The PM learns of the need to create anew P in a
:create-Platform request from one of the PM continuations spawned to coilect the
fusion results.? Before the PM goes ahead and actually creates a new P object,
however, it must check one final possibility.

Consider the case of an aircraft that appears in the region and is picked up at
the same time by two radar trackers. Assume that the AIRTRAC system is not
heavily loaded and that processes are "keeping up,” able to handle new data as
quickly as they are received. In this case Data Association produces :create PORs
for the aircraft, one for each radar, at roughly the same data time. Path
Association, then, receives these PORs, the appropriate FPMs creates a new FPS
for each, and these report to the right FPCs. They, in turn, create new OFPs for
the FPSs (2<z'ming no connection possibilities are present), and these OFPs
immediately begin the fusion process. The requests for fusion for both radars'
flight paths, expectedly reach the responsible PM at nearly the same time. One
request must be handled by the PM first, of course. So the fusion search broadcast
for the first OFP goes out to all Platforms existing at that time. As soon as the PM

I In this discussion an OFP “fuses™ with a Platform if the match is consistent with the fusion
criteria set forth in Section 4.1.4.3.

2 Actually, creation of a new Plaiform is not this simple. See Section 4.14.5, for more details.

3 Plaform creation can also be requested by Unfused Flight Path objects (discussed in Section
4.1.4.9,).
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continuation is spawned to manage the fusion result collection, the PM turns it
attention to the second OFP. Another fusion search is broadcast to the same set. of
existing Ps, and another continuation is spawned. Soon afterwards, the fusion
search for the first OFP ends unsuccessfully, and the PM receives a :create-
Platform request from the continuation for that search. A new P is created for
that OFP and added to the PM's list of existing Ps. Right on the heais of his
activity comes a second request for a P creation, this time from the continuation
spawned for the second OFP-seems it, too, was unable to fuse successfully wili
any Ps. The PM then creates another new P for the semnd TrP, and it is added to
the existing P list. And the scenario continues ...

What has happened? Somehow we ended up with two different Platforms
for the same aircraft, each housing just a single OFP. Unless one of these Ps is
deallocated and its OFP forced to re-enter the fusion process at some later time,
there is simply no way that the two OFPs will ever be fused together in the same
Platform. This is clearly an undesirable effect-a simple situation made
complicated, and NOT because of unreasonable message delays (in fact, the timely
message delivery is what created the condition].

The problem with this naive Platform creation algorithm is that it neglects
the possibility that the PM can be creating new Ps between the tirne it sets off a
fusion search for an OFP and the time it gets back a P-creation request for that
OFP-Ps that could and should be checked for fusion with the OFP. We tackled
this problem by requiring a PM to check, before it ceates a 1.ew P, if any other
creation has taken place while the search was being performed. If so, it begins the
fusion search cycle for the OFP all over again, only this time just involving he
recently created Ps. Only when the PM is certain that no intermediate creation
has taken place wili it proceed with the ictual ceation of another new Platform

Unfortunately, this is not the end of our Platform creation difficulties. The
proposed method of dealing with false creations will work fine in most instances,
but it leaves open the possibility that the fusion-search/creation-request loop wiil
continue indefinitely, espedally for complicated scenarios involving a large and
steady amount of new track creations. We have overcome this particular bit of
nastiness by imposing a maximum creation attempts limit for OFPs, another
tunable system parameter. If the number of creation requests for a given OFP
exceeds this limit, a new Platform will be created no matter what, regardless of
any new P activity. The end result of this policy is that, at the risk of incurring
some amount of incorrectness (minimal, we hope), ve have ensured that all
OFPs will eventually be associated with a Platform.

& siew

1.14.6. Platform Updates

As OFPs receive their own update messages (:FPS-update) from thel
currently :active FPS, they immediately feed this track update information along
to all their P parents in an :OFP-update notification message. The message
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contains the latest POR line estimatr ‘"formation for an aircraft's track. When a
P receives an update it immediately iries to incorporate the new line estimates
into its composite F. The manner in which thxs. is done is the same as during
the original fusion check against the entire OFP;. in this case, though, thg P. need
wnly fuse segments no longer than the POR period. The same fusz.on criteria are
pluced upon the new track data. If the P.update from an OFP fails to be fused
properly because one of its segment points cannot correctly match with the
zorresponding point in the composite (error radii do not intersect) or because the
composite already has data fron the same radar source at a scantime covered by
the update, then that OFP is consicered to have spiit from the P.

4.14.7. Platform Splits

What does it mean .shen an OFP splits from a Platform? In fusing OFP
update informztion by incorporating it into the composite FP, a P makes sure all
its OFPs rernain consistent with one another. Just because an OFP originally
fused successfully with a P doesn't mean it will always remain compatible with
the rest ¢ the OFPs in the P; The explanation in the real world is that two or
more planes could first appear in the region flyinrg very close to each other--so
close, in fact, that their tracks are virtually indistinguishable from one another
from the fusion standpoint. The OFPs for those tracks might easily be fused
together to form a single P. There is no way to avoid “is possibility; we can only
expect that the aircraft will eventually move off  different cirections, after
which an update frem one of their OFPs will violate the ‘usion with composite
data from the others, causing a Platform split.

A Platform, like an OFP, dc s not duplicate track Jata contained in FPSs; it
only maintains its composite FP computed from those data from all its OFPs.
When a Platform split cccurs, then, it is computationally impossit le to "strip off"
the single offending OFP from the , reconstructing the compasite to allow the
rer OFPs to remain. There is 1o choice but t¢ disband the P entirely, notifying
cach OFP child, in ¢ . 2move-P-pare~t massage, to disassodate itself with the P.
Upen receiving such a rotitication, the CFP checks to see if it is -1 fused with
ary oiher Ps If so, then things are fine—in fact, the Flatform split nas sicceeded
in eliminating an ambiguous OFF-P relationshin. If it dnes not have another P
parent, however, tr.3 CFP immediately begins the fusion procesc anew, just as it
did when it waz first created. This tme, we hope, the greater .mount of line

estimate information the OFP possesses ougit to zllow it to unequivocally fuse
with th. right Pladera.

4.1.4.8. Unfused Flight Paths (UFPs)

Tnere are occasions during atiempted rusion in which a Platform cannot
determine with complete certainty whether a.. CFF is a logical match with its
ccmpasiie because the two paths do not overiap in ime. Most often this is due to
message disorder such thac the P iags slightly btehird the OFP in terms of the
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latest data time each has received. Such a case produces an :UNKNOWN result
fzresthataP. Often while this is happening, though, the OFP has successfully fused
with another F. Since the goal of the fusion process is to unit= an OFP with at
least one P, it becomes unimportant whether or not the :UNKINOWN resuit is

ever resolveg for this particular P.

But what happens if no other existing Platforms are able to successfully fuse
the OFP, either? The PM continuation, having received zll the fusion results
(some :UNKNOWN and the rest :NO-MATCH) would notice this fact. The
following difficulty arises: The OFP has not yet been associated with a P,
something that must be done before the fusion process is complete. But we
cannot simply create a new P for the OFP because there's no assurance that the
OFP will not be able to fuse at some later time with one of the :UNKNOWN Ps,
after more information is obt.ined. What do we do?

The answer we developed is an object called an Unfused Flight Path (UFP),
another dynamic object subordinate to a PM. The main function of a UFP is to
serve as a higher-level object for an OFP in place of a Platform in the event that
the OFP remains unfused following the regular fusion process. It is different
from other dynamic objects in the AIRTRAC system in that it is expected to be
allocated only for a short period of time, until the OFP can eventually become
fused with a P, either by fusing with an existing P or by eliminating all
:UNKNOWNS cases 32 that a new P can be created. The motivation behind a
UFP is the fact that we expect that after some time both the OFP and the
:UNKNOWN Ps will receive additional data through update messages, thus
resolving the indeterminate fusion condition during -ubsequent attempts.

The purpose of a UFP, then, is two-fold.

1) It serves as a "placeholder” in the absence of a Platform, a higher-
level object to which the OFP can send its update messages. Such
messages will contain information about the additic , update, or
removal of FPS children and/or OFP connections for the OFP.

2) It manages additional fusion processes, so-called fusion retries,
for the OFP. A fusion retry :s attempted whenever the UFP
receives new information about the OFP through an update
message.

Table 4.4 provides a listing of the various slots of a UFP object, some of
which will receive explanation in the following sections.
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Table 4.4 Unfused Flight Path

The information in an Unfused Flight Path includes the following:

OFP name of the Observed Flight Pach
represented by the UFP

status status of the assoclated OFP; keyword, one
of (:active :inactive)

radar 1D the identifier of the radar observing the
tracks of the OFP

aircraft type the type of the aircraft

line estimates cached line estimates of the OFP

cr=atiom comnections list of names of earlier OFPs connected to
the one the UFP represents

termination conmnections list of names of later OFPs connectsd to the
cne the UFP represents

failed matches list of names of Ps whose fusion attempt with
the OFP was unsuccessful

fusion retry count number of (unsuczessful) fusion retries
attempted for the OFP

PM name of Platform Manager in charge of Ps
of this aircraft type
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4.14.9. An Irregular Fusion Process

N\
oMmger Object n Multiple Dynamic Objects
f‘\ Manager Object continuation
e Single Message
O Dynamic Object
O Dynamic Object continuation * Multiple Messages
\— v,

Figure 4.9 The Irregular Fusion Process

Fusion processes are considered irregular if they result in the creation of a
UFP. The procedure is different from a regular fusion process only in the way the
PM continuation handles the fusion results it receives from the Ps. The complete
process is as follows, with reference to Figure 4.9, which shows the irregular
fusion process diagrammatically. As with the regular process, it begins when an
OFP is created or dropped from a Platform.

1) through 4) are the same as in the regular fusion process [1,2,3,4].

5) The fusion result from zach P is sent on to the PM continuation
[5]. Since thisis an’ ‘lar case, this result is never :MATCH
(no wadd-P-parent 1.... .ation message is ever sent to the OFP at
this point).

6) The PM continuation examines the fusion results when all have
arrived and takes appropriate action. We know that in this case
there will be no :MATCHes but at least one :UNKNOWN (if not,
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it is not irregular). The continuation sends a :create-UFP
g:::s;tge back toetgbl PM including a list of the Ps that returned a

.NO-MATCH fusion result for the OFP [6].

7) Upon reception of the :create-UFP request, the PM does just that—
it creates a new UFP and sends it an initialization message that
contains the relevant OFP information (line estimates, OFP
connections) as well as the list of Ps that failed the original fusion
search [7].

8) After the UFP is initialized, it sends an :add-UFP-parent message
to the OFP [8], acknowledging the new association of the OFP with
the higher-level UFP.

4.1.4.10. Fusion Retries

The creation of a UFP, again, occurs when the request of fusion from an OFP
results in no :MATCHes but at least one :UNKNOWN, and is made in the belief
that the OFP and the :UNKNOWN Ps involved will eventually acquire enough
update data to "catch up” with each other so that subsequent fusion attempts with
those Ps will provide a definitive fusion result. Recall that an OFP treats its
relationship with a UFP as it it were part of a true Platform, including forwarding
to the UFP all update information it receives from its FPSs. The UFP, by caching
all the FPS line estimates of its OFP, is ready at all times to effect another fusion
attempt without having to request this track information from the¢ FPSs
themselves, as the OFP must do. And indeed this is the major function of a
UFP~to manage fusion retries.
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Figure 4,10 Fusion Retries

Figure 4.10 shows a diagram of the fusion retry process. It proceeds as
follows:

1) Periodically a UFP will receive a new update message from its
OFP [1]. When it does, it adds the new FPS line estimates or OFP
connections to the previous ones it has stored.

2) The UFP then packages up all the line estimates and OFP
connections in a :retry-OFP-fusion message to the PM [2].
Included in this message is the list of Ps with whor the OFP has
failed fusion already.

3) Tke PM handles the fusion process much like a regular one,
except that it broadcasts the :fuse-OFP message only to those Ps
not included in the list of failed matches previded by the UFP
(those that were :UNKINOWN in the previous attempt as well as
any new Ps created since the last time; [3L.1 The PM then spawns a
continuation to collect the replies from the Ps.

! This is quite an efficient scheme as it limits to only a few the number of Ps necding to
perform fusion and report back.
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4) As before, each of the Ps receiving the fuse-OFP checks to see if
the updated OFP now fuses with its composite, returning to the
PM continuation the appropriate reply [5]. If fusion is successful,
the P also notifies the OFP directly in an :add-P-parent message [4].

5) The PM continuation, upon receiving the fusion replies,
forwards a fusion result directly onto the UFP, not the PM.
Depending on what the P replies were, the final result is sent in
either a :successful-fusion-retry, a failed-fusion-retry, or a
:completely-failed-fusion-retry message [6].

6) Here's how the UFP handles each of the three fusion result
messages:

¢ successful-fusion-retry —this result means that at least one P in
this fusion attempt successfully fused the updated OFP, and
the UFP is no longer needed. It is simply deallocated.

¢ failed-fusion-retry --the retry was not successful, but there was
still at least one :UNKNOWN fusion result from the Ps. The
UFP adds the names of newly failed Ps to its list of failed
matches and increments its fusion retry count in preparation
for more retries. If, however, this count has exceeded the
maximum-fusion-retries (another system parameter), the UFP
treats the situation like a completely-failed-fusion-retry, as
below.!

* completely-failed-fusion-retry —fusion was impossible with all
Ps; therefore, the OFP truly deserves its own Platform. The
UFP sends a :create-Platform message to the PM with the OFP
information it has gathered [7]. It then posts a :remove-UFP-
parent message with the OFP and is deallocated.

4.14.11. Fusion in the Example Scenario

How have the results of the complicated fusion processes manifested
themselves in our example scenario? Figure 4.11 on the next page provides a
graphical display of Platforms in the system at the familiar instant in time, the
final output of Path Association. In contrast to the previous screen images, there
is only one area in the display; the data from both radar views has been fused
together to form a clear picture of the region under observation. The composite
flight paths of individual Platforms are drawn as complete lines, with (again) an
identifying string near their origin. (By now the reader has surely become well
acquainted with the scenario so that an identification of the beginnings and
endings of flight paths is unnecessary!)

1 The maximum-fusion-retries cap was added so that UFPs do not hang around in the system
indefinitely. It follows from our requirement that all OFP's eventualiy be associated with a P.
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display that the fusion process has completely resolved
nearll; :ﬁpgfa?hf izx?mb?geuity I;ha);' persisted at fhe OFP level. All but one of the
flight paths are well defined from beginning to end, with no hint of the
confusion that existed in Figure 4.6 caused by connected OFPs. Let's take a close
look at the three areas we have been following (previously viewed from two

radar images):

A) The OFP of radarl has supplied the data necessary to deal with
the missing FPS in the OFP of radarl; together they form a
complete, unbroken Platform (labeled 6-of-0).

B) Here is the only remaining point of ambiguity in the entire
scenario. Though all falsely connected OFPs have been
resolved, one of the crossing flight paths has remained broken,
with a separate Platform covering either side of the cross (0-of-0
and 6-of-0). The explanation of this phenomenon is that both
radarl and radar2 experienced a break in FPSs for that flight
path at the crossing point. There was, unfortunately, no radar
view that maintained consistent observation of the aircraft
across this point, which would have, presumably, been
sufficient to resolve the broken path. It so happened that two
Platforms were created to fuse the OFPs on both sides of the
cross (despite knowledge of the connected OFPs, which
apparently was not available at the time of fusion), but since no
further information was available to contradict this state of
affairs, these two Platforms remained. The result: one platform
(2-of-0) correctly spans the crossing in the area, but the two
others do not.

C) Based on the unambigucus OFP of radar2, platform 7-of-0
correctly crosses the entire area. In addition, radarl's view of
the area has allowed for the formation of Platform 0-of-0,
despite the large gap between OFPs of radar2. The radar shadow
of radar2 in this vicinity has been completely overcome.

114.12, Unresolved ambiguity

From the output cf Path Association demonstrated by Figure 4.11, we can see
that, for the most part, the Platforms produced by the fusion process very closely
model the real-world flight paths of aircraft. However, as exemplified by area B
in our example, there may be certain complicated situations in any given scenario
which might not be resolved completely by Path Association. Hence, we are left
with the possibility that the output from Path Association will still contain
ambiguous or incomplete data. It should be pointed out that the existence of such
ambiguity is not necessarily the fault of poor processing on the part of Path
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Association; rather, it has more to do with the incompleteness of radar data fed
to Data Association.

What are we to do, then, about any unresolved ambiguity? This is one way
in which Path Interpretation would assist Path Association. Path Interpretation
should be able to reason about situations such as the broken Platforms in the
crossing area, for instance. By 1) noting that one Platform terminates in the
middle of the region, and 2) realizing that the aircraft could not possibly have
landed at that point, given the landing speed constraints contained in the
aircraft's model, Path Interpretation could deduce that something unusual had
occurred. It might then also notice a similar problem with the creation of the
other Platform nearby, and, putting all this together, determine that the two
Platforms really should be combined into one. Given this feedback from Path
Interpretation, Path Association could then correctly adjust the collection of
Platforms and proceed as usual.

4.2. System Architecture

Figure 4.12 presents a diagram of the entire system architecture of Path
Association. Pictured are all of the various objects (static and dynamic) of the
system along with the paths of message-passing communication between them.
Though this diagram may give the system a suspiciously data-flowish look, one
mustn't be fooled--a lot has been omitted from the figure for clarity’s sake. One
thing we must remember as we view this diagram is that each object pictured
represents a class of objects, not just a single entity. In addition, we must keep in
mind that the system is implemented on a multiprocessor architecture of many
distributed processor-memory pairs. Hence, all the objecis aie executing their
methods concurrently, leading to a nighly complex network of inter-object
relationships and communication.
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Figure 4.12 Path Association System Architecture

An important high-level hypothesis we are investigating with this type of
system software architecture is that the need for synchronization increases
(opportunities for concurrency decrease) with the complexity of reasoning. Our
experimental evidence supports this claim. While the Data Association
experiments demonstrated close to linear speedup over the range of processors,
the task it was performing was quite simple in relation to the functions of Path
Association. Naturally, the speedup results we have obtained in experiments
with Path Association (reported later), though encouraging, are not quite as
extraordinary as those of Data Association. Our belief is that the potential for
concurrency in Path Association is decreased by the great amount of coordination
and synchronization inherrent in the connection and fusion stages.

4.3. Design Philosophy

In the course of developing the Path Asscciation module of AIRTRAC we
have had to deal with the implications of building a complex application on a
distributed, message-passing system that does not guarantee message ordering.
Consideration for these issues has necessarily led us to adopt a design philosophy
that we believe is especially appropriate for efficient programming of AIRTRAC-
like concurrent software systems. Our design principles pervade the entire




implementation of Path Association. Here we list two of the most important,
along with a few Instances of their realization in Path Association:

1) Do the best you can with what you .’z'ave. Phrased another way: Don.'t
wait. An overriding concern in Data Association was maling sure data were in
order before making assertions about them. Elabora:e mechanisms were
included to force sequentially of messages at each stage of the design.
Recognizing that such an approach potentially sacrifices performance to some
degree, we attempted to avoid, whenever possible, requiring the complete
ordering of data, even if it meant processing incomplete information. It is
important to note that we adhered to this principle only when doing so did not
compromise the correctness of our solution. Some examples:

e When an FPM receives a POR with a new track iD, it
immediately creates a new FPS for that track, regardless of
whether or not that POR's status is :create.

¢ An FPC connects in both directions of time and always associates
an FPS with an OFP as soon as possible. In the usual connection
case (at creation of an FPS) an FPC searches backward in time to
find terminated FPSs that might connect, not worrying about
whether all reported FPSs are up-to-date. It deals with the
unusual connection case (at termination) by searching forward in
time for possible connections to FPSs already created.

Both of these examples show our intention that a object be created as soon as
any evidence exists to support such creation.

2) Treat exceptions as exceptions. In other words, program for the nominal
case. Do not build expensive exception-handling mechanisms into the main-
stream processing as this will degrade performance. Rather, include low-cost
exception-recognition mechanisms that will, if necessary, trigger (admittedly
more expensive) operations to resolve the situation. This joins nicely with our
first principle by dealing with any condition as easily and as quickly as possible.
We notice its evidence in Path Association:

* The connection criteria are intentionally simple and
unambiguous (no "degree” of connection probability computed)
because the temporal and spatial constraints involved are usually
sufficient to handle all cases except an occasional crossing pattern.

* We use a simple fusion algorithm that assumes, basically, that if
two paths are near to eaciother then they must belong in the
same Platform. A poor fusion can be amended by the detection of
a Platform split. In addition, a UFP is commonly created only in
cases of extreme disorder.




The motivation for our design phil.osophy. stems from our experience that,
1) in spite of the obvious potential for disorder in the system, things usually keep
up in most cases, and 2) exceptions In our domain (paths crossing or axrcra.ft
flying close together, etc.) are rare indeed. It is beneficial, therefore, to program in
a style that is not too conservative in order to achieve maximum performance.

4.4. Important Features

The Path Association portion of the AIRTRAC system, which we have
described in this chapter in some detail, includes several features worth
highlighting:

Parallel search coordination. This is perhaps the most difficult feature of any
concurrent application with dependencies among many distributed objects. Path
Association has two instances of parallel search: in the connection process a:
each FPC and during the fusion process managed by the PM. The troubles
inherent in coordinating concurrent search in both procedures should be
apparent from the detailed description of each process.

Retraction of assertions (nonmenotonicity). The unpredictability of message
order in the system and our design principle to go ahead and reason with
available data can sometimes lead to false inferences during connection and
fusion. Path Association must be able to robustly manage the retraction of these
assertions. For example:

¢ When an FPC notices that a connection between two FPSs calls
for a change in connection conditions previously imposed, it
must notify and/or create OFPs as needed to establish the correct
FPS-OFP relationships.

* A Platform is capable of recognizing when an OFP has been
falsely fused into its composite, and takes the steps necessary to
repair the incorrect assodation (a Platform split).

Consistency maintenance of cache data. Path Association must provide
appropriate measures to deal with the possibility that high-level objects in the
system may not have complete information about the events of their lower-level
constituents. Some examples:

* Platforms must be kept up with the latest POR information
through forwarded messages from its OFPs so that it can properly
execute fusion of other OFP data.

* Before an OFP can report to a PM for fusion, it must collect the
latest line estimate information from all of its FPSs so that the Ps
can attempt fusion with the most current track data. (Strictly
speaking, this is not a matter of the consistency of cached OFP line
estimates since an CFP does not store this information, but in the
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sense that the OFP provides updated FPS data for Platform use,
the principle stil! applies.)

e Whenever an OFP receives notification (in an :add-P-parent or
:add-UFP-parent message) that it has been associated withaPora
UFP, it forwards its entire store of current FPS line estimate and
OFP connections to the higher-level object. The P or UFP then
filters out all the information it already has, keeping only the data
received by the OFP since the initial fusion request (during which
time it had no parent P or UFP to which to report updates). This
also eliminates the complication of unknowingly sending update
messages to recently deallocated objects before notification of such
an event is received by the OFP. (Note that the collection of FPS
line estimates is itseif subject to cache consistency problems, as
mentioned above.)

As a result, Path Assocaation does not simply employ forward-directed, data-
driven reasoning. Instead, it uses several feedback paths of communication that
add greatly to the complexity of the entire system.

What is new and exciting about all of this? After all, many knowledge-based
systems purport to include some or ail of the above features. The important
consideration to keep in mind is that Path Assodation must deal with all of these
problems in an asynchronous, distributed environment of dynamic entities,
subject to the possible indeterminacies caused bv message disorder. In this
context the design and implementation of Path Association represent a
significant challenge.

4.5. Outstanding Issues

Having described the complicated software architecture of Path Association
and the design philosophy which dominated our work, we are left with the
following important questions:

¢ What techniques and constructs are useful for development of
application software for multiprocessors?

¢ Can we achieve major speedup of large, symboiic (knowledge-
based) applications through concurrency?
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3. ELMA

This chapter describes work which addresses the iirst of the issues
mentioned in Section 4.5, namely, what techniques and constructs are useful for
development of application software for muitiprocessors? We d‘fsc'uss
programming constructs developed in the course of developing Path Association.
The resuit of this work has come to be referred to as ELMA, an acronym for
Extended Lamina for Memory-management Applications.

ELMA censists of additional syntax and constructs for programming the
CARE architecture in the object-orientad style at a higher level than LAMINA.
From the outset of this project a strong effort has been made to separate
applicaticn-dependent code from anything which could be generalized. Much of
the latter has worked its way into ELMA in the belief that it could be useful to
other applications. On the other hand, the task of writing Path Association has
been considerably simplified by the presence of these specialized, .igh-level
constructs.

ELMA actually provides a complete programming interface insofar as whole
applications are realizable without recourse to LAMINA. In fact, no knowledge
of LAM .. ' is required. We beiieve the ELMA Programming Interface is
considera>., nore iransparent to the programmer than "raw" LAMINA, albeit at
scme loss of generality.

ELMA provides the CARE programmer with the following:

* Syntax and constructs for managing concurrency and memory
usage.

o 4 .orary of definitions of special-purpose LAMINA objects, for
the programmer to further specialize ("mix in") if required.

* A library of useful abstract data types.

These features are described in the following seciions. Appendix 4 contains
«t arnotated exam.:l2 ELMA program. The reader is referred to the ELMA
J:.grammers Guide {Noble 88] for further details.

5.1. Syntax and Constructs

E«nerience from earlier applicadons developect 0.« CARE, such as ELINT and
Da:a Assodation, strongly supports the need for strict control of concurren¢ ~dject
creation. Borr thase applications, however, present rather ad hoc approscias to
‘mpiementing such control. ELMA provides the programmer with Li;;h-level

nstructs which remove the burden of writing such contrel ccde withow:
«nduly sacrificing performance.
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i i lications, AIRTRAC involves extensive allocation
a.d iﬁ&g::e ofe f}l:xj:tc‘t:.ppBoth Observed Flight szth and Platfo‘rm objects are
destroyed when evidence for the existence of their corresponding real-world
counterparts disappears. For example, a platform believed to corresppnd to one
aircraft will be deallocated when evidence appears to the contrary; ie., at least
two distinct aircraft tracks are subsequently observed. An important feature of
ELMA, therefore, is the facility it provides for managing the storage of dynamic
objects at the level of the application.! This section describes these and other
constructs.

5.1.1. Memory management

ELMA memory management is based on free pools. The notion of a free
pool is easy to understand in a sequential program. The program inaintains a list
of (pointers to) commonly used objects (or records) which are allocated in
advance. New objects are taken from ti'e pool rather than being allocated from
heap storage directly, and returned to pool when deallocated. Apart from
syntactic nicety, ‘ree pools offer an elegant and simple memory interf. e that puts
the applic.ton in control of its own memory management (of pool objects).
New storage is allocated by simply returning the address of an emipty, already
allocated object in the pool.2

In ELMA, a free pool is an cbject in the local address space of a manager
object which contains th. remote addresses of objects of some type (all the same

type), the latter spread out over a predefined pool of sites in the multiprocessor.3
A manager may own multiple free pools, as in the case of Path Association
Platform Manager objects, which have free pools of both Platform and Unfused
Flight Path objects. Objects allocated from a free pool of a manager are said to be
subordinate objects. As in the sequential case, a new free pool object is allocated
by returning its (remote) address. However since objects in the p=ol are separate
processes (typi-ally on remote sites), the storage associated with a newly allocatea
object can only be (re-)initialized by sending a message to that object. This slot
initialization message is automatically prepended to any other messages sent to
the object, or sent separately if there are no such messages.

1 »ote that processor memory is not simulated explicity in CARE; memory and memory
management are both inhented from the host LISP machine.  This makes the simulator
inherently non-deterministic since consing can take an indetermirate amount of time.
Simulation measurem=nts also derive some randomness from the non-deterministic network
routing employed which depends on CARE load conditions,

" Empty free poois can of course be made to grow in s.r¢ to accommodate requests for new
oDjects,

3 We use the term site rather tharn processor to refer to one CARE processing element, actually
two processors sharing local memory.
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| free pools, a new object is created only when the pool is
empt?s ft.‘};lsi:(e‘u:el:g;nﬁ:l fI::: p'ools, in which new storage is usually allocated
within local address space and always allocated on the same processor (since there
is only one processor!), a new ELMA object can be allocated on any site of the

multiprocessor. The programmer sp=cities a list of permissible site numbers! for
placement of subordinates of each manager. A function can also be specified
which takes this list as its first argument and returns the CARE site for a new

subordinate. If the latter is omitted ELMA chooses « site randomly2 from the
specified list.

Sinularly, object deallocation involves sending a :deallocate-self message to
the subordinate object as well as updating the state of the manager object's free
pool object. Furthermore, since the storage for one object can of course be
allocated and re-allocated any number of times, there is a need to distinguish
between different "incarnations" of a dynamic object to avoid proper handling of
messages. Message disordering makes it possible for messages sent to a object to
arrive after it has been deallocated, i.e., after it has received the deallocate-self
message. In fact, if the disordering is extremely bad, it is even possible for an
incarnation of a subordinate object to receive a message intended for a previous
incarnation, since LAMINA messages are sent to a given remote address and this
dces not change between incarnations.

This problem is solved by taking the obvious approach of associating a
name3 with each free pool object; every object is renamed each time it is
“reincarnated,"” i.e., re-allocated from the free pocl. The ELMA programmer can
specify how deallocated objects are to handle messages which are received out of
order, on either a obiect type or object instance basis. Possible actions include:

L J

always execute

return to sender

forward to aniother obiact (the forwarding address can be
determined dynamically if desired)

drop and ignore (default)

signal an error (useful for debugging)

1 A CARE site number is ar integer between zero and the size of the CARE grid minus one and
is used to reference an 2rray of CARE sites which are simulator components.

2 By default ELMA employs a random load balancing scheme for dynamic (subordinate) objacts.
This is reasonable in view of the fact that there is no way of knowing a priori whether any
given dynamic object will be busier than another. In fact ampirical evidence suggests that in
the absence of such load knowledge, random allocation is optimal. Note that static (manager)
objects are aliocated on sites determined by the srogrammer.

3 fact, all ELMA objects, including managers, have a unique name. These ars simple strings
in the present implementation.
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ELMA replaces the LAMINA message sending construct with one which
takes « destination name rather than remote address.! The sender is therefore
able to specify which particular incarnation of a object the message is intended
for.

One final but important thing to note about the free pool mechanism
described hure e that it competes with application-level methods for the
computational resources of the multiprocessor.  Unless system resources are
available on other sites for subordinate cbject allocation and on the site of the
manager object for handling various handshake messages, no performance gain
can be expected. The free pool mechanism effectively trades off available
resources against object creation latency; providing the resources are available,
object creation latency is reduced.?

5.1.2. Smart message sending

Nakano [p. 36, Nakano 87] writes the following comment about the Data
Association module.

"A significant part of the [Data Association] LAMINA conctirent program
implements techniques to allcow a LAMINA object receiving messages from a
single sender to handle them as if they were received in the order in which they
were sent, without gaps in the message sequence. By doing this we incur a
performance cost because the receiver waits for the arrival of the next appropriate
message, rather than immediately handling whatever has been received."

“Infortunately such code can be quite convoluted; the presence of additional
code for enforcing order detracts enormously from program clarity. The mapping
from concept to application code is less apparent and the program is
correspondingly more difficult to understand, maintain and debug. Nakano
introduced several miechanisms to simplify the message ordering task, which
reflects the Data Association philosophy of "let's make sure everything is in order
before we attempt this action.”

As mentioned earlier, the approach taken in Path Association is
fundamentally different.

¢ First, for reasons described earlier, we have programmed to avoid
message waiting whenever possible.

I LAMINA sending is ELMA mailing.

2 Reduced because the time for obiect creation is replaced by the time to send a message and
receive an acknowledgement. Since a message is invariably sent to a new object anyway, it is
usually a matter of just prepending .he additional information necessary to reinitiaiize the
object, rather than sending an additional message. The net cost of this is only slightly more
than the cost of sending the original message alone so the "creation” is very cheap.
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5.1.2.1.

e Second, when order is essential it is enforced automatically and is

transparent to the programmer wherever possible. Needless to
say, there are still times when message order is of paramox.}nt
importance. For example, although the outcome of initiatmg
creation of a object and then sending a message to that object is
ill-defined, the programmer's intent is clear enough; have the
object handle the message once it is created. ELMA constructs
reflect our conviction that the programmer should not have to
worry about details such as this. Indeed in this situation ELMA
automatically caches the message (and any others) for subsequent
re-sending upon receipt of an acknowledgement from the newly
created object (cf. example program in Appendix 6).

Third, general-purpose mechanisms exist for those times when
sequentiality is desirable.

Automatic deferral

To implement the name-based sending required by the free-pool
mechanism, each ELMA manager maintains a name table, which translates
names to remote addresses. This table is also used to store data about the various
objects known by the manager. Managers use this data to automatically defer

messages to subordinates still being created.  This is transparent to the

programmer who can send messages to an object given its name without concern
for the status of the object.

5122,

Sometimes it is convenient to group messages together to guarantee
sequential execution of their methods. Of course it is always possibie to define a
single method which includes the messages in the group but this defeats the

purpose of structured programming. ELMA provides the mailing-together
construct for the desired functionality.

5.1.3. Application-level meters

Although the simulator provides sophisticated hardware-level
instrumentaticn for CARE [Delagi 87a), LAMINA provides nothing similar for
the application level, leaving this entirely in the hands of the programmer.
ELMA, however, provides numerous meters for recording application-level data
which are useful for both debugging and performance analysis.  This is a major
reason why programming in ELMA is eusier than in LAMINA. Methods and
functinns are included for:

¢ recording received messages

Combining multiple messages
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» recording sent messages

e timing LAMINA methods ("triggers")

¢ timing LISP methods and functions

e measuring message queue lengths

¢ measuring dynamic object recvcling, i.e., free pool utilization
» recording user-specified events

 measuring user-specified data

These are described in detail in the ELMA Prograramers Guide [Noble 88].

5.1.4. Other Constructs

ELMA also includes a variety of utility functions as well as some constructs
which are refinements of those found in LAMINA. These are described in detail
in the ELMA Programmers Guide [Noble 88].

5.2. Specialized objects

ELMA includes a small library of specialized object types and mixins to
facilitate program development through code reusability. An ELMA application
is implemented exclusively in terms of managers, subordinates and allocators.
These object types are described in this section.

5.2.1. Manager

Managers are objects which are allocated staticallyl, i.e., at initialization
time, and are typically responsible for tasks involving many (subordinate) objects
such as distribution, search, and object creation. Each manager can maintain zero
or more free pools of subordinates. The number of managers required depends
on the particitlar application and its input data and must be determiaed a priori.

For example, Path Association has four types of managers in the folluwing
numbers.

1 Managers can alsc be "cphemeral,” that is, created dynamically to perform a specific task.
At the present time, however, ELMA does not support non-static managers.
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Table 5.1 Path Association Mangers

DAS one simulates Data Association
by reading PORs from
scenario file

FPM one per aircraft type/radar distributes PORs to FPSe

FPC one per aircraft type/radar connects FPSs into OFPs

PM one per aircraft type fuses OFPs into Ps

5.2.2. Subordinate

Subordinates are objects which are created dynamically, i.e., at run time, by
managers and typically contain the state of the system. Subordinates can be
allocated (created), deallocated, and reallocated many times over in the course of
program execution.

5.2.3. Allocator

Allocators are objects which create manager objects at initialization time and
start applications. There is only need for one allocator object per ELMA
application. The (start-ELMA) call creates the allocator and initiates the
initialization process, in accordance with initialization data supplied by the
application. This initialization data includes the following:

allocator name

allocator type

allocator site number

start message
e start message recipient (name)

¢ manager initialization data

The allocator is created on the specified site and given the specified name.
Thereafter, the managers specified by the manager initialization data are
initialized. When all newly created managers have acknowledged their creation
to the allocator, the allocator initiates execution by sending the start message to
the start message recipient.




5.3. Abatric. datatypes

ELMA 30 includes a library of abstract data types (ADTs) such as the
following:

e I3:.7» ADT which can be arbitrarily large, of arbitrary dimensions
and indexable on arbitrarily defined keys

o king buffer ADT for efficient maintenance of time-dependent
dais, i.e., the addition of new data and timely removal of old,
"ouit of date” data.

Most of these ADTs are so general that they would be a useful addition to
any softwa-. iprary. They are included in ELMA simply for the convenience of
the programar. Refer to the ELMA Programmers Guide [Noble 88] for more
details.




6. Performance

This chapter describes work which addresses the second of the issues
advanced in Section 4.5, namely, can we achieve significant speedup of large
symbolic applications through concurrency? In particular, we discuss the design
and execution of a series of experiments to determine the performance of Path
Association. We show that Path Association achieves an Se4 4 Speedup of 12.
This is contrasted against Data Association’s linear speedup over an even broader
range. We attempt to recondile our understanding of Path Association with these
earlier results and the experimental results discussed herein.

Common terms appearing in this cnapter are defined below.
° Speedup:

Speedup Sn,m is defined as the ratio Ty Ty, where Ty characterizes

the execution speed of a given task on a k-site multiprocessor!. Ty
and T, represent the same program running on n-site and m-site
multiprocessors respectively.

e Scenario:

Simulated input data (PORs for Path Assodation; RTRs for Data
Association). The number of simultaneous aircraft in the
scenario dictates the amount of data parallelism and thus the load
on the system.

s Exception:

A scenario situation involving one or more tracks which does
not conform to regular behavior, for example, the splitting into
two tracks of observations which had previously been detected as
only one track.

s Data rate:

The rate at which scenario data is actually put into the system,
varied in order to load the system and typically faster than that
specified by the scenario. A very slow data rate allows the system
time enough between inputs to return to quiescence; a very fast
data rate can overload the system?2.

— P

Y Ty is greater if execution is ‘2ster.  This subsumes Nakano's definition {Nakano 87}, in which

he inv_rse ratio T, /T, is the rauio of lask execulion times, since the latter cbviously
aracterizes lask execution speed.
System overioad is characterized oy queues of unbounded size.
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6.1. Experiment Design

There are a tremendous number of parameters affecting Path Assodiation.
These include the number of CARE sites (grid size), ELMA free pool sizes (initial
size and threshold size for replacement), input scenario (size and exceptions),
input data rate, and application-specific parameters such as connection search
interval, connection ring buffer length, fusion retry period, maximum creation
attempts (of new platforms). The number of observables is even greater:
processor utilization, update and creation latencies, message frequency, method
and function execution times, free pool utilization, queue lengths and service
times, correctness of output, etc.

For our initial experiments we chose to focus on three parameters, namely

CARE grid size, input scenario, and input data ratel. Specifically, we chose to
explore the following hypotheses:

* For a given input scenario, performance improves directly with
grid size.

*+ For a given grid size, performance degrades with increasing input
scenario exceptions, slightly at first and then markedly.
Exceptions require invocation of relatively expensive exception-
handling code. Thus while small numbers of exceptions can be
tolerated with only slight loss of performance, large numbers
usurp resources to the extent that performance is severely
degraded.

Figure 6.1 shows a profile of the base input scenario we generated to test
AIRTRAC, the so-called CONTROL-10 scenario. There are three dimensions to
any scenario: length, width and exceptions. The scenario must be long enough to
enable the system to settle down into steady-state behavior. It must be wide
enough, i.e, contain enough simultaneously observed aircraft as manifested in
PORs per cycle, to provide sufficient data parailelism and thus opportunities for
paraliel computation. Finally, it needs exceptions to invoke exception-handling
coede which causes assertion retraction or computational "unwinding.”

! Resulis of other sxperiments in progress will appear in a forthcoming paper.

\
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The following characteristics should be noted:

e The scenario contains three types of aircraft which are observed
by three different radar sources.

o Scenario duration is 900 seconds, which constitutes 18 POR

periods of 50 seconds eachl. Each POR consists of 5 scans of data,
i.e., the scan period is 10 seconds.

e After an initial buildup, approximately 100 PORs (never less than
85 and never more than 113) appear each POR cycle2

e Approximately 20 new PORs3 appear each POR cycle

¢ The number of new PORs surges to twice the average just before
the end of the scenario (and although this "bump" is not
unrealistic of real-world data, it does complicate measurements)

Two experiments were designed and performed: the Basic Speedup
Experiment tested the former hypothesis and the Exceptions Experiment the
latter.

e Basic Speedup Experiment:

We ran AIRTRAC for CONTROL-10 on six different grid sizes: 4,
8,16, 32, 64 and 128.

o Exceptions Experiment:

We generated two additional scenarios, CONTROL-10X and
CONTROL-10XX, almost identical to CONTROL-10 but
containing approximately 10% and 30% exceptions respectively.
We then ran AIRTRAC for both of these scenarios on the three
largest grid sizes: 32, 64 and 128.

The following section addresses the question of how exactly we measured
system performance, i.e., what quantity, Ty, we chose to characterize execution
speed.

1 For trend analysis purposes a longer scenario would have been desirable but simulator
garbage collection problems limited the size. One AIRTRAC run for the CONTROL-10 scenario
ran for 2 to 3 hours on a TI Explorer II with 16MB of physical memory and 100MB of virtual
memory.

2 Trial runs indicated that 100 PORs/cycle was adequate for our purposes. This corresponds
to approximately 33 simultaneously observed aircraft, since one aircraft is picked up by three
different radar sites.

3 A "new" POR corresponds to a previously undetected aircraft.
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6.2. Quantitative Performance

6.2.1. Criteria

Performance evaluation of parallel systems with continuous signal data
input is a topic which justifiably warrants a separate paper. In the context of
AIRTRAC, however, the bottom line is execution speed; the goal is to achieve
speedup with increasing multiprocessor grid size, and preferably linear speedup
at that. The approach taken with Data Association was to fix the input data rate
(scans of data per second) at some "reasonable” value determined a priori and
measure key latencies at that data rate!. This is not by itself a reliable measure,
however, since a given data rate can affect different grid sizes in qualitatively
different ways. For example, a data rate sufficient to keep a large grid busy is
likely to stress the smallest grids to the extent they will simply be emptying
backlogged input queues for the duration of the scenario and beyond. (This
behavior is evident in the latency graph for the highest data rate in Appendix 1).
This is undesirable since it is the steady-state behavior of the system which is of

interest2.

Subsequent work refining the ELINT application has led to the notion of
sustainable data rate, which is defined as the maximum data rate for which
designated latencies do not increase over time. Speedup is determined by
plotting sustainable data rate versus grid size rather than latency. The choice of
latency is quite important, since latencies which reflect sporadic, irregular activity
are not representative of the steady-state behavior of the system. Care is also
required in selecting latencies so that they indicate the true performance of the
whole system, not just a portion or subsystem. For AIRTRAC we monitored five
latencies and used three of these—~FPS update latency, Platform update latency,
and initial fusion latency—to determine the sustainable data rate.

* FPS update latency:

Time between a POR for an existing FPS entering the system and
being incorporated into that FPS.

* Platform update latency:

- Time between a POR for an existing Platform entering the system
and being incorporated into that Platform.

* Initial fusion latency:

1 Latency is defined as the duration between the time when the system receives a datum (a POR
in the case of Path Association) and the time when it actually uses that datum to assert some
fact (for example, incorporates the POR data into an FPS).

2 The underlying problem is really how to determine steady-state behavior from simulated
runs of relatively short duration.
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Time between a POR for 3 new Platfor ectering the system and
the result of the first fusion attempt, i.e . match or otherwise,

being made known to the appropriate Fi:orm Manager.

Note that only the initial fusion latency truly -eflects system thrcughput as a
whole, since unlike FPS and P updates, only the :rizal fusion process requires a
chain of messages between objects of all types:

FPM->FPS->FPC->FPO->PM->P

Nevertheless, the other two latencies are of interest since they characterize
the more common and certainly more regular updare tasks. A well-tuned Path
Associatior. would ideally sustain approximately the same data rates for ail three
types of latencies. A large disparity would indicate that part of the system is
sustaining the load while another part (or the system as a whole) is not, thus
suggesting load imbalance of some sort.

Unfortunately the relatively short length of the input scenario (necessitated
by simulator limitations) combined with irregularities in the scenario itself made
latency trend analysis extremely difficult (cf. Appendix 1 for example latency
graphs). The straightforward linear regression analysis program for determining
the trend over time of a ﬁaaéncy which had sufficed for ELINT failed for
AIRTRAC ?“I""ianl}* because of insufficient data. In addition, the surge in new
PORs occurring towards the end of the input scenario often caused a misleading
rise in initial fusion latencies which further skewed trend analysis results.

Sustainable data rate thus required a new definition for Path Assodiation.
¢ Sustainable data rate

Sustainable data rate SDRg b is defined as t snput data rate for
which absolute latencies are below a *h:esno;d of aatleasth
percent of the time.

This definition meets the objectivity requiremen t that the sustainable data
rate be program determinable, and has the following adsmsna; advantages:

* The definition allows for some exceptional latencies in the course
of a run providing the system recovers, i.e,, the nverage latency
stays low. This permits excessive latendes resulti g from short-
lived surges in system load, such as those due to the spike in new
PORs in the input scenario, to be treated more fairly.

» This definition is also a meaningful and adequate engineering
specification for performance.

The following two sections describe experimental results obtained using a
criterion of SDRg, g9, for 8 in Table 6.1. In particular, we measured sustainable
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POR frequency, defined as the number of PORs per second. For example, a
sustainable POR frequency of 10 Hz corresponds to to a POR period of 100ms
period of 20ms!.

which in turn corresponds to a scan

Table 6.1 Sustainable Data Rate Latency Thresholds (8)

FPS Update 40ms
Initial Fusion 500ms
P latform Update 60ms

6.2.2. Experimental results

6.22.1. Basic speedup experiment

Figure 6.1 below shows the resuits of the basic speedup experimnent.

1 Given a sustainable POR frequency of 10Hz and 100 PORs per cycle in the input scenario,
1000 PORs enter the system each (simulated) second. At this rate the scenario's entire 1500
PORs are pumped into the system in a mere 1.5 seconds. (Due to buildup and builddown,

howev~r, the actual time is longer).
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Sustainable POR Frequency vs. Grid Size
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Figure 6.1 Basic Speedup Experiment Results
Sustainable data rates for CONTROL-10 scenario on grids 4, 8, 16, 32, 64, and 128, with
alternative load balancing schemes for grid size 32.

The following should be noted:

e Each point, except for grid size 4, represents the minimum
sustainable data rate of all three three latencies measured.

* Results for the 4-grid require special explanation. For this small
number of sites all managers shared sites with other managers
and subordinates and were so overloaded that, even for the
slowest data rate tested, there was no sustainable data rate for both
update latendes, i.e., these latencies exceeded their respective
thresholds for all data rates tried. The point for grid size 4 is the
sustainable data rate for initial fusion latency alone.

* For grid sizes 4, 8, and 16, managers and subordinates alike share
all sites.

» For grid sizes 64 and 128, all managers have dedicated sites and
subordinates share the remaining sites.

* For grid size 32, two allocation schemes were tried. The low
point, 10a, corresponds to 10 managers with dedicated sites and 12
managers and all subordinates sharing the remaining (22) sites.
The high point, 10b, corresponds to dedicated manager sites for all
22 managers with subordinates sharing the remaining (10) sites.
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6.2.2.2,

Queue data for 10a shows long queues for some of the managers
lacking their own site. The marked increase in performance can
clearly be explained by manager bottlenecking in the former
scheme, which is mitigated in the latter since previously affected
managers no longer compete with subordinates for
computational resources.

Absolute latencies decrease with grid size (-«s observed for Data
Association).

For grid size 8 and beyond, the sustainable iata “ate is increasingly
dictated by the initial fusion latency. For the grid sizes 64 and
128, the two update latencies are almost an order of magnitude
smaller (approximately 10ms) than the specified latency
thresholds. Initial fusion latencies, on the other hand, are just
under the 500ms threshold.

Se4,4 speedup is 12, i.e., a twelve-fold increase in the sustainable
data rate accompanies a sixteen-fold increase in grid size from 4 to
64 sites. This is in contrast to Data Association's achieved Sg4 4
speedup of 16, i.e., linear speedup.

No additional speedup is observed beyond 64 sites. This indicates
that Path Association processing this input data (no exceptions) is
manager-limited, not subordinate-limited. Manager queue data
alse supports this conjecture.

Excepticns experiment

Figure 6.2 below shows results of the exceptions experiment.
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Figure 62 Exceptions Experiment Results
Sustainable data rate for three scerarios with increasing numbers of exceptions:
CONTROL-10: 0%; CONTROL-10X: 10%; CONTROL-10XX: 30%.

The following should be noted:

¢ Performance continues to improve beyond 64 sites for both
exception-full scenarios (CONTROL-10X and CONTROL-10XX).
This suggests that resources underutilized (sites for dynamic
objects) in processing the exception-less (CONTROL-10) scenario
are utilized more fully for the exception-full scenarios.

* Performance for CONTROL-10X is only marginally worse than
for CONTROL-10 (12Hz vs. 16Hz for a grid size of 128).

¢ Performance for CONTROL-10XX is significantly worse than
either CONTRGL-10 or CONTROL-10X and improves less with
increasing grid size.

6.2.3. Discussion

o Load balance:

How uniformly the computational load is distributed both
spatially and tempurally over the sites in the multiprocessor.

The basic speedup experiment clearly supports our first hypnthesis that (for
the given input scenario) performance improves directly with grid size. Two
observations, however, indicate that Path Association as implemented is
manager-limited. The most obvious of these is the lack of perrormance gain
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3 . tng that all mangers reside on dedicaracd sites and that the
iﬁ’;ﬁ’{,ﬁ ?;Zﬁ:;fﬁﬁi’ rg;:;;aftot both é‘he 64 and 12§ gria (ramely 22 sites), the
oniy thing distinguishing the 128 grid from the 64 grid is the presence of an
additional 64 sites for dynamic objects. If the system waore subordmat.e-hmxted,
these additional objects would reduce bettlenecking and lead to improved
performance on the larger grid.

The second observation is the marked difference ir. performance for the two
manager allocation schemes used for grid size 32. The poor pbserv.ed
performance for the first scheme in which some managers share sites with
subordinates indicates the presence of manager bottlenecking. This bottlenecking
is alleviated in the second scheme because all managers have their own site.

The exceptions experiment supports our second hypothesis that (for a given
grid size) performance degrades with increasing input scenario exceptions. Given
our system design in which exception detec on is cheap but exception handling
relatively expensive, this result is not unexpected. Smail numbers of exceptici.s
are tolerated with only slight loss of performance, but large numbers Grain
computational resources and lead to severe performance degradazion. We
believe this approach is justified given the domain of aircraft tracking: exceptions

of the kind generated for the purposes of this experiment are not commonly
observed in practicel.

Path Association clearly suffers from load imbalance and it is apparent that
performance is impaired by a few extremely busy managers. Queue leng*x and
service time data indicate that the PMs are the mcst bottlenecked, followed by
certain FPCs; FPMs do not appear to be overloaded. Furthermore, the sustainable
data rate is heavily dictated by the initial fusion latency (except for grid size 4)
which is further evidence for manager bottlenecking, since a well-tuned,
"balanced” Path Association would ideally sustain approximately the same data
-ates for all three types of latencies. We cannot use this data alone, however, to
determine which types of managers are most severely overloaded since we have
no latency data which inciudes connection time and do:s ne! inciude fusion
time, or vice versa; neither FPS nor P updates are routed via an FPC or PM.
Queue ata actualiy indicates that both types of managers fo: one aircraft type2 are
considerably husier than those of the other two aircraft types, although the
difference across aircraft types is less marked for PMs than for FPCs. In any case,
the (unimplenented) solution it to decompose PM and FPC managerial tasks,

‘e, turther distriiite ‘he work of these managers, particularly the work of the
PMs.

— i o a—

! Unfortunately, tie excepion “andiing code took most of the time to design, deve’op and
debug.

2 The number of PORe wiffers for each of tvpe of aircraft; the scenario is in effect the
superimposition of ‘tzise _.-g'z-aireraft s-enarios.
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The performance of Path Association is influenced aiversely by the need for
coordination .between managers and subordinates inherent in the connection and
fusion processes. This need for coordination, or synchronization, is a serious
threat to concurrency. Indeed, a pessimistic conjecture is that. concurrency
achievable with complex reasoning problems in general will be hfmted by the
synchronization requirements of their sub-parts, i.e., sub-problem dependencies.
Further conjecture is fruitless, however, until the known bottlenecks have been

first removed from Path Association. Potential remedies are discussed in
Chapter 8.

Processor utilization i3 relatively poor in Path Association, again dve to load
imbalance. For example, for grid size 32 and a sustainable POR frequency of 10Hz
(1 POR every 100ms), less than 50% of the processors are utilized 80% of the time
(with naturally less processor utilization at slower frequendies).

Table 6.2 compares data rates for Path Association and previous LAMINA
applications. This table is offered as a rough guide to quantiative performance;
care should taken interpreting the numbers since each application not only runs
from differert input data but employs a different criterion for sustainabilityl.
The larger Path Association data rate reflects both a very much wider input
scenario, many more LAMINA and LISP objects, and much more computation.

Table 6.2 Data Rates for Various LAMINA Applications

ELINT < lnvs per scan
Data Association Sms per scan
Path Association 12ms per scan (60m's per POR)

In conclusion, Path Association achieves monotonically decreasing speedup
up to 64 or 128 cites, depending on input data. Although poor contrasted with
Data Assodation's linear speedup up to 100 sites, th's result is perhaps reasonable
given the the complexity of the connection and fusion processes? and the
amount of input data processed. Furthermore, given our current understanding

of bottleneck locations, we expect to improve upon thic result with future design
enhancements.

I n fact, Dawa Association has nc notion of sustainable data rate.

2 By co.npiled LAMINA code count alone, Path Associaticn is almost ten times larger than Data
Associa:iozn.
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6.3. Qualitative Performance

Qualitative performance naturally requires some matsic of quality. For Path
Association this is the quality of the resulting Platforms,- but evaluating this is far
from trivial. Data Association was completely reimplemented in BB1 which
provided a serial implementation to compare results against; output from the
serial program was by definition "correct."! Path Association has no serial
equivalent and a reimplementation does not seem viable on account of its size.
The approach to date has bzen to visually inspect Platform output and check for
"expected” connections and fusions which do not materialize. The most that can
be said :s tirat Path Associatior. dows net fail by these criteria. Connections and
fusions are imperfect on occasion, tt.¢ these rasults are explainable in terms of the
heuristics and parameters governing these operations. The issue of measuring
qualitative performance remains one which as yet to be addressed effectively.

H

* BBl is a serial blackboard system.
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7. Lessons

This chapter describes the lessons we have learned in the course of
developing Path Association.

7.1. Programming Paradigm

The Path Association system embodies many interesting iueas about
parallel programming on CARE-like architectures. Many evolved out of earlier
work within the Advanced Architectures Project developing ELINT (in CAQS
and LAMINA) and Data Association. The elements of this programming
paradigm can be summarized as follows.

¢ Object-oriented

¢ Structured in terms of managers and subordinates
¢ Concurrency through replication and pipelining!
¢ Implicit continuzHons

¢ Control through handshaking

¢ High-level constructs (initialization, creation, deailccation,
sending)

7.2. Program development
The First Law of Parallel Programming could be stated simply as:
"It wi'l go wrong.”

Humans are essentially serial thinkers.? Our intuitions and assumptions
can easily lead us astray programming concurrent system=.  Only by checking
these instincts and taking the time to irvestigate the full ramifizations of
concurrency is it ;ossible .o achieve successful paralle! programs. This is
especially true of symbolic applications, such as AIRTRAC, where time/order
dependencies are often subtle and yet critical. On several occasions these
dependencies were only apparent a posteriori. Chiefly for this reason, it has been
our experience that approxinately one order of magnitude more time is required
to develop parallet program: than their serial equivaleats. Table 7.1 compares
development time for the two ‘mplementations of Data Association.

—

Path Associztion has ovly a loose pipeiine structure; a Better example is Data Association.
2 Tnie . - . . g . ;
< This is not '0 deny wn inherrent underiying parallelism. High-level re:soning, on the other

hand, seems best character’rsd 4s 2 serial process.
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Table 7.1 Data Association Implementation Times
BB1 Two person-weeks
LAMINA One person-year

There is, however, reason for optimism. Both the ELINT and Data
Association applications which consist of less than 50KB of compiled LAMINA
code took approximately one person-year to develop. Path Assodation which
consists of over 300KB of compiled code was completed in the same amount of
timel. Clearly, we are doing something better. A contributing factor which
should not be understated is what he have learned from previous applications.
Probably the biggest contributor, however, has been the intermediate ELMA layer
we developed to support the application. Needless to say, considerable time has
been gained by being able to program at a higher level of abstraction. Debugging
time has also been slashed, not only because many ELMA constructs were
debugged independently of Path Association but also because of the various
application-level meters provided.

73. Load Balancing

Speedup of parallel applications is invariably limited by bottlenecks which
arise due to poor load balancing. Results of the basic speedup experiment
indicate that Path Association performance is certainly no exception. Two load-
balancing issues are involved.

The first involves the placement of newly-created objects. The goal is to
distribute such objects as evenly as possible without recourse to a centralized site

allecation fadility.2 Several schemes have been used in the past.
» statistical: each site has information about neighboring sites
* knowledge-based: uses knowledge about the domain

e random

We used the same modified random load balancing used by Data
Association [Hailperin 87, Nakano 87] which essentially involves random
selection from the set of all sites excluding those used by managers (providing the
multiprocessor is large enough). Excluding dynamic objects from manager sites

works well, aithough it is likely that some managers do not require a dedicated
site.

i . - Py .
! Excludes graphics interface, ELMA, analysis code, eic.
“ Actuaily, the goal i3 1o diswribute objects such that the work they do is as evep as possible.

-
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The second issue involves overloaded objects, such as some Path
Association managers. When a site cannot cope with the load of even a single
resident LAMINA object, the work of that object must be divided az'f.d dxsmbtfted.
This then reduces to the basic problem of decomposing a task into mulnpl‘e,
independent sub-tasks. Unfortunately, there are no clear-cut rules for doing this.
Furthermore, the potential need for synchronization among sub-tasks could
become a limiting factor which prevents finer granularity and thus better ioad
balancing.

74  Performance evaluation

Performance evaluation of continuous parallel systems is difficult. The
notion of sustainable data rate has proven to be useful for quantitative
performance evaluation. Qualitative perforinance evaiuation is tied more
closely to the nature of the application and is less tractable. One way to evalua.e
cualitative performance is reimplement the application serially and compare
results of the serial and parallel programs.




8. Future Work

With only two series of AIRTRAC experiments performed to date, many
interesting experiments and enhancements remain for future work.

Additional experiments worth pursuing with the present system include:

* measure performance gains afforded by free pool mechanism;
verify or disprove that ELMA free pools offer performance
advantages in addition to the proven syntactic ones.

e measure/analyze timing data to deiermine the cost of exception
recognition and handling; verify or disprove that exception
recognition is cheap while exception handling is expensive.

e measure an additional latency, namely initial connection latency.
This would enable the cost of connection to be factored out of the
initial fusion process.

¢ measure platform correctness {qualitative performance). UFP
timeouts, for example, can be used as a metric, although others
will also be needed.

* measure/analyze queue data to determine if there are managers
which do not need dedicated sites.

* remeasure sustainable data rates using an alternative definition
{Hailperin 88]: giver a data rate and a grid size, what is the widest
scenario sustained?

Slightly more ambitious but interesting work would entail reimplementing
parts of the system in order to alleviate the ioad imbalance. Alternative designs
to be explored include:

¢ pipelined managerial tasks

¢ "time-sliced” managers, i.e dynamically created managers which
process a particular time interval

Finally, future work, in the form of major software additions, inciudes:
* extending ELMA to support dynamic managers

* integrating ELMA history/reporting mechanisms into the
simulation environment for more interactive performance
feedback

e designing and implementing Path Interpretation
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g, Summary

This paper has descrited tre Jevelopment of the Path Association module of
AIRTRAC, a knowledge-based application written in LAMINA for the CARE
family of multiprocessors. The high-ievel goa! of AIRTRAC is to monitor the
fligh". of aircraft in a particular region of airspace and to interpret and predict their
behavior, given continuous tracker data from one or more radar sites within the
region.

AIRTRAC has two conceptuaily distinct, yet very related, parts: the solution
to the amrcraft tracking problem (the knowledge-based portion), and the
realization of that solution in an appropriate software architecture (the
multiprocessor portion). We described in great detail the design and
implementation of the system anc show that it is very difficult to separate the
two parts in practice.

Ve developed a set of hi,h-level programming constructs and library objects
in the course of developing the Path Association, collectively referred to as
ELMA. By programming at a higher level of abstraction the task of

her i
implementing the application was greatly simplified. In this paper we described
the salient features of ELMA:

+ Syntax and constructs {or managing concurrency and memory
usage.

s A library of definitions of special-purpose LAMINA objects.
* A library of useful abstract data types.

We next defined and then refined the notion of a sustainable dafa rate for
quantitative performance evaluation of co.tinucus parallel systems.
Sustainable data rate SDRg b was defined as the input data rate for which absolute
tencies are below a threshold of a at least b percent of the time. We applied this
iterion to confirm the foliowing experimental hypotheses concerning Path
Assodiation:
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We obtained monotonicaily decreasing speedt.}p up to a maximum of 64 to
128 processors, depending on input data. More 1mp9rtantly, we were able to
explain the factors limiting performancg and suggest improvements. A.lthough
poor compared to Data Association, this result is perhaps reasonable given the
the complexity of the connection and fusion processes and the amount of input
data processed. Future design enhancements should see performance

improvements.

The following questions remain unanswered:

¢ Does the described free pool mechanism offer performance
advantages over ad hoc creation?

e How should qualitative performance be evaluated?

e Are there are better approaches to evaluating quantitative
performance?

» Will concurrency of complex reasoning problems suffer from
subproblem dependencies which limit the granularity of
processing load and thus limit load balance?

In conclusion, we believe that the techniques and constructs that we have
described and the lessons we learned in the course of developing Path
Association will be useful to others working in the field of parallel symbolic
computation.
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Appendix2 Sample Queue Graph
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Appendix3 Sample Latency Threshold Graph
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‘ Appendix4 Example ELMA Program

3-404




::: —*= Mode:Common-Lisp; Package:CARE-USER; Yonts: (CPTYONT TR10B TR10I}; Bage:10 -*=

;3 Author: Alan C. Noble

;3 This file containg & complete but simple ELMA program,
3 including STMPLE simulster Interfsce.

{defvar *free-pool-init-lengthr 1)
(defvar =frse-pocl-threshold-length* 1)

-; Q!!!tff’!iii"t!"t'it!!!!'ﬁlf‘l!t"titt’l8!!!"'!!!2"
*

it

;3 PROGRAM EXPLANATION

.

’
SRR E LA AL SR RN NS T LR RN IR NENRNLENETEERINSSISRARS
’

.
e w

;3 Twe user chject types are deflned BossS, am ELMA-manager, and CLERK, an ELMA-subsrdinate.

;; The (start-zLMa) call initializes the program by cresting an ELMA-aliocater which in tara

;3 crestes 8 BOSS ebject. The ELMA-allocator sutomsatically sends a :get-ball-rolling messsge

;3 te the BOSS when it receives 2 creation ackzowledgement from the latter.

.; The BOSS sllocates three CLERKS, r1fred, Oliver amd Barry, sod sends them a8 :apple, :oranj
;; sod :banana message respectively. The BOSS them desallocates Oliver and Barry asd

;3 them sends them various messages. Siace they are deallocated, the incorrect address mechenism

;; handles hese messages sad automatically returas, forwards or drops them according

;3 to seftiss

'-; t23£ 223232332323 22332222222 2322222232222 23 232222227324
-

3

'3 (3

;; OBJECT DEFINITIONS

.

£y

;; P31 2322222223223 232222223222 22222 s 22 22¢1Ss2 183227

sy BOSS

{defflavor boss
(3
{slns-zanager}
:settable-ingtance~variables
(:documeatation "Boss--doles sut work to tke clerks™)
)

;3 CLERK

{defflavor clerk
{3
{alzs—-subordinate)
(:3scumentation “Clerk--does ali the work™)
(:default-init-plist
;; recors incoming messages for these triggers
:ootabls—triggers '(:apple :crange :banana)
;; time the execution of these trigger methods
:tized-triggers ‘(:apple :oracgs :banana}
:inc.rrect-address-action '( ;; defsult settisgs for CLERK instamces
{:apple . .RETURN ) :; l.e, return ail apple messages to sender
{:orange . :RETURN ) ;; Le, return all banaaa messages o seader
;3 :banaza oot specified, so dropped by defauit
H

. =
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o

” tilﬂ"ti'it*i'i*tiit*!t!!tttiﬁii.i’f.iltiI.'t"'ﬂﬂ‘t'

i
i+ TRIGGER METHOD DEFINITIONS
;;""'t't'i't'.it.'!Iiﬁlttlit"ttlt!i'I"'l""'t.'i"

.3 BOSS

{defun boss~init-list-fn (clerk-sites)
"Returns an init=list for a boss object, in this case the :free-pools
slot and its value*
{1ist :free-pools (list (make-free-pool
:node-type 'CLERK ;; each boss has a free pool of clerks
:initial-length *free-pocol-init-length*
:threshold-length *free-pool~threshold-length+
1sites clerk-sites))

)

(deftrigger (boss :get-ball-rolling) ()

*This trigger gets the ball rolling.”

;3 Allocate three clerks from the pool

(with—-subordinate (alfred)

(with~subordinate (oliver

:after-messages
((oliver ~((:pineapple))))
i3 Le, send :pineapple message to object named oliver as soon as it is allocated

)
(with-subordinate (barry)
i3 get clerks working
(mailing alfred :apple nil)
(mailing oliver :orange nil)
(mailing barry :banana nil)
:3 deallocate oliver and barry
(deallocate oliver )
(deallocate barry
:incorrect-address—-action
“((:FORWARD :orange (,alfred)))) ;; overide the default so :orange is forwarded
;3 send oliver and barry some work and see what happens
(mailing oliver :apple nil) ;; this should be returned to the hoss
(mailing barry :apple nil) ;; this should also be retyrned
(mailing barry :orange nil) ;; this should get forwarded to alfred
(mailing barry :banana nil) ;; this should get dropped
)
)
)
)

(deftri jger (BOSS :returned-megsage)
((original-message sent-name new-name original-args))
"Trigger for handling returned message”
(debug-format output-stream "“i==> ~a raceived a RETURNED~MESSAGE" name)
(debug~format output-stream "~% Message a was sent to ~a, now named ~a, with args "s"
original-message sent-name unew-name original-args)
)
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73 CLERK

(deftrigger (CLERK :apple) () .
(untimed-format output-stream "% a ot
)

an APPLE" name)

(deftrigger (CLERK :orange) () . .
{untimed-format output-stream " § a got an ORANGE® name)

)

(deftrigger (CLERK :banana) () .
(untimed-format output-stream " % a got a BANANA" nanme)

)

(deftrigger (CLERK :pineapple) ()~
(untimed-format output-stream ""% a got a PINEAPPLE" Name)

)

” L 22222222222 22228222 t2 20222 2222222022222 20

‘s SIMULATOR INTERFACE

o
ty

FH 1222222822202 22222 2222 22 0024222222322 0 2

;3 The rest of this file defines functions which set up the simulator and start a simulation.
;3 The top level function is START-ELMA.

(defun elma-example (soptional skey initializa
{circuit ‘care:octorus-32) (instrument 'care:observer))
"Run elma example program.
Initialize simulator If initialize is t.”
(when initialize ;; imitialize the simulator
(simple :run nil :reset t :flush t :circuit circuit :ins.vuuant instrument:;
(let ((clark-sites (cl:remove ¢ (care-site-numbers)))) ;; use il 27*es except -ss siin
(start-ELMA
:initialization-parameters
“((:ALLOCATOR . "the~ALLOCATOR")
{ : ALLOCATOR-TYPE ., EILMA-allocator)
: ALLOCATOR-SITE . 0)
: START-MESSAGE . :get-ball-rolling)
: START-MESSAGE~RECIPIENT . "the-BOSS")
:MANAGER-INITIALIZATIONS ("the-BOSS" ;; name of the manager
BOSS ;; type of the manager
0 ;; site of the manager
boss~init-list-fn ;; function to generate init-list of manager
(,clerk-sites) ;; args of function
NIL))

S~ .~~~

)

‘compila-flavor-nethods clerk)
{(zompile-flavor-methods boss)




> (pkg-gr o 'care-user)
> (setq *ZIMA-debug* t)
? {elma-example)

Time 4.0987: the-ALLOCATOR CREATED
FOR-EFPCRCT
Time 7.4321003: the-BOSS CREATED
Time 15.5573: CLERK-0-of-the-BOSS CREATED
Time 10.5774: CLERK~1-of-the-BOSS CREATED
> CLERK~-3—-of-the-B0SS creation requested
> CLERK-3~of-the~BOSS creation requested
> CLERK-4-of-the-BOSS creation requasted
Time 16.2048: CLERK-1-of~the-BOSS CREATED
Time 17.398901: CLERK-3-of-the-B0OSS CREATED
CLERK~3-of-the-BOSS got a PINEAPPLE
Time 17.764703: CLERK-4-of-the-B0OSS CREATED
CLERK-2-of-the-BCSS got an APPLE
CLERK~4-of-the-BOSS got a BANANA
Time 30.1036: CLERK-4-of-the-BOSS DEALLOCATED~AND-RENAMED
> Incorrect address action for CLERK-6-of-the-B0SS;
Returning APPLE to sender the-BOSS
> Incorrect address action for CLERK-6~of-the-BOSS;
rorwarding ORANGE to (CLERK-2-of-the-B0OSS)
> Incorrect address action for CLERR-6-of-the~B0OSS;
Dropping BANANA
CLERK-3-of-the-BOSS got an ORANGE
Time 31.748: CLERK-3~of-~the-BOSS DEALLOCATED-AND-RENAMED
> Incorrect address action for CLERK-5~cf~the-BOSS;
Returning APPLE to gsender the-BOSS
> CLERK-4-0f-the-BOSS deallocated and renamed CLERK~6~of-the-BOSS
CLERK-2-of-the~BOSS got an ORANGE
==} the~B0SS received a RETURNED~MESSAGE
Message APPLE was sent to CLERK-4-of-the-BOSS,
now named CLERK-6-of-the-BOSS, with args NIL
> CLERK-3-of-the-B0OSS deallocated and renamed CLERK~5-of-the-B0OSS
==)> the~BOSS received a RETURNED-MESSAGE
Message APPLE was sent to CLERK-3-of-the~BOSS,
now named CLERK-5-of-the-BOSS, with args NiL
NIL
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T o s = 3
i1 intreduction
TMA (Extended LAMINA for Uemu y-managemes: Applications) is 2 Liyh-level parailel
pto.,:.,a_,,m_,ha intr ce tot hL T ARE family of distiibuted-memory multiprocesseis. 1t 5

‘ ~ e 1

buiil en top ot LAMINA, the basic 5a:aguage at2riace to CARE * which pr(‘vides primitive
mechanisms and language sy : Bressi i i

ELMA by 2n extension of objec
izations of LAMINA ofilects.

As in other chject systems, LAMINA objecis encapsulate state iin .1 e variables) and

het .vior {methods). Methods are iavokeld by message sending but wuisre ”":‘ cage of se-

quential syste.uis this involves transmitting a pachet containin g the messaze 1w dne ob-
f i\

ject to ancther, typically on different s’tes. or processcr/memary urits, Messzge s Jing
is non-bluck .g and the time required for communication is thus visible ta the LAMINA
programraer. {ethods run amum..,i» watnin processes wiich are useally restartable but
noi resumable. An object and its metl.ods can be considered a non-nested monitor; exclu-
siont i3 guaranteed by the faci tnct or..’;: one method is ever scheduled to run at a time, and
then runs t5 cempletion. The i e required ¢ create 2 LAMINA object is aiso visible to
the programmer Tkhe reader is relerred o LAMINA: CARE Appiizaions Interface,® for a
detailed des. npnon f[,.i..‘»ﬂfx’;\.

._. -3-
'-1

ELMA is tailored tc CARE applications which involve extens..: dynamic okject creadion
and 2allocation and thus require some form of memory management. Its syntax and con-
structs facilitate proaram.amo :n the object-oriented style at a x.;gher level than LAMINA.
This makes prcgram development easier in ELMA than in LAMINA for this class of ap-
plications. ELMA is a complete programming interface; stricily speaking, no knowledge of

LAMINA is reqiired to mount an spplication written in ELMA on CARE.

ELMA provides the CARE programmer with the following:

¢ A library of definitions of specialized objects, for the programmer to further specialize
("mix in") if required.

» Syntax and constructs for managing concurrency and memory usage.

o A library of useful abstract data i -pes.

These features are described in the following sections.
t=]

'CARE s a distributed-memory me ﬁ@ﬂpuﬁgdumwdmemmM&ﬁtwathymﬂmmatM:nmm
called SIMPLE Refer to. B Delagi. N Saraiya and G. Byzd, Instrumented Architectural Simulation, Report
No. K5L-86-65, Knowledge Systems Laboratory, Depanment of Computer Science, Stanford University

2LAMINA actually suppot’  nree styles of programming, na: ly functional, shared-variable, and object-
oriented.

*B. Delagi, LAMINA: CARE Apphcations Interfuce, KSL Report o, 86-87, Knowledge Systems Labo-
ratory, Department of Computer Science, Stanford Umiversity
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2 Specialized objects

ELMA includes a small library of specizlized object t: pes and mixins to facilitate program
development through code reusability. An ELMA application is implemented exclusively in
terms of managers, subordinates and allocators. These object types are described in this
section.

2.1 Manager

Managers are objects which are allocated statically, i.e.. at initialization time, and are typi-
cally responsible for tasks involving many (subordinate) objects such as cistribution, search,
and objec’ crea.2n. Lach manager can maintain 2o or more free pools of subordinates.
Tue nutaher of m » .gers (equired depends on the particular application and its input data
and must be ..~ .rmiined a priori.

The gaaeric ELMA manager is the type ELHA-manager.

M
4y
e
o~
b
[&]
e

(dv H#A~manager

cknowledge ~reation-mixin

;; managers acz.~<wledgs creation on init-ack-stream
fres-pocl-owner-mwixin

;; managers maincain froe pocl otiects

ELMA

)

(:docurmentation “For ELMA manager nodes'))

2.2 Subordinate

Subordinates are objects which are created dynamically, i.e.. at run time, by managers
and typically contain the state of the system. Subordinates can be aliocated (created).
deallocated, and reallocated many times over in the course of program execution.

The generic ELMA subordinate is the type ELMA-subordinate.

(defflavor ELMA-subordinate
0O
(free-pool-node-mixin
ELMA)

(:documentation "For ELMA subordinata nodes"))
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2.3 Allocator

Allocators are objects which create manager objects at initiclizatior time and start applica-
t:ons. There is only need for one allocator object pei ELMA application. The start-ELMA
call creates the allocator and initiates the initialization process, in accordance with ini-
tialization data supplied by the appiication. This initialzation data includes the following:
allocator name, allocator type, allocator, site number, start message, start message recipient
(nar.e). 2nd manager initialization data.

start-ELMA &key initialization-parameters &optional init-list [function]

start-ELMA starts an ELMA application. initialization-parameters is an alist of the form:

{ GALLOCATOR . name-of-allocator)
(:ALLOCATOR-TYPE . type-of-allocator)
(:ALLOCATOR-SITE . site-of-ullocator)
(:START-MESSAGE . start-message)
(:START-MESSAGE-RECIPIENT . start-message-recipient)
(:MANAGER-INITIALIZATIONS manager-initializations)).

An object of type type-of-allocator is created with the name name-of-allocator on site-of-
allocator, a site number between zero and the total number of sites in the multiprocessor (or
CARE “design™) less one. Thereafter, the managers specified by the manager-initializations
are created. When all newly created managers have acknowledged their creation to the
allocator, the allocator i.itiates program execution by sending the start-message (with
no arguments) to the starf-message-recipient. The generic ELMA allocator is the type
ELMA-allocator. The type-of-allocator must be ELMA-allocator or a specialization of
ELMA-allocator.

init-list (default nil) is a list of alternating slot keywords and values with which to initialize
the allocator object. This list should not include :start-message, :start-message--
recipient or :manager-initializations since these are specified by initialization-param-
eters. It is iniended that this list be used to initialize user-defined slots, not the stardard
ELMA-allocator ones.

(deffiavor ELMA-allocator
0
(static-allocator-mixin
ELMA)

(:documentation

-

For ELMA static allocator nodes'))
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Example:

(start-ELMA :initialization-parameters

“((:ALLOCATOR . "the-ALLOCATOR")

(:ALLOCATOR-TYPE . ELMA-allocator)

:ALLOCATOR-SITE . 0)
:START-MESSAGE . :get-ball-rolling)
:START-MESSAGE-RECIPIENT . "“the-BOSS")
:MANAGER-INITIALIZATIONS
("the-B0OSS" ;; name of the manager
BOSS ;; type of the manager
0 ;; site of the manager
boss~init-list~fn
;; function to generate init-list of manager
(,clerk-sites) ;; args of function
NIL))) )

SN SN SN N

This call initial:zes a simple application in which there is onl one manager, named “the-
BOSS.” First an ELMA-allocator with the name “the-ALLOCATOR” is created on site
number * zero. i.e.. CARE sute (1 1). Assoon as "the-ALLOCATOR?" is created, it creates,
als» on site number zero, an object of type BOSS named "the-B0SS.” "the-ALLOCATOR”
applies the function boss-init-init-function to (,clerk-sites) to get the init list
to creat: “the-BOSS.” "the-ALLOCATOR” automatically -rnds a :get-ball-rolling
message 'o "the-BOSS™ once it has received the mandatory creation acknowledgement
from the latter.

3 Syntax and Constructs

3.1 Free Pools

Experience from early applications developed on CARE. such as ELINT and AIRTRAC
Data Association, strongly supports the need for strict control of concurrent object creation.
Both these applications, however. present rather ad hoc approaches to implementing such
control. ELMA provides the programmer with the high-level constructs with-subordinate
and with-named~-node for object creation and deallocate for object deallocation. These
roussfudts 2ls> provide a means of dynamic object m~rmory management, based on the use
of {ree poois.

‘A CARE site s a simulator component, whereas a sile number is an integer between zero ard the total
number of sites in the multiprocessor less on~. There is a unique mapping {rom site number to site
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The notion of a free pool is easy to understand in a sequential program. The program
maintains a list of (pointers to) commonly used objects (or records) which are allocated
in advance. New objects are taken from the pool 1ather than being allocated from heap
storage directly, and returned to pool when deallocated. Apart from syntactic nicety, free
pools offer an elegant and simple memory interface that puts the application in control of its
own memory management (of pool objects). New storage is allocated by simply returning
the address of an empty, already allocated object in the pool.

In ELMA, a free pool is a LISP object in the local address space of a manager object which
contain pointers 5 to objects of some type (all the same type), the latter spread out over
a predefined pool of sites in the multiprocessor. The function make-free-pool returns a
ree-pool object.

make-free-pool &key node-type sites &eptional (initial-length *default-free-pool-length*)
(threshold-length *default-free-pool-length*) (site-function # ‘random-fp-site) {function]

A manager may own multiple free pools or none. In other words the ELMA-manager
free-pools slot can be a list of zero or more free-pool objects, instantiated by make-free-
pool. Objects allocated from a free pool of a manager are said to be subordirate objects. As
in the sequential case, a new free pool object is allocated by returning its (remote) address.
However since objects in the pool are separate processes (tvpically on remote sites), the
storage associated with a newly allocated object can only be (re-)initialized by sending a
message to that object. This slot initialization message is autoinatically prepended to any
other messages sent to the object. or sent separately if there are no such messages. As for
sequential free pools. a new object is created only when the pool s empty. Uriike sequential
free pools. in whick new storage is usually allocated within local address space and always
allocated on the samne processor (since there is only one processor!}. a new ELMA object can
te allocated on an' site of the multiprocessor. The programmer specifies a list of permissible
sii> numbers (the sites argument in make-free-pool) for placement of subordirates of each
manager. A function can also be specified (the site-function argument) which takes this
list as its first argument and returns the CARE site for a new subordinate. If the latter is
omitted ELMA chooses a site randomly from the specified list using random-fp-site.

3.2 Remote Addresses and Names

In LAMINA, objects are referenced exclusively by means of remote addresses, which can
be regarded as inter-site pointers. Each object’s remote address is unique and invariant
since, once created, an object is never relocated to another site. Remote addiesses are also
referred to as handles.

In addition, ELMA gives each object a unique name. Static objects, such as managers
"ave exactly one name for the entire duration of the program. Dynamic objects such as

“These pointers are remote addresses, since they can reference objects on other sites,
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subordinates, however, can have many different names in thfa course of being deallocated and
reallocated during program execution. With each reaﬂocafxon, or reincarnation, a dynar.nic
object acquires a new name, although its remote address is of course unchanged. By using
names, it is possible to distinguish between different incarnations of an object possessing

the same remote address.

Each ELMA object mairtains an address table which maps names to remote addresses. This

is usually a many-to-one . apping. Names are simg 2 strings in the present implementation
of ELMA.

3.3 Object Creation

with-named-node (node-name node-handle optional &key node-type before-form init-list
after-messages) {macro}

Allocates a new ohject, or node, from the free pool. A new object is created only if the free
pool is empty.

1. The rame of the new node is bound to the node-name symbol.
2. The remote address, or handle, of the new node is bound to the node-handle symbol.

3. node-type is the t,pe of the new node. The default is the rype of the node of the first
free pooi in this manager's free-pools slot.

1. before-form is evaluated within the curren. context before allocating or creating the
node.

3. init-listis the init-list of the new node, a list of alt2rnatiing slot keywords and values
(indentical to that specified for LAMINA's creating function.)

6. after-messages are sent (by mailing-together) as soon as the new object has been
created.

Example:

(defflavor foo-type
(slot-1
slot-2
slot-3
sloc~4)
(ELMA-subcrdinate)
{:documentation "Example subordinate definition"))
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"foo-type
:before-form
(progn
(do-something)
(do-something-else)
:init-list
(1list
:slot~1 slot-1-value
:slot-2 slot-2-value
:slot-3 slot-3-valuse)
:after-messages
(
(foo
(l1ist (:message-for-foo some-args)))
(name
(list
(:message-for-creator some-more-args)
(:another-message-for-creator some-args)))
(bazz
(list (:message-for-bazz foo foo-handle)))

(with-named-node
(foo foo-handle
:node-type

)
(some-function foo)
(something-else-to-do-within-the-scope-of-foo))

The (with-named-node ...) of this example would exist within a2 method or function of 2
manager containing a free pool of foo-types (and possibly others). The forms (do-something)
and (do-something-else) are evaluated first. An object is then allocated from the free
pool of objects of type foo-type and the name and handle (remote address) of this object are
bound to foo and foo-handle respectively. The slot-1, slot-2and slot-3slots of the new
object named foo are initialized as specified and the slot-4 slot is made unbound. Finally
when foo is created, it executes :message-for-£oo, sends back to its manager (which is
named name since after-message targets are bound within the scope of the manager) two
messages, and sends to the object named baz: a :message-for-bazz message which takes
foo and foc-handle as arguments. In the meantime, the creating manager is evaluating the
forms (some-function ..) and (something-else-to-do-within-the-scopeof-foco).

with-subordinate (node-name &optional &key node-type before-form
init-list after-messages) imacro;

with-subordinate is identical to with-named-node except that only the name of the new
node is returned, not its handle.
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In ELMA, the time for object “creation” is the time to send a message and receive an
acknowledgement. Since a message is invariably sent to a new object anyway, it is usually
a matter of just prepending the additional information necessary to reinitialize the object,
rather than sending an additional message. The net cost of free-pool allocation is thus
only slightly more than the cost of sending the original message which means that “cre-
ation” is very cheap. The caveat is that the ELMA free pool mechanism competes with
application-level methcds for the computational resources of the multiprocessor. Unless
system resources are available on other sites for subordinate object allocation and on the
site of the manager object for handling various handshake messages, no performance gain
can be expected. The .ree pool mechanism effectively trades off available resources against
object creation laten.y; providing the resources are available, object creation latency is
reduced.

3.4 Object Deallocation

As for creation, object deallocation involves sending a :deallocate-self message to the
subordinate object as well as updating the state of owning manager, specifically the free-
pool objact. The storage for one object can of course be allocated and re-allocated any
number of times. ELMA uses names to distinguish between different incarnations and
thus avoid mishandling of messages. For example, message disordering makes it possible
for messages sent to an ob ect to arrive after it has been deallocated. i.e., after it has
received the :deallocaze-self message. In fact. if the disordering is extremely bad, it
is even possible for an incarnation of a subordinate object to receive a message intended
for a previous incarnation, since LAMINA messages are sent to 2 given remote address
and this does not change between incarnations. The ELMA programmer can specify how
deailocated objects are to handie messages which are received out of order, the so called
incorrect address action, on either an object type or object instance basis. Note that a
subordinate can only be deallocated by its manager.

deallocate names &sptional incorrect-address-action ifunction of elma-manager]

Dealiccates {ree pool nodes named names. either a list of names or a single name. incorrect-
address-action is a list of lists of the form

((action] messagesl &optional forwarding-namesl)

(action2 messages2 &optional forwarding-names2) ... )

which specifies the incorrrect address action for the node being deallocated. i.e, what to do
when a message is received by an object other than the intended one. Actions may be one
or more of the following:

:DOIT Go ahead and execute the message even if it is cut of order.
:DROP Ignore the message.
:RETURN Return the message to sender.

The sender must have a :raturned-zessage trigger.



:ERROR  Signal a resumable error when messages arrive out of order
This is useful for debugging.

:FORWARD Forward messages to names.
(forwarding-names may be specified in this case)

trigger Execute trigger instead of messages.
function Execute the trigger and args returned by funcalling functien.

function should take 3 args: target-name,
original-message and orginal-message-args.

A subordinate can request its own deallocation by invoking request-deailccation.

request-deallocation &optional other-messages ‘function of eima-subordinate]

rind

request-deallocation sends 2 :request-deallccationm essag to the owning manager,

which results in the subordinate being deallocated. other-messages is a list of messages

for the manager to execute immediately after deallocating the subordinate. It is a List of
message names and arguments in mailing-tcgether format.

set-incorrect-address-action action messages &optional (incarnation name}
forwarding-names-and-hcndles ffunction of elma-subordinate]

set-incorrect-adiress-acticndefines the incorrect zddress action {or messages targeted
to the object named incarnation. Messages is a single messag= or List of messages. Action
may be one or more of the following:

:DOIT Go ahead and execute the message even if it is out of order.
:DROP Ignore the message.
:RETURN  Return the message to sender.
The sender must have a :returned-message trigger.
:ERROR  Signal a resumable error when messages arrive out of order
:FORWARD Forward messages to forwarding-names-and-handles.
{incarnation and forwarding-names-and-handles may be specified.
or specified later by means of a set-forwarding-addresses)

trigger Execute trigger instead of messages
function Execuze the trigger and args returred by funcalling function.

H
L
function should tzke 2 args: target-name orginal-message-args.

set-forwarding-addresses &rest forwarding-names-and-handles
ifunction of elma-subordinate!

set~forvarding-~addresses seis Jorwarding addresses to the names in forwarding-names-
and-handles. In other words. a!l messages for which incorrect-address-action is :FORWARD
which are sent to the calling subordinate after it has been deallocated are forwarded to
names.
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This sends a packet containing message-1 and message-2 and their arguments to foo after
a delay of 20ms. Upon receipt of the packet, foo executes message-1 and then message-2,
atomically. The mailing-together construct thus provides a means of guaranteeing se-
quential order of execution.

sending-together targets messages-and-args &rest lamina-keywords (function]

sending-together is like LAMINA’s sending, but messages-and-args is list of the form
((messagel argsl) (message2 args2) ...) which are sent to targets in one packet and executed
serially -=d atomically by the target. Messages mailed to self are executed within the
current context rather than being actually packaged and sent to the operator. The use
mailing-tcgether is strongly recommended over sending-together.

mailing-self trigger value &rest lamina-keywords (function]

mailing-self sends trigger message with value to self. Instead of a real mailing, however,
the method is simply executed within the present context.

As mentioned previously, each ELMA object maintains an address table of all objects it
knows about. Apart from storing remote addresses, manager address tables store status
data which is used to automatically defer messages to subordinates still being created.
This is transparent to the programmer who can send messages to an object given its name
.1thout concern for the status of the object. For this reason it preferable to use mailing
or mailing-together over sending or sending-together.

3.6 Meter Functions

ELMA includes numerous functions for metering the application. These functions are useful
for both debugging and performance analysis.

3.6.1 Timing Functions

Triggers which are included in the timed-triggers slot of an ELMA object are timed
automatically whenever *elma-time=* is t. Functions and LISP methods, hoever, must be
expuc.., “rapped in a timing macro at each point in the program they 7.re to be timed.

timing {macro]

timing times the execution of a function call or ZetaLisp send. Note that timing currently
only wiaps around one form.
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Examples:

(timing
(send foo :bar (1 2 3)))
;; times how long it takes foo to erecute the :bar method

(timing
(bazz (1 2 3)))
;s times the function bazz

*trace-if-segment-takes-longer-thanx* [variable; default = 10000]

A trace message is printed if this is non nil and if a function or send takes longer to execute
than this number of .iiliseconds.

:method-timing-data method [method]

:method-timing-data returns the timing data for method. namely the frequency of execu-
tion and total execution time. method can be a trigger (one of timed-triggers), function,
or method name.

3.8.2 Recording Functions

ELMA automatically records incoming messages, outgoing messages, and measures dy-
namic (free pool) object recycling, message queue lengths and free pool lengths when the
variables *elma-record-history#*, *elma-record-mailings*, *elma-count-recyclings,
*elma-count-queues#, and *elma-count-free-pool-lengths#*, respectively are t. In ad-
dition, the follov ..y functions are useful for saving arbitrary information on the history
list.

:record event Zoptional &rest other-info [method]
:record records when event occurred.

:record-msg message args [method]
:record-msg records when message was received.

increment-count acfion {inline function]

increment-count increments the count associated with the symbol action in the count-data
slot. count-datais an association list ((action-1. count-1) .. (action-n . count-n)) ELMA
instance variable. It is also used by ELMA to store information such as object recycling
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data. If action is not currently in the list, increment-count adds it and sets the associated
count to 1.

3.7 Setup Function

adjust-elma-parameters &optional batch [function]

When batch is nil (the default), adjust-elma-parameters pops up a menu and prompts
the user to set ELMA parameters, otherwise it simply makes dependent parameters consis-
tent with the present parameter values.

ELMA Parameter Type
Description or ELMA action if flag is ¢

*elma-memory-managementx Boolean
Conses objects to a static area

*elma-timex* Boolean

Times selected triggers, messages and functions
(Specify actual triggers with timed-triggers slot)

*elma-count-queues=* Boolean
Counts queue lengths

*elma-count-recyclings Boolean
Measures node recycling

*glma-count-free-pool-lengths* Boolean
Measures free pool lengths

*replace-upon-removal-from-free-pool* Boolean

Enables replacement of allocated free pool nodes

(If nil, allocated nodes are only replaced when the pool is empty)
*elma-record-history* Boolean

Records history (of messages received and recorded events)

(Specify actual triggers with notable-triggers slot)

*elma-record-mailings* Boolean
Records mailings

*alma-debug#* Boolean
Prints diagnostic messages, i.e., elma~formats

*alma-history-time-span* Number
Time span of ELMA measurements

*elma-history-time-quantums* Number

Time quantum of ELMA measurements
*ELMA~simulation-to-domain-time-conversion-function*  Function

Function to convert simulation time to domain time

(This is only used by time~1lines and need not be specified if

*elma-count-queues* and *elma-count~free-pool-lengths* are nil)




Ncte that domain time is the time of input data as specified by the data set. Simulation
time is time according to which input data is put into the simulator.

3.8 Other Functions

ELMA also includes a variety of utility functions as well as some constructs which are
refinements of those found in LAMINA.

3.8.1 Name Functions

remote-address-of node-name [function]

remote-address-cf looks up node-name in the node's address-table and returns the cor-
responding remote address and status of the node.

add-to-address-table &rest rest {function]
Adds (alternating) node names and handles to the address table
update-address-table &rest rest {function]

Adds (alternating} node names and handles to the address talle, unless they are already
present.

:add-to-address-table rest [trigger]
Adds list of alternating node names and handies to the address table.
:update-address-table rest (trigger]

Adds list of alternating node names and handles to the address table. An error results if
entries do not exist for 2ll names.

add-requests-to-address-table &rest rest {ffunction]
Adds (alternating) node names and handles of requested nodes to the address table
creator-name name ‘function]
Returns the name of the creator of the object named name.

creator name {function]

Returns the type and number of the creator of the object named name.
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3.8.2 Stream Functions

new-streams n [function]
Returns a list of n new streams.

vith-multiple-messages (list-of-values group-stream &optional ezpected-message
(filter-function #’cons)) [macro]

This construct spawns a (continuation) process to wait for messages of type ezpected-
message (specified just for checking purposes) on group-stream. It "adds” the values re-
turned from eacn stream to list-of-values using the filter-function. The default is simply for
all values to be consed onto list-of-values. Refer to LAMINA: CARE Applications Interface
for a detailed explanation of the continuation mechanism.

5.8.3 Format Functions

debug-format &rest rest [inline function]

Like format. but executed within a without- lock, i.e., untimed by the simulator, and only
if the global variabie CARE-USER: : xdebug* is t.

elma-format &rest rest {inline function]

Like format, but executed within a without-clock. i.e., untimed by the simulator, and only
if the global variable CARE-USER: :*elma-debugx is t.

untimed-format &rest rest .macro)

Like format. but executed within a without-clock, i.e.. untimed by the simulator.

3.8.4 Simulator Functions

now fmacroj
Returns the current simulation time in milliseconds.
care-sites {function]
Returns a iist of CARE sites for the current design.
care-site-numbers &optional /grid-size (length care:***all-sites-vector***)) [function]

Returns a list of CARE site numbers for grid-size.




3.8.5 Arithmetic Functions

average &rest averagends

Returns the average of averagends.

average-if-numeric &rest averagends

Returas the avcrage of all numeric averagends.
max-if-numeric &rest rest

Returns the maxium of all numeric rest.

min-if-numeric &rest rest

Returns ¢+  minimum of all numeric rest.

ceiling-to-number diridend &optional (n- mber 1) (divisor 1))
Like ceiling, but to the nearest multiple of number.
round-to-number ditidend &cptional /number 1) (divisor 1))
Like round. but to the nearest multiple of number.
floor-to-number dividend &optional {number [) (divisor I..

Like floor, but to the nearest muitipie of number.

4 Programmer Provided Methods

4.1 Optional Methods

[function]

[function]

[function]

{function]

[function]

{function]

{function]

rinitialize ‘method of application’s allocator type]

VWhen the programmer defines an :initialize method for the allocator type used by the
application, i.e., allocator-type in the start-ELMA initialization-parameters, it is invoked
prior to creation of the managers specified in raanager-initializations. The value returned
by this method is appended to the init list arguments explicitly provided in manager-

inttializations for each manager.
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Example:

(defflavor my-allocator
O
(ELMA-allocator)
(:documentation "Allocator for my application"))

(defmethod (my~allocator :initialize)

‘‘This is a gilly example which simply returns the CARE
site numbers. In practice something more useful could
go here.”’

(care-site-numbers)

)

{defun boss-init-list-fn (clerk-sites all-sites)
‘‘Returns init list for BGSS object’’

“start-ELMA :initialization-parameters
‘((:ALLCCATOR . "the-ALLOCATOR")

(:ALLOCATOR-TYPE . ELMA-allocator)
(:ALLOCATOR-SITE . 0)
(:START-MESSAGE . :get-ball-rolling)
(:START-MESSAGE-RECIPIENT . "the-B0SS")
(:MANAGER-INITIALIZATIONS

("the-BOSS" ;; name of the manager
BOSS ;; type of the manager

0 ;; site of the manager
boss-init-list-fn

;; function to generate init-list of -anager
(,clerk-sites) ;; args of function

NIL))) )

The boss-init-list-function is cailed with the value returned by the :initialize
method appended to (1ist clerk-sites). In other words, instead of evaluating (bess--
init-list-fn clerk-sites), ELMA evaluates (boss-init-1ist-fn clerk-sites cara--
site-numbers) to get the init Iist of "the-BOSS.”

4.2 Required Methods

:returned-message (original-message sent-name new-name original-args) [trigger]




Any node which couli receive a returned message (due to :RETURN being specified for
incorrect-address-act: 5= of a node to which it sends inessages) should have a trigger as

follows:

(deftrigger (some-node :returned-message)
((original-message sent-name new-name original-args))
“Trigger for hardling returned messages"
;; code for handling the returned message
(debug-format t "“/Returned-message: “a "a “a "s"
original-message sent-name new-name original-args)

5 Abstract Data Types

ELMA also includes a collection of abstract data types (ADTs).

5.1 Table

The table is a generic table flavor which can be arbitrarily l.rge, of arbitrary dimensions
and indexable on arbitrarily defined kevs. A table can have multiple axes, where each axis
corresponds to a dimension. Each axis can be of fixed or variable length. A veriable length
axis can be implemented as either an association list or a hash table (default is alist). The
function make-table returns a table. Refer to Appendix B for examples.

make-table &key azes Zopticnal label init-values "“inction]

5.2 Ring Buffer

The ring-buffer is a generic ring buffer flavor for the efficient maintenance of time-
dependent data, i.e., for managing the addition of new data and timely removal of old.
“out of date” data. Refer to eima:structures;ring-buffer.lisp for details.

5.3 Time Line

~

The time-lineis a flavor for recording data over time. The history is discretized accordiag
to domain time. Refer to elma:main;elma.lisp for details.




6 ELMA Flavor and Specializations

This section lists the flavor defintions for the ELMA flavor and its specializations. These
can be found in elma:main;elma.lisp. (Load sys:site;elma.translations to get the

logical names)

6.1

ELMA Base Flavor

The ELMA flavor is the esssential component of any node in an ELMA application. Sub-
stitute it wherever the LAMIN % or ORDERED-SELF-STREAM flavor would have been

used i

8.1.1

{de

f
(
(

(024

n a LAMINA application.

ELMA Components

laver ELMA

initable~-mixin

‘..u‘i: -message-mixin

ory- mixin
r-mi

-mixin
aersd-se;f-stream)

{:documentation "ELMA is the base flavor for

Each

memory-minagement LAMINA applications.")

component mixin contributes the following be.avior.

reinitable-mixin makes siots re-initable, which makes it possible to reuse free pool
nodes.

u-,.

istory-mixin maintains user-specifiable history of each node.

~

zulti-message-mixin handles CARE postings which contain multiple messages.

defer-nixin permits postings to nodes still being created by deferring them tem-

poTarLy.

naze-zixin gives node a unigue name and maintains an address table permitting
other nodes to be referenced by name.

-

srdered-self-streangiv

s node essential lamina node behavior with incoming tasks
rdered by an insertion sor:.

3]




6.1.2 ELMA Slots

The following are the most important slots of the ELMA flavor. The history and data slots
accumulate information about each object. and can be inspected/read to debug and/ct
analyze the program.

name name of object
stream remote address of object

notable-triggers incoming trigger messages for which time, message name and message
arguments are to be saved in the history (when *elma~record-history# is t).

timed-triggers trigger methods to be timed {when *elma-timex is t).

initial-addresses list of alternating names and remote addresses to be stored in the
address-table when the object is created.

output-stream output-siream used for output.
address-table table of remote address=s that object knows about (indexed on name,
history list of triggers executed by the ohject and ¢ her user-<pecified events.

mailing-history list of messages mailed by this object (whe: *eima-record-mailings#

).

o

Ll

is

timing-data data accumaulated for timed-triggers and other :..ned methods and functions
{when *elza-time* is t}.

count-data data accumulated when using increment-count or for object recycling data
‘when *elma-count-recycling*is t).

i

queue-data timea-line data accumulated (when *elma-count-queues#is t).

6.2 Acknowledge Creation Mixin

™
[}
1]
bh
+h
el
[
«
(o]
L
»
[3)
e

nowledge-creaticn-mixin
(init-ack-stream)
node ackxnovwledges on this stream when created

:settable-instance-variables
(:documentation "ELMA ncde posts an acknovledgement
to its init-acx-stream when created.")

{-recuired-flavor mal
LiTegulred-r.avers einay
\
¥
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6.3 Static Allocator Mixin

(defflavor static-allocator-mixin
(manager-initializations
creation-acks
;; the number of acknowledgements expected at initializatiocn
start-message
;; the name of the start message to be sent when all managers
;; have been created
start-message-racipient
;3 the recipient of the above start message
)
QO
:settable-instance-variables
(:documentation "For creating manager nodes at initialization time.")
(:required-flavors elma)

)

6.4 Manager Mixins

(defflavor free-pool-allocator-mixin
(free-pools) ;;list of free pools maintained by this node
O
:settable-instance-variables
(:required-flavors elma)
{ Jocumentation "Enables elma nodes to maintain and
allocate free pool objects")

)
{defflavor freo-pool-reclaimer-nixin
O
O

(:documentation “Enables free pool allocators to deallocate free pcol nodes.")
(:required-flavors free-pcol-allocator-mixin elma)

)

4

(defflavor free-posl-owner-mizin
O
(free-pool-ailocator-mixin
free-pcol-reclaimer-mixin)
(:documentation "Enables elza nodes to allocate

3-430




and deallocate free pcol nodes.")
(:required-flavors elma)

)

6.5 Subordinate Mixins

(defflavor free-pool-allocatable-mixin
(cwner-stream)
;5 created object acknowledges its creator on this stream
O
:settable-instance-variables
(:documentation "Makes elma nodes allocatable from a free pool™)
(:required-flavors elma)

)

(defflavor free-pool-reclaimable-mixin
((subordinate-status :CREATED)
(incorrect-address-action nil)
(incorrect-address-system-action ’'((:deallocate-self . :doit)
(ire-init . :doit)))
(cached-tasks)
(forvarding-data nil)
)
0O
(:documentation "Makes free pcol nodes reclaimable")
(:required-instance-variables owner-stream)
(:required-flavors free-pcol-allocatable-mixin elma)

)

(defflavor free-pool-node-mixin
O
(free-pool-allocatable-mixin
free-pool-reclaimable-mixin)
(:docuzentation "Makes elma nodes allocatable and reclaimable
from a free pool")
(:required-flavors elma)

)

6.6 Free-pool Flavor

(defflaver free-pool




((nods-type)

:; the node in the free pool

(initial-length *default-free-pool-lenygch#*)

;; the initial iength of the free pool
(threshold-length #default-free-pool-length*)
(unallocated-nodes)

(requested-nodes)

(allocated~nodes)

(deallocated-nodes)

(count 0)

(sites nil) ;; the sites available for free pool nodes
(site-function 'random-fp-site)

;; name of function which returns a site number on which to
; allocate a new node

(copy-self-mixin)

:settable-instance-variables
{:documentaticn "The free-pools slot of 2 free-pool-allccator is a

list of these objects. Use make-free-pool rather
than make-instance.™))
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and :banana message respactively. The BOSS then deallocates Oliver
and Barry and then sends them various messages. Since they are
deallocated, the incorrect address mechanism handles these messages
and automatically returns, forwards or drups them according

;; to settings.

we we ms we
~e we we ws

**t*****#********#i**t*******************************

s+ OBJECT DEFINITIONS

0K K K J*******#***#******************t************
;; BOSS

(defflavor boss
O
(elma-manager)
:saettable-instance~variables
(:documentation "Boss--doles out work to the clerks")
)]

’

;1 CLERK

(defflavor clerk
O
(elma-subordinate)
(:documentation "Clerk--does all thes work")
(:defau” ‘~init-plist
i3 record incoming messages for these triggers
‘notable-triggers ’(:apple :orange :banana)
i time the execution of these trigger methods
‘timed-triggers ’'(:apple :orange :banana)
‘incorrect-address-action
*(;; detault settings tor CLERK instances
"*apple . :RETURN ) ;; i.e., return all apple messages to sender
{:orange . :RETURN )
ii 1.6., return all banana messages to sender
»: :banana not specified, so dropped by default
)

s
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;; TRIGGER METHOD DEFINITIONS

.
’?

;; BOSS

(defun boss-init-1i
"Returns an in3-
slot and its val
(list :fres-po. S
(list
(make-free-po
:node-type

o ook ok Kk KK ok ko R A ok kR ROR kRO TR OK RO FOR kR ROk KR

st-fn (clerk-sites)
list for a boss object, in this case the :free-pools

ol
"CLERK ;; each boss has  free pool of clerks

:initial-length *free-pool-init-length*

:threshold-

length *free-pool-threshold-lengthx

:sites clerk-sites))

)

(deftrigger (boss :

get-ball-rolling) ()

"This trigger gets the ball rolling."

;3 Allocate three clerks from the pool

(vith-subordinate (alfred)
(with-subordinate (oliver

;after-messages

((oliver ‘((:pineapple))))

;7 1.e., send :pineapple message to oliver as
;; soon as it is allocated

)

(with-subordinate (barry)

;3 get clerks working

(mailing alfred :apple nil)

(mailing oliver :orange nil)

(mailing barry :banana nil)

;3 deairlocate oliver and barry

(deallocats oliver )

(deallocate barry
tincorrect-address-action
“((:FORWARD :orange (,alfred)))
;; overide the default so :orange is forwardasd

)

;; send oliver and barry some work and see vhat happens
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(mailing oliver :apple nil) ;; this should be returned to the boss
(mailing barry :apple nil) ;; this should also be returned
(mailing barry :orange nil) ;; this should get forwarded to alfred
(mailing barry :banana nil) ;; this should get dropped
)
)
)
)

(deftrigger (BOSS :returned-message)
((original-message sent-name new-name original-args))
"Trigger for handling returned messagae"
(debug-format output-stream "~%==> “a received a RETURNED-MESSAGE" name)
(debug-format output-stream
"~} Message "a was sent to “a, now named "a, with args "s"
original-message sent-name new-name original-args)

;3 CLERK

(deftrigger (CLERK :apple) ()
(untimed-format output-stream "~ ~a got an APPLE" name)

)

(deftrigger (CLERK :orange) ()
(untimed-format output-stream "~J~a got an ORANGE" name)

)

(deftrigger (CLERK :banana) ()
(untimed-format output-stream "~J“a got a BANANA" name)

)

(deftrigger (CLERK :pineapple) ()
(untimed-format output-stream "~J"a got a PINEAPPLE" Name)

)

§3 R AR R OR R R R A KKK KR RO R R A R R R KRR A
M

;3 SIMULATOR INTERFACE

HH

M 30 e R e e K ek K AOKR OO R R R R R R AR R R R O KRR Rk kR
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;; The rest of this file defines functions which set up the simulator

;; and start a simulation.
;; The top level function is start-ELMA.

(defun elma-example (Zoptional &key initialize
(design ’care:octorus-32)
(instrument ’care:observer))

"Run elma example program.

Initialize simulator if initialize is t."

(when initialize ;; initialize the simulator
(simple :run nil

:reset t

:flush t

:design design
:instrument instrument))

(let ((clerk-sites (cl:remove 0 (care-site-numbers))))
;5 1.e., use all sites except boss site
(start-ELMA

:initialization-parameters

‘((:ALLOCATOR . "the~ALLOCATOR™)

(:ALLOCATOR~TYPE . ELMA-allocator)

:ALLOCATOR-SITE . 0)
:START-MESSAGE . :get-ball-rolling)
:START-MESSAGE-RECIPIENT . “the-B0OSS")
:MANAGER-INITIALIZATIONS
("the-B03S" ;; name of the manager

BOSS ;; type of the manager

0 ;; site of the manager

boss-init-list-fn

;; function to generate init-list of manager

(,clerk-sites) ;; args of function

NIL))
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Appendix B
Table Examples

Example 1: 2D Table, with initial values

(setq foo
(make-table
:label "handles"
:axes (list ’(:name :aircraft-type
:type :variable
:keys (:TYPE-A :TYPE-B))
’(:name :radar-id
:type :variable
:keys (:RADAR-1 ,EADAR-2 :RADAR-3))
)
:init-values ’((handle-A-1 handle-A-2 handle-A-3)
(handle-B-1 handle~B-2 handle-B-3)))
)

;; OR, alternative specification using a linear list of values
;3 (but get the order right!)

(setq foo
(make-table

:label "handles"

:axes (list (list :name :aircraft-type
:type :fixed
:keys ' (:TYPE-A :TYPE-B))

= (list :name :radar-id

:type :fixed
:keys ’(:RADAR-1 :RADAR-2 :RADAR-3))

i

)
tinit-values ’'(handle-A-1 handle-A-2 handie-A-3
handle-B-1 handle-B-2 handle-B-3)

;» Referencing values:

(send foo :value :TYPE-A :RADAR-2) =2> handle-A-2

;3 Setting values:

(send foo :set ’new-handle-A-2 :TYPE-A :RADAR-2) ==> new-handle-A-2
(send foo :value :TYPE-A :RADAR-2) ==> new-handle-A-2

;» Removing values
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(send foo
(send foo
;3 Adding
(send foo
(send foo

==> nil
==> nil

:remove :TYPE-A :RADAR-2)
:value :TYPE-A :RADAR-2)
values

:add ’another-handle-A-2 :TYPE-A :RADAR-2) ==> ’another-handle-A-2
:value :TYPE-A :RADAR-2) ==> ’another-handle-i-2

;; Returning and removing values (only for variabls type tables):

(send foo
(send foo

:remove-and-return :TYPE-A :RADAR-2)
:value :TYPE-A :RADAR-2) ==> nil

==> ’another-handle-A-2

;; Axis information:

(send foo :nth-axis 0) ==> :aircraft-type
(send foo :nth-axis 1) ==> :radar-id
Example 2: 1D Table, no initial values, used as a LIFO queue
(setq foo
(make-table
:1lahel "Names"
:axes ’'((:name :track-id
:type :variable)))

)
(send foo :add ’name-0 C) ==> name-0
(send foo :add ’'name-t 1) ==> name-1
(send foo :add ’name-2 2) ==> name-2
(send foo :add ’'name-3 3)
(send foo :pop) ==> name-3
(send foo :pop) ==> name-2
(send foo :remove-and-return 0) ==> name-0
Example 3: 3D table. with initial values:

(setq foo

(make-table
:label "Test things"

-axes

(1ist (list :name :aircraft-type

:type :variable

:keys ' (:TYPE-A :TYPE-B :TYPE-C))
(list :name :radar-id

:type :variable

:keys ’(:RADAR-1 :RADAR-2 :RADAR-3))
(list :name :handle-or-handle

:type :variable
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:keys ’(:name :handle))
)

:init-values ’(((name-A-1 handle-A-1)
(name-A-2 handle-4-2)

(name-A-3 handle-4-2))
((name-B-1 handle-B-1)
(name-B-2 handle-B-2)

(name-B-3 handle-B-3))
((name-C-1 handle-C-1)

(name-C-2 handle-C-2)

(name-C-3 handle-C-1)))

)
)
;3 Adding values
(send foo :add ’handle-D-1 :TYr2-D :RADAR-1 :handle) ==> ’'handle-D-1
{send foo :add ’name-D-2 :TYPE-D :RADAR-2 :name) ==> ‘name-D-2
{send foo :remove :TYPE-D :RADAR-2 :name) ==> ’name-D-2
(send foo :valus :TYPE-D :RADAR-1 :handie) ==> ’handle-D-1

;; Referencing major axis values

(send foo :major-axis-values) ==> ’(:type-D :type-A :type-B :tyre-C)

(send foo :entries) ==> 19

;; Removing all table values for one major axis value (cniy for :VARIABLE type
tables)

(send foo :major-axis-remove :TYPE-B)

(send foo :major-axis-vaiues) ==> ’(:type~D :type-A :type-C)}

(send foo :entries) ==> i3

Example 4: Variable Type Table with only some axis values specified

(satq foo
(make-table
:label "FPS stuff”
:axes (list ‘(:name :fps-name
:type :FIXZD
:xeys (fps-0 fps-1))
‘(:name :fps-attribute
:type :FIXED
:xeys (:time :fpo-parents :postion :velocity)))
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;; add some stuff for fps-0

(send foo :add ’time-0 ’fps-0 :time)

(send foo :add ’fpo-parents-0 ’fps-0 :fpo-parents)
(send foo :add 'fpo-position-0 ’'fps-0 :postion)

;; add some stuff for fps-i
(send foo :add ’time-1 ’fps-1 :time)
(send foo :add ’'velocity~-1 ’fps-1 :velocity)

;; Beference values:

(send foo :value ’fps-0 :time) ==> time-0

(send foo :value 'fps-1 :veloci-wy) ==> ’'velocity-1
;3 Get major axis values

(send foo :major-axis-values) ==> (FPS-0 FPS-1)

Example 5: 2D Tabie

(setq foo
(make-table
:label "More stuff®
:axes {list ‘(:name :aircraft-type
:type FIXED
:xeys (:TYPE-A :TYPE-B :TYPE-C :
‘(:name :radar-id
:type :VARIABLE))

3
u
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{send foo :add ’A-1 :TYPE-A :RADAR-1)
‘serd foo :add ’A-2 :TYPE-A :RADAR-2)
{(serd foo :add '8-3 :TYPE-3 :RADAR-3)
{send foo :value :TYPE-B :RADAR-3)

;3 or, referencing with numeric indices (only for fixed axes)
(send foo :value ’'(:nth 0) :radar-i) ==> A-i

{send foo :value ’(:nth 1) :radar-1) ==> nil

(send foo :value ’(:nth 1) :radar-3) ==> B-3

(send foo :value :TYPE-E :RADAR-1) ==3> error

(send foo :value ’(:ach 1) ’(:nth 0)) ==> nil

Example 6: 1D Table. with dictionary axis
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(make-table
:label “name"
:axes ’((:name :fps-name
:type :dictionary
:keys (“FPS-0" "FPS-1* “FPS-2")))
:init-values ’(FPS-0 FPS-1 FPS-2)
)
)

(send foo :add ’FP3-3 "FPS-3")

(send foo :add ’FPS~§ “FPS-5")

(send foo :remove “FPS-0")

(send foo :remove-and-return “"FPS-3"') ==> FPS-3
(send foo :entries)

(send foo :pop-end)

Example 7: 3D Table, all axes fixed. without initial values

(setq table
(make-table
:label "FPC names and handles"
:axes (list ‘(:name :aircraft-type :type :FIXED
:keys (:TYPE-A :TYPE-B))
‘(:name :radar-id :type :FIXED
:xeys (:RADAR-1 :RADAR-2 :RADAR-3))
‘(:name :name-or-handle :type :FIXED
:kxeys (:name :handle)))

;3 using numeric keys

(send table :add ’A-2-handle ’(:nth 0) ’(:nth 1) ’(:nth 1))

;; above is equivalent to (send table :add ’A-2-handle :TYPE-A 2 :handle)
(send table :add ’A-2-name ’(:nth 0) ’{:nth 1) :name)

(send table :add ’A-i-handle ’(:nth O0) ’(:nth 0) :handle)

(send table :remove '{:nth 0) ’(:nth 1) :handle)

(send table :remove ’'(:nth 0) ’(:nth 0) :handle)

(send table :nth-axis-mth-key 2 1) ==> :handle

(send foo :valid-keys) ==> (:TYPE-A :TYPE-B))
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Abstract

Production systems (or rule-based systems) are widely usea for the development of expert
systems. To speed-up the execution of production systems, a nu_mbei of different approaches
are being taken, a majority of ;hCItl being based on the use of parallelism. In this paper, we
explore the 1ssues invclved in the parallel implementation of OPSS (a widely used production-
system language) in QLISP (a parallel dialect of Lisp proposed by John McCarthy and Richard
Gabriel). This paper shows that QLISP can easily encode most sources of paralleiism in OPSS
that have been previously discussed in literature. This is significant because the OPSS
interpreter is the first large program to be encoded in QLISP, and as a resull, this is the first
practical demonstration of the expressive power of QLISP. The paper 2lso lists the most
ccmmonly used QLISP constructs in the parallel implementation (and the contexts in which
they are used), which serve as a hint to the QLISP implementor about what to optimize. We

also discuss the exploitation of speculative parallelism in RHS-evaluation for Oi’SS. This has

not been previously discussed in the literature.




PARALLEL EXECISTION OF OP35 INQLISP

Parallel Execution of OPSS in QLISP

Abstract

Product:on systems (or rule-based systems) are widely used for the development of expert systems. To speed-up
the execution of production systems, a number of different approaches are being taken, a majority of them being
based on tne use of parallelism. In this paper, we explore the issues involved in the parallel implementation of
OPSS (a widely used production-systern language) in QLISP (a parallel dialect of Lisp proposed by John McCarthy
and Richard Gabnel). This paper shows that QLISP can easily encode most sources of parallelism in QPSS that
nave been previously discussed in literature. This is significant because the OPSS5 interpreter is the first large
program to be encoded in QLISP, and as a result, this is the first practical demonstration of the expressive power of
QLISP. The pz, ¢ also usts the most commonly used QLISP constructs in the parallel implementation (and the
contexts it which they are used), which serve as a hint to the QLISP implementor about what to optimize. We also
discuss the explatation of speculative paralislism in RHS-evaiuvation for OPSS. This has not been previous'y
discussed in the literature.

1. Introduction

There are several different programming paradigms that are currently popular in Astificial Intelligence, examples
being producton systems (or riie-based systems), frame-based systems, semantic-network systems, logic-based
systems, blackboard systems. Of the above, production systems have been widely used to build large expert systems
10, 14].  Unfortunately, production systems run quite slowly, and this has especially been a problem for
applications 1n the real-ume domain. Production systems must be speeded-up »ignificantly if they are to be used in
rew iacreasingly cumplex and time-critical domains. In this paper, we focus cur attention on a specific production-
system language, OPSS, that has been widely used to build expert systems and whose performance characteristics
have been extensively studied. We also focus on parallelism as a means to speed-up the execution of OPSS.

The parailel execution of the QPSS production-system language has been studied by several groups (4, 8, 11, 13].
Thew general approach consisted of two steps. (i) the design of a dedicated parallel machine suitable for execution
<f OPS5: and (1) the mapping of the OPSS compiler and run-time eavironment on to the parallel hardware. In these
.mplementaucns, the second step (the mapping step) involves parallel encoding of OPS3 using hardware specific
and operaung-system specific structures. In this paper, we explore how this mapping step may be done in a
migh-ievel parailel dialect of Lisp, called QLISP. The main advantazes of encoding using a high-level programming
ianguage are: (1) Increase in portability, since the code does not depend cn machine speific features; (ii) Greater
flexibility and expressive power of the high-level language results in faster tum-around time, fewer errors, and more
readable and modifiable code. The main disadvantage, of course, is that the encoding may not be as efficient as
hand-coded hardware-specific encodings. We normally do not worry about such issues for uniprocessors --
ianguage compilers for uniprocessors are good enough -- but the disadvantage is significant for parallel
:mplementations where the technology is rt as far advanced. There is one more strong motivation for doing a
paraiiel implementation of OPS5 wh.ie remaining within Lisp (unlike most previous parallel implementations).
Thus is that OPSS s often used as aa embedded system within larger Al systems, and the fact that the rest of these
svstems are encoded in Lisp, If OF S5 15 also encoded in Lisp, then it makas the task of interfacing much simpler.

-

There are several paratlel Lisp tane iges. fur example, Muiulisp (5, 6. 7] and QLISP (3], that are available for
speed.ng up Lisp programs Dy using zwltple processors. Since QLISP is based on the Common Lisp {12], it
srovides very powerful faciiities to the u~=r. Multlisp is based on a functional programming subset of Lisp.
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Another distinguishing features of QLISP is that control mechanisms 0 access shared data or global data are
embedded in Lisp primitives. Other parallel Lisp languages use some data structures for locking, such as
semaphores. QLISP enables the user 1o write parallel programs without paying much attention to the consistency of
shared or global data. One of the main purposes of this research is to explore the expressive power of QLISP by
implementing a large program in it. Ours is the first large ("real”) program implemented in QLISP, so this
constitutes the fust practical demonstration of the expressive power of QLISP. We also list the most commonty
used QLISP constructs and the contexts in which they are used, which can serve as a guide for optimizing the
implementation of the QLISP language. A language where it is easy to express parallel constructs, but which does
not offer better performance is not of much use.

The approach we take for parallelizing OPSS is based on that of the Production System Machine (PSM) project at
Camegie-Mellon Univcusity [4]. The PSM project studied how the speed-up from parallelism increases as one goes
from coarse-granularity (rule-level) to fine-granularity (inig-ucce) parallelism. We implement each of ther
schemes and show that it is relatively easy to encode these parallel schemes within QLISP. We also show some
interesting ways in which to exploit conflict-resolution parallelism and speculative parallelism® in RHS evaluation
using QLISP.

This paper is org inized as follows. Section 2 presents some background information about the OPSS5 language,
the Rete algorithri used to implement OPSS, and about QLISP. Section 3 describes how we do a parallet
implementation of OPSS5 using QLISP and the various issues involved. Finally, Section 4 is devoted 0 a discussion
and conclusions.

2. Background

2.1. The OPSS Production-System Language

An OPS5 [1] production system is composed of a set of if-then rules called productions that make up the
production memory, and a database of assertions called the working memory. The assertions in the working memory
are called working memory elements. Each production consists of a conjunction of condition eiements
corresponding to the if part of the rule ‘also called the /lefi-hand side of the production), and a set of actions
corresponding to the then part of the rule (also called the right-rand side of the producton). Tke left-hand side and
the right-hand side are separated by the "-->" symbol. The actions associated with a production can add, remove or
modify working memory eiements, or perform input-output. Figure 2-1 shows iwo simple producticns named pl
{with three condition elements)and p2 (with two condition elements).

{(z pl (Cl "color <x> "size i) {p p2 {C2 "price 33 “coisr <y>)
(C2 “price 28 “cslor <x>) {C4 “zoler <y>)
{C3 “color <x>) -
—_— ~cdify L "price I3} }

{remcve 2} )

Figure 2-1: Example of productions

The producton system inierprezer 15 the underlying mechanism that detizrmines the set of sausfied productons
and controls the execution of the produciicn sysiam program. The interpreter exe stes a producton system program

Tha
i

*The parallel computations of 2 proZam wan be Lovded .10 (W0 S2Ugar €3, mandaliory 1mpwie.. 245 Ind specuciive compuichions i
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Te aecassary.
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by performing the following recognize-act cycle:

e Match: In this first phase, the left-hand sides of 2li productions are matched against the contents of
working memory. As a result a conflict set is eb_zameé, which consists of ir._sz.fznzf:a.rior-.s of all satsfied
productions. A~ instantation of 2 production is an ordered iist of working memory elements that
sadsfies the left-hand side of the production.

» Conflict-Resolution: In this second phase, one of the production instantiations in the conflict set is
chosen for execution. If no productions are satisfied, the interpreter halts.

e Act: In this third phase, the actions of the production selected in the confiict-resaletion phase are
executed. These actions may change the contents of working memory. At the end of this phrse, the
first phase is executed again.

Each working memory element is a parenthesized list consisting of a constant symbol cailed the ciass of the
element and z2ro of more Jitribute-velae paws. The atnbutes are symbols that are preceded by the operator *. The
values are symbolic or numeric constants. Each conditional element in the LHS consists of 2 class name and one or
more terms. Each term consists of an atinbute prefixed by *, an operator, and a value. An operaicr is cptional ard
1ts default value 15 =. QOther cperaiors zre <, <=, >, >=, <> and <=>. A value is either 2 constant or 2 variable. A
variable is represented by an identifier enclosed by < and >. A variable can match any value, but all occurences of
the same variable in the LHS of a rule saould match the same value. Condinonal elements may aot contain all pairs
of atmibute-value present in 2 working memory =lement I a conditional element is preceded by -, it is called a

v if there 1s 7o working memory element matching s

negated cond:doa element. The mawch o1 2 rule succeeds ont

The RHS of a production can conwain any number of actions. Actions can be classified into:

» Working memory operations: These zre make. ramove. and modify.

» /0 operations: These are openfile, closefile, and write,

» Binding operations: These are bind and chind.

+ Miscellaneous operations: These are default <2}l halt and build.
The above action types ofien take fusctiors 28 arguments. Some such funiuons are 7 (quote), substy, genatom,
compute, fitval, accept and acceptiine.

2.2. The Rete Match Algorithm

Empinical study of various OPSS programs shows two interesting characrenistics; femporal redundancy an
siructural sumiianiny (2], Temporal redundancy refers o the fact that 2 rule-finng makes only a faw modsfications
the » srking memory and most working- memory elements remain unchanged. Strecmral simijanty « 0 the fact

that ali productions are not wially distnct znd that there are many simuianues between the conditzon elements of

£
i

different productons. The Rete maich alzonthm explous these two feamres ©© spd up the mazh phase of the

interpreter.

Tha R Py . 2 iy k- ~F Aary flag n ek s tlord Frm fx 5 : £ : .
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root
constant- class=Cl class=C2 clasecci
test \\
nodes

12 rice=38
rEes P class=C3
mem~node mem=-node
mem-node
and-nocde
mem-node mem=-node and-node
l terminal-node

2
and-node P

terminal-node

Figure 2-2: The Rete network

To avoid performing the same tests repeatedly, the Ret  orithm stores the result of the match with working
memccy as state within the nodes. This way, onl: changes made to the working memory by the most recent
producuon firing have to be processed every ¢ycle. Thus, uie input to the Rete network consists of the changes to
the working memory. These changes fi'ter through the network updating the state stored within the network. The
output of the network consist. ot 1 specificaticn of changes to the conflict set.

The obiects that are passed betweer nodes are called tokenz, which consist of a tag and an ordered list of
workirg-memorv elements. The tag can be euner 2 +, indicating that something has been added to the working
memoty, or 3 —, indicating that sometaing has been removed from it. The list of working-memory elements
assoc’ated with = token commecponds to a -~jyuence of those elements that the system is trying to match or has already
matched agains. a .ubsequance ¢ cond don ¢ 2:aents 1 ihe left-hand side.

Tt data-fiov network preuuced by the Rete algodthm consists of four different yypes  f nodes. These are:

1. Constant-tust noes: Thess nodes are used 0 test if the o>ributes in the condition element v/hich
have « onetant valne are satis{ied. These nodes always appear in the top part of the network. They
have only va2 iipat, and as a resrit, th2y asz sometimes called one-input 1 odes,

2. Memcry nodes: Tihiese nodes stove the results of the, match phase frum previous cycles as state within
therr. “"ha statc storad in a 1n.:mory node censists of a list of the tokens that match a part of the
left-hard s'<: of the associated prcduction. For example, the tight-most memory nwde in Figure 2-2
stores ai: iokens matching the second condition-elerent of production p2.

At a more detai'ed level, there are two types of memesy nodes -- the ¢t-mem nodes and the B-mem
nndes, The a-mer noder sto.e tokens that match individual cendition elements. Thus all memory
nodes imniediately below consiant-est nodes are o-mem nodes. The B-mem nodes store tokens that
match a sequence of condition elements in the 'eft-hand side of a production. Thus all memory nodes
immediatzly below two-input nodes are - 2m nodes.

2-4:8
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3. Two-input nodes: These nodes test for joint satisfaction cf condition elements in the lefi -hand side of
a production. Both inputs of a two-input node come from memcry nodes. When a token arrives on the
left input of a two-input node, it is compared_to each tchn su_)req in the memory nods connected to the
right input.  Ail token pairs that have consistent variable bindings are sent to the successors of the
two-input node. Similar action is taken when a token arrives on the right input of a two-input node.

There are also two types of two-input nodes -- the and-nodes and the not-nodes. While the and-nodes
are responsible for the positive condition elements and behave in the way described above, the not-
nodes are responsible for the negated condition elements and behave in an opposite manner. The
not-nodes generate a successor token only if there are no matching tokens in the memory node
corresponding to the negated condizion element.

4. Terminal nodes: There is one such node asscciated with each production in the program, as can be
seen at bottom of Figure 2-2. Whenever a token flows into a terminal node, the corresponding
production is either inserted into or deleted from the conflict set.

2.3, QLISP - Pargllel Lisp Language

QLISP 15 a queue-based paralle! Lisp proposed by Dick Gabriel and John McCarthy [3] and is being implemented
on an Alliant FX/8 shared-memory multiprocessor by Stanford University and Lucid Inc. QLISP is similar to
Mululisp [5, 6, 7], but language constructs incorporate important mechanisms for parailel computation such as
spawning 1nd locking. The spawned processes are pul in the system queue ang given to a processor by the
scheduler to evaluate it. The key ideas in QLISP were derived by reexamining Common Lisp [12] from the
perspectuve of parallel processing, and by striving to raake the minimal number of extensions to Common Lisp.
Some QLISP primitives are summarized in the following subsections.

23.LQLET
The qlet form executes 1ts focal binding in parallel.

(qlet predicate ({ (var valuz)}™) {form}™)

The qlet form 1s a construct to evaluate all values in parallel?. However, its computational semantic depends on the
result of predicate which is evaluated first in the glet form.
o [f the result of predicate is nil, the glet form acts exactly as the let form.
s [f the result of predicate is neither nil nor eager, a process for each value is spawned and the process
evaluating a glet form 1s suspended. When all the results of value are available, each result is bound to

each var and the process evaluaung a qlet form resumes its comp  ation; that is, the body of a glet form
is evaluated.

o If the resuit of predicate is eager, a special value, future, is bound to each var and the body of a glet
form is evaluated immediately. A future is associated with a process which evaluaies a value
eventually. In the execution of t1e body, if the value is not supplied yet, the process executing the body
is suspended till the value is available.

Two kinds of parallel fibonacci functions are shown in Fig. 2-3.

The first one calculates a fibonacct number by spawning a pr~cess to calculate every fibonacci number of a
smaller number. There may occur a combinatonal explosion of processes if n is a large number. For example, the
number of spawned processes is 176, 21390 and 242784 for . = 10, 20 and 25, respectively. The second fibonacci
functon spawns a process only if the depth of the nesting is less than the value of *cut-off*. The glet pradicate

“Since the peall form 1n MuluLisp evaluates arguments of a fusction in parallel, it will be easily implement by qlet in QLISP

3The me: hanism of eager 1s an implicit implementatien of the future form in MultiLisp, or the iazy evaluation,
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(defun fib (n)
{cond ({< n 2) 1)
(t (qlet t ((f1 (£ib (- n 1))
(£2 (£ib (- n 2))
(+ £1 £2) ))))

)
) )

(defun fib-c (n)
(labels ({(fib-cutoff {(n depth)
{declare (special *cut-off*))
(cond ((< n 2) 1)
(t (glet (< depth *cut-off*)
((£1 (fib-cutoff (-~ n 1)) (1+ depth))
(£2 (fib~-cutoff (-~ n 2)) (1+ depth)) )
(+ £1 £2) 1))))
(fib-cutoff n 0) ))

Figure 2-3: Two parallel Fibonacci functions - Example of qlet

enable  the user to control the spawning of processes. Needless to say, an appropriate value for *cut-off* should be
determined by he tradeoff between the cost and benufit of spawning,

2.3.2.QLAMBDA

The lambda form in the Common Lisp creates a closure which is used to share variables among several functions
or as an anonymous function. The qlambda form creates a process closure.

(qlambda predicate lambda-list {form}")

A process closure is used not only to share variables among several process closures but also to control an
exclusive invocation of the same process closure. That is, only one application of a process closure is evaluated and
other applications of the same process closure are suspended. The evaluation of a process closure depends on the
value of predicate which is evaluated at the ime of evaluaton of the glambda form, that is, creation of a process
closure.

o If the result of predicate is nil, the qlambda form acts exactly as the lambda form. That is, a lexical
closure is created.

» If the result of predicate is neither nil nor eager, a process closure is created. When it is appli d with
arguments, a separate process is spawned for evaluation. If more than one applications occur, only one
applications are evaluated and others are blocked. This is an implicit locking mechanism.

o If the result of predicate is eager, a process closure is created and spawned immediately without
waiting for any arguments.*

A process closure may be used as an anonymous process, of which application is evaluated as a separated process.
The spawn form is a shorthand form to do it; that is,

(spawn {form}") is the same as {(qlambda t () {(form}™)

In a sequential construct such as block, all forms may be evaluated in parallel by spawn. A set of functions to
update of the conflict-set is shown in Fig. 2-4. The global variable *con£lict-set~lock* holds a qlambda
closure to control the exclusive access to the variable *conflict-set* which holds the list of production
instances. The idea to provide an exclusive zccess to *conflict-set* is to execute an update operation by using the

“This cunous mechanism can be used to wrie a parallel ¥ operator, that is, for all f, Y(f)={(Y()), in QLISP. However, other useful
applicationt are not yet known.
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same glambda closure. The lock is released when register-cs retums a value immediately or when
sort-conflict~set updates the *conflict-set* or executes sorting by spawning a subprocess by qlet with the
predicate eager.

(proclaim (special *conflict-set-lock* *conflict-set*))

(defun ops-init ()
{setq *conflict-set-~lock*
(glambda t (body) {apply (car body) (cdr body))) ))

(defun insertcs (name data rating)
(funcall *conflict-set-lock*
(list ‘register-cs
name data (cons (sort-time-tag data) rating) t )))

(defun removecs (name data rating)
(funcall *conflict-set-lock*
(list ‘register-cs
name data (cons (sort-time-tag data) rating) nil )))

(defun register-cs (name data key flag)
(cond ({null *conflict-set*)
(setqg *conflict-~-set*
(create-new-cs—-element key nil name data flag) })
{t (sort-conflict~set name data key flag *conflict-set*)) )})

Figure 2-4: Locking for Conflict-set

2.33. CATCH and THROW
A pair of catch and throw provides a way to do a non-local exit in the Common Lisp.
(catch tag form) and (throw tag value)
In QLISP, it provides not only a means of non-local exit but also a mechanism to control subprocesses spawned
during the evaluation of form in the catch form. If the catch gets a value by the normal termination of form or a
throwing, the catch kills all processed spawned during the execution of the form. If the value contains a future, the

associated processes are not killed Note that the execution of a process spawned at a value-ignoring position of a
sequential construct is aborted.

2.34.QCATCH
The qeatch form is similar to the catch form, but the control of spawned processes is different.
{qcatch tag form)
If the evaluation of the form terminates normally and the qcatch gets a value, the qcatch waits for all the ~~ocesses
spawned during the execution of the form 1o terminate. Therefore, processed spawned at a value-ignorin,, position

will be evaluated before terminatir.g the qcatch form. If the execution of the form is aborted by a throwing, the
qcatch kills all spawned processes h~neath it.

2.3.5, UNWIND-PROTECT

The unwind-protect form is useful to do some cleanup jobs no matter what the unwind-protect form is
terminated.

(unwind-protect protected-form {cleanup-form}™)

The unwind-protect form is very important in QLISP world in order to make the data consistent, because processes
can be killed by the catch even if no throwing occurs.
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2.3.6. Others
The suspend-process and resume-process forms are used for the user to control the scheduling of processes.

THe wait and no-wait are used to control the termination of a process spawned at a value-ignoring position of
sequential constructs.

3. Parallel execution of OPSS programs

As stated in Section 2.1, the OPSS interpreter repeatedly executes a match -- conflict-resolution -- act cycle. In
this section, we discuss how parallelism may be exploited in executing each of the three phases. Most of the
discussion focuses on the march phase, as the match phase takes 90% of the time in the interpreter.

3.1. Parallelism in Match Phase

In this section, we explore how parallelism may be exploited to speed up the match phase. We present several
different algorithms. We start with a coarse-granularity algorithm and slowly move towards finer granularity. In
particular, we explore parallelism at three levels ~f granularity -- rule-level parallelism, node-level parallelism, and
intra-node parallelism. All of the above algorithms are based on the Rete algorithm described in Section 2.2. What
changes from one paraliel algorithm tc the other is the kinds of node activations that are allowed to be processed in
parallel. The granularities we choose to discuss here correspond to those discussed in [4].

Before exploring the above schemes further, a word about the different kinds of node activations in the Rete
network. Activations of constant-test nodes (shown in top-part of network in Figure 2-2) require just a simple test
and are fairly cheap to execute. We call these ctest activations. It is usually not worth it to spawn a process to
execute an individual ctest activation, because the overhead of spawning is larger than the work saved.

The second kind of node activations are the memory-node activations. These require that a token be added or
deleted from the memory node, and can be expensive because a delete request may require searching through all the
tokens stored in that memory node. The third kind are the fwo-input node activations, that require searching through
the opposite memory-node to find all matching tokens (tokens with consistent variable bindings). These are also
fairly expensive. We normally lump the processing required by the two-input node and the associated memory
nodes together into a single task/process, because the two are closely intarrelated (the two-input activation examines
the memory node) and separating them incurs a large synchronization overhead. One also has to be careful about
the sequence in which the above node activations are executed. For example, the Rete algorithm sometimes
generates conjugate tokens, where exactly the same token is first scheduled to be added to the memory node and
later deleted. The final result should be that the state of the memory node remains unchanged. However, in parallel
implementations it is easily possible that the scheduler decides to pick the delete request before the add request, and
if not handled properly, the final state of the memory node may have an extra token. To process conjugate pairs
correctly, each memory node has an extra-deletes-list to store a deleted token whose target token has not arrived yet.

Finally, there are terminal-node activations that insert or delete instantiations/tokens into the conflict-set. Here
also the problem of conjugate tokers can occur. The details for terminal-node activations are discussed later in
Section 3.2,

For all the parallel implementation discussed in this paper, we use a common strategy for handling the ctest
activations. (We present this strategy here, before discussing the differing strategies for the remaining types of
activations.) This strategy is that multiple activations of the root node are processed using separate processes (i.e.,
activations corresponding to different changes t0 working memory are processed in parallel). However, all
successors of the root node or the ctest nudes are evaluated using the following rule. If the successor node is also a
ctest .ode then evaiuate it sequendally within the same process, otherwise fork a separate process to do the
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evaluation. The code for such an evaluation policy is shown in Figure 3-1.

(defun match (token root—node)
{(glet ’eager
(({foo (dolist (node (successor root-node))
(cond {(c-test? node) (c-test token node))
(t (glet ’eager
({foo (eval-node token node))}) ))})))})

{(defun c-test (token node)
(cond {(do-c-test token node)
{eval-node-list token {successor node)) ))})

(defun eval-node-list {tcken node-list)
(ccnd ({(null node-list)
{t (let ((node (pop node-1list)))
(qlet (cond ((lock-node-p node) ’‘eager)
(t ) )
({foo (eval~-node token node))
{(bar (eval-node-1list tcken node-list)) )1)))))))

(defun eval-node (token node)
(cond ((funcall (function node) token (arguments node))
(eval-rcde-list teken (successor node)) }))

Figure 3-1: QLISP code t, ¢ - aluate Rete nodes in parallel.

3.1.1. Rule-level Parallelism
Rule-level parallelism is a very natural form of parallelism in production systems. Here the match for each
individual rule is performed in parallel. In the context of our Rete-based implementation, this requires that we
wntroduce lock nodes at points where a ctest node leads into a memory-node. All lock nodes before memory-nodes
of the same rule use an identical lock, and those before memory-nodes of distinct rules use distinct locks. Figure 3-3
shows how the onginal Rete network of Figure 2-2 is modified to exploit rule-les el parallelism. (Identical locks are
shown grouped together in figure.) The locks are implemented using qlambda closures, and the code for one such
lock node 1s shown in Figure 3-2. As discussed earlier, 2 QLISP closure ensures that only one process can be
= acuvely executing inside the closure. The proposed locks then ensure that all activations corresponding to a single
rule are executed in sequence, which is the desired semantics for rule-level parallelism.

{glamcda~-clcsure successor-n. .:e) ;::; atructure of lock node
da t {tcxen ncde) (funcall (eval-node token node))) :;; glambda closure
Figure 3-2: Code for the lock node.

Finally, we need to provide locks before the tokens enter the conflict-set, since the conflict-set is 2 global data
structure and multiple processes should not be modifying it at the same time.

Using rule-level parallelism, previous s.udies [4] show that only about 3-fold speed-up can be obtained. This is
(i) because the number of rules that require significant processing is small and (ii) because even amongst these
affected rules there is a large variaticn in the processing requirements. To reduce this variation in the prozessing

umes, we now discuss exploiting parallelism at a finer granularity where the processing for a single rule can be done
in parallel.
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constant-~ class=Ci ciass class=C4
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Figure 3-3: Modified Rete Network for Rule-level parallelism

3.1.2. Node-level Parallelism

When using node-level parallelism (4], any distinct two-input nodes can be evaluated in parallel. To implement
node-level parallelism, lock nodes are placed before each two-input node and its associated memory nodes as shown
in Figure 3-4. The structure of a lock node is the same for node-level and rule-level parallelism. However, the
value of the qlet predicate are different for evaluating different types of node activations. The predicate is © for
evaluating a memory-node and a two-input node, but it is * eager for evaluating successor nodes below a two-
input node, That is, the execution of a two-input node is terminated hy a fuzure and Jhe lock is released.

Note that if some two-input node generates multiple tokens, the next two-input node becomes a bottleneck. This
is because only one activation of a given two-input node can be processed at the same time.

3.1.3. Intra-node Parallelism

The intra-node parallelism [4) exploits maximal parallelism present in the Rete algorithm. If multiple tokens
arrive at a two-input node, then these rmuitiple activations of the two-input node are processed in parallel. However,
we have 10 be very careful about how we access the memory nodes: (i) it is not desirable to have multipie processes
modifying the same memory node; and {ii) the comrect operation of the Rete algorithm zequires that the opposite
memory-node should not be modified while processing a two-input node activation. To <nsure the correct
operation, we adopt the solution proposed by Gupta in (4]. We use a common hash-table fcr 4il tokens stored in the
memory nodes of the Rete network. T-kens are put into hash-table buckets based on the node-id of the associated

Saccording to the resull of the simutations of PSM. the speedup of node-parallelism 1s aboui 5-{31d.
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Figure 3-4: Modified Rete Network for Node-level parallelism

two-input node and some values that are tested from the token. The buckess in this hash-table are controlled by
locks that are implemented as qlambda closures. Figure 3-5 shows the structure of this hash table. This scheme

works because the probability that muluple tokens would hash to the same bucket is corsidered small. If they do
hash io tiie same bucket then they have to be processed sequentially.

In the above scheme, the Rete network reverts back to its original structure as shown in Figure 2-2 (except that
iocks are needed for executing the termuinal nodes). All the remaining locks that were earlier associated with the
Rete network are no longer present. Locking has now moved o hash-table buckets.

lzcsk teizt-nash-tasle rignt-hasn-zap.e
2xXIra- extra~
tsken-L.s5% deleas- “skan-..3% de.etes—
1153 iist

Figure 3-5: Hash table for memory nodes
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3.2. Conflict-Resolution Paratlelism
Dunng the confhict-resoluton phase one of the severzl pmduction instantiations in the conflict-set is selected for

execution. The method by which this producuon instantiation is selecied is called the conflict-resolution strategy.
OPS5 provides for two conflict-resolution s sirategies - LEX (lexical) and MEA (means-ends-analysis). The two

differ 1n the way a key s constructed for sorung various instantiations. The key for LEX consists of the sorted
ume-tag vaiues of the working-memory elements in the instantiation. The key for MEA consists of the time-tag of
the first *ork.-sv-ﬁem.,-ﬁ ciement in zl nstantiation, followed by the sorted time-tag values of the remaining

working-memory ¢lemena in the Lﬂiia;izaﬁéﬁ.

To perform conflit tescivtion. normally, the conflict-set is maintained as a sorted list of production instantadons.
Executing conflict-resol. ion in paraliel imposes the foliowing requirements:
¢ We must ailow multipie instanlations o be inserted into or deleted from the conflict-set in parallel.
a .05 o inalantiations, that is, where the delete request for an instantiation
is received before the add request.
s We would like to have the h.ghest pricny a:".s.a:"’w"z* available to the RHS evaluation process as
35ibl : tofe it-set data structure is not completely sorted.
To handle the first requirement, »e tuild an asynchrorous systolic priority queue structure in software [9] using
QLISP. In this smucture, nserts and Z2.etes are input at she head of the priority queue. These then asynchronously
find the nght p<-..on i the sored queue. A delete may annihilate an element if it is already

e
o

filter down untl they ;
present. If a Zzlate Joes nitfind a fomespending elemrent already there (conjugate wken problem), it locates itself at

ihe right location in the guane Wik 2 55 fag, and was for the corresponding add request to come by later. An
iert hehaves samilany. The key paanis that the highest prority instantiation is always available at the head of the
yueue, even if elzments are st periciatng Zown n the lower priority regions of the queue. The data structure that

we use for a single instantal 2 15 shown in Figure 3-6 and some related code is shown in

‘s’ﬁ
o,

¢

Figure 24,
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Figure 3-6: Representation of a production instance
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3.3. Speculative Execution of RHS
In the normal execution of a rule-based system, one would wait until conflict-resolution finishes completely
before starting to execute the RHS of the highest priority rule. However, in a parallel implementation, this may
.mply too sequential a behavior. Even if RHS execution takes only 10% of the time, this limits the maximum
speed-up to 10-fold. As a solution, we propose the speculative evaluaton of RHS in this paper. By speculative
2valuation of RHS we mean the foliowing. While the match and conflict-resoluticn are still going on, we make a
uess about the highest priority rule. (This i our case is simply the rule currently at the head of the conflict-set.)
"Ae start e+ aluating the RHS of this rule, i.e., gathering up the changes it would make to working memory in a list
~1thout actually changing the working memory). If our guess is proved wrong, that is whenever there is a change
n the rue at the head of the conflict-set, we simply create a new process 10 evaluate the RHS of this new rule. We
carrently do not zbort the previously evaluating RHS because aborting is not easy to implement in QLISP.
Furthermare, it is possitle that the evaluated RHS of the non-highest rule may come in useful on a later cycle.

The OPSS QLISP system provides a new action command sfeall, side-effect-free call which execute a user-
defined routines written in QLISP or in Lisp. These user-defined routines should not refer any giobal data which
may he modified by cother routines, because the system assumes that simplification should be valid at any time and
independent from any global context The algorithm of simplification is sketched below:
1. Check the type of operations.
2. If a working memory operation, caiculate all arguments and make a token.
¢ I make. make a tok2n of add and replace the original action with it.
« If remove, make a token of delete and replace the original action with it
» If modify, make a token of delete and a token of add and replace the original action with them.

However, if .. action conaains a fenction such as accept, acceptline, these functions are not executed.
Only omitied atnibuiz-value pairs are suppiied and the original action s replaced with a new action
which has ail atribute-vaive pairs.

3. if a side-effect-free call sfeall, do it

4. Ciherwise. process next actic

This simplification is quits similar o the argument evaluation for a Lisp funcuon with keyword arguments of the
C-rimon Lisp. The simpiificadon routine 15 invoked when the maximum production 1nstance of conflict-set is
-Rarged and stores a simplified form to the simplified form slot of the instance. Note that this simplified form is

.3 P.r any Ime, because ‘tis calcuiated with using only local values which is specified in an instance. Conjugate

Tars may Jreate unrecessary processes, but the current implementation does not abort them, because such an
_roring mechanismois ool easy o implement and the number of conjugate pawrs are not expected to be large.

4. Discussion

in this paper, we present the details of an umplementation of the OPSS5 producuon-system language using QLISP,
a parallel dialect of Lisp. We would iike 1o make the following observations:

» The number of modifications needed to the original lisp code for OPS5 were minimal to exploit the
diiferent kinds of parallelism. For example. 10 expioit the three kinds of paralielism described for
maich, less than 100 lines of code -out of a wtal of about 3000 lines in the oniginal code) had o be
madified or addeé. We believe that such a high-level programming approach provides very powerful
and flexible tools for research ia parzilel programming.

* The QLISP constructs that we us°d most frequently in our parallel implementaton are "{glet "eager ...)"
{0 spawn new processes aad ” 5da 1 ..., process closures for iocks. The code sections that are
txcked and the processes that a2 spawned ¢ of a few lines of lisp code with some but not much
recursion of uerzdon. On averags. we oxpect the individual tasks (o take about 1 millisecond of
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computation time on a 1 MIPS machine. This requires that the process creation overhead, the locking
overhead, and the scheduling overhead for the spawned tasks be significantly less than 1 millisecond, if
the suggested implementations are 10 be useful, If the overheads are much larger, then all the

advantages of parallel execution will be subsumed by the overhead.

« We are currently using a QLISP simulator t0 obtain some performance numbers. Our imyicmentation is
running, and we have just started getting some performance numbers. Unfonunate{y,_the simulator does
not model the underlying hardware very accurately, so we still do not have a good idea about the true
overheads involved. However, for reasons mentioned in the next point, this may not be a big problem
in practice.

o The parallel constructs provided by QLISP (glet, qlambda, ...) take a predicate that controls whether a
parailel process is actually spawned or not This convenient run-time method ot controlling the
granularity at which parallelism is exnloited is a very powerful mechanism. It makes it extremely easy
to modify code to adjust to differen. .mplementations with differing overheads. It is also convenient to
adjust the granularity depending on the load present on the parallel machine.

e As stated in the beginning of this paper, another advantage of implementing OPSS in QLISP, instead of
in Pascal or C, is that it is easy to embed the OPSS system within other Al systems (which normally use
Lisp). Furthermore, if there are complex functions in the RHS of rules, then these functions can also
use the parallel constructs available in QLISP, which is not possible in previously proposed paraliel
implamentations of OPSS.

* As a final means for improving performance for exising OPSS systems we are planning to directly
compile OPSS into QLISP code, instead of using an interpreter as we currently do.
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