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Load Balancing for Massively-Parallel
Soft-Real-TIhnie Systems

Max Hailpenn
Knowledge Systems Labora.tory
Computer Science Department

Stanfo-d University
Stanford, CA 94305

August 30, 1988

Abstract

Global load balancing, if p.actical, would allow the effective use of
massively-parallel ensemble architectures for large soft-real-time prob-
lems. The challenge is to repiace quick global communications, which is
impractical in a massively-parall.-i sysiem, with statistical techniques.
in this vein, we propose a novei approach to decentralized load bal-
ancing based on statistical time-series analysis. Each site estimates
the system-wide average load using information about past loads of
individual sites and attempts to equal that average. This estimation
proces is practical because the soft-real-time systems we are interested
in naturally exhibit loads that are periodic, in a statistical sense akin to
seasonality in econometrics. We show how this load-characterization
technique can be the foundation for a load-balancing system in an
architecture employing cut-through routing and an efficient multicast
protoccl.

*To appear in condensed form in Fron:sers "88: The Second Sympos;ium on the Frontiers
of Massively Parallel Computation. This material is based upon work supported under
a National Science Foundation Graduate Fellowship. Any opinions, findings, conclusions
or recommendations expressed in this publication are those of the author and do not
necessarily reflect the views of the National Science Foundation. This work was also
supported by DARPA Contracts F30602-85-C-0012 and MDA903-83-C-0335. NASA Ames
Contract NCC 2-220-SI. Boeing Contract W266875. and Di, .tal Equipment Corporation.
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1 Introduction

Our research group, the Stanford Knowledre Systems Laboratory Advanced
Architectures Project, is exploring the construction of massively-parallel,
object-oriented, knowledge-based, soft-real-time signal-interpretation sys-
tems. It seemed clear early on that some sort of adaptive load-distribution
scheme would be necessary to allocate resources to such dynamic systems.
Otherwise, in order to assure acceptable real-time per-ormance, the system
could only be lightly loaded, and the large-scale signal-interpretatioD prob-
lems the massive parallelism was intended to allow would not be possible.
The remainder of this section explains why we desire a scheme which globally
balances loads by migrating objects, and how we can exploit the somewhat
periodic nature of our systems' loads to do global balancing in a manner
appropriate to thousands of processing elements.

Much discussion in the load-distribution literature recently has centered
on the choice of load balancing vs. load sharing 1141. While load balancing
strives to keep all sites equally loaded, load sharing merely tries to prevent
unnecessary idleness. Loo. balancing is appropriate to object- oriented real-
time systems because

* real-time systems ne ,l to prevent long waits for processing--load bal-
ancing, by reducing the variance as well as the average of w-aiting times
better achieves this: also,

" migrating objects to balance current load tends to also balance the
futurf arrival of additional work at sites.

Tra 'itionally, decentralized adaptive load-balancing systems have been
local: tl:y balance loads in small neighborhoods (the neighborhoods may
be logicai rather than physical), and rely on repeated local adjustments to
achieve global balance. (For a clear ex "nple. see the descriptiors of diffusion
-n !12.131.; We find this inappropriate to our circumstances becaule

" modern interconnecion networks employing cut through or wormhole
routing red .ce the imp-)rtance of locality [71,

• local techniques can fil prey to oscillation and wave-front-like propa-
gation in the face of 'on-ideal conditions. and

* local technmques I ave d! fic.Ilty respond;ng quickly enough for dynamic
and time-critical svstenms.
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A global load-balancing system must somehow allow each site to estimate

the current (or near-future) system-wide total load, in order that it may ac-
quire or jettison sufficient work to bring its own load to the system-wide av-
erage. This seems incompatible with the constraints of a massively-parallel
system: a site in a massively-parallel system must wait a considerable time
to acquire global knowledge.

This apparent contradiction can be reconciled by using a stochastic time-
series model to use prior load information to predict current loads. However,
this approach is useless in most computer systems, as their loads are not very
predictable.

Luckily, the real-time systems we are interested in (and many others)
exhibit a different behavior. Their loads are periodic-not rigidly so, but
rather in the same loose, statistical sense as many economic variables are
seasonal. This periodicity is induced by sampled or scanned inputs and by
sample-to-sample or scan-to-scan consistency in the outside world. Period-
icity makes the loads more predictable, at least for lead times not greater
than the period. As the period is generally relatively long, each site can
havt complete knowledge of loads at least through one period ago. This al-
lows reasonably accurate prediction of current (or near-future) system-wide
loads.

Notice that the statistical nature of this approach makes it appropriate
to massively-parallel systems with thousands of processing elements:

" The large number of sites makes more straightforward methods em-
ploying global communications impractical.

* On the other hand. the large number of sites is necessary to make the
statistical methods valid.

We are not suggesting this approach for real-time systems which are
rigidly periodic; more direct use can be made of their periodicity. For exam-
ple, Yan's "post-game analysis" method [ 17] could be used to successively
refine a quasi-static mapping.

2 An Example Time Series

In this section we examine the evolution over time of the system-wide load in
one of our real-time systems-an aircraft tracking and classification system
[16]. We show that a simple stochastic model reasonably approximates this
time series, that it is consistent with a common-sense understanding of the
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Figure L: A sample of a load time series.

system. and that it allows moderately accurate prediction without recent
coniolete information. Two notes are in order:

" Only the earliest, simplest, most data-driven stage of the system was
operational when this data was taken; this results in a more regular
time series than would otherwise be the case. In particular. diagnostic
tests show our model to be incomplete, in that it misses a couple of
sub-periods caused by the structure of the computation. We expect
the structure of a complete system to be complex enough not to show
through in the load time series.

* The plots in Figures I and 4 below show only a typical interval out of
the larger time series which was analyzed.

Figure 1 shows the load over ten periods; each period is ten time quanta
long, and the load value for each quantum is an average total of task queue
lengths over that quantum. Notice that the pattern gradually shifts from
period to period. Also. ntotice that as the observed activity diminishes, the
system's performance varies from not quite keeping up with the input to
having a reiatively long period of quiescence between cycles. It is charac-
teristic of real-ti-: i systems that they are sized so as to perform acceptably
during peak p',::-2 . lven if this means idleness at other times: this allows
the periodicit, J F 1he input to show through as a periodicity of the load.
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The sub-periods referred to above are also visible in the graph-the coarse
sampling and small excerpt obscure it somewhat, but each major peak is
followed by two smaller peaks whose sizes correlate with each other and that
of the major peak.

2.1 Stochastic model

We analyzed this series using the methods of Box and Jenkins 1'3J, and iden-
tified as a suitable first-cut model for it a multiplicative integrated-moving
average (IMA) process of orders (0, 11 1) x (0. 1. l)10. This model has the
form:

t "- + ZC-lO - Z. a - at-I - Oat-lo + 8eat-11,

where z: is the system-wide load. a. i a white-noise series, and 8 and 0
are parameters. The structure of this process is more evident when written
uMsin the backwards shift operator B:

B'I- B"z= -8OB I-OB)a.

Adding the constraint that loads must be non-negative improves this basic
model.

This model. while suggested by statistical evidence, is alo plausible in
terms of the mechanism or the system. The non-periodic component of the
model essentially states hat the load persists. except that it is sub-iect to
random perturbations. Some fraction (4) of each random perturbation is of
short-term effect only, while the remainder lasts until counteracted: tMis fits
well with a birth-death view of i6rocesses. The periodic component of the
model is identical in form. and can be similarly justified: the aircraft under
observation (and thus the load pattern) remain constant except for random
perturbations, some fraction (I - 0) of which are long-lazt:ng en.ries or
departures from the field of obser,,ation.

This model belongs to the broad class of stochastic processes known as
ARMA tautoregressive-moving average) processes. It is interesting to ask
why this particular ARMA process should be chosen-might others not fir
as well? The answer is partiav that tis is thle simplest periodic ARMA
process whose periodic and non-periodic components are both:

o non-stationary (i.e.. they have no fixed I).

'T.Ihe equations in this -_tw- n are revrodu¢e with o charazgs n notatzotfn m 131
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* stable O-e.. they don't grow explosively), and

* t omogeneous 1 .te. evert-where seif-sinriiar exG':t for Ievet i

Naturally a hither-order process could -be used, which would fit better.
However, it is geueradlv preferable to use the simplest suitable model. An-
other possibility would be to drop the requirement of level Independence
by expanding the rndei to include a stationary autoregressive operator.
i.e- by making -t ARtIA 'autrorere-sive-inteigrated kOclaeae)rte

than merely NIXA- It can- be arge eacr a buirsystem will spawn -more
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Figure 2: Normalized cumulative periodogram ofredus .

2.2 Forecasting

The non-periodic component of the model is that which is conventionally
used for aperiodic computer systems; it gives rise to the familiar exponen-
tially-weighted average forecast function. The periodic component in effect
adds an exponentially-weighted average of corrections to this forecast, de-
rived from the experience at corresponding points in earlier periods. For-
mally, the best one-step-ahead forecast possible for the model is found by
assigning weights ir' to the loads j steps earlier, where

7rj = 01--),j=1 ...,9

irio = 09(l-0)+(I-G)

7rH 1 01°(- 0)+(1-0)(1-®)

ir, = OrJ-1 + O,'r- 10 - 0073-ii, j > 12.

Depending on the relationship between 0 and 0, the heaviest weight
in the forecast may either be on the most recent value, or on the one a
period ago. In the aircraft tracking case (and many others, we speculate),
there is more consistency from period to period than from instant to instant
(as aircraft are more inertial than processes). This leads tc the weights
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Figure 3: Weights of previous loads in best forecast.

illustrated in Figure 3, which were computed from the values for 0 and O
that best fit our sample series.

Forecasts can also be computed directly from the difference equation we
used to define the model. In either case, forecasts for greater lead times can
be calculated by repeated use of the step-ahead formula. (By lead time we
mean the time from when the total load is last known to when the forecast
is for.)

Since the period (in this case, the scan time of a radar) is long relative to
the communication latencies of the system, it is reasonable to suppose that
each site can have complete knowledge of all other sites' loads at least up
until one period earlier, with diminishing knowledge thereafter. It should
be possible in principle to make some use of the more recent, incomplete,
information to improve the forecast, given a model of the load distribution
with load balancing. In the next section we address this problem and show a
heuristic solution. However, Figure 4 shows that even forecasts made using
only data up through one period in advance are usually moderately accurate.
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Figure 4: Load forecast from data through one period earlier.

2.3 How typical is this example?

Though this section presented a case study of a single time series taken from
a single application, we believe the basic features are common to other sys-
tems as well. Preliminary results from experimentation with a passive radar
interpretation system [4] confirm this belief. The IMA (0. 1, 1) x (0, 1, 1)p
model used here may well suit many such systems, though its suitability
should of course be tested in each case. As well as testing the suitability of
the model to a particular application, it is necessary to tune the parameters
using sample time series. Systems with more than one period, for example
from heterogeneous sensors, would necessitate a straightforward extension
of the model.

One potential stumbling block in generalizing this technique to more
realistic systems is that higher-level processing tends to be triggered by
significant changes in the input (or by the lack of expected changes), rather
than by the input itself. For example, a system that not merely tracks
aircraft, but also attempts to deduce possible objectives, would reconsider
the objective of an aircraft that sharply turned, or that failed to turn when
it was expected to. This reduces the scan-to-scan consistency of the load. It
remains to be seen how troublesome this is; clearly this depends on how much
of the processing is special-case. When this issue came up in a discussion
with a group familiar with actual systems, the consensus was that the load
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on present-day systems is indeed quite periodic [15].

3 Incorporating Incomplete Information

The simple stochastic model presented in the preceding section only allows
load information old enough to be complete (i.e. available from all sites) to
be used. In this section we refine our model to allow incomplete information
(i.e., more recent loads from some sites) to be employed. We formulate the
problem, show an exact but impractical solution, and then present provably
good practical heuristic approximations.

3.1 The problem

In order to understand what use a site can make of recent but incomplete
information, we must refine our model to include how the system-wide total
load is divided among the N sites. A simple, plausible version of this is to
assume that the sites are independent instantaneously, but in the longer-
term are successfully balanced. Formally, the model we have in mind is

S + zt- 1 + zt-O - zt- 11 - Oat-1 - Oat-o + 00at-11

where we use z,,t for the load of site i at time t (with zt = Ei z,,t) and
similarly for a,,t and at (the ai,t are independently normally distributed,
with variance a2).

As long as all z,,t are known, the a,.t can be calculated, and thus used
for forecasting. When the information is incomplete, the deviation of the
known zi,t from the step-ahead forecasts can no longer be attributed solely to
their corresponding ai,t, but rather will also include the persistent fraction of
earlier unknown perturbations. The problem is to find the expected division
between these two sources of perturbation, as the expected value of each ai,t
should be incorporated into the forecast in its own way.

3.2 Exact solution

This problem can be solved by applying Bayes's theorem:

* We are given as a prior distribution for the a,,t that they are indepen-
dently normally distributed with some variance (72
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s We make observations which imply a joint likelihood for the ai,t that

is uniform where certain linear combinations of them (given below)
equal the known zi,t and zero elsewhere.

* We would like to find the posterior joint distribution of the ai,t, specif-
ically its expected value, for use in forecasting.

The non-zero regions of the likelihood function can be found by rewriting
the equation for zi,t in terms of the ai,t alone, using the summation operators
S = (1 + SB) and So = (I + So 0 °):

((1 - O)SB + (1 - O)SoB 1° + (1 - 0)(1 - 0)SSoB1 )at
zit= al~ +N

The posterior distribution can readily be written using Bayes's theorem,
provided one is willing to leave some messy integrals in it. Unfortunately,
this leaves numerical integration as the only way to find the needed expected
value. This seems to be too much work to expect a load-balancing system
to perform each time interval. What is needed is a pre-posterior analysis-a
general analysis done in advance, into which specific numbers can be plugged
at run time. Unfortunately, we know of no such approach to this problem in
the general case. In the next subsection we consider heuristic approximations
appropriate to our intended implementation. The analysis above serves as
the standard by which the heuristics are judged, as well as suggesting them.

3.3 Heuristic approximations

The simplest heuristic is to simply assume that the full deviation of each
known load z,,t from its step-ahead forecast is purely its corresponding ai.t.
This h- -.i-tic is actually the truth (given our model) for the first time-
quantum with incomplete information, and can be shown to be a conser-
vative apptfoxirnation provided there is less than a period of incomplete
information. By a coziservative approximation, we mean that this heu'ris-
tic is guaranteed to be mcre accurate than simply ignoring the incomplete
information. This is becad5e mistaking "he reta:"ed portion of prior pertur-
bations for current locr*uirbation leads to it's being erroneously re-multiplied
by (1 - 0), i.e. underestimatedi.

We can improve this approximation by taking advantage of one feature
of our intended implementation. The implementation we suggest in section 5
uses a randomized style of information spreading known as "rumor monger-
ing" which spreads each site's load information to an exponentially widening
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fraction of the other sites. Thus the amount of load information a site has

drops off exponentially with recency, and only the earliest incomplete load
information is of any real significance.

In particular, for realistic parameters (e.g. a spreading factor of eight)
the only significant improvement that could be made in the above simple
heuristic would be to better account for the deviations observed in the sec-
ond incomplete-information time-quantum. Moreover, this division between
the first two incomplete-information time-quanta need not make use of in-
formation from later time-quanta, as such information would be very weak
under these assumptions. This leaves a tractable two-quanta version of the
general prohlem of the preceding subsection.

The ai,t from the N,, non-reporting sites of the first quantum can be
lumped together, as can those from the N, reporting sites of the second
quantum. This is because of the symmetry amongst -.hem. We will call the
contribution of the former to the second-quanta deviations X and that of
the latter Y. Our prior distributions for them are independent, normal, both
have mean zero, and (by elementary probability theory) have the variances

L72 = 2 0'Na
N2

2 = Vr ( 2

Y - r 1

We know that X and Y sum to the observed deviation, 6, of the second-
quanta loads from their step-ahead forecasts. Therefore, the posterior dis-
tribution from Bayes's theorem gives us the following posterior expected
values:

00- 2 /2o2-(6-X)2 /2a2 d

E(X) Xe Yd

=6 e X-z6) 2/2aYdx

2'. + 6r2

E(Y) = 6 +'2

Thus we can readily at run time use the observed values of 6, N , and Nr to
calcuiate a very good approximation to the best forecast possible -[th the
avaiiable information.
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4 Prec.-Auie f S-c3t

In this se -- v & x yze th potential for" practical utility of cur load-
character .c _nei -,. We show that for the large numbers of sites char-
acteristic ot massivel. )arallel architectures, our scheme provides load esti-
mates which are accui %te enough to be useful for load balancing.

We can use the model of section 2 to calculate probability limits of
forecaszs-that is, the region around the forecast in which the actual system-
wide ioau will lie some specified fraction of the time. Additionally, the more
detailed model of section 3 specifies how the individual sites' loads can be
expected to be distributed about the system-wide average load. What is
most i.aeresting is combining these two, in order to determine

" what fraction of the sites ca.1 be expected to be over- or under-loaded
at some significance level, and

* how much relative error can be expected in the amount of work trans-
ferred between sites, due to erroneous forecasts.

Happily, we show that the accuracy of the forecasts relative to the standard-
deviation of the site loads goes up with the square-root of the number of
sites, so that for massively-parallel systems the uncertainty in the forecasts
;s unproblematic (assuming the validity of the model).

4.1 Probability limits of forecasts

The conditional probability distribution of the system-wide load about its
forecast value is simply the sum of those of the at not included in the forecast.
The error in the forecast will thus be normally distributed with mean zero
and variance increasing with lead-time. For the IMA (0, 1, 1) x (0. 1, 1);
model, if the forecast is made using complete information only, with lead
time I < p, the variance is

V(I) = (1 + ,- 1)(1 - 0)1),Va .

We can use the above formula to calculate approximate probabihI.. ,dits
for t ,e f-'iecasts by subst;tuting an estimate for ',. One approach would be
to estimate it using the sample standard deviation from prior tun3. Prior to
the introduction of load balancing, the detailed model of section 3 certainly
doesn't apply, buc the system-wide model of section 2 presumably does, at
least approximately. Therefore. the sample variance of the system-wide load
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should be used as an initial estimate for Na2, rather than starting with the
%mple varizpce of individual site loads.2 If the system-wide load sample

standard d- viation is s, then we can estimate that %.' probabilitye the
actual loa' differs from the lead I forecast by more t.

uC/23 J + Y!-1(1-6)

where u, 2 is the E/2.tail-area point of the unit norman tribution. Notice
that thes bounds are for the total load--the standard viation, and hence
probability limits, for the average load are smaller by :or of N.

4.2 C- mparison with the distribution of si, e loads

Our mod(: asserts that the loads of the individual sites at any time are
normally distributed about the system-wide avertge load with standard de-
viation a,. We can compare this with the standard deviation of the lead 1
conditional probability distribution of the a~erage load, which we derived i:,
the previous subsection. The latter is larger by a factor of

+ (1- )(I - ) .

the factor of ,v results from averaging V independent deviates.
This implies that for large systems the forecasts will be accurate enough

to be useful. For example, if the system of section 2 could be spread among
1024 sites, even one-period-ahead forecasts would have a factor of 27 lower
standard leviation than the site loads. Thus virtually ad apparent over- or
under-load would be statistically significant, and the relative error in the
amount of work transferred wo'i!d be small (roughly 1/27).

5 Load-balancing Mechanism

In this section we outline a load-balancing scheme employing the load-
characterization nmethodology of the preceding sections. Our scheme relies
on a "rumor mongering" style of information 5pieading f9], which appro-
priate to our architecture. We show th.t the mechanism not only allows
sites to assess thel load with :.fspect to the system-wide average, but also

2W 'cd~ n-rote ft- :ormula in terms of the pef-site a2 in order to be notationally
n with qpt lon 3.
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allows overloaded sites to rrliably find sufficiently underloaded sites to whiCi
objects can be migrated.

If each site stores its knowledge of all sites' load histories, then they can
spread their information around by a process of "rumor mongering"-that
is. by randomly sharing information [10,1,2,9]. Naturally, the histories can
be compressed by discarding information old enough to 'he scarcely relevant
and by combining together lods from all sites where they all are known.
Some information may be young enough to relevant to forecasting, but old
enough to be well-known. This information can be retained but not passed
on- ' ; has a good discussion of such issues.

Our CARE ensemble architecture [8] uses a rut-thiough interconnec-
tion network, so latency is not proporrional to distance (in the absence of
contention). Additionally, it supports an efficient multicast protocol (5].
Therefore, we suggest that the information spreading be achieved by each
site periodically multicasting its information to a random sample of the
other sites. While the number of sites that each site will hear from in any
given period varies, it can be shown that the distribution (a binomial distri-
bution, rapidly approach;ng a Poisson distribution) is such that a paucity of
information will be rare. even with L quite moderate sample size, e.,-. eight.

Upon receiving a load-information message, a site should in'.egrate the
information into its own knowledge, and then use the time-series model (pro-
vided a priori based on exper;.-,Lents with the particular system) to estimate
the current systm-wide avw rage load with probL ,ity limits. It should then
compare this predicted av, rage with its own curient load, and with the load
of the sender at the time ,f the sending. If the recipient appears significantly
underloaded and the sender appears significantly overloaded, a request for
work should be sent back.

This is a combination of random gossiping to distribute the information
needed to decide whether and how much work to transfer, together with
polling/bidding to .Patch up the participating sites. As with all bidding
schemes, some prc.utions are needed to avoid races. The underloaded
site should not place any other requests for work until it receives work or
an apology from the overloaded site. As the inter-arrival time for messages
from overloaded sites should be high relative to the round-trip message time,
few conflicts should occur.

The bidding could be reversed (overloaded sites could ask a.nderloaded
sites to accept work), but this would require that an extra message be sent.

The system as we present it can best be classified as receiver-initiated (11],
though in a sense the sender initiates the proco.ss by multicasting its load
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information. This confusion of terminology results from our integration

of the global-information-spreading al.d partner-seeking components of the
mechanism.

It should be rare that an overloaded site cannot find enough total un-
derload among the sites it samples to match its own oveiload. For example,
suppose that the loads are normally distributed (as they art: in the model
of section 3), and that the saraple size is eight. Of the eight sites sampled.
it can be expected that four will be un ;erloaded. The expected value of the
absolute value of a normal deviate is 2/v/2, or about .8 standard devia-
tions, so the four underloaded sites will on the average have approximately
3.2 standard deviations worth of underloai. But the originating site must
really be far out on the tail of the distribut>on to have more than 3.2 stan-
dard deviations worth of overload. Notice that it is impossible t0 make as
strong a statement in the reverse direction-this is an additional rea.on to
favor a receiver-initiated transfer (it is more important for overloaded sites
to reliably find underloaded sites than the converse).

The only aspect of load balancing not addressed by this mechanism is the
choice of which objects to migrate. Here again the real-time nature of the
system must be addressed. In general neither the high;est- nor lowest-priority
objects are best migrated, so as to neither unfairly advance a low-priority
object nor hold up (due to migration time) a high-priority object. Chang
addresses these issues in (61.
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We implemented an experimental classification system in ConClass to evaluate the
performance of ConClass. This system classifies observed aircraft by using continuous
abstract radar signal data.

This research is a part of the Advanced Architectures Project at the Knowledge Systems
Laboratory at Stanford University, a section of which has been dedicated for research of
distributed processing [Rice 89].

In subsequent sections we describe the methodology of parallel classification problem
solving, the implementation of ConClass on a distributed system, and finally, an evaluation
using the experimental application.

2. Parallel Classification Methodology

2. 1. Problem Decomposition

A cl .ssification problem can be structured as a directed acyclic graph whose nodes are
decomposed subproblems. A classification solution of decomposed subproblem can be
supplied to other subproblem solvers. A solver may synthesize other classification
solutions. Propagation of problem data and solutions is hierarchically organized in this
manner. Thus, classification problem solving can be organized intrinsically hierarchical and
distributed.

Trakr rcraf

AircraftPlatform

O Classifiers

- Input-Interfaces

Global Information

Figure 2.1. Hierarchical Classification Configuration
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Figure 2.1 shows an example of a problem solving system which classifies aircraft
represented by radar signals. We denote such an aircraft problem object a Platform. This
system solves classification subproblems such as aircraft type and flight course recognition
and then provides final classifications such as commercial, military, or a smuggler's
aircraft. Example solutions are shown in Figur. 3. Attribute values of platforms change
over time and the classification state of the sy:. m varies according to these data. The
solutions may change due to global information such as flight plans and ground
circumstances as well. Classification system can accept different kinds of problem inputs
such as aircraft location and velocity, observed maneuverability, and radar signature.

Thus, classification problem solving has characteristics suitable for parallel processing
using decomposed subproblem solvers especially for continuous dynamic problems. We
implemented ConClass using such inherent characteristics.

The parallel processing in ConClass is designed using decomposed classification
subproblem solvers. The ConClass system represents those problem solvers as parallel
processing elements and allocates them directly on computational hardware components.
This decomposition scheme makes designed concurrency effectively correspond to actual
parallel computation. The scheme makes it easier to anticipate and evaluate the system
behavior for obtaining efficient concurrency. We call a decomposed problem solver a
classifier. We call the problem solving network consisting of the classifiers the classifier
network. A classifier whose classification is derived by other classifiers is denoted a super-
classifier of those classifiers. A classifier whose solutions is synthesized in other classifiers
is called a sub-classifier of those classifiers. Classifiers can act concurrently and
dynamically when problem data and solutions are propagated over time.

Problems in ConClass may be created dynamically such as an aircraft platform captured by
a radar system. In addition, ConClass is capable of manipulating multiple sources of a
continuous problem. ConClass has an object which links problem objects to the entrance
classifiers. We call the linking object an interface-objeLt. When a problem is created
dynamically, the problem object recc.ives references to the entrance classifiers from an
interface-object and starts sending them problem data.

A classifier has known classes of phenomena into which problem object-. 2re cla-'sified as
solutions. We call such a class a classification-category. If a classific.,cecds in
classifying, it sends the solution to its abstract classifiers, that is, super-classi.itk The
abstract classifiers classify the problem by using the solution and propagate their
classification solutions in the same manner. Each classification computation is a
decomposed subproblem solving mentioned above. The ConClass classification system
may have more than one of the most abstract classifiers to obtain different kinds of
solutions to the entire classification problem.

2.2. Load Distribution

The research goal of ConClass is to implement efficient distributed processing as well as to
develop a framework for describing and decomposing classification problems. In order to
distribute decomposed problem solvings, we have two schemes: replication of objects and
dynamic distribution of problem solving tasks.

A classifier acts when it receives a solution from its sub-classifier and when the sub-
classifier changes the solution. Therefore, classifiers that are lower in the hierarchy usually
execute a larger amount of classifications than those higher in the hierarchy. Even in the
same level of the hierarchy, classification computations may differ between the classifiers.
. rder to achieve efficient load balancing to such objects which can have varying
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instantiates the classification-category corresponding to the hyp4A hesis as a newly creat--
computation object. This production sche -~ ;' f an initial hypothesis tor a given problem. on
the classifier network7 is the initial hypothusis formation as shown in Figiure 2.2- We call art
instantiate,- object of a clapsificatiorn -category class.;e-isane

Dyna...c flypothr-sis Maintenance:

One of the most abstract clasSiiers, which forms a hypothesis, makes i.1ts sub-classifiers
instantit -e ithe, zlassificatiot,-ittegories which derive tcni hypothtsis. These classifiers
propa -a e the_ instun~lation .r' -,Ia.siLication -categorie~ z o their sub-classifiers in the zarme
manner. When ibe -r-trance classifieis rnake classified-instances, the- proble.-. object which
receives the hypoithesis obtains li.:Gks t ,-hose .lassificed-instances The reason for Creating
cI,,ssifieid-.-nstancfe-! backwards in ttlis in-effod is so zhat only required classified-instances
are instantited. 'Ihe set of created clnossi ied-instances :As an instane, network.

PligPlatform

~.p~wnedObjets. lassfiedIClasse

F ight23 Dyami yohss aneac
Probem dta i proagatd thogh isisac ewokt utf hecasfcto

solution in theclassifid-instaces. If classiicto ofacasiidistnegt
disprved, he clsiid-insance iscars itelf, pr oaen h eae ouint t
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super-ciassifierb and! sum. -classified-intitances, and notifies its sub-clas.siffkt. of ;its
vin:nrat-lo. These sub-classifleis discard their c.-assifie-d-instances which hav ' deriVL Ully
the disproved clasSification solutiont. If u -ls;,disac derives anothef
Classificatio.- s'wtion it is retained. If a supr-classifi -d-instance is discarded by thC
n-gu-ion. it execu-ee the arw: Yrxzcedure. When -;h.: mrt am ia%:; Clas~ified-instamee ig
disc .2-d, the hypothesis as a problem soluion is denied. this scheme or inst-ai;-6isting,
*ustifying. and discrdin li n~: tietwork is the *Yrnmc hypothesis rnaintenatice a,"
;hown in Figure 2-3.

While instantiatinig and discardinig ar instance network, piolblem may vary
continuously. When a ciasSiffr reeives e. 1olutiorc from its sub-classifier aft-r crating an
clas~iified-instan.-e, the problem data for the corresponding cilas:-ification-categ-.Y is
forwarded ,.- the cia~sified-instance. After a classifier recognizes an instantiition in INZ
super-classifier, it senids the problem data to the super-classified-in.-Oncte c tly. If a
classifiedl nstance is eliminated. the problem~ data is forwarded to it5 A
classiifieo-insiance is acting for a while ^,or the data forwarding even after it is discrt~
The classified-instance is actualy discalrded when its sub-classifier discards its referenice.

A problem which bas a hypothesis mzy succeed in forming another hypothfesis so duat the
classifier network continues to work classifying the problem. In this circumstance a
r assifier does not irnvcee c!39ssificatiomis for the instantiated classification-categories.
,'herefore, the classifier network can reduce its computation load after the hyponthesis has
been formed. When a problem has more than one hypothesis simultaneously, those
classified-instanc-s needed for both of these I ypotheses are shared on the same instance
network.

An instance network is organized only after a solution is formed in one of the most abstrac.
classifiers, ;-i order to create longer-lived classified-instances. Less abstract classification
acts more treque-ntly due to the problem propagation scheme of ConClass. If a classifier
lower in the hierarchy instantiates a classified-instance, it may be quickly eliminated by a
reclassification. Creation of such an ephemeral distributed object is expensive to manage.

3. Implementati2n of Coniass

3. 1. Computational Environment

We developed ConClass on a simulated distributed-memory multiprocessor system called
CARE [Delagi 87a] on a Lisp macHne, Explorer', and implemented ConClass in a
distributed processing language called LAMINA [Delagi 87b].

CARE is a distributed-memory, asynchronous message-passing architecture. CARE is
simulated by a general, event driven, highly iirstrumented system called SIMPLE. CARE
models 1 to 1000 processor- memory pairs communicating via a packet-switched cut-
through interconnection network. Message delivery between processing elements is
reliable, but messages are not guaranteed to arrive in the order of origination.

LAMINA is the basic language interface to CARE and consists of Common Lisp [Steele
84] and Flavors [Weinreb 80] with extensions. The extensions provide primitive
mechanisms and language synt- for expressing and managng computational locality in
each processing element and c( .icurrency between processing -.lements. Three styles of

CARE currently runs on Explorer, Symbolics, Sun-3. and DEC Station 3100.
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pror.amming are supported: functional, shared-variable, and obje.t-oriented. ConClass
system is implemented in the object-oriented language subset of LAMINA where we
rcpresented ConClass objects such as classifiers by means of LAMINA objects.

Application (Conceptual)

I Application Developer / Input Interface

Application Specification (Specification Language)

ConClass Compiler

Specificatior r.epresentation (System Language)

I Syatem Compiler

System Specific.ation (Internal Language Object)

Initizi'izer

Executable Code

Figure 3.1. Representation Specification Hie.- archv

3.2. Problem Description and Solving

Figure 3.1 shows the hierarchy of representation specifications and executon components
in ConClass system. ConClass provides application developers with an eavironment for
describing and decomposing classification problems. Figure 3.2 shows an example
classifier definition in the application specification. The ConClass compiler translates
application descriptions to object definition representations. 2 The initializer initiates
LAMINA objects according to the definitions and allocates them on CARE processing
elements.

ConClass system provides a development environment where application developers can
specify classifier definitions and relationship between classifiers and interface-objects.
Classification in a classifier is composed of classification-categories. A known class of
phenomenon into which unknown phenomena are classified is defined by describing
templates in the classification-category. A template i. a conjunction of attribute values used

2 We do -nt have the ConClass compiler implemented to date. We specifi,-d the :xperimental system
described in section 4 diacctly in the object specification representation. Howcver, the scheme for
representing and decomposing problems was efficient for development.
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in the classification-category and its classifier. An attribute can specify its condition by
means of a value, a set of values, or a range of numerical values. A template succeeds in
matching a problem object when the problem object's attnuutes satisfy the template value
conditions. An attribute is problem data or a classification solution brought by thc other
classifiers or problem objects. An attribute can also be computed from other attributes anew
in a classifier. A classification-category may have more than one template and it succeeds in
classifying if the conditions of one of the templates are satisfied.

#1 cdwAcr-zkn I#
(Speed
: Classification-Categories (Slcw-Current-Speed

Medium-Current-Speed
Fast-Current-Speed
Slow-Max-Speed
Medium-Max-Speed
Fast-Max-Speed)

:Classifier-inputs ((X-Position Input-Interface)
(Y-Position Input-Interface)
(Z-Position Input-Interface)
(X-Velocity Input-Interface)
(Y-Velocity Input-Interface)
(Z-Velocity Input-Interface))

:Classifier-Database ()
:Classifier-Attributes (Current-Speed Max-Speed)
:Super-Classifiers (Track-Type Current-Platform-Behavior)
: Interface-Objects (input-Interface)
:Output-Objects ()
:Locations (25 26 27 28)
:Dynamic-Site-Positions ()

#1 , #
(Slow-Current-Speed
:Classifier Speed
:Category-Inputs ()
:Category-Database ()
:!Category-Attributes ()
: Classification-Templates

templates: (template ... )
template: (template-slot...)
template-slot: (var (capture-values lock-values)

(capture-confidence lock-confidence))
values: (:set value... ),

(:range (:open value) (:close 'luc)),
(:range t (:open vaiue)), ...

((1.0 (Current-Speed ((:range (:open :infinity-) (:close 5000))
(:range (:open :infinity-) (:close 6000)))

(.7 .5)))))

Figure 3.2. Sample Classifier Definition

Problems manipulated in ConClass can be continuous and dynamic. If problem data causes
attributes to vary around the threshold of template conditions, a classification may change
frequently. Therefore, a template condition can be specified by a set of two kinds of values
which we call capture value and lock value. A capture value and a lock value are used when
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unknown problem objects are classified and when classified solutions are justified,
respectively. The range of a lock value needs to be larger than that of a capture value.

Classification solutions and attributes can carry confidence values. When a template's
condition is satisfied, its classification confidence is the minimum value of attribute
confidences in the template. A template can specify a minimum requirement on its
confidence value, which must be satisfied for a successful classification. If the conditions
of more than one template are satisfied, the classification confidence takes the maximum
value of those template confidences. Some kinds of symbolic confidences are allowed to be
used. This scheme is one of the most conservative methods to calculate confidences. A
detailed description of confidence is illustrated in [Buchanan 84].

When a classifier succeeds in classifying, if it is one of the most abstract classifiers, it
instantiates an initial 'iypothesis. Otherwise, it propagates the classification solution with
specified attribute values to its super-classifiers. When a classification confidence is
changed significantly, the change is propagated to the super-classifiers or to the super-
classified-instances.

Application developers describe definitions of classifiers involving classification-categories
and relationships between classifiers and interface-objects. Developers also define attributes
of interface-objects. Developers need to define procedures for evaluating attributes and
those confidences used in matching problem objects to the templates. ConClass generates
the definition of a classified-instance according to the definitions of the corresponding
classification-category and its classifier. The example shown in Figure 3.2 is the definition
of a classifier with one of its classification-categories, which is to classify aircraft speed.
This is a definition used in the experimental application described in Section 4.

3.3. Spec; d Internal Controls

ConClass does not use physical synchronization schemes which may result in a saturation
effect. ConClass incorporates embedded control features to manage a variety of
asynchronous aspects of distributed processing.

We can use managers or schedulers responsible for creating and maintaining dynamic
objects, synchronizing different processes, and coordinating searches. However, such
agents may limit the system throughput when managing synchronization. Our related work
reports .arious problems about such scheduling [Noble 88, Muliawan 89]. Schedulers can
be overloaded, however, there are no clear-cut rules for the decomposition of such objects.
ConClass uses no scheduler objects and handles no physical synchronization between
objects.

In ConClass, variation of a problem object is propagated on the classifier network and
instance networks by classifying and reclassifying the problem. The creation and
elimination of instance networks are achieved by means of the propagation of creation and
discard requests of classified-instances between objects, respectively. These propagation
schemes do not require synchronization. However, such propagations may occur
simultaneously and cause state conflicts in an object. For example, a classifier may receive
a request for a c i:. sed-'nstance creation from its super-classifi: .:!e its sub-classifier is
sending message of disproving the classification. Each object of ConClass manages
various requests efficiently considering the state transitions of instantiation and use no
synchronization which may make other objects idle.

Classifiers and interface-objects are represented by means of LAMINA objects as described
above. Classifiers and interface-objects communicate with each other using the message
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passing facilities of CARE and LAMINA. Messages between objects in ConClass are not
guaranteed to arrive in the order of origination because the message passing on CARE is
asynchronous. For example: An object may receive stale data later than brand-new data.
When a classified-instance is discarded shortly after being created, its sub-classifier may
receive a discard request earlier than a creation one for its related classified-instances.
ConClass adopts embedded features to properly manipulate all messages that are in the
wrong order.

Classified-instances and problem objects are created dynamically and those references are
propagated to other objects. A dynamic object is typically created on a different processing
element than that of the creator acco. ding to the object allocation scheme described below.
Although the creator does not receive a created object's reference until a later time, it keeps
indirect reference to the new object, which can be used to send messages. The creator
sends the indirect reference to other objects if the new object is being created so that the
messages from those objects to the created one are sent via the creator indirectly. The direct
reference is later propagated to those objects that hold an indirect reference automatically.

These features were useful for implementing the ConClass system.

3.4. Load Balancing

It is one of the goals of parallel distributed processing to allocate objects over processing
elements such that the work they do is balanced as evenly as possible. We adopted the
same modified random load balancing used by our related work [Nakano 88] to allocate
classified-instances. This scheme involves random selection for dynamic objects from the
set of all processing elements excluding those used by static objects if there are fewer static
objects than processing elements. Otherwise, the dynamic object is allocated randomly
from the set of all processing elements. The random allocation of classified-instances is
reasonable because it is difficult to predict that any given classified-instance will be busier
than another and because it is not suitable to allocate on the basis of statistics concerning
non-permanent objects. In fazt, empirical evidence suggests that in the absence of such load
knowledge, random allocation is optimal [Nakano 88].

We allocated" another sort of dynamic object, problem object, evenly on the processing
elements dedicated to dynamic objects. Because problem objects, for example, aircraft
platforms, exist more permanently, processing elements are assigned using a round-robin
method.

Static objects, classifiers and interface-objects, can be replicated as much as desired as
described above. These objects are allocated to the processing elements dedicated to static
objects in advance according to domain knowledge, statistics, and user definition3.

4. Performance Evaluation

We implemented an experimental application system in ConClass and confirmed the
efficiency of the ConClass system.

3 We defined the allocation of static objects in implementing the experimental application system because
of the absence of the ConClass compiler.
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4.1. Experimental Problem

We have been developing an aircraft radar signal interpretation system called AirTrac for
tracking and classifying aircraft. The AirTrac system is composed of three major modules:
Data Association, Path Association, and Platform Interpretation. Data Association accepts
aircraft signal reports of multiple radar systems at regular time intervals and periodically
abstracts the radar signal reports into observation records for individual signal tracks
[Nakano 88]. Path Association reports hypothesized platforms to which the periodic
observation records are associated to form tracks for the same aircraft [Noble 88, Muliawan
89]. Platform Interpretation analyzes and interprets information contained in platforms and
provides continuous real-time asse.-sments about the observed aircraft.

Figure 4.1. Experimental Classificaion System

The problem selected for our experiments is a simplified experimental implementation ofAirTra's Platform Interpretation module. The configuration of :he experimental system is
shown in Figure 4.1. Each sub-problem solver is implemented by means of a classifier and
its classification facilities. This system consists of eight classifiers which have between two
and ten classification-categories. The system input is a series of simplified emulated aircraft
platforms which have aircraft position and sizes information.

The experimental application requires the following:

° The classification system is a hierarchy of classifiers which have multiple fan-in and
fan-out.

• The classifier network has cut-through connections.
° The problem data is continuous and problem solving in each classifier is potentially

dynamic.
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These requirements are in order to evaluate the experimental system in an environment
where configuration and computation are uneven between problem solvers. The
experimental system meets these requirements.

4.2. Experimental Results and Analysis

We experimented with the data of 50 aircraft pltforms which appeared in real-time
successively and were classified and reclassified typically three times in the classifications
lower in the hierarchy. The experiment has two parameters: the number of processing
elements and the data rate. The numbers of processing elements used were 8, 16, 32, 64,
and 256. The data rate is the frequency at which problem data is fed into the application
system. We can change the data rate by altering the sampling frequency of observed
problem data. This scheme, however, will change the frequency of classification in relation
to the data rate. In order to maintain the classification quality between the data rates, we
changed the data rate by altering the time interval of feeding the same set of data. Thus, the
experimental application system was performed using the time of the emulated data while
we evaluated the performance of ConClass svstem using the simulation time of the CA.RE
system.

.................. i......... .... ... ................. ".............. ................. .................... ...

16 .... ............. ......... ........ ............. ............. --......... .... ....... ......

D a t ----- -- -----.... ...... :" " .............. .. ....... .. ..... .- . ... ....... .... -

Data Rate 4

2--

16 32 64 128 256

Number of Processing Elements

Figure 4.2. Speedup Curve (based on sustainable data rate)

The experimental system achieved a linear speedup against the number of processing
elements as shown in Figure 4.2. The speedup was based on the sustainable data r-te, the
maximum data rate for which all measured latencies stabilize and do not increase over time.
See appendices for the observed latencies from which the speedup was evaluated. The load
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balancing in ConClass uses two methods: replication and allocation of static objects, and
the assignment of processing elements for dynamic objects. We assumed that we could
optimize these factors using domain knowledge and statistics. Therefore, we fine-tuned the
factors in the experiment so as to optimize the results. Another reason for the optimization
was to evaluate the processing speed with respect to achieving an efficient concurrency. In
addition, we implemented the ConClass system paying attention to even the execution
efficiency of Lisp functions. This was to more precisely evaluate the system overhead for
parallel processing.

The CARE simulation system has an user interface where we can observe a variety of
statistics and latencies of CARE components. Figure 4.4 shows the processor utilization
graph whose upper half specifies utilization of evaluators which execute actual data
computation. The lower half sp cifies that of operators which manage the communication
between processing elements. -n a typical classification situation, for example, ConClass
was able to use 28 to 30 proce,,sing elements at a time out of a possible 32. Including the
initialization of ConClass, which brought about considerable computation, the overall
average of concurrent utilization was 21 processing elements. Because the classification
computation in ConClass is coarse-grained, the operators are not busy.

In ConClass, the concurrency designed by an application developer can correspond
effectively to actual computational hardware components. We were able to implement the
experimental application system efficiently using this scheme. It was easy to estimate
replication and allocation of objects and assign processing elements. The ConClass
development environment for describing and decomposing classification problems was
useful. ConClass execution facilities excluding schedulers and various synchronization
schemes improved the efficiency of parallel distributed processing.

PROCESSOR UTILIZATION
Time Evaluators & Operators Busy

: ;current 0 : Average

20 ::7-

7 . .. .. .. . .rr1f.1r 1--i "n
illlliU itl:

SO 4 9 12 16 20 24 29 :32

Resources Busy

Figure 4.3. Processor Utilization

Table 4.1 shows the frequencies of messages sent between objects to solve the
experimental problem. These frequencies correspond to sustainable data flows. Most
messages are propagated between classifiers and between classified-instances. Messages
can be sent between the classifier network and instance networks while creating and
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discarding classified-instances. Data propagation messages can be sent from classified-
instances to their related but uninstantiated classification-categories. The former messages
are not frequent because classified-instances are long-lived according to the instantiation
scheme of ConClass as described above. The latter situation is fairly rare due to the
classification problem's structure. The ratio of number of messages to classified-instances
decreases as the number of processing elements increases. This is because the instantiation
time becomes longer compared to the experimental simulation length. However, this is not
a factor which can affect the independence between the classifier network and :nstance
networks. Although more dynamic problems may increase the interactions between the two
kinds of networks, the experimental results show the efficiency of a dynamic load
distribution of ConClass.

Table 4.1. Message Frequencies

Number of Messages (Percentage)
Messages ... . . . ............. . . ......

Processing
Elements 16 32 64 256

To Classifiers 5448(51.0) 5445(51.2) 5527(56.1) 5409(79.3)

From Instances 313(2.9) 268(2.5) 389(4.0) 131(1.9)

To Classified-instances 5248(49.0) 5181(48.8) 4317(43.9) 1409(20.7)

From Classifiers 167(1.6) 180(1.7) 273 (2.8) 206(3.0)

5. Conclusions

In this paper we have described the parallel solution of classification problems. The
developed framework, ConClass, is capable of classifying continuous real-time problems
dynamically and concurrently.

ConClass provides a high-level structure for describing and decomposing classification
problems. The ConClass classification system can handle multiple sources of problem
inputs as well as dynamic global information. A ConClass application can use static
knowledge to solve problems in the system. Such a high-level framework was useful in
implementing the experimental application in ConClass.

Classification pioblem solving can be structured hierarchically by means of decomposing
problem and synnesizing solutions. We implemented the ConClass framework based on
this characteristic so that decomposed problem solving modules were directly represented
as distributed processing components. Therefore, the concurrency designed by developers
is effectively reflected in the actual parallel computation and this scheme makes it easier to
anticipate and evaluate the system behavior. Moreover, a decomposed classification
problem solver, consisting of a classifier and its classified-instances, is very uniform in
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terms of its basic structure and execution mechanism. These features are useful in the
design of concurrency and the implementation of efficient distributed processing. The
classification execution in ConClass is intrinsically parallel in contrast to our previous
problem solving frameworks [Brown 86. Nii 89, Saraiya 891 which report various
problems of parallel processing.

We implemented the replication features of static objects for preventing a particular object
from being overloaded. The dynamic creation of problem o;jects may cause the system
load to incase. We incorporated the load distribution sczme by means of dyna ,,ically
creating instance networks which maintain hypotheses as solutions of problem objects. We
implemented an efficient execution mechanism for ConClass without using schedulers or
synchronization schemes which are liable to be bottlenecks. We confimned the efficiency of
the parallel processing and the load balancing of ConClass by an experiment.

ConClass is a concurrent problem solving ftrework using a structural hierarchy of
classification problem and continuity of problem data. Real-time problem solving systerrs
are increasing in importance and we realize the advantage of the ConClass framework.
Furthemiore. ConClass suggests a construct for dynamic information fusion and multiple
assessments. AirTrac, a part of which we selected as an experimental application, is an
example: AirTrac fuses informnation such as radar signal- flight plans. ground information.
aircraft knowledge. and geography. AirTrac reports real-time assessments such as aircrmft
classifications and predictions of flight courses and aircraft actions- The hierarchical
structure of decomposing a problem and synthesizing solutions are useful and effective fo.
implementing these functions.
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Appendices

A 1. Problem Data Profile

Figure A1.1 specifies the data used in the experimental classification system. This figure
shows the numbers of total and new problem objects at every data input.

40
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The following are observed latencies from which we evaluated the sustainable data rates.
We observed the iatencies of forming initial hypotheses, making other hypotheses, and
disproving those hypotheses. We compared the iatencies with the same object allocation on
each t of processing elements. We denote a processing element a PE and use the legend

r - in Figure A2. 1 for the latency figures in this section.
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- Hypothesizing Min A Reclassifying Min A Disproving Min

This legend is used in the following latency figures.

Figure A2 .1. Legend for Latency Figures

A 2. 1. Latencies at Sustainable Data Rates
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Figure A 2.1.1. Hypothesizing Latency on 16 PIEs
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Figure A2.1.3. Disproving Latency on 16 PEs
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A2.2. Sample Latencies at Overloaded Data Rates
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Abstract

This paper discusseis the quantitative and qualitative performance
of a module of a parallel knowledge-based system for tracking and
classifying aircraft, called Airtrac. The Airtrac system is built to gain
some understanding of the potential speelup through concurency of
reasonably large and complex continuous sinal understandng systems.
Airtrac runs on CARE, a simulated distributed-memory, asynchronous
message-passing muiticomputer.

Evaluating the oerform.ance of a continuous parallel knowledge-
based system such as Ai-rrac s difficult. The simple approach of timig
i!5 execution would not work, since tc, e system is continuous.
Furthermore. the performance is usually multidimensional and cannot
easily be expressed into a single number. The notions of Iatency, excess
ratio, sustainable data rate, 'nd capacity are instead used to rate the
perfornnce of the system.

The paper reports the effects of important high-level control
strategies on the system performance, the effects of varying the
frequency 3nd width of the input data across different numbers of
processors. and some possible speedup curves of the overall system
Performan,.e as a function of t"e number of processors.

Finally conclusions are presented in the relationship btrween mhe
quantitative and qualitative performance of Airtrac. and in the potential
speedup of large and cOmp!ex parallel knowledge-based systeis



1. Introduction

This report documents the enhancement and performance eva!uation of a module of
Airtrac, a parallel knowledge-based system for tracking and classifying aircraft. The Cystem is
being developed within the Advanced Architectures Project (AAP) at the Knowledge Systems
Laboratory at Stanford University [5, 71. John Delaney of the MIT's Uncoln Laboratory create,
the system's concepts In 1985-87 while he was a visiting scholar at the KSL.

The primary goal of the AAP is to realize parallel software and hardware architectures
to achieve significant speedup in the performance of knowledge-based systems. For s-"me such
systems, projected performince limits of uniprocessors fall short of the speed required by as
much as a couple orders of magnitude. Multiprocessor parallel computing must be attempted to
attain the necessary level3 of performance.

The approach taken by the AAP to achieve this goal is to study all levels of the
computational hierarchy, from hardware to programming languages lo problem-solving
frameworks to applications. The AAP is performing many experiments to understanc the
computational characteristics and potential speedup of reasonably large and complex parallel
knowledge-based systems. Each experiment represents a narrow, vertical slice through the
space of design alternatives.1

Airtrac represents the application level of the vertical design slice. The experiment has
the following two goals:

• To investigate the potential speedup via concurrent processing of
reasonably large and complex knowledge-based systems.

0 To understand useful software constructs for parallel signal

understanding systems.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the Airtrac application as a whole. Section 3 gives a dtailed description of the Airrac Path
Association module (or PA for short). Section 4 discusses the experiment design. Section 5

1 A summary of system.- and experiments done within the AAP can be found in (8].
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describes and explains the performance of PA. Section 6 presents some high-level conclusions,

and Section 7 describes future work.

2. Overview of the Airtrac Application

This section provides a general description of the Airtrac application. Its motivation,

functionality, architecture, and implementation will be discussed. Much of the material in this

soction can originally be found in [7].

2.1. Motivation

The underlying motivation is to gain some understanding of the potential speedup through

concurrency of relatively large and complex continuous signal data interpretation systems. A

similar application to Airtrac called ELINT [1] was built earlier within the AAP. That

experiment demonstrated a speedup via concurrency of up to two orders of magnitude. However,

ELINT is simple and unrealistic in its reasoning. This motivates the attempt to build a more

complex and realistic signal understanding system, and investigate its potential speedup through

concurrent processing. Airtrac is the result of this attempt.

2.2. Airtrac's Functionality

Given continuous track data from one or more radar and signal processing systems in a

particular region .i -irspace, the Airtrac system monitors and classifies, in real time, the

flight of aircraft -. ,lin the region, and interprets and predicts their behavior. Airtrac

processes data as soon as they are available. It is essentially a knowledge-based information

fusion system. Data are collected from multiple sources at different times to create a consistent

and comprehensive picture of aircraft in the given region of airspace. Airtrac uses heuristics to

deal with incomplete and errorful information.
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2.2.1. Alrtrac's Input

The Inputs to Airtrac are (simulated) output data from one or more active radar and

signal processing systems tracking aircraft in a given region of airspace. Each piece of input

data, called a Radar Track Report (RTR), represents the observation of an aircraft from one

radar site during a periodic time interval (scantime1 ). Each radar observation is processed by

the radar and signal processing system so that an RTR provides the information listed in Table

2.1.

Table 2.1 Airtrac's Input

Each Radar Trach Report contains the following:

observation scantime the time of the observation

radar ID the identifier of the radar site observing
the track

track ID an integer (unique to the radar site)
assigned by the radar to the track to which
the observation belongs

aircraft type the type of the aircraft under observation,
indicated by signal characteristics

position the location (x, y) of the aircraft at the
time of the observation

position covariance the (E, Ey) estimate of the error associated
with the reported position

velocity the velocity (V, Vy) of the aircraft
calculated at the time of the observation

velocity covariance the (E, Ey) estimate of the error associated
with the reported velocity

A radar assigns a unique track 1D to an aircraft track when the radar observes the track

for the very first time. The radar continues to assign the same track /D to subsequent

1 In this experiment 1 scantime = 10 data time units, which are usual;y interpreted as seconds.
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observations if it determines, usually by a simple track extension algorithm, that those
observations correspond to the previously-detected track.1 Otherwise, the track is considered
finished and its track ID is dropped. Consequently, when a radar fails to continuously keep track
an aircraft's full flight path, the path may be represented by several tracks. The radar is
assumed to be capable of determining the type of each aircraft under observation from the
particular characteristics of signals it receives. The algorithm employed by the radar also
calculates covariance figures for the position coordinates and velocity vectors that it reports,
providing a measure of the probability of error associated with each of these values. This error
information is based on factors such as the strength of the signals and the distance between the
aircraft and the radar site. All of this information is passed along as input to Airtrac in the
form of an RTR.

2.2.2. Alrtrac's Output

Airtrac is intended to provide continuous information about all aircraft in the given
region of airspace. The information may include: a complete track history of all aircraft in the
monitored region based on fused data from all radar sites, a classification of all aircraft based on
their behavior (e.g., commercial, military, private, smuggler), and an intelligent prediction of
the future flight paths and actions of observed aircraft. The current stage of Airtrac provides
the first type of information.

2.3. Airtrac's Organization

The Airtrac system is composed of three major modules: Data Association (completed),
Path Association (the main focus this paper), and Path Interpretation (yet to be developed). As
shown in Figure 2.1, each module takes as input the output from the previous module. Airtrac,
then, can be viewed as an application that employs several distinct levels of abstraction and
reasoning leading to its final output.

1 Basically, this algorithm predicts, based on a smole lnear projection of observation points already
received for that track, an area where the next ooservation for a track should appear.
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Simulated Radar Output
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Data Association -Identifies

-Collects-_,V
Periodic Observation ReportsI

-Distributes

Path Association -Connects
-Fuses

Platforms

-Classifies
Path Interpretation -interprets

-Predicts

Assessments and Predictions

Figure 2.1 Airtrac's modules' interaction and functionality

2.3.1. Data Association

The Data Association (DA) module was completed in June of 1987 by Russell Nakano and
Masafumi Minami [5].

The primary function of DA is to accept and process, at scantimes, RTR's from all radars
in the given region. It identifies and collects together, in time-ordered sequence, all RTR's
which belong to the same aircraft track, i.e. all RTR's which have the same track /D.

Periodically, DA abstracts the individual RTR's it has gathered for a particular aircraft

track into a Periodic Observation Record (POR), and forwards it to the Path Association module

3-54



for further processing. A track may consist of several POR's. A POR represents a regular

portion of an aircraft's flight path as seen from a single radar.

Radar Track
Reports 0 *

time2

timel

envelope.eioi
radius Obevato
-..J ,/' -,erio ,,

Record

(for scantime interval
[time1 ,timo2))

Figure 2.2 How Data Association creates a Periodic Observation Record

The abstraction process in DA is depicted in Figure 2.2. DA creates a POR by fitting one

or more line segments, or line estimates, through the RTR coordinates. 1 More than one line

segment in a POR reflect large changes in course executed by the aircraft. The error envelope

radius of a POR is conservatively calculated so as to completely contain the position covariances

of each of the RTR's. The complete information contained in a POR is listed in Table 2.2.

One notable attribute of a POR is its status, a keyword that DA assigns to a POR indicating

its temporal position within an aircraft track. A status of create means that the POR is the first

(in data time) of a track. Similarly, an inactivate status signals the last POR of a track. A POR

with a status of update is part of a continuing track, neither first nor last. A status of create-

1 A line estimate is represented as a sequence of its endpoints and corresponding error radius.
However, to make it more intuitive, a line estimate in this paper is depicted as a full line with an error
envelope or a full line with error radii at its endpoints.
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Table 2.2 POR Information

A Periodic Observation Record contains the following:

track ID the identifier of the aircraft track assigned
by the radar to the RTR's in this POR

radar ID the identifier of the radar site

status the observation status of this POR; one of
create, update, inactivate, or create-and-
inactivate

aircraft type the type of the aircraft

report start time the beginning scantime af the POR periol
covered by this POR

report finish time the end scar.:;,ne of the POR period covered
by this POP

actual start time scantime of the earliest RTR of the track
within this POR

actual finish time scantime of the latest RTR of the track
within this POR

line estimates the error envelope radius ard the sequence
of line segments fitted through the RTR's
for this POR

velocity vectors velocities (V, Vy) for the aircraft at the
beginning and end of the POR

and-inactivate means that the POR represents a whole aircraft track.1

The POR period is the length, in scantime units, of a POR generated by DA, i.e., the

interval of time in which RTR's for a track are processed and abstracted into a POR.2 The POR

period is uniform across all POR's in the system. Furthermore, the beginning and ending times

of POR's, report start times and report finish times, are synchronized. If the first RTR of a

track is received during a POR period (the POR's status is create), then the actual start time of

1 From here on, a :create PO means a PCR whose status :s either create or .cioate-and-inactivate.

Likewise, an :inactivate POR means one with status :inactivate or :create-andina,:tivate.

2 In this experiment the POR period is 5 scant:reos or 50 data time un':s.
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the POR may be different than the report start time. The same applies to the actual finish time

and the report finish time of an inactivate POR. For update POR's the actual and report begin

and end times are the same.

Nakano and Minami showed that the quantitative performance of DA improves

significantly with additional (up to 100) processors. The quality of the results can be

maintained in spite of a high degree of problem decomposition and highly overloaded input data

conditions.

2.3.1.1. Data Association Simulator

Due to system and input-output incompatibilities, the real Data Association module was

not used together with the Path Association module [7]. The POR's are generated, instead, by an

object called the Data Association Simu!ator (DAS).

2.3.2. Path Association

Most of the functionality of the Path Association (PA) module was developed by Alan

Noble and Chris Rogers during the 1987-1988 academic year [7].

The functionality of PA can be described in three stages: Distribution, Connection, and

Fusion, as depicted in Figure 2.3. In Distribution, POR's of the same aircraft track and reported

from the same radar site are grouped together into objects called Flight Path Segments (FPS's).

in Connection, all FPS's reported from the same radar site that seem to belong to the same

aircraft's flight path are associated together into objects called Observed Flight Paths (FPO's).

Finally in Fusion, FPO's reported from different radar sites that appear to be equivalent

representations of a single aircraft's flight path are fused into objects called Platforms (P's).

It is important to note that as input POR's come to the system, FPS's, FPO's, and P's grow

together over time, i.e. the system does not wait for all data to be available before performing

any of the three stages. For example, Distribution immediately creates an FPS once a POR of a

new track is available. Distribution does not wait for all POR's of the track. Similarly for

Connection and Fusion.
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Figure 2.3 Distribution, Connection, and Fusion in Path Association

Platforms represent hypothesized aircraft in the real world as seen from one or more

radar sources. As shown in Table 2.3, a Platform incorporates all information about a single

aircraft available through its individual FPO's. Platforms are dynamic entities that are

continuously being created, updated, and terminated to reflect the rapidly changing state of the

monitored region, in which aircraft are constantly appearing and leaving.
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Table 2.3 Platform

The information In - Platform includes the following:

aircraft type the type of the aircraft

FPO attributes list of names and attributes of all Oberved
Flight Paths that make up the P

composite flight path the composite flight path computed from a
bestfit of all line estimates of individual
FPOs of the P

A detailed description of the functionality and architecture of PA appears in Section 3.

2.3.3. Path Interpretation

The final module of Airtrac, which is not yet implemented, is Path Interpretation (PI).

PI is intended to analyze and interpret information contained in Platforms generated by the PA
module. PI will provide continuous and real-time assessments and predictions about the
observed aircraft represented by these Platforms. These assessments and predictions will
include: a classification of all aircraft based on their behavior (e.g., commercial, military,
private, smuggler), and a prediction of the future flight paths and actions of the observed

aircraft.

2.4. Airtrac's Implementation

The Airtrac application is implemented on a simulated parallel architecture called CARE

[3]. CARE (Concurrent ARchitecture Emulator) is a distributed-memory, asynchronous
message-passing architecture. CARE models 1 to 1000 processor-memory pairs, or sites,

communicating via a high-speed network. Each site operates on its own instruction stream,

I Throughout this paper the term site is used to describe a CARE processing element.
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asynchronously with respect to other sites. Message delivery between sites is reliable (never

lost), but messages are not guaranteed to arrive in the order of origination.

CARE is simulated using P -eneral, event-driven, highly-instrumented system called

SIMPLE [4]. SIMPLE is written in Zetalisp and runs on a Texas Instruments Explorer Lisp

machine.

Airtrac is written in LAMINA with ELMA. LAMINA is the basic language interface to CARE

and consists of Zetalisp with extensions that provide primitive mechanisms and language syntax

for expressing and managing concurrency and locality (2]. Three computational styles are

supported: functional, shared-variable, and object-oriented. All three are based on the notion

of a stream, a data type which represents the promise of a potentially infinite sequence of

values. I

As in other object systems, objects in object-oriented LAMINA (hereafter referred to

simply as LAMINA) encapsulate state (instance variables) and behavior (methods). Methods

are invoked by message sending. But unlike the case of sequential systems, this involves

transmitting a packet containing the message from one LAMINA object to another, typically on a

different site. Message sending is non-blocking and the time required for communication is thus

visible to the LAMINA programmer. Methods run atomically within processes which are

restartable but not resumable. 2  An object and its methods can be considered a non-nested

monitor; exclusion is guaranteed by the fact that only one method is ever scheduled to run at a

time, and then runs to conpletion. The time required to create a LAMINA object is also visible

to the programmer.

ELMA (Extended Lamina for Memory-management Applications) is a high-level parallel

programming interface to CARE based on LAMINA (6]. ELMA is a specialized interface for

applications which involve extensive dynamic object creation and deallocation and require some

I LAMINA's predecessor, CAOS (f]. was based on the notion of a future, the promise of a single value

resulting from a .,mputation. It was observed, however, that communication between obiects was
fairly regular: a given object, having communicated with another, invariably communicated with that
same object again. The stream not:on captures this behavior much more naturally, and was 'thus chosen
as the basic data type for LAMINA. In LAMINA. a future is the special case of a stream wtn only one
value.

2 There is also a more expensive resumabie cousin.
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form of memory management. 1,s syntax and constructs facilitate programming in the object-
oriented style at a higher level than LAMINA.

3. Path Assoclation

Path Association (PA) is the second of the three-module Airtrac system. PA takes as
input Periodic Observation Records (POR's), which are periodic abstractions of radar signals
generated by the Data Association (DA) module. PA processes these POR's and generates
Platforms (P's), the hypotheses of real-world aircraft passing through the given region of
airspace. The following s,13bsections describe the functionality and architecture of PA.

3.1. PA's Functicnality

The functionality of PA can be described in three stages: Distribution. Connection, and
Fusion.

3.1.1. Distribution

This is the simplest of the three stages. This stage involves the distribution of POR's of
the same, unbroken aircraft track and reported from the same radar site into dynamic objects
called Flight Path Segments (FPS's) by manager objects' called Flight Path Managers (FPM's).

An FPM handles only POR's of a particular aircraft type reported from a particular
radar site. Using these two invariants, the functionality of an FPM is replicated into the number
of distinguishable aircraft type times the number of radar sites. So, for example, in a scenario
(simulated input data) with three aircraft types and three radar sites, up to nine distributions
cab be performed in parallel.

Managers in Airtrac are objects allocated at nitiatizat'on time, and are typically responsible for
tasks involving dynamic objects. Those tasks ;nclude maintaining free pools of dynamic objects,
creating from and deallocat;ng dynamic ¢ojects into the free pools, synchronizing different proesses.
and coordinating searches. For more detais, see "71.
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When an FPM receives a POR from DA, the FPM creates an FPS for the POR if the POR is

part of a now track. Otherwise, the FPM forwards the POR to its associated FPS. The FPM does

not waft for all POR's of the track to create an FPS for it. The FPM registers all FPS's it has

created for the input POR's.' if the POR represents the beginning or the end of a track, i.e. a

create or inactivate POR, the FPM tells the FPS to report to its associated Connection manager.

called a Flight Path Connector (FPC), to start the Connection stage.2

The information contained in an FPS is listed in Table 3.4a. An FPS is active if it

continues to receive POR's, inactive otherwise.3 The FPO parent is the name of the Observed

Flight Path this FPS and other FPS's are associated with to represent the complete flight path of

an aircraft as seen from one radar site.

3.1.2. Connection

The Connection stage is needed becausG an aircraft's complete flight path may be broken

into several tracks due to a radar's tracking errors, radar shadows4 , or the aircraft's sharp

maneuvers. In any case, the radar fails to recognize the continuation of an ongoing track, and

instead treats the continuation as part of a new track. The goal of this stage is to connect, using

some heuristics, those broken tracks that are actually parts of the same flight paths. That is. to

connect FPS's into Observed Flight Paths (FPO's).

1 In a real, instead of simulated, continuous system, there must be a mechanism to get rid of old
dynamic objects. Airtrac never deallocates objects during its execution, since they are needed for
post-run analysis. However, Airtrac uses some heuristics to keep its conscious knowledge, and tr e
amount of reasoning involved, from growing exponenially. This is not dealt in Distribution, because V-_e
dynamic FPSs are not involved in any reasoning. This will be an issue, however, in Connection and
Fusion.

2 The rsason for this double-directed connect.on searcn is given in the rext section.

3 Normally an FPS stays :active if it continues to receive :update POR's. and becomes :inactive if a
receives its :inactivate POR. However. since some messages may be out of order. this is not always
true.

4 A radar shadow is part of :he monitored region not observable from a radar site due to some
obsiacles such as mountains.
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Table 3.1 Flight Path Segment

A Flight Path Segment contains the following information:

Vack ID the identifi-r asainod to fis track by the
radar

radar ID 4 dentifimr of the radar site from wtich
the track is being observed

status rack statm on of active or ;-zctive

aircraft typ* 1e typ of th4 aircraft

Wne estimates te sequ of FOR ;ne ntinsaea

initial velocity velcty (VX V-) of track at trrme of criiaiton

final velocity vekccity (V1 VY1 of track at dine of
ierm;natuon

R: naui=e of Fiic!# Path C-zmicr ti s FPS
reOs :o x co-nection

FPO pare -a.'e of Obse.vec F ght Path parent

Connection is coordinated bv manager objects called ligh" Pa&i ConnecWrs (FCs). The
same two invariants used in Distribution, aircraft type and radar site. are tsed to replcrate the
functionality of an FPC. Th is means that an FPC only handes the connections of aircra? of the
same type reported from a particular radar site- So there is a one-to-one correspondence
between FPM's and FPC's. Although there are up to me number of distinguisable aircraft types
times the number of radar sites Connection processes run in parallel. tere is only one
Connection process at a time per FPC.

An FPC maintains a list of all FPO's it has created, It also keeps a list oi FPS's waiting for
connections. But since Airtrac is a continuous system. ;t can only store a Eimi'ed amount of

history. Sc Airtrac has a history ring buffer mechanism to store those FPS's requesting for
connections that are created in the latest n scantrmes. where n is The -ench of the b.ffer. So -he
number of FPS's in tie buffer is 'im-ted to tWe actual number of tracks in any n cnsej..ctIve
scantimes. The buffer is typically full after some Initializati;n time. In that case. if an FPS of a
new scantime is added to the buffer. the first set of FPS's in ?a buffer (The earliest onesi.
aithough still connectable with later FPS's. have to be scard, and the new EPS is aded at te
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end of the buffer.1 Otherwise, the FPS is just Inserted to the appropriate scantime slot already

in the buffet. The length of the ring buff,'" is set prior to a simulation run. The ring buyer

mechanist? is not used for the FPO's created, because they are needed for post-run analysis and

are not involved In any reasoning in this Il-yel. The waiting FPS-s, on the other hand, have to be

ecked one by one for connections. It would be undesirable in terms of quantitative

performance to keep a growing and unlimited number of them.

Two FPS's zre connected to *,-h other If the later FPS's creation time is within some

connection search interval from the earlier FPS's termination time, and if ihe later FPS's

creation location lies within the earlier FPS's termination continuation region. Connection

search interval is a heuristic, set before a simulation run, that lir.. ts the time gap between

conoected FPS's to a reasonf ,le length. rhe continuation region, as shown in Figure 3.1, is

determined by the termination location and velocity of the earlier FPS, the time gap between the

two FPS's (At), and some performance figures of the aircraft involved.

The I ocets starts when an FPS, a representation of a single track, reports for

connection to its corresponding FPC. An FPS requests for a connection when it receives the

beginning (creation) or end (termination) of its track.2 UsL.ally only the creation connection,

'.e. the connection process in which an FPS looks for a conr ion with a logically earlier FPS,

is needed. Howeer, since messages can and do get ou o ocer in CARE, when an FPS, call it

FPS-2, searches for a connection with a logically earlier FPS, call it FPS-1, the latter FPS

may not be ready for a connection yet. Frs-1 may have yet to receive the end of its track, or in

the worst case, it may not yet exist. So the creation connection fails and a termination

connection, i.e. a connectiCn process in which qn FPS looks for a connec"on with a logically

1tr PS, has to be performed when FPS-I receives the end of its track. Consequently every

FP, nas to chec, both or, -it and te.minatior, connecticns.

1 This assumes that the 'e,v scantime is the onrt after the la.est scantiie in the ring buff3r If not.

more than one set of FPS's iave to be discarded to accommodate the time gap.

2 The terms creation and terminat-on A used througihout ,his paper io denote the beginning and end,

respectivey, of a track or flight path When usid in conjunction with Airtrac's rn-Presentations of
tracks ard flight paths, the terms always derote the propertie,; of the real objects. For example, an
FPS's crcati,rt time means the tho scantime associated .ith the beginning of tne track represented by
i'le FPS.
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Figure 3.1 Continuation region

Both connection processes are similar. It will be described as a single process unless
noted otherwise. After a request for connection from an FPS is received, the FPC adds the FPS to
its ring buffer of FPS's reporting for connections, and searches the buffer for possible

connection. There are three possible results:

" If no connection is found, a new FPO i3 created for the FPS. 1 This is

usually not necessary in termination connection, since the FPS should

have tried creation connection and been associated with an FPO (unless
some message disordering happens).

" If there is exactly one connecting FPS, the FPS is associated with the FPO

of the connecting FPS.

1 Right after the creation, the FPO reports for fusion to its Fusion manager, called Chief Platform

Manager (CPM).
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If there are more than one possible connecting FPS, a new FPO is created

for the FPS (if not yet associated with one), and the connection is

performed at the FPO, instead of FPS, level. The FPO's of the possibly

connected FPS's are linked to each other as to indicate possible

connections, and called connected FPO's. PA relies on Fusion to resolve

this kind of ambiguity.

In Distribution, POR's of continuing tracks are forwarded by the FPM's to the FPS's. As

soon as an FPS is associated with an FPO, the FPS also starts forwarding this new information

about the 1-"ack to the FPO. The FPO, in turn, forwards all update information to its associated

higher-level object in the Fusion stage.

The information contained in an FPO is listed in Table 3.2. An FPO becomes inactive if it

is no longer involved in the Connection process, i.e. it fails to make new connections with newly

created FPS's after some period (the length of the ring buffer). This usually means that the FPO

does indeed represented a complete flight path. UFP (Unfused Flight Path) parent and P
(Platform) parents are the names of higher-level objects associated with this FPO in the Fusion

stage.

3.1.3. Fusion

Fusion is the most complex of the three stages of PA. Fusion, unlike Distribution and

Connection; collects information from multiple radar sites to produce a consistent and

comprehensive picture of aircraft activities in th6 monitored region. Fusion is used to resolve

some missing data (breaks in a flight path) and anmbiguities (multiple connections to the same

track) among tracks of a flight path that Connection fails to resolve with information from one

radar source only. It is also used to track flight paths that fly across different areas covered by

different radars. In this stage, FPC's of different radar sites are fused into Platforms (P's).

The Fusion process is coordinated by two layers of managers, Chief Platform Managers

(CPM's) and Platform Managers (PM's). A CPM only coordinates the fusion of aircraft of a

particular type. So the number of CPM's is equal to the number of aircraft types. Each CPM is

helped by a same number of PM's. The number of PM's per CPM is set at initialization. Unlike

Connection, in which there is only one Connection process per manager at a time, in Fusion

there are potentially unlimited number of Fusion reocesses per manager at a time. Fusion takes

place in a distributed search method coordinated by the CPM's.
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Table 3.2 Observed Flight Path

The Information in an Observed Flight Path includes the following:

radar ID the identifier of the radar site from which
the track is being observed

status flight path status; one of active or inactive

aircraft type the type of the aircraft

FPS children list of names of FPS's that make up this FPO

creation connections list of names of earlier FPO's connected to
this one

termination connections list of names of later FPO's connected
to this one

UFP parent name of associated Unfused Flight Path (if
any)

P parents list of names of Platforms of which this
OFP is a part

CPM name of Chief Platform Manager that
handles fusion searches for aircraft of this
type

An earlier version of PA had only one layer of managers for Fusion. Preliminary
performance evaluation of the system showed that the managers were overloaded. Their task

queues were growing and unacceptably long. So an additional layer of managers were introduced
to help the overloaded managers with their tasks.

A CPM maintains a list of P's it has created. On the other hand, a PM is totally dependent

on its CPM for its knowledge of P's in the system. This is to ensure data consistency among all
PM's of a CPM. The CPM does all the creation and registration of P's. The two operations are

atomic to make sure that the list of. P'- i,. 31ways consistent.

Although all created P's are kept in CPM's for post-run analysis, not all of them are
involved in the Fusion process itself. This is because Airtrac is a continuous input system, and

it must have a mechanism to cope with history. So PA classifies P's into three classes with

respect to their history: active P's are those P's whose supporting FPO's are still involved in
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Connection, inactive P's are those P's whose supporting FPO's are not involved in Connection,

and finished Ps are those P's that have been inactive for some waiting period set at

initialization.1 The Fusion process only includes the active and inactive P's. This way Fusion is

limited only to recent P's. Aircraft come and go within the monitored region, and PA must

disregard those aircraft that the system is confident have left the region.

Fusion takes place between an FPO and a P. The line estimates of the FPS's of the

supporting FPO's of a P are fused to form a composite flight path. When a P is created, its

composite flight path consists of the line estimates of the FPS's of the FPO that triggers its

creation. An FPO fuses with a P if all of the following conditions are satisfied:

1. The FPO and P intersect in time for at least one scantime.

2. The FPO and P intersect in space for every point in which they intersect
in time. The error envelopes of the line estimates and composite flignt

path are used to check this spatial intersection.

3. The FPO and P do not intersect in time at any point for which the P has
already incorporated another FPO reported from the same radar. This
indicates that the two FPO's represent two distinct aircraft.

An FPO cannot possibly fuse with a P if the second or third condition above is violated.
However, the result is uncertain if only the first condition, temporal intersection, is violated.

As the FPO and P receive new information about their continuing flight path, they may

eventually be able to fuse.

Figure 3.2 gives a before-and-after look at the successful fusion of corresponding

portions of an FPO and a P. The resulting new composite point for each pair is a weighted
average of the locations of the two points. The weight of a composite point is the number of
contributing radars whose reports are already represented in that point. The error radius for
each new composite point is compu~ed from the location of the new point and the two intersecting
radii. Note that as each new FPO is fused with a P, the composite flight path for that P becomes
more defined as the error radii of its constituent points become smaller.

1 An inactive P can become active again if it is fused with a njew FPO that is still involved in
Connection. In .,at case the waiting period is reset. But once it is marted finished, it stays that way.
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created. Since the FPO does not duplicate the information contained in its supporting FPSs, the

FPO multicasts a message to the FPS's requesting their line estimates for fusion. Instead of

waiting for the replies, the FPO spawns a continuation process1 to collect the replies from the

FPS's. Once all FPS replies are received, the FPO continuation notifies its CPM that it is ready

for fusion. The CPM forwards the fusion request along with its list of active and inactive P's to

one of its PM's in a round-robin fashion. The PM then broadcasts a message to the active and

inactive P's asking them to try to fuse vith the FPO. To collect the P replies, the PM spawns a

continuation. Each P checks whether the FPO can fuse with its composite flight path, and relays

the result to the PM continuation. There are three cases:

1 A continuation of a method occurs in the context of the object exe-i.ting the method. The method

which spawns the continuation finishes normally. The continuation executes each time values are
received on specified input streams. For more details on the continuation mechanism in LAMINA, see
[2].
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If one or more P's can fuse with the FPO, each of the P's merges the FPO

into its composite flight path. If more than one P fuse with the FPO, this

is an ambiguous case. Fusion relies on the future data of the continuing

flight paths to resolve this kind of ambiguity.

If no P can possibly fuse with the FPO, the PM continuation forwards the

result to the CPM. The CPM has to check the FPO for fusion with P's
created during the current fusion process. Since the CPM (usually)
coordinates more than one fusion process at a time, P's may be created as
results of the of the other fusion processes. The FPO may very well fuse
with one of these recently created P's. The maximum number of this FPO
fusion retries is set at initialization. If after so many retries no P can
fuse with the FPO, a new P is finally created for it.1

If no P can fuse with the FPO at the moment but some P's. are uncertain

because the FPO and the P's do not intersect in time, the PM continuation
tells the PM2 to create an Unfused Flight Path (UFP) for the FPO. It is
uncertain at this point if the UFP can fuse with an existing P or if it needs
its own P. Fusion once again relies on the future data of the continuing
flight paths to resolve this amb.-luity. Every time the UFP receives a new

piece of information about the flight path, it tells the CPM to check for

fusion again with the uncertain P's from the previous fusion process, and
with new P's created since then. The limit of this UFP fusion retries is
also set at initialization. .The result of this UFP fusion retry can be one of
the following:

if one or more P's can finally fuse with the UFP, the UFP is no
longer needed and deallocated.

1 A probably more powerful mechanism involves variable FPO fusion retries. The maximum number of
retries is allowed to vary within a certain range. This solves a probable case in which rwo FPO's that
should fuse into each other are involved in the same nth retry at the same time. Without variable
maximum retries, ihe two FPO's will likely end up as two different Ps.

2 Since no manager register, the UFP's created, a PM. instead of a CPM, can create them without
jeopardizing any data consistency among the CPM and PM's.
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# If no P can fuse with the UFP but some P's are still uncertain, the

UFP waits for new data for its next fusion retry.

0 If no P can possibly fuse with the UFP, or if the limit of the UFP

fusion retries is exceeded, the UFP tells the CPM to create a P for

its FPO, and dealiocates itself.

As soon as an FPO is associated with a P, the FPO starts forwarding new information

about the continuing flight path to the P. (Similarly if the FPO is associated with a UFP as

described in the previous paragraph.) The P immediately tries to fuse the new information, in

the form of line estimates, to its composite flight path through the same fusion process

described above. The P has to make sure that all its supporting FPO's remain consistent with one

another. If the FPO's new line estimate fails to fuse with the P's composite flight path, the FPO

is split from the P. A platform split happens when two or more airplanes fly across the

monitored region so close that their early flight paths are fused into one P. But when they no

longer fly so close to each other, their later flight paths are no longer fusable, causing the P to

split. As a result, all of the P's supporting FPO's have to be disassociated from the P, and the P

is deallocated. If the FPO's are still associated with one or more other P's, they do not have to do

anything else. In fact, the platform split has resolved (part of) the ambiguity mentioned earlier

when an FPO is associated with more than one P. (See the first case of the fusion process.)

However, if the FPO's are not associated with any other P's, they have to go through the fusion

process one more time. This time, the greater amount of line estimates information the FPO's

possess usually allows them to unequivocally fuse with the right P's.

P's are the final output of the PA module. They contain the information listed in Table
3.3. The output of PA may still contain some ambiguities. This is not necessarily the fault of

poor reasoning on the part of PA; rather, it often has more to do with the incompleteness of the

input data. One of the tasks of the Path Interpretation module, the module after PA, would be to

resolve the remaining ambiguities present in the P's.

3.2. PA's Architecture

Figure 3.3 presents the manager architecture in the PA system. As mentioned above, the

number of managers in PA is determined by the number of distinguishable aircraft types, the

number of radars reporting in the monitored region, and the number of PM's per CPM in the

Fusion stage. Figure 3.3 shows the relationships among managers in a scenario with 3 aircraft
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Table 3.3 Platform

The information in a Platform includes the following:

status status of the hypothesized aircraft
represented by the P; one of active.
inactive, or finished.

aircraft type the type of the aircraft

FPO attibutes list of names and attributes of all FPO's
that make up the P

composite flight path the composite flight path computed from a
best-fit of all line estimates of individual
FPO's of the P

CPM the name of the CPM in charge of P's of this
aircraft type

types, 3 radars, and 3 PM's per CPM. 1 There is only 1 DAS in any scenario, since the manager

is only simulating the functionality of the DA module. There are 9 FPM's and 9 FPC's in this

scenario because there are 3 aircraft types and (multiplied by) 3 radars. There are 3 CPM's

because of the 3 aircraft types. Finally each CPM is helped by 3 PM's, set at initialization, in a

round .bin fashion.

Note that the diagram only shows how a manager is related conceptually with another. It

does not necessarily imply any control or data flow. For example, the left most FPM in the

diagram above handles a particular aircraft type, say Type A, observed from a particular radar,

say Radar 1. The FPM is linked to the left most FPC which also handles aircraft of Type A seen

from Radar 1. This FPC is then linked to the left most CPM which handles aircraft of Type A

observed from all radars in the monitored area. The CPM is helped by a number of PM's in

handling aircraft of Type A.

Figure 3.3 also shows graphically how parallelism is achieved in PA via pipelining and

replication. Each row of managers is essentially a stage in the pipeline. The output of one stage

1 In fact, all scenarios in this experiment have these characteristics. See Section 4.3.
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Figure 3.3 Manager architecture involving 3 aircraft types, 3 radars, and 3 PM's per CPM

is the input of the next stage. The number of managers in each row shows how many

times the functionality of that stage has been replicated. Managers in a row have the same

functionality but deal with distinct parts of the data.

The system architecture of the PA module is shown in Figure 3.4. Pictured are all of the

manager and dynamic objects of the system along with the paths of message-passing

communication among them, and how they fit into the three stages of PA. Each circle above, with

the exception of DAS, represents a Class of objects, not a single entity. Continuations objects are

omitted from the picture and collapsed into the objects that spawn them.
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Figure 3.4 System architecure

4. Experiment Design

This Section discusses the PA experiment design. The following sub-sections describes
the goals of the experiment, the criteria used to evaluate the performance of PA. and the
experiment plan. Section 5 will present the results of the experiment.

4.1. Goals and motivation

This experiment is conducted with thir following goals:

To understand how the performance of PA is affected by its paremeters.
The PA parameters studied in this experiment are:

Free P00l lengths [7], which are the initial and threshold lengths1

of free pools maintained by the FPM's. FPC's, CPM's. and PM's. An

IA threshold length ind~cares when a !ree pool rneeds to be replenished.
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FPM maintains a free pool of FPS's, an FPC FPO's, a CPM P's, and
a PM UFPs.

" PM multiplier, which is the number of PM's per CPM.

* FPS history ring buffer length, which is the iength of ring buffer

containing FPSs waiting for connections.

• Connection search interval, which is the time gap allowed between

connectable FPSs.

Maximum FPO fusion retry, which is the maximum fusion retries

an FPO has to do with P's created durin'g the previous fusion

search.

* P waiting period which is the duration inactive P's remain in the
system before being deallocated.

To understand how the performance of PA across different grid sizes, i.e.
different numbers of processors, is affected by the frequency and width of

input data.

To generate possible speedup curves of the performance of PA. 1

4.2. How to Evaluate the Performance of PA

Evaluating the performance of a continuous parallel knowledge-based system such as
Airtrac is difficult. The simple approach of timing its execution would not work, since the

system is continuous. Furthermore, the performance is usually multidimensional and cannot
easily be expressed into a single number. So other forms of measurement are needed to know
how the system keeps up with its input both quantitatively and qualitatively.

1 Several speed-up curves are DcSS.bie due to Cifferent performance criteria.
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4.2.1. Cuantitative Performance

The performance of PA is measured quantitatively in terms of latency. Latency is defined

as follows:

Latency is the duration between the time when the system receives a datum

and the time when it actually uses that datum to assert some fact.

For example, if a POR enters PA at time t, and triggers the creation of an FPS at time

t+x, then the FPS creation latency at time t is x.

PORs

I. FPS Creation Latency _ _

2. FMS Update Latency
[Connection

3. FPO Creation Latency F

4. FPO Update Latency

5. P Creation Latency Ps
6. P Update Latency

Fgure 4.1 Th_-e measured aenc~es in PA

Six types of latencies, as shown in Figure 4.1. are measured in PA; two at each of the

three s jes of PA. Those latencies are:

I. FPS Creation Latency. which is the time between a POR for a new FPS

entering the system and being incorporated into an FPS.
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2. FPS Update Latency, which is the time between a POR for an existing FPS

entering the system and being incorporated into that FPS.

3. FPO Creation Latency, which is the ime between a POR for a new FPO

entering the system and being incorporated into an FPO for the very first

time.

4. FPO Update Latency, which is the time ber.,een a POR for an existing FPO

entering the system and being incorporated into that FPO.

5. P Creation Latency. which is the time between a POR for a new P entering
the system and being incorporated into a P for the very first time.

6. P Update Latency which is the time between a POR for an existing P
entering the system and being incorporated into th3t P.

The iatencies are recorded in intervals of 5 scantimes. which is the length of POR's. In
each interial, the minimum, average, maximum, and the number of reported latencies in that
interval are recorded. A reported latency of x at time interval t means that a POR entering the
system at time interval t has a ;atency of x simulation time units.

4.2.2. Qualitative Performance

Measuring the qualitative performance of PA is a harder problem. ideally, ,he quality of
PA should be measured by the quality of its final output. the P's. That is. by com,aring the P's
with *ground truth.' But this would require reimplementing the PA system serially, and
comparing the parallel results with the serial results. Given the size )f the system, tis would
be very time consuming. So excess ratio is instead used as a qualitative measurement.

Excess ratio is the number of excess output objects created over the number
of the actual objects they represent in the real world-'

The output objects are 1 e FPS's. FPO's. and P's. The FPS, FPO. and P excess ratios
measure the numbers of disonbd, -. connection, and fusion. respectively, that PA misses. For

The nurnor of the acna, obaects is s -- t e sumu'aed -data are s.
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example, In a ,.,narlo which hn, ,00 FPO's, and each FPO consists of two FPSs, there : te 100

e"ofnnections .o do. if PA mlss,,. 3 out of the 100 connections, there would be 103 FPO's instead

of 100. So the FPO excess ratio is 1 - 0.03.

The notion of excess ratio is based on the assumption that PA will not undercreato FPS's,

FPO's, and P's, but may overcreate them. In other words, PA will not do distribL!tions,

cnnnections, and fusions it should not do, but PA may miss to do some of the distribLqtions,

connections, and fusions it should do. This is because PA is very conservative in its reasoning. It

is much more likely for PA to create, for example, a new FPO for an FPS rat her than connecting

that FPS with a wrong FPO.

4.2.3. Performance Evaluation

Now that latencies an,' excest ratios are available as forms of performance

measurement, the question is hov, to use them so that performanca comparison and evaluation

can be made.

4.2.3.1. Sustainable Clta Rate

Subsequant work refining the ELINT application r'as led to the notion of sustainable data

rate:

Sustainable data rate is the maximum data rate for which designated

latencies do not increase over time [9].

Sp=edup is determined by plotting sustainable data rate, rather than latency, versus grid

'e. This way the differot, latencies can now be expressed as a single number. However, the

defini. n has some disadvantages:

The definition does not take into account any latency upper bounds. A

sustainable input data rate of, say, 25 Hz, may tr.ve a latency of 100 or

500 ms. Under this definition, both cases are considered to have the samz

level of performance, but clearly they do not.
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The defin;tion fails to include the qualitative aspect of the performance.

Unless the system is always and absolutely correct, it is necessary to
Include the qualitative performance as part of the overall performance

evaluation.

Partly to remedy the first disadvantage, Alan Noble and Chris Rogers redefine
sustainable data rate as follows:

Sustainable data rate SDRa,b is the input data rate for which absolute
latencies are below a threshold a at least b percent of the time (7].

Although this definition introduces a latency upper bound, it also has several important
disadvantages:

- The definition may not allow the s:lstem to settle down in the beginning of
the simulation run, in which the latencies tend to be high. The duration of
hiqh latencies in the beginning may exc ed the tolerance (100-b percent
.f the time), but the system may actually sustain the input data rate. As a

result, either the result is classified as unsustainable or the a and/or b
are compromised to suit to the result.

* The definition iails to detect any increase in latencies over time. The
system may actually fail to sustain the input data rate if a longer scenario
is simuted.

0 Again the qualitative aspect of the performance is not directly tied to the

overall performance evaluation.

To remedy the above disadvantages, the following definition of sustainable data rate is
instead used:

Sustainable data rate SDPqnql is the maximum data rate for which all

measured latencies stabilize at or below qn and do not increase over time,
and for which the excess ratios of output objects are less than or equal to qi.'

1 qn and ql are vectors or matrices.
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This definition permits the latencies to be higher than qn in the beginning. It allows the

system to settle down or stabilize) But the latencies are not permitted to increase over time.

The definition requires all reported latencies, rather than just the average of reported latencies

in each time interval, to stabilize at or below qn. If the system keeps up with the input data

rate, the deviation of reported !atencies in each time interval shouldn't be significant. In

addition, some quality attribute q/ is attached to the define:ion and tied to the overall

performance evaluation.

4.2.3.2. Capacity

Another way of evaluating the performance of PA is through its capacity 2, which is

defined as follows:

Capacity Cqn.ql is the maximum number of input data per data time unit,

i.e. POR's per scantime, for which all measured latencies stabilize at or

below qn and do nct increase over time, and for which the excess ratios of

output objects are less than or equal to q1.

While sustainahle data rate is clearly a simulation-oriented evaluation form, capacity is

more a real-world-c- nted one. Sustainable data rate evaluates how frequent input data can be

fed into the system without overloading it. Capacity evaluates how wide input data per data time

unit can be fed into the system without overloading it.

4.2.3.3. Performance Requirement

Real world systems are built to performance specifications. In PA. qn and qi are vectors,

and should be viewed as its quantitative and qualitative performance requirements,

respectively. For the ourposes of this experiment, qn and qi will have the following forms:

1 The latencies are allowed to be higher than qn for the ':rst 20% of the scenarios described in Section
4.3.

2 This idea originated from Max H-iiperin [7].
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/FPO-CL

qn - FPO-ULI
/P-CL
LpJL -J

where object-CL means object Creation Latency and object-UL means object Update Latency,
and

SFPS-ER"
qi I FPO-ER

LP-ER

where object-ER means object Excess Ratio.

The values for qn and qi vary with different performance requirements. the variation in
values will affect the sustainable data rate and capacity of the system. This in turn may generate
different speedup curves of the system.

4.3. Scenarios

A scenario is simulated input data fed to the PA system. A scenario must be long enough,
in data time units, to enable the system !o settle down into steady-state behavior. It must also be
wide enc;ugh, i.e. contain enough simultaneously observed aircraft as manifested in POR's per
scantime, to provide sufficient data parallelism and thus opportunities for parallel computation.

Seven different scunarios are used in ittis experiment. They basically have the same
characteristics, except their widths, which are expressed in the numbers of aircraft, or POR's
per scantime, in the scenarios. The common characteristics are:

" The size of the monitored region is 300,000 by 300,000 data area units.

" There are 3 radar sites in the region, known as Radars 1, 2, and 3.

• The raoars can distinguish 3 aircraft types, known as Type.. A, B, and C. A
scenario contains the same number of aircaft of each type.

* The length of each scenario is approximately 4,000 data time units.
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*The average length of full flight Paths is 750 data time units. Each flight

path consists of, on the average, 2.65 tracks,

*The radars fail to detect approximately 1% of all tracks.

*The radar scan period, i.e. 1 scantime, is 10 data time units.

*The POR period is 5 scantimes.

The seven scenarios and their specific characteristics are:

" C-40 has 40 aircraft in 2,039 PQR's (5.08 POR's/scantime).

" C-65 has 65 aircraft in 3,277 POR's (8.11 POR's/scantime).

* C-90 has 90 aircraft in 4,574 POR's (11.76 POR's/scantime).

" C- 11 has 110 aircraft in 5,558 POR's (14.00 POR's/scantime).

" C-130 has 130 aircraft in 6,391 POR's (15.74 POR's/scantime).

* C-150 has 150 aircraft in 7,539 POR's (18.61 POR's/scantime).

* C-170 has 170 aircraft in 8,5i8 POR's (20.93 PQR's/scantime).

30-

o 20-

0 100 200

Aircraft Count

Figure 4.2 Scenarios and their widths
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The scenarios and their widths are shown in Figure 4.2. The C-130 scenario is th main

scenario in this experiment. More details on the scenarios can be found in Appendix Al.

4.4. Experiment Plan

The following sub-sections discuss the steps to achieve the experiment goals described in

Section 4.1.

4.4.1. Generating a Standard

In order to investigate the effects of the parameters of PA, a standard, with which other

experiment results are compared, is needed. The C-130 scenario is used for this purpose. It

will be simulated on grid size 128 with an input data rate of 20 Hz, i.e. data come every 50 ms

into the system. The values assigned to the parameters of PA are:

" Free pool lengths: 5, 4; 5, 4; 5, 4; 2, 11

" PM multiplier: 3

* FPS history ring buffer length: 10

" Connection search interval: 5

" Maximum FPO fusion retry: 2

" P waiting period: 120 ms

These values may later be changed if it turns out that other values can yield better

performance. Section 4.4.3 discusses this subject.

I The first pair is the initial length and threshold of the FPS free pool mantained by ail FPM. The second

pair is of the FPO free pool maintained by an FPC. the third pair is of the P free pool maintained by a
CPM. and the last pair is of the UFP free pool maintained by a PM.
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4.4.2. VaryIng the Parameters of PA

To investigate the effects of the parameters of PA, the value of each parameter will be

varied individually, while the other parameters are kept constant. Each result is then compared

with the standard generated above. Changes in the quantitative and qualitative performance will

be observed. As in the previous step, the C-130 scenario will be used and simulated on grid size

128 with an input data rate of 20 Hz (unless otherwise noted). The values to be used for each

parameter are as follow: 1

• Free pool lengths: 0, 0; 0, 0; 0, 0; 0. 0, 5, 4; 5, 4; 5, 4; 2,

1, 10, 8; 10, 8: 10, 8; 2. 1, 15, 12; 15, 12; 15, 12; 2, 12

• PM multiplier: 1, 2, 3. 4

* FPS history ring buffer length: 1, 5, 10, 15, 20, 50

• Connection search interval: 1. 5, 10, 20, 50

* Maximum FPO fusion retry: 0, 1, 2, 3, 4

* P waiting period: 0, 80, 100, 120, 140. 1,000, 6,000 ms

4.4.3. Generating a Revised Standard

The results from the previous step may suggest that some parameter values yield better

performance than the standard. So a revised standard will be generated with these new values.

These values will be used in the next steps of the experiment. This step assumes the following:

• The combined effects of the new parameter values on performance are at

least as good as the individual effect of each of the new parameter values.

• The new parameter values also yield better performance when used with

different scenarios on different grid sizes with different input data rates.

The standard values of the parameters are in -:aiic boid.

2 The length of the UFP free pools is kept 'ow since UFPs are rarely created.
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4.4.4. VaryinG the Frequency and Width of the Input Data

Four Af, sizes, 361, 64, 128, and 256, will be used to study the effects of the
frequercy and Ath of the input data across different grid sizes. The C-130 scenario will be
used to in the effects of the input data rate on the performance. Five different input data
rates will b. - for each grid size to generate latency and excess ratio vs. input data rate
curves. The , Jata rates used on each grid size should find the knees of the speedup curves.

To stu;:iy the effects of the width of the input data, different scenarios with different
numbers ot PCl.s per scantime will be used. Four to six out of the seven scenarios will be
simulated on eau," grid size with an input data rate of 20 Hz. The results would be latency and
excess ratio v'- toth of input data curves. The different scenarios used on each grid size should
also find the krieA: of the speedup curves.

4.4.5. Generattni Possible Speedup Curves

An SOR-based or Capacity-based speedup curve is generated by the following procedure:

1. Specify a quantitative and qualitative performance requirement,

2. Find the corresponding sustainable data rates -lr capacities for all grid
sizes from the curves generated in the previous step, and

3. Plot the -'. size (x-axis) vs. sustainable data rate or capacity (y-axis)

curves.

Different speedup curves may be generated by the two different eval-jation approaches.
the SDR and Capacity. Furthermore, tightening or relaxing the performance requirement will
very likely produce different speedup curves. So multiple, instead of a single, speedup curves
can be generated.

1 Since managers have dedicated s.!es :Sec:on 4 5). gr~d sizes 32 ard smaller are too small. The total
number of managers .; ')2 + (3 r). where n > 1 is the PM multiplier.
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4.5. Load balancing

The goal of load balancing is to distribute objects over CARE sites such that the work they

do Is as evenly balanced as possible. A preliminary PA experiment shows that the performance

of PA Improves significantly when all of its manager objects have dedicated sites [7]. So. in this

experiment, every manager has its own site and does not share it with any other objects in the

system. The same modified random load balancing used by Data Association [5] is used to place

the dynamic objects in PA. The scheme essentially involves random selection from the set of all

sites excluding those used by managers (providing the multiprocessor is large enough). This is

reasonable since there is no way of knowing a priori whether any given dynamic object will be

busier than another. In fact empirical eidence suggests that in the absence of such load

knowledge, random allocation is optimal. Excluding dynamic objects from manager sites works

we.l, although it is likely that some managers do not actually require dedicated sites.

4.6. Experiment Repeatability

Simulation results on CARE are not always repeatable due to its non-deterministic

nature. This is especially true when some random load balancing is involved. Some of the

simulation runs will be repeated to verify the results, in which case the mean of the results

would be reported. However, time constraint prohibits the extensive verification of all

results.1

5. Experimental Results

This section presents the results of the experiment acone to understand the effects of the

PA parameters, and of the frequency and width of input data on the performance of the system.

Some possible speedup curves of the PA system are presented at the end.

1 The simulations done in this expenrnent :ock anywhere between 3 !o - hours.



5.1. The Effects of the Parameters of PA

The following sub-sections describe the effects on performance of each of the six PA

parameters studied in this experiment. For each parameter, two main graphs are presented: one

contains the latency curves, i.e. the quantitative performance curves, and the other one contains

the excess ratio curves, i.e. the qualitative performance curves. The latency curves represent

the highest latency reported. The FPS Excess Ratio is not included in the graphs because it is

always 0, i.e. PA never misses any distribution tasks.

5.1.1. Free Pool Lengths

One of the goals of implementing a free pool mechanism in PA is to redce dynamic object

creation latency [7]. The hypothesis is that by creating a dynamic object before it is needed,

only an initialization, instead of a more expensive object creation, is required when the object

is needed. Thus, by cutting the cost of creating objects, the free pool mechanism should reduce

the object creation latency.

Figure 5.1 shows how the latencies and excess ratios are affected by the length of free

pools. The x-axis shows the initial length of the free pools. except for the UFP free pools which

always have the initial length of 2. unless when they are initialized empty. The threshold length

is 80% of the initial length, except for the UFP free pools which always have the threshold

length of 1, unless when they are always kept empty.

Contrary to the hypothesis, the potential reduction in object creation !atencies never

materializes. Empty free pools are just as good as long ones. Empty free pools do not cause the

FPS, FPO, and P creation latencies to be higher than usual. This is because the free pool

mechanism as is used now is not fully exploited. One main advantage of free pool is its ability to

recycle objects. Recycling saves time and space. But there is no real recycling in the PA system.

Dynamic objects are deallocated only when they are the results of a wrong chain of reasoning;

this is very rare. Otherwise they are never deallocated since they are needed for post-run

analysis. As a result, all the free pools are busy creating dynamic objects all the time. Available

dynamic objects are requested as soon as created. Or even worse, managers have to wait for the

free pools to create the dynamic objects. Consequently, it does not matter how long the free pools

are.
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Moreover. the cost of creating objects is insignificant in comparison with the object
creation latencies. AS shown in Figure 5.1. the object creation latencies are between 40 and
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180 ms. But the object creation cost, exemplified by the cost to create P's shown in Figure 5.2,

is only around 5 ms.

7

6 5-L--

C 3-

'1 -

0 000 2000 3000 4000

Slmuitln Time (me)

Figure 5.2 The cost to create Ps

5.1.2. PM Multiplier

PM's are introduced to the manager ar&.,tecture to help CPM's coordinate Fusion. The
main goal is to remove the bottleneck present at the Fusion level as demonstrated in the earlier

experiment [71. Without the PM's. the CPM's was severely overloaded. Figure 5.3 Shows now

additional PM's help the CPM's with their tasks at the input data rate of 28.57 Hz, i.e. PORs

come every 35 ms into the system. The y-axis represents the peak of the longest CPM task

queue. The PM's significantly reduce the CPM task queue length. The reduction is, however, less

dramatic at slower data rate.
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Figure 5.3 The CPM task queue !ength is reduced with additional PM's

The advantage of PM's is also deinonst ated by the their effects on fusion cost. Fusion cost

is the time elapsed between a fusion req- st and its result. Figure 5.4 shows that the maximum

fusion cost is dramatically reduced with ack ,tional PM's. The input data rate used is the same as

above, 28.57 Hz. Fusion is quic,.e with more PM's because there are more managers to

coordinate the process.
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~2000-
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Figure 5.4 Fusion cost is reduced with addiDonaJ PM's
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Figures 5.5 and 5.6 show how additional PM'S z-ti the performance of PA at the input

data rate of 20 Hz and 28.57 Hz, respectivly. Both fI .,ss show that ft 0 Creation Latency is

reduced with additional PMs. The reduction is again rcr- significant at the higher input data

rate. Skce fusion cost is reduced with aditiora PM's, ai s ,-::ce a new P is created only after a
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Figure 5.6 The effects of PM Multiplier with a 28.57-Hz input data rate

fusion process fails, the P Creation Latency is also reduced proportibnally with additional

PM's.1

1 The cost figures presented in this paper may be higher than their corresponding latency figures
because the latter are the maxima of the last 80% of the scenario. See Section 4.2.3.1. The cost
figures, on the other hand, are the absolute maxima.
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The P Excess Ratio is also reduced with more PM's as shown in Figure 5.6. It is

interesting to note that the P Excess Ratio, a qualitative measurement, and the P Creation

Latency, a quantitative measurement, are proportionally, not inversely, related. When fusion

cost is high, an FPO frequently comes back from the last fusion retry empty handed because its

matching FPO is still involved in its own last fusion search. 1 As a result, different P's are

created for both FPO's, although they can actually fuse. Consequently, the P Excess Ratio

becomes high. However, when fusion cost is low, an FPO can quickly decide if it needs a new P.

So when a matching FPO reports for fusion, the P is very likely ready to be fused with the FPO.

Hence, the P Excess Ratio would be relatively lower.

Since managers in this experiment have dedicated sites, the more PM's in the system,

the less sites available for dynamic objects. More PM's in the system reduce the fusion cost and

improve the performance. But at the same time, more PM's mean less computational resources

for the dynamic objects such as P's. So there is a trade-off. When the grid size is relatively

large, such as 128 in this case, the disadvantages of additional PM's are relatively insignificant.

However, further experiment needs to be done on smaller grid sizes.

5.1.3. FPS History Ring Buffer Length

The history ring buffer is the mechanism used to store history in the Connection stage.

The ring buffer keeps the -PS's to be checked for connection. The length of the ring buffer limits

the amount of history saved. If the buffer is short, few FPS's need to be checked for connection,

and connection cost, the time elapsed between a connection request and its resuit, is low. This is

shown in Figure 5.7, whose y-axis shows the maximum connection cost. The connection cost is

higher when the ring buffer is longer, because there are more FPS's to be checked for

connection.2

1 This is possible since there are usually more than one fusion search at a time in one set of fusable P's

and FPO's, i.e. P's and FPO's of the same aircraft type. In contrast, there is only one connection search
at time in one set of connectable FPO's and FPS's, i.e. FPO's and FPS's of a particular aircraft type
observed from a particular radar.

2 Since the connection search among one set of connectable FPO's and FPS's is performed serially, the

connection cost is directly linked to the number of FPS's to be checked for connection. In contrast, the
fusion search among one set of fusable P's and FPO's is performed concurrently. So the fusion cost is
not directly affected by the number of P's to be checked for fusion. However, the greater the number of
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Figure 5.7 The connection cost goes up with longer history

The effect of longer history ring buffer is also reflected on the FPO Creation Latencyi as
shown in Figure 5.8. Since connection cost increases with longer ring buffer, and since a new
FPO is creaed only after a failed connection process, the FPO Creation Latency also increases
with longer ring buffer. Furthermore, since Fusion happens after Connection, and since the POR
that triggers a P creation in Fusion is generally1 the same POR 6t.- triggers an FPO creaxion in
Connection,2 higher FPO Creation Latency means higher P Creation Latency.

The quality of Connection, represented by the FPO Excess Ratio shown in Figure 5.8,
improves with longer history in the ring buffer. So the more knowledge stored in the ring
buffer, the less connections missed by the system. But the price to pay is the higher creation
latencies described above. It is the typical case: the quantitative and qualitative aspects of the
performance are inversely related.

the P's, the more ;Ikely that some of.them reside on the same sites, and hence th'e fusion process takes

longer. See Appendix A3 for the kinds of objects on each site.

1 This would always be true if messages are always in order in CARE.

2 Not all POR's that trigger FPO creations will trigger P creations, since a P usually consists of several
FPO's.
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Figure 5.8 The effects of the length of FPS history ring buffer

5.1.4. Connection Search Interval

The connection search interval is the maximum time gap allowed between two connected

FPS's. It is a heuristic used to determine temporally if two tracks, -epresented by the two
FPS's, are part of the same flight path. If no time gap is allowed, no ccnaectior; needs to be done,

and the connection cost is 0, as shown in Figure 5.9. The longer the time gap allowed, the more
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connections ate possibie, Tho mora connectioil,1 needS to be peccrnmed (serially), the higher the

connection cost.
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Figure 5.9 The wider the time gap allowed, the higher the connection cost

250 L -I

200 L

ISO

100o -- . ..... i !

0 10 20 3'0 4'0 5'0 6'0

Connetion Search intervl

Fiqura 5.3C Fusion cos- :s also affected by the connecion search interjai

3-96



The increased possible connections pe, track introducti unnecessary ambiguities into the

system. Fusion has to attempt to resolve these ambiguities. Consequently, as shown in Figure

5.10, the fusion process becomes more expensive as the time gap allowed becomes wider.

The effects of the connecion search interval on the latencies and excess ratios are shown

in Figure 5.11. The higher connection cost caused by larger connection search interval is

directly reflected as higher FPO Creation Latency. This is because an FPO is created only after a

failed connection process. Furthermore, since Fusion happens after Connection, and since the

POR that triggers a P creation in Fusion is usually the same POR that triggers an FPO creation

in Connection, higher FPO Creation Latency means higher P Creation Latency. The higher fusion

cost caused oy wider connection search interval contributes to even higher P Creation Latency.

If no time gap is allowed, no ccr:nection is performed. As a result, each FPS is

represented by a different FPC. Hence, the FPO EAcess Ratio becomes very high as depicted in

Ficure 5.11. The FPO Excess Ratio drops dra.iatically when connections are performed.

However, as the connection search interval becomes wider, more connections per FPS are

possible. Recall that when an FPS has multip!e possible connectiors, Connection creates ., new

FPO for the FPS and links them together as connected FPO's. Fusion may fail to resolve

ambiguities such as this one, and the excess FPO's r-,main in the system. Consequently, as the

connection searcn interval becomes wicdr than necessary, the FPO Excess Ratio 6ecomes higher.

The effects on the P Excess Ratio is similar. 1. no connection is performed, Fusion may

fail to fuse some of the excess FPO's and creates different P's for them instead. As a result, the P

Excess Ratio is rather high when no connection is performed, as shown in Figure 5.11. The

quality of Fusion improves when connections are performed. However, as more excess FPO's are

created due to wider connection search interval, Fusion may again fail to fuse some of them

property. Consequently, the P Excess Ratio rises again.

The FPO Creation Latency and FPO Excess Ratio are inversely related if the connection

search interval is low. However, as the interval incteases, the relationship becomes

proportional. The P Creation Latency and P Excess Ratio show proportioral reiationship

throughout.
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Figure 5.11 The effects of connection ,aarch interval

5,1.5. Maximum FPO Fusion Retry

The notion of FPO fusion retry was originally implemented just as a safeguard against

th possibility that a fail-to-fuse FPO may fuse with new P's created during the FPO's fusion

search. The possibility was first thought to be quite smal!. However, this is no( true. It turns
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out that many FPO's that fail to fuse in the first fusion try irentually fuse in subsequent fusior?

retries. Many of the P's created during the FPO's previous fusion searches can actually fuse

with the FPOys in the following fusion try. Since a new P is created every time an FPO fail to

fuse, the P Excess Ratio is high when no retry is performed. As shown in Figure 5.12. the ratio

is reduced significantly when a number of fusion retrias are performed.
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Fi', .r 5.12 The effects of the maximum of FPO fusion retries
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Figure 5.12 shows that the P Excess Ratio is once again proportionally related to the P
Creation Latency. If no fusion retry is performed, a lot of excess P's are created. As a result,
there are also many P's to be checked for fusion. The probability that the P's reside on the same
sites becomes high.1 P's on the same site can only be checked for fusion serially. Consequently.
the fusion cost becomes high, as shown in Figure 5.13. This also results in high P Creation
Latency. When fusion retries are performed, however, few excess P's are created, therefore the
number of P's to be checked is lower, and so are the fusion cost and P Creation Latency.

300-

200 r--1 1-ai Maximum fusion costA Highest fusion costafter the first few

o I l I I -

0 1 2 3 4 5

FPO Maximum Fusion Retry

Figure 5.13 The effects of fusion retries on the fusion cost

The maximum fusion cost becomes relatively high when too many fusion retries are
performed. But the maximum cost only represents the cost of the first few fusion searches.
Since the first few FPO's reporting for fusion cannot be fused with any P'! (since there is
none), the FPO's are forced to keep trying to fuse before P's are finally created when the retry
limit is reached. Consequently, the fusion cost is high. But afterwards, as more and more fusable
P's are actually present in the system, the high retry limit would rarely be reached, and the
fusion cost decreases. As shown in Figure 5.13, in the case of maximum fusion retry of 4, the

f See Appendix A3 for a sample of %he kinds of objects on each site.
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highest fusion cost after the first few data (in simulation time) is significantly lower than the

overall maximum fusion cost. The higher the retry limit, the wider the gap between the two

curves.

5.1.6. P Waiting Period

The P waiting period is used to limit the number of P's to be checked for fusion. P's that

have been inactive for the duration of the waiting period are retired from the system, and no
longer involved in any fusion process. The retired P's represent aircraft that have left the
observed region of airspace. So the P waiting perk-id is a mechanism used to discard old and

obsolote data.

The effects of the P waiting period on the fusion cos-. is shown in Figure 5.14. At a
waiting period of 6,000 Ms. the P's in this simulation are essentially never retired. So every

fusion process involves all P's the system has seen. Every P. obsolete or recent, has to be

checked for fusion. The larger the number of P's to be checked, as explained earlier, the highcr

the fusion cost. As the waiting period becomes shorter, obsolete P's are retired more quickly.

and therefore less P's are involved in any fusion process. Hence, the fusion cost becomes lower.
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Since a new P is created only after a failed fusion process, the effects of the P waiting

period on the P Creation Latency is essentially the same as its effect on the fusion cost. The P

Cretilon Latency rises as the P waiting period goes up, as Shown in Figure 5.15.
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Figure 5.15 The quan;ita:ive effects of :he P waiting eriod

The P Excess Ratio is also affected the same way. as shown in Figure 5-16. So the P

Excess Ratio and P Creation Latency is once again proportionally related. As explained earlier.
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when the cost is hiph. fusion frequently fails. Many excess P's are created as a result. But when

the cost is low, fusion is likely to succeed, and few excess P's are created.
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Figum 5.16 The c q ajt-ve effe<-s ct l-e P wa .ng tqd

Note that if inactve P's are retired instantaneous"y after Iey become inactive. i.e. the P

waiting period is set :o 3. -the p*rformance is ?-t as good as if a sb~on waiting period is appid.

Since inactive P's can be active again when :rack information updates are received, it is
inmpoflant to make sure that irac-ve P's are indeed inactive. Oheiwise. new P's have to be
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created for FPO's that shtould fuse with those P'S, because the supposedly inactive P's, now

retired, are no longer checked for fusion. The P Excess Ratio becomes relatively high, and so do

the fusion cost and P Creation Latency. A short delay in retiring inactive P's is necessary to

make sure that no more track updates are to be received. Recall that the updates do have some

latencies associated with them. Indeed the updete latencies are part of the overall performance

evaluation.

5.1.7. Optimal Parameter Values

The results above suggest that some parameter values yield better performance than the

standard. Usted below are the parameter values of the new standard. New values are in italic

bold.

" Free pool lengths: 0, 0; 0, 0; 0, 0; 0, 0

" PM multiplier: 3

• FPS history ring buffer length: 10

a Connection search interval: 5

* Maximum FPO fusion retry: 3

• P waiting period: 120 ms

The new values are chosen primarily because they yield better P-related performance

measurements, i.e. lower P latencies and excess ratio. The P's, after all, are the final output of

PA. The performance figures of the old and new standards are compared in Figure 5.17. The P

Excess Ratio is reduced dramatically in the new standard. Other differences are small and/or
insignificant.

5.2. The Effects of the Frequency of Input Data

The effects otfth, input data rate are investigated on grid sizes 36, 64, 128, and 256

using the C-130 scenario. The results are exemplified by the effects on the P Creation Latency

and P Excess Ratio. The complete results can be found in Appendix A4. Other results are similar
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Figure S.17 The old standard vs. the new standard

to the ones presented here, except for the FPS Excess Ratio, which is always 0, i.e. PA never
misses any distribution tasks.

The effects of the frequency of input data across grid sizes on the P Creation Latency are

shown in Figure 5.18, with a close-up on th d oss ri sie on e P curves represent
the highest latency eported. On any grid size, the latency goes up as the input data rate rises.
The quantitative performance deteriorates very rapidly when the system is stressed at high
input data rate.

Across grid sizes, the latency increases much more quickly on grid size 36 than on any
other grid sizes. The smaller the grid size, the quicker the performance degrades as the input
data rate rises. For any given level of latency, i.e. quantitative performance, the maximum data
frequency achievable is higher for a higher grid size. Similarly, for any given input data rate,
the latency decreases with grid size, i.e. the quantitative performance improves with more
processin9 units.
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Figure 5.18 The effects of the input data rate on the P Creation Latency
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Figure 5.19 A close-up on the effects of the input data rate on the P Creation Latency
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However, the knees of latency curves for grid sizes 64, 128, and 256 are about the

same. Although the grid size 256's latency at 28.57 Hz is substantially lower than the grid size

64's at the same data frequency, the former latency is still relatively high. For a low range of

latency, i.e. a desired level of performance, any significant reduction in the latency stops at grid

size 64.

3-

II ili9 P-ER .36I
=0i ....... P-ER 64

=: P-ER.- 128
" .... ..... .P-ER .- 256

0

0 10 20 30 40
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Figure 5.20 The effects of the input data rate on the P Excess Ratio

The effects of the input data rate on the P Excess Ratio, shown in Figure 5.20, are the

same. The qualitative performance also degrades quickly when the system is stressed at high data

rate. There is a conclusive and substantial performance improvement from grid size 36 to 64 at

any given data frequency. The additional sites at grid sizes 128 and 256 do not seem to add much

to the performance.

5.3. The Effects of the Width of Input Data

The effects of the width of input data are also studied on grid sizes 36, 64, 128, and

256. The scenarios described in Section 4 3 are simulated at 20 Hz, i.e. POR's co,ne everl 50
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ms into the system. The results are once again exemplified by the effects on the P Creation

Latency and P Excess Ratio. The complete results can be f(%und in Appendix AS. Other results are

similar to the ones presented here, except for the FPS Excess Ratio, which is always 0, i.e. PA

never misses any distribution tasks.

The effects of the width of input data across grid sizes on the P Creation Latency are

shown in Figure 5.21, with a close-up on the lower range in Figure 5.22. The curves represent

the highest latency reported. The effects are similar to the ones described in the previous

section. On any grid size, the quantitative performance deteriorates rapidly at high input data

rate. Across grid sizes, the latency once again increases much more rapidly on grid size 36 than

on the larger grid sizes. The knees of latency curves for grid sizes 64, 128, and 256 are about

the same, too. For a desired level of performance, any substantial reduction in the latency stops

at grid size 64.

The effects of the width of input data across grid sizes on the P Excess Ratio, shown in

Figure 5.23, are the same. The qualitative performance degrades rapidly at high data rate. The

performance improves sign;ficantly from grid size 36 to 64 at any given data width, but the

additional sites at grid sizes 128 and 256 do not seem to add much to the performance.
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Figure 5.21 The effects of the width of input data on the P Creation Latency
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Figure 5.22 A close-up on the effects of the width of input data on the P Creation Latency
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5.4. Possible Speedup Curves

A speedup curve is generated by plotting sustainable data rate or capacity versus rid

size. A performance requirement must first be specified to find the sustainable data rate and

capacity of each grid size. A sustainable data rate or capacity that satisfies a given pair of qn and

q1, the performance requirement, is the lowest sustainable data rate or capacity ihat satisfies

each element of qn and q.

Figures 5.24 through 5.29 show the sustainable data rate achievable, on the grid sizes

'6, 64, 128, and 256, for a selected range of latency requirement. Each figure corresponds to

an element of qn, except for FPS Excess Ratio which is always 0. Figures 5.30 and 5.31 show

the data frequencies on the four grid sizes that correspond to different FPO and P excess ratios.

These data frequencies are not necessarily sustainable, since the notion of sustainability is tied

to the notion of *not grovping in time." There is no way, however, to know whether an excess

ratio grows in time.
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Figure 5.24 Sustainable data rates of FPS Creation Latency
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Figure 5.26 Suslainabie data rates of FPO Creation Latency
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Figure 5.28 Sustainable data rates of P Creation Latency
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Figure 5.29 Sustainaole data rates of P Update Latency
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Figure 5.30 Data frequencies that correspond to different FPO Excess Ratios
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Figure 5.31 Data frequencies that correspond to different P Excess Ratios

Figure 5.32 sho', - the sustainable data rates of each element of the following

performance requirement:
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The sustainable data rates of gric size 36 that satisfy the elements of the performance

requirement vary from 6.67 to 11.66 Hz. For grid size 64, the sustainable data rates vary

from 22.22 to 24.21 Hz; for grid size 128, 22.28 to 28.57 Hz; and for grid size 256, 23.25

to 28.57 Hz. 1 Hence, the overall sustainable data rates for grid sizes 36, 64, 128, and 256 are

6.67, 22.22, 22.28, and 23.25 Hz. respectively.

1 These numbers are generated by ;t:er;,oia:1on from Fgures 5.24-31
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Figure 5.32 The sustainable data rates of each element of qn and qi

The SOR-based speedup curve that corresponds to the performance requirement above is
showns '-: Figure 5.33. As indicated in the previous two sections, there is a significant

r'Crforv'a , e gain from grid size 36 to 64, tjt not beyond 64. The overall speedup of grid size
?5j6 ow,- 36 is 3.49. The theoretical speed-.p limit of grid size 256 over 36, i.e. a linear

spetul, not exactly 2 -'d- 7.11. Since .31 sites out of those grid sizes are dedicated for

mana,.b only 5 sites are available for dyna.-1ic objects on grid size 36, but 220 are available
220~"~isize 256. So the actual theoretical ;r'lit is probably closer to 5 44. Hence, a

speedup of 3.49 is very small compared to the theoretical limit.1

F or grid size 64. the dernons~ralled speeduo ever grid size 36 ;s 3.33. The theoretical limit i
33 97Probably about - .6. For grid s:ze 128. the speedup is3.34. an 'h ~ sprobably -5 an h mt15

19.4.
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Figure 5.33 A Possibl SDR-based speedup curve

The corresponding capacity-basea speedup curve can sim-ilarly be derived. Appendix A6

contains the details of the derivation. Figure 5.34 shows the capacities of each element of thle

performance requirement. The capacities of grid size 36 vary from 5.60 to 8.55

POR's/scantime; grid size 64, 16.40 to 18.61 POR's/scantime: grid size 128, 17.35 to 210.93

POR's/scantime; and grid size 256, 16.90 to 18.61 POR'stscantime. So the overall capacities

for grid sizes 36, 64, 128, and 256 are 5.60, 16.40, 17.35, and 16.90 POR'sctie

respectively.

Figure 5.35 shows the capacity-based speedup curve that corresponds to the

performance requirement. This curve also shows a significant improvement from grid size 36

to 64, but not much beyond 64. The speedup of grid size 128 over 36 is 3.10.1 I it is also very

small compared to the theoretical limit.

1 The speedup of grid size 256 over 36 "is somewhat smaller, 3.02. The sco..edup of grid size 64 over
36 is 2.93. A-il these capacity-based speedup figures are shigh-,, lower thant their corresponding SDR-
based figures.
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The SDR-based and capacity-based speedup curves can be normalized in terms of the

number of POR's processed per simulation time unit (seconei), as shown in Figure 5.36. The

SDR-based figures are multiplied by the width of the scenario used, C-130, which is 15.74

POR's/scantlme. The capacity-based figures are multiplied by the frequency of input data used,

which Is 20 Hz.

400

300 -

2 SDR-Based
200 -- - -..... .. Capacity-Based

100 . ... .. ....

0 64 128 192 256

Grid Size

Figure 5.36 The two speedup curves are normalized in terms of POR's per simulation time unit

Of course, the speedup curves above are very much dependent on the performance

requirement specified. A tighter performance requirement will eventually eliminate much of

the performance gain achieved on larger grid sizes. For example, if the P Excess Ratio is

required to be very close to 0.0, as shown in Figure 5.31, the speedup is reduced to only about

1.25. If the performance requirement is too tight, it will not be achievable on any grid size at

any data rate or width. A more relaxed performance requirement, if tolerable, can lead to

slightly higher speedup. But there is a limit: higher data rate or width that leads to higher

latencies and excess ratios is eventually no longer sustainable. At that point, a looser

performance requirement does not change anything.

3-118



We feel th;at the small gain in performance across grid sizes is intrinsic to the PA

system. Its complex reasoning leads to coarse process granularity. As a result, the level of

concurrency achievable is relative' ,w. The system fails to fully utilize the additional sites

available on larger grid sizes.

5.5. Summary of Results

Six parameters of the PA system are studied: free pool lengths, PM multiplier, FPS

history ring buffer length, connection search interval, maximum FPO fusion retry, and P

waiting period. The free pool mechanism was implemented to reduce dynamic object creation

latencies, but the experiment shows that the latencies are not reduced no matter how long the

free pools are. The experiment also shows that the PM's help the fusion process by reducing

both the P Creation Latency and P Excess Ratio. However, long FPS history ring buffers in the

connection process increase the FPO Creation Latency while at the same time decrease the FPO

Excess Ratio. A wide connection search interval also causes high FPO Creation Latency, but a too

narrow connection search interval causes high FPO Excess Ratio. The FPO fusion retry process

is shown to be very critical in improving the speed and quality of the fusion process. Finally,

the experiment shows that obsolete P's have to discarded to prevent the fusion performance

from deteriorating.

All of the latencies and the excess ratios, except t; e FPS Excess Ratio which is constantly

zero, go up as the input data frequency or width increases. TI latencies and -. Aczsj ratios

increase much more quickly on grid size 36 than on any larger g.o sizes. T.- (ne -, of "he

latency and excess ratio curves for grid sizes 64, 128, and 256 are about the same -en,: foi J

desired level of performance, any significant improvement stops at grid sizes 64.

An SDR-based and a capacity-based speedup curves are generated by plotting susta;nable

data rate and capacity, respectively, versus grid size, after a performance requirement is

specified. Both speedup curves show substantial improvement from grid size 36 to 64, but not

beyond grid size 64. The overall SOR-based speedup over grid size 36 is 3.49, while the

capacity-based speedup is 3.10. Both figures are small compared to the theoretical limit.
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6. Conclusions

Evaluating the performance of a continuous parallel knowledge-based system such as PA

proves to be very difficult. The performance cannot be measured in execution time, since the

system is continuous. The notion of latency proves to be very useful in indicating how the

system keeps up quantitatively with the input data. Excess ratio is also useful as a measure of

the quality of the result, but it fails to indicate whether it grows in time. A harder problem is in

defining the notion of sustainability. Different definitions could lead to different conclusions of

the same experimental results.

For many of the heuristics in PA, the qualitative and quantitative aspects of the

performance are proportionally related. This is especially true when the heuristics Ceal with

how much history or knowledge have to be processed. With long history, the system sperids too

much time to do useless processing with obsolete data. As a result the system cannot keep up

with its input data: both the quantitative and qualitative aspects of the performance deteriorate.

The potential speedup via concurrent processing of large and complex systems such as PA

is relatively small. While the DA module can achieve 2 order of magnitude speedup [51, PA can

achieve only about 1 order of magnitude. The large speedup in DA is due to its simple reasoning.

It consists of small and relatively independent processes. PA, on the other hand, is much more

complex. PA cannot be decomposed irto smaller processes without introducing a high ega of

dependency and synchronization among the processes that would be enough to offset the potential
gain.

The results in this experiment lead to a conclusion that there is an inverse relationship

between the potential speedup via concurrency of a system and its reasoning complexity. This is

very unfortunate, since systems are unmistakably becoming more complex and larger. Yet,

concurrent processing does not seem to be the answer for a large speedup in their performance.

7. Future Work

Many interesting enhancements and experiments are worth pursuing with the current

system. These include:

Implement and evaluat the effects of variable FPO fusion retries (Section

2.3.3).
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5 xploit the, fyic rjv i nechar'ISM 10 *-Cyole obsolete dyra.-i- objects
(Section 5.1,1).

Measure and~ eveiuate -Z,--"ance of PA zn % grid -size in wich .mere
is '-nly one sitte vilaoiO for all dynarni! Obieci;. YhIsi e~rac is to0
be %,e~d 1.1 calculaie a "..re accurat6 spe-dup figurs over the number of
sites available fir) dynamic abiects (WSKi~ 5.4).

'rhe next step in the Airtrac development is the design and im~plementation of the iast
module, Pzth intcrpretatioi (PI). As described earlier, the PI module will aslyze and
Wnerpret information stored ;n the P's g- erated by the PA module. Additional s urces of
I n'ormation such as aircraft flight plans and intelligence reports are nleeded to provide
intinuous and real-time assessments and predictions about aircraft in the M~onitored airspace.
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Al. Scenario Profiles

The following seven scenario profiles show (fe numbers of total and new POR's at every

five "nail"Ies.
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A2. Sample Simulation Results

The following figures show sample simulation results: latency reports, cost reports, and

queue lengths.
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A3. Sample Load Summary

The following is a sample load summary of a simulation run on the grid size 128. Eac
line starts with the location of a site, the total number of objects or processes that reside on
that site, and the kinds of objects or processes and their corresponding numbers. The first 31
sites listed are reserved for managers; they are alocated statically at initialization. The rest

are for dynamic objects. which are al-cated dnar-cally and randomly -d run tima.

(16 8): 2 processes (IPAl .1) (OAS. 1))
(1S 7): 1 processes ((F.M- 1))
(16 6): 1 processes ((FPM I))
(16 5): 1 processes ((FPL5 0)
(16 4): 1 processes ((FPM 1))
(16 3): 1 processes (1FPM 1)
(16 2): 1 processes (.c:M lit
(16 1): 1 processes (FPM 1))
(15 8): 1 processes ({FPM t;;
(15 7): 1 process" {{FPM ;}
(15 6): 1 processes J-FPC I,-
(15 5): 1 orocesses ((FPC . 1))
(15 4): 1 processes ({FPC i))
(IS 3): 1 processes :{FPC I);
(15 2): processes (!FPC iit
(15 1): 1 rocesses (FPC I))
(14 8): 1 processes ((FPC. 1))
(14 7): 1 processes f(FPC i))
(14 6): I processes (FPC, n))
1s4 fl: 1 pocesses ((CPM. 1))
(14 4): 1 processes -CPM 1))
(14 3): ! processes (CPM "1))
(14 2): 1 processes ((PM- 1))
(14 1)- processes ((PM. 1))
(13 8): 1 processes ((PM -))

(13 7): 1 proceses ((PM -1))

(13 6): 1 processes ?'PM -))

(13 5): 1 processes ({PM -
(13 4): 1 processes :PM B)
(13 3): 1 processes I1PM U)
(13 2): 1 processes ((PM -))

(13 1): 14 processes ;{FPS 6) {FPO. 5) (P 3))
(12 8): 27 processes ((FPS. 14) (FPO .11) (P - 2))
(12 7): 22 processes HFPS 17i "FP!O 5)
(12 6): 27 processes -FPS l FFPO 6- iP. 4))
(12 5): 23 processes FPS 17) -FPO 4) -1UFP. i)9. I)
(12 4): 17 p-FPOes .F 10) SF0O 4) P .2) (UFP -i)

(12 3): 22 processes 1F3. 13LFPO flP. 2))
(12 2): 2' processes ;:FPS 13: FO 5) P. 2 (UFP. ")
(12 I): '8 processes HFPS 15 :FPO. 3-H
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(11 8): 17 processes ((FPS 11) (FPO 4) (P 2))

(11 7): 20 processes ((FPS 14) (FPO 4) (P 2))
(11 6): 11 processes ((FPS 10) (FPO 1))

(11 5): 19 processes ((FPS 12) (FPO 6) (P 1))

(11 4): 16 processes ((FPS 10) (FPO 5) (P 1))
(11 3): 17 proceub" ((FPS 7) (FPO. 6) (P , 4))
(11 2): 19 processes ((FPS 13) (FPO 5) (P 1))
(11 1): 15 processes ((FPS 13) (FPO 1) (P 1))
(10 8): 11 processes ((FPS 7) (FPO 4))
(10 7): 16 processes ((FPS 10) (FPO 5) (P 1))
(10 6): 18 processes ((FPS 12) (FPO 4) (UFP 2))
(10 5): 12 processes ((FPS 8) (FPO 3) (P 1))
(10 4): 25 processes ((FPS 16) (FPO . 6) (P . 3))(10 3): 18 processe ((FPS 9) (FPO 5) (P 3) (UFP
(10 2): 15 process" ((FPS 9) (FPO 5) (P3 1))

(10 1): 17 processes ((FPO 7) (FPS 6) (P 3) (UFP 1))
(9 8): 14 processes ((FPS 9) (FPO 4) (P 1))
(9 7): 16 proCesses ((FPS 9) (FPO 6) (P 1))
(9 6): 11 processes ((FPS 9) (P . 1) (FPO 1))
(9 5): 21 processes ((FPO 9) (FPS. 9) (P 2) (UFP 1))
(9 4): 17 processes ((FPS 11) (FPO 5) (P 1))
(9 3): 18 processes ((FPS 15) (FPO 3))
(9 2): 23 processes ((FPS 15) (FPO 5) (P 3))
(9 1): 18 processes ((FPS 9) (FPO 5) (P 4))
(8 8): 17 processes ((FPS 9) (FPO 6) (P 2))
(8 7): 11 processes ((FPO 5) (FPS 5) (P 1))
(8 6): 18 processes ((FPS 11) (FPO 4) (P. 2) (UFP 1))
(8 5): 20 processes ((FPS 10) (FPO. 7) (P. 3))
(8 4): 18 processes ((FPS 9) (FPO. 5) (P 4))
(8 3): 12 processes ((FPS 9) (FPO. 2) (P. 1))
(8 2): 20 processes ((FPS 12) (FPO , 6) (P . 2))
(8 1): 23 processes ((FPS 15) (FPO. 4) (P. 3) (UFP. 1))
(7 8): 23 processes ((FPS 16) (FPO . 6) (P. 1))
(7 7): 16 processes ((FPS 10) (FPO. 4) (UFP. 1) (P. 1))
(7 6): 10 processes ((FPS 7) (P. 2) (FPO. 1))
(7 5): 12 processes ((FPS 8) (FPO 4))
(7 4): 17 processes ((FPS 11) (FPO. 6))
(7 3): 23 processes ((FPS 13) (P. 6) (FPO. 4))
(7 2): 16 processes ((FPS 11) (FPO. 4) (P , 1))
(7 1): 14 processes ((FPS 9) (FPO , 3) (P . 2))
(6 8): 21 processes ((FPS 13) (FPO. 4) (P. 3) (UFP. 1))
(6 7): 16 processes ((FPS 9) (FPO. 5) (P . 2))
(6 6): 26 processes ((FPS 12) (FPO. 9) (P 5))
(6 5): 15 processes ((FPS 14) (FPO . 1))
(6 4): 10 processes ((FPS 7) (FPO. 2) (P . 1))
(6 3): 10 processes ((FPS 7) (FPO. 3))
(6 2): 14 processes ((FPS 10) (P. 2) (UFP. 1) (FPO . 1))
(6 1): 25 processes ((FPS 16) (FPO. 6) (P. 3))
(5 8): 13 processes ((FPS 8) (FPO . 2) (P . 2) (UFP. 1))
(5 7): 12 processes ((FPS 5) (FPO . 4) (P - 3))
(5 6): 23 processes ((FPS 11) (FPO . 10) (P . 2))
(5 5): 18 processes ((FPS 10) (FPO 6) (P 2))
(5 4): 23 processes ((FPS . 15) (FPO. 7) (P. 1))
(5 3): 25 processes ((FPS . 18) (FPO. 7))
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(5 2): 16 processes ((FPS 10) (FPO. 5) (P. 1))
(5 1): 14 process. ((FPO 7) (FPS • 5) (P 2))

(4 8): 13 process" ((FPS 6) (FPO . 4) (P. 3))
(4 7): 18 processes ((FPS 11) (FPO. 5) (P . 2))
(4 6): 20 processes ((FPS 12) (P. 4) (FPO . 4))
(4 5): 18 processes ((FPS 12) (FPO. 5) (P. 1))
(4 4): 11 processes ((FPS 6) (FPO .3) (P 2))
(4 3): 16 processes ((FPS 12) (FPO . 3) (P . 1))
(4 2): 22 processes ((FPS 15) (FPO . 5) (P . 2))
(4 1): 13 processes ((FPS 7) (FPO. 5) (P. 1))
(3 8): 13 processes ((FPS 9) (FPO. 3) (P. 1))
(3 7): 24 processes ((FPS 16) (FPO . 6) (P . 2))
(3 6): 21 processes ((FPS 15) (FPO. 6))
(3 5): 20 processes ((FPS 11) (FPO . 5) (P . 4))
(3 4): 13 processes ((FPS 7) (FPO 3) (P , 3))
(3 3): 15 processes ((FPO. 7) (FPS 6) (UFP. 1) (P. 1))
(3 2): 24 processes ((FPS 15) (FPO. 6) (P. 3))
(3 1): 15 processes ((FPS 9) (FPO 3) (P 3))
(2 8): 19 processes ((FPS 13) (FPO. 5) (P 1))
(2 7): 13 processes ((FPS 11) (FPO . 2))
(2 6): 21 processes ((FPO . 11) (FPS . 10);
(2 5): 10 processes ((FPS . 7) (FPO 3))
(2 4): 22 processes ((FPS . 15) (FPO . 4) (P . 3))
(2 3): 22 processes ((FPS. 16) (FPO , 5) (P . 1))
(2 2): 10 processes ((FPS. 6) (P. 2) (FPO 2))
(2 1): 20 processes ((FPS . 12) (FPO . 5) (P . 3))
(1 8): 12 processes ((FPS . 10) (UFP. 1) (FPO. 1))
(1 7): 20 processes ((PS 10) (FPO. 7) (P . 3))
(1 6): 22 process.as ((FPS 13) (FPO. 8) (UFP. 1))
(1 5): 18 procassas ((FPS 8) (FPO. 7) (P. 2) (UFP 1))
(1 4): 16 processes ((FPS 11) (FPO. 4) (P . 1))
(i 3): 14 processes ((FPS 8) (P . 3) (FPO. 3))
(1 2): 11 processes ((FPS 6) (FPO. 5))
(1 1): 18 processes ((FPS 9) (FPO. 6) (LEXICAL-CLOSURE. 2) (P . 1))
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A4. The Effects of the Frequency of Input Data

This appendix contains the complete graphs of the effects of the frequency of input data

on the quantitative and qualitative performance of PA.
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Figure A4.1 The effects of the input data rate on the FPS Creation Latency
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Figure A4.2 The effects of the input data rate on the FPS Update Latency
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Figure A4.3 The effects of the input data rate on the FPO Creation Latency
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Figure A4.4 The effects of the input data rate on the FPO Update Latency
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Figure A4.5 The effects of the input data rate on the P Creation Latency
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Figure A4.6 The effects of the input data rate on the P Update Latency
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Figure A4.7 The effects of the :sout data rate on the FPO Excess Ratio
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Figure A4.8 The effects of the input data rate on the P Excess Ratio

3- 38



A5. The Effeits of the Width of Input Data

This append~x , intains the complete graphs of the effects of the width o' input data on the

quantitative and qualita.ave performance of PA.
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Figure A5. I The effects of the input data width on the FPS Creation Latency
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Figure A5.2 The effects of the input data width on the FPS Update Latency
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Figure A5.3 The effects -I -he input data width on the FPO Creation Latency
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Figure A5.4 The effects of Ire input data width on the FPO Update Latency
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Figure A5.6 The effects of the nput data width on the P Update Latency
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A6. Derivation of a Capacity-Based Speedup Curve

This appendix shows how a capacity-based speedup curve is derived. Figures A6.1

through A6.6 show the capacity achievable, on the grid sizes 36, 64, 128, and 256, for a

selected range of latency requirement. Each figure corresponds to an element of qn. Figures A6.7

and A6.8 -Iow the data widths on the four grid sizes that correspond to different FPO and P

excess ratios. These data Widths are not necessarily sustainable, since the notion of

sustainability is tied to the notion of *not growing in time.* There is no way, however, to know

whether an excess ratio grows in time.

20 I Ii '

I i ~FPS-CL -36
i I , ,I 4FPS-CL -64

HI~ jfX FPS-CL -128
IL~~~i I : * *FPS-CL -256

0 20 40 60 80I 100 '20 140 16 0

Latency Requirement (ins)

Figure A6. XCacac;:tes of FPS Creation Latency
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Figure A6.2 Capac=!ies of FPS Uo-ate Latency
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Figure A6.6 Capacities of P Update Latency
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Figure A6 7 Capacities of FPO Excess Ratio

3-146



30

20 in. P-ER -36
* P-ER .64
a P-ER- 128
* P-ER- 256

10 - --------

0
0.0 01.1 o.2 0.3 0.4 0.5

Excess Ratio Requirement

Figure A6.8 Capacities of P Excess Ratio

Figure A6.9 shows the capacities of each element of the following performance

requirement:

- FPS-C L-  -0oo
FPS-UL 801

-FPO-CL 200
qn - FPO-UL 100 m

P-CL 300
Lp-UL J L150-i

FFPS'ER1 F0.00
qi I FPO-ER| 0.15

LP-ER J L0.20J

The capacities of grid cze 36 vary from 5.60 to 8.55; grid size 64, 16.40 to 18.61;

grid size 128, 17.35 to 20.93; and grid size 256, 16.90 to 18.61. So the overall capacities for

grid sizes 36, 64, 128, and 256 are 5.60, 16.40, 17.35, and 16.90, respectively.

Figure A6 0 shows the capacity-based speedup curne that corresponds to the

performance requirement.
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Abstract

This paper documents the results we obtained and the lessons we learned in the
design, implementation, and execution of a simulated real-tine application on a simulated
parallel processor. Specifically, our parallel program ran 100 times faster on a 100-
processor multiprocessor compared to a I-processor multiprocessor.

The machine architecture is a distributed-memory multiprocessor. The target
machine consists of 10 to 1000 processors. but because of simulator Limitations, we ran
simulations of machines consisting of I to 100 processors. Each processor is a computer
with its own local memory, executing an independent instruction stream. There is no
global shared memory; all processes communicate by message passing. The target
programming environment, called Lamina. encourages a programming style that stresses
performance gains through problem decomposition, allowing many process irs to be
brought to bear on a problem. The kcy is to distribute the processing load over replicated
objects, and to increase throughput by building pipelined sequences of objects that handle
stages of problem solving.

We focused on a knowledge-based application that simulates real-ti-ie
understanding of radar tracks, called Airtrac. This paper describes a portion of the Air-.aC
application implemented in Lamina and a set of experiments that we performed. We
confirmed the following hypotheses: 1) Performance of our concurrent program improves
with additional processors, and thereby attains a significant level of speedup. 2)
Correctness of our concurrent program can be maintained despite a high degree of problem
decomposition and highly overloaded input data conditions.
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1. Introduction

Ths paper focuses on the problems confronting the prograrmer of a concurrent
program that runs on a distributed memory multiprocessor. The primary objective of our
experiments is to obtain speedup from parallelism without compromising correctness.
Specifically, our parallel prograrn ran 100 times faster on a 100-processor multiprocessor
compared to a 1-processor multiprocessor. The goal of this paper is to explain why we
made certain design choices and how those choices influence our result.

A major theme in our work is the tradeoff between speedup and correctness. We
attempt to obtain speedup by decomposing our problem to allow many sub-problems to be
solved concurrently. This requires deciding how to partition the data structures and
procedures for concurrent execution. We take care in decomposing our problem; to a first
approximation, more decomposition allows more concurrency and therefore greater
speedup. At the same time. decomposition increases the interactions and dependencies
berween the sub-problems and makes the task of obtaining a correct solution more difficult.

This paper focuses on the implementation of a knowledge-based expert system in a
concurrent object-oriented programming paradigm called Lamina [Delagi 87a]. The target
is a distributed-memory machine consisting of 10 to 1000 processors, but because of
simulator limitations, our simulations examine 1 to 100 processors. Each processor is a
computer with a local memory and an independent instruct-on stream.1 There is no global
shared memory of any kind.

Airtrac is a knowledge-based application that simulates real-time understanding of
radar tracks. This paper describes a portion of the Airtrac application implemented in
Lamina and a set of experiments that we performed. We encoded and implemented the
knowledge from the domain of real-time radar track interpretation for execution on a
distmbuted-memory message-passing multiprocessor system. Our goal was to achieve a
significant level of problem-solving speedup by techniques that exploited both the
characteristics of our simulated parallel machine, as well as the parallelism available in our
problem domain.

The remainder of this paper is organized as follows. Section 2 introduces
definitions that we use throughout the paper. Section 3 describes the model of the parallel
machine that we simulate, and the model of computation from the viewpoint of the
programmer. Section 4 outlines a set of principles that we follow in our programming
effort in order to shed light on why we take the approach that we do. Section 5 describes
the signal understanding problem that our parallel program addresses. Section 6 describes
the design of our experiments, and Section 7 presents the results. Section 8 discusses a
number of design issues, and Section 9 summarizes the paper.

lEach processor is roughly comparable to a 32-bit microprocessor-based system equipped with a
multitasking kernel that supports interprocessor comnmunicauon and restartable processes (as opposed to
resumable processes). The hardware s.stem is assumed to support high-bandwidth, low-latency inter-
processor commumcanons as described in Byrd et.al. (Byrd 87].
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2. Definitions

Using the definitions of Andrews and Schneider (Andrews 83], a sequential
program specifies sequential execution of a list of statements; its execution is called a
process. A concurrent program specifies two or more sequential programs that may be
executed concurrently as parallel processes.

T

We define Sn,m speedup as the ratio -- where Tk denotes the time for a givenn
task to be completed on a k-processor multiprocessor. Both Tm and Tn represent the same
concurrent program running on m-prccessor and n-processor multiprocessors,
respectively. When we compare an n-processor niultiprocessir to a 1-processor
multiprocessor, we obtain a measure fo! Sr/ 1 speedup which should be distinguished

from true speedup, defined as the ratio -- , where T* denotes the tir.e for a given task to
n

completed by the best imple.'nentition possible on a uniprocessor.2 In particular, T*
excludes overhead tasks (e.g. message-passing, synchronization, etc.) that TI counts.

We define correctness to be the degree to which a concurrent p: )gram e;.ecuting on
a k-processor multiprocessor obtains the same solution as a conventional uniprocessor-
based sequential program embodying the same knowledge as contained in the concurrent
program. We call the latter solution a reference solution. We use a serial version of our
system to generate a reference solution, to evaluate the correcmess of the parallel
implementation.3

MacLennan [MacLennan 821 distinguishes between value-oriented aaid objec-
oriented programmning styles. A value has the following properdes:

" A value is read-only.

" A value is atemporal (i.e. timeless and unchanging).

. A value exhibits referential transparency, that is, there is never the danger of one
expression altering something used by another expression.

These properties make values extremely attractive for concurrent programs. Values
are immutable and may be read by many processes, either directly or through "copies" of
values that are equal; this facilitates the achievement of correctness as well as concurrency.
A well-known example of value-oriented programming is functional programming
[Henderson 80]. Other examples of value-oriented programming in the realm of parallel
computing include systolic programs [Kung 82] and scaar data flow programs (Arvind 83,
Dennis 85], where the data flowing from processor to processor may be viewed as values
that represent abstractions of various intermediate problem-solving stages.

2A I-processor multiprocessor executes the same parallel program that rums on a a-processor
multiprocessor In particular. it creates processes that communicate by sending messages. as opposed to
sharing a common memory.

3Unfortunately. our reference program is not a valid producer of T* estimates, and we cannot use it
to obtain true speedup estimates. Project resource limitations prevented us from developing an optimized
program to serve as a best serial implementation.
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In contrast, MacLennan defines objects in computer programming to have one or

more of the following properties:

" An object may be created and destroyed.

" An object has state.

• An object may be changed.

• An object may be shared.

Computer programs often simulate some physical or logical situation, where objects
represent the entities in the simulated domain. For example, a record in an employee
database corresponds to an employee. An entry in a symbol table corresponds to a variable
in the source text of a program. Variables in most high-level programming languages
represent objects. Objects piovide an abstraction of the state of physical or logical entities,
and reflect changes that -hose entities undergo during the simulation. These properties
make objects particuiarly useful and attractive to a programmer.

Objects in, a concurrent program introduce complications. in particular, many
parallel processes may attempt to create, destroy, change, or share an object, thereby
causing potential problems. For instance, one process may read an object, perform a
computation, and change the object. Another process may concurrently perform a similar
sequence of actions on the same objec', leading to the possibility that operations may
interleave, and render the state of the object inconsistent. Many solutions have been
proposed, including semaphores, conditional critical regions. and monitors; all of these
techniques strive to achieve correctness and involve some loss of concurrency.

Our programming paradigm. Lamina. supports a variation of monitors, defined as a
collection of permanent variables (we use the term instance variables), used to store a
resource's state, and some procedures, which implement a set of allowed operations on the
resource [Andrews 83]. Although monitors provide mutual exclusion, concurrency
considerations force us to abandon mutual exclusion as the sole technique to obtain
correctness.

We classify techniques for obtaining speedup in problem-solving into two
categories: replication and pipelining. Replication is defined as the decomposition of a
problem or sub-problem into many independent or pa-tially independent sub-problems that
may be concurrently processed. Pipelining is defined as the decomposition of a problem or
sub-problem into a sequence of operations that may be performed by successive stages of a
processing pipeline. The output of one stage is the input to the next stage.

3. Computational model

3.1. Machine model

Our machine architectue, referred to as CARE [Dela; S7al. may be modeled as an
asynchronous message-passing distributed system n--i :eliable datagram service
[fanenbaum 81]. After sending a message, a process may continue to execute (i.e.
message passing -s asynchronous). A rival order of messages may differ from the order in
which they were sent (i.e. datagram as opposed to virmal circuit). The network guarantees
that no message is ever iost (i.e. reliable), although it does not guarantee when a message
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will arrive. Each processor within the distributed system is a computer that supports
interprocessor communication and restartable processes. Each processor operates on its
own instruction steam, asynchronously with respect to other processors.

In synchronous message passing, maintaining consistent state between
communicating processes is simplified because the sender blocks until the message is
received, giving implicit synchronization at the send and receive points. For example, the
receiver may correctly make inferences about the sender's program state from the contents
of the message it has received, without the possibility that the sender program continued to
execute, possibly negating a condition that held at the time the original message was sent.

In asynchronous message passing, the sender continues to execute after sending a
message. This has the ad-, antage of introducing more concurrency, which holds the
promise of additional speedup. Unfortunately, in its pure form, asynchronous message
passing allows the sender to get arbitrarily far ahead of the receiver. This means that the
contents of the message reflects the state of the sender at the time the message was sent,
which may not necessarily be true at the time the message is received. This consideration
makes the maintenance of consistent state across processes difficult, and is discussed more
fully in Section 4.

3.2. Programmer model

Our programning paradigm. Lamina, provides language constructs that allows us
to exploit the distributed memory machine architecture described earlier (Delagi 871]. In
paiticular, we focused our programming efforts on the concurrent object-oriented pro-
gramming model that Lamina provides. As in other object-oriented programrirng systems,
objects encapsulate state information as instance variables. Listance variables may be
accessed and manipulated only th-rough methods. Methods are invoked by message-
passing.

However, despite the apparent similarity with conventional object-oriented systems,
programnming within Lamina has fundamental differences:

* Concurrent processes may execute during both object creation and message
sending.I The die required to create an object is visible to the prog-ammer.

* Tne time re-quired to send a message is visible to the programmer.

- Messages may be received in a different order from wiich they were sent.

These differences reflect the s-ong emphasis Lamina places on concurrency. W'ile
all object-oriented systems encounter delays in object creation and message sending, these
delays are significant within the Lamina paradigm because of the other activities that may
proceed concurrently during these periods. Subtle and not-so-subtle problems become
apparent when concurrent processes communicate, whether to send a message or to create a
new object. For instance, a process might detect that a particular condition holds, and
respond by sending a message to another process. But because processes continue to
execute during message sendIng, the condition may no longer hold when the message is
received. 1his example illustrates a situation where the recipient of the message cannot
correctly assume that because the sender responds to a particular condition by sending a
message, that the condition st holds when the message is received.



Regmding message ordering, partly as a result of our experimentation, versions of

Lamina subseouent to the one we used provide the ability for the programmer to specify

that messages be handled by the receiver in the same order that they were sent (Dela i 87c].

Use of this feature imposes a performance penalty, which places a responsibility on the
programmer to determine that message ordering is truly warranted. In the Airtrac
apolication, we believed that ordering was necessary and imposed it through application
level routines that examined message sequence numbers (time tags) and queued messages
for which all predecessors had not already been handled.

In Lamina, an object is a process. Following the definition of a process provided
earlier, we make no commitment to whether a process has a unique virtual address space
associated with it. Each object has a top-level dispatch process that accepts incoming
messages and invokes the appropriate message handler;, otherwise, if there is no available
message, the process blocks. Sending a message to an object corresponds to
asynchronous message-passing at the machine level. A method executes atomically. Since
each object has a single process. and only that process has access to the internal state
(instance variables), mutual exclusion is assured. An object and its methods effectively
constitute a non-nested monitor.

Our problem-solig approach has evolved from the blackboard model, where
nodes on the blackboard form the basic data objects. and knowledge sources consisting of
rules are applied to transform nodes (i.e. objects) and create new nodes [Nii 86a, Nin 86b].
Brown et. al. used concepts from the blackboard model to implement a signal-interpretation
application on the CARE muitiprocessor simulator [Brown 86]. Lamina evolved from the
experiences from that effort. In addition, lessons learned in that earlier effort h?ve been
incorporated into our work. including the use of replication and pipelining to gain
performance, and improving efficiency and correctness by enforcing a degree of consis-
tency control over many agents computing concurrently.

4. Design principles

Lamina reresents a programming philosophy that relies on the concepts of
reolication and pipelining to achieve speedup on parallel hardware. The key to successful
application of these principles relies on finding an appropriate problem decomposition that
exploits concurrent execution % ith minimal dependency between replicated or pipelined
processing elements.

The price of concurrency and speedup is the cost of maintaining consistency among
objects. When writing a sequential program, a programmer automatically gains mutual
exclusion between re.:_/wtre operations on data structures. This follows directly from the
fact that a sequential program has only a single process: a single process has sole control
over reads and writes to a variable, for instance. This convenience vanishes when the
•rogrammer writes a concurrent program. Since a concurrent program has many
concurrently executing processes, coordinating the activities of the processes becomes a
signi .cant task.

In this secion. we develop -he concept of a dependence graph program to provide a
framework in which tradeo*ffs between alternate problem decompositions may be
examined. Choosing a decor, os-tion that admts high concurrency gives speedup. but it
may do so with the expense of h:gher effort in ma.intainmng consistency. We i.n::oduce

dependence gaph programs to make the tradeoffs more expJcit.

3- -i5



4.1. Speedup

Researci;ers have debated how much speedup is obtainable on parallel hardware, on
both theoretical and empirical grounds; Krskal has surveyed this area [Knuskal 85]. We
take the erp-ical approach because our goal is to test ideas abou: parallel problem solving
using multiprocessor architectures. Our thinking is guided, however, by a number of
principles describing how to decompose problems to obtain speedup.

4.1.1. Pipelining

Consider a concurrent program consisting of three cooperating processes: Reader,
Executor, and Printer. The Reader process obtains a line consisting of characters from an
input source, sends it to the Executor process, and then repeats this loop. The Executor
performs a similar function, receiving a line from the Reader, processing it in some way,
and sending it to the Printer. The Printer receives lines from the Executor, and prints out
the line. These processes cooperate to form a pipeline; see Figure 1. By using
asynchronous message passing, we obtain concurrent operation of the processes; for
instance, the Printer may be working on one line, while the Executor is working on
another. This means that by assigning each process to a different processor, we can obtain
speedup, despite the fact that each line must be inputted, processed, and output
sequentially. By overlapping the operations we can achieve a higher throughput than is
possible with a single process performing all three tasks.

Reader ExecutorPrne

Figure I. Decomposing a problem to obtain pipeline speedup.

By decomposing a problem in sequential stages, we can obtain speedup from pipelining.

4.1.2. Replication

Consider a variaton of Reader-Executor-PrTnter problem. Suppose that we are able
to achieve some overla. in .the operations, but we discover that the Executor stage
consistently takes longer than the other stages. This causes the Printer to be continually
starved for data, while the Reader completes its task quickly and spends most of its time
idle. We can improve the overall throughput by replicating the function of the Executor
stage by creating many Executors. See Figure 2. By increasing the number of processes
performing a given function, we do not reduce the time it takes a single Executor to
perform its function, but we allow many lines to be processed concurrently, improving the
utilization of the Reader and Printer processes, and boosting overall throughput. This
principle of replicating a stage applies equally well if the Reader or the Printer is the
bottleneck-
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Executor-!I

Executor-n

Figure 2. Decomposing a problem to obtain rephcauon speedup.

By duplicatng identical problem solving stages, we can obtain speedup from replication.

4.2. Correctness

4.2.1. Consistency

In order to achieve speedup from parallelism, we dec ,moose a problem into smaller
sub-problems, where each sub-problem is represented by an object. By doing this, we
lose the luxury of mutual exclusion between the sub-problems because of interactions and
dependencies that typically exist between sub-parts of a problem. For example, in the
Reader-Executor-Printer problem, the simplest version is where a line may be operated
upon by one process truly independently; we might want to perform ASCII to EBCDJC
character conversion of each line, for instance. We organize the problem solving so that
the Reader assembles fixed-length text strings, the Executor performs the conversion, and
the Pr-inter does output duties. This problem is well-suited to speedup from the simple
pipeline parallelism illustrated in Figure 1. in MacLennan's value/object terminology, a
"fixed-length text string" may be viewed as a value that represents the i-th line in the input
text: the text string is read-only and it is atemporal. The trick is to :w the ASCII and
EBCDIC versions of a text strings as different .'alues corresponding to the i-th line; the
Executor's role is to take in ASCII values and transform them into EBCDIC values of the
same line. As we will see, value passing has desirable properties in concurrent message-
passing systems.

In a more complicated example. we might want to perform text compression by
encoding words according to their frequency of appearance, where the Reader process
counts the appearance of wcrds :nd the Executor assigns words to a variable length output
symbol set. The frequ-ncy table is a source of trouble: it is an object which the Reader
writes and updates, -.nd which the Executor reads. Unfortunately. the semantics we
impose on the text ccmoression task requires that the Reader complete its scan of the input
text before the Executor can begin its encoding task. This dependency prevents us from
exploiting pipeline parallelism.

As another example, we might want to compile a high-level language source
program text (e.g. Pascal. Lisp. C) into assembly code. Suppose we allow the Reader to
build a symbol table for functions and variables, and we :t the Executor parse the

3-157



tokenized output from the Reader, while the Printer outputs assembly code from the
Executor's syntax graph structures. In the scheme outlined here, the symbol table resides
with the Reader, so whenever the Executor or Printer needs to access or update the symbol
table, it must send a message to the Reader. Consistency becomes an 'important issue
within this setup. For instance, suppose that the Executor determines on the basis of its
parse, that the variable x has been declared global. Within a procedure, a local variabie --'so
named x is defined, which requires that expressions referring to x within this procedure use
a local storage location. Suppose the end of the procedure is encountered. and since we
want all subsequent occurrences to x to refer to the global location, the Executor marks the
entry for x accordingly (via a message to the Reader). When the Printer sees a reference to
x, it consults the symbol table (via a message to the Reader) to determine which storage
location sho.id be used: if by misfortune the Priter happens to be handling an expression
within the orocedure containing the local x, am; -he svmbol tabie has already been updated,
incorrect code will be generated. The essential point is that the symbol table is an object; as
we defined earlier, it is shared by several parallel processes, and it changes. A number of
fixes are possible, including distinguishing variables by the procedure they are occur
within, but this example illustrates that the presence of objects in concurrent program raises
a need to deal with consistency.

Consistency is the property that some invariant condition or conditions describing
correct behavior of a prog ram holds over all objects in all '3arallel processes. This is
tyTically difficult to achieve in a concurrent program, since the program itself consists of a
seouenial list of statements for each individual Drocess or object. while consistency aplies
to an ensemble of objects. The field of distributed systems focuses on difficulties aring
from consistency maintenance [Comafion 85. Weihl 85. Filman 84]. Smith [Smith 81]
refers to this prog'armming goal as the development of a orobier.-soiving protocol.

The work of Schlichting and Schneider [Schlichting 83 i.s particularly relevant for
our situation: they study partiai correctness properties of unrehlable datagraxn asy-nchronous
message-passing distributed systems from an axiomatic pain: of view. They describe a
number of sufficient conditions .%r partial correctness on an asynchronous dis-ibuted
system:

" monotonic predicates,

" predicate transfer with acknowledgzements.

An predicate is monotonic if once it becomes true, it remains so. For example, if
the Reader process maintains a count of the lines in the variabe --- a'l:. s. and it
..ncounters the last line in the input text, as well having seen all previous lines, men it nuiht

send the predicate P. "ta:-.:. to the Executor and to the PLter. The Printer
process might use this inforIat. . even before it has -eceived all the ines. to check if
sufficient resources exist to complete the job. for instane. Intuitively, it is valid to assert
the total number of lines in t'ne input text because that fact remains unchanged (assuming
the Lnput text remains fixed for the duration of mhe job). Formaiiy. the Reader maintans Ie
following invariant condition on the predicate P:

Invariant: "message no. sent" or "P is "--e"

in contrast, an. assertion that _he cur-ent "ine is 12. as in "-.r=2..: .e - -2," changes as
each line is processed by the Reader. The monoto-Ic cn:enon .annot be used to zua-antee
the correcmess of this assertion.
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Within the res- --tion of non-nested monitor calls, the programme. ,nay use Lamina

monitors to define ,aowmic operations. If correctness were the sole concern, the

prngrammer could develop the entire problem solution within a single method on a single

object; but this ts .an extreme case. 7T entire enterprise of designing programs fo,

multiprocessors s motivated by a desire for speedup, and monitors provide a base level of

mutual exclusion from which a correct concurrent program may be ccnstructed.

The critical design task is to determ,, the data structures and methods which
deserve the azomicity that monitors provide. The choice is far from obvious. For e,-..mpie,
in the ASCII-t, -EBCDIC translator example, we assumed the Executor process
sequentially sca.aing through the string, translating one character at a time. We see that the
translation of each character may be performed independently, sc a finer-grained problem
decomposiion is to have many Executor processes, each translating a section of the text
line. In the extreme, we can arrange for each character to be translated by one of many
replicated Executor processes. Choosing the aest decomposition is a function of the
relative ';sts of performing the character translation versus the overhead associated with
partitioning the line. sending messages, and reassembling the translated text fragments (in
the correct order!). The answer depends on specific machine performance parameters and
the type of task Involved, which in our example is the very simple job of character
translation, but might in general be a time-consuming operation. Unfortunately, the
programmer often lacks the specific performance figures on which to base such decisions,
and must choose a decomposition based on subjective assessments of the complexity of the
task at hand, weighed against the perce-ived run-tile overhead of decomposition. tcgether
with the run-time worries associated with consistency maintenance. On the issue of ir
choose the best "grain-size" for prob!em solving, we can offer no specific guidanr.
However, since the CARE-Larrana -- ,ulator is heavily instrumented, it lets the
.:ogramner ouserve the relative amL of time spent in actual computation versus
overhead activities.

In addition to providing mutual exclusion, Laiaina also encourages the structured
programming tyle hat results from the use of objects and methods. In particular, mutual
exclusion may be exploited without necessarily building large, monolithic objects and
method; that might reflect poor software engineering practice. Since Lamina itself is built
on Z&:alisp's Flavors syste-m [Weinreb 80], it is easy fo the programmer to define object
"fltvors" with instan-" variable.; and associated methods to be atomically executed within a
Laminp monitor. This can provide important benefits of modularity and structure to the
sor-vart engiratring elifct.

To summarize, Lamiza objects and methods may -t viewed as non-nested monitor
co--,structv tra provide the programmer with a base level of mutual exclusion. The
poterial fir addit:ona concurrc.cy and picblem-solving speedup increases as finer

, .rtnvosidons of data and methods are adopted. However, these benefits must be
weig :'d against the di.F1cmties of maun.aining consistentv between objects in a concurrent
p-.,gzan. Two techniques for maitaining cormiftency have been described, differing in
their applicability and "'npact on concurtrency

4.3. Dnendence graph p;'ograzos

The previous sectios have de. ned c ncepts rejevant to the dual goals of achieving
speedup -nd correcuiess. This 5,ction uuilds upon those concepts to provide a framework
in which uadeeffs betwee,- speedup an', cr,-ectness may be examined. A dependence
graph program is an abstr-t -epresentation of a solution to a given problem in which
values flo, between nodes in a dincted giaph, where each node applies a function to the
valties arriving on its irconing edgps rd sends out a value on zero or more otuq~oing
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edges. The edges correspond to the dependencies which exist between the functions

(Arvind 83]. A pure dependence graph program is one in which the functions on the nodes
are free from side effects; in particular, a pure dependence graph program prohibits a

function from saving state on any node. (Note that this definition does not preclude a
system-level program on a node from handling a function f (x, Y) by saving the value of x
if the value of x amves before the value for Y. Stric-dy speaking, an implementation of an f
function node must save state, but this state is invisible to -he programmer.) A hybrid
dependence graph program is one in which one or more nodes save state in the form of
local instance variables on the node. Functions have access to those instance variables.

Gajski et. al. [Gajski 82] summarize the principles underlying pure data flow
computation:

" asynchrony

• functionality.

Asynchrony means that all operations are executed when and only when the required
operands are available. Functionalitly means that all operations are functions, that is, there
are no side effects.

Pure dependence graph programs have two desirable properties. First, consistency
is gua.anteed by design. As % e have defined it, there are only values and transformations
applied to those values. There are no objects to cause inconsistency problems. Second,
we can theoretically achieve the maximal amount of paralleiism in the solution, and if we
ignore overhead costs, maximize speedup in overall performance. This follows from the
asynchrony principle, which means thaL in the ideal case, we can arrange for each
computation on a node to proceed as soon as all values on the incoming edges are available.

Hybrid dependence graph programs allow side effects to instance variables on
nodes, thereby making it more convenient and straightforward to perform certain
operations, especially those associated with lookup and matching. This immediately
introduces objects into the computational mode] and raises the usual concerns about
consistency and correctness.

We will use dependence graph programs to serve two purposes. First, we depict
the dependencies cont-..ted within a problem. Second, we explain why we made certain
design decisions in solving the Airtrac problem; in particular, we show why we impose
certain consistency requirements on the problem solving protocol. A dependence grapb
serves as an abstract representation of a problem solution, rather than a blueprint for actual
implementation. Specifically, we want to avoid the pitfall of using a dependence graph
program to dictate the actual problem decomposition. Overhead delays associated with
message routing/sending and process invocation degrade speedup from the theoretical ideal
if the actual implementation chooses to decompose the problem down to the grain-size
typically found in a d!oendence graph representation. Given an arithmetic expression, for
instance, it may not - desirable to define the grain-size of primitive operations at the level
of add, subtract, and multiply. This may lead to the undesirable situation where excessive
o-,erhead time is consumed in message packing, tagging, routing, packing, matching,
unpacking, and so forth, only to support a simple add operation.

Consider the following numerical example from Gajski et. al. [Gajski 82]. The
pseudo-code representation of the problem is as follows:
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One possible dependence graph program for this problem is shown in Figure 3. This is the
same graph presented by Gajski et. al. They assume that division takes three processing
unmts, multiplication takes two units. and addition takes one unit. As noted in their paper,
the critical path is the computational sequence al, bl, c1 , c2 , C3, c4 , C5 , c6 , C7 , c8; the
lower bound on the execution time is 13 -ime units.

dl, al d2, 2 d3, e3 d4. e4 d5, e5 -6, 96 d7, a7 d8, 98
fi f2 f3 5 16 7 f8

al a2 a544 a a6 a7 a8

cO Cl c2 + c3 + c4 + c5 c6 + c7 + c8

Figure 3. A dependence graph program for a simple numerical computation.

A possible concurrent program implementation would be to assign eight processes
to compute the quantities bI ,...,b 8 , and a ninth to combine the bi and output c1 ,...,c8 .
Such an arrangement maximizes the decomposition of the problem into sub-problems that
may run concurrently, while minimizing the communication overhead. For instance, there
is no loss in combining the computation of c I , .. ,c8 into a single process because of the
inherently serial nature of this particular computation.

Another concurrent program might choose a slightly different decomposition and
partition the computation of c,....,c8 into, say, three processes: ci-c 2 -c3, c4 -c5 -c6 , and
c7 -c8 . This arrangement uses 11 processes versus the 9 processes in the previous
example. While this leads to no improvement in the lower bound of 13 time units for a
single computation with d, e, and f, it shows an improvement with repeated computations
with different values of the input arrays, d, e, and f. For instance, this allows one
computation to be summing on the c7 -c8 process while another is summing on the c4-c5 -c6
process. Depending on the complexity of the computation relative to the overhead costs, it
might even be wo:thwhile to define one process for each of the c1 ,...,c 8 , giving 16
processes overall. This illustrates two points. First, a strictly sequential computation gives
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an opportunity for pipeline concurrency if many such computations are required. Second,

given a dependency graph, many possible problem decompositions are p,:ssible.

Gajski et. al. also present a different dependence graph program that is optimized to

eliminate the "ripple" summation chain by a more efficient summation network. The

dependence graph program for this scheme is shown in Figures 4 and 5. Figure 4 is the

"top-level" definition of the program. We use the convention of using a single box.

optim.zed summation, in Figure 4 to represent the subgraph that performs the more

efficient summation. Figure 5 shows the expansion of that box as a graph. Showing a

dependence graph program in this way is merely a convenience; one should envision the

subgraphs in their fully expanded form in the top-level dependence program definition.

The associative property of addition is used to derive the optimized summa:ion
function. For instance, the computation of c8 is rewritten as follows:

C 8

= (((((cO b b b2) -. b b 4) + b5 ) + b 6 ) "" b 7 ) 4 b 8 )

(= ( 2 ) - (_3 b4 ))) ((b 5 " b 6 ) - (b 7 -b8))

By regrouping the addition operations, this dependence graph program has more
parallelism, and reduces the lower bound on execution rime from 13 to 9 execution time
units. It is important to realize that the second program is truly different from the first; it
cannot be obtained from the first by graph transformations or syntactic manipulations that
do not rely on the semantics of the functions on the nodes.

dl, al d2, e2 d3, e3 d4, 94 d5, e5 C6. 86 d7, e/ d8, e8
fI f2 f3 If4 f f7 t

a a2 a3Y La4  a 6 a a8

biT b2 b3~ b4 b5 b6 I b74 b8~

co j ootimized summaflon

c2 c3 c4 c5 cS c7 c8

Figure 4. A dependence graph program for the simple numencal computanon.

This uses optimization of the recurrence relation using the associative property of
addition. This represents the -top-level" defimnon of the soluuon. The optimized

summation subgraph is shown here a single box- and is shown in expanded form in
Figure 5.
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optimized summation as defined as...

bl b2 b3 b4 b5 b6 b7 b8

31s2 s3s4

CO

c1 c2 c3 c4 c5 cS c7 CS

Figure 5. Definition of the "optimzed summation" subgraph.

This example highlights several points. First, a given problem may have more than
one valid dependence graph program. In the example presented here, the use of knowledge
about the underlying semantics of the addition function allows more parallelism. Second,
the dependence graph program serves as a intermediate representaion from which the
solution may be defined for a parallel machine. Third, the dependence graph program does
not necessarily make a commiuent to the form of the concurrent program. Fourth, for
convenience we may describe a dependence graph program as a top-level graph, together
with several subgraph definitions.

S. The Airtrac problem

In Airtrac, the problem is to accept radar track data from one or more sensors that
are looking for aircraft. Figure 6 depicts a region under surveillance as it night be seen on
a display screen at a particular snaoshot in time. (Whereas Figure 6 shows many reported
sightings, an actual radar would p:obably show only the most recent sighting.) Locations
are designated as eilher good or bad, where a bad location is illegal or unauthorized, and a
good location is legal. The "X" and "Y" symbols represent locations of a good and bad
airport, respectively. The locations of radar and acoustic sensors are also shown. The
small circles represent track reports that show the location of a moving object in the region
of coverage.

Track reports are generated by underlying signal processing and tracking system,
and contain the following information:

location and velocity estimate of object (in x-y plane)
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• location and velocity cova-riance

* the time of the sighting, called the scantime

* track id for identification purposes.

We would like to answer the following questions in real-time:

" Is an aircraft headed for a bad destination?

* Is it plausible that an aircraft is engaged in smuggling?

By "smuggling" we mean the act of transporting goods from a region or location desig-
nated as bad to another bad location. For instance, flying from an illegal airstrip and
landing at another illegal airstrip constitutes smuggling.
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0 track report (id@time)
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time - '00
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Figure 6. Input to Airtrac.

This shows the inputs that the system receives. The small circles represent estimated
positions of objects from radar or acoustic sensors tagged by their identification number
and observation time; the goal of the system is to use the time history of those sightings
to infer whether an aircraft exists, its possible destinations, and its strategy.

This paper describes our implementation of a solution of a portion of the Airtrac
problem. We refer to this portion as the data association module. Figure 7 depicts the
desired output of the data association step: groupings of reports with the ame track id into
straight-line, constant-speed sections. These are called Radar Track Segments, Lnd have
four properties:

• If the Radar Track Segments contains three or more reports, a best-fit line is
computed. If the fit is sufficiently good, the segment is declared confirmed.

* If a best-fit line has been computed, each subsequent report must fit the line
sufficiently closely. if so, the Radar Track Segments remains confirmed.
Otherwise, the report that failed to fit (call it the non-fitting report) is treated
specially, and the track is declared broken.

• A broken track causes the non-fitting report and subsequent reports to be used to
form a new Radar Track Segment.
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* The last report for a given track id defines that a track is declared inactive.

The remaining parts of the Airtrac problem have not yet been implemented as of this

writing, but are described more fully elsewhere [Minami 87, Nakano 87].

time = 100

x

Id'.@10 0
000

0 *@i 0

~di@ 0
00

00idl @10_0 0) 0,,. id2@6o

Figure 7. Grouping reports into segments in data association.

This sbows the first step in problem solving, grouping the reports into straight-line sec-
tions cailed Radar Track Segments.

5.1. Airtrac data association as dependence graph

Figure 8 shows the Airtrac data association problem as a dependence graph
program. On a periodic basis, track reports consisting of position and velocity information
for a set of track ids enters the system. Two operations are performed. First, the system
checks if a track id is being seen for the first time. If so. a new track-handling subgraph is
created. A track-handling subgraph is shown in Figure 8 as a functional box labeied
"handle track i," which expands into a graph as shown in Figre 9. Second, the system
checks if any track id seen in a previous time has disappeared. If so, it generates an
inactivation message for the hand, -razk sub raph for the particular track id that
disappeared. If the track id has been seen previously, then it is sent to the appropriate
handle tra_:k subgraph.

We distinguish between pure functional nodes, shown as rectangle., and side-effect
nodes, shown as rounded rectangles. One use of side-effect nodes is to keep track of
which track ids have been seen at the previous time. For instance, by performing set
difference operations agaLnst .he current set of track :ids, it ts possible to determine the
disappeared and new tracks:

disappearedTrack3 - prev-o-usTracks - curren-Tracks
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newTracks - currentrackS - previ.ousTracxcs

One way to im-plement this scheme is to have the i4d-s di4sapp~eared?- and i d Cre-os.Cv-
seen? nodes update local variables called Prev_-cusTracks and cuzreni:Tracks, as
successive crack reports arrive.
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nodes in the handle track subgraph pass a structured value between them, called track

segments. A track segment has the following internal structure:

" report list (a list of track reports. initially empty)

" best-fit line (a vector of real numbers describing a straight-line constant-velocity
path in the x-y plane)

Each node may transform the incoming value and send a different value on an outgoing
edge. Add appends a report to the report list of a track segment. Linef:t computes the
best-fit line, and if the confirmation conditions hold, sends the track segment to confir.

'i declares the track segment as confirmed, and passes the list to check f.t. If
"linef it fails to confium, che earliest report in the list is dropped by drop, and another
acd., 1ineft box awaits the arrival of the next report to restart the cycle. The
iact_-_vate function waits until all reports have arrived before declaring the track inactive.
Conceptually. we view the operations of confirm and inactivate as being monotonic
assertions made to the "outside world," rather than value transformations to the track
segment.

hnnisr9 e iKs dehfld as...

R -3. R _...

t aca ~R,-*5.1 1,.

% % ' _-P.,.-3... : -e4

I 0

...................... Rs .....

Fb A

II

Ra Sw,

------------ -------------- - ------ ---

Figure 9. Decomposition of the " handl track" sub-probiem.

The dashed boxes indicate the problem decomposition used in "he Lamina
impiemnta0ta2-o

h-_ck fit itself is further decomposed into more primitive operations, as shown

in Figure 10. The -neche operadion is similar to the f .t function previously
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described, except that it compares a new report against the best-fit line computed during the
linefirt operation: if the new report maintains the fit. the report list is sent to the oK box, and
this cycle is repeated for the next report. If the linecheck operation fa:Cs: then the track is
declared broken, a new track segment is defined. This track segment is s-_n: the report that
failed the linecheck operation, in addition to all subsequent reports for this particular track
id. The track handling cycle is repeated as before.

'check fit' is defined as..-.

pasi Rnech...

cadd, pass linecheck broak now Ri+4 andio
-nceksegment track

I
SR* F.i+2,Ri.3...

segment track

Raaar Track Segment R

Figure 10. Decomosidon of the -check fit" sub-problem.

The dashed boxes indicate the problem decomposition used in the Lamina
unpiementadoa.

A number of observations may be made about the dependence graph program
described in this section. First, the sequence of the reports matters. The graph structure
clearly depicts the requirement that the incorporation of the Ri-th report into the track
segment by the add operation must wait until all prior reports. RI..... Ri-L, have been
processed. This is true for the I-:.-efI.:, I"-neeck, and n ac.._- ate functions.
Second, this program avoids the saving of state information except in the operations that
must determine whether a given track id has been previously seen. and in the sorting
operation where track reports are routed to the appropriate track handler. Except for these,
we find that the problem may be cast in terms of a sequence of value transformations.
T1hird, the program admits the opporturty for a high degnee of parallelism. Once the track
handler for a given track id has been determined, the processing within that block is
completely independent of all other tracks. Fourth. the opportuniry for concurrency within
the handling of a particUlar track is quite low, despite the ourtward appearance of the
decompositions shown in Figures 8 and 9. Indeed, an analysis of the dependencies shows
that reports must be processed in order of increasing scantire. Fifth, unlike certain
portions of the dependence graph that have a structure that is known a priori, the track
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handier portions of the graph have no prior knowledge of the track ids that will be
encountered during processing, implying that new tracks need to be handled dynamically.

5.2. Lamina implementation

In this section, we express the solution to th- data association problem as a set of
Lamina objects, together with a set of methods on th se objects which embody the abstract
solution specification presented in the previous section.

Fizure I I shows how we decompose the Airtrac problem for solution by a Lamnina
concurrent program. We define six classes of objects: Main Manager, Input Simulator,
Input Handler, Radar Track Manager. Radar Track, and Radar Track Segment. Some
objects. referred to as static objects. are created at initialization time, and include the
following object classes: Main Manager. Input Simulator, Input Handler, and Radar Track
Manager objects. Others a-re referred to as dynamic objects, are created at run-time in
response to the particular input data set. and inciude the following object classes: Radar
Track and Radar Track Segment.

InputSimulator

radar reports RS-- flifatflI

i eoi ace T -40 inaCtNvatiofl

Inoutl-anc'er Radarl'rack R--jn j1RTi*~

cispatcr- C18319. sort
reo~rcreatme recrae:. tGrela.

AAcoe.c treaks. aetect rr"s,
Create Createiteate managers

M.ain Marnager

Figure 11. Object structure in the data assocation module.

Each object is implemented as a Larnina object, which 'i Figure I1i corresponds to a
separate box. The Problem decomposition seeks to achieve concurrent processing of
independent sub-problems. The Lamina messagze-sen~.ng s,, stem provides the sole means
of messagze and v~aiue passing between objects. Whlrerever possible, we Pass values
tbevween objects -.o minirze cors-s*te-cv -oroblems. and to mimize the need for protocols
tnat require acknowledgements. F-or ..xamnpie. %-e decompose our Problem solving so that
we require acknowledgements or y curng Linitialization where the Main Manager sets up
the- comimunication vathways between static objects.

With respect to rte dependence- graph prograrm. the La_1na imnplementation takes a
straightforward approach. AL of the s1de-eff-c-L rPuncuons col-tained in Figsure 8, together-
with some overaziors to support -mircaruon. reside in :he iput Handler- and Radar Track
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Manager object classes. Objects in these two classes are static: we create a :predetez-mi ned
number of them at initialization time to handle the peak load of reports Lhrougrh the system.
Replication is supported by partitioning the task of recognizing new and disaopeared t-rack
ids among Radar Track Managers according to a simple mnodulo calculation on the track id.
Given the partitioning scheme, each Radar Track Manager operatts complertl
independently from the others. Thus, although it needs to maintain a set of obiects (e.g.
the current tracks, previous tracks), the objects are encapsulated in a Lamia object..
Access to and updating of these objects is atomic. providing the mutual exclusion reoui; red
to assure correctness as specified by the dependence graph prog-rm.

Functions in Figures 9 and 10 reside mostly in objects of the Radar Track Segmnent
class, with the inactivation function being performed by objects; of the Radar Track class.
Objects of these two classes are dynamic: we create objects at run-t.ie in response to the
specific track ids that are encountered. For any Particular -crack id. one Ra Jar Track object
together with one or more Radar Track Segmn ooe. ax cetdAnwRarTrack
Segmnent is created each time the track is declared broken, which may occur more than once
for each track id. Unlike the dependence graph program where we pLstulate a track
segment as a value successivelv transformed as it passes through the graph, the Lanina
implementation defines a Radar Track Segm ent object wlth instance variables to represent
the evolving state of the track segment. We imoplement all the mator functions on tUaCK
segments a.. Lamiina methods on Radar Track Segment objects. Again, Lamina objects
provide mutual exclusion to assure correctness.

Although nothing in the problemn formulation described h-ere indicates why we
create multiple Radar Track Segments for a given track, we do bo in anticipation of adding
functionality in future versions of Airtrac-Lamrnina. From examination of Figure 10. we see
that given any sequence of reports Ri. and any -pattern of *-:oken tracks. we obtain no
additional con currency by creatng a new Radar Track Segrne-t when a tra: isK IS ect aed
broken. This is because in the dependency graph program presented here, no activity
occurs on one Radar Track Segment after it has createdi anom'er Radar Track Seg-ment.
However, we anticipate that in subsequent versions of Airrac-Lamina, a Radar Track
Segment w 1 continue to perform action even after a track is declared broken. such as to
respond to queries about itself, or to participate in operations that search over existing
Radaar Track Segments.

Lo icaily, the semantics of the depenidency gmapn pi.orgra and he Larnia Program
are equivalent. as triey must be. T'ne difference is tuha:the rorrnecr requires a zrach of
indefinite size, where its size c-orresponds -.o the number ot reDports co±&'prsine the track.
The latter requires a quantity of Radar Track Segment obj;ects equal to0 one paus the number
of4 times the track is declared broken. Although we can easily conceptualize a zraph. of
indefinite size in a dependency graph programn. we cannot --reate s-Uch anenzarvin -r---.,c.
Because object creation in Lurnina takes rime,. we try to m nxue tnhe numoe-r obict thzat
are created dynamically, especially since their creardon t~m nacz --CcrtiCalp7ath 4. A
poor solution is to dymaamicanly create the objects corresponcing to an iridefinitc sized, e,=nf
a.. we need them. A better solution is to create a finite networ~ of obects at uumat~izatlon
time. with an impicit. "folding- of the infinite graph onto dhe 'finite network.-h
avoicing any ooject-creanion cost at run-time. Our Lama priagra, .in fact. uses a , n
of 'thesetwo approachles, foldi z an indef-inite -1handle tra-ck"* gra-h onto cac- R~adar -ack
Segment obtect, and creating a new Radar Track Seent object dvnamnic2 l wh~
track is declared broken. By ius mechanism. we mode, zanstorma ons of vajucs beween
graph nodes by ch-anges two unsta~nce variables on a Lr:pa oet.I'effec on
Derformance is beneficial. Re' auve to the first so. ut ion, we ncu iCss over!ead Un I e1ssagze
se.-.ng between oblects becx se we nave rewer objects. ReA "t- to the sec ondolution,
we create ob'ects that Correspond to track ids twa: apoewr in the _--pu idat stream as they r



needed, which has the effect or briring more prcsosto bear on the pr- e asbor
tracks become visible.

Both the Radar Track and Radar Track Se3I.!enr collect reports in increasing
scantline sequence. They do so because of the ord-e rng- dctatco oy tnt cevendence graph
program, and because the Larmina isnvPiernrarion at the nim e dme expeieinents were
Verf'onned did not orovide automatic messaze ordering. Moreover, we know that simply
collecting reverts in order off receipt icaids t0 severe correctness degradation. For instance.
if the scanrunes are not contiguou's, the schem±en *v hich a Rada-r Track SeirnTent computes
the iine-fit leads to nonsensical results oecau-ze rust-:it lines will be computed based on
non-consecutive o-osition estimates. leading to erronzeous predzictilons of aircrafr t movement.
To circumvent rnese pWrooie. 4a. we uAse app avior evel1 routines to examine tile sc-anturne
associated with a report. -and queue reports for winucha d1 predecessors have not already
been handled. These routines efifectiveiv insullre Jn rest of the a=lircfli from me-ssazge
receit disorder, and allow the ULan' ' program to successfully use the knowledge
emnbodied in !flhe dependency zrav'- program.

To indicate the size ofthwe ron' Cm. a xrIcal scenario tahat we extierimnented with
contained armroxu',naieiy 800 racl-ar '=acx -zeot compniszLng about 70 raartrcks. -At its
ipeak, mhere .s data tor aproxir-atery. 30 radar trac~ ariving simultane*ously, whichroiugly- corresponds to3-.. n the area of cvr

ne orresoondence between the Um1 j obiets in' re irnmelnmentaion tiresen-ted
here and the primitive operations embodied in the dernc-zrmpgr i shown in
the Table 1. Thne funLctions descoe in mhe deverne g~e raphs are uiementea on Radar
Track Manager. Radar- Track. a-nd Radar Track Segme nt oonecs. ifnt Main Ma-nagerand
Ennut Simnulator t'er-orm tasks not mentrcned in the aepe.e 'e x-.ra-n p-rogram.. T'heir
tasks may cle viewed as overhead: the Main Manager pnro=-s "'iaualmaon. and InputrS:-iua±'azorL ssrnuiates mnu- aa pot.- The Lnvithal .. isoospchiomn

report to te corect Rcar Tack Mnager rhe-e's n- o ' to dis=4 or of the Rada
Trac-k Mvanager-l. nicton across siever' 1 obietrs. In w.s.ay m c.sx of the Input. Handier
my be viewed as a functiona cetesion of the R&Azar t razC' Manager tasks.



Table 1. Correspondence of Lamina objects with functions i1; the d.pendence grap'a
program

LAMina obect Corresponding dependence graph proram operation

Main Manager -none-
(Create the manager objects in the system at initialization
time.)

Input SL-nulator -none-
(Simulate the input data port that would exist in a real
system. This function is an artifact of the simulation.)

Input Handler -none-
(Allows replicdon of the Radar Track Manager objects; this
may be viewed as a functional extension of the Radar Track
Manage-.)

Radar'i i"Manager ids disappeared?, id previously seen?, new track,
send report to appropriate track

Radar Track add, inactivate

Rad&a Track Segm-ent add, linefit, confim. drop, .nactivt-.,
.inecheck, OX, break, new segment

Table 1 also shows that we ,iecompcse the problem to a lesser extent than .i ht be
s,-,ested by the d.endence graph program, but the overall- level of decomposition is still

hign. We "fold" the dependence graph onto a smaller number of Lamina objects, but we
nonetheless obtain a high degree of concurrency from the independent handling of separate
tracks. Additional concurrency comes from the pipelining of operations between the
following sequence of objects: Input Handler, Radar Track Manager, Radar Track, and
Radar Track Segment.

6. Experiment design

Given our experimental test setup, there are a large number of parameter settings,
i-cluding the number of )rocessors, the choice of the input scenario to use, the rate at
which the input data is fed into the system, the number of manager objects to utilize; for a
reasonable choice of variations, trying to :w' all combinations is futile. Instead, based on
the hypotheses we attempted to colifirm or ,isconfrrn, we made explicit decisions about
which experiments to try. We chose to explore the following hypothe. ns:

Performance of our concurrent program improves wid- ciitional processors,
tb"reby attaining significant levels of Epeedup.
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Correctness of our concurrent program can be maintained despite a high degree of
problem decomposition and highly overloaded input data conditions.

SThe amount of speedup we car achieve from additional processors is a function
of the amount of parallelism inherent in the input data set.

Long wall-clock times associated with each experiment and limited resources forced
us to oe very selective about which experiments to run. We were physically unable to
explore the full combinatorial parameter space. Instead, we varied a single experimertal
parameter at a time, holding the remaining parameters fixed at a base setting. This strategy
relied on an intelligent choice of the base settings of the experimental parameters.

We divided our data gathering effort into two phases. First, we took measurements
to choose the base set of parameters. Our objective was to run our concurrent program on
a system with a large number of processors (e.g. 64), picking an input scenario that feeds
data sufficiently quickly into the system to obtain full but not overloaded processing
pipelines. We used a realistic scenari, that has parallelism in the number of simultaneous
aircraft so that nearly all the orocessors may be utilized. Finally, we chose the numbers of
manager objects so the manaiers themselves do not limit the processing flow. The goal
was to prevent the masking of phenomena necessary to confirm or discorifirm our
.,potheses. For example, if we faild to set the input daca rate 'igh enough, we would not

fully utilize the processors, makhlg it impossible that additional processors display
speedup. Similarly, if we failed to use enough manager objects, the overall program
performance would be strictly limited by the overtaxed minager objects, again negating the
effect of additional processors.

'Based on measurements in phase one, we chose the folcwing settings for the base
set of para. icter settings:

" 64 processors,

. Many-aircraft scenario (described more fully below),

" Four input handier objects,

* Four radar track manager objects,

" Input data rate of 200 scans per second.

These settings give system performance that suggests that pr-'cessing pipelines are
full, but not overloaded, where nearly all of the processing resources are utilized (although
not at 100 percent etficiency), and the manager objects are not themselves limiting overall
pcformance.

The input data rate governs now quickly track reports are put into the system. As
reference, the Airtrac problem dornam prescribes an input data rate of 0.1 scan per second
(one scar, every 10 seconds), where a scan represents a collection of track reports
periodically generated by the tracking hardware. For the purpose of imposing a desired
processing load on our simulated multiprocessor. our simulator allows us ,o vary the input
data rate. With a data rate of 200 scans per second, we feed data into our simulated
multiprocessor 2000 times faster that, orescribed by the domain to obtain a processing load
where parallelism shows benefits. Equnvaienfly, we can imagine reducing the performance
of each processor and message passing hardware in the muluprocessor by a factor of 2000
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to achieve the same effect, or with any combination of input data rate increase and hardware
speed reduction that results in a net factor of 2000.

in the second phase, we vary a single parameter while holding the other parameters

fixed. We perform the following set of three experiments:

* Vary the number of processors from I to 100.

- Vary the input scenario to use the one-aircraft scenario.

" Vary the number of manager objects.

Figure 12 shows how the many-aircraft and one-aircraft scenarios differ in the
number of simultaneous active tracks. n the many-aircraft scenario, many aircraft are
active simultaneously, giving good opportunity to utilize parallel computing resources. In
contrast, the one-aircraft scenario reflects the extreme case where only a single aircraft flies
through the coverage area at any instant, although the total number of radar track reports is
similar between the two scenarios. Although broken tracks in the one-aircraft scenario may
give rise to multiple track ids for the single aircraft, the resulting radar tracks are non-
overlapping in time.

3-176



Active Tracks vs. Scan

30

-20-

U .... Many-aircra
scenario

10 - One-aircraft
scenario

z

0
0 20 40 60 80 14'60 1500

Figure 12. Comparison of the number of active tracks in the many-aircraft and one.
aircraft scenarios.
This shows tb number of active tracks versus the scan. The scan number corresponds to
scenario time in increments of 0.1 seconds.

7. Results

7.1. Speedup

Our performance measure is latency. Latency is defined as the duration of time
from td~e point at which the :ystem receives a datum which allows it to make a particular
conclusion, to the point at which the concurrent program makes the conclusion. We use
latency as our performance measure instead of total running time measures, such as "total
time to process all track reports," because we believe that the latter would give undue
weight to the reports near the end of the input sequence, rather than weigh performance on
all track reports equally.

We focus on two types of latencies: confirmation latency and inactivation latency.
Confirmation latency measures the duration from the time that the third consecutive report
is received for a given track id, to the time that the system has fitu d a lii.e tirough the
points, determined that the fit is valid, and it asserts the confirmation. Inactivation latency
measures the duration from the time that the system -ceives a track report for the time
following the last report for a given track id, to the time when the syster- detects that the
track is no longer active, and asserts the inactivation. Since a given input scenario contains
many track reports with many distinct track ids, our results report the mean togirher with
plus and minus one standard deviation.

Figures 12 and 14 show the effects on confirmation and inactivation latencies,

respectively, from varying the number of processors from 1 to 100. Boxes in the graphs
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indicate the mean. Error bars indicate one standard deviation. The dashed line indicates the
locus of linear speedup relative to the single processor case; its locus is equivalent to an
Sn/I speedup level of n for n processors.

Confirmation Latency vs Number of Processors
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Number of Processors

Figure 13. Confirmation latency as a function of the numbe.- of processors.

This measures the duraton from the time that the third consecutive ,,port is received for a
given track id, to the time that the system has fitted a line th~ough the points, and
determined that the fit is vaiid.

The results for both the conffimation .nd inactivation show a nearly linear decrease
in the mean latencies, corresponding to S1 0 0 /1 speedup by a factor of 90 for the
confirmation latency, and to S100/1 speedup by a factor of 200 for the inactivatior latency.
The sizes of the error bars make it difficult to pinpoint a leveling off in speedup, if there is
any, over the I to 100 prc:essor range.
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Inactivation Latency vs. Number of Processors
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Figure 14. Inactivadon latency as a function of the number of processors.

This measures the duration from the time that the system recevres a track report for the
ti;me following the last report for a given zrack id, to the time % hen the system detects
that the crack is no longer active, and asserts that conclusion.

7.2. Effects of replication

By replicating manager r'des, we measure the impact of the number of manager
objects on performance, as meased by the confirmadon latency. In one experiment we
fix the number of Radar Track Managers at 4 while we vary the number of Input Handlers.
In the other experiment we fix the nunber of Input Handlers at 4 while we vary the number
of Radar Track Managers.

Figures 15 and 16 show the results. We plot the c-r-frmation latency versuw the
number of managers, instead of against the number of processors as done in Figures 13
and 14.
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Effect of Radar Track Managers on Confirmation Latency
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Figure 15. Confirnation latency as a function of the number of radar track
maagem.

We see that replicating Radar Track Manager objects improves performance: this is
because increasing the number of processors does not improve performance in the single
Radar Track Manager case, but does in the 4 and 6 Radar Track Managers cases (see
Figure 16). Pu" another way, if we had not used as many as 4 Radar Track Manager
objects, then our system performance would have been hampered, and might even have
precluded the high degree of speedup displa~ed in the previous section. Comparing
Figures 15 and 16, we also observe that using more Radar Track Managers helps reduce
conumation latency more significantly than using more Input Handlers.

An interesting phenomenon occurs in the 16-processor case. Although the
ccnclusion is not definitive given the size of the error bars, increasing the number of both
types of managers from 2 to 4 and 6 increases the mean latency. The likely cause is the
current object-to-processor allocation scheme: because each manager object is allocated to a
distinct processor, increasing the number of manager objects decreases the number of
processors available for other types of objects. Given our allocation scheme (described
more fully in Section 8.2), using more managers in the 16-processor case may acually
impede speedup.
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Effect of Input Handlers on Confirmation Latency
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Figure 16. Confirmation latency as a function of the number of input handlers.

The optimal number of manager objects appears to sometimes depend on the
number of processors. For Radar Track Managers, 2 or 4 managers is best for the 16-
processors array, and 4 or 6 managers is best for the 36 and 64-processor arrays. For
input Handlers. the number of managers does not appear to make much diffe,-ence, which

- .sts that Input Handlers are less of a throughput bottleneck than Radar Track
Mziager . This suggests that in practice it w'l be necessary to consider the intensity of the
managers' tasks relativi- to the total task in order to make a proarn work most efficiently.
Overall these experiments confirm that replicating objects appropriately can improve
performance.

7.3. Less than perfect correctness

Our Lamina progra occasionally fails to confirm a track that our reference solution
properly confirms. This arises because the concurrent program does not always detect the
first occurrence of a report for a given track in the presence of disordered messages. We
notice the following failure mechanism. Suppose we have a track consisting of scantimes
100, 110, 120 .... 1 50. Suppose that the rate of data .rrival is high, causing message
order to be scrambled, and that ports for scantimes li(, 120. and 130 are received before
he report for 100. As implemented, the Radar Track object notices that it has sufficient
number of reports (L- this case three), and it proceeds to compute a straight line through the
,eports. When a report for scantime 140 or higher is received, it is tested against the
computed line to determine whether a line-check failure has occurred- Unfortunately, when
the reort, for scantirme 100 eventually arrnives. it is discarded. It is discarded because the
track has already been confirmed, and confirmed tracks only grow in the forward direction.
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Figure 9 reveals why this error causes discrepancies between the Lamina program

and the reference serial program: the handle track operation in the Lamina program is given

a different set of reports compared to the reference progam, leading to a different best-fit

line being computed. To be certified as correct, we require that the reports contained in a

confirmed Radar Track Segment must be identical between the Lamina solution and the

reference solution.

The lesson here is that message disordering does occur, and that it does disrupt
computations that rely on strict ordering of track reports. In our experiments, the
incorrectness occurs infrequently. See Figure 17. We belier.. that with minimal impact on
latency, this source of incorrectness can be eliminated without significant change to the
experimental results.

Correctness vs. Number of
Processors

V .9-
0 0

0.6 * Many-aircraf
Z 0 scenario

1-_ 5 a O ne -- a .--- a- t

0.4-1 scenario

V.3J

0.
0.C

Yumbt- of Processo--

gure 1. Correctess ploted as a f5imcuon of the nuinber of processors for the
oce-akrcre and many-air a% scenwaios.

7.4. Varying the input data set

The results from using the one-aircraft scenario highlight the difficulties in
measuring performance of a real-time system where inputs arrive over an interval instead of
in a batch. Before experimentation began, we hypothesized that the amount of achie able
speedup from additional orocessors is a function of the amount of paraUeliis inhernt in

the input data set. The results relative to tis hy-pothesis are inconclusive. Figure 18 riots
the confirmation latency against the number of processors for two input scenarios. :ne
many-aircraft scenano (30 tracks per scan) and the one-aircr=t scenario (I track er scan).
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Confirmation Latency vs. Number of
Processors for Different Scenarios

10-

~puncat spedu~
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Figure 18. Confirmation latency as a function of the number of processors vanes
Wit the input scenario.

The one-Zircn.f scenario displays two distinct operating modes- orne in which processor
availability and wnting time deterznes we latencv, and anera = in which data can be
processed with little waItIn_

The one-aircraft scenario displays interestng behavior: see Fiure 18. While the
confirmation latency decreases from the !-processor to 4-processor case. just as in the
mranv-ascraft scenario, there is distinctly different behavior -or 16. 36 and 64 processor
cases. where the average latenc. is constant over tis ranze. Ehe key to understanding this
phenomenon is to realize that inputs to the system arrive pebodicaldy. The many-aircr-ft
scenario generates approximately 800 reports comprising 0 radar tracks over a 200
millisecond duration. In contrast, the one-aircrat scenario generates approxinately 1300
reports comprising 10 radar tracks over an 8 second duratnon. Thus. athouzh the volume
of reports is roughly equivaient (800 versus 1300). the dwration over which they enter the
system differs by a actor of 40 (0.2 seconds versus 8 seconds;. In tern's of radar tracks
per second, which is a good measure of the object-creation workload, the ma-.v-ur craf"t
scenario produces data at a rate of 3$) tracks per second, wh e the one-aircraf scena-io
produces data at a rate of 8.8 tracks per second. This dispazit causes r.he many-acraft
scernrio to keep the system busy, wlhe the one-aircral scenario meters a con'parable
i2flow of data over a much longer veriod, during which the system may become quiescent
while it awaits addidonal irmuts.

Tne one-aicraft scenario displays two distinct operating modes: one in which
processor availabfiiy and w.,aiting nne deterrnes ten -2ad anorherinwhich data
can be processed with ittle waiting. For he i -processor and 4 -orocessor cases, the system
cannot process the input workload as fast as it enters, caus'ng work to back up. this
explains why the average confirmation latencv for the 70 or so radar tracks is nearly as long
as the scenario itseif most of the latency is consumed in tasks waiting to be executed. In
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contrast, for the 16-processor. 36-processor and 64-processor cases, there are sufficient
computing resources available to allow work to be handled as fast as it enters the system.
This explains why the average latency bottoms out at 18 milliseconds, and also tends to
explain the small variance.

Recalling that this particular experiment sought to test the hypothesis that the
amount of achievable speedup from additional processors is a function of the amount of
parallelism inherent in the input data set, we see that these experimental results cannot
confirm or disconfirn this hypothesis. The problem lies in the design of the one-aircraft
input scenario. The reports should have been arranged to occur over the same 20
millisecond duration as in the many-aircraft scenario, instead of over an 8 second duration.
Had that been done, the two scenarios would present to the system comparable workloads
in terms of reports per second, but would differ internally -n the degree to which sub-parts
of the problem can be solved concurrently.

The distinction between the one-aircraft and many-aircraft scenarios can be
described in Figure 19. This graph is an abstract representation of Figure 12 presented
earlier, and plots he input workload as a function of time. The many-aircraft scenario pre-
sents a high input workload over a very short duration, while the one-aircraft scenario
presents the same total workload spread out over a much longer interval. If we imagine the
da-shed lines to re-oresent the workload dreshold for which an n-processor system is able to
keep up without causing waiting times to increase, we see that the many-aircraft scenario
exceeded the ability of the system to keep up even at the 100-processor level, but the one-
aircraft scenario caused the system to transition from not-able-to-keep-up to able-to-keep-
up somewhee between 4 and 16 processors. A more a.,,roorate one-aicraft scenario,
then. is one that has the same input workload profile as the'cr.-ent many-aircraft scenario.
Such a scenario would allow an experiment to be performed =at fixes the input workload
pofile, which our experiment inadvertently varied, thereby Conart,-axting ts results.
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The workidori teshoid above which the work becomnes incrc~iy backlogged varies
according to the number of processrs.

8. Discussion

Thi-os section discusses how we achieved oa.-r expersrnenta. results using thle concepts
developed in Section 4. Soecifilcallv. we focus on. the relationships between uroolemn
CeCorflosilon. speedup. and achievement or correctness.

8.1. Decomposition and correctness

In this section we analyze the problem solving knowled e embodied in the dat
association module. We use pme de.endence zaph program to represent inherent
dependencies :n he urobiem. I -is is conuasted with the LmcLa inpiemenrarion to shed
light on the rauonale behind our desizn decsions. The goal is to identify the general
pr?.cipies that govern -the ::ansitUon :rom a dependence graph program to a rannabie
LamUina implementation.
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8.1.1. Assigning functions to objects

We obtained speedup from both independent handling of tracks. and possibly from
pipelining within a track, without the ncccssit" to decompose the problem into the small
fiunctional pieces suggested in Figures 9 and 10. One .might be rem-ted to believe that a
direct translation of the nodes and edges of the dependence graphs into Lamina objects and
methods .znght v:eid the maximal Speedup. bu- carei d' of the dependencies i Fiures
9 and 10 reveals that there is very; little concurrency to be gained.

In Figure 9. the entire graph is dependent on the arrival of report Ri. For instance.
before a track is declared broken, the top-level "handle track- graph requires the arrival of
reports RI. RZ .... .Riast. The :Ctf0oSI ac_. node needs RI, and the remainder of the graph
is dependent on this node. The aZ-7- node to the right or this, one is dependent on me arnvai
of R:, and the remaining nght-hand subgraph is dependent on this node. This Pattern
holds for the entire graph. implying that computation may only proceed as'far as
consecutive reports eginning with R! have arrived. Thus. little concurrency may be
gained from the "handle crack" operation: in particular. no pipeiing is possibie because the
entire graph receives only one set of reports. RI.....Rast. Figure 10 is simiiarlv
dependent on sequennal processing of reports. We conclude that lumping a of the
r.nctions of Figures 9 and 10 into a small number of objects does not L-cur a grea expense
in concurrenc-. Given the overhead costs associated with message sending and process
invocanon, we speculate that one or rwo objects t nt vte-,h id the best possible design. In
fact. our design uses k-;-. obects. were k is the number of times a track is declared
broken: k is t pically v-r than -ree. giving us fewer than five objects for each "'handle
track" graph.

The de ,,dence gaah progam provides several usef._ insights rega-ding a good
problem decomposition. First, it jus fies a decomposition -_at treats the -handle track"
fmnction as phnive tunction, r"ter thar a izer-orarned de-com nosition Second. it ceaiv
shows the independence between tracks, suggesting a relatively painless problem
decomposition along these lines. T --d. it shows the need to mantain consistent state

about which tracks have been seen. and those which have not. suggesting a decomposition
according to u-ack id number. w ch is the approach that our Lariuna program takes.

8.i 2, Why message order matters

A signficanrt part of the Iamina concur--ent pro-am 2 .p' ements techniues to allow
a Larna object receiving messages from a single sender to handie nerm as t thev were
received in the order in which they were oihin,_ay nt. wsr ' out gaps the in the message
sequence. By doing t-his. we incur a performance cost because e r e waits f -, i

of the next appropriate message. rather than ininedaeiv h=nduig whatever has .-en
received.

The dependence graohs help to tusurv such costs because tne edendencies i...xv
ordering. indeed, in prelim inM"a w, ork in a different famework. one author discovered t h
when no expiicit ordering ons.rabt were impose. d dul. g A-"t-ac data association
processing, and -.ie- acd-ionaI h"eurstics nor know-,ege was useA. "n-o-..ect
conclusions resu*ted cases ,.wh"-n ,hi :_.u data" rare was r £h. The Lncorre. coo,,,.us-os
arose o peaton eine-nat Computtion on otrer reports cfferent rom he s - nree
consecutive revos. As suchi. ue ncorecmess rete d -an .- ea con oevween messa2.
disordering arising in CARE and -"he pa-icu ar A, ac icrow',ege. ratner Man M-e vcmc
poble m solving framework. Ve bee. :'or instance. tha- v-mar incorec cor-...stons

wculd arise in a Larina uro t' hal d not extniiv reor-e -tp)r's
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We emphasize that al-houg" articular urobiem that we sm:died showed. strong
Correctness benefits from unpos. sri'orengo rostishulno e
interpreted as a claimn that all ora-z -- s need or req-uire mnessage ordeng. Asc the
dependence graphs make sariizww Z- - me very knowledge 1113! we ilflplttfltft rit.aCs
ordering. Another problem may not rcorcering. out require a strict me~ssage tagig
-protocol. tor instance. As a genteraa _r-__oach, we believe that. the progamrsol
represent the give proalernincpe zrann derm o rabl.* exlctyt xose the
required set of dependencies. and ret -i '.-rall pattern. of dependences stggest mte kcl
of dtecomp~ositons and consistency re- itnth mr igt prove best_

8.1.3. Reports as values radn-r than objects

In the dependence rrann orrm ue reuresent reports as values sent s-om noe to
node. Simrilarly, in the Larina Lr-pl-imnianon,. we use a desizn whe re aep rtse values
sent from object to object" Thius works ue. be: arse reports never change, enao-ing -us to
treat. reports as values. The Cost of allowi-ng an. ob jeCt. to &rair he valu tar-oi
fairly inexpensive one-way message, where alue-passing is viewedl as a monoront.c
transfer ot a -predicate. This az-oroacn wonts oc-cause we know ahead of, drne whac'-
obiects iteecd to read the value cf a reconx% nar.' rx th o-c-a that consttrute mhe processing

.%-SC cr -a SCCOnC OCSIV w shract e7resentas .becs. in tiShme
inmt3 -Of 2O :e-rtbu.L iaU 355'2 passing ...2. a processing =cpe ''e. we arrange taOr read

op ranos t -o Liped to an obnct C'ancctzau' =-se ar" :i al proltemns. oe ii
difernc z .- le frarrnc or Mreerc in '-r first Case. :he dam.m moves througn

prccessin2 Stiges rec' 1 -"g -is vae In tn-he peing cz)dee er.Ws au
st=anon~r-v. aria r res t r-'s to 1recue~sts to rec15V Ite. -S afl(%-Cry Wilen -I' !S nor
Kflowfl i advarce wniczh Cot--S, wi- need t:o rmad its21- -ILe~rs an .1a~~oa
mes-sagze recauuzd :.0 reouest ZCceclaue. aric :e assoc:_ r -scage rtcelzr system

A thi ce-r5i represents repcorts as-c t jU-ar - 'aces TaeM raCmE SSaZ -M Me
na-cc-s- -~'xa .___C5 .0 pc1-lrx. a co'-tuuo-. anoG uses thee obsiect s -C ,
message to cc-veVCv tim result ol UI co.. uraon. Bv ar-212r2- a Se.or rt a -Mear

I ~ ~ ~ ~ Z Z7 i-.~t~- - .~peline. we can allow the nrLs' -reo co sendI we msuX5 of 7: otuauntou__s~n
repvort. and so :orth Trhis des .Is the u,. e rus, t &S.C.- because in this dieSmgn we
se..d a ec'-r-- of ornp-uran MnCSa32es Unrou -- IM -freorlt oocns. w'-e'-2s M
the first UeC 1  we send a sec':ence 3? ---o -ae rnSczs tarOuva a a-

orjects. T-he ak.g~c -I- i ne ra-.- 'M 070C :rcetceconpos:::c:
since our oarociem &-as a t_-nl numberzof com utationc a'J ze n-r -" N.Crs the

rst d si znfldsIC a S..-a.. or r~nr==-tnrh-e w C : -- man rv ns
thrXough, whereas thet rt: cxsixr '~eld a..ar . u 1 ... r or r mects wr'th ~ all -~ -

Cjmputaton inessages p-sii ti rtr-i.

In our desigrnzml the fu-- ces 1p czsiCzssed wie c. ose to resent reoo-sa
vaiues sent ;o uc *% .r ocnects --- a -- "cs~g p pe....e. cPaause our orootem1

Mun'.er of messages :ecque% to0 a0zn .' SK- M UG an tss ar *rn-s CorVe
tO Its ouaI.

8-1 .4. Initialization
Owlr approach. to ma'----a~o th coa.re.te5 conCiniorns of R"I - *

and Sji"eider- Fonmali.~ coWe v COOI t " se nf. Mo-otEon: W eics and precate
tansfer with acknowiec-*ern--



During initialization of our appli-ation. we create many objects, typically managers.
At run-time, these objects communicate among themselves, which requires that we collect
handles during creation, and distribute them after all creation is complete. Specifically, the
Main Manager collects handles during the creation phase; in. essence, each created object
sends a monotonic predicate to the Main Manager asserting the value of its handle. The
invariant condition may be expressed as follows:

Invariant (asserting own handle): "handle not sent" or "my handle is X"

The Main Manager detects the fact that all creation is complete when each of the
predetermined number of objects respond; at this point, it distributes a table containing all
the handles to each object. It waits until an acknowledgement is received from each object
before initiating subsequent problem solving activity. This is important because if the
Main Manager begins too soon, some object might not have the handle to another object
that it needs to communicate with. In essence, the table of handles is asserted by a
predicate transfer with acknowledgement. The invariant condition is described as follows:

Invariant (distributing table of handles):

"table not sent"

or "problem solving not initiat-d"

or "all acknowledgements received"

Main-manager

return
initiate Input-simulator own handle

node
creation

Input-handler-1 Input-handler-mn

RTMgr-1 RTMgr-n

Figure 20. Creaung stauc objects during inmualizauon.

Correctness is crucial during initialization because a missing or incorrect handle, or
a missing or improperly created object causes problems at run-time. These problems can
compound themselves, causing performance or correcmess degradation to propagate. By
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using an initialization protocol that is guaranteed to be correct, these problems may be
avoided.

8.2. Other issues

8.2.1. Load balance

We define load balance as how evenly the actual computational load is distributed
over the processors in an array over time. Processing load is balanced when each
processor has a mix of processes resident on it that makes all the processors equally busy.
If a balanced processing cannot be achieved, the overall performance of a multiprocessor
may not reflect the actual number of processors available to perform work due to poor load
balance. In our experimentation, we discovered the critical importance of a good load
balance algorithm.

We encountered two kinds of problems. The first problem deals with where to
place a newly created object. Since we want to allocate objects to processors so as to
evenly distribute the load, and because we want to avoid the message overhead associated
with a centralized object/processor assignment facility, we focused on the class of
algorithms that make object-to-processor assignments based on local information available
to the processor creating the object. The second problem deals with how objects share
limited processor resources. It turns out, for instance, that extremely computation-
intensive objects can severely impair the performance of all - -ier objects that share its
processor.

At one point in our experimentation, for instance, we observed a disappointing
value of unity for the S64/16 speedup factor, where we instead expected a factor of 4.
Moreover, we noticed an extremely uneven mapping of processes to processors: the
approximately 200 objects created during the course of problem solving ended up crowded
on only 14 of the 64 available processors! The culprit was the algorithm that decided
which neighboring processor should .be chosen to place a new object. The algorithm
worked as follows. Beginning with the first object created by the system, a process-local
data structure, called a locale, is created that essentially records how many objects are
already located at every other processor in the processing array. When a new process is
spawned, the locale data structure is consulted to choose a processor that has the fewest
existing processes. This scheme works well when a single object creates all other objects
in the system; unfortunately in Airtrac many objects may create new objects.

Given the locale for any given process, when the process spawns a new process,
we arranged for the new process to inherit the locale of its parent. The idea is that we want
the new process to "know" as much as its parent did about where objects are already placed
in the array. This scheme fails because of the tree-like pattern of creations. Beginning with
the initial manager object at the root of the tree, any given object has inherited a locale
through all of its ancestors between itself and the root. Therefore the locale on a given
object will only know about other objects that were created by the ancestors of the object
before the locale was passed down to the next generation. Put another way, the locale on a
given object will not reflect creations that were performed on non-ancestor objects, or
creations that were performed on ancestor objects after the locale was passed down. This
leads to extremely poor load balance.

The same problem occurs even if we define a single locale for each processor that is

shared over all processes residing on that processor. Unfortunately, that locale will only
know about other objects that were created by objects residing on that processor. That is,
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the locale on a given processor will not reflect creations that were performed by objects that
reside on other processors.

In contrast, ideal load balance occurs when each object knows about all creations
that have taken place in the past over the entire processing array. This ideal is extremely
difficult to achieve. First, we want to avoid using a single globilly-shared data structure.
Second, finite message sending tune makes it impossible for many objects performing
simultaneous object creation to acceos and update a globally-shared sr ucture in a perfectly
consistent manner.

We changed to a "random" load balance scheme which r. ndornly selected a
processor in the processing array on which to create a new object (Hailperin 87]. Running
the base case on a 64 processor array with approximately 200 objects, we rnanaged to use
nearly all the available processors. Processor utilization improved dramatically.

Random processor allocation gave us good performance. In fact, we can argue
from theoretical grounds that a random scheme is desirable. First, we deliberately
constrain the technique to avoid using global information that would need to be shared.
This immediately rules out any cooperative shemes that rely on sharig of information.
Second, any scheme that attempts to use local information available from a given number of
close neighbors and performs allocations locally faces the risk that some small
neighborhood in the processing array might be heavily used, leaving entire sections of the
array underutilized. We are left therefore, with the class of schemes that avoids use of
shared information but allows any processor to select any other processor in the entire
array. Given these constraints, a random scheme fits the criteria quite nicely and in fact
performed reasonably well.

Further experinentation r,-vealed more problems. Manager objects have a
particularly high processing load because a very small number of objects (typica:ly 5 to 9)
handles the entire flow t.i data. When a non-manager objects happens to re-ide on the
same processor as a manager object, its performaice suffers. For example, a R-, .r Track
objec," is responsible for creating a Radar Track Segment object, and the time taken for the
creat , operation affects the confa.ation performance. Unfortunately, any Radar Track
object that happens to b- situated on the same procvssor as a manager object (e.g. Input
Hand er, Radar -rack M~.nager) gets very little processor time, and thereby contributes
signif cant creation times to the overall latency measure.

Whereas in the rar.dom scheme the probability that a given processor will be chosen

for a new object is n for n processors, our modified iandom scheme does the foUo-ving:

* If there are fewer static objects (e.g. managers) than processors, then place static
objects randomly, which can be thought of as sampling a random variable whhout
roplacement. Place dynamically created objects uniformly on the processors that
jiave no static objects, this time sampling with replacement.

" If there are as man', or more static objects than processors, then place roughly
equal numbers of static objects on each processor in the array. Place dynamically
created objects uniformly over the entire array, sampling with replacemen,.

This scheme keeps the high processing load associated with manager objects from
degrading the performance of non-manager objects. This scheme performs well for our
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cases. We typically had from 5 to 9 static objects, approximately 150 dynami: objects, and
from 1 to 100 processors in the array.

There are other considerations that might lead to further improvement irn oad
balance performance that we did not pursue. These are listed below:

- Account for the fact that not all static objects need a dedicated processor. (1n our
scheme, we gave each static object an entire processor to itself whenever possi-
ble.)

- Account for the fact that a processor that hosts one or more static objects may
still be a desirable location for a dynamically created object, although less so than
a processor without any static objects. (In our scheme, we assumed that any
processor with a static object should be avoided if possible.)

* Relocate objects dynamically based on load information gathered at run-time.

8.2.2. Conclusion retraction

This section explores some of the thinking behind our approach toward
consistency, which is to make conclusions (e.g. confination, inactivation) only when they
were true. This is an extremely conservative stance, and possibly incurs a loss in
concurrency and speedup. An alternative approach which might allow more concurrency is
to make conclusions that are not provably correct: the programmer would allow such
conclusions to be asserted, retracted and reasserted freely until a commitment regarding that
conclusion is made. Jefferson has explored this compuational paradigm, known as virtual
time [Jefferson 85]. The invariant condition describing the truth value of a conclusion P
under such a scheme is shown below:

Invariant: "no comxnitment made" or "P is true"

In essence, this invariant condition says that the program may assert that P is true, but there
is no guarantee that P is true unless it is accompanied by a commitment to that fact. The
benefits of such an approach is that assertions may precede their corresponding
commitments by some time interval. This interval may be used 1) by the user of the system
in some fashion, or 2) by the program itself to engage in further exploratory computation
that may be beneficial, perhaps in reducing computation later. In Airtrac-Lamin-., we did
not investigate the benefits from exploratory computation.

For the user of the system, he or she must dec:d-. how and when to act u,, z i
uncommitted assertions rendered by the system. On one hanr!, &e u..et could6 -;,,,
assertions as true statements even before a commitment is made, with the a. -i "o- th 3i ,
retraction may be forthcoming. On the other hand, the user could vir , an assertion a.. a.e
only when accompanied by a commitment; this latter approach places emphasis on the
commitment, since only the commitment assures the truth of the conclusion.

We decided against using the s.heme outlined here. As a technique to allow
concurrent programs to engage in exploratory computations, there might be some merit if
the power of such computations can be exploited. As a logical statement to the user o% the
system, such an uncommitted conclusion is meaningless, since it may later be retracted. As
a probabilistic statement to the user of the system, a conclusion without commitment .ight
indicate some likelihood that the conclusion is true. However, we believe that a betr.er way
to handle probabilistic knowledge is to state it directly in the problem iather than in the
consistency conditions that characterize the solution technique. This unclear separation
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be.,,eer, domain knowledge and concurrent pogramming .-ch..iquen steered us .way from
the approach of making assertions ,.ith the possibility of sub:eque'it .e"cfl{;.;.

9. Summary

Lamina programrning is shaped by the target machine architecture. Lamina is
designed o run on a distributed-memory multiprocessor consisting of IC to 1000 proces-
sors. Each processor is a computer with its own local memory. and instruction stream.
There is no global shared memory; all processes communicate by message passing. This
taxrgtt machine environment encourages a programmng style that st-esses performance
gains through problem decomposition, which allows many processors to be brought to
bear on a problem. The key is to distribute the processing load over replicated objects. anid
to increase throughput by building pipelined sequences of objec.s that handle stages of
problem sulving.

For the prograrmmer. Lami:3a provides a concurrent object-oiented prograrming
model. Programming within Lamina has fundamental differences wih res'ect to con-
vendnon,', systems:

" Concurrent pr;ccesses may execute during both object creation and message

sending.

" The time =uired to create an object is visible to the programmer.

"The tim--e required to send a message is visible to the programmer.

" Messages may be received in a different order from which they were sent.

The many processes which must cooperate to accomplish the overall problem-
solving goal may execute simultaneously. The programmer-visible time dela , : are
significant within the Lamina paradigm because of the activities that may go en during these
periods, and they exert a strong uifluence on the programming st-ie.

d':hAs paper developed a set of concepts that allows us to understand and analyze the
lessons that we lear.ed in the design, implementation. and execution of a sin-ulat.d re al-

rine application. We confirmed the following experimental hypotheses:

* P :fomsaiv e of our concurrent program improves with additional pro -essors, we
atain sim'nificant levels oZ speedup.

* Cour.zrricss of our %oncurrent program can be maintained despite a high degree of
problem lcor.msitic • anrid highly ovc :loaded input data condtions.

An inappropriate desigr of out -. e-aircrft .cenario precluded us from confrming
or disco nflrrn.ng the fcio.".. n t-x,rineo.-al hypot'L-st.i:

The amourt nf sr.cdu' w- ca,. achie',e from additional processors is a ftu.cicn
of the arount of parp;iklism inhe-ent in the input data set.

In building a simulateci rea-i-me ariplication fi. Lamina. we focused on Lm proving
performance of a data-driven E,, blem drawn from the domain of real-time radar track
understanding, where the . e,- :s throughput. We learned how to recognize the
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yMvrptoms of throughput bottlenecks, our solution replicates objects and thereby improves
throughput. We applied concepts of pipeiinin&, and replication to decompose our problem
to obtain concurrency and speedup. We maintained a high level of correctness by applying
concepts of consistency and mutual exclusion to analyze and implement the techniques of
monotonic predicate and predicate transfer with 7cknowledgements. We recognized and
repaired load balance problems. discovering i. the process that a modified random
processor selection scheme does fairly well.

The achievement of linear speedup up to 100 times that obtainable on a single
processor serves as an important validation of our concepts and techniques. We hope that
the concepts and techniques that we developed, as x,-U as the lessons we learned through
our experiments, will be usefal to others working in the field of s bolic parallel
processing.
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CAGE and POLIGON: Two Frameworks for
Blackboard-based Concurrent Problem Solving

H. Penny Nii

Abstract

This paper is tinirded to serve as an introduction to two other papers. User-Directed Control

of Parallelism: The CAGE System [1]; and POLfGON: A System for Parallel Problem
Solving £6). Two different skeletal systems, representing two models of concurrent problem
solving, are lescribed in those reports. Both systems are designed for parallel execution of
application prograrn built with the systems. This paper describes the context in which these

systems are being developed and summarizes the differences between the two systems.

The Context

The POLIGON and the CAGE systems are being developed within the context of two different

families of experiments -within the Advanced Architectures Project. Each family of

experiments consists of a vertically integrated set of programs from each level of system

bier rchy outlined in the project proposal (i.e. application, problem-solving framework.

knowledge representadon and retrieval, implementation language, and hardware/system

architecture levels). POLIGON and CAGE are two systems at the problem-solving framework

level. The design of both the POLIGON and the CAGE systems are based on the Blackboard

problem solving model [5].

The Experiments

Each family of experiments sta s with a different set of high-level constraints:

Hardware/system architecture: The POLIGON system is designed for distributed-memory,
multi-processor systems. It assumes that the underlying system has a large number (100's to

1000's) of processor -nemory pairs with very high bandwidth inter-processor communication.

The CAGE system, on the other h.. td. assumes a shared-memory, multi-processor system with

tens to hundreds of processors. - aderlying system architecture influences the additional
constructs at the programming ia' ,- e level needed to support parallel executions. It also has

significant affect on the design of , ,-<" ard frameworks.

This researc" *as supported by DAr P A )C (F30602-85-C-0012). by NASA (NCC 2-220). ard by Boeing

Computcr Serv; (W-26685).
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Control of parallelimnr The POLIGON system is designed with an assumption that the

underlying problem solving framework on which the application is to be mounted must be
intrinsically parallel. The POLIGON system is designed so that predefined constructs tn Vie
framework always run in parallel. For example, all rules are evaluated in parallel and ai
changes to blackboard nodes are made in parallel. The user has some abiity to introduce
cerialization. CAGE, on the other hand, assumes that the user needs cc.-trol over wnat is to

run in parallel. Tht,, everything in CAGE runs serially unless speCified otherwise b- the -uer

There are prespecified piaces where the user can introduce para-!lism. For example, tie user
can specify that the condition parts of rules be evaluated in parallel and the action part be

executed in series.

The family of experiments of which CAGE is a Dart consists of CAGE (prob!em s-ing
framework) implemented in Qtip £.3] (implementation ;anguage) running on a shared-memory

architecture (system arcnitecture) simulated on CARE [2] (system simulator). The other f amil
of experiments consists of POLIGON (problem soiving framework) implemented in CAOS F7
and Zetalisp (implementation Ianguage) runnin on Istricuie-memory architecture jnsiate

archi ecture) simulated on CARE- Both CAGE andA POLIGON run on the same vyster

simulation program and share ":s M f,2as uremen-t tools. Both skeletal systems w. -ount

mne same application probiems.

in keeping With the goals or our -the primary objective of tne two fam.es 1o
experiments is to discover methods tha t 

wou se& up t e execution of knowlra=2e-basec
application prcgrams. T nre, however. t-zna; thn r8 wo ".-cZIazt tel-ate
to the primary objective:

To compare the performance gains -:wen sharE versus distibuted-memory.
muitiprocessor systems.

To provide input to the implementation l a ee (QLisp. CAOS and other
concurrent Lisp languages).

To gain some unde.s-.anding the differences in programmablity b--etween
POLIGON and CAGE. More spec-fia .. address che question of whether it is
easier/better to let the user have comprete con-hor over the parailei-sm in a program:
and as a corollary, to determine the hmit of concurrency that can be designed into
a framework, and the kinds of concurrenc-es that are problem speifitc Znd nee- to
be expressed by the user.

To de.ermine the extent or control. --r riaizati-on. needed in both s:.tems 'n order
to solve a class of problems. anu to discover no to aoo1 v the needed control.

t,- determine if muitinlicauve spee--up can b effected between knowledge sources.
rules, and lower level or exam rue c .- luat.. )-. 1c-"

To determine what level of .Cess 6ran- u jrs-ty" most appropriate toE ea,.l
hardware/sy stems arcn-ecture.

Comparison of the CACr and OIGON Systems
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CAGE and POLIGON are concurrent blackboard systems with two different un,.:ying design
philosophies. CAGE is an extension of the AG2 (4] system with primitives to express parallel
execution of knowledge sources, rules, and pairts of rules. It is a coi rvative, increiental

approach to building parallel systems. POLI&JN is a de..on- c2riven system in which all
blackboard nodes are viewed as active agents us each blacboard ne can potential be
a processorlmemory pair). A change m1 ade to a node causes approriate rules to be evaluated
and executed. POCGON represents a shift in the way we view biackboad systems.

Both systems have programming langu'ges associated ;th them. the POLIGON lang age and
.'he CAGE language. The first objective in providing a languae at the problem solving level
is to facilitate the w*ritin- of appiicatio n pro4-amrs. s is acciphshedA by abstracting much
of the systm detail into language cons-ruhcrs. Te second objective is to keep separate the
paraileisr in the application problem, as ex..e1 sed v he langue, and tle parallelis buil

into the framework that reina:n invisibie to 1t user- 1is sepa rtion allows us to experiment
with parali-lism in the application Orc-gram in.eq-trt --of experiments with paralliism wfllitn

the fraework "hus, we can for example. cep _Z_ appiication constant and change the parallei
cons-uctS within -he framework, or kat he fsmework corctanr and rew*rite the appiicauon.
In ,-- r to facbte the oorng -r enaPO.8 r__den - on froar-:ip b e Ct POLIGON and C
b-onth icn2~eC ae-, s-tac- . -. "..ei : f"e na .,-es P are er
different b the underlying sstems are ;ery Odferent. T: difference are Sutminfzs-
etcw.

CAGE POLIGON

incrementl zdd ;ons Red-sined
of para iielism to a :araL;ea s.-stem

seria Sstein

User onro.ied User cont-li
para:-- C s em r;"CO r--: n

Rrau! -1v^ Gran ul-riy of
paraIe-sm sera'etsm xo--

under ur control m aa actons

hared memory --s-.r-buced meory
.ia~P ?O fl Egg ---- fO~s
mu Ftl-pr r uhe-pr#

macnines mac -es

-Fgure 1: Surnmary o D.""re-r.cs: and POLiGON

We now descr:be and discuss some e sues s-ecif-c to the C tnd the POUCON
sytems. T-he ,-cussHOns slou- ser e -s a £aroimc to ;he de -d ci r.pt-on or he

..n the separate papers.
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CAGE

There are 3everal obvious places for concurrency in blackboard systems, the knowledge sources,

rules within the knowledge sources, and the components of the rules.

Knowledge Source concurrency: Knowledge sources are logically independent partitions of

domain knowledge. Each knowledge source is event-driven and becomes active when changes

relevant to the knowledge source are made to the blackboard. Theoretically, therefore, all

knowledge sources can be active at the same time as long as events relevant to each of the

knowledge sources occur at the 'same time'. However, knowledge sources are often serialy

devcndent in order to solve a problem. At run time some synchronization (i.e. serialization)

must be enforced.

In the class of applications we are considering, the solution generation process characteristically
occurs in a pipeline fashion up the blackboard hierarchy. That is, the knowledge source

dependencies form a chain from the knowledge sources working on the most detailed level of
the blackboard to those working on the most abstract level. When the program is model-

driven, the pipeline works in the reverse direction. The task for CAG' in exploring

concurrency at this level of granularity is to determine what percentage of the knowledge
sources can be active at the same time in the pipe.

Rule concurrency: Each knowledge source is composed of many rules. The condition part of

the rules are evaluated for a non-NIL condition (a match) and the action part of those rules

that match are executed. The condition-part of all the ruies in a knowledge source can be

evaluated in parallel. In those cases where the action part of all the rules that match are to be

executed, the action part can be executed as soon as the match is completed. However, if only

one of the rules is to be fired (single-hit), then the system must wait until all the condition

parts are evaluated, and one rule must be chosen whose action part will be executed. (Note

that this is very similar to the OPS conflict-resolution phase.) In addition, one can imagine

evaluating all of the condition parts in parallel .nd executing the appropriate action parts in

series.

The situation in which all rules are evaluated and fired concurrently will result in the most

speed-up, since many rules will be in the state of being evaluated and being executed at the

same time. However, if the rules need access to the same blackboard item, memory contentions

become a hidden point of serialization. At the same time, the integrity of information on the

blackboard cannot be guaranteed. The condition which triggered the action part of the rule

may not be the same by the time it is executed. CAGE needs to address these problems,

determine the effect on solution quality and overall performance gain of the application

program.

Condition-part concurrency: Each condition part of a rule consists of many clauses to be

evaluated. These clauses can be computed in parallel. Often these clauses involve relatively
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large numeric computation (e.g. calculating a track), making parallel clause evaluation
worthwhile. On the other hand, often the clauses refer to the same data item, making the
clause evaluation appear to be parallel, but in fact forcing serialization at the data-access level
with no gain (and most likely a loss) in speed of computation. The task at this level of
granularity is to determine if parallelism at this level is worthwhile. It may be that what is
needed at this level is a fast algorithm for matching the condition parts and an appropriate
knowledge representation scheme.

Action part concurrency: Often, when a condition part matches, there are many actions to be
executed. This is one place where no difficulty is anticipated in parallel execution.

Combining the concurrencies: The action parts of rules generate events, and the knowledge
sources are activated by occurrences of these events. In the AGE system events were posted on
an event-list and a control monitor invoked the knowledge sources based on those events. In
order to eliminate the serialization inherent in this control scheme, a mechanism to activate
the knowledge source upon the :ompletion of the action parts of rules is needed. The
irnme,'iate activation of a knowledge source after action part execution (for example, by
broadcasting an 'event message' to all the knowledge sources) results in the loss of global
control over knowledge source activation. In some cases, this is acceptable. In other cases, for
example when knowledge sources need to be activated on a priority basis (exemplified by the
need for the Agenda mechanism in AGE), some control mechanism is needed. The task here
is to determine the best (least overhead) control mechanism appropriate to the application.

POLIGON

As mentioned earlier, the application programs are event-driven in blackboard systems. Events
are normally defined by the user and expressed as changes to the blackboard nodes. Because a
knowledge source is activated by the occurrences of events, and because knowledge sources are
collections of rules, one can view the rules as being activated (indirectly) by changes to some
blackboard nodes. We can take this line of reasoning one step further and say that a rule is
activated by changes to particular slots of blackboard nodes. If we associate a set of rules
directly with a slot on a node and evaluate and execute the rules whenever the slot is changed,
we have a system with active blackboard nodes.

Conceptually, at least, every blackboard node can be thought of as a processor-memory pair.
Each node contains a data structure to store the partial solutions, and the rules are activated
whenever a particular slot is changed. Slots with a property that enable rule triggering are
called "trigger slots". When the action part of a rule is executed, the changes to the blackboard
are made via messages to the nodes to be changed. If the change to is to a trigger slot, then
the condition part of the "triggered rules" are evaluated; changes to non-trigger slots do not
cause processing.

A major difficulty with this approach is the loss of contrc!, specifically, an ability to control
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the order of rule firing. By bypassing the intermediate control step where manipulation of the

events and selection of knowledge sources occurs, the system has no global control. The rules

will be firing almost indiscriminately all over the blackboard as solution state changes. There

is no way to implement problem solving strategies, for example. In addition, rules will not be

evaluated in situations when the non-occurrence of a change to the blackboard is significant.

Such ability is important in signal interpretation programs.

In spite of many anticipated difficulties, we have developed a demon-driven system in hopes

of gaining experience with such a system and discovering solutions to the problems. Although

there is a substantial shift in the problem solving behavior, POLIGON is being evolved out of

the functionalities that were present in AGE. At this point POLIGON is characterized by the

following:
Knowledge sources exist only as a conceptual aid in partitioning the problem space.

Levels of in the blackboard data exist as a class hierarchy. A level is a class and a
node is an instance of a class. There is also a super-class that knows about the
classes. (For clarity, the class will be referred to a more familiar term, the level.)

All nodes are active entities.

Each rule must specify, in addition to the condition and action parts, the level and
the node with which it is to be associated, i.e. it must designate a 'trigger'. A trigger
consists of a slot name and a trigger-condition, which are to be interpreted as
follows: whenever the value of the slot is changed, evaluate the trigger condition. If
the trigger condition is non-nil then the rule becomes triggered. A triggered rule is
put on a process queue for later evaluation.

The rules can use data futures, and for the time being all bindings are made through
lazy evaluation. This means that all bindings are made only when needed. In
addition, processing can continue while values are being fetched from other nodes.

The major control problem to be addressed in demon-systems is the serialization of
demon activations. Potential for control in POLIGON exists in three places: (1) On
the node, where action parts of the rules can be serialized, for example. (2) in the
level manager, which knows about the all the nodes on the level. (3) In the super-
manger which knows about all the level managers. The level manager that can create
and garbage collect the nodes, and knows which rules to attach to a newly created
node. The level manager is the only agent that knows about all the existing nodes
on its level. Thus, to send a message to all the nodes on a particular level, a
message is sent to the level manager which forwards it to all its nodes.

In addition to the parallel evaluation of the condition parts of rules, the actions in
the action part of the rules are executed in parallel.

Because of POLIGON's uncontrolled parallelism the solution to a problem will be

indeterminate. That is, every execution of an application problem can potentially result in

different answers. The challenge is to organize the knowledge in such a way that "acceptable"

solutions are produced each time.

Most of the same concurrencies made available to the user in CAGE are built into the system

3-202



CAGE and POLIGON 9 May 1986

in POLIGON. The major challenge in POLIGON is the serialization of rule execution. For
example, the ability to synchronize the e.ecution of actions in CAGE has no counterpart in
POLIGON. Since the system is demon-driven at the rule level, there are very few handles

available to control the activation of rule evaluation.

Summary

CAGE and POLIGON thus are two very different approaches to the expression of parallelism

at the problem solving framework level. As we develop and test applications using these

frameworks, we expect to gain a more concrete understanding of their relative strength and
weaknesses with respect to usability, application characteristics, and speedup. Each system is

discussed in more detail in the papers by Aiello and Rice.
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Abist-act

This paper describes the ways in which blackboard systems can be made to
operate in a multi-processor environment. Cage and Poligon, two
concurrent problem solving systems based on the blackboard model are
described. The factors which motivate and constrain the design of parallel
systems in general and parallel problem-solving systems in particular are
described.

1. Background

A Concurrznt Problem Solving System is a network of autonomous, or
semi- &ufwntmous, computing agents that solve a single problem. In
building concurrent problem solvers, our objectives are twofold: (1) to ',volve
or invent models of problem solving in a multi-agent environmentand (2) to
gain signi'Lait performance improvement by the use of multi-processor
machines. Witbin th- community of researchers in artificial intelligence,
there is an interest in understa, ding and building programs that exhibit
cooperative problem-solving behavior among many intelligent agents,
independent of computational costs (see [Corkill 83], [Lesser 83], [Smith 81]
for some examples). But, one of the important pragmatics of using many
computers in parallel is to gain computational speed-up. 1 Often, methods
useful in a serial (single) problem solver in obtaining a valid solution and
coherent problem-solving behavior, usually a centralized control, are not
compatible with performance gain in a multi-agent environment. Cage
and Poligon attempt to find a balance - to achieve adequate coherence with
minimal global control and to gain performance with the use of multiple
processors.

1. i. Problem Solving and Concurrency

Those problems that have been successfully solved in parallel, such as
partial differential equations and finite element analysis. share ccmmon
characteristics: they frequently used vectors and arrays; solutions to the

problems are very regular, using well understood algorithms; and the
computational demands, for example, for matrix inversion, are relativelyeasy to compute. In contrast, the class of applications we are addressing

(and AI problems in general) a-e ill-structured or ill-uL1ine," 'M1-ere is
often more than one possible solution; paths to a soluti ., _niiot be
predefined and must be dynamically generated and tried, generally data
carn.A ,e encoded in a regular manner as in arrays - the data structuresare often graph structures that must be dynamically created, precluding

static allocation and optimization. These differences indicate that to run
problem solving programs in parallel, current techniques for parallel
programs must be augmented or new ones invented. It is worth reviewing

1Multiple computers are also used for other rea nb besides speed-up - redundancy, mix of
specip.i-cd hardware, need for physical separation, and so on.
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some of the key points to be addressed in building concurrent,, problem-

solving programs.

1.1.1. Problem Solving Issues

Problem solving has traditionally meant a process of searching a tree of
alternative solutions to a problem. Within each generate-and-test cycle,
alternatives are generated at a node of a tree and promising alternatives
selected for further processing. Knowledge is used to prune the tree of
alternatives or to select promising paths through the tree. It is an axiom
that the more knowledge there is the less generation and testing has to be
done. In the extreme, many knowledge-based systems have large
knowledge bases containing pieces of knowledge that recognize
intermediate solutions and solution paths, thereby drastically reducing, or
even eliminating, search. These two types of problem-solving techniques
have been labeled search andrecognition [McDermott 83]. In the search
technique the majority of computing time is taken up in generating and
testing alternative solutions; in the recognition technique the time is taken
up in matching, a process of finding the right piece of knowledge to apply.
Most applications use a combination of search and recognition techniques.
A concurrent problem solving framework must be able to accommodate
both styles of problem solving.

In serial systems meta-knowledge, or control knowledge, is often used to
reduce computational costs. One common approach decomposes a problem
into hierarchically organized sub-problems, and a control module selects
an efficient order in which to solve these sub-problems. Closely related is
the introduction of contextual information, or domain knowledge, to help in
the recognition process. Both approaches enhance performance - reduce
the number of alternatives to search or the amount of knowledge to match.
In concurrent systems meta-knowledge and control modules become fan-in
points, or hot-spots. A hot-spot is a physical location in the hardware
where a shared resource is competed for, forcing an unintended
serialization. Does this imply that problem solving systems that rely
heavily on centralized control are doomed to failure in a concurrent
environment? Can control be distributed? If so, to what extent? If more
knowledge results in less search, can a similar trade-off be made between
knowledge and control? In concurrent systems where control, especially
global control, is a serializing process, can knowledge be brought to bear to
alleviate the need for control?

1.1.2. Concurrency Issues

The biggest problem in concurrent processing was first described by
Amdahl [Amdahl 67]. Simply stated, it is as follows: The length of time it
takes to complete a run with parallel processes is the length of time it takes
to run the longest process plus some overhead associated with running
things in parallel. Take a problem that can be decomposed into a collection
of independent sub-problems that can run concurrently, but which
internally must run serially. If all of these components are run
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concurrently, then the run-time for the whole problem will be equal to the
run-time for the longest running component, plus any overhead needed to
execute the sub-problems in parallel. Thus, if the longest process takes 10%
of the total run time that the parallel processes would have taken if run
end-to-end (serially), then the maximum speed-up possible is a factor of 10.
Even if only one percent Gf he processing must be done sequentia'-y this
limits the maximum speed-up to one hurdred, however hard one tr.es and
however many processors are used. This is a very depressing result, siace
it means that many orders of magnitude of speed-up are only available in
very special circumstances.

This raises the issue ofgranalarity, the size of the components to be run in
parallel. Amdahl's argument indicates the need for as small a granularity
as possible. For example, is a ra:Ua a good candidate grain size for
compatatir"? On the other hand, if the process creation and process
switching time is expensive, we want to do as much computation as
possible once a process is running, th.-t is, favor a larger granularity. In
addition, in a multi-computer architecture a balance must be achieved
between the load on the communication network and oa the processors. It
is often the case that as process granularity decreases, the processes
become more tightly coupled - that is, there is a need for more
communication between them. The communication cost is of course a
fi:.Cz;on of the hardware-level architecture, including bandwidth, distance,
topology, and so on. Finding an optimal grain size at the problem solving
level is a multi-faceted problem.

Even if one is able to find an optimal granularity, there are forces that
inhibit the processes from run',ig arbitrarily fast in parallel. Some of the
more common problems are:

Hot-Spots and Boitleneck3: It is frequently the case that a piece of data
must be shared. In any real machine multiple, simultaneous
requests to access the same piece of data cause memory contention.
The act of a number of processes competing for a shared resource --
memory or processors - causes a degradation in performance.
These processor a id memory hot-spots cause bottlenecks in the
processing of data: they restrict the flow of data and reduce
parallelism.

* Communications: Multi-computer machines do not have a shared
address space in which to have memory bottlenecks of the kind
mentioned above. However the communications network over which
.he processing elements communicate still represents a shared
resource which can be overloaded. It has a finite bandwidth.
Similarly, multiple, asynchronous messages to a single processing
element will cause that element to become a hot-spot.

" Process Creation: Execution of the sub-problems mentioned above
require that they run as processes. The cost of the creation and
management of such processes is non-trivial. There is a process
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grain size at which it does not pay to run in parallel, b2cause
executing it sequentially is faster than executing it in paralel.

Having introduced some issues and constraints associated with
parallelizing programs, we now introduce some o"'ier concepts that are
important in writing concurrent progi ams, an understanding of which is
useful to appreciate the discussions later in this paper fully.

" Atomic operation: This refers to a piece of code which is executed
without interruption. In order to have consistent results (data) it is
important to have well defined atomic operations. For instance, an
update to a slot in a node might bc defined to be atomic. Primitive
atomic actions are usually defined at the system level.

" Critical sections: Critical sections ark usually programmer-defined
and refer to those parts of the program which are uninterruptible,
that is, atomic. The term is usually used to describe large, complex
operations that must be performed without interruption.

* Synchronization: This term is used to describe that event xkhich
brings asynchronous, parallel processes together synchronously.
Synchronization primitives are used to enforce serialization.

* Locks: Locks are mechanisms for the implementation 3f critical
sections. Under some computational models, a process that executes
a critical section must acquire a lock. If another process has the
lock, then it is required to wait until that lock is released.

* Pipeline: A pipeline is a series of distinct operations which can be
executed in parallel but which are sequentially dependent; for
instance, an automobile assembly line. The speed-up that can be
gained from a pipeline is proportional to the number of stages,
assuming that each stage takes the same amount of time, that is, if
the pipe is "well balanced." Pipeline parallelism is a very importaiit
source of parallelism.

1.2. Background Motivation

In experiments conducted at CMU [Gupia 861, Gupta showed that
applications written in OPS [Forgy 77] achieved speed-up in the range of
eight to ten, the best case being about a factor of twenty. The exeriments
ran rules in parallel, with pipelining between the condition evaluation,
conflict resolution, and action execution. The overhead for rule matching
was reduced with the use of a parallelized Rete algorithm. (In programs
written in OPS, roughly P9% of the time is spent in the match phase.) The
speed-up factors seem to reflect the amount of relevant knowledge chunks
(rules) available for processing a given problem solving state; this number
appears to be rather small. Although the applications were not written
specifically for a parallel architecture, the results are closely tied to the
nature of the OPS system itself, which uses a monolithic and homogeneous
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rule set and an unstructured working memory to represent problem
solving states.

The premise underlying the design of Cage and Poligon is that this
discouraging result could be overcome by dividing and conquering. It is
hoped that by partitioning an application into loosely-coupled sub-problems
(thus partitioning the rule set into many subsets of rules), and by keeping
multiple states (for the different sub-problems), multiplicative speed-up,
with respect to Gupta's experimental results, can be achieved. If, for
example, a facto .,' seven speed-up could be achieved for each sub-problem,
the simultaneous execution of rule s'.ts could result in a speed-up of seven
times the number of sub-problems. We are looking for methods that can
provide at least a two ord 2rs-of-magnitude speed up. The challenge, of
course, is to coordinate the resulting asynchronous, concurrent, problem
solving processes toward a meaningful solution with minimal overhead.

1.3. The Blackboard Model and Concurrency

The foundation for most knowledge-based systems is the problem-solving
framework in which an application is formulated. The problem-solving
framework implements a computational model of problem solving and
provides a language in which an application problem can be expressed. We
begin with the blackboard model of problem solving [Nii 86], which is a
problem-solving framework for partitioning problems int3 many loosely
coupled sub-problems. Both Cage and Poligon have their roots in the
blackboard model of problem 'ving. The blackboard framework seems, at
first glance, to admit the natural exploitation of concurrency. Some of the
possible parallelism that can be exploited are:

o knowledge parallelism - the knowledge sources and rules within
each knowledge source can run concurrently;

* pipeline parallelism - transfer of information from one level to
another allows pipelining; and

* data parallelism - the blackboard an be partitioned into solution
components that can be operated on concurrently.

In addition, the dynamic and flexible control structure can be extended to
control parallelism.

These characteristics of blackboard systems have promp,.ed investigators,
for example Lesser and Corkill [Lesser 83] and Ensor and Gabbe [Ensor 85],
to build distributed and/c" parallel blackboard systems. The study of
parallelism in blackboard systems goes back to Hearsay-II [Fennell 77].

The blackboard problem-solving metaphor itself is very simple; it entails a
collection of intelligent agents gathered around a blackboard, looking at
pieces of information written on it, thinking about them and writing their
conclusions up as they come to them. This is shown in Figure 1.
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Fig. 1. The Blackboard Metaphor.

There are some assumptions made in this model that L-e so obvious that
they might be missed. An understanding of the implications of these
assumptions is vital to an understanding of the problem of achieving
parallelism in blackboard systums.

" All of the ?gents can see all of the blackboard all of the time. and
what th,..' qe,. represents the c-urrent state of the solution.

• .iiy gent -a-. write his conclusions on the :lackboard at any time,
wich.uit ge . in anyone else's way.

* The act ,C , .gent wrting on the blackboard wiill 'ot confuse any of
the other ..g, s as they work.

The impl:-t. tm f these assumpticils are that a single problem is being
solved is:chronously and in parallel. However, the problem solving
behavior. ,C it were to be emulated in a computer, would result in very
inefficient coiz.putation. For example, for every agent to "see" everything
would entail stopping everything until every agent has looked at everything.

Existing, serial blackboard systems make a number of modifications to the
pu~e blackboard metaphor in order to make a reasonable implementation
on conventional hardware. In effect, they modify the blackboard metaphor
so that it cannot be executed in parallel. Some of these modifications are
shown in Figure 2 and are described below.
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Fig. 2. The Serial Blackboard System.

Agents are represented as knowledge sources. These knowledge
sources are schedulable entities and only one can be running at any
time. It will be shown later that one of the possible sizes for
computational grains is the knowledge source.

To coordinate the execution of knowledge sources, a scheduling or
control mechanism is implemented. This is, in many ways, an
efficiency gaining mechanism, which uses control knowledge to
select only the most "valuable" knowledge source at any given
moment to work on the problem.

" The blackboard is not truly "globally visible" in the sense prescribed
by the blackboard metaphor. Instead, the blackboard is implemented
as a data structure, which is sufficiently interconnected that it is
pcssible for a knowledge source to find its way from one data item to a
related one easily. Knowledge sources can only work on a limited
area of the blackboard - knowledge sources and their context of
invocation are, in fact, treated as self-contained subproblems.

" An implicit assumption is made that a knowledge source operates
within a valid, or consistent, context and that the -ordered- execution
of knowledge sources, even when the ordering is done dynam_.ically,
preserve the consistency of the blackboard data.

Trying to parallelize serial blackboard systems characterized above directly
has certain limitations. First, only a modest speed-up can be achieved by a
central scheduler determining the knowledge sources to be run in parallel.
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fhe performance l- es o' ver" ouickiv at a ver low number (a gain of less
than a factor of three in our expeni'ments no matter how many knowledge
sources are run in uarallel and no matter how many processors are used

Second. one of the most difficult problems in parallel computation is to
mainta.n consistent aata values In concurent b'ackboard systems, the
data consistency probiems occur i three diff.r nt context : 1) on the entire
blackboard, maintaining consistent solution states; (2) in the contents of the
nodes, assuring that all Slot values are from the same uroblem so-":nE
state-, and .3i in the siots. keeping the value being evaluated from changng
betore the evaluation is completed.

2. The Advanced Architectures Project

Cage lAicio 861 and Poiigon (Rice 861. two framewr - fo concuPr i,, -rn the conace h curen
problem i solving, are being developed withir tb Advanced Architectures
Project -A- ; at the Knowledge Systems Labcrator-v of Stanford Universtv
The vujeetive of the A-AP is the development of broad system architectures
that exploit parallelism at different 'evels of a svstem's herarchica!
constructo n To e ploit concurrency one must begin by o oing fo
paralflelism at tne appication leve and be able to formulate, exprs-s and
utiZ th-t parallelism within a problm-Solving framework, whic
turn- m.:st be supported by an appropriate :anguage and
software-- ardware S-stem. The sySer levels chosen and some isu-es ftr
study are:

* -t,,,i_ * 10evel: How can concunency be recognized and exploited?

Proben Solving leveO: k there a need for a new problem-solvirn
metapr to M I w'n concurrency: vWat is the best process and
data granuarit'? What is the trade-off between knowledge and
contro; "

Pro ming n lan -g Ie level: What is the best process and data
-ranuUI-nv a- this level? What are the implications of choics a ti e

anaT e jevei for -ie hardware ancd s-,-m arc:,tea ur.

* - mhrd ware level: Sho u ld the address s baces common or
dis:oi? What should the processor and men o-_ c'aratXr -st c - ano

g b W t IS the s cOMm! nication pology and
MN" --n:S-S*7 "-I a 'ud&e memory-procssor o.rganiza-ion bemeczh-ar What should te:ztu.p~e~rcgrz

A- eh sem evei one or more speCific me-hods and hproavhes nave

been inpdemented n an atxn. to address the problems a th at eief
Tee pr.gran-inS yn integrted to form a lamii'-

ex pennea syS-m s an mn m mend "using a pm -
sew-,.r i -ptuar kno wled e representatno and

a ai - the -sp-basedCAR ilrDeai 8 ah family

qt i designc to evaluae, for e xample n he DcVen;
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performance with respect to the number of processors, the effects of
different computational granularity on the quality of solution and on
execution speed-un, ease of programming, and so on. The results of one
such family of experiments have been reported by Brown and Schoen
[Brown 86, Schoen 863.

Within the context of this AAP organization, Cage and Poligon are two
systems that are implemented to study the problem-solving level. Both
Cage and Poligon use frames and condition-action rules to represent
knowledge. The target system architecture for Cage is a shared-memory
multi-processor; the target architecture for Poligon is a distributed-memory
multi-processor, or multi-computer.

Both Cage and Poligon aim to solve a particular, but broad, class of
applications: real-time interpretation of continuous streams of errorful
dat ., using many diverse sources of knowledge. Each source of knowledge
contributes pieces of a solution which are integrated into a meaningful
description of the situation. Applications in this class include a variety of
signal understanding, information fusion, and situation assessment
problems. The utility of blackboard formulations has been successfully
demonstrated by programs written to solve problems in our target
application class [Brown 82, Mccune 83, Nii 82, Shafer 86, Spain 83,
Williams 84].

Most of the systems in this class use the recognition style of problem solving
with knowledge bases of facts and heuristics; numerical algorithms are
also included as a part of the knowledge. Some search methods are
employed but are generally confined to a few of the sub-problems.

In designing a concurrent blackboard system for the AAP, two distinct
approaches seemed possible - one, to extend a serial blackboard system,
and the other, to devise a new architecture to exploit the event-driven
nature of blackboard systems. Each has its own problems and its own
advantages, which will be described in the following sections.

3. Fxtending the Serial System - Cage

Cage is a concurrent blackboard framework system, based on the (serial)
AGE [Nii 79] blackboard system. AGE uses a set of rules as a
representation for its knowledge sources; it uses a set of event tokens as
preconditions (a trigger) for the knowledge sources, and each significant
change to the blackboard posts an event in a global data structure. The
controller selects an event and executes a knowledge source whose
precondition matches the selected event.3 In additon to the basic
functionality found in AGE, Cage allows user-directed control over the
concurrent execution of many of its constructs (see Figure 3). Otherwise,
the two systems are functionally identical.

1There are more elaborate constructs in AGE, nut this description suffices for the current
purpose.
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Knowledge KS KS KS

Sources

Rules R R R R R R R

Conditions C CC CCC CCC CC C C CC Cf (Possible point of Synchronization)

Actions A AA AA AAA AAA AAAA A AA AAA AA

(Another possible point of Synchronization)

Knowledge KS KS KS KS
Sources

Fig. 3. Parallel Components of Cage

3.1. The Cage Architecture

The basic components of a system built with Cage are:

* A global data store (the blackboard) on which emerging solutions are
posted. Objezts on the blackboard are organized into hierarchical
levels, and each object is described with a set of attribute-value pairs.

" Globally accessible lists on which control ir formation is posted (for
example, lists of events, expectations, and so on).

" An arbitrary number of knowledge sources, each consisting of an
arbitrary number of rules.

* Control information that can help to determine (1) which blaiionard
elements are to be the focus of attention and (2) which knowledge
sources are to be used at any given point in the problem solving
process.

Declarations that specify which components are to be executed in
parallel (knowledge sources, rules, condition and action parts of
rules), and at what points synchronization is to occur.

The user can run Cage serially (at which point Cage behavior is identical to
that of AGE), or can run with one or more of the components running
concurrently. In the serial mode, the basic control cycle begins with the
selection and execution of a knowledge source. A resulting change to the
blackboard may cause several knowledge sources to become relevant and
candidates for execution. Cage uses a global list structure to record the
changes to the blackboard, called events. The controller selects one of the
events. The user can specify how the event is to be selected, such as FIFO,
L"O, or any user defined best-first method. The event in focus is then
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matched against .he knowledge source preconditions. The knowledge
sources, whose preconditions match the focus events, are then executed in
some predetermnined order. The rules within each knowledge source are
evaluated, and the action part of the rule is executed for those rules whose
condition parts are satisfied. The user may choose to allow only one rule to
fire per knowledge source activation or many rules to fire. Each action part
may cause one or more changes on the blackboard and a corresponding
number of events is recorded on the event list. Figure 4 shows the serial
Cage control cycle.

Initial
KS -.

"to, Select new
Execute 

s 

10 
Fou

ard

L~L

Fig. 4. Cage Serial Control Cycle

Using the concurrency control specifications, the user can alter the simple,
serial control loop of Cage by requesting the concur-ent execution of
application components. Cage allows for a range of granularity for these
concurrent processes; from knowledge sources all the way down to
predicates in the condition parts of rules. The various concurrency
operations that can be specified, together with the serial version, are
summarized below and shown in Figure 4.

Knowledge Source Control
Serial

Pick an event and execute the associated knowledge sources.
Parallel:

1. As each event is generated execute the associated knowledge
sources in parallel, OR

2. Wait until all active knowledge sources complete execution,
generating a number of events, and then execute the knowledge
sources relevant to those events concurrently, OR
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3. Wait until several event , "-re generated then zelect a 3ubset and
execute the relevant k,,,wiedge sources for all the subL.et events in
parallel.

-Withlt Each Kvcwiedge Source
SeriaL

I Pe-eform context. !Yai uation.
".,aliate !h a on parms, thn execute the oct.ion part of one
rule whose condition side watched, OR

3. Evai'iale all the ,ondi-.-,n Darts, then execute all the actions of
those rules whose 'orA .- ion side nmatched, serially.

ParJle:
1. Perform context evaluation in parall&.
2. ,.,valuate all condition parts in paral)i], then

a. synchronize (that is, wait for all tne condition side evaluations
to complete) and choose one action part, OR

b. --y;chronize and execute the actions serially (in lexical order),
OR

c. execute the : tions in parallel as the cc. Aition parts match.

Within Rules
Seziah

Evaiuate each clause then execute each action.
Parallel:

Evaluate the condition-part clauses in parallel then execute the
actions of the action ,)art in parallel.

3.2. Discussion of the Ccncurrent Coiponents

Each of the p'tential concurrent col.lponents are discussed below.

.2. 1. Knowledge Source canm-rrency:

Knowledge sources are logically independent partitions of the domain
knovwledge. A knowledge source is selected and executed when changes
made to the blackboard are rele-ant to that knowledge source.
Theoretically, many different knowledge sources car be executed at the
same time as lcng as the relevant blackboard changes occur close to each
other. But, the knowledge sources are often serially dependent and some
synchronization must be introduced.

in the class of applications under consideration, the solution is built up in a
pipeline-like fashion up the blackboard hierarchy. That is, the knowledge
srL..- - dependencies form a chain from the knowledge sources working on
the mos. detailed level of the blackboard to those working on the most
abstract levoi. (When the program is model-driven, this pipeline works in
the reverse dikrection.) Knowledge sources can be running in parallel,
processing the data along the pipe.
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Thus, t-here ai. potiua sourcet, of know'!Gdge source aiLi

..e~ iwgy! 2  -oo-i' -- !"Iferent reg-ions (portial s-licn)e

Al Z -1iTeiinU fio i-) CA'Oting .0e f~W ofI-) ~ i

EahKnow;- >Jge sou J -5 composed of u numb--. -f v 'T'n he~i Condilof

p-atrts Ofit~ ;'V'es are eveluate -- a miatch wiUh the z sate of t-he,
sc~zti~a-, Ulue action parts of nhc,,er rules that match the itzzte are
owcited.'Nhi cdiinPa.-v of all the rules in, a knoovc.3w,7'c. b

s Aie-effect-free, can be QVi~l2t-ed concurrernfl*v. In ca. '~ W111-1 t 110
r* es are t.o be executed, the ato pat cal- ~e~

"fle oiP ctv'-f part iui beatetz
asdh ia-- i rna20hd scefuly If only 0n o th% rUl(o,, A

b_- selected for execution, the syste-n must wait -untifl all the cain-'itiot pa rt~
gre evi.uated, and o-ne rule, whose Acio paz- ist b x ~ed, 1!'uSL "o

ch~eiTe situation in, whiell al" r -es are evah.;ated a-i execu,-d
~c curenlypotentualiv ha.i -the rniost naralism. Howevet. -f' i- rules

a. 27,s tfle .,-Lie Ibiackbnard -da- it enn, memory conte.tior, becomnes a
hirdden point of serialization. At the 3smec time, the integrity of the
information on theI blackbo)ard car-not be guaranteed. TIhe- Dr.) cm is of two
types: thieliness and consistency. First, the state which trigge.-z'dJ the rule

maybe odfied by the time the action part is executed. The auZAtin is
then; is3 the action ti1relevant and correct? Second, if a rule accesse-
attrib' ites fyrim different black"lboard Objects, there is no guarantee that the

vaus rmth bjcsar mosistent witi respect to each other.

Condition-part11 conc-urrer,.y: Eaich condition part of a rule may consist of a
number of clauses to be evaluated. These -Clauses can often be evaluated
concurrently. In the tI'osen class o' applications, these clauses frequently
involve relaf ::ly large numeric computations, making parallel evaluation
worthwhile. However, as discussed above, if the clauses refer to the sam-e
data item, memory contention would force a serialization.

Action-part concurrency: Often., vhen a condition part matches, more than
one potentially independent action Js called for, and these can often be
executed in parallel.

This problem of data consistency occurs bo.th in Cage and in Poligon. It carn
be partially alleviated by defining an atomic operation that includes both
read and write. This ensures that between the time that an item of data is
read, processed, and the result stored, there is no change in the state of the
node.2 However, this makes a commitment to a certain level of granularity,
for example, read the data for the condition part of a rule and execute the

!Note that this is very simailar to t.,-e OPS conflict-resoition phas- Refer to luGupta 861 for
the results of running C'PS rules in parallel.
21n Lainina IDelagi 861, a another programming frameworK deveh(,2,d for the AAP project,
the atomic action is read-process-write.
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rui. in order to enable experimentation with granularity, atomic actions
are kept small and locks, block reads, and block write', are provided in
Cagt. Although an atomic read/write operation does not so'_ve the problems
of time):ness or of global coherence, it does assure thbi, the data within the
hodes are consi'tent. And, although locks have a pctential for causing
deadlocks, they are provided for the user to constuct larger critical
sections.

3.2. Concurrenty Control

The action parts of rules generate events, and knowledge sources are
activated by the occurrences of these events. Irv the (serial) AGE system
events arm posted on a global evenf -list and, working on these events, a
control monitor activates one or more knowledge sources. In order to
eliminate the serialization inherent in th;s control scheme, a mechanism
to activate the kivl.e source immediately upc , event generation is
needed. TLs ir.imediat : .:ti- ation of knowledge sources bypasses the
N cvatroi nodule and ..Y, -. vely eliminates global control. In some cases,
- is acceptable. In other :ases where knowled-g :ources are serially
lep-_i.'nt, swne control mechanism is needed. Centralized control
i.-Icban1-.-s, sue;: as selecting many events to be processed i. parallel,
o'mtsing many knowikdge sources to run concurrently, are also provided.

Some a.!,-3wers to the man qu.'stions raised about Cage's architecture are
ebedded ,n the system. Howevt;, much of the birden is passed on to the
application, plogrammer. Some - ful programming techniques that
were discovered are discussed below.

3.3. PF-ogra-mming with Cage

There are a number of problems that crop up during conc-irrent uxecution
tha do not appear during se-ial execution. The solutions to -me of these
problems involved reformulating the application problem; s(me involved
tne use of programming techniques not commonly used in serial systems.
Both Cage and Poligon have been used to implemen1 a signal
understanding system called Eliait [Brown 86]. It is described brefly below.

3.3.1. The Elint Application

The problem is one of receiving muitiple streams of reports from radar
systems, abstracting these into hypothetical radar emitting aircrafts and
tracking them as they travel through the monitored airspace. These
aircraft are themselves abstracted into clusters - perhaps formations -
which are themselves tracked. Sometimes an aircraft in a cluster would
split off, forcing the splitting of the cluster node and rationalization of the
supporting -vidence. The nature of the radar emissions from the
aircraft(s) are interpreted in order to determine the intentions and degree of
threat o( each of the clusters of emitters.
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The Elint applicatier has a number of characteristics which are of
significance.

The system must be able to deal with a continuous data stream. It is
not acceptable to wait until all of the data has been read in and then
figure out what was going on.

The application domain is potentially very data parailel. The ability
to reason about a large number of aircraft simultaneously is very
important.

• The aircraft themselves, as objectt. in the solution space, are quite

loosely coupled.

3.3.2. Pitfalls, Problems and Solutions

The following programming techniques arose while implementing Elint in
Cage.

1. When the computational grain size is limited to a knowledge source, it is
possible to read all the slots of a node that are referenced in the knowledge
source by locking the node once and reading all of the slots at once. This is
in contrast to locking the node every time a slot is read by the rules. This is
equivalent to reading all of the blackboard data accessed from a knowledge
source before any rules are evaluated. This approach accomplishes two
important things: (1) It reduces the number of references to the blackboard,
thereby reducing the opportunities for memory contention, and (2) it
ensures that all the rules are looking at data from the same poin, in the
evolving solution.

2. in a serial blackboard system one precondition may serve to describe
several changes to the blackboard adequately. For example, suppose one
rule firing causes three changes to be made serially. The last change, or
event, is generally a sufficient precondition for the selection of the next
knowledge source. In a concurrent system, all three events must be
included in a knowledge source's precondition. This is to ensure that all
three changes have actually occurred before the knowledge source is
executed.

In general, a simple precondition consisting of an event Luken is not
sufficient for Cage. Either a sophisticated scheduler with detailed
specification of the activation requirements of the knowledge sources, or a
complex, knowledge-source precondition that contain the same
requirements is needed.

3. It is important when writing the conditicns of rules for a Cage
application to keep in, mind the feasibility of running the condition clauses
concurrently, that is, keeping them independent of each other in the sense
of not accessing the same data.
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4. Occasionally two knowledge sources running in parallel may attempt to
change a slot at almost the same time. It is possible that the first change
would invalidate the firing of the second rule. To overcor2e this type of race
condition, a conditional action - an action which checks the value of a slot
before making a change - was added. It allows the action to check the
most recent updates before making further changes. The alternative would
have been to lock a node for an entire knowledge source execution which
would seriously limit parallelism.

3.3.3. A Problem with Continuous Input Streams

Since Elint is a real-time system, it is time dependent. Processing a
continuous stream of data can lead to out-of-order events caused by delay of
one kind or another; an example might be a knowledge source stuck in a
memory queue delaying its changes to the blackboard. This means that
new data at time t may have to be analyzed before all the ramifications of
data from an earlier time (t - n) have been executed - at any point the data
can be out of order. The Elint application had to be reformulated to address
this problem. Time tags had to be associated with each event and
blackboard value, and the rules had to be re-written to use the time tags to
reason about unordered events.

3.3.4. Incremenal Introduction of Parallelism

Experiments with Cage indicate that it is much more difficult to program a
parallel system than a serial one. It lends subjective support to our
supposition that an incremental approach to parallelism is easier to
program than au all-at-once approach. We began with a serial version of
Elint and turned on clause level concurrency first and debugged it, then
experimented with rule level, and finally knowledge source level
concurrency. Only after Elint was working correctly with each of the these
concurrent operations, were they combined.

As discissed earlier, Cage can execute multiple sets of rules, in the form of
knowledge sources, concurrently. If the rule parallelism within each
knowledge source can provide a speed-up in the neighborhood cited by
Gupta, and if many knowledge sources can run concurrently without
getting in each other's way, we can hope to get a speed up in the tens. The
extra parallelism comes from working on many parts of the blackboard, in
other words, by solving many sub-problems in parallel. It was found,
however, that the use of a central controller to determine which knowledge
sources to run in parallel drastically limits speed-up, no matter how many
knowledge sources are executed in parallel. Amdahl's limit and
syiuciirenia&on comp strongly into play. The implication for Cage is that
knowledge-so:ure invuation should be distributed, without
synchronization. This wili eliminate two major bottlenecks - a data-hot
spot at the event list, and waiting for the slowest process to finish during
synchronization. Still, within a shared-memory, multi-processor system,
the interface to the blackboard is a bottleneck. One solution to this is to
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distribute the blackboard, which is one of the main characteristics of

Poligon.

4. Pursuing a Daemon-drive a Blackboard System - Poligon

Control in the blackboard model could be summarized as follows:
knowledge sources respond opportunistically to changes in the blackboard.
A3 discussed earlier, in reality, and especially in serial systems, the
blackboard changes are recorded and a control module decides which
change to pursue next. In other words, the knowledge sources do not
respond directly to changes on the blackboard. A control module generally
dictates the problem-solving behavior. This is a serializing process.

The basic question that led to the design of Poligon is: What if we attach the
knowledge sources to the data elements in the blackboard which, when
changed, would result in the activation of those knowledge source? Instead
of waiting until a control module activates a knowledge source, why not
immediately execute the knowledge source as the relevant data are
changed, and get rid of the control module? A blackboard change would
serve as a direct trigger for knowledge source activations. Next, assign a
processor-memory pair for each blackboard node, and have the knowledge
sources (now on the blackboard processing element) communicate changes
to other nodes by passing messages via a communication network. (see
Figure 5)

Node Rules

Node Rules Node Rules

' t Upd ate

Fig. 5. Organization of Poligon.
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Because a knowledge source is activated by a blackboard change, and
because a knowledge source is a collections of rules, one can view the rules
as being activated (indirectly, to be sure) by a change to some blackboard
node. A rule could be activated by a change to a particular slot on a
blackboard node. Slots with a property that trigger rules are called "trigger
slots". When the action part of a rule is executed, the changes to the
blackboard are communicated to the nodes to be changed. If a change is
made to a trigger slot, then the condition parts of the "triggered rules" are
evaluated; changes to n3n-trigger slots do not directly cause any
processing.

Poligon was designed from the start to exploit "fine"-grained parallelism -
"fine" grain here referring to parts of rules. It is generally thought that a
shaiud-memory hardware architecture is not able to deliver increasing
performance as more processors are added. This is a result of memory
contention and of physical limits i, the bandwidths of the busses and
switches used to connect the processors to the memory. Thus, Poligon was
designed from the start to be run on a form of distributed-memory
multiprocessor, the elements of which communicate by sending messages
to one another. Its match to the hardware will be seen clearly in the next
section where we discuss the structure of Poligon and what makes it
different from existing, serial implementations of blackboard systems.

4.1. The Structure of Poligon

In this section we describe the key features of Poligon. Instead of a detailed
description of the implementation, a number of points which are central to
Poligon's computational model are highlighted and contrasted with
conventional blackboard implementations.

As has been mentioned above, Poligon is designed to run on hardware
which provides message-passing primitives as the mechanism for
communication between processing elements. It is important to note that
the way in which information flows on the blackboard can be viewed, at an
implementation level, as a message-passing process. This allows a tight
coupling between the implementation of a system such as Poligon and the
underlying hardware.

Poligon has no centralized scheduler. This was motivated by a desire to
remove any bottlenecks that might be caused by the serial execution of such
a scheduler and by multiple, asynchronous processes trying 11o put events
onto the scheduler queue, causing memory contention. (The problems was
clearly manifested in Cage.) This required the definition of a different
knowledge invocation mechanism. Not only was a centralized scheduler
eliminated but all global synchronization was eliminated as well. This
means that it is likely that different parts of a Poligon program will run at
different speeds and will have have different ideas of how the solution is
progressing.
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Having eliminated the scheduler, there is clearly no need for any
presumably serializing - separation of the knowledge sources from the
blackboard. The Poligon programmer, therefore, specifies at compile-time
the classes of blackboard node that a particular piece of knowledge is
interested in. At compile-time and at system initialization time, knowledge
is associated directly with the nodes on the backboard that might invoke it.
This eliminates any communication delay and memory contention that
might be caused by having to find a matching rule in a remote knowledge
base.

In conventional blackboard systems, knowledge sources are taken to denote
both units of knowledge and units of scheduling. If all that a system
attempted to execute in parallel was its knowledge sources then a great deal
of potential parallelism might be lost by the failure to exploit parallelism at
a finer grain. In Poligon, therefore, knowledge sources are not scheduling
units, they are simply collections of knowledge. All of the rules in a
knowledge source can, in principle, be invoked in parallel and parallelism
at a finer grain than this can aL'o, be exploited during the execution of
rules.

Having eliminated the scheduler a new mechanism was needed that would
cause the application's knowledge to be executed. It was decided to go for a
very simple mechanism. Poligon's rules are triggered as daemons by
updates to slots in nodes. The association between rules and he slots that
trigger their invocation is made at compile-time, allowing efficient,
concurrent invocation of all eligible rules after an event on the blackboard.

The message-passing metaphor for the implementation and the
distribution of the knowledge base over the blackboard mentioned above,
allowed the development of a computational model which views a
blackboard node as a process, responsible for its own housekeeping and for
processing messages, for instance, for slot updates and slot read
operations.

Serial blackboard systems generally don't have a significant problem with
the creation of new blackboard nodes. This is because of the atomic
execution of knowledge sources. Such systems can usually be confident
that, when a new node is created, no other node has been created that
represents the same object. In parallel systems multiple, asynchronous
attempts can be made to create nodes which are really intended to represent
the same real-world object. Poligon provides mechanisms to allow the user
to prevent this from happening.

It was found necessary occasionally to share data between a number of
nodes. Poligon allows no global variables at all so it was necessary to find a
suitable way of defining sharable, mutable data, whilst still trying to reduce
the bottlenecks that can be caused by shared data structures. Poligon, like
many frame systems, has a generalized class hierarchy with the clesses
themselves being represented as blackboard nodes. Poligon uses class
nodes as managers, not only for node creation, as mentioned above, but also
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to store data to be shared between all of the instances of a class and to
support operations which apply to all members of a class.

Most blackboard systems represent the slots in nodes simply as value lists
associated with the name of the slot. The serial operation of such systems
allows the programmer to make assumptions about the order of elements
in the value list. This assumption allows operations on all of the elements
of the value list in the knowledge that no modification will have happened to
the value list since it was read, because knowledge source executions are
atomic. In Poligon, because a large number of rules can asynchronously be
attempting to perform operations on a slot simultaneously, it was
imperative to find mechanisms that would help to keep the operation of the
system coherent without slowing down the access to slots too much,
causing large critical seutions and reducing parallelism. Poligon,
therefore, provides "sma; i slots. They can keep their values in the correct
order and index them for flexible and focused data retrieval. They can also
have user defined behavior which allows them to make sure hat operations
performed on them leave them consistent.

4.2. Shifting the Metaphor

Poligon's design looks very much like a frame-based program specialized
for a particular implementation of the blackboard model. The expected
behavior of the system is much closer than the serial systems to the
blackboard problem-solving metaphor in one respect - the knowledge
sources respond to changes in the blackboard directly.' As in Cage there
are two major sources of coicurrency in this scheme: (1) Each blackboard
node can be active simultaneously to reflect data parallelism - the more
blackboard nodes, the more potential parallelism. (2) Rules attached to a
node can be running on many different processing elements
simultaneously providing knowledge parallelism. This daemon-driven
system with a facility for exploiting both data and knowledge parallelism
poses some serious problems, however. First, it is easy to keep the
processors and communication network busy, but the trick is to keep them
busy converging toward a solution. Second, solutions to a problem will be
non-deterministic - that is, each run will most likely produce different
answers. Worse, a solution is not guaranteed since individual nodes
cannot determine if the system is on the right path to an overall solution -
that is, there is no global control module to steer the problem solving.
Within the AI paradigm that looks for satisficing answers, non-
determinism, per se, is not a cause for alarm; however, non-convergence or
an incorrect solution is. One remedy to these problems is to introduce some
global control mechanisms. Another solution is to develop a problem-
solving scheme that can operate without a global view or global control. We
have focussed our efforts in Poligon on the latter approach.

m1As an historical note, this takes us back to Selfridge's Pandemonium [Selfridge 591,
which influenced Newell's ideas of blackboard-like programs [Newell 621. It. a!so has
some of the flavor ofthe actor formalism IHewitt 731.
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4.2.1. Distributed, Hierarchical Control

A hierarchical control mechanism is introduced that exploits the structure
of the blackboard data. The levels, in the AGE sense, of the blackboard are
organized as a class hierarchy. Each level is a class and a blackboard node
is an instance of that class. Class nodes contain information about their
instances (number of instances, their address, and so on), and knowledges
sources can be attached to class nodes to control their instance n.jdr.. To
minimize confusion, class nodes will be referred to using a more ccncrete
term, level manager. Similarly, a super-manager node can control the
class nodes.

1. Within Poligon, the potential for control is located in three types of
places:Within each node, where action parts of the rules can be
executed serially, for example.

2. In the level manager which can, for example, be used to monitor the
activities of its nodes. Since the level manager is the only agent that
knows about the nodes on its level, a message that is to be sent to all the
instance nodes must be routed through their manager node. The level
manager also controls the creation and garbage collection of the nodes,
and attaches the relevant rules to newly created nodes.

3. In the super-manager, whose span of control includes the creation of
level managers and their activities, and indirectly their offspring.

The introduction of control mechanisms solves some of the difficulties, but
it also introduces bottlenecks at points of control, for example, at the level
manager nodes. One solution to this type of bottleneck is to replicate the
nodes, that is, create many copies of the manager nodes. The CAOS
experiments, mentioned earlier, took this approach [Brown 861. Although
Poligon supports this strategy, our research is leading us to try a different
tactic.

4.2.2. A New Rle for Expectation-driven Reasoning

It was initially conjectured that model-driven and expectation-driven
processing would not play a significant role in concurrent systems - at

least not from the standpoint of helping with performance. One view of top-
down processing is that it is a means of gaining efficiency in serial systems
in the following way: in the class of applications under consideration, the
interpretation of data proceeds from the input data up an abstraction
hierarchy - the amount of information being processed is reduced as it
goes up the hierarchy. Expectations, posted from a higher level to a lower
level, indicate data needed to support an existing hypothesis; data expected
from prediction:: and so on. Thus, when an expected event does occur, the
bottom-uD analysis need not :ontinue up - the higher level node is merely
notified of the event and it does the necessary processing, for example,
increases the confidence in its hypothesis. When the analysis involves a
large search space. this expectation-driven approach can save a substantial
amount of processing time in serial systems.
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In Poligon hot-spots often occur at a node to which many lower level nudes
communicate their results (a fan-ia. The upward message traffic caD be
reduced by posting expectations on the lower level nodes and having them
report back only when unexpected events occur. This approach, currendt
under investigation, is one way for a node to distribute parts of the work to
lower level nodes, and hopefull" re-lievesi. the typ- of bottleneck c-aused
fan-ins at a node with out restoring to node replication.

It is generally expected that within the ahstraztion hierarchy of the
blackboard, information volume is reduced as one goes up the hierarchy.
This translates into the following desiderata for concurrent systems: For an
arbitrary node to avoid being a hot-spot, dere must be a decrease in the rate
of communication proportional to the number of nodes communicting to
t. That is. the wider tLhe fan, the less communication is allowable from

each node. It was found while re-jmplementine the serial ELINT
application in Poligon, that the highest level nodes had to be updated for
almost every new data item. Such a formulation of the problem, while
posing no problem in senal systems, reduces parallelism in concurrent

problem solvers.

49.3. A New Form of Rule

Ti for an given data item, there are manv rules that check its sate then
the svstem must ensure that this data item does not c ang r u.i o
thoSe . es have checkCed it. A tv oical example is as follows: Supo e there
are tw.o rules that are mutually exclusive, one performs some actun H a
data value is -on- and the other penorms some other action if the vatue IS
off. How can we ensure that between th time the first rule accesses t-fe

data and the second does so, there is not some ether action that changes the
data? In was found in Poligon (and also in Cage that these mu ua.y
exclusive rules need to be written in the fotrM of case-like conditionals to
assure data consistencv of the form described above. Since the need for
process creation, and subsequent maintenance. is reduced thi Aoh
combining rules. this f-rm of rule also z:s in speeding up the over a ll e
execution. It does mean, however, iaL the grain siz. of some of the rLS
as been made bigger, at least at the source coce evel. and the

Droghammers must think differentl about riLdes than they do in current
expr s ysvtems.

4.2.4. Agents with Objectives

At anv. en .oint in the computatin, the data at different noes can
mutualv inconsistent o-- utf cate Thc are ma-v auos for tC.bo n e c a u seoiatth at0bcack bba i'-

n c s s 4 ana.. are -ommunicatc t
"IC Te 's 'e traf c" - I " t- i " -- .

-ms Crn. um i -ne 2 b e, in the aar piicart.onGc Lr
consieranc whe hre aC- cne or re streams of continuous p

aa,--, the prohmem appea s a Lc amb e - a arr --te d ta may% De ouM
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aa Goes n o h-ay Lm rect when a daa .ght
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has. At the same time, it must avoid propagating changes to other nodes if
its confidence in its output data or inferences is low.

Put another way, each node must be able to compute with incomplete or
inco, rect data, and it must 'know' its objectives to enable it to evaluate the
resulting computation. A result is passed on only if it is known to be an
improvement on a past result. This represents a change from the problem-
solving strategies generally employed in blackboard systems where the
control/scheduling module evaluates and directs the problem solving. With
ne global control module to evaluate the overall solution state and with
r synchronous problem-solving nodes, a reasonable alternative is to make
ea h lode evaluate its own local state. Of course, there is no guarantee that
the sum total of local correctness will yield global correctness. However,
the way that blackboard systems are generally organized - each
blackboard level representing a class of solution islands, the span of
knowledge sources being limited to a few levels, and having functionally
independent knowledge sources - appears at this point, to provide an
appropriate methodology for creating loosely-coupled nodes that can be
provided with local objectives and a capability for self-evaluation. 1. The
"smart" slots mentioned earlier are used to implement this strategy.

i'he design of Poligon poses an interesting question - is it still a blackboard
system? There is a substantial shift in the problem-solving behavior and in
the wa: he knowledge sources need to be formulated. The structure of the
solution is not globally accessible. There is no control module to guide the
problem solving at run time. The metaphor shifts to one in which each
"blackboard" node is assigned a narrow objective to achieve, doing the best
it can with the data passed to it, and passing on information only when the
new solution is better than the last one. The collective action of the "smart"
agents results in a satisficing solution to a problem. 2

Although there is a substantial shift away from the conventional problem
solving metaphor, Poligon evolved out of the mechanisms that were present
in AGE. Most of the same opportunities for concurrency made available to
the user in Cage are built into the system in Poligon. The Poligon language
forces the user to think in terms of blackboard levels and knowledge
sources. But the underlying system has no global data. Whether such a
formulation makes the job of constructing concurrent, knowledge-based

lit is interesting to i. -te that the need for local goals does not seem to change with )rocess
granularity. Although the methods used to generate the goals are very different, Lesser's
group lias foand that each node in its distributed system needs to have local goals [Durfee
85. in this system each node contains a complete blackboard system; each system (node)
monitors the acttvities in a region of a geographic area which is monitored collectively by
the system as a whole.
21n retrospect, these characteristics for concurrent problem solving seem obvious. When a
group of humans solve a problem collectively by subdividing a task, we assume each
person has the ability to evaluate his or her own performance relative to the assigned task.
When there are "uncaring" people, the overall performance is bad, both in terms of speed
and solution quality.
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systems easier or more difficult for the knowledge engineer still remains to
be seen. A difficulty might arise because the semantics of the Poligon
language, that is, the mapping of the blackboard model to the underlying
software and hardware architecture, is hidden from the user. For
example, there is no notion of message-passing or of a distributed
blackboard reflected in the Poligon language. In contrast, the choice of
what, and how, to run concurrently is completely under user control in
Cage.

5. Conclusions

In this paper we discussed the relationship between the blackboard model,
its existing serial implementations, and the degree to which the intuitively
inherent parallelism is really present.

Cage and Poligon, two implementations of the blackboard model designed to
operate on two different parallel hardware architectures, were described
briefly, both in terms of their structure and the motivation behind their
design.

Our framework development, application implementations on these
frameworks, and initial performance experiments to date has taught us
that: (1) it is difficult to write a real-time, data interpretation programs in a
multi-processor environment, and (2) performance gains are sensitive to
the ways in which applications are formulated and programmed. In this
class of application, performance is also sensitive to data characteristics.

The "obvious" sources of parallelism in the blackboard model, such as the
concurrent processing of knowledge sources, do not provide much gain in
speed-up if control remains centralized. On the other hand, decentralizing
the control, or removing the control entirely, creates a computational
environment in which it is very difficult to control the problem-solving
behavior and to obtain a ..asonable solution to a problem. As granularity is
decreased, to obtain more potential parallel components, the
interdependence among the computational units tends to increase, making
it more difficult to obtain a 2oherent solution and to achieve a performance
gain at the same time. We described some of the methods employed to
overcome these difficulties.

In the application class under investigation, much of the parallelism came
from data parallelism - both from the temporal data sequence and from
multiple objects (aircrafts, for example) - and from pipe-lining up the
blackboard hierarchy. The ELINT application was unfortunately
knowledge poor, so that we were unable to explore knowledge parallelism,
except as a by-product of data and pipeline parallelism. ELINT has been
implemented in both Cage and Poligon, and experiments are now being
performed. The experiments are designed to measure and to compare
performance by varying different parameters: process granularity, number
of processors, data rate, data arrival characteristics, and so on.
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It is clear that much more research is needed in this area before a
combination of a computational and problem-solving model can be
developed that is easy to use, that produces valid solutions reliably, and that
can increase performance by a significant amount.
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Ab ct

Some ways in which blackboard systems can be made to operate in a multi-
processor environment are described in this paper. Cage and Poligon are
two concurrent problem solving systems based on the blackboard model.
The factors which motivate and constrain the design of parallel systems in
general and parallel problem-solving systems in particular are discussed.
Experiments performed on these two software architectures are described
and their results and implications enumerated and explained.

1. Introduction

In this paper we introduce two software systems, Cage and Poligon. Cage
and Poligon are two blackboard systems designed to exploit multiprocessor
hardware with the intent of achieving computational speed-up. Blackboard
systems, although architecturally well suited for problems requiring the in-
terpretation cp multiple streams of signal and symbolic data, are often
computationally too expensive to perform reasonably in a real-time envi-
ronment. Cage and Poligon, the results of two sub-projects of the Advanced
Architectures project at the Knowledge Systems Laboratory of Stanford
University, are attempts to produce high performance parallel blackboard
systems.

The Cage system is a conservative attempt to introduce parallelism into the
existing, serial blackboard architecture AGE. The Cage architecture rep-
resents an experiment into what could reasonably be achieved given the
current state of commercially available multiprocessors, most of which are
shared-memory machines with from several to a few tens of processors.
An example of such a machine might be the BBN ButterflyTM machine!.

7oligon, which makes a radical shift from conventional blackboard sys-
tems, anticipates future developments in parallel hardware architectures.
It is designed to work on the next generation of distributed-memory ma-
chines using hundreds or thousands of processors.

A general background and the general motivations for the development of
Cage and Poligon are discussed in Sections 2 and 3. The rationales for the
design of Cage and Poligon are discussed in Sections 4 and 5 respectively.
Since both systems run on simulated machines, the simulation system,
CARE, is discussed briefly in Section 6.

Experiments have been performed on these two systems, some of which are
described in Section 8 together with their results. The application problem,
Elint, which drove the experiments, is described in Section 7. Since Cage
and Poligon are very different systems, both from the standpoint of software
design and hardware requirements, it is difficult to compare the per-

1Butterfly is a registered trade mark of Bolt Beranek and Newman Corporation.
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formance of the two systems. In addition, since the research goals for the
two system architectures are ifferent, the set of experiments performed on
them are different. To facili'-ite some form of comparisci between the two
types of system, however, ot jarticular experiment was designed to be per-
formed, as closely as reasor.,Ily possible, on both systems. The relative
performance of the two systems will be discussed in Section 9 in the context
of these particular experimental results.

2. Background

A Concurrent Problem Solving System is a network of autonomous, or
semi-autonomous, computing agents that solve a single problem. In build-
ing concurrent problem solvers, our objectives are twofold: (1) to evolve or
invent models of problem solving in a multi-agent environment and (2) to
gain significant performance improvement by the use of multiprocessor
machines. One of the important practical concerns of using many comput-
ers in parallel is to gain computational speed-up'. Centralized control is
useful in a serial (single) problem solver for obtaining a valid solution and
coherent problem-solving behavior, but it is not compatible with perfor-
mance gain in a multi-agent environment. Cage and Poligon attempt to
find a balance; to achieve adequate coherence with minimal global control
and to gain performance with the use of multiple processors.

2.1. Problem Solving and Concurrency

Those problems that have been successfully solved in parallel, such as par-
tial differential equations and finite element analysis, share common char-
acteristics. They frequently use vectors and arrays; solutions to the prob-
lems are very regulai, using well understood algorithms; and the computa
tional demands, for example, for matrix inversion, are relatively easy tc
compute. In contrast, the class of applications we are addressing (and AI
problems in general) are ill-structured and/or ill-defined. There is often
more than one possible solution. Paths to a solution cannot be predefined
and must be dynamically generated and tried, and generally, data cannot
be encoded in a regular manner in array-like structures. The data struc-
tures for the solution states are often graph structures that must be dynam-
ically created, precluding static allocation and optimization. These
differences indicate that to run problem solving programs in parallel, cur-
rent techniques for parallel programs must be augmented or new ones in-
vented. It is worth reviewing some of the key points to be addressed in
building concurrent, problem-solving programs.

2.1.1. Problem Solving Issues

Problem solubg has traditionally meant a process of searching a tree of al-
ternative solutions to a problem. Within each generate-and-test cycle, al-
ternatives are generated at a node of a tree and prom- sing ones selected for

1Although multiple computers can be used because of the need for redundancy, a mix of
specialized hardware or a need for physical separation, and so on.
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further processing. Knowledge is used to prune the tree of alternatives or to
select promising paths through the tree. It is an axiom that the more
knowledge there is, the less generation and testing has to be done. In most
expert systems pieces of knowledge recognize intermediate solutions and
solution paths, thereby eliminating s--arch. These two types of problem-solv-
--. techniques have been labeled search and recognition [McDermott 83J.

In the search technique the majority of computing time is taken up in
generating and testing alternative solutions; in the recognition technique
the time is taken up in mctching, a process of finding the right piece of
knowledge to apply. Most applications use a combination of search and
recognition techniques. A concurrent problem solving framework must be
able to accommodate both styles of problem solving.

In serial systems meta-knowledge, or control knowledge, is often used to
r_.educe computational costs. One common approach decomposes a problem
into hierarchically organized sub-problems, and a control component se-
lects an efficient order in which to solve these sub-problems. This approach
enhances the performance of search and recognition problem solving by re-
ducing the number of alternatives to search or the amount of knowledge to
match. In concurrent systems meta-knowledge and controllers become
fan-in points, or hot-spots. A hot-spot is a physical location in the hardware
where a shared resource is competed for, forcing an unintended serializa-
tion. Does this mean that problem solving systems that rely on centralized
control are doomed to failure in a concurrent environment? Can control be
istributed? If so, to what extent? If more knowledge results in less search,

can a similar trade-off be made between knowledge and control? That is, in
concui i nt systerls where control, especially global control, is a serializing
process, can knowledge be brought to bear to alleviate the need for control?
These are some of the basic questions that studies in concurrent problem
solving need to address.

2.1.2. Concurrency Issues

The biggest problem in concurrent processing was first described by Am-
dahi !Amdahl 6711. Simply stated, it is as follows: The length of time -* takes
to co-Iplete a run with parallel processes is the length of time it takes to run
the longest serial process plus some overhead associated with running
thim-r in parallel. Take a problera that can be decomposed into a collection
of independe-nt sub-probiems that can run concurrently, but which inter-
nallv must run serially. If all of these components are run concurrently,
then thc run-time for the whole problem will be equal to the run-time for tne
longest running component, plus any overhead needed to execute the sub-
problems in parallel. Thus,. if the longest process takes 10% of the total run
time if the processes were run end-to-end (serially), then the maximum
speed-up possible is a factor of 10. Even if only one percent of the processing
must be done sequentially this limits the maximum speed-up to one hun-
dreci. wever hard one tries and however many processors are used. This
is a very dopressing result, since it means that many orders of magnitude
(;. speed-up are only aivailable in very special circumstances.
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This raises the issue of granularity, the size of the components to be run in
parallel. Amdahl's argument indicates the need for as small a granularity
as possible. But, if the overhead cost of process creation and process switch-
ing is expensive, we want to do as much computation as possible once a
process is running, that is, favor a larger granularity. In addition, in a
multi-computer architecture a balance must be achieved between the load
on the commr.ication network and on the processors. It is often the ase
that as process granularity decreases, the processes become more tightly
coupled, that is, there is a need for more communication between them.
The communication cost is, of course, a function of the hardware-level
architecture, including bandwidth, distance, topology, and so on. Finding
an optimal grain size at the problem solving level is a multi-faceted
problem.

Even if one is able to find an optimal granularity, there are forces that in-
hibit the processes from running arbitrarily fast in parallel. Some of the
more common problems are discussed below.

Hot-Spots and Bottlenecks: It is frequently the case that a piece of
data must be shared. Multiple, simultaneous requests to access the
same piece of data cause memory contention. A number of processes
competing for a shared resource - memory or processors - causes
a degradation in performance. These processor and memory hot-
spots restrict the flow of data and reduce parallelism.

Communications: Multi-computer machines do not have a shared
address space in which to have memory bottlenecks of the kind men-
tioned above. However, the c~mmunications network over which the
processing elements communicate represents a shared resource
which can be overloaded. It has a finite bandwidth. Similarly, mul-
tiple, asynchronous messages to a single processing element will
cause that element to become a hot-spot.

Process Creation: Execution of the ,ub-problems, into which the over-
all problem is divided, requires that they run as processes. The cost
of the creation and management of such processes is non-trivial.
There is a process grain size at which it is faster to run many sub-
processes sequentially than to execute them in parallel.

S,-me issues and constraints absociated with paralleliing programs wer
introduced above. We now introduce some concepts that are important in
writing concurrent programs, an understanding of which is useful to sub-
sequent discussions.

Atomic operation: This refers to a piece of code which is executed
without interruption. In order to have consistent results (data) it is
important to define appropriate atomic operations. For instance, an
update to a slot in an object might be dei-ied to be atomic. Primitive
atomic actions are usually defined at the system level.
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* Critical sections: Critical sections are usually programmer-defined
and refer to those parts of the program which are uninterruptible,
that is, atomic. The term is usually used to describe large, complex
operations that must be performed without interruption.

" Synchronization: This term is used to describe that event which
brings asynchronvus, parallel processes together synchronously.
Synchronization primitives are used to enforce serialization.

" Locks: Locks are mechanisms for the implementation of critical sec-
tions. Under some computational models, a process that executes a
critical section must acquire a lock. If another process has the lock,
then it must wait until that lock is released.

" Pipeline: A pipeline is a series of distinct operations which can be
executed in parallel but which are sequentially dependent; for in-
stance, an automobile assembly line. The speed-up that can be
gained from a pipeline is proportional to the number of pipeline
stages, assuming that each stage takes the same amount of time.
Such a pipe is "well balanced." Because reasoning consists of se-
quentially dependent inference steps, pipeline parallelism is a very
important source of parallelism in problem solving programs.

2.!.3. Background Motivation

In -xperiments conducted at CMU [Gupta 861, Gupta showed that ap-
plica:ions written in OPS [Forgy 77] achieved speed-up in the range of eight
to ten, 'he best case being about a factor of twenty. The experiments ran
rules in .arallel, with pipelining between the condition evaluation, conflict
resolution, and action executions. The overhead for rule matching was re-
duced with d.e use of a parallelized Rete algorithm. (In programs written
in OPS, rough,- 90% of the time is spent in the match phase.) The speed-up
factvrs seem to o2 flect the amount of relevant knowledge chunks (rules)
available for proce- ing a given problem solving state, and thi¢ number ap-
pears to be rather .mall. Although the applications were n.,t written
specifically for a parali:' irchitecture, the results are closely tied to the na-
ture of the OPS system ;-u'lf, which uses a monolithic and hoir -geneous
cule set and an unstructured working memory to represent pro lem solv-
ing states.

The premise underlying the design of Cage and Poligon is that this dis-
couraging result could be overcome by dividing anL :onquering. It is hoped
that by partitioning an application into loosely-coupled sub-problems (thus
partitioning the rule set into many subset- of rules), and by keeping mult;-
ple ztates (for the different sub-problems), multiplicative speed-up, with re-
spect to Gupta's experimental results, can be achieved. If, for exampl,, a
factor of seven speed-up could be achieved foi each sub-problem by the si-
multaneous execution of its rules, it is posdible to obtain an overall speed-up
of seven times the number of sub-problems. The chali..rge, of course, is to
coordinate the resulting asynchronous, concurrent, proL em-solving pro-
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cesses toward a meaningful solution with minimal overheads. The focus of
Cage and Poligon has been on the methods and techniques required to ob-
tain coherent solutions from many independent sub-problem solvers.

2.2. The Blackboard Model and Concurrency

The foundation for most knowledge-based systems is the problem-solving
framework in which an application is formulated. The problem-solving
framework impt,.__nts a computational model of problem solving and pro-
vides a language in v, hich an application problem can be expressed. We be-
gin with the Blackboard Model [Nii 86a], which is a problem-solving
framework for partitioning problems into many loosely coupled sub-prob-
lems. Both Cage and Poligon have their roots in the blackboard model of
problem solving. The blackboard approach seems, at first glance, to admit
the natural exploitation of concurrency, such as:

" Knowledge parallelism, in which the knowledge sources and rules
within each knowledge source can run concurrently;

" Pipeline parallelism, in which transfer of information from one level
to another (one method of implementing a reasoning chain) forms
pipelines; and

• Data parallelism, in which the blackboard is partitioned into solution
components that can be operated on concurrently.

0&

Figure 2.1. The Blackboard Metaphor

In addition, the dynamic and flexible control component can be extended to
control the parallel execution of different components of the system.
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These characteristics of blackboard systems have prompted investigators,
for example Lesser and Corkill [Lesser 83] and Ensor and Gabbe [Ensor 851,
to build distributed and/or parallel blackboard systems. The study of paral-
lelism in blackboard systems goes back to Hearsay-Il [Fennell 77].

The blackboard problem solving metaphor is very simple: A collection of in-
telligent agents gather around a blackboard, look at pieces of information
written on it, think about them, and add their conclusions as they come to
them. This is shown in Figure 2.1.

There are some basic assumptions made in this model, an understanding
of the implications of which is vital to an understanding of the difficulties of
achieving parallelism in blackboard systems.

• All of the agents can see all of the blackboard all of the time, and
what they see represents the current state of the solution.

° Any agent can write his conclusions on the blackboard at any time
without getting in anyone else's way.

" The act of an agent writing on the blackboard will not confuse a-y of
the other agents as they work.

Blackboard KnowIedge Base

KS

RuleNbde Rulel

FiN'ur NodeeSralB~cMud oe

~KS

1-1
Scheduler

-iue22. Thle Seria-1 Bladkboard ffw-W

These assunptions impy that a single problem is being solved asyn-
chronously and in DaraIlel. However. the problem solving behavior, if it
we:'e to be emulated in a computer, would result in very inefficient compu-
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tation. For example, for every agent to "see** everyhn ~simultaneousl Y
requires stopping everything until every agent has looked a' everythingr.

Existing, serial blackboard systems make a numbei of modifications to thi
blackr-board metaphor in order to n,-ke a reasonable implementation on
conventional, Serial hardware. in effiect. the blackboard meltauhor is MGMa-
fled so that it.cannot be executed in parallel. Come of these modificatirns
are shown in Figure 2.9 and are descibed below.

"Agents are represented as knowledge sources. Th ese knowledg
sources are schedulable entities and only one can be running at any
time. I will be shown later; that one of o posil size U cmta-
uional arainsz is the knowledgre source.

*To coordinate the execution of knnowle' e s-ources- a sciheduicr.o
zome ot~her central control mecha1n-m iizpleetd nmn
waes- this is an eific;.encv ga:-nt~ nmnism i wh coro
r.l ~ae ..~S; only -the most prodAuctv .Knowledge source atn

,;enl momnt .to1 work on the pr=oblni

*Tin blackhoarr- 1is not "Eioba". visMb e' in the sen-se prescribe 'ill-e
bla'-kboarolm .'apiior. instead. the ol rd is ial-cn~ a
Catsruct'!r. which i - q--TPsent' ntroneCte oe.b-

Ic dac aorc tofrd'~ rmoedta itemi to a rela Ce n

ea-. PKrtwIedav sou-rces anp=raV wor an 1 ited- area o: the
hi 61ba' A kno.wn as t-h kn-ow - 'so s con O~ Ctn knowi-
ea-: soujr~'S an t hei r Co= InA= texE treated, as c - contained sb-
pr-tlc-ns

* n "jrin" c 'sntei -ce LI-aL tkncwieoge -ourze operates

wihi a4 dj con x-- . ha u S t hc value- o- the diflter-
c p-xzc ar .b4 r on nc n c10--~L ~n with re-

n- tn each --he and are the same c'ew ~. oe thc-v are men-
ticflc=O To aSSUr.. t. i or example. a L-n Owl:CO- sou-rce- 15z never ifl-
1 r 1 .p Qd while =t nS'a-inE charnae~ 4:o the 'ac'DoardM
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the slots - keeping the value being evaluated from ch iging before the
evaluation is completed (data consist :,n!y).

3. The Advanced Architectures Project

Cage and Poligon, two frameworks for concurrent problem solving, are be-
ing developed within the Advanced Architectures Project (AAP) [Rice 881 at
the Knowledge Systems Laboratory of Stanford University. The objective of
the AAP is the development of broad system architectures that exploit
parallelism at different levels of a system's hierarchical construction. To
exploit concurrency one must begin by looking for parallelism at the app'i-
cation le ,el and be ab' to formulate, express, and utilize that parallelism
within a problem-solving framework. A framework must, in turn, be sup-
ported by an appropriate language and software/hardware system. The
system levels choser and some issues for study are:

Application ievA: How can concurrency be recognized and exploited?

Problem solving level: Is there a need for a new problerr-solving
metaphor to deal with concurrency? What is the best process and
data granularity? What is the trade-off between knowledge and con-
trol?

Programming language level: What is the best process and data
granularity at this level? What are the implications of choices at the
language level for the hardware and system architecture?

System/hardware level: Should the address spaces be common or
disjoint? What should the processor and memory characteristics and
granularity be? ' 'hat is the best communication topology and mech-
anisms? What should the memory-processor organization be?

At each system level one or more specific methods and approaches have
been implemented in an attempt to address ,'he problems at that level.
These programs are then vertically integrated to form a family of experi-
mental systems - an application is iLplemented using a problem-solving
framework using a particular knowledge representation method, all of
,hich use a specitic programming language, which in turn runs on a spe-

cific syslem/hardware architecture simulated in detail on the Lisp-based
CARE sinmulator [Delagi 86a] (see Section 6). Epch family of experiments is
designed to evaluate, for example, the system's performance with respect to
the number of proressors, the effects of different computational granularity
on the quality of solution and on execution speed-up, ease of programming,
and so on. The results of one such family uf experiments have been re-
ported by Brown and Schoen [Brown 86, Schoen 86].

Within the context of this AAP organization, Cage and Poligon are two
frameworks (or shells) implemented to study the problem-solving level.
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Bcth Cage and Poligon use frames and condition-action rules to represent
knowledge. The target system architecture for Cage is shared-memory
multiprocessors; the target architecture for Poligon is distributed-memory
multiprocessors, or multi-computers.

Both Cage and Poligon aim to solve a particular, but broad, class of applica-
tions: the interpretation of continuous streams of errorful data, using many
diverse sources of knowledge. Each source of knowledge contributes pieces
of a solution which are integrated into a meaningful description of the situ-
ation. Applications in this class include a variety of signal understanding,
information fusion, and situation assessment problems. The utility of
blackboard formulations has been successfully demonstrated by programs
writ.en to solve problems i. ur target application class [Brown 82, McCune
83, Nii 82, Shafer 86, Spaii ), Williams 84].

Most of the systems in this class use the recognition style of problem solving
with knowledge bases of facts and heuristics; numerical algorithms are
also included as a part of the knowledge. Some search methods are em-
ployed, but they are generally cunfined to a few of the knowledge sources.

An example problem in this class, called Elint (described in Section 7), was
implemented in both Cage and Poligon.

In designing a concurrent blackboard system for the AAP, two distinct ap-
proaches seemed possible; one, to extend a serial blackboard system, and
the other, to devise a new architecture to exploit the event-driven nature of
blackboard systems. Each has its advantages and problems; they will be
described in the following sections.

4. Extending the Serial Systen Cage

In this section we discuss the Cage system, its origins and its architecture.
In order to put this into a proper perspective, we first give a brief descrip-
tion of the (serial) AGE system [Nii 79], upon which Cage (Cage - Concur-
rent AGE), -c sely modelled. The AGE and Cage systems are functionally
identical ot than that Cage allows parts of the system to be executed in
parallel .

4.1. TheAGE system

The AGE system is one implementation of the blackboard problem-solving
model [Nii 86] mentioned in Section 2.2. The knowledge in an AGE applica-
tion is expressed both in the structure of the blackboard - the declaration
of the blackboard levels - and in the knowledge base itself. An AGE
knowledge base is composed of a number of knowledge sources, each of
which contains a number of rules. Rules are condition-action pai-s, as is
the case in most blackboard systems.
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Knowledge sources are invoked by the scheduler, which is user pro-
grammable. The selection of applicable knowledge sources is performed by
the use of Events.

An event is a symbolic token, which is posted by AGE after a knowledge
source makes a significant modification to the blackboard. For instance, a
chess playing blackboard system might, after placing the opponent in
check, post an event indicating that the opponent was in check. This event
is recorded by the system on a global event queue along with information
about the posting agent and the cause of the event. This allows the system
to focus its attention on the parts of the blackboard which are active and
provides the appropriate context in which to invoke any appropriate knowl-
edge sources. The event tokens are defined by the user and posted automat-
ically by the AGE system any time a node on the blackboard is changed.

The knowledge sources are labelled with the event tokens in which they are
interested. This allows the user specified scheduling mechanism to invoke
only those knowledge sources whose label matches the event token. The la-
bel on the knowledge source is referred to as the knowledge source
precondition.

Within the knowledge sources rules can be invoked in two ways:

* The condition parts of the rules are evaluated until a match is found.
This search for an applicable rule is performed serially in the lexical
order of the rules. This mechanism is referred to as Single-Hit.

* The condition parts of all of the rules are evaluated and all rules that
match are executed. The execution of the action parts of the matched
rules is performed serially in the lexical order of the rules. This
mechanism is referred to as Multiple-Hit.

These rule invocation strategies are peculiar to the AGE system and its
derivatives.

4.2. The Cage Architecture

The basic components of the Cage system are:

• A global data store (the blackboard) on which emerging solutions are
posted as object, attribute, and value triples. Objects on the black-
board are organized into levels of abstraction.

° Globally accessible lists on which control information is posted (for
example, a list of events, a list of expectations, and so on).

* An arbitrary number of knowledge sources, each consisting of an ar-
bitrary number of rules.
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" Control information that can help to determine at any given point in
the problem-solving process which blackboard node is to be in focus
and which knowledge sources are to be executed.

" Declarations that specify which components are to be executed in
parallel and at what points synchronization is to occur. The compo-
nents for potential concurrency are knowledge sources, rules, condi-
tion parts of rules, and action parts of rules.

The user can run Cage serially (at which point Cage behavior is identical to
that of AGE), or with pre-specified components running concurrently. In
the serial mode, the basic control cycle begins with the selection and execu-
tion of a knowledge source. Cage uses a global list structure, called the
event list, to record the changes to the blackboard. The scheduler selects one
of the events (the user can specify how the event is to be selected, such as
FIFO, LIFO, or any user-defined best-first method). The resulting event in
focus is then matched against the knowledge source preconditions. The
knowledge sources, whose preconditions match the focus event, are then
executed in some predetermined order. The condition parts of the rules
within each knowledge source are evaluated, and the action parts of the
rules, whose conditions are satisfied, are executed. Each action part may
cause one or more changes on the blackboard which are recorded on the
event list. Figure 4.1 shows the Cage control cycle in the serial mode.

Initial
KS '

Execute KSs

-2

-Select new
'-ocus

LII LFiI FI

Figure 4. 1. Cage Serial Control Cycle

By selecting one of the concurrency control options, the user can alter the
simple, serial execution of knowledge sources and their parts to execute in
parallel. The various concurrency options shown in Figure 4.2 are sum-
marized below.
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Knowledge KS KS KS

Sources I
Rules R R R R R R R R

Conditions C C C CCC CCC c CC C C CC C

J'\ (Possible point of Synchronization)

Actions A AA AA AAA AAA AAAA A AA AAA AA4(Another possible point of Synchronization)

Knowledge KS KS KS KS
Sources

Figure 4.2. Parallel Components of Cage

Knowledge Source Control
Serial:

Pick an event and execute the associated knowledge sources.
Parallel:

As each event is generated execute the associated knowledge
sources in parallel

Or Wait until all the active knowledge sources complete exe-
cution and invoke the knowledge sources relevant to all the re-
sulting events concurrently.

Within Each Knowledge Source
Serial:

Perform context evaluation and then,
Evaluate the condition parts, then execute the action part of the
first rule whose condition side matched (Single-Hit)

Or Evaluate all the condition parts then execute serially all the
action parts of those rules whose conditions side matched
(Multiple-Hit).

Parallel:
Perform context evaluation in parallel.
Evaluate all condition parts in parallel, and then,
synchronize (that is, wait for all the condition side evaluations
to complete) and choose one action part

Or synchronize and execute the actions serially (in lexical or-
der)

Or execute the actions in parallel as the condition parts match.
Within Rules

Serial:
Evaluate predicate in the condition part, then execute each action.

Parallel:
Evaluate the predicates in the condition parts in parallel, then exe-
cute the actions in the action part in parallel.
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4.3. Discussion of the Concunent Components

We described the mechanisms for concurrency in Cage. We now discuss
where and how these mechanisms can be used to gain speed-up.

4.3.1. Knowledge Source concurrency

Knowledge sources are logically independent partitions of the domain
knowledge. A knowledge source is selected and executed when chanIges
made to the blackboard are relevant to that knowledge source. Theoreti-
cally, many different knowledge sources can be executing at the same time.
But, knowledge sources are often serially dependent, reflecting the reason-
ing process.

In the class of applications under consideration, the solution is built up in a
pipeline-like fashion up the blackboard hierarchy. That is, the knowledge
source dependencies form a chain from the knowledge sources working on
the most detailed level of the blackboard to those working on the most ab-
stract level. The implication is that knowledge sources can run in parallel
along pipes formed by the blackboard data. (When the program is model-
driven, this pipeline works in the reverse direction.)

There are two potential ways for knowledge sources to run in parallel: (1)
knowledge sources working on different regions of the blackboard asyn-
chronously (working on sub-problems in parallel) and (2) knowledge
sources working in a pipelined fashion exploiting the flow of information
up, or down, the data hierarchy (pipeline the reasoning). Both sources of
parallelism are possible due to data parallelism inherent in the application.

4.3.2. Rule concurrency

Each knowledge source is composed of a number of rules. The condition
parts of these rules are evaluated for a match with the current state of the
solution, and the action parts of those rules that match the state are exe-
cuted. The condition parts of all the rules in a knowledge source, being
side-effect-free by design, can be evaluated concurrently without fear of un-
pleasant interactions. In cases where all the matched rules are to be ex-
ecuted (Multiple-Hit), the action parts can be executed as soon as the condi-
tion part is matched successfully. If only one of the rules is to be selected
for execution (Single-Hit), the system must wait until all the condition parts
are evaluated, and one rule, whose action part is to be executed, must be
chosen. 1 The situation in which all of the rules are evaluated and executed
concurrently potentially has the most parallelism. However, if the rules
access the same blackboard data item, memory contention becomes a hid-
den point of serialization.

The asynchronous firing of rules is associated with two types of problem:
timeliness and coherence. First, the state which triggered the rule may be

1Refer to IGupta 861 for the results of running OPS rules in parallel.
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modified by the time the action part is executed. The question is then: is the
action still relevant and correct? Second, if a rule accesses attributes from
different blackboard objects, there is no guarantee that the values from the
objects are consistent with respect to one another.

Condition-part concurrency: Each condition part of a rule may consist of a
number of predicates to be evaluated. These predicates can often be evalu-
ated concurrently. in the chosen class of applications these predicates fre-
quently involve relatively large numeric computations, making parallel
evaluation worthwhile. However, as discussed above, if the clauses refer to
the same data item, memory contention would force a serialization, nullify-
ing the apparent benefits of concurrent execution.

Action-part concurrency: Often, when a condition part matches, more
than one potentially independent action is called for, and these can be e.-e-
cuted in parallel.

The problem of data consistency occurs both in Cage and in Poligon. It can
be partially alleviated by defining an atomic operation that ir.cludes both
read and write on an object. This ensures that between the time that an
item of data is read, processed, and the resulL stored, there is no change in
the state of the object'. For this to be possible there are two requirements :
(1) all the data needed by the knowledge source is stored in an object and (2)
a commitment is made about the granularity of the critical section - for
example, "read the data for the condition part of a rule and execute the ac-
tion part." However, for most applications a knowledge source needs data
stored in more than one node; and given the goal of the research, it is unde-
sirable to commit to any particular process grain size. inP order to enable
cxperimentation with granularity, atomic actions in Cage are kept small
and locks, block reads, and block writes are provided. Although an atomic
block-read or -write operation does not solve the problems of timeiines- ,r of
global coherence, it does ensure that the data within each node is consis-
tent. And, although locks have a potential for causing deadlocks, they are
provided for the user to construct larger critical sections, for example, the
object creation process is made atomic using locks.

4.3.3. Concurrency Control

The action parts of rules generate events, and knowldge sources are acti-
vated by the occurrences of these events. In the (serial) AGE system events
are posted on a global event list and, based on the type of these events, a
scheduler invokes one or more knowledge sources. In order to eliminate
this serial control scheme, a mechanism to activate the relevant knowledge
sources immediately upon event generation is needed. This immediate
activation of knowledge sources still requires a scheduler in Cage, but it is
very small, and, from a problem solving perspective, effectively eliminates
global control. In some cases this is acceptable, but for those cases where a

I hi Lamina 1IDelagi 80b1, another programming framework developed for the AAP project,
the comparable atomic action is read-process-write.
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more elaborate control is needed a centralized scheduler/control mecha-
nism is provided. For instance, one mechanism allows the accumulation
of events, after which all knowledge sources relevant to a subset of the
events can be invoked in parallel.

Some answers to the many questions raised about concurrent problem solv-
ing are embedded in Cage's architecture. However, much of the burden is
passed on to the applications programmer. Some useful programming
techniques that were discovered are discussed below.

4.4. Programming with Cage

There are a number of problems that crop up in concurrent systems that do
not appear in serial ones. The solutions to some of these problems involve
reformulating the application problem; some involve the use of program-
ming techniques not commonly used in serial systems. The techniques
discussed below fall into the second category.

4.4.1. Pitfalls, Problems and Solutions

A need for the following programming techniques arose while implement-
ing Elint (see Section 7) in Cage.

* hen the only things to run in parallel are the knowledge sources, it
is possible to read all the attributes of an object that are referenced in
a knowledge source by locking the object once and -reading all of the
attributes. This is in contrast to locking the object every time an at-
tribute is read by the rules. In other words, all necessary blackboard
data is collected into local variables in the knowledge source's activa-
tion context before any rules are evaluated. This ensures that all the
rules are looking at data from the same time.

0 In a serial blackboard system one precondition may serve to describe
several changes to the blackboard adequately. For example, suppose
the firing of one rule causes three changes to be made serially. The
last change, or event, is generally a sufficient preconaitioi for the se-
lection of the next knowledge source. In a concurrent system, how-
ever, all three events must be included in a knowledge source's pre-
condition to ensure that all three changes have actually occurred be-
fore the knowledge source is executed.

In general, a simple precondition consisting of an event token is not
sufficient as it would be in a serial system. A detailed specification of
the activation requirements of the knowledge sources must be avail-
able. either in their preconditions or in the global scheduler.

It is important for the programmer, when writing the condition
parts of rules, to keep in mind the possibility of running tlie predi-
cates cuncurrently. This involves keeping predicates from accessing
the same data.
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Occasionally two knowledge sources running in parallel may at-
tempt to change an attribute at almost the same time. It is possible
that the first change would invalidate the later changes. To over-
come this race condition, a conditional action - an action which
checks the value of a slot before making a change - was added. An
alternative solution to the race condition is to lock a node for an entire
knowledge source execution, which would seriously limit paral-
lelism.

5. Pursuing a Daemon-driven Blackboard System: Poligon

Control in the blackboard model can be summarized as follows: knowledge
sources respond opportunistically to changes in the blackboard. As dis-
cussed earlier, in reality, and especially in serial systems, the blackboard
changes are recorded and a control component decides which change to
pursue next. In other words, the knowledge sources do not respond directly
to changes on the blackboard. A central scheduler generally dictates the
problem-solving behavior. This is a serial process.

Rules Node

Processing Element

Rules Node

Ru.es Node Node Rules

Figure 5.1. The Organization of Poligon

The basic question that led to the design of Poligon is: What happens if you
get rid of the scheduler? Instead of waiting until a scheduler acLivates a
knowledge source, why not execute the knowledge source immediately as
the relevant data is changed by attaching the knowledge source to the data?
A blackboard change can then serve as a direct trigger for knowledge
source activations. To accomplish this, assign a processor-memory pair for
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each blackboard object (called a node in Poligon), and have the knowledge
sources (now on the blazkboard processing element) communicate changes
to other nodes by passing messages via a communication network. (see
Figure 5.1).

Because a knowledge source is now activated directly by a blackboard
change, and because a knowledge source is a collections of rules, one can
view the rules as also being activated by that change. As a further refine-
ment, a rule can be activated by a change to a particular slot (an attribute)
of a blackboard node. If a change is made to a slot to which rules are at-
tached, the condition parts of the triggered rules are evaluated; changes to
other slots do not initiate any processing. Rule activation under these con-
ditions are reminiscent of active values in object-oriented programming.

Poligon was designed from the start to exploit "medium"-grained paral-
lelism; "medium" grain here referring to parts of rules, but not to small
expressions. It is generally thought that in a shared-memory architecture
performance gain levels off rather quickly as a result of physical limits in
the bandwidths of the busses and switches connecting the processors and
the memory. Thus, Poligon was decp;aied from the start to be run on a form
of distributed-memory multiprucessor. Because Poligon was designed for
this form of hardware architecture, it differs considerably from existing se-
rial implementations of blackboard systems.

5.1. The Structure of Poligon

In this section we describe the key features of Poligon. Instead of a detailed
description of the implementation, a number of points which are central to
Poligon's computational model are highlighted and contrasted with con-
ventional blackboard implementations.

It should be noted that the user's cognitive model of the Poligon system and
the system's implementation model are not necessarily closely connected.
For instance, the Poligon system is implemented on an object-oriented sub-
strate, which sees uses message passing to invoke methods. No sign of this
message-passing behavior is visible to the user, who views the Poligon sys-
tem very much like a conventional blackboard system.

As has been mentioned above, Poligon is designed to run on distributed-
memory machines - hardwar3 which provides message-passing primi-
tives as the mechanism for comiimunication between processing elements.
It is important to note that the way in which information flows on the black-
board can be viewed, at an implementation level, as a message-passing pro-
cess. This allows a tight coupling between the implementation of a system
such as Poligon and the underlying hardware. It also allows the de-
velopment of a computational model which views a blackboard node as a
process, responsible for its own housekeeping and for processing messages.

Poligon has no centralized scheduler. This was motivated by a desire
to remove any bottlenecks that might be caused by multiple, asyn-
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chronous processes trying to put events onto a sil-gle scheduler
queue. (This problem is clearly manifested in Cage.) The elimination
of a central scheduler requires a new knowledge invocation mecha-
nism. Poligon's rules are iriggered as daemons by updates to slots in
nodes. The association between rules and the slots that trigger their
invocation is made at compile-time, allowing efficient, concurrent
invocation of all eligible rules after a blackboard event.

When the centralized scheduler is eliminated, it also eliminates all
global synchronization and any mechanism for focus of attention.
This means that different parts of a Poligon program will run at dif-
ferent speeds, and each part will have a different idea of how the so-
lution is progressing. The application writer is required not to make
any assumptions concerning the global coherence or state of the solu-
tion.

Having eliminated the scheduler, there is clearly no need for the sep-
aration of the knowledge sources from the blackboard. The Poligon
programmer, therefore, specifies at compile-time the types of black-
board node with which a particular piece of knowledge is to be asso-
ciated. At compile-time and at system initialization time, knowledge
is associated directly with the nodes on the blackboard that might in-
voke it. In fact, when Poligon is running in its most optimized state
the knowledge base is block-compiled and the rules are wired directly
to the slots of the nodes, in which they are interested, eliminating all
knowledge search.

In conventional blackb-oard systems, knowledge sources are units of
scheduling. If a system attempts to execute only its knowledge
sources in parallel a great deal of potential parallelism will be lost by
the failure to exploit parallelism at a finer grain. In Poligon, there-
fore, knowledge sources are simply collections of smaller pieces of
knowledge in the form of rules. All of the rules in a knowledge
source can be executed in parallel. Indeed, knowledge sources are
compiled out by the Poligon compiler.

* Serial blackboard systems generally don't have a s:gnificant problem
with the creation of new blackboard nodes. This is because of the
atomic execution of knowledge sources. Such systems can usually be
confident that, when a new node is created, no other node has been
created that represents the same object. In parallel systems multi-
ple, asynchronous attempts can be made to create nodes which are
really intended to represent the same real-world object. Poligon pro-
vides mcchanisms to allow the user to prevent this from happening.

It is occasionally necessary to share data between a number of nodes.
Since Poligon allows no global variables, it is necessary to find a way
to define sharable, mutable data, while still trying to reduce the bot-
tlenecks that can be caused by shared data structures. Poligon, like
many frame systems, has a generalized class hierarchy with the
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classes themselves being represented as user defined blackboard
nodes. One way to view this is that the level structure on the black-
board is replaced by a class structure. The nodes belonging to a level
are instances of a class. In addition, the classes nodes are active,
serving as managers that create instance nodes. This level manager
also stores data shared between all of the instances to support op-
erations which apply to all members of a class. Shared data can
therefore be implemented in a distributed manner by using slots on
the level-manager (class) nodes.

Most blackboard systems represent the slots of nodes simply as lists
of values associated with the name of the slots. Because knowledge
source executions are atomic in serial systems, programs can as-
sume that no modification will have happened to the value list since
it was read. IL Poligon, because a large number of asynchronously
running rules can be attempting to perform operations on the same
slot simultaneously, a mechanism is needed to assure data consis-
tency without slowing down the access to slots (a large critical section
would reduce parallelism). Poligon provides "smart" slots. They are
smart in the sense that they can have associated with them user de-
fined behavior which can make sure that operations performed on
the data leave the data consistent.

The problem of data consistency within a slot is reduced by the slot be-
ing able to determine cheaply and locally whether a modification is
reasonable. Global solution coherency can be enhanced by tie same
process - slots can evaluate whether a modification will lead to a
more precise solution. This causes a sort of distributed hill-climbing
which helps the system evolve towards a coherent solution.

5.2. Shifting the Metaphor

Poligon's design looks very much like a frame-based program specialized
for a particular implementation of the blackboard model. The expected be-
havior of the system is much closer to the blackboard problem-solving
metaphor than serial systems, in one respect: the knowledge sources re-
spond to changes in the blackboard directlyl. There are two major sources
of concurrency in this scheme, which are similar to those in Cage:

* Each blackboard node can be active simultaneously to reflect data
parallelism - the more blackboard nodes, the more potential paral-
lelism.

" Rules attached to a node car be running on many different pro-
cessing elements simultaneot.sly providing knowledge parallelism.

1As an historical note, this takes us back to Selfridge's Pandemonium iSelfridge 59!.
which influenced Newell's ideas of blackboard-like programs 'Newell 621. It also has
some of the flavor oF the actor formalism Iftewitt 731.
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This daemon-driven system with a facility for exploiting both data and
knowledge parallelism poses some serious problems, however. First, it is
easy to keep the processors and communication network busy; the trick is to
keep them busy converging toward a solution by doing useful work. Second,
solutions to a problem will be non-deterministic, that is, each run will most
likely produce different answers. Worse, a solution is not guaranteed since
individual nodes cannot determine if the system is on the right path to an
overall solution. That is, there is no global control to steer the problem solv-
ing. Within the AI field where we look for satisficing answers, non-deter-
minism, per se, is not a cause for alarm. However, non-co.,vergence to a so-
lution or an incorrect solution is not acceptable.

One remedy to these problems is to introduce some global control mecha-
nisms. Another solution is to develop a prohk1z-sb1ving scheme that can
operate without a global view or global control. We have focussed our efforts
in Poligon on the latter approach.

5.2.1. Distributed, Hierarchical Control

In Poligon, an hierarchical control mechanism is introduced that exploits
the structure of the blackboard data. The level structure, in the AGE sense,
of the blackboard are, as mentioned earlier, organized as a class hierarchy.
Each level is a class and a blackboard object is an instance of that class.
Class nodes, or level managers, contain information about their instances
(numbe! of instances, their addresses, and so on), and knowledges sources
can be attached to level managers to control their instance nodes. Simi-
iarly, a super-manager node can control the level managers.

Within Poligon, the potential for control is located in three types of places:

1. Within each node, where action parts of the rules can be, though are
generally not, cxecuted serially. This is the only point at which the
user can explicitly request serialization.

2. In the level manager which can, for example, be used to monitor the
activities of its nodes. Since the level manager is the only agent that
knows about the nodes on its level, a message that , s to be sent to all the
nodes on that levei must be routed through their manager node. The
level manager also controls the creation and garbage collection of the
nodo- -nd it attaches the relevanL rules to newly created nodes.

3. In the super-manager, whose span of control includes the creation of
level managers and their activities, and indirectly their offspring.

The introduction of these control mechanisms solves some of the diffi-
culties, but it also introduces bottlenecks at pointsk of control. for example. at
the level manager nodes. One solution to this type of bottleneck is to .e,-
cate the nodes, that is. create many copies of the manager nodes. e
CAOS experiments, mentioned earlier, took ths appah Brn 86]. Al-
though Poligon supports this strategy, our research :s leadi.g us to try a
different tactic.
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5.2.2. A New Role for Epectaion-driven Reasong
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need to be written in the form of case-like conditionals (with the condition
checking being atomic) to ensure a consistency. In these rules, at most
one of the selectable action parts will be executed. Since the need for pro-
cess creation and iLs maintenance is reduced by combining rules, this form
of rule also helps to speed up overall rule execution. It does mean, how-
ever, that the grain size of the rules is generally bigger, at least at the
n"urce code level, and the programmers must think differently about rules
than they do in current expert systems.

5.2.4. Agents with Obje-' ,ves

At any given point in the computation, the data at different nodes call be
mutually inconsistent or out of date. There are many causes for this, but
one cause is that blackboard changes are communicate' by messages and
the message transit time is unpredictable. In the applications under con-
sideration, where there are one or more streams of continuous input data,
the problem appears as scrambled data arrival - the data may be out of
temporal sequence or there my be holes in the data. Waiting for earlier
data does not help, since there is no way to predict when that data might
appear. Instead, the node must do the best it can with the information it
has. At 'he same time, it must avoid propagating changes to other nodes if
it has a low confidence in its output data or in its inferences.

Put another way, each node must be able to compate with incomplete or in-
correct data, and it must 'kn'-w' its objectives to er We it to ebaluate the re-
sulting computation. A result is passed on only i, , is known to be an im-
provement oer a past result. This represents a change from the problem-
solving strategies genera'ly employed in blackboard systems where the con-
teoller/scheduler evaluates Pnd d;rects the problem solving. With no global
controller to evaluate the ov,:all solution state ar.d with asynchronous
problem-solving nodes, a reasonable altetnative is to make each node evalu-
ate its own local statc. Of course, there is no guarantee that the um total of
local correctncss will ield global orrectnoss. However, the organizations
(, blackboard auplicatiowis seem t, help in this matter. Blackboard systems
are generally or" -ized into sub-problems, and each blackboard level
represents a class 3f intermediate solt.tions. The knowledge ' -irces are
functionally independent, and ther span of knowledge is limite" to a few
levels. rihis type of probiein decompositior creates subproblem nodes (with
relevant knowledge sources) which can have local )bjectives and a
capability for seh-evj'u-otion 1. The "smart" -hItq mentioned in Section 5.1
are used tc imple--ni "his strategy.

1IL is interesting to note that che need for local goal- does not seem to change with process
granularity. Although the mctho s used to genei ate the goals are ver, different, Lesser's
group has found that each node n its distribtted zysLem needs to have local azoc s [Durfee
85]. In this system eaci, node contains a complete blazkb-ard system; each system knode)
monitor- the activities in a r:gicn of a geographic .ea which is monitored collectively by
the- s stem as a whole.
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The design of Poligon poses an interesting question - is it still a blackboard
system? There is a substantial shift in the problem-solving behavior and in
the way the knowledge sources need to be formulated. The structure of the
solution is not globally accessible. There is no control mechanism to guide
the problem solving at run time. The metaphor shifts to one in which each
"blackboard" node is assigned a narrow objective to achieve, doing the best
it can with the data passed to it, and passing on information only when the
new solution is better than the last one. The collective action of the "smart"
agents results in a satisficing solution to a probleml.

Although there is a substantial shift away from the conventional imple-
mentation of the blackboard metaphor, Poligon evolved out of the mecha-
nisms that were present in AGE. Most of the same opportunities for user-
defined concurrency availale in Cage are built into the system in Poligon.
The Poligon language forces the user to think in terms of blackboard levels
and knowledge sources. But the underlying system has no global data.
Whether the divergence between the problem solving model (in the form of
the Poligon language) and the computational model (in the form of its
implementation in a particular form of hardware) makes the job of con-
structing concurrent, knowledge-based systems easier or more difficult for
the knowledge engineer still remains to be seen. A difficulty might arise
because the semantics of the Poligon language, that is, the mapping of the
blackboard model to the underlying software and hardware architecture, is
hidden from the user. For example, there is no notion of message-passing
or of a distributed blackboard reflected in the Poligon language. In con-
trast, the choice of what, and how, to run concurrently is completely under
user control in Cage.

6. The CARE Simulation System and Machine Architectwee

CARE [Delagi 86a] is the name given both to the simulator used on the Ad-
vanced Architectures Project and to the hardware designs being developed
on that simulator.

The CARE software system consists of a kit of components with which the
user can construct simulated multiprocessors. The processor components
and their behavior and interconnoction topology are easily defined and spe-
cialized by the user. CARE allows experimentation with a large number of
simulated machines each with a differing numbers of processors. In addi-
tion, a number of system parameters can be used to investigate the perfor-
mance of different hardware variants. For the purposes of the Cage and
Poligon experiments, system parameters were held constant while the
number of processors was varied for each experiment.

14. retrospect, these characteristics for concurrent problem solving seem obvious. When a
group of humans solve a problem collectively by subdividing a task. we assume each
pt.rson has the ability to evaluate hl or her own performance relative to the assigned task.
When there are "uncaring" people, the overall performance is bad, both in turms of speed
and solution quality.
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Figure 6.1. The CARE system's instrument toolkit. Collections of
circuit components are wired to make multiprocessors. A variety of probes

and instruments allows the flexible monitoring of voth system and ap-
plication.

One of the most important features of the CARE system is the in-
strumentation that it provides (see Figure 6.1). The user can plug simu-
lated probes onto the simulated multiprocessor. These probes take various
measurements and are connected to instruments that display the different
system characteristics. The instrumentation toolkit allows the user to
watch the behavior of the system both from the point of view of hardware
performance and the application program. This, for instance, allows the
identification of bottlenecks and hot-spots during system execution. An ex-
ample of a CARE instrument is shown in Figure 6.2.

The CARE machine architecture will not be discussed in any detail in this
paper, bat some elucidation at this point should allow better understanding
of the references made to the underlying hardware in forthcoming sections.
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CARE EXAMINER: EVALUATOR QUEUE LOAD
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Figure 6.2. One of the instruments provided by the CARE system. This
",e shows the lengths of the Evaluator's process queue over time for each

processing element (Site)

Each processing element in the CARE machine is made up of two pro-
cessors; one the Operator, whose purpose is to execute operating system
functions and to perform the task of inter-processor communication, and
the Evaluator, whose task is the execution of user code (see Figure 6.3).
This design allows the user application to continue with its work, while
communication is taking place.

The communication behavior of the simulated hardware used by Poligon
and that used by Cage are different. In the Poligon system the CARE simu-
lator is used to simulate an array of the processing elements, connected in
a toroidal manner, such that each processing element can talk to its eight
neighbors (up/down, left/right and diagonal).

The Cage system uses an array wired in a similar manner, but in this case
half of the processing elements in the array are specialized to act solely as
memory controllers/servers, that is the Evaluators are not used. This
scheme combined with thr dynamic, cut-through routing communication
protocol [Byrd 873 used by C i nsures that each of the processors execut-
ing user code has equal acc... ,he memory-only processing elements. In
this way Cage uses the distributed CARE architecture to simulate a shared-
memory machine.
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Figure 6.3. The CARE machine processing element

7. The Elint Application

The Elint Application is a situation understanding application used in our
experiments. It is, in fact, part of a larger signal understanding system
called Tricero, developed by ESL [Williams 84]. It was selected as an appli-
cation, not only because is was in the problem domain in which we were in-
terested, but also because it is a system of moderate complexity. It is
complex enough to stress our software architectures and to give us a rea-
sonable understanding of the problems of implementing real concurrent
blackboard applications, yet simple enough that we could concentrate on
the development of Cage and Poligon, rather than the application itself.

The Elint task is to integrate reports from multiple, geographically dis-
tributed, passive radar collection sites in order to develop an understanding
of the position and intentions of aircraft travelling through the monitored
airspace (see Figure 7.1). A3 the aircraft travel, they use a number of dif-
ferent radar systems for such tasks as ground tracking/altimetry and tar-
get acquisition and tracking. The passive radar receivers in the Elint ap-
plication are able to detect the bearing of the radar emissions (the position of
the emitter must be deduced from more than one radar system, since these
are passive devices) and the type of radar system which is making the
emissions.
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Figure 7. 1. The Elint problem. The radar collection sites must track the

aircraft using the bearings of the received emi;.. )as. In this case the
system must distinguish between the real positions of the aircraft and

positions which are impossible.

The application takes the multiple streams of reports from the collection
sites, abstracts them into hypothetical radar emitters (perhaps aircraft),
and tracks them as they travel through the monitored airspace. These
emitters are themselves abstracted into clusters (perhaps formations of air-
craft or single aircraft using multiple radar systems), which are them-
selves tracked (see Figure T.2). Sometimes an aircraft in a cluster would
split off, forcing the splitting of the representation of the cluster and ratio-
nalization of the supporting evidence. The nature of the radar emissions
from the aircraft are also used to determine the intentions and degree of
threat of each of the clusters.

The Elint application has a number of characteristics which are of signifi-
cance.

"The system must be able to deal with a continuous input data stream,
and there is a need for real-time processing. (The Elint application
on both Cage and Poligon is a soft real-time application, processing
continuous input data as fast as possible. Ilk- is not a hard real-time
application, since it does not guarantee any specific response time.)

" The application domain is potentially very data parallel. The ability
to reason about a large number of aircraft simultaneously is very im-
portant.
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• The aircraft themselves, as objects in the solution space, are loosely
coupled.

Blackboard nodes

I ~clusters

-Emitters]

_iJ[ObServat~ons 1!

Figure 7.2. The Elint Application. Sensor data is abstracted into
hypothetical radar emitters, which are tracked as clusters of emitters.

An artifact of the application, which should be well understood, is the idea
of an input data sampling interval. Since the Elint application is, in some
sense, a simulation of the real world, it has a clock of its own which ticks at
a constant rate with respect to the time in the real world. The data that
comes into the system is timestamped. When the application's clock has
reached a time which is the same as the timestamp on the input data
record, the data is introduced into the system. The simulated time between
two of these ticks can in certain circumstances be used to provide a mea-
sure of the throughput of the system. Thus, the tick interval is a parameter
that can be varied to measure the system's potential throughput. For any
given experiment the input data that was being used defines the number of
radar emissions detected in that timeslice. From here on in this papcr,
therefore, we will use the term timeslice to indicate a period whose length
is equal to one domain clock tick and input data sampling interval or sam-
pling interval, for short, as the length of one timeslice in simulated time.
The sampling interval will typically be quoted in simulated milli or mi-
crosecondsl.

1This is one aspect in which the Elint application is not realistic. In the real world, reports
arrive at Elint data collection sites at a rate of one every few seconds. In order to stress our
systems we had to turn up this rate until reports were arriving, in the case of Poligon, every
300 microseconds.
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8. Experiments and Results

In this section we describe the experiments performed on the Poligon and
Cage systems using the Elint application described in the previous section.
We explain the reasons for performing the experiments, present the results
of the experiments in detail, and draw conclusions from them.

It should be noted that the experiments mentioned here do not represent all
of the experiments performed, but are simply those which we performed af-
ter learning from earlier ones. The earlier experiments taught us how
better to perform the experiments and helped us to Lind numerous infelici-
ties in both the Poligon and Cage systems and their respective Elint imple-
mentations.

8.1. Understanding the Graphs

In the following sections a large number of graphs will be shown, most of
which will have the same format. The graphs plot either speed-up or both
speed-up and input data sampling interval against the number of proces-
sors on which the experiment was performed. When both sampling inter-
val and speed-up are plotted on the same graph, the sampling interval will
always be labelled on the left Y-axis and the speed-up on the right Y-axis.
A typical speed-up graph is shown in Figure 8.1.

10
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p
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0 16 32 48 64

Processors
Figure 8. 1. An example showing speed-up plotted against the number of

processors used.

In the best of all possible worlds, linear speed-up would result; that is, for
each new processor that was added, the speed-up would increase linearly.
The plot would be a straight line. In practice, however, the amount of real-
izable speed-up often tails off as the number of processors increases, giving
the characteristic shape for the curve in Figure 8.1.
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For the sake of completeness, the sampling interval will often be shown
along with the speed-up. The speed-up is, in fact, simply calculated by di-
viding the sampling interval for the uniprocessor 2ase by that for the N pro-
cessor case. The display of the sampling interval shows how the system's
throughput is affected by the number of processors. This is typically a de-
creasing curve as is shown in Figure 8.2 - the system speeding up as the
sampling interval is going down.

100- 10

80 8

S 60 6 CLE - Interval :?

'= -e-Speed-up

40 -4

20. 2

0 0
0 16 32 48 64

Processors

Figure 8.2. An example showing sampling interval and speed-up
plotted against the number of processors used.

8.2. Experimental Method

An important part of these experiments is the method used to derive the
measurements. Extensive experimentation was conducted before a method
evolved, which could both define and measure the speed-up of these sys-
tems.

A simplistic method for measuring the speed-up of a parallel system would
be to take the run-time for the application on a uniprocessor and then divide
it by the run-time measured for different numbers of processors. This ap-
proach works well for non-real-time systems in which the behavior of the
system is not affected by the speed of the computation. In a real-time system
with continuous streams of input data, however, the behavior of the system
changes according to Lhe degree to which the system is loaded. For exam-
ple if more processors are added to a system it can become data starved,
failing to deliver the speed-up of which it is capable.

To counter this phenomenon a different methodology was devised. A series
of experiments is performed, during which the input data sampling inter-
val is established such that on the largest processor network size the system
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is never data starved. The speed-up is measured using this sampling in-
terval for other processor configurations, knowing that the delivered speed-
up for the large multiprocessor configuration would not be data starved. We
found, however, that with all system parameters held constant (except for
the number of processors) the application program was still behaving
differently for the different experiments. This was because for small num-
bers of processors the system was getting backed up, and it was spending a
significant amount of time queue-thrashing. That is, it was trying to keep
data in order which, if the system had not been so overloaded, would not
have got out of order in the first place. This had the effect of making the ap-
plication seem to run slower on smaller numbers of processors, thus giving
an artificially high apparent speed-up.

What was needed, therefore, was a method for measuring the system's
speed-up, while making sure that the system was always operating under
the same load conditions. To accomplish this, the speed of the application
on any particular processor configuration is defined as the lowest sampling
interval (i.e. highest throughput) that still gives non-increasing latencies in
the results. The latency measure is defined to be the time between the data
coming into the system and the system emitting any reports concluded
from the data.
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Figure 8.3. Showing increasing measured latency o-er domain time.

Examples of increasing and constant latencies are shown in Figures 8.3
and 8.4. If the system can keep up with the sampling interval specified, the
latency value should be largely constant, otherwise latencies increase over
time as the system backs up.
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In summary, the following method is used to measure the system's speed:
for any given number of processors, the application is run with different
sampling intervals until one is found that produces non-increasing laten-
cies. This sampling interval defines the processing speed for a given pro-
cessor configuration. For a speed-up experiment, the above process is ra-
peated for different processor configurations until the speed-up curve levels
off.

4
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€- 2

0

0 10 20 30
Time

Figure 8.4. Showing constant measured latency over domain time.

8.3. Data Sets

An important aspect of the experiments on the Elint application is the sce-
nario used to drive the experiment. A scenario represents the simulated
radar information that a "real" system would have received. In a real sys-
tem, one would expect that the number of received radar emissions would
vary over time. Although realistic, this sort of scenario is very hard to per-
form experiments on, since there are bound to be times when the system is
either data starved or overloaded. Because of this, two of the data sets used
for the experiments have the particular property that they have a constant
density of input data over time.

The important characteristics of these data sets, therefore, are the number
of radar emissions detected in each time unit, the number of radar emit-
ters, and the number of clusters (see Section 7).

It should be noted that these data sets are used to measure the overall peak
system performance for a given data set having the characteristics men-
tioned below. The system's response to transients in the amount of input
data in a timeslice was not measured, nor was its performance for input
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data with less 'typical" characteristics; for instance, a small number of
aircraft, each using a large number of radar systems, or a large number of
aircraft, each using very few radar systems.

The cbaracteristics of the three data sets used are enumerated below.

Fat 240 Observations, 4 Emitters, 2 Clusters, 8 Observations
per time-slice, 30 time-slices, 2 Observations per Emitter
per time slice.

Thin 60 Observations, 1 Emitters, 1 Clusters, 2 Observations per
time-slice, 30 time-slices, 2 Observations per Emitter per
time slice.

Lumpy 186 Observations, 12 Emitters, 1 Cluster (which splits), 2
inconsistent observations, 1 ID error, variable number of
Observations per time-slice, 30 time-slices.

In the description of the experiments to follow, these data sets will be re-
ferred to by the names "Thin", "Fat" or "'Lumpy" to save time, space and
confusion.

8.4. Experiments with the Cage System

Seven separate sets of experiments, labeled C-1 to C-7, were run using the
Elint application on Cage. The objectives of the first two sets of experiments
were to compare Cage with Poligon, and to evaluate the efficiency and effi-
cacy of the blackboard model for parallel execution. The third experiment
compared different process granularity within Cage. The last four experi-
ments were attempts to improve the performance of C-3 with different re-
source allocation schemes, more available processors, and a more efficientand accurate underlying simulator.

Application

Cage

Olisp

CARE
Figure S.5- System Structure.

Cage is simulated on CARE as described in Section 6. In addition, Cage
uses Q1isp [Gabriel 841, a queue-based multi-processing Lisp, which pro-
vides parallel evaluation of Let expressions and Lambda closures (see Fig-
ure 8.5 . Each processor in the simulation is a multi-process machine-



Processes are assigned to available processors by a n:mple, non-preemptive

round-robin scheme.

8.4.1. Experiment C-1: Basic Speed-up

8.4.1.1. Description

Experiment C-1 simply measures the speed-up attainable for a varying
numbers of processors. For this experiment the scheduler started many
knowledge source executions in parallel, waiting until they were done be-
fore selecting another set to run in parallel. Using a mixed data set with
clusters, splits, inconsistencies, and id errors (the "'Lumpy" data set) this
experiment exercised all the problem solving capabilities in the Elint appli-
cation. Experiment C-1 was run serially on one processor and on multipro-
cessors ranging from 2 to 16 processors. By comparing the time required to
run the data set on one processor with the time required to run with the
multiprocessors, a measure of speed-up was obtained. This is the simplis-
tic speed-up measurement described in Section 8.2.

8.4.1.2. Purpose

The main purpose of this first experiment is to get a base-line speed-up
measurement for a simple concurrency configuration. The concurrency op-
tions used were concurrent knowiedge source execution with synchro-
nization control. This measurement can be used as a basis for comparing
the performance of the system using more complex concurrency configu-
rations.

8.4.1.3. Results

The results of this first experiment are shown in Table 8-1 and Figure 8.6.

Processors j Speed-up at 80 ms
Samling Interval Sampling interv a

iI2 5
40.9 1.

LI "187

8 4 .4 1 . 1.96

16 - 2.03
Table- i The res..-- " L- ".nerm C



.4 8 -

*1

Processors

Figure 8.6. zSpeed-up derived inz Experiment C-1.

8.4.1.4. Interpretation

The basic speed-up began to level off with 4 processors and reached a factor
of 2 w.=ith 8 processors. To explain why only a factor of two speed-up was
achieved, we need to look at the control cy-cle of a serial case- In the serial
case (see Fig-ure 8.7= the scheduler selects one knowledge source to execute

from : amn l h nwege sources applicable at that time-

hagu-re 8& 7. Basic Control Cycle for Seri4 &eaguion-

In Experiment C-1 all the pending knowledge sources are executed in par-
allel, as seen in Figuare 8.8.

Fcievd e ne.e Cto eto i thSecria l Control an Peria! 4ase n sowe
Sources.

Although tnt knowlege. urces were run n parallel -Amdah s im
limits the speea-up to 4zest serial component, in this case the sched-
uler plus the longest knc' -I,e source. When all component parts of the
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execution were individua!ly tired, it was found that slightly less than halt
of Lhe total execution cyce time was being spent in the serial, synchroniz-
ing scheduler.

Experiment C-1 demonstrates that when knowledge source invocation is
synchronized, speed-up gains are limited by the combined grain size uf the
scheduler and the largest knowledge source, no matter how many knowl-
edge sources are run in paiallel. It should be noted, however, that the grain
size of the knowledge sources, as well as that of the scheduler, is very appli-
cation dependent. In the following experiment knowledge sources were exe-
cuted in parallel without synchronization, but knowledge sources were still
invoked by a central scheduler.

8.4.2. Experiment C-2: Speed-up Measurement using a Smoth Data
Set

8.4.2.1. Descriptivn

The second experiment also measured speed-up, but in a manner that was
felt to be more fair than the basic speed-up experiment, as explained i Sec-
tion 8.2. Experiment C-2 was run with 1, 4, and 8 processors. in ExDeri-
ment C-2 the knowledge ources were executed without synchronization,
reducing the time spent waiting within the scheduler. As each knowledge
source completed, the scheduler immediately 'nvoked successor knowledge
source- - thout waiting for any other knowledge sources to renish.

8.4.2.2. Purpose

The purpose of this experiment was to see if eliminating synchronization
resulLs in improved speed-up. Experiment C-2 also provides standardized
measurements of speed-up and throughput to compare with results from
Poligon, as was nentioned in t' -e Introduction. This and subsequ,-nt exper-
iments used the ,at" data set.

8.4.2.3. Results

Processors Sampling Interval ri] Speed-up_

1 700 1
: 4 225 3.11

8 180 3.89
Table 8-2. The results of Experiment C-2.
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Figure 8.9. Resuh of Experiment C-2.

8.4.2.4. Interpretation

The Cag implementation of Elint has six different knowledge sources.
During run-time many copies of the knowledge sources can be running
concurrently. Theoretically, if the pipelines formed between the levels on
the blackboard are well-balanced, no ove.-head for process creation or pro-
cess switching is incurred, and the scheduler takes zero time (all cf which
are impossible), a spe-d-up of I + P(#KSs) should be possible with knowl-
edge source concurrency, where P is the number of pipes and #KSs is the
number of knowledge sources in each pipeline. The Fat data set allows the
creation of four pipes, so the maximum speed-up that is theoretically possi-
ble in this case is 25x.

KS I-*-

[ 'KS KS Control -- KS ,

Cnr°o KS-Control KS----- Control KS '{ontrol I'

KS onro KS iControl KS

Figure 8.10. Logical View of Unsynchronized Knowledge Source
Invocation.

The speed-up obtained by running knowledge sources concurrently without
synchroniz, ng was slightly less than 4. This is almost double the speed-up
obtained with synchronization. though somt of this difference will have
been caused by the smoother data set used. The time spent in the scheduler
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was reduced by almost half of that in Experiment C-1. However, it should
be noted that the central scheduler is still a bottleneck. (See Figure 8.10)
Given the architecture of blackboard systems, the time spent in the sched-
uler can be reduced, but not eliminated, without a major shift in the way we
view blackboard systems. Poligon is one such shift.

One important result of Experiment C-2 was to confirm the ease with which
different concurrency options (see Section 4.2) could be used in Cage. Once
the Elint application was running with parallel knowledge sources and
synchronization, only one minor change to one rule was required to make it
execute parallel knowledge sources without synchronization correctly. No
change to Cage itself is required when changing the concurrency specifica-
tions.

8.4.3. Experiment C-3: Asynchronous Rules

8.4.3.1. Description

In Experiment C-2 all possible concurrency at the knowledge source level
was exploited. Experiment C-3 attempted to increase the speed-up by ex-
ploiting parallelism at a finer granularity. We hoped to gain an increase in
the overall speed-up for each knowledge source by executing the rules of
Lach knowledge soaice in parallel. There are several options in Cage for
executing rules in parallel and we selected those that we expected to yield
the most speed-up. The rules were executed with both condition and action
parts running concurrently and without synchronizing between the condi-
tion and action parts. Otherwise the experimental variables of Experiment
C-3 are identical to those of Experiment C-2 - the same data set, sampling
intervals, and numLer of processors.

8.4.3.2. Purpose

The purpose of Experiment C-3 was to measure speed-up with process
granu nity at the level of rules.

&,, ?.3. Results

Speed-up over
Processors Experiment C-2 Total Speed-up

11i

4 -6% 2.92

8 5.8% 4.12

16 n/a 5.6
Table 8-3. The results of Experiment C-3.
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Figure 8. 11. Experiment C-3.
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Figure 8.12. Experiments C-2 and C-3.

8.4.3-4. Interpretation

The results of Experiment C-3 were disappointing. For 8 processors only a
5.5% speed-up over Experiment C-2 was attained, for a toal speed-up of
4.12. For 4 processors there was no speed-up at all over Experiment C-2.
The overhead of spawning processes offset any gains frm more paral-
lelism.

There are several reasons for the small improvement in speed-up. In the
Cage implementation of Elint, there are an average of 3.5 rules per knowl-
edge source. Thus the maximum speed-up possible in Experiment C-3 is
limited to 3.5 of the time spet executing knowledge sources in Experiment

3-273



C-2. A detailed time trace revealed that in Experiment C-2 only 26% of the
execution time of a knowledge source was expended on actually running
the rules. A factor of 3.5 speed-up of only 26% of the total execution time,
can result in at most a total gain of 7.4% over the knowledge source execu-
tion time.

Number of processors 4 8

Change in speed-up 6% 5.5%
from C-2 to C-3 -6% _5.5%

Table 8-4. The change in speed-tip of the Experiment C-3 results over
those of Experiment C-2.

These results are all for 8 processors. For 4 processors the gain was
negated by the overhead cost of process spawning and resource allocation.
The cost of spawning a rule v as approximately the same as that for spawn-
ing a knowledge source.

As a result of these disappointing results, we ran Experiment C-3 on a 16
processor system in hopes of alleviating the congestion on the smaller
grids. This resulted in slightly better results, a total speed-up of 5.6. This
extra speed-up is due to the greater availability of free processors to handle
the greater number of processes with rule level granularity.

8.4.4. Where Time is Being Spent in Cage

Throughout the Cage experiments with Elint, we had been troubled that the
throughput Cage could achieve was low relative to Poligon. The best sam-
pling intervals for Cage up to this point were around 120ms, while Poligon
showed best sampling intervals in the order of a few milliseconds. In this
section we explore the causes for the poor throughput.

8.4.4.1. Cage time Measurements

Ouring the experiments all the component parts of Cage were timed. In
ddition, timings for various parts of Qlisp were also taken. Figure 8.13

shows the average times taken for the basic components of the Cage system
to process one data point in one time interval.

As expected, most of the time was being spent setting-up and executing
knowledge sources. Table 8-5 shows a breakdown of the time spent within a
knowledge source. The times are averages for an entire simulation of the
.'Fat" data set, with 16 processors for Experiment C-3.
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Figurc 8.13. Average System Usage per Input Data Point.

Knowledge Source Average [ms] Hiqh [ms] Low [ms]

Wait and ltart-up time 2.48 71.84 0.45
Instantiation 0.62 8.94 0.12
Definitions 27.52 184.92 0.90

Creation 17.56 123.90 0.95
Node Create 1.97 2.97 1.06
Match existing nodes 2.29 7.96 0.16
QLisp 15.23 120.67 0.95

Slot Reads 0.97 11.37 0.06
Rule wait and start-up 4.39 79.58 0.51
Rule execution 3.22 82.88 0.001

Total KS Execution time 28.45 186.09 1.19
Table 8-5. Time distribution for Typical Knowledge Source Execu-

tion'.

8.4.4.2. Time Utilization

8.4.5. Experiment C-4: Process Allocation

While the averages in the table in Table 8-5 are interesting, pointing out ob-
vious places that need to bc remedied, they do not tell the entX e story. The
first trace files showed timings that were ,ery spiky. For example, while
the average time for a knowledge source instantiation is 0.62ms, there were
times when instantiation took as long as 8.94ms and other times when it
only took 0.12ms. An initial explanation was that the spikes wa.re caused by

1The lowest time for rule execution was too short to regktr accurately on Care's clock
which has an error margin of 30 us.
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blocked and descheduled processes.' This is an indication of problems in
resource allocation.

If the spikiness is due to competition between processes for processors, then
we should see an increase in speed-up and a decrease in the spikiness by
increasing the number of processors available to run the processes. An
earlier C-3 experiment did show a significant improvement in speed-up be-
tween 8 to 16 processors and a reduction in spikiness. To prevent processes
from being descheduled when they block, a variation on Experiment C-3
was run. Certain processes were pre-allocated to specific processors which
were made unavailable for other processes; that is, some processors be-
came special purpose processors. The pre-allocated processes were the in-
put handler, the node creation/match handler, and the scheduler - all of
which are large and used often. This experiment was run only on a 16-pro-
cessor system, the minimum amount of hardware deemed necessary for
this configuration.

The results of this experiment were not conclusive.

Number of processors 16

Speed-up for C-3 5.6

Speed-up with allocation 5.7

Increase 3%

Table 8-6. Performance improvement over Experiment C-3 by spe-
cialized process allocation.

The increase in speed-up of 3% (see Table 8-6) falls within the margin of er-
ror for these experiments and is not significant. However, while speed-up
xas not significant there was a reduction in the spikiniess observed in the
traces. The highs in Table 8-5 were reduced in every case, with an average
decrease of 5.4ms, or 8%. However, the queue lengths for knowledge
sources and node creation/match increased, indicating that (1) insufficient
numbers of processors were available for the knowledge sources because of
the three pre-allocated processors and (2) the node creationimatch handler
probably needed two or more processors to handle its load.

8.4.6. Experiment C-5: Process Allocation

A second experiment involving specialized processor allocation was more
successful. In this case only one processor, the input-handler, was used to
execute the entire input procedure. Previously the creation of new input

1Qlizp will deschedule a blocked process by placing the blocked process on the local
processor queue and running the next process on that queue if there are other processes
wait;;- on that queue. The blocked process must then wait for the new process to finish
before the blocked process can resume.
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nodes (objE ,Ls on the observation level), one for each input data item, had
been haiid.u,, by a separate creation handler. By eliminating the cost of
spawnin-1 CYe separate creation process, and with it the possibility of
blocking ti input process while waiting for the creation to complete, the
input nod- .reation time was decreased by 59%. Also, spikiness in the
creatic- imitasurement almost disappeared.

Ex- e: :-nent Average High Low

Ir, u , r.'.de creation on 15.39 91.54 5.05
differert processor [C-3]

Inpu, n:,:.de creation on 4.87 6.78 4.23
inpuc ?,. cessor

Tabk, i-7. Results of Experiment C-5, variation on Experiment C-3.

Although tui:.ng the application by pre-allocating some processors for spe-
cial purpose€ .IOes gain some speed-up, an easier solution may be to use
more processor7. The last two experiments test this hypothesis by using an
additional 16 p7mcessors, 32 in all.

8.4.7. Experiment C-6: Multiple Node Creators

Experiment m s % over Exp C-5
Experiment 5
Single creation processor 40 n/a

Experiment 6
Multiple cre1t; 1i processors 31 22%

Experiment 7
Local creation 25 37%

Table 8.8. Throughput Results of Experiments C-5, C-6 and C- 7.

In this and the final experiment the number of available processors was in-
creased to determine if an insufficient number of processors was limiting
the throughput. in this experiment the number of node creation process
handlers was also increased from 1 to 4 in an attempt to break-up the rode
creation bottleneck. A major disadvantage of using more than one proces-
sor for creation is the possibility of two processors creating the s-me node at
the same time. In order to bypass this p. blem, we dedicatod a processor
for each level of the blackboard to create its nodes. By tying the creation
processes to individual blackboard levels, we avoided the problem of dupli-
cate nodes. In preliminary runs of experiment C-6 we found that the addi-
tion of 16 processors, without specialized allocation of those processors, re-
sulted in a negligible improvement in throughput. However, the allocation
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of some of those new processors specifically for node creation handling re-
sulted in a 22% irprovement in throughput over the best results of Experi-
ment C-5. as shown in Table 8-8.

8.4.8. Experiment C-7: Local Node Creation

In the final experiment we tried to eliminate the node creation bottleneck
completely by doing all creation on the local processor, instead of on one or
more specially allocated processors. To prevent the creation of duplicate
nodes, the blackboard level node was locked by the knowledge source or the
rule requesting the creation, until either a new node was created or an
existing one was found. The use of local creation (on the same processor as
the knowledge source or the rule requesting the node creation) improved
throughput to 25ms, or a 37% improvement over Experiment C-5 (see Table
8-8).

8.4.9. Summary Discussion

There are two important measurements that can be considered the cumu-
lative results of the Cage experiments. These are the maximum relative
speed-up - comparing uniprocessor runs with multiprocessor runs, and
the minimum sampling interval - measuring the total throughput.

8.4.9.1. Speed-up

Speed-up is a relative measure, comparing the uniprocessor speed with
multiprocessor speed, using the methodology discussed in Section 8. The
maximum speed-up achieved by Cage was 5.9 using a 32 processor grid
with knowledge sources and rules running concurrently without syn-
chronization. The factors limiting speed-up to 5.9 include:

* Existence of central scheduler.

* Serial definition section of knowledge sources.

o Inefficient allocation of processes to processors.

" The high overhead of closures within knowildge sources which
caused the copying of large amounts of local data combined with slow
communication between the processors and memories.

Serial Definitions: In Cage each knowledge source consists of a set of local
bindings, which we call definition.s, and a set of condition-action rules
which can reference the local definitions. The definitions include refer-
ences to blackboard nodes, calculations with values retrieved from those
nodes, and the creation of new nodes. The definitions are the only part of
the knowledge sources executed serially during the Cage experiments. By
executing the definitions for each knowledge source in parallel we could
th.oretically expect as much as a 40% increase in speed-up because there
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are an average of 11.5 definitions per knowledge source and definitions ac-
count for about 89% of the total knowledge source cost.

Executing the definitions in parallel is an option in Cage. The speed of the
definitions would then be limited by the longest definition. A side-effect of a
definition can be the creation of a new node. From Table 8-5 we can see that
creation of a new node or matching for an existing node costs 63% of the to-
tal definition time. However, these definitions, as specified by the Elint ap-
plication, are likely to have a number of implicit points of serialization be-
cause of data dependencies and do not all make equal computational de-
mands. Thus the achievable improvement, in practice would be much less
than the 63% quoted above.

Resource Allocation: The second way to gain speed-up is to improve the re-
source allocation. However, in most Al programs it is not possible to pre-
specify optimal allocations because of the dynamic nature of the programs.
Given an application in Cage, a good resource allocation scheme can be
evolved through experimentation, as was seen in Experiments C-4 , C-5,
and C-6.

For Experiments C-1 to C-3 the identical allocation scheme was used re-
gardless of the number of processors used, statically assigning some pro-
cesses (input handler, for example) to specific processors but allowing them
to be used by other processes. For example, in Experiment C-5 data input
time was reduced from 15ms to 6.5ms with hand crafted processor alloca-
tions. Likewise, in Experiment C-6, which assigned separate processors to
each blackboard level for node creation, throughput improved by 22% over
Experiment C-5, which used a single creation process. This general
scheme could be used for specific applications and specific numbers of pro-
cessors.

Qlisp: The final factor limiting speed-up for Cage is the high overhead
costs rf the use of the Qlisp implementation, particularly Qiisp process clo-
sures. A Qlisp process closure is expensive for Cage, because Cage re-
quires the copying of the context (the local definitions of a knowledge
source) from the spawning processor to the executing processor. This over-
head accounts for approximately 213 of the total node creation time.

8.4.9.2. Throughput

Throughput is an absolute measure, measu.ring the rate at which input
data can be processed, or the sampling interval, as discussed in Section 7.
When the throughput that Cage can achieve is compared with that of
Poligon, it is relatively low. The minimum sampling interval for Cage is
about 10 times that of Poligon for the same number of processors. Cage was
limited to a best sampling interval of about 25ms.

The general rcasons that limit speed-up also apply to the relatively poor
throughput. First, a more efficient use of Qlisp, eliminating one unneces-
sary call, led to a 22% reduction in the sampling interval. Second, the latest
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test runs show a reduction in the sampling interval of 43% with the use of
the latest CARE simulator. Third, as seen in Experiment C-6, the sam-
pling interval was reduced to 31ms with 32 processors with some simple re-
source allocation optimization.

To summarize, Cage can execute multiple sets of rules, in the form of
knowledge sources, concurrently. If the rule parallelism within each
knowledge source could provide a certain speed-up, and if many knowledge
sources could be run concurrently without getting in each other's way, it
was hoped that we would get a multiplicative speed-up. The extra paral-
lelism coming from working on many parts of the blackboard, in other
words, by solving sub-problems in parallel- It was found, however, that the
use of a central scheduler to determine which knowledge sources to run in
parallel drastically limits speed-up, no matter how many knowledge
sources are executed in parallel. This is primarily a function of the granu-
larity of the serial components. Nonetheless, a trade-off must be made be-
tween the high cost of process creation and switching, and granularity. We
were able to get a speed-up factor of 4 by running knowledge sources in par-
allel. However, we were not able to get any significant speed-up by running
the rules within each knowledge source in parallel, due in part to: () the
large chunk of serial definitions in each knowledge source; (2) the fact that
there is only an average of45 rules in each knowledge source, and (3) the
high overhead cost of process creation and switching. With more efficient
definitions, additional rules, and faster process switching we may be able to
get better relative speed-up and a higher throughput.

8.5. Experiments with the Poligon s-stem

The following sections detail a number of experiments performed on the
Poligon system using the Elint application. The purpose of these experi-
ments was as follows:

*To measure the benefits of pipeline and data parallelism in the appli-
cation.

* To determine the ailiv of the system t exploit rule parallelism.

* To estimate the costs of running the system without system opti-
mizations, which reduce the ability of the programmer to debug ap-
plications.

* To determi-e whether some changes to the timing of the system were
valid.

' To measure the costs of many of the primiti-ve operations in Poligon
so as to be able to estimate the granularity of a Poligon program.
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8.5.1. Experiment P-i: Thin Data Set

8.5.1.1. Description

This experiment simply used the experimental method elucidated in Sec-
tion 8.2. Nothing special was done to the system in order to perform it. The
data set was run on 1 2, 4, 8, 16, 32, 64 and 128 processor systems. i order
to determine each experimental data point, the input data sampling inter-
val was adjusted until the latencies for the reports generated were non-in-
creasing.

8.5.1.2. Purpose

Processors Sampling Interval fms] Speed-uo

i 9 1.0

2 5.5 1.6
! A4.5 2.0

8 4.0 2.3

6 3.1 2.9
32 2.6 3-5

64 2.5 3.6

.128 2.5 3.6
Table 8-8. The results of Experiment P-1.

The purpose of this experiment was threefold. First, it was to measure the
performance of the system by deriving both speed-up and minimum sam-
pling interval measures- Second, the experiment was intended to provide a
base-line for comparison with subsequent experiments. Third it was in-
tended, to evaluate the speed-up provided by the Elint application as a result
of pipeline parallelism. This latter can be done using this data set because
the data set results in the creation of §nly one pipe in the solution, unlike
subsequent experiments using the Fat data set.

8.5.1.3. Results

The results derived from this experiment are shown in Table 8-8 and are
also shown in Figure 8.14.
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Figure 8.14. The results of Exoeriment P- I.

Minimum sampling interval: 2.5ms -,.ith 64 processors.

8.5.1.4. Interpretation

r

(Observation)--, esitteruCluster

A simple pipe gives a maximum speed-up of
Three for a perectly balanced pipe.

; Oservation VE 'U" mittor

Concurrent execution of rules allows speed-up
greater than the number of stages in the pipe.

figure 8- i. Ride Paraltelism in Pbligon.

From this experiment we can see that the Poligon System has produced a
speed-up of 3.6 as a result of pipeline parallelism. This is a fairly encour-
aging result, since it shows that a certain amount of parallelism is being
achieved due to parallel rule execution. We can conclude this because the
pipes formed by the Elint application have only three stages resulting in a
maximum speed-up of three for a simple pipe (see Figure 8.15).
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8.5.2. Experiment P-2: Fat Data Set

8.5.2.1. Description

This experiment was exactly the same as Ex&* -tment P-1, except for the
data set used, which was the ;Fat data set.

8.5.2.2. Purpose

The purpose of this experiment was twofold. Fir- .t was to provide a base-
line by which the Poligon system's performance c ul be compared with the
implementations of the Elint application using zhe Lamina1 and Cage sys-
tems. Second, it was intended to give a measure )If the ability of the Poligon
system to exploit parallelism in the data. This could not be determined
from the previous experiment because the data set enly allowed the creation
of a single pipe during the execution of the program. in the Fat data set
there were multiple emitters and clusters, which caused, quite in-
tentionally, the creation of multiple pipes during th? solution of the prob-
lem.

in the Fat data set one would expect four pipes to be created- However. This
does not mean that one would necessarily expect the speed-up to be- four
times greater than that de!ivered by a data set only one quarter as &Ide
ithe Thin data set), although one might hope that it wuild be.

8.5.2.3. Results

Processors Sampling interval [ms}[ Speed-up
4 131 fi

28 2 :8 1 1.7

4 15 2.'

8 '6 1Q

.6 10 3..

32 4 7.8

64 2.9 0.

128 2.7 115
TOe 8- Tne rsults, of Ex,ranent P-2.

The results derived from this experiment are shown in Table 8-9 and ir
Figu-re 8.16.

*For a more infrmation on tnese exer,1ment-s. p-lease s-ee -Dda !:
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Figure 8.16. The results of Experiment P-2.

Minimum sampling interval: 2.7ms with 128 processors.

8.5.2.4. Interpretation

The minimum sampling interval shown above is a measure of the ap-
plication's ability to process data. This figure is compared to the best sam-
pling intervals of the implementations of Elint using the Cage and Lamina
systems in Table 8-10.

There are a number of reasons why the Poligon implementation of the Elint
system was not as fast as that using Lamina. These fall into two main
groups, those due to the encoding of the application and those due to the
framework itself.

System Best Sampling Interval [ms]

Lamina 0.5

Poligon 2.7

Cage 25
Table 8-10. A comparison of the peak throughputs of the Lamina,

Poligon and Cage implementations of the Elint application.

Application: The Elint application in Poligon was intentionally not timed.
That is to say, the application was an attempt to make an implementation of
the original, serial implementation of Elint done using AGE. As a result of
this, the application was coarser grained than the Lamina implementation
(for example Lamina used seven-stage pipes). It was also not redesigned so
as to improve its efficiency, whereas the Lamina implementation went
through a number of different designs, so as to improve its efficiency and
the balance of its pipes. Similarly, the Lamina implementation of Elint
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used a carefully crafted resource allocation strategy, while Poligon used a
simple, random allocation strategy. Although effectively the only tuning
done to the Poligon implementation of Elint was the addition of type declara-
tions, this should not be taken as an indication that this is the sort of perfor-
mance that one might expect from an application written by a naive user.
The implementor of the application was, in fact, also the implementor of
the Poligon system.

Framework: It is clear that there are significant costs associated with
maintaining the abstraction model and mechanisms supported by Poligon.
This has a substantial effect upon the minimum grain size that the system
is able tG achieve. The granularity of the Poligon system will be discussed
below in greater detail. In short, the costs incurred by the Poligon frame-
work over those incurred by the Lamina implementation of Elint are: (1)
the cost of rule invocation, (2) the cost of reading slots (due to the complex
behavior of slots) and the cost of writing slots (due to the smart-slot proto-
col), and (3) the costs of communication.

The second conclusion that can be drawn from this experiment concerns
Poligon's ability to exploit data parallelism. The minimum sampling in-
terval for this experiment was not statistically different from that in Exper-
iment P-1 (see Table 8-11).

We can conclude, therefore, that almost linear speed-up results from in-
creasing the width of the input data stream.

Experiment Data Set Best Sampling
Interval [ms]

P-1 Thin 2.5

P-2 Fat 2.7
Table 8-11. The peak throughput of the Poligon Elint application for

different data sets.

8.5.3. Experiment P-3: Multiple Rules

8.5.3.1. Description

This experiment was performed using the Thin data set. All data points
were measured on a 128 processor network. The Poligon system was modi-
fied so that whenever a rule was triggered to fire it would actually fire N
rules, where N was a user definable parameter. Of these rules all but one
were specialized so that they performed all of their operations except for ex-
ecuting their action parts. This can be done because of the guaranteed side-
effect free semantics of rule condition parts.
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8.5.3.2. Purpose

The reason for performing this experiment was to try to find some meab' :re
of the ability of the Poligon system to exploit "Rule" parallelism, that is,
achieve speed-up through the concurrent activation of rules. Unfortu-
nately, the Elint application was very sparse in knowledge and it is very
hard to determine whether a system with different amounts of knowledge is
solving qualitatively the same problem, so adding more knowledge would
not give a good measure. It was decided, therefore, to ir- -ke dummy rules
to simulate, as closely as possible, the costs of rule invocat on without actu-
ally executing the action parts of the rules. This guaranteL, that the system
still performs as it should. If the Pcligon system is able to exploit rule par-
allelism, then one would expect that the minimum input data 3ampiing in-
terval would remain constant, irrespective of the number of dummy rules
fired. The slow-down experienced by the application should, therefore, give
a rough measure of the usefulness of Poligon's architecture to exploit mul-
tiple, simultaneous rule activations.

8.5.3.3. Results

The results of Experiment P-3 are shown in Table 8-12 and Figure 8.17.

2.5 Linear Slow-down

2.o-'

" 1.5

0

.2 1.0

C.5

0.0' , . * I

0 1 2 3 4

Number of Rules
Figure 8.17. The slow-down due to invoking dummy rules in the Elint
application. Values below the "Linear Slow-down" line indicate the ex-

ploitation of useful parallelism.
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Number of rules fired Samplng Slow-down
(including non-dummy rule) Interval [msl

1 2.5 1

2 4.0 1.6

3 5.0 2.0

14 5.5 2.2
Table 8-12. The results of Experiment P-3.

8.5.3.4. Interpretation

First, it should be noted that this experiment was performed on a fixed pro-

cessor network size to eliminate one more variable factor. However, as the
number of dummy rules activated increases, one would expect that the re-
sources would become more scarce, reducing the performance of the sys-
tem. This should be kept in mind when considering these results.

If one assumes that the amount of work performed by a dummy rule activa-
tion is approximately equivalent to the amount of work done by a non-
dummy rule, then we can conclude that the system slowed down by only a
factor of 2.2, while doing four times as much work. This is by no means a
perfect result, but it shows that the Poligon system can scale to cope with a
knowledge base at least four times as large as that used by the Elint system
and not clog up completely. In this case "Large" is taken to mean the aver-
age number of applicable rules for any given set of slot updates. Untrig-
gered rules cost nothing in terms of rule invocation overhead.

The sloing down of the system was due to the following:

* The serial execution of the code which invokes rules.

* Resource contention.

* Communication overhead.

8.5.4. Experiment P4: Make-Instance

8.5.4.1. Description

In this experiment the 64 processor data point of Experiment P-2 was rerun
with the Poligon system modified so as to charge for the time taken during
the creation of Poligon nodes.

8.5.4.2. Purpose

During all of the other experiments reported here the creation of the ctual
Lisp machine Flavors instance, which represents a Poligon node, ik taken
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to talre zero time. The reason for this is that Poligon nodes are imple-
meted as Flavors instances and each of their ,lots Are also Fiauors in-
stances. In a "real" system one could, with suitable compilation, imple-
ment these nodes simply as arrays. Even when the system does not charge
for this instuntiation the simulation still charges for the initiu l ization of the
node, which does not happen at Flavors instance creation ti le, since this
occurs after the system's call to Make-Instance. In a real system, there-
f re, the creation of a node could be accomplished simply by allocating the
memory and BLTingl a template into it. This ceuld be done in a time which
would be very small relative to the other times for operations in the system.
Thus, it was decided not to charge for this instantiation in the simulation,
b cause Flavors instance creation is very expensive due to its init.alization
protccol.

This experiment, therefore, was a reality check to determine how much the
experimental results were being affected by not charing for the creation of
instances.

8.5.4.3. Results

Minimum sampling interval achieved: 3.4ms.

8.5.4.4. Interpretation

When the Elint system charged for the instantiation of Flavors instances
the fastest sampling interval that the system could handle slowed dovwn by
some seventeen percent. From this one can conclude boLh that the experi-
ments were not vastly affected by not charging for instance creation and
that in a "real" system one would want to design the system so as to avoid
this extra cost which, although not vast, is still significant.

8.5.5. Experiment P-5: Optimization

8.5.5.1 Description

Thz. experiment was performed Ly rerunning the 64 processor data point
taken for the experiment on the Fat data set. But, before this wa, done the
PoI.tion systeir '.nd the application were recompiled so as to be running in
Poligon's 'development" inode, with all of the Poligon system's opti-
mizations turned off nd source c.,rie debugging switched on.

5.5.2. Prw-pose

This experiment was des:imed -. show the relative performances of appli-
cations -,nning 1j; ir',&' 4eve'opirent mode and in Poligon's
"production" m n;e. A Oat.. oef .is nature would allow one to make an
estimate of the b-.:t (.a;c pi-?brmance of one's sybtem whiie still in the de-
velopment phase.

13Lr instructions are fast Block Transfer instrictions.
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8.5.5.3. Results

Minimum sampling interval achieved: 9.Oms.

8.5.5.4. Interpretation

This experiment showed that the benefit in application performance of the
optimizations provided by Poligon over the development, unoptimized case
is about a factor of three.

8.5.6. Experhnent P-6: Granularity

8.5.6.1. Description

This series of expc-:m.3nts was performed on the Poligon system without it
running under the CARE simulator. Experiments were performed which
timed a large number of the following:

" Slot reads.

" Slot writes.

° Slot writes, including the execution of rule invocation code up to but
excluding the actual triggering of the rule.

" Slot writes, including the execution of rule invocation code including
the creation of che rule invocation context, but excluding the execu-
tion of the WhenI part of the rules

" Slot writes, which caused the triggering and evaluation of the When
parts of rules.

Each component was run by finding a useful set of arguments for the rele-
vant calls. It should be noted that this experiment ignored the cost of com-
munication. This was taken as a fixed characteristic of the system.

8.5.6.2. Propose

These experiments were designed to measure the cost of thb fundamental
operations in the Poligon system. This should allow +he development of
empirically derived formulae, which would allow the estimation of the
computational grain size of a Poligon program.

Rule activation in Poligon goes through a number of stages, each of which
will h-4ve associated costs. First there is the slot update, which causes the
rule activation. The cost of slot updates will vary according to whether
there were any attached rules or not. Second there is the context creation.
This is the point at which the system creates the environment in which the

IThe When pa, t of a rule is a sort of lo.ily evaluated pre-precondition.
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rule will execute. It includes the copying of a template for the state infor-
mation used during rule activation. Finally there is the evaluation of the
When part o" the rule. This is a piece of user code, which can clearly take
an arbitrary amount of time. For this experiment, therefore, a"representaLive" When part was taken from the Elint application.

The minutiae of these experiments will not be given here. Instead, the re-
sults will be shown in a manner which allows the reader to see the granu-
larity of the different measured c'mponents of the Poligon framework,

ithout having to wade throug h a full explanation of the experiments
themselves. As a -esult of these expe riments, empirically derived formulae
will be shown, which denote either tlkh, real performance or a "normal
case" measure taken from the Elint syst .'m

8.5.6.3. Resu!i. and Interpretation

The time taken to read a slot was found to be indepondent of the length of
the slot's value list and linearly related to the number of slots read. Cor-
recting for the processoi speed for a CARE machine we have the formula
for the calculation of the cost of slot reads in Poligon.

1.36 - 0.94n microseconds, where n = the number of slots
being read.

The cost shown for slot reads is v-erv low. Of course, this only gives ;. mea-
sure of the cost of local reads in Poligon and the measurement does not ac-
count for the cost of communication at all. However, because of the nature
of blackboard systems, where rules tend to deal with data locally available
and then pass their conclusions On to other nodes, most read operations
that happen are, in fact, local. Making this operation fast is one of the
main causes for the difference in performance between Poligon and Cage.
In Cage all slot accesses have equal cost, but that cost is much higher than
P oiigon's local slot accesses because of having to make a read to shared
..:emorv.

Lre slot read operations, the cost of writing slots is linearly related to the
number of slots being written. The formula for the cost of non-rule invok-
ing slot updates is as follows, correcting for the speed of the processor as
above.

18 + 53.7n microseconds, where n is the number of slot
updates.

Because the user can supply arbitrarily complex code, which is executed at
slot update time, it should be noted that this figure only reveals the lower
bound for the cost of slot updates.

An expression was derived, by experiment, for the cost of rule invocation in
Poligon. Some of the values in the expression are bound to be case depen-
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dent, but this expression should, nevertheless, be representative of the
normal behavior of the system.

The cost of rule invocation is, therefore, given by the sum of the costs of the

following operations:

* Slot writes for a slot with an attached rule.

" Creation of the rule activation context object.

" Copying of the definition template for the context object.

• Execution of a typical When part.

All but the first of these are application dependent characteristics. The re-
sults actually measured, therefore, are taken from a "representative" part
of the Elint application. Substituting in measured values for the categori s
above, we have the cost of rule invocation being:

128 + 160 + 370 + 400 = 1058 microseconds.

This expression should not be taken as a final figure describing the poten-
tial performance of the Poligon architecture, but rather a measure Gf the
performance that could be achiev 2d without a major rewrite of the system
and without spending a great deal of effort on the optimization of the sys-
tem. It should be easy to eliminate most of the time due to instance creation
and due to definition template copying in a production quality sysZ2n. With
sundry other optimizations a figure better than half of the one mnilisecond
quoted above should be readily deliverabie.

9. Discussion

In this paper we ,iscussed the relationship between the blackboard model,
its existi-,g seria. tmplemen-iations, and the degree to which the para!-
lelism intuitively ti.ought to be inherent in the blackboard problem solving
model is really pres,.nt.

Cage and Poligon, two implementations of the blackboard model designed t)
operate on two different parallel hardware architectures, were described,
both in terms of their stru .ure and ;.he motivation behino their design.

Our framework (or shell) development, application implementations oil
these frameworks, and initial performance experiments to date has taught
us that: (1) it is difficul, to write "ceal-time," data interpretation programs
in a multiprocessor envi, jnm(nt, a td (2) performance gains arc sens;n.Ove
to the ways in which applications ar fcrmulated and programned. In this
class of application, performance ;s al,:o sensitive to data charact ristics.

The "obvious" sour-es of parail..lism I., the blackboard model, such as the
concurrent processing of knowledge sources, do not provide much gain in
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speed-up if control remains centralized. On the other hand, decentralizing
the control, or removing the control entirely, creates a computational envi-
ronment in which it is very difficult to control the problem-solving behavior
and to obtain a reasonable solution to a problem. As granula -ity is de-
creased, to obtain more potential parallel components, the interdependence
among the computational units tends to increase, making it more difficult
to obtain a coherent solution and to achieve a performance gain at the same
time. We described some of the methods employed to overcome these diffi-
culties.

In the application class under investigation, much of the parallelism came
from from pipe-lining the blackboard hierarchy and from data parallelism;
both from the temporal data sequence and from multiple objects (aircraft,
for example). The Elint application was unfortunately knowledge poor, so
that we were unable to explore kuowledge parallelism extensively, except as
a by-product of data and pipeline parallelism and in the somewhat artificial
form described in Section 8.5.3. Elint has been implemented in both Cage
and Poligon, and a number of experiments have been performed. The ex-
periments were designed to measure and to compare performance by vary-
ing different parameters: process granularity, number of processors, sam-
pling interval, data arrival characteristics, and so on.

Cage can execute multiple sets of rules, in the form of knowledge sources,
concurre.itly. If the rule parallelism within each knowledge source can
provide a speed-up in the neighborhood cited by Gupta, and if many knowl-
edge qources can run concurrently without getting in each other's way, we
can hope to get a speed up in the tens. Extra parallelism comes from work-
ing on many parts of the blackboard, in other words, by solving many sub-
problems in parallel. Unfortunately, experiments to date have not yet
shown this (see Section 8.4).

It was found that the use of a central controller to determine which knowl-
edge sources to run in parallel drastically limits speed-up, no matter how
many knowledge sources are executed in parallel. Amdahl's limit and
synchronization come strongly into play. The implication for Cage is that
knowledge-source invocation should be distributed, without synchroniza-
tion. This will eliminate two major bottlenecks; a data-hot spot at the event
list, and waiting for the slowest process to finish during synchronization.
One solution to this is to distribute the blackboard, which is one of the main
characteristics of Poligon.

The performance of the Poligon system is limited by a different set of con-
straints. Alith(ugh a Poligon programmer can, in principle, pick any de-
sired size for the data grain size of the application's blackboard nodes, there
will be some optiniai grain size for a given application. If the blackboard
nodes are small, then tiere vvill be more of them and the rules in the sys-
tem will be more distributed. This should result in more potential paral-
lelism and more communication.
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Poligon tries to shield the user from the system cost associated with larger
da.ta grain sizes by allowing the concurrent execution of all the rules that
may be interested in a given blackboard change. However, because of the
non-trivial cost of rule invocation, and because resources are always scarce
in the real world, it may be better to commit to a larger grain size and avoid
the extra cost of communication and process management. Finding the op-
timum grain size for a program is still an unsolved problem. The devel-
opment of a system, which can take a specification of the user's program
requirements and compile it into the best grain size, is an important topic
for research as more multiprocessor systems become available and pro-
grammers strive for higher productivity.

It is clear that much more research is needed in this area before a combi-
nation of a computational and problem-solving model can be developed that
is easy to use, that produces valid solutions rpliably, and that can consis-
tently increase speed-up by a significant amount without undue pro-
grammer effort.

10. Conclusions

We have described the purpose of the Advanced Architectures project at
Stanford University. In particular we have discussed the Cage and Poligon
sub-projects. Cage and Poligon are two different types of concurrent black-

oard system.

The same application, called Elint, has been mounted on each of these
frameworks anJ experiments have been performed. The experiments, the
experimentvi method and the results have been enumerated and discussed.
From these experiments it has beer. shown that:

Cage: A peak speed-up of 5.7x was achieved for 16 processors, and im-
proved to 5.9;. for 32 processors. The throughput of the system was limited
by four main factors: an inherent s'rialization due to the centralized
scheduler, the unoptimized Cage system , the overheads due to the Qlisp
concurrent Lisp language, and the overheads due to using a simulator for a
distributed-memory multiprocessor as a simulator for a shared-memory
machine. The fastest input sampling interval achieved by Cage with min-
imal optimization and 32 processors was 25ms.

Poligon: A peak speed-up of 11.5A was achieved with a best input data sam-
pling interval of 2.7ms. Pipeline parallelism contributed about 3x of this.
The remaining speed-up v,- due to parallelism extracted from the data be-
ing processed. At least , the bounds of the experiments described,
near linear speed-up ha- I shown for increasing complexity of the input
data. It seems likely. ti._ r: ore that given more data the system would be
able to achieve better reA -. has been shown that as the knowledge base
size increases, the Pohg: I -cem should deliver significantly better than
linear slhw-down, given fici nt resorrces.
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Comparing the two systems, Poligon out performs Cage by approximately a
factor of 10. (Note that the speed-up of 5.9x for Cage and 11.5x for Poligon
are not comparable, since the measurements are relative measures within
the same framework between uniprocessor and multiprocessors. They in-
dicate different abilities to exploit parallelism.) This is no great surprise,
since the Poligon system takes a significantly more aggressive stance with
respect to performance.

It is not clear whether the speed-up factors we obtained wsuld apply to other
problems. As mentioned, throughout, the possible opportunities for con-
currency and granularity are very application dependent, and thus it is
very difficult to generalize from the results of one application. Nonetheless,
in both Cage and Poligon the speed-up for our application came from: (1)
data parallelism present in Elint, (2) pipelining of reasoning steps, (3) par-
allel matching for relevant rules, and (4) knowledge parallelism where
mor than one pxcze of knowledge was applicable for a given state. These
sources of parallelism are fairly general and can be exploited by most appli-
cations.

Writing a "real-time" applications for Cage and Poligon was by no mean-s
simple. Many problems arose regarding timing measures, data consis-
tencv and coherence, and test scenarios that would not have arisen in other
types of problem. Nonetheless- by attempting to solve a difficult problem, we
were able to develop techniques and methodologies that will be useful for
other applications in this class as well as in broader classes of problems.
Much of what we learned has become a part of the frameworks; others were
described in Section 4.4 for Cage and Section 5.2 for Poligon. '.- is our belief
that both architectures represent viable ways of constructing concurrent
blackboard systems.
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Abstract I
In this paper we present the results of building and running a knowledge-based signal
interpretation program on multi-processors. A serial, knowledge-based program to
interpret passive radar signals from multiple sites was re-designed and re-implemented on a
framework for concurrent problem solving. The primary objective for the use of multi-
processors was to gain performance improvement. A number of experiments were per-
formed to evaluate the performance gains under varying circumstances. Factors that moti-
vate and constrain problem solving in parallel in general, and real-time signal interpretation
in particular, are discussed.

1. Introducti n
A few of the results from an experiment in speeding up a signal understanding program
using a concurrent approach to problem solving are described in this paper. This
experiment is one of several experiments conducted within the Expert Systems on Multi-
processor Architectures Project of the Knowledge Systems Laboratory at Stanford
University [6].
The Architectures Project is conducting several experiments to understand the
computational characteristics of complex knowledge-based, or expert, systems in a parallel
computational environment. The primary goal of this experiment is to exploit what
appears, at first glance, to be features inherently parallel in blackboard systems [3]. A
simple blackboard architecture AGE [5) was modified into a system called Poligon [7], a
concurrent problem solving and programming environment. A signal understanding and
information fusion systems was built using Poligon.

ELINT (Electronic iNTelligence) is an application for interpreting pre-processed, passively
acquired radar emissions from aircraft was chosen. The ELNT application was a part of a
larger blackboard system called TRICERO, which interpreted and fused radar emissions
and voice data (COMLNT) for the purpose of situation assessment [8].

The ELINT application was rewritten for Poligon. Poligon runs on a hardware system
simulation environment called CARE [2]. CARE is written in Common Lisp and runs on
Texas Instrument Explorerm machines2 and the Common Lisp platforms. The CARE
simulated machine uses dynamic cut-through routing through the communication grid for
inter-processor communication. Message transit time is not predictable. As a
consequence, without the imposition of expensive network protocols (with the
corresponding serialization of execution), communication and the processing that is
triggered by it is intrinsically non-deterministic in the sense that two executions of the same
progiam on the same input data can result in different problem solutions depending on
different message arrival orders [I]. The challenge for ELINT on Poligon was to produce
consistent solutions with minimum control (serialization), which reduces parallelism and
performance. One of the objectives of the experiment was to determine if there is a trade-
off between knowledge and control in blackboard systems. The second objective was to
exploit different types of parallelism in expert systems, namely data parallelism, knowledge
parallelism, and inference parallelism. The third objective was to determine whether linear
speedup, with respect to number of processors, could be achieved.

I This paper was presented as an invited talk at the Twenty Third Conference on Signals, Systems and
Computers, Asilomar CA October 1989.
2 Explorer is a trade mark of Texas Instruments Corporation.
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In the following sections we describe the serial ELINT system, followed by the concurrent
ELINT system written in Poligon. We then describe our speed-up measurement method
and some experimental results.

2. The Serial ELINT Application
ELtINT was originally implemented in AGE [5], a software tool for developing blackboard
expert systems. Blackboard systems consist of three major components: (1) A global data
store, called the blackboard, which holds input data and intermediate results. The data on
the blackboard are hierarchically organized. (2) A collection of rules and procedures,
called knowledge sources, which derive the intermediate results. A knowledge source
operates on a particular portion of the blackboard, usually using data on one level of the
hierarchy as input, and producing results on another level. (3) The knowledge sources are
activated by a control module that dynamically determines the situation under which the
knowledge sources are to be applied. That is, the controller determines the line of reason-
ing, and the basic reasoning is opportunistic, that is, the most productive solution path is
chosen depending on the solution state at any given point in time. (See Figure 1 for an
example system.)
ELINT is a relatively simple, but non-trivial, application. The inputs to the ELINT system
,ire multiple, time-ordered streams of processed observations from multiple collection sites,
some of which may be mobile. ELINT's objective is to correlate, on the blackboard
(which emulates the situation board), a large number of input data into individual radar
emitters producing those emissions (Figure 1). The emitters are then aggregated into a
smaller number of clusters. A cluster is defined as a collection of emitters which are co-
located over time. That is, if emitters have the same location fixes, with some resolution,
for some period of time, then they are considered to form a cluster. Conceptually, a cluster
is a single platform, or two or more platforms that are co-located o% er time (for example, an
aircraft and its wingman). The system must split a cluster when the fixes of co-located
emitters diverge.

Blackboard Knowledge Sources

Clusters 9 :Evaluate Threat -- [C
SAnalyze Cluster-*---

Emitters t :r1 1 Analyze Emitter -  o

input Stream -
Figure . Serial ELINT in A;E

I, e determination of whether wu , ':-erved emissions are from the zame eij Mter, both for
intra- and inter-sites, is based on the eiCL'-.,_c char-acteristics of the emissions and on.
signature analysis. This determination may be in error, and the ELINT system must cope
with such an error.
I The primary output of the ELINT system is periodic status reports about the tracks and
activities of the clusters of emitters.

The dicferen, analyses. inference, and reporting activities are performed by the knowledge
sources. The basic reasoning strategy in ELINT is a data-driven accumulation of evidence
in dhe input data stream. to support the existence of emitters and their tracks. The existence
n4 a chist. : is inferred frcm the behavior of the emitters over time. Since data for an emitterI -30o



can be collected at different sites, the system must also determine whether input data from
multiple sites belong to the same emitter, that is, data fusions must be performed.

3. The Concurrent ELINT Application
As in the serial implementation, a concurrent version of ELINT must be able to deal with
cootinuous input data streams, and there is a need for real-time processing. However, it is
a soft real-time application, processing continuous input data as fast as possible. It is not a
hard real-time application and does n,,t guarantee any specific response time.

Some basic differences between the concurrent ELINT system mounted on Poligon and the
serial system described above is summarized below. The concurrent formulation of :LINT
is shown in Figure 2.

I vaueteI
Clusters

Messageassuig \

Emitters

Message asng,

Observations 0 O I IAna~yc Anayze Anayzej mitter
Emitter

I I I I2 I itI

Input Stream -------- --------- J ------- 
Figure 2. Concurrent ELINT in Poligon

There is no centralized control. This was motivated by a desire to remove any obvious
serial processing The elimination of a central control requires a new mechanism for acti-
vating the knowledge source modules. A knowledge source is activated as a daemon
when data associated with the knowledge source is changed on the blackboard. The as-
sociation between the knowledge sources (actually, rules in the knowledge source) and
the data (actually, properties of the objects on the blackboard) that trigger their
invocation is made at compile-time.

Wien centralized control is eliminated, it also eliminates all global synchrc.iization and
any mecharism for the focus of attention. This means that different parts of ttw program
will run at different speeds, and each part will have a different idea of how the solution
is progressing. That is, no assumption about the global coherence of the situation board
can be made.

Having eliminated the centralized controller, there is no need for the separation of the
knowledge sources from the blackboard. Thus, the knowledge sources rae associated
directly with the objects on the blackboard that might be the source of .ctivation of the
knowledge sources at compile-time. In this way, when a blackboard object is changed,
a relevant knowledge source can be activated without the inter. riu.cn of a controller.

In conventional, serial blackboard systems, know!edge sources -:e n.Wt, of scheduling.
If only the knowledge sources are executed in parasle, a great deal of potential paral-
lelism will be lost by the failure to exploit paralleism at , finer grain. Therefore, ,ules in
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the knowledge sources are executed in parallel, and knowledge sources take no part in
the sequencing of rule invocations.

" A knowledge source attached to an object communicates changes to be made on other
objects by sending messages.

" Poligon runs on a distributed-memory multi-processor. Shared-memory concepts such
as gobaj variables are not supported. Because ;io global variables are allowed, a way is
needed to define sharable, mutable data, while still trying to reduce the bottlenecks that
can be caused by shared data structures. Poligon uses a generalized class hierarchy to
structure me blackboard. The objects belonging to a hierarchy level are instances of a
class. The classes are represented on the blackboard and are active, serving as managers
that create i:stance objects. Level managers also store data shared between all of their
instances .o ,,.,pport operations which apply to all members of a class. Shared data can
therefore be implemented in a distributed manner.

" Most blackb':trd systems represent the properties of an object simply as lists of values
assciated with the property, name. Because knowledge source executions are atomic in
serial systems, programs can assume that no external modification will have happened to
a value between the time it is read and Nritten by a knowledge source. In asynchronous,
pa allei zystems, because a large number of rules can be attempting to perform
uperadons on the same property simultaneously, a mechanism is needed to assure data
consistency without slowing doxn the access to object properties (a large critical section
would reduce parallelism). As an aid in maintaining consistency, Poligon provides
smart properties. They are smart in the sense that they can have associated with them
user defined behavior which cin make sure that operations performed on the data leave
that data consistent.

The problem of data consistency wi .hin any given object pr perty is reduced by the
property being able to determine cheaply and locally whether a modification is
reasonable. Global solution coherency can be enhanced by the same process - objects
can evaluate whether a modification will lead to a more precise solution. That is,
knowledge can replace serial control used to maintain consistency. This causes a sort of
distributed hill-climbing which helps the system evolve towards a coherent solution.

3.1. CARE Simulation Machine

The multi-processor ELINT application written in Poligon runs on the CARE simulator.
CARE [2] is the name given both to the simulator used on the Advanced Architectures
Project and to the hardware designs being developed on that simulator. CARE consists of
a kit of components with which to construct simulated multi-processc - n.figurations.
The inswamentation toolkit in CARE allcws the user to watch the behavi- xe oysem
both from the point of view of hardware performance and the application IUgram. This
allows the "'c.&,,dfication of bottlenecks and hot-spots during system execiin on.
Each processing element in the CARE machine is made up of two processors. dhe Operator,
whose purpose is to execute operating system functions and to perform the task of intc:-
processor communication; and the Evaluator, whose task is the execution of user code
(Figure 3). This desigr allows the application work and communication to go on
simultaneously.
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Figure 3. The CARE machine processing element

In the Poligon system the CARE simulacor is used to simulate a network of processing
elements, connected in a toroidal manner, such that each processing element can talk to its
eight nei ;hbors (up/down, left/right and diagonal). The basic idea is to assign blackboard
objects tu the processors, create processor closures for activated rules within the
knowledge sources, ani distribute these clostues to otner processor- for execuaion.

4. Measuring Real-Time Systems
Since the ELINT application is, in some sense, a simulation of the real world, it has a Cc*,,k
of its own which ticks at a constant rate with resp.*ct to the time in the real world. The data
that comes into the system is time-stamped. Vhen the application's clock has reached a
time which is the same as the time stamp on the input data record, the data is introduced
into the system. The simulated time between twc of these ticks can, in certain cL"-
cumstances, be used to provide a measure of the throughput of the system. Thus, the tick
interval is a parameter that can be varied to measure the system's potential throughput.

A simplistic method for measuing the speed-up of a parallel system would be to take the
run-time for the aplicadoa on a uniprocessor and then divide it by the run-time measured
for different numbers of processors. This approach works well for non-,eal-time systems
in which the behavio: of the system is not affected by the spe-.d of the computation. In a
real-time system with a continuous stream of input data, however, the behavior of the
system changes according to the degree to which the systv-rn is loaded. For example if
more processors are added to a system it can becone cata starved, failing t) deliver the
speed-up of which it is capable.

To counter this phenorneon a Iierent methodology was devised. A series of
expe iments is veff--aied, d.ihig which the input data sampling interval is established such
that on tbc- ia: .-n-ost preces.or network size the system is never data starved. The speed-up is
me .-.zd , In. :;xi sampling interval for other processor configurations, knowing hat the

lv ere,, jeJ-Up for the large multi-processor config'iration would not be data starved. It
wa. foundi, however, tha: .ith all system parameters held constant (except for the number
of processors) the A.--lcation program was still behaving differently for the different ex-
periments. 7iL was because for small numbers of processors the system was getting
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backed up, and it was spending a significant amount of time queue-thrashing. That is, it
was trying to keep data in order which, if the system had not been so overloaded, would
not have got out of order in the first place. This had the effect of making the application

seem to run slower on smaller numbers of processors, thus giving an artificially high ap-

parent speed-up.
What was needed, therefore, was a method for measuring the system's speed-up, while
making sure that the system was always operating under the same load conditions. fo
accomplish this, the speed of the application on any particular processor configuration was
defined as the lowest sampling interval (that is, highest throughput) that still gives non-in-
creasing latencies in the results, The latency mei.ue is defined tc be the time between the
data coming into the system and the iystet emitting any reports concluded from that data.

If the system can keep up with the sampling interval specified, the latency value should be
largely constant, otherwise latenc:es increase over time as the system backs up.
!r sumary. :;,- following method is used to measure the system's speed: For any given
number of processors, the application is run with different sampling intervals until one is
found that produces non-increasing latencies. T Jis sampling interval defines the process-
ing speed for a given processor configuration. For a speed-up experiment, the above
process is repeated for different processor configurations until the speed-up curve levels
off.

4.1. Data Sets

A- .xortant aspect of the experiments on the ELINT application is the scenario used to
drive the experiment. A scenario ;epresents the simulated radar information tliat a "real"
system would have received. In a real system, one would expect that the number of r.-
ceived radar emissions would vary over time. Although realistic. , thi sort of scenario is
very hard to perform experiments on, since there are bound to be times when the system is
either data starved or overloaded. Beca':se of this, two of the da a sets used for the exper-
iments have the particular property th?, they have a constai -ensitx. of input data over time.

The important characteristics of taese data sets, thereiore, are the number of radar
emissions detected in each time uait, the number of radar emitters, and the number of
clusters.
it should be noted that these data sets are used to measure the overall peak system
performance for a given data set having the characteristics mentioned below. The system's
response to transients in the amount of input data in a timeslice was not measured, nor was
its performance for input & a with less "typical" characteristics; for instance, a small
number of aircraft, each usirg a large number of radar systems, or a large number of air-
craft, each using very few radar systems.

The characteristics of the data sets used for experiments reported below are described be-

Fat 240 Observations, 4 Emitters, 2 Clusters, 8 Observations per time,-slice, 30 time-
slices, 2 Observations per Emitter per time slice.

Thin 60 Observations, i Emitters, 1 Clusters, 2 Observations per time-slice, 30 time-
slices, 2 Observations per Emitter per time slice.

5. Experimental Results
A few of the experiments relevant to real-time signal interpretation and data fusion are
described below. Wherever reference is r- Ie to absolute time, the measurement is in
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terms of CARE simulated hardware. Each processing element of this machine has about
the performance of a TI Explorer 11+ Lisp Machine.

5.1. Speed-Up and Throughput

The Thin data set creates one pipe on the blackboard, and the Fat set creates four pipes; that
is, its data is four times as dense. The small dr .a set can be thought of as representing one
platform; the second, four platforms. The results from the two data sets allow us to: (1)
measure the peak throughput for the larger data set; (2) determine the contribution to speed-
up due simply to pipe-line parallelism; and (3) measure the system's ability to exploit data
parallelism.

The results of the two data sets are shown in Figure 4.

123-" 9612

~11.5

8 -p Large data et
,tepmw Small data lrt

6-/

1.Tepaksedu shw nti plcto u opp-ieprleimws3.6 .Ti

0 -7

032 64 96 128

Processors

Figure 4. Speed up for Fat and Thzin data sets for different number of processors.

In this experiment, following was learned:

1. The peak speed-up shown in this application due to pipe-line parallelism was 3.6. This
showed that although the length of the pipe was three, speed-up was greater than three
due to the concurrent execution of rules by the different stages (blackboard objects) i.
the pipe.

2. Almost linear speed-up was achieved with respect to the size of data set.
3. The peak throughput for the system measured in the Fat data set was about 340jis per

signal data record. Because of the linear increase in performance with respect to data
density, it is believed that higher performance can be achieved with more data. By
comparison, the serial ELINT on AGE took about 3.7 second to process each data
record.

5.2. Exploiting Large Knowledge Bases
In this experimant, only the Thin data set was used. The system was modified so that,
whenever an ELITNT rule was invoked, N rules would be invoked, rather just one. N-1 of
these rules had the special cha-_zteristic that they performed almost all of the processing
required excepL for any blackboard modifications - that is, the side-effects in the action
parts of the rules were not executed. This gave a measure of the system's performance if
the knowledge base was N times larger. while still giving the correct problem-solving
behavior.

The results from this experiment are shown in Figure 5.
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Figure 5. Slow-down plotted against the number of rules being fired for each rule
invocation

If the system is able to exploit parallelism in the knowledge base to the full. one would
expect that the system would not slow down at all as new rules were added, that is, the line
shown in Figure 5 would be horizontal. If. on the other hand, the system bogged down
completely as more rules were added, cne "would expect that the result would be worse than
linear slow-down, that is, the plot would appear above the "linear slow-down" line. As
can be seen, the performance was '- tter than linear. In order t) perform four times as
much work, it took only 2.2 times as long. The implication is -hat. as long as there are
sufficient computation resources, the system would deliver good performance for a
knowledge base whose size is at least up to four times that of the current application.

5.3. Granularity of Rules

In this experiment some of the internal mechanisms in Poligon were timed to get some
empirical measure of the granularity of the system.

A number of mechanisms are of crucial importance to the performance of the system.
Among them are reading and writing of prope-ty values, and invoking rules. In order to
determine the costs of these operations, they we- e performed repeatedly in a manner which
allowed the individual costs to be measured with some precision.

The results are described below. It should oe noted that the results neglect any
communication overhead, so they are only representative of local operations.

1. Properry value reads take 1.36 + .94n .us, where n is the numbe- of properties being
read at once.

2. Property updates take 18 + 53.7n ps, where n is the number of properties being
written. Since arbitrary user code can be executed during the update operation, this is a
representative figure from the EL[NT application.

3. The overhead cost of starting up a rule's execution is about I ms per invocation.

A substantial part of the time taken performing these operations could be optimized
considerably in a production quality system. This experiment shows, however, that there
is a lower bound to the granularity that the user can expect to achieve. For computations
taking less than a few milliseconds it may not be worth starting up a rule to perform the
computation, the cost of parallel execution would exceed the serial execution time.
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6. Conclusions
The serial and concurrent implementations of a real-time signal understanding programs
were described. The results of experiments performed on the concurrent ELINT
application were discussed. The following improvement in performance was observed: A
peak speed-up of 1 1.5x was achieved with a best input data sampling interval of 2.7ms.
Pipeline parallelism contributed about 3x of this. The remaining speed-up was due to par-
allelism extracted from the data being processed. At least within the bounds of the ex-
periments described, near linear speed-up is possible for increasing complexity of the input
data.
The following general observations can be made about concurrent problem solving, at
least, on the Poligon concurrent blackboard framework:

* Knowledge, or reasoning, concurrency can be achieved through pipe-lining. However,
reasoning, which consists of chain of inference, is inherently a sequential process.
Thus, reasoning speedup is limited to the length of the inference process; that is, the
number of inference steps determines the length of the available pipe.

* Data concurrency is application and data dependent, but, it is easiest to exploit. Data
parallelism manifests itself as multiple pipes on the blackboard.

" To exploit pipeline parallelism, the pipes must be balanced; that is, the knowledge
sources must be of uniform granularity and have the same data density. Additionally,
when data flows up a hierarchical pipe, the communication up the hierarchy must
decrease in proportion to the amount of branchiness.

0 Problems can be solved without global control. This, however, depends on the
problems being decomposable into loosely-coupled or independent subproblems.
Furthermore, we found it necessary for each subproblem to have its own local goals and
evaluation function in order to do local hill-climbing to maintain local data consistency.

* Rules can run in parallel, and this parallelism contributes to speedup. In order to run
rules in parallel, data needed by the rules needs to be copied and encapsulated to prevent
contention on the blackboard objects.

* Writing a real-time application was by no means simple. Many problems arose
regarding timing measures, data consistency and coherence, and test scenarios that
would not have arisen in other types of problem. Nonetheless, by attempting to solve a
difficult problem, we were able to develop techniques and methodologies that will be
useful for similar applications. A more detailed description of the concurrent problem-
solving architecture and experiments can be found in (4].
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Abstract

Very little is known about programming knowledge-based systems on
multiprocessors. To understand the effectiveness of parallel implementations
of such systems, programming problems and performance issues need to be
studied at all levels of the computational hierarchy, from hardware to
application.

AIRTRAC is a simulated radar signal interpretation system for
tracking and classifying aircraft, and runs on CARE, a simulated distributed-
memory multiprocessor architecture. CARE consists of 1 to 1000 processor-
memory pairs communicating via a network that provides reliable message
delivery but without message ordering. AIRTRAC is implemented in
LAMINA, an object-oriented applications progamming interface to CARE, and
ELMA, a high-level interface built on top of LAMINA. These are Zetalisp
extensions which provide mechanisms and language interface syntax for
expressing and managing concurrency.

This report documents the development of the Path Association
module of AIRTRAC, from design through implementation and testing, and
describes the features of the supporting ELMA interface, which was
developed in parallel with the application. We define the criterion of
sustainable data rate for quantitative performance evaluation and describe
experiments to determine performance under different conditions and their
results. We discuss the techniques and constructs we used and the lessons we
learned in the course of developing Path Association. We believe these
lessons and results will be useful to others working in the field of parallel
symbolic computation.
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1. Introduction

This paper describes the development d testing of a multiprocessor-based
continuous signal data interpretation system for tracking and classifying' aircraft,
called AIRTRAC. This work is motivated by the two following issues:

" Can we achieve significant speedup of large symbolic (knowledge-
based) applications through concurrency?

" What techniques and constructs are useful for application
software development for multiprocessors?

1.1. High-level Project Goals

AIRTRAC is one project within the Advanced Architectures Project (AAP)
of Stanford Univerity's Knowledge Systems Laboratory. The high-level goals of
the AAP are to realize:

* software architectures for symbolic applications using parallelism
to achieve high-speed computation

* hardware architectures to support those parallel comiputations

1.2. Research Methodology

Very little is known about programming knowledge-based systems on
multiprocessors. To best understand the effectivenes -,f parallel
implementations of such systems, programming problems and pn,': rmance
issues need to be studied at all levels of the computational hierarchy, from
hardware to application. The approach taken by the Advanced Architectures
Project has been to take a vertical slice though the space of design alternatives and
perform experiments with the resulting systems.

ST'he portion of AIRTRAC implemented to date does not classify observed aircraft.
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Table -L1 Our Vertical Design Slice

The following are the design choices we are exploring in the AIRTRAC
project, from application down through hardware:

ALRTRAC continuous Signal interpretation application

ELMA applications programming interface

LAMINA object-oriented parallel programming
language

CARE distributed-memory, message-passing
mulitprocessor hardware architecture

Table 1.1 outlines the slice through the space of design choices that we have
made. Each of the following four sections describes one level in this vertical slice,
with the application level being represented by AIRTRAC.

1.3. CARE-Hardware level

CARE (Concurrent ARchitecure Emulator) is a distributed-memory,
asynchronous message-passing architecture, simulated by a highly-instrumented
system called SIMPLE. CARE models I to 1000 processor-memory pairs, or sites l ,

communicating via a packet-switched network. Message delivery between sites is
reliable, but messages are not guaranteed to arrive in the order of origination.

CARE and SIMPLE have been described at length elsewhere (Delagi87a,
Delagi 87b].

1.4. LAMINA-Language level

LAMINA is the basic language interface to CARE and consists of Zetalisp
with extensions. The extensions provide primitive mechanisms and language
syntax for expressing and managing concurrency and locality. Three styles of
programming are supported: functional, shared-variable, and object-oriented. All
three are based on the notion of a stream, a data type which represents the
promise of a potentially infinite sequence of values.2

I Throughout this paper the term site is used to describe a CARE processing element.
2 It is relevant to note that LAMINA's predecessor, CAOS, [Brown86] was based on the notion of

a future, or the promise of a single value (resulting from a computation). It was observed,
however, that communication between objects was fairly regular; a given object, hav.ng
communicated with another, invariably communicated with that same object again. The stream
notion captures this behavior much more naturally, and was thus chosen as the basic datatype
for LAMINA. In LAMINA, a future is the special case of a stream with only one value.
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As in other oblect systems, cbj *'-,; in object-Oriented LAVMI 4A (hereafter
referred to otmpiy aii LAMINA) eiYcapsulate state 'insne N'rals and

behavioar (rn-ehods), Methods5 are irtvoke-d bv -mssg 5ex\din~g in-t 1t_,xike the
ease ok __quential -wv;'ern1s this involves t-7~'~~ a packe ccVaain-ng -he
mnessage -From one 'LA.JMSA object V) an:'ie~~pically On' diffcrcnrit~es.
Massage sanding is nornbicrkiflg and ~:e time required fOr cotnu~aini
th u v is ' Ie to the LANM14IA programmer. \'etlhncds run: aw~nicaily widiin

processes which are restairtabih but RO resmrliable)~ An obetadit ehd
can be considered~ a nort-neslec'. nv)oyj; ex( lui Irt garahteedb xifatht

oiy ner~~hx i eerscieuec'ru aT iMe, ;nd then rtuns to comrpetion.
The Clime required to create a -AMIN A object is also, visfible to the prOgvraxnxner.

The rerLepr is referred to [Delagi 37b] for mor details about LAMINA.

1.5. ELMA-Hlgh-level language level

UVMA (Extended Lamir i for Mernory-managemep Applications) is a high-

leve! purallel p- rammir interfaci : CARE based on. object-oriented LAMINA.
ELMA is a sptvcialized inte-facp- for applications which involve exten-sive dynamic
object creation and dea~ocitionand require some fo'm of memory -management.
This interlace was developed in parallel with the application.

1.6. AIRTRAC-Application level

AIRT2AC. our application, is typical of continuous signal data
inrterpreidttion problems, fo'r which projected performance limits of uniprocessors
fal short of the 5speed requir,?d by ordzis of magnitude. Multiprocessor parallel
computing must be used to --ttain the necessary levels of performance. This
miotivates us to explore mount'ing applications such as AIRTRAC on
mult-proccessors.

1.7. Overview of~ Tis Paper

Chapier 2 provides an overview of the AIRTRAC application as a whole.
Chapter 3 describes design techniques for cuncurrent programs. Chapter 4
describes the design, Implementation, and features of the AIRTRAC Path
Association module, and discusses the underlying app±coach and issues
mnotivating this effort. Chapter 5 describes the ELMA programming, interface
which embodies the techtniqutes and constructs we found useful in the coufse of
developing Path Association. Chapter 6 describes performance issues for
cor.curent programs and measured performance results for Path Association. In
Chapter 7 we uAiscilss the lessons we learned, and in Chapter 8, future work we
propose. Finally, Chapter 9 summarizes this work.

IThere is *,Iso a more exper~sive resurnable cousin.
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T*, s eont~ describe More dtni the appliz ns ue-d-e
evop-men-the AEIUM40 We discusi 4t. p'urpme of the sveffr. I't

iniputs and otoputs, 1i.&ii. copnei lev=I415 '-6i r-ake pA -M

I.t Purpose oi AIIITRAC

Tir* *h'ig;7*AT!cVq% g ai of AHRTIRAC is to monitor the M-i :)f aircraft !n
particular regi'nn ci airspace anid to interpret and predict theke S iven
trakef da- ','om one or more radar sites witin the region.

2.2. AORTRAC Input

The Inp-it3 to &;,e AIRTRAC zy~cem are Simulated output datz from one or
x-d'~itv_- radar and ig p .SSXIng systemi tracking airtcra i a , ven region

--f amrspace. 1 Each piece of input data, cafIled a Waar Track Report (RTR),
represents the observation nf an aircraft fro3m one radar site during a periodic
time interval (a scan time). Each radar observation is assumed t~p have been
processed by the radar tracking system so that ar, RTR provides the infornation
listed in Table 2.1.

1 In our experiments we assume that the region is viewed from a small out reasonable number
of radars. on th~e order of two to four.
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Table 21 AIRTRAC Input

E-uh Radar Track Report contains the following-

observation scantime the time of the observation

radar ID the identifier of the radar site obseving the
track

track ID an integer (unique to the radar site)
assigned by the adar to the track to which
the observation belorgs

aircrafi type the type of the aimT'ft under observation,
indicted by signal charzuteriics

position the location (x,y) of the aircrr t at the time of
the observation

position cv. -"" the (Ex Ey) estimate of the error associated
with the reported position

oeh~cizy ,thc velocity (Vc. Vy) of h aircraft calculated
at the i7me of the observation

velociy cova;rknct the (Ex Ey" estimate of the error asm-.ated
with the reportftd velocity

Several impo:tant characteristics of the data that a radar tracker produces are
reflected in the list in Table 2.1. First, : trackFs: initiailly assigns a unique track
identifier to an aircraft track when the radar syste., observes that track for the
first time. It continues to assign the same track ID to any ;ibsequent observations
if it determines, usually by a simple track extension algcrithm, that those
observations correspond to the previously-detected track. As soon as no such
observation succeeds by this algorithm for a track during even a single scantin',
that track is considered "lost" and its track ID dropped.1

Second, a radar tracker is assumed to be capable of determining the type of
each aircraft under observation from the particular characteristics of the signal it
receives. Finally, the algorithm employed by the tracker calculates covariance
figures for the position coordinates and velocity vectors that it reports, providing
a measure of the probability of error associated with each of these values. This
error information is based on factors such as the scrength of the signal and the
distance from the aircraft to the radar site. All of this information is passed along
as input to AIRTRAC in the form of an RTR.

I Basically, .his algorithn, predicts an area where the next observation for a track should
appear, based on a simple linear projection of points already received for that track. If no
such observation is forthcoming ;n the predicted area, the track is lost.
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2.3. AIRITAC Output

The ultimate goal of the AIRTRAC system is to provide continuous

information about all aircraft in a monitored region--a kind or' "situation

assessment." Say, for example, authorities wished to keep a watch on potential

drug smuggling activity near a border region. They might use a system like

AIRTRAC to manage the acquisition and interpretation of radar data about

aircraft traveling across the border.

The types of output that we might e;-pect from such a system could include,
among other things:

" track histories-a complete history of all aircraft platforms in the
region based on fused track data from different radar tracking
sources,

1

* path prediction-a determination of the future flight paths of
observed platforms

" event prediction--estimated times and/or locations of "notable"
events, such as airport landings or border crossings

" platform classification-a categorization of all hypothesized
aircraft, based on their histories and predicted future flight paths
(e.g., "smugglers" and "not smugglers"),

* strategy assessment--an interpretation of the motives of platforms
to support their classifications and predicted flight paths,2

*collision avoidance--warnings of potential danger for one or more
platforms in the system.

The work of specifying the exact content of the outpio. of the entire AIRTRAC
system remains to be completed in future stages of the project, but these are the
current goals.

2.4 AIRTRAC Modules

The AIRTRAC system is decomposed into three major modules. The
modules are Data Association (aiready completed), Path Association (the main
focus of our research and the motivation for this paper), and Path Interpretation
(yet to be completed). As shown in Figure 2.1, each module takes as input the
output from the previous module. AIRTRAC, then, can be viewed as an

I The word "platform" is the term used to denote a hypothesized aircraft.

2 For instance, AIRTRAC might determine that P:: aircraft is attempting to avoid radar

surveillance because it has an erratic flight path, thereby supporun& a classification of
"smuggler."
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application that employs several distinct levels of abstraction and reasoning
leading to its. final output.

j Assessments & Predictions

path. 0 INTERPRETS
Interpretation * PREDICTS

II
Platforms

V
Path 41 DISTRXBUTES

Assoiatin 9CONNECTS
Assocition FUSES

Periodic
Observation Reports

ftData *INPUTS

Association *COLLECTS

Simulated Radar
Tracker Output

Figure 7-1 AIRTRAC Modules-Functions and output

Let's now examine the function of each module individually.

2...Data Association

The rD"ata Association module was completed in June of 193, by Russell

Nakano and Masafumi MIVIinami [Nakano87].
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2.4.LL. Function

The primary function of Data Association is to accept, at regular time
intervals, output information from all radar trackers that report on aircraft
visible within the region at a particular scantime. It then identifies and collects
together, in time-ordered sequence, all RTRs which belong to the same aircraft
track (have the same track identifier as given by the trackers). Periodically, Data
Association abstracts the individual RTRs it has gathered for a particular track
into a Periodic Observation Record for that track.

2.4.1.2. Output: Periodic Observation Records

The output of Data Associaion a.re Periodic Observation Records (PORs). A
POR is an abstraction of a sequence of RTRs from one radar for an individual
aircraft track. It represents a regular portion of an aircraft's flight path as seen
from a single radar. The POR period is the "length" (in scantime units) of every
POR produced by Data Association; that is, the interval of time in which RTRs
for a track are processed and abstracted into a POR.

Radar Track

Reports-0

0 time2

timel

envelope" Periodic
radius Observation

~Record
(for scantime interval

[timel,tirne2])

Fir: 2.2 How Data Association creates a Periodic Observation Record

Figure 2.2 presents a graphical representation of the abstraction process that
takes place in the creation of a POR. Stated simply, Data Association creates a
POR by fitting one or more line segments through the points given by RTR
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coordinates. These "segments," or line estimates, are actually a sequence of <x-
position y-position time-- points, where the terminal point of one segment is also
the beginning point of the next; i.e., they have the form

( (Xl Yj ti) (x2 Y2 t2) ... (Xn Yn tn))

where n is the number of line estimates. 1 The line estimate radius, or error
"envelope" of a POR, is conservatively calculated so as to completely contain the
position covariances of each of the RTRs represented by the line estimates. The
POR period is uniform across all PORs in the system; every POR represents a
sampling of the same number of RTRs. Furthermore, the beginning and ending
times of PORs are synchronized.

Part of the functionality of Data Association is detecting when an RTR with
a new track ID has first been received and when an RTR of a known track ID fails
to arrive during a scantime (when a track has been lost by the tracker). One of the
notable attributes of a POR is its status, a keyword that Data Association assigns to
a POR indicating its position (beginning, middle, or end) within an aircraft's
track.2 A status of :create means that the FOR is the first (in dat i time) of a track,
representing the beginning portion of that track. Similarly, an :inactivate status
sipmals the final POR of a track. A POR with a status of :update is part of a
continuing track, neither first nor last. A status of :-reate-and-inactivate means
that both the first and the last RTRs of a track were received by Data Association
during a single POR period.3

The information contained in a POR is listed in Table 2.2.

I In most cases the number of line segments fitted is exactly one. However, if there are

sufficiently large changes in course executed by the aircraft within a POP period, these are
reflected by additional line segments in the POR f3r that period.
2 A keyword, in the usual sense of the term, is simply a constant symbol, .ommonly written
with a leading colon.
3 From here on, a ":create POR" is understood to mean a FOR whose status is either :create or
.,reate-and-inactivate. Likewise, an ".inactivate POR" means one with status :inactivate or
:create-and-inactivate.
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Table 2.2 FOR Information

A Periodic Observation Record produced by Data Association contains

the following-

track ID the identifier of the aircraft track assigned

by the tracker to thtj RTRs in this POR

radar ID the identifier of the radar site

status the observation status of this POR; a
keyword, one of (:create :update inactivt*
:create-and-inactivate)

aircraft type the type of the aircraft

period begin time the beginning scantime of the POR period
covered by this POR

period end time the end scantime of the POR period covered
by th OR

actual begin time scantime of the earliest RTR of the track

within this PORI

actual end time scantime of the latest RTR of the track
within this FOR

line estimates the sequence of line segments fitted
through the RTRs for this POR

line estimate radius the estimate (Ex Ey) of error associated with
points in the line estimates

velocity vectors velocities (Vx Vy) for the aircraft at the

beginning and end of the POR

velocity covariances estimates (Ex Ey) of the error associated with
the given velocities

2.4.1.3. Data Association: The Real Storet

An important admission concerning Data Association is necessary at this
point. As it happens, we are not using the full-blown implementation of Data
Association together with our Path Association module, for two very important
reasons. First, the pragmatics: Due to CARE system changes made since the time
Data Association was completed, the code for that module was rendered
unreliable without a non-trivial amount of translation. Also, simulation time

1 If the earliest RTR of a track is received during a POR period (the POR's status is :create),
then the actual begin time of the POR may be different than the period begin time. The same
relationship applies to the actual end time and the period end time of an :inactivate POR. For
:update PORs the actual and period begin and end times are the same.
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constraints made it impractical for us to run Path Association in conjunction
with Data Association.

Second, the actual output of Data Association did not meet the demands of

Path Association. Whereas our module required the periodic updating of track
data, mostly for fusion purposes, Data Association produced only notification of
the creation or inactivation of ent*.re radar tracks. We could have chosen to make
modifications to Data Association to make it produce the desired output, but
given the other problems we faced in trying to make continued use of the
module, we decided not to spend the time necessary for such an effort.

Instead, we simulate the output of PORs from what we believe to be a more
appropriate Data Association. This is done by a manager object in the Path
Association system called, not surprisingly, the Data Association Simulator
(DAS).

2.4.1.4. Summary of Data Association Results

The results of the Data Association experiments demonstrated that
performance of a concurrent program improves with additional processors,
achieving a significant level of speedup in execution time. A complete report on
Data Association and its experimental results can be found in [Nakano87].

2.4.2. Path Association

The Path Association module of AIRTRAC has been the main focus of our
work this past year. This module completes the abstraction of radar output and
fuses together data acquired from different radar sources to produce information
that can be reasoned about by the next module, Path interpretation.

2.4.2.1. Function

There are three main functions of Path Association:

" Distribution-accepting PORs from Data Association and
distributing them to objects called Flight Path Segments, which
collect all PORs with the same radar ID and track ID.

" Connection--"connecting" all Flight Path Segments with the
same radar ID that seem to belong to the same aircraft flight path
by associating them together in objects called Observed Flight
Paths.

" Fusion-"fusing" Observed Flight Paths with different radar iDs
tLat appear to be equivalent representations of a single aircraft's
flight path by grouping them together in objects called Platforms.
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2.4.2.2 Output: Platforms

The output of Path Association is a collection of Platforms, representing
hypothesized aircraft in the real world as seen from one or more radar sources. A
Platform incorporates all information about a single aircraft available through its
individual Observed Flight Paths. Platfcrms are dynamic entities that are
continuously being created, updated, terminated, and removed from the system
to reflect the rapidly changing state of the region under observation, x which
aircraft are constantly appearing and disappearing.

A detailed description of the Path Association module will be presented in
Chapter 4.

2.4.3. Path Interpretation

The final module of AIRTRAC, not yet implemented, is Path Interpretation.
We envision Path Interpretation as being the portion of AIRTRAC that performs
higher-level reasoning functions.

2.4.3.1. Function

Path Znterpretation responds to significant events that occur at the Platform
level. it analyzes and interprets data contained in Platforms and makes
assessments and predictions about the hypothesized aircraft represented by these
Platforms.

2.43.2. Output: Histories, predictions, classifications, assessments

As mentioned earlier in Section 2.3, the output of Path Interpretation comes
in the form of continuous information about aircraft within the region of
interest. As events occur at the Platform level, Path Interpretation interprets
these events, maintaining track histories and providing predictions,
classifications, and other assessments of platform activity.
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3. Concurrent Programming Techniques

This chapter describes design techniques for concurrent programs. We first
briefly discuss the general approaches to concurrency: pipeining and replication.
We then discuss a style of object-oriented programming well-suited to CARE-like
parallel architectures.

3.2. Parallelism

Two techniques arq known for exploiting parallelism: pipelining and
replication.' Both of these techniques are used extensively in AIRTRAC.

3.21. Pipelining

A pipeline is a computational structure which consists of a sequence of
stages through which a computation flows. It has the property that new
operations can be initiated at the start of the Fveline while other operations are
in progress through the pipeline. 1.us any process which can be decomposed
into sequential steps can be pipelined; an n-stage pipeline for an n-step process.
Pipelining is therefore a very appropriate way of handling the flow of
information between the levels of abstraction in an interpretation system such as
Data Association or Path Association. On a multiprocessor, each stage is assigned
to a separate processing unit wh'ch inputs frcm the previous stage and outputs to
the next stage. An optimal n-stage pipeline has n times the throughput of one of
its constituent stage,. -nfortunately, a pipeline will be less efficient, however, if
one or more stages in the pipeline

1) requires more time than other stages, or

2) depends on input from more than just the stage immediately
before,

since either of these conditions wall make some stages busier than others. The
next section describes a remedy to the first condition.

3.2.2. Replication

Any computational structure, from a single process such as a stage in a
pipeline to an entire pipeline, can be copied, or replicated, for increased
performance. For example, search is well-stted to repication if the seazrch space
can be cleanly divided. A probiem in which each of n replicated search
mechanisms optimally harnd!es -qit of the search- space can theoreicaiy be

See [Brow-- 86] for a more de-i= e on.



solved n times faster than a single search mechanism working through the entire
search space: Ideally, concurrency gained through replication is orthogonal to
concurrency gained through pipelining. Nevertheless, just as performance gains
in pipelines are limited by inter-stage dependencies, performance gains in
replicated structures are limited by inter-structure dependencies. In the case of
parallel search, for example, the need for synchronization in order to avoid
fruitless search is a limiting factor.

3.1, Programming Style

F'1U this section we discuss a specialization of the object-oriented LAMINA
programming style which has evolved out of earlier work programming the
CARE family of architectures (some predating LAMINA) and used in AIRTRAC.
Applications are structured in terms of two types of objects-managers and
subordinates--which communicate via messages. Computation is accomplished
through the execution of explicit trigger methods executing on instances of these
object types, and also through the execution of implicit continuations of these
methods.

M1 A general description of object-oriented LAMINA can be found in [Delagi8Tb].

3.1.1. Manager objects

Managers, as the name implies, are objects which are responsible for tasks
involving many other objects such as distribution of data, coordination of
problem solving and dynamic object creation. Managers are often allocated
statically, i.e., at initialization time, in which case the number required is
determined a priori and depends on the particular application and its input data.
Certain applications can benefit from the use of ephemeral or dynamically created
managers. Dynamic managers, however, require additional control since the
sphere of influence of each manager must be determined at run time and cannot
be hard-wired in advance.

3.12.. Subordinate objects

In keeping with the corporate analogy, subordinates are objects subject to the
control of managers. Subordinates are created by managers; collectively, they
typically contain most of the state of the system. Their tasks are dictated by one or
more controlling managers. In general, subordinates can be allocated (created),
deallocated, and reallocated many times over in the course of program execution,
in response to prevailing needs of the application.
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3.1.3 Continuations

Most computation takes the form of explicit (named) method execution on
explicit manager and subordinate objects. Computation can also occur as an
implicit continuation of a method. Such a continuation occurs in the context of
the object executing the method (as defined by the values of instance variables
and bindings in the environment). The method executing which spawned the
continuation finishes normally and executes its next task. The continuation
executes each time values are received on specified input streams. See page 12 of
[Delagi 87b] for more details of the continuation mechanism.
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4. Path Association

As described earlier, AIRTRAC is an attempt to develop a knowledge-based
system in a multiprocessor hardware environment. This effort decomposes into
two distinct, yet quite related, tasks: coming up with a solution to the aircraft
tracking problem (the knowledge-based portion), and determining the
appropriate software architecture to realize a correct implementation of our
solution in a parallel, distributed environment (the multiprocessor portion). It
must be stressed that we did not go about solving these tasks separately; rather,
design decisions in each dimension were necessarily made with consideration for
features and constraints of the other.

In this chapter we examine the Path Association module of AIRTRAC. We
first present a complete functional description of Path Association in the context
of a simple, yet non-trivial, example. This description involves the definition of
the various LAMINA objects and their associated tasks, as well as a discussion of
some of the important issues that arise in the problem domain. We then analyze
the overall system software architecture and its implementation in a distributed-
memory, message-passing multiprocessor environment. Next we describe the
underlying design philosophy motivating our programming approach. Finally,
we highlight the significant characteristics of Path Association that set it apart
from previous research in the AAP, including Data Association.

4.1. Functional Description

4.1.1. The Example Scenario

The clearest way to explain the functionality of Path Association is to
provide an example of a typical domain scenario and walk through it step by step.
This will serve as the backdrop for the descriptions of the various objects in the
system and their responsibilities. The scenario we will employ throughout this
section is a relatively simple one: there are two radar trackers in our region
(hereafter radarl and radar2) observing aircraft of only one type (call it type-A).
Though we would expect greater numbers of both these quantities in a more
realistic situation, this example is quite appropriate for our expository purposes.

On the following page, Figure 4.1 shows a graphical representation of the
PORs provided by Data Association in our chosen scenario-the input to Path
Association.1 The figure presents a "snapshot" of the current situation in the
region of airspace under observation as seen from a God's-eye view at some
particular time. There are two views of the region, one for each radar. The short

I This and future figures of the example scenario are actual screen images taken during an
AIRTRAC simulation.
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segments in tjhe display repre,ent pORs-light-shaded ones are :create PORs, dark-
shaded ones are :update PORs, and black ones are :inactivate PORs. Beside each

POR is a string of three numbers. Though these strings tend to clutter the display
somewhat, they are nonetheless meaningful: the first number in a string gives
the radar ID, the second the POR's track ID, and the third a scantime within the
POR. Together these keys offer clues as to when and where tracks begin and end.
For example, there are three tracks seen by both radari and radar2 that begin at
the very bottom of the region at roughly the same time (around scantime 30). In
addition, the width of each POR gives some indication of its line estimates radius.

Examining the display in Figure 4.1, one may note that, at the time the
snapshot was taken (sometime after scantime 290), both radari and radar2 had
been following a number of different tracks within the region. In fact, careful
evaluation of the two radar views allows one to deduce that the example scenario
involves the passage of 5 aircraft across the region. Of course, it is relatively
simple for us as humans to perform this sort of visual comprehension. We car,
quickly and easily connect broken track segments and fill in missing pieces of
tracks in one radar view with information from the other radar in order to come
up with the "big picture" of the scenario-complete flight paths of all aircraft in
the region. This is precisely the sort of real-time information fusion and
interpretation that is so difficult to achieve in knowledge-based systems; it is the
primary goal of Path Association.

4.1.1.1. What is interesting about this scenario?

There are many aspects of the example scenario that lend themselves to
interesting observation. We shall choose a few of the these to examine closely as
we make our way through the different stages of Path Association. In Figure 4.1
there are 6 highlighted areas, labeled Al, A2, B1, B2, C1, and C2. Al and A2 are
actually the same physical area as seen from the two different radar views; the
same applies for B1-B2 and Cl-C2. Let's see what's happening in each of these
areas at the POR level:

Al) Track 1-5 has been lost and track 1-6 has begun.

A2) Track 2-6 has been lost but no other track has been picked up.

B1) A busy area: tracks I-I and 1-2 both end and tracks 1-4 and 1-5
both begin.

B2) Track 2-1 shows no break while track 2-6 has begun.

Cl) Track 1-7 has ended and track 1-9 has been picked up.

C2) Track 2-7 has been lost and track 2-9 has begun, with a large gap
in between (both spatially and temporally).
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What does this example tell uv% about radar capabilities?

Right away we can see that a radar tracker is not tremendously scphisticated.

It often produces information that is unclear or even incomplete. One reason for

this lies in the simple track extension algorithm the tracker uses to process

observations. Any change, however slight, in the regular observation of an

aircraft's track (a change in direcion, a sudden shift in velocity-even a tiny glitch

in the system) may result in a loss of the old track ID and the assignment of a new

one. The tracker simply cannot distinguish between a true break in a flight path
and a temporary loss of, or adjustment in, the observation of an aircraft; this sort
of reasoning is part of AIRTRAC's job. As evidence, tracks have been lost and
new ones started at several points during this scenario, even though the gap
between them appears very small (Al, Bi, Cl).

A second source of incompletenes3 in radar data is due to the possible
inability of a tracker to detect objects in a particular area-so-called radar
"shadows." This might happen, for instance, if there is a large mountain within
a radar's region of coverage. If the mountain lies between the radar site and a
certain area, a plane flying into that area seems to disappear. Perhaps its track is
picked up again with a new ID when the plane leaves the shadow, but the result
is usually a large gap in its visible flight path. Such a situation seems to exist in
our scenario in the output of radar2 near C2, where two crossing paths are lacking
large sections of track data not missing in the observations by radar1 in area Cl.

It is clear, then, that the information given to Path Association reflects the
limited characteristics of the individual radar tracking systems, each of which sees
the world in a different way. The purpose of the Path Association module is to
combine the information it gains from all radar sources to overcome local radar
shortcomings to produce a complete and accurate high-level description of the
aircraft in the region.

4.1.2. Distribution

The first phase of Path Association processing involves the distribution of
Periodic Observation Records from Data Association into dynamic objects called
Flight Path Segments. This task is performed by manager objects called Flight
Path Managers.

4.1.2.1. Flight Path Managers (FPMs)

A Flight Path Manager (FPM) handles the input PORs of a particular aircraft
type and radar ID. Data Association knows which FPM to send a POR to on the
basis of these two invariants. The number of FPMs in the system is thus equal to
the number of distinguishable aircraft types times the number of different radar
sources. (In a typical scenario, for example, in which we observe 3 different types
of aircraft from 3 radar trackers, there would be 9 FPMs.) The function of an FPM
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is to accept PORs from Data Association and to process them according to their
track ID and status.

Each FPM maintains a list of the track IDs for PORs it has received, along
with the names of the Flight Path Segments it has allocated for tracks. A new
track ID is one for which no previous POR has been received by the FPM.

4.1.2.2. Flight Path Segments (FPSs)

Flight Path Segments (FPSs) are dynamic objects subordinate to an FPM.
They represent a collection of PORs with the same track ID (and therefore same
radar ID and aircraft type). Among an FPS object's slots are those listed in Table
4.1. Included in this list is the FPS's status, a keyword which is either :active or
:inactive. The status :active reflects the fact that the FPS is continuing to receive
:update PORs by way of its FPM. An FPS sets its status to :inactive when it
receives an :inactivate POR.

Table 4.1 Flight Path Segment

The information in a Flight Path Segment includes the following:

track 1D the identifier assigned to this . c.k by the
radar tracker

radar ID the identifier of the radar site from which the
track is being observed

status track status; a keyword, one of (:active

:inactive)

aircraft .ype the type of the aircraft

line estimates the sequence of POR line estimates

initial veiocity velocity (Vx Vy) of track at time of creation

final -teccity velocity (Vx Vy) of track at time of
termination

OFP parent name of Observed Flight Path parent

Why are FPSs not enough to represent an entire flight path of an aircraft?
The answer, of course, lies in the inability of a radar tracker to maintain a
consistent lock on the aircrafts position as it makes its way through the region.
As mentioned before, it is simply too common for a radar tracker system to lose a
track due to a number of reasons (sharp turn, radar shadow, etc.). There must be
some object superior to an FPS that represents a complete flight path, overcoming
the natural incompleteness of radar tracking systems; in fact, we will describe this
object shortly.
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4.1.2.3. The Distribution Vrocess

Figure 4.2 shows the pro,'.7 of distribution in terms of the LAMINA object.

involved and the communicat . among them.

~Path

O Manager Object

Q Dynamic Object

-Single Message

Figure 4.2 The Distribution Process

When a POR arrives from Data Association at the FPM in a :distribute-POR
message [111, the following takes place:

a) If the track ID of the POR is a new one, then a new FPS is created
and sent an initialization message which contains the new POR
[2].

b) Otherwise, if the POR's track ID has previously been registered
with the FPM, then the POR is sent directly to the track's FPS in
an :add-new-POR message [2].

In the description of the distribution process, and that of connection ana tusion to follow, a

bold number in brackets refers to the corresponding LAMINA message(s) in the figure for that
process. In this case, [11 denotes the message received by the FPM in Figure 4.2 (shown as an
arrow labeled "I').
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c) If the status of the POR is either :create or :create-and-inactivate,

the FPM knows that it has received the first POR of the FPS.1 In

this case a :connect-at-creation message is sent to the Flight Path

Connector associated with this FPM (the one that handles FPSs of

the same aircraft type and radar ID) [3]. This message contains all

information pertaining to the beginning of the FPS (including

time, position, and velocity, as well as its name and remote
address), and initiates a connection procedure as discussed in

Section 4.1.3.

d) If the status of the POR is either :inactivate or :create-and-
inactivate, the FPM knows that it has received the last POR of the

FPS. In this case a :connect-at-t'irmination message is sent to the
associated Flight Path Conne:tor with all POR information about

the end of the FPS in addition to its name and remote address [3].

4.1.2.4. Distribution in the Example Scenario

How does our example scenario appear at the distribution level? Figure 4.3,
on the next page, shows the graphical display of FPSs thtat exist in the system.2

Each FPS is seen as an unbroken line segment with an identifying string printed
near its origin. [Note: The boxes drawn in each region are graphical aids in the
connection process; ignore them for now.]

The display shows how the PORs given to Path Association have been

collected by the FrPis. As expected, each FPS line is drawn from the beginning of
its :create POR to the end of its :inactivate POR (as they appear in Figure 4.1). The

areas of interest we are following exhibit no further development at this point;
whenever a track is picked up an FPS begins, and whenever a track is lost an FPS
ends. The really exciting stuff is yet to come.

4.1.3. Connection

Looking at Figure 4.3 we can see obvious locations where tracks were broken
for some reason and new ones picked up soon afterwards. To our eyes it is clear
that many of these individual tracks belong together in the same entire flight
path. It is the task of the next stage of Path Association, connection, to determine
which FPSs should be associated together to form complete observed flight paths.

I Note that the first POR of an FPS is not necessarily the one received earliest in time at the

FPM. It is possible, due 'o message disorder, for an :update or :inactivated POR of an FPS to

arrive l-fore the :create POR. "First," in this context, always denotes a POR with status

:create c. :reate.and.inactivate. Likewise, the 'last" POR of an FPS always has an :inactivate
or :create.and.inactivate status.
2 This and the other displays of Path Association graphics show the different levels of

computation at the same instant in time -- a system-wide snapshot.
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The coordination of this search is performed by manager objects called Flight Path

Connectors.

4.1.3.1. Flight Path Connectors (FPCs)

A Flight Path Connector (FPC) receives information about the creation and

termination of all FPS tracks of the same aircraft type and radar ID from its

associated FPM. (There is a one-to-one correspondence between FPMs and FPCs.)
It attempts to "connect," or match, pairs of FPSs that logically could be parts of the
same flight path by determining whether one FPS is potentially a continuation of
another's track, using criteria detailed below. All connected FPSs are grouped
under common objects called Observed Flight Paths.

An FPC handles only FPSs that share the same aircraft type and are reported
by the same radar tracker. It would not make sense to try to connect segments
from different aircraft types or across different radars (multi-sensor fusion of
corresponding path segments is performed in the final stage of Path Association).
Each FPC maintains a list of the FPSs it has been notified of, including all data
relevant to the beginning and/or end of each FPS (time, position, velocity). It
also keeps a list of the Observed Flight Path objects it has created, together with
the names of FPSs linked together under them.

4.1.3.1 Observed Flight Paths (OFPs)

Axn Observed Flight Path (OFP) is a collection of one or more FPSs, connected
by an FP'C, that constitutes a complete flight path as seen from a single radar
source. (Act,,ally, the collection is not of the FPS objects themselves but of names
and handles to these FPSs.) Every FPS is associated with exactly one OFP, even if
does not conne., vith any other FPSs.

The information contained in an OF object is listed in Table 4.2. Included
in this list are slots for 'connections" to other OFPs, a concept to be explained a bit
later.
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Table 4.2 Observed Flight Path

The information in an Observed Fight Path includes the following:

radar ID the identifier of the radar site from which the
track is being observed

status flight path status; a keyword, one of (:active
:inactive)

aircraft type the type of the aircraft

FPS children list of names of FPSs that make up this
complete OFP

creation connections list of names of earlier OFPs connected to
this one

termination connections list of names of later OFPs connected to this
one

UFP parent name of associated Unfused Flight Path (if
one exists)

P parents list of names of Platforms of which this OFP
is a part

PM Platform Manager that handles fusion
searches for aircraft of this type

4.1.3.3. The Connection Criteria

What are the criteria an FPC uses to determine if two FPSs should be
connected and made part of the same OFP? Essentially, FPC combines data from
FPS endpoints with knowledge it has stored in a model of the aircraft to project
regions where it expects possible continuation for a track, which it then uses to
search for other FPSs whose beginnings or endings fall into that area.

4.1.3.3.1. Aircraft model

The aircraft model used in the connection process by an FPC is a frame-like
data structure that incorporates explicit knowledge about cruising characteristics
and maneuvering capabilities of the type of airlraft handled by the FPC. The
items found in the model of an aircraft are listed in Table 4.3
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Table 4.3 Aircraft Model

The model of each aircraft type which is used by the Flight Path

Connectom during connectionl conin1fs the following informatic'.

name the name of the aircraft type

mmi cruising speed the minimum straight-line velocity needed
to remain airborne

max cruising speed the Maximum Straight-line Velociy,
capability 

*

avg cruising speed the average (or expected) cruising speed for
an aircraft of adis typ

max Landing speed Ma~aMUM speed at which the aircrxst is
capable of landing

max accelerationi the Maximum possible Straight-line
acceleration

max deceleration the mzaximum possible straight-line
deceleration

mini turning radfus the minimum possible turning radius (at
both minimium and maximum speeds)

turning radius function a function relating turning radiuS to speed

4.1-3.3.2. Continuation region

Given two FPSs, an FPC checks for possible Connection between them in the
following manner. A pair of FPSs connect, of course, between the end of one
segment and the beginning of another. Therefore, the FPC needs to know the
latest reported position and velocity of the earlier FP'S and the scantime at which
it terminated. Likewise, the FPC needs to know the original position and velocity
and the time of creation for the later FP'S.

The first check for possible connection is to see if the difference in scantime
units between the termination time of the earlier FL'S and the creation time of
the later FL'S fcall it delta-T) is within 1 and same maximum connection search
interval, a preloaded system parameter that limits the time gap between
connected FPSs to a reasonable length. If this test is passed the FPC then uses

a) the termination position and velocity data of the earlier aircraft,

b) delta-T, the time gap between the segments, and

c) the performance figures from the aircraft model,
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to compute a continuation region in which the creation position of the later FPS

must fall if it is to successfully connect, as shown in Figure 4.4.1 If the later FPS

does indeed begin within this continuation regior then the two FPSs are

considered to have met the connection criteria.2

Returning to Figure 4.3, we now understand what the boxes drawn at

different points in the region represent-they are continuation regions computed

during :he connection process. By noticing the small cirdes (denoting FLS

creation positions) that lie within several of these continuation regions we can

predict FPSs that are likely candidates for the FPCs to connect. We shall see a
Utile later on how things actually turn out.

We omit -he actiC-fe=.flS .s .or ' . =or direcdv :,:CvX't to
Ch dscussCi at "hand.

SUe 's IVoi'y onC Iina check ".- "akes -:ac-. r n e -h e !%--,een a.
elocd te .:caon vC; - 'o'o must ZO- exceed sme md Cmum

~ = - -.- .t 2 _ j

--rgusar deCa7W.on Oouted IIZa .er e . a- i t"e a:raatt model firsts.
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Figure 4.4 Calculating a Continuation Region

4.1.3.4. The Connection Process

Figure 4.5 shows the process of connection in terms of the LAMINA objects
involved and the communication among them.
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Figure 4.5 The Connection Process

Connection takes place when an FPM receives either a :create POR or an
:inactivate POR for an FPS and notifies the FPC responsible for FPSs of the
corresponding aircraft type and radar ID in a :connect-at-creation message or a
:connect-at-termination message, respectively. In the following two sections we
outline the steps taken in both of these cases.

For convenience, let us define a created FPS as an FPS for which a :connect-

at-creatwi , E sage has been received and processed by the responsible FPC.
Simiilarly, a minated PS is an FlpS for which a :connect-at-termination
message has beer s received by the FPC.

4.1.3.4.1. Connect-at-Creation

When an FPC receives a :connect-at-creation message with information
about the beginning of a track from an FPS's :create POR 1], the following takes

place:
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a) The FPC searches its list of FPSs for those that have been
terminated but not yet connected with any later FPSs, collecting
those that connect with the newly created FPS.1

b) If there are no connecting terminated FPSs from a), then the FPC:

" creates a new OFP and sends to it an initialization message
that establishes the created nPS as its only child [21

* sends a .new-OFP-parent message to the created FPS with the
name and handle of the new OF [3]

c) If there is exactly one such terminated FS from a), then that FPS
and the newly created one are connected by the FPC:

" an :add-new-FPS message is sent to the OFP parent of the
terminated FPS with the name and handle of the created FPS
[2]

" a rnew-OFP-parent message is sent to the created FPS with the
name and handle of the terminated FPS's OFP parent [31

d) if there is more than one connecting terminated FPS from a),
then this is an ambiguous connection case (see Section 4.1.3.5.1

e) The FPC next searches its list of FPSs for those that have been
terminated and previously connected to a later FPS (not
including those from c) and d) ), again colecting those that
connect with the newly created FL'S.

f) If there are any such terminated FPSs from e), then this is an
ambiguous connection case [see Section 4.1.3.5.]

4.1.3.4.2. Connect-at-Termination

Usually two FPSs that belong together in the same OFF arrive in order at the
FPC. More precisely, if two FPSs should connect with each other, it is usually the
case that the FPC knows about the termination of the earlier FPS before it learns
of the creation of the later FPS. However, because messages sometimes arrive out
of order, it is entirely possible that the FPC will be notified of these events in
reverse order. If we were just to rely on a method of establishing connections
between FPSs only when one was created, we would never be able to resolve such
an out-of-order situation; an FPC simply could not connect a created FPS with a
terminated FPS that it hasn't yet been told of.

Our solution to this difficulty is to perform connection between FUSs in both
directions in time. In the expected case, the FPC searches backward in time for

I In this discussion two FPSs "connect" if they meet the connection criteria set forth in

Section 4.1.3.3.
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terminated FPSs that connect with an FPS given by a :connect-at-creation

message, as described in the previous section. The FPC also searches forward in

time for possible connection to created FPSs when a terminated FPS arrives in a

:connect-at-termination message. The connect-at-termination procedure is

similar to that of connection-at-creation, and it ensures that slightly out-of-order

messages never results in a missed connection.

When an FPC receives a :connect-at-termination message with information

about the ending of a track from an FPS's :inactivate POR (1), the following takes

place:

a) The FPC searches its list of FPSs for those that have been created
but not connected with any earlier FPSs, collecting those that
connect with the recently terminated FPS.

b) If there are no connecting created FPSs from a), then the FPC does
nothing else, except in one case: if the terminated FPS is not yet
associated with an OFP (which can only occur, from the
perspective of the FPC, if the FPS was terminated bfQLc it was
created, another possible result of disordering). If this is the case,
then the FPC:

* creates a new OFP and sends to it an initialization message
that establishes the terminated FPS as its only child (21

" sends a new-OFP-parent message to the terminated FPS with
the name and handle of the new OFP [3]

c) If there is exactly one such created FPS from a), then that FPS and
the newly created one are connected by the FPC. This is more
difficult than in the connect-at-creation case c) because both FPSs
have a parent OFP (though it is possible, as in b), that the
terminated FPS has not yet been created and does not have an
OFP parent.). To execute the connection the two parent OFP's
must be merged, as follows:

" an :add-new-FPS message is sent to the OFP parent of the
created FPS with the names and handles of the terminated
FPS and its sibling FPSs of the current OFP parent [2]

" a mew-OFP-parent message is sent to the terminated FPS and
its transferred FPS siblings with the name and handle of the
created FPS's OFP parent (31

" the old OFP parent of the terminated FPS is deallocated,
leaving only the terminated FPS's new OFP parent

d) If there is more than one connecting created FPS from a), then
this is an ambiguous connection case [see Section 4.1.3.5.]
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4.13.5. Ambiguous cases

Occasionally an FPC finds that there is more than one connection possible
for a given FPS, especially given the conservative nature of the continuation
region, calculated so as to eliminate only those connection pairs which are clearly
unreasonable. A typical situation in which this might occur is when two aircraft
pass by a particular point in the region at roughly the same time and their flight
paths cross. From a radar tracker's perspective, a crossing often appears as a break
in both flight paths, resulting in the termination of one FPS and the creation of a
new one for each path. An example of this can be seen in area 81 of Figure 4.3.
The difficulty is that, by the connection criteria, the first FPS of one or both tracks
may connect with the second FPS of Qbt tracks. There is no notion of a "best"
connection; any path extension passing the connection criteria is considered as
good as any other, so there is no way to determine which is the true connection.

What can the FPC do in such a situation? In our object definitions we
require that an OFT be composed of only a single path of connected FPS-it cannot
contain multiple connections between constituent FPSs. 1 We deal with the
problem of ambiguity by introducing the concept of connected OFPs. In a case in
which there are multiple possible connections between an FPS and other FPSs,
each FPS is assigned to its own OF? and the different OFTs are then "connected"
on their own level by establishing a connection relationship between them. That
is, the earlier FPS's OFP is said to have the later FPS's OFP as a termination
connection, and the OFP of the later FPS has the OFP of the earlier FPS as a
creation connection. Each OFP maintains lists of its creation and termination
connections to other OFPs.

By letting any ambiguity present following connection remain unresolved
in the form of connected OFPs, we are counting on fusion to detect incorrect
associations and establish the true complete flight path using information from
other radar sources tracking the same aircraft. We shall see if fusion can, in fact,
resolve these ambiguous cases.

4.1.3.6. OFP Updates

After an FPS is notified that it has been associated with an OFP, it begins to
forward update messages to its parent OFP. These are messages that report when
new track information has been obtained by an FPS so that an OFP is kept up-to-
date of events at the FPS level. An :FPS-update message is sent to an OFP every
time the FPS itself receives an update message from its FPM in the form of an
:update FOR. Included in each :FPS-update message from the FPS are the POR
lines estimates it is provided in the :update POR. The OFP, in turn, forwards all

I T'.e reason for this strict definition is, to a great degree, dictated by a cleaner

representation of platforms at the fusion level, but this is mostly an implementation issue
beyond the scope of this discussion.
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update information onto its associated higher-level object, a Platform c~r Unfused

Flight Path, as described in Section 4.1.3.6. An OF does not save any FPS line
estimate informzation within its own state.1

4.1.3.7. Connection in the Example Scenario

Let's now take a look at the results of the connection process in our example
scenario. On the following page, Figure 4.6 shows the graphical display of OFPs in
the system at the same snapshot in time. Each OF? is drawn as a continuous line
segment, with a string identifier near its origin. Of special note are the lighter-
shaded lines drawn between several of the OFPs near areas B1 and Cl of radar1.
They signify that the OFPs they join are connected OFPs, meaning there are a few
points of ambiguity present in the scenario at the connection level.

Looking at our areas of interest we notice the following:

Al) The two FPSs in Figure 4.3 have been together formed an OFP, a
straightforward case of connection.

A2) With the later FPS missing, the earlier FPS stands alone in its
own OFP.

B1) As expected, a bit of confusion. With several FPS connections
possible, both sides of the cross have their own OFPs, with OF
connections established between them. Interestingly, there also
seem to be OR connections made between one or both of the
higher OFPs in B1 and the OFP coming from the side of the
region in C1. This is a case in which the support for a connected
path seems weak but the connection criteria were met anyway.

B2) Nothing unexpected. One OFP passes over the point at which
another OFP is created, just as their corresponding FPSs did.

Cl) What seems likely to us to be a strong connection of FPSs in an
OFP that travels straight across the region is dealt with at the
connection level as two connected OFPs. This is due to the
cross-over coincidence in B1.

C2) A perfect example of the power of connection. Despite the big
gap between the two FPSs they were able to be connected into a
single OR crossing the region.

The reason for not storing line estimates is an issue of cache consistency. The OFP can never

be certain that the line estimate information it has been presented is complete and up-to-date.
Therefore, in reporting this information to inatiate the fusion process (described in Section
4.1.4), the OFR is forced to request current track data from its FPS, eliminating the need to
maintain this information itself.
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4.1.4. Fusion

In the distribution and connection phases all reasoning about flight path

data is performed on POPs and FPSs observed from the same radar source. Up to

now there has been no use of information from other radars to help resolve

missing data conflicts present in radar tracks from individual radars. In the

fusion stage of Path Association, however, information from all radar tracking

sources is brought together to form the best available estima:e of the flight of the

real-world aircraft.

The dynamic objects produced by the fusion process are abstractions called
Platforms. One of the main goals of fusion is to associate each and every OFP
with at least one Platform so that its flight path data can be used in later
AIRTRAC functions in Path Interpretation. Fusion takes place in a distributed
search method coordinated by manager objects called Platform Managers.

4.1.4.1. Platform Managers (PMs)

Platform Managers (PMs) are, in the truest sense of the word, managers.
They only oversee the real work that they delegate to their subordinates, unlike
FPMs and FPCs which handle the entire computational chore by themselves at
their level of processing.' PMs control the creation of Platforms and coordinate
the fusion search among the many distributed, dynamic Platform objects; the
actual fusion of information from different radar sources is performed by the
Platforms themselves.

Each PM manages the fusion of OFP information for a particular aircraft
type. It maintains a list of existing Platforms representing aircraft of that type in
the system. (In addition, a PM keeps a list of a second collectio1 of subordinate
objects called Unfused Flight Paths, the nature and function of which will be
presented later.)

4.1.4.2. Platforms (Ps)

A Platform (P) represents the hypothesis of a real-world aircraft passing
through the region of airspace. It is a collection of supporting OFPs that each
contribute their own radar's view of the aircraft's flight path to form a composite
Flight Path (or simply corn posite-FP). The composite-FP is calculated from the
track data from the FPSs of all individual OFPs using a best-fit approximation to

The fact that the PMs are the only managers objects in the system that dis,-,dute a

significant amo..nt of their workload :o subordinate objects reflects a design decision that we

made to reduce the possibility of bot'lenecks (performance hotspots) at the PM during the
computationally more complex process of fusion. More is said about the consequences of this

decision in Chapter 6.
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arrive at the most informed estimate of the aircraft's complete and true flight

path.

Platforms are the final output of Path Association. They contain the
information listed in Table 4.3.

Table 4.3 Platform

The information in a Platform includes the following:

status status of the hypothesized aircraft
represented by the P; keyword, one of
(:active inactive)

aircraft type the type of the aircraft

OFP children list of names (and attributes) of all Observed
Flight Paths that make up the P

composite-FP the composite flight path computed from a
best.fit of all line estimates of individual
OFPs of the P

PM the name of the Platform Manager in
charge of Ps of this aircraft type

4.1.4.3. The Fusion Criteria

In this section we examine the criteria used to determine if tracks from
different radars represent equivalent views of the same aircraft's flight path and
should therefore be collected together in a single Platform. In the description of
the fusion processes to follow, mention is made several times of an OFP "fusing"
with a P. What exactly does this mean?

When a new Platform is created, its initial composite FP consists of the line
estimate information from all of the FPSs in the OFP that caused its creation
during the fusion process. Thus, the composite is a sequence of line segments
(pairs of endpoints), each with its own estimate of error given by the POR line
estimate radius. There may be gaps in this sequence for which no track data is
available corresponding to scantimes between connected FPSs. In addition,
included with each segment in the composite is a list of radar IDs represented by
that segment.

During the fusion process, Platforms are requested to try to fuse OFPs with
their current composite FP, and a fusion result signalling the success, failure, or
indeterminacy of the fusion is returned. A result of :MATCH is returned if all
three of the following conditions are satisfied:
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1) The OFP and the composite overlap in time for a minimum of one

scantime. That is, there exists at least one scantime which is represented in line
segmenits in both the OFP and the composite.

2) Every point in the OFP "matches" the corresponding (same scantime)
point in the composite; i.e., their error radii intersect at each and every point. (If
any missing point is between the endpoints of a segment in either flight path, it is
calculated by interpolation.)

3) The OFP and the composite do not overlap at any point in time for which
the composite already has incorporated data from the OFP's radar (the OFP's
radar ID is in the list for that particular segment). An OF cannot possibly share a
Platform with another OFP observed from the same radar; a point conflict so
described would indicate two such OFPs.

Figure 4.7 gives a before-and-after look at the fusion of corresponding
portions of an OFP and a Platform's composite FP whose result is :MATCH. We
see that each point in the OFP matches the ce.-rsponding point in the composite
because their radii intersect. The res!'.:ing new composite point for each pair is a
weighted average of the locations of the two points 1 The radius of error for each
new point is computed from the new point location and the intersecting radii.
What is important to note in this process is that, as each new OFP is fused with a
P, the composite FP for that P becomes more defined as the error radii error of its
constituent points get smaller.

I The weight' of a composite segment is dictated by the number of radars already represented

in that segment.
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Figure 4.7 Fusing portions of an OFP and a Platform's composite FP to form part
of a new composite FP. 711e points of the new composite are weighted
averages of the two corresponding points, and the new radii are
calculated from the intersections of the radii of the points.

A fusion result of :NO-MATCH is returned if either of conditions 2) and 3)
above is violated. An :UNKNOWN result is returned if neither :MATCH nor
:NO-MATCH holds; i.e., the OFP and the composite do not overlap in time for
even a single scantime, violating condition 1) above. These three fusion results
will be mentioned often in the discussions of the fusiun processes, so it is
important to understand what each means.

4.1.4.4 The Regular Fusion Process

Figure 4.8 shows the regular process of fusion: the objects involved and the
communicatic:. paths between them. With reference to this figure, we now turn
to the description of the complicated fusion process.
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Figure 4.8 The Regular Fusion Process

When an OFP is created or when it is dropped from a Platform (discussed
later), it immediately begins the process of fusion:

1) Since the OFP does not duplicate FPS data by caching them
locally, that information must first be obtained for fusion. The
OFF multicasts a .send-line-estimates message to all its F'S
children (11. It then spawns a continuation process to collect the
replies from the FPSs, giving it also a list of its OFP connections.

2) Each FPS responds to the :send-line-estimates request from its
OF' by returning all its current line estimates to the OFP
continuation [2].

3) When replies have been received from all of the FPSs, the OFP
continuation gathers all of the line estimates together with the
OFP's own OFP connections and sends a .-match-OFP-to-platform
request to the appropriate PM (in charge of aircraft of this type) [3].

4) The PM broadcasts a .fuse.OFP message to all Ps it has registered,
containing the line estimates information provided for the OFP
[4]. It then spawns a continuation to collect the fusion replies
from the Ps.
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5) Each P checks to see whether the OR fuses with its composite-
FP.1- If so, the P merges the OFP into its composite and sends an
:add-P-parent message to the OFP, acknowledging successful
fusion [5]. Whatever the fusion result may be, it is relayed to the
PM continuation [6].

6) When all fusion results are in, the PM continuation examines
them and acts accordingly:

" If there is at least one :MATCH result, then fusion was
successful and no further action need be taker,.

" If all results were :NO-MATCH, then the continuation sends a
:create-Platform message back to the PM [71, where a new P is
created for the unmatched OFP.2

" If there were no :MATCHes but at least one :UNKNOWN
result, then the fusion search was inconclusive. This is an
irregular case treated in Sections 4.1.4.8. and 4.1.4.9.

4.1.4.5. Platform Creation

The creation of a new Platform is requested for an OF? only in the case that
the OFP fails to fuse with any existing P during the fusion process (:NO-MATCH
results received from all). A P creation is handled by the same PM that
coordinated the fusion search. The PM learns of the need to create a new P in a
:create-Platform request from one of the PM continuations spawned to collect the
fusion results. 3 Before the PM goes ahead and actually creates a new P object,
however, it must check one final possibility.

Consider the case of an aircraft that appears in the region and is picked up at
the same time by two radar trackers. Assume that the AIRTRAC system is not
heavily loaded and that processes are "keeping up," able to handle new data as
quickly as they are received. In this case Data Association produces :create PORs
for the aircraft, one for each radar, at roughly the same data time. Path
Association, then, receives these PORs, the appropriate FPMs creates a new FPS
for each, and these report to the right FPCs. They, in turn, create new OFPs for
the FPSs (?--3,,-ning no connection possibilities are present), and these OFPs
immediately begin the fusion process. The requests for fusion for both radars'
flight paths, expectedly reach the responsible PM at nearly tho same time. One
request must be handled by the PM first, of course. So the fusion search broadcast
for the first OFP goes out to all Platforms existing at that time. As soon as the PM

1 In this discussion an OFP "fuses, with a Platform if the match is consistent with the fusion
criteria set forth in Section 4.1.4.3.
2 Actually, creation of a new Platform is not this simple. See Section 4.1.4.5. for more details.
3 Platform creation can also be requested by Unfused Flight Path objects (discussed in Section
4.1.4.9.).
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continuation is spawned to manage the fusion result collection, the PM turns it
attention to the second OFP. Another fusion search is broadcast to the same set of
existing Ps, and anothe: continuation is spawned. Soon afterwards, the fusion

search for the first OFF ends unsuccessfully, and the PM receives a :create-
Platform request from the continuation for that search. A new P is created for
that OFP and added to the PM's list of existing Ps. Right on the heals of his
activity comes a second request for a P creation, this time from the continuation
spawned for the second OFF-seems it, too, was unable to fuse successfully V.:h
any Ps. The PM then creates another new P for the secnnd §rP, and it is added to
the existing P list. And the scenario continues ...

What has happened? Somehow we ended up with two different Platforms
for the same aircraft, each housing just a single OFP. Unless one of these Ps is
deallocated and its OFF forced to re-enter the fusion process at some later time,
there is simply no way that the two OFPs will ever be fused together in the same
Platform. This is clearly an undesirable effect-a simple situation made
complicated, and NOT because of unreasonable message delays (in fact, the timely
message delivery is what created the condition'

The problem with this naive Platform creation algorithm is that it neglects
the possibility that the PM can be creating new Ps between the time it sets off a
fusion search for an OFF and the time it gets back a P-creation request for that
OFP-Ps that could and should be checked for fusion with the OFF. We tac led
this problem by requiring a PM to check, before it creates a i~ew P, if any other
creation has taken place while the search was being performed. If so, it begins die
fusion search cycle for the OFF all over again, only this fime just involving he
recently created Ps. Only when the PM is certain that no intermediate creation
has taken place will it proceed with the ictual creation of another new Platform

Unfortunately, this is not the end of our Platform creation difficulties. The
proposed method of dealing with false creations will work fine in most instances,
but it leaves open the possibility that the fusion-search/creation-request loop w-11
continue indefinitely, especially for complicated scenarios involving a Large and
steady amount of new track creations. We have overcome this parctiuar bit of
nastiness by imposing a maximum creation attempts limit for OFMTs, another
tunable system parameter. If the number of creation requests for a given OFF
exceeds this limit, a new Platform will be created no matter what, regardless of
any new P activity. The end result of this policy is that, at the risk of incurring
some amount of incorrectness (minimal, we hope), we have ensured that all
OFPs will eventually be associated wi:h a Platform.

4.1.4.6. Platform Updates

As OFPs receive their own update messages (:FPS-update) from their
currently :active FPS, they immediateiv feed this track up'ate infor.4 'on long
to all their P parents in an .OFP-update notification message. Ihe message
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contains the latest POR line estimatV "nformation for an aircraft's track. When a

P receives an update it immediately tries to incorporate the new line estimates
into its composite FV. The manner in which this is done is the same as during

the original fusion check against the entire OF'; in this case, though, the P need
nly fuse segments no longer than the POR period. The same fusion criteria are

ph&.ced upon the new track data. If the P update from an OFP fails to be fused
properly because one of its segment points cannot correctly match with the
corresponding point in the composite (error radii do not intersect) or because the
composite already has data fror, the same radar source at a scantime covered by
the update, then that OF is considered to have split from the P.

4.1.4.7. Platform Splits

Wat does it mean .hen an OFP splits from a Platform? In fusing OFP
update inforattion by incorporating it into the composite FP, a P makes sure all
its OFPs remain consistent with one another. Just because an OFP originally
fused successfully with a P doesn't mean it will always remain compatible with
the rest cC the OFPs in the P; The explanation in the real world is that two or
more planes could first appear in the region flyir'g very close to each other--so
close, in fact, that their tracki are virtually indistinguishable from one another
from the fusion standpoint. The OFPs for those tracks might easily be fused
together to form a single P. There is no way to zvoid "is possibility; we can only
expect that the aircraft will eventually move off different d.rections, after
which an update from one of their OFIs will violate the "'usion with composite
data from the others, causing a Platform split.

A Platform, like an OFP, dc,.,s not duplicate track .iata contained in FPSs; it
only maintains its composite FP computed from those data from all its OF'Ps.
When a Platform split occurs, then, it is ,omputationally impossil le to "strip off"
the single offending OFP from the "7, reconstructing the composite to allow the
<.* her OFPs to re-nain. There is to choice but to disband the P entirely, notifying
e.qch OFP child. in a "mnoVe-P-,Vare-t massagp. to dibassociate itself with the P.
Upon receiving such a rnot f.cation, the OFP checks to see if it is C'l fused with
any oiher Ps If so, then ttils are fine-in fa:t, the Flatform split rtas sl'cceeded
in eliminating an ambiguous OFF-P reiationship. if it does not have another P
parent, howevc-i, ti..- Cr1' immediately begins the fusion process anew, just as it
did when it wa first n.rated. This dne, we hope, the greater ..mount of line
estimate information the OFP possess,,s ought to z low it to unequivocally fuse
with thK. right Plarw:.

4.1.1.8. Unfused Flight Paths (UFs)

There are occasions during attempted iusion in which a Platform cannot
determnine with complete certainty wh,.ther a, OF1 is a logical match with its
ccmosie because the two paths do not ovei iap in tirie. Most often this is due to
message disorder such thar the P iag slightly ebhi.d the OFP in terms of the
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latest data time each has received. Such a case produces an :UNKNOWN result
for that P. Often while this is happening though, the OFP has successfully fused
with another F. Since the goal of the fusion process is to uniti an OFF with at
least one P, it betomes unimportant whether or not the ;UNKNOWN result is
ever resolved for this particular P.

But what happens if no other existing Platforms are able to successfully fuse
the OFP, either? The PM continuation, having received all the fusion results
(some :UNKNOWN and the rest :NO-MATCH) would notice this fact. The
following difficulty arises: The OFP has not yet been associated with a P,
something that must be done before the fusion process is complete. But we
cannot simply create a new P for the OFP because there's no assurance that the
OFP will not be able to fuse at some later time with one of the :UNKNOWN Ps,
after more information is obtined. What do we do?

The answer we developed is an object called an Unfused Flight Path (UFP),
another dynamic object subordinate to a PM. The main function of a UFP is to
serve as a higher-level object for an OF!' in place of a Platform in the event that
the OFT? remains unfused following the regular fusion process. It is different
from other dynamic objects in the AIRTRAC system in that it is expected to be
allocated only for a short period of time, until the OF can eventually become
fused with a P, either by fusing with an existing P or by eliminating all
:UNKNOWNS cases :o that a new P can be created. The motivation behind a
UFP is the fact that we expect that after some time both the OF? and the
:UNKNOWN Ps will receive additional data through update messages, thus
resolving the indeterminate fusion condition during :ubsequent attempts.

The purpose of a UFP, then, is two-fold.

1) It serves as a "placeholder" in the absence of a Platform, a higher-
level object to which the OF? can send its update messages. Such
messages will contain information about the additic , update, or
removal of FPS children and/or OFP connections for the OFP.

2) It manages additional fusion processes, so-called fusion retries,
for the OFT'. A fusion retry 3 attempted whenever the UFP
receives new information about the OFP through an update
message.

Table 4.4 provides a listing of the various slots of a UFP object, some of
which will receive explanation in the following sections.
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Table 4.4 Unfused Flight Path

The information in an Unfused Sight Path includes the following:

OFP name of the Observed Flight Path
represented by the UFP

status status of the associated OF; keyword, one
of (:actit dnacti)

radar ID the identifier of the radar observing the
tracks of the OF

aircraft type the type of the aircraft

line ustimates cached line estimates of the OFp

cr!ation connections list of names of earlier OFs connected to
the one the UFP represents

termination connections list of names of later OFPs connected to the
cne the UFP represents

failed matches list of names of Ps whose fusion attempt with
the OFP was unsuccessful

fusion retry count number of (unsuczassful) fusion retries
attempted for the OF

PM name of Platform Manager in charge of Ps
of this aircraft type
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4.1.4.9. An Irregular Fusion Process
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Figure 4.9 The Irregular Fusion Process

Fusion processes are considered irregular if they result in the creation of a
UFP. The procedure is different from a regular fusion process only in the way the
PM continuation handles the fusion results it receives from the Ps. The complete
process is as follows, with reference to Figure 4.9, which shows the irregular
fusion process diagrammatically. As with the regular process, it begins when an
ORP is created or dropped from a Platform.

1) through 4) are the same as in the regular fusion process [1,2,3,4].

5) The fusion result frorn Fach P is sent on to the PM continuation
[5]. Since this is an 'ilar case, this result is never :MATCH
(no :add-P-parent r,,.. ation message is ever sent to the OFP at
this point).

6) The PM continuation examines the fusion results when all have
arrived and takes appropriate action. We know that in this case
there will be no :MATCHes but at least one :UNKNOWN (if not,
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then it is not irregular). The continuation sends a :create-UFP
message back to the PM including a list of the Ps that returned a

:NO-MATCH fusion result for the OFP [61.

7) Upon reception of the :create-UFP request, the PM does just that-
it creates a new UFP and sends it an initialization message that
contains the relevant OFP information (line estimates, OFP
connections) as well as the list of Ps that failed the original fusion
search [7].

8) After the UFP is initialized, it sends an :add-UFP-parent message
to the OFP [81, acknowledging the new association of the OFP with
the higher-level UFP.

4.1.4.10. Fusion Retries

The creation of a UFP, again, occurs when the request of fusion from an OFP
results in no :MATCHes but at least one :UNKNOWN, and is made in the belief
that the OFP and the :UNKNOWN Ps involved will eventually acquire enough
update data to "catch up" with each other so that subsequent fusion attempts with
those Ps will provide a definitive fusion result. Recall that an OFP treats its
relationship with a UFP as it it were part of a true Platform, including forwarding
to the UFP all update information it receives from its FPSs. The UFP, by caching
all the FPS line estimates of its OFP, is ready at all times to effect another fusion
attempt without having to request this track information from the FPSs
themselves, as the OFP must do. And indeed this is the major function of a
UFP-to manage fusion retries.
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4) As before, each of the Ps receiving the .fuse-OFP checks to see if

the updated OFP now fuses with its composite, returning to the
PM continuation the appropriate reply 15]. If fusion is successful,
the P also notifies the OR directly in an :add-P-parent message (4].

5) The PM continuation, upon receiving the fusion replies,
forwards a fusion result directly onto the UFP, not the PM.
Depending on what the P replies were, the final result is sent in
either a .successful-fusion-retry, a .failed-fusion-retry, or a
:completely-failed-fusion-retry message (6].

6) Here's how the UFP handles each of the three fusion result
messages:

* successful-fusion-retry -this result means that at least one P in
this fusion attempt successfully fused the updated OFP, and
the UFP is no longer needed. It is simply deallocated.

* failed-fusion-retry -- the retry was not successful, but there was
still at least one :UNKNOWN fusion result from the Ps. The
UFP adds the names of newly failed Ps to its list of failed
matches and increments its fusion retry count in preparation
for more retries. If, however, this count has exceeded the
maximum-fusion-retries (another system parameter), the UFP
treats the situation like a cornpletely-failed-fusion-retry, as
below.1

" completely-failed-fusion-retry -fusion was impossible with all
Ps; therefore, the OFP truly deserves its own Platform. The
UFP sends a :create-Platform message to the PM with the OFP
information it has gathered [7]. It then posts a .temove-UFP-
parent message with the OFP and is deallocated.

4.1.4.11. Fusion in the Example Scenario

How have the results of the complicated fusion processes manifested
themselves in our example scenario? Figure 4.11 on the next page provides a
graphical display of Platforms in the system at the familiar instant in time, the
final output of Path Association. In contrast to the previous screen images, there
is only one area in the display; the data from both radar views has been fused
together to form a clear picture of the region under observation. The composite
flight paths of individual Platforms are drawn as complete lines, with (again) an
identifying string near their origin. (By now the reader has surely become well
acquainted with the scenario so that an identification of the beginnings and
endings of flight paths is unnecessary!)

I The maximum-fusion.retries cap was added so that UFPs do not hang around in the system

indefinitely. It follows from our requirement that all OFFs eventually be associated with a P.
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It appears from the display that the fusion process has completely resolved
nearly all of the ambiguity that persisted at the OFP level. All but one of the
flight paths are well defined from beginning to end, with no hint of the

confusion that existed in Figure 4.6 caused by connected OFPs. Let's take a close

look at the three areas we have been following (previously viewed from two

radar images):

A) The OFP of radari has supplied the data necessary to deal with
the missing FPS in the OFP of radar!; together they form a
complete, unbroken Platform (labeled 6-of-0).

B) Here is the only remaining point of ambiguity in the entire
scenario. Though all falsely connected OFPs have been
resolved, one of the crossing flight paths has remained broken,
with a separate Platform covering either side of the cross (0-of-0
and 6-of-0). The explanation of this phenomenon is that both
radari and radar2 experienced a break in FPSs for that flight
path at the crossing point. There was, unfortunately, no radar
view that maintained consistent observation of the aircraft
across this point, which would have, presumably, been
sufficient to resolve the broken path. It so happened that two
Platforms were created to fuse the OFPs on both sides of the
cross (despite knowledge of the connected OFPs, which
apparently was not available at the time of fusion), but since no
further information was available to contradict this state of
affairs, these two Platforms remained. The result: one platform
(2-of-0) correctly spans the crossing in the area, but the two
others do not.

C) Based on the unambiguous OF of radar2, platform 7-of-0
correctly crosses the entire area. In addition, radarl's view of
the area has allowed for the formation of Platform 0-of-0,
despite the large gap between OFPs of radar2. The radar shadow
of radar2 in this vicinity has been completely overcome.

4.1.4.12. Unresolved ambiguity

From the output cf Path Association demonstrated by Figure 4.11, we can see
that, for the most part, the Platforms produced by the fusion process very closely
model the real-world flight paths of aircraft. However, as exemplified by area B
in our example, there may be certain complicated situations in any given scenario
which might not be resolved completely by Path Association. Hence, we are left
with the possibility that the output from Path Association will still contain
ambiguous or incomplete data. It should be pointed out that the existence of such
ambiguity is not necessarily the fault of poor processing on the part of Path
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Association; rather, it has more to do with the incompleteness of radar data fed

to Data Association.

What are we to do, then, about any unresolved ambiguity? This is one way

in which Path niterpretation would assist Path Association. Path Interpretation
should be able to reason about situations such as the broken Platforms in the
crossing area, for instance. By 1) noting that one Platform terminates in the
middle of the region, and 2) realizing that the aircraft could not possibly have
landed at that point, given the landing speed constraints contained in the
aircraft's model, Path Interpretation could deduce that something unusual had
occurred. It might then also notice a similar problem with the creation of the
other Platform nearby, and, putting all this together, determine that the two
Platforms really should be combined into one. Given this feedback from Path
Interpretation, Path Association could then correctly adjust the collection of
Platforms and proceed as usual.

4.2. System Architecture

Figure 4.12 presents a diagram of the entire system architecture of Path
Association. Pictured are all of the various objects (static and dynamic) of the
system along with the paths of message-passing communication between them.
Though this diagram may give the system a suspiciously data-flowish look, one
mustn't be fooled-a lot has been omitted from the figure for clarity's sake. One
thing we must remember as we view this diagram is that each object pictured
represents a class of objects, not just a single entity. In addition, we must keep in
mind that the system is implemented on a multiprocessor architecture of many
distributed processor-memory pairs. Hence, all the obJec-L 'aae executing their
methods concurrently, leading to a highly complex network of inter-object
relationships and communication.
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FIgure 4.12 Path Association System Architecture

An important high-level hypothesis we are investigating with this type of
system software architecture is that the need for synchronization increases
(opportunities for concurrency decrease) with the complexity of reasoning. Our
experimental evidence supports this claim. While the Data Association
experiments demonstrated close to linear speedup over the range of processors,
the task it was performing was quite simple in relation to the functions of Path
Association. Naturally, the speedup results we have obtained in experiments
with Path Association (reported later), though encouraging, are not quite as
extraordinary as those of Data Association. Our belief is that the potential for
concurrency in Path Association is decreased by the great amount of coordination
and synchronization inherrent in the connection and fusion stages.

4.3. Design Philosophy

In the course of developing the Path Association module of AIRTRAC we
have had to deal with the implications of buildi'g a complex application on a
distributed, message-passing system that does not guarantee message ordering.
Consideration for these issues has necessarily led us to adopt a design philosophy
that we believe is especially appropriate for efficient programming of AIRTRAC-
like concurrent software systems. Our design principles pervade the entire

3-362



implementation of Path Association. Here we list two of the most important,
along with a -few instances of their realization in Path Association:

1) Do the best you can with what you have. Phrased another way: Don't
wait. An overriding concern in Data Association was mal-ing sure data were in
order before making assertions about them. Elabora.e mechanisms were
included to force sequentially of messages at each stage of the design.
Recognizing that such an approach potentially sacrifices performance to some
degree, we attempted to avoid, whenever possible, requiring the complete
ordering of data, even if it meant processing incomplete information. It is
important to note that we adhered to this principle only when doing so did not
compromise the correctness of our solution. Some examples:

" When an FPM receives a POR with a new track ID, it
immediately creates a new FPS for that track, regardless of
whether or not that POR's status is :create.

* An FPC connects in both directions of time and always associates
an FPS with an OFP as soon as possible. In the usual connection
case (at creation of an FPS) an FPC searches backward in time to
find terminated FPSs that might connect, not worrying about
whether all reported FPSs are up-to-date. It deals with the
unusual connection case (at termination) by searching forward in
time for possible connections to FPSs already created.

Both of these examples show our intention that a object be created as soon as
any evidence exists to support such creation.

2) Treat exceptions as exceptions. In other words, program for the nominal

case. Do not build expensive exception-handling mechanisms into the main-
stream processing as this will degrade performance. Rather, include low-cost
exception-recognition mechanisms that will, if necessary, trigger (admittedly
more expensive) operations to resolve the situation. This joins nicely with our
first principle by dealing with any condition as easily and as quickly as possible.
We notice its evidence in Path Association:

" The connection criteria are intentionally simple and
unambiguous (no "degree" of connection probability computed)
because the temporal and spatial constraints involved are usually
sufficient to handle all cases except an occasional crossing pattern.

" We use a simple fusion algorithm that assumes, basically, that if
two paths are near to eac!Oother then they must belong in the
same Platform. A poor fusion can be amended by the detection of
a Platform split. In addition, a UFP is commonly created only in
cases of extreme disorder.
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The motivation for our design philosophy stems from our experience that,
1) in spite of the obvious potential for disorder in the system, things usually keep

up in most cases, and 2) exceptions in our domain (paths crossing or aircraft
flying close together, etc.) are rare indeed. It is beneficial, therefore, to program in
a style that is not too conservative in order to achieve maximum performance.

4.4. Important Features

The Path Association portion of the AIRTRAC system, which we have
described in this chapter in some detail, includes several features worth
highlighting:

Parallel search coordination. This is perhaps the most difficult feature of any
concurrent application with dependencies among many distributed objects. Path
Association has two instances of parallel search: in the connection process a.-
each FPC and during the fusion process managed by the PM. The troubles
inherent in coordinating concurrent search in both procedures should be
apparent from the detailed description of each process.

Retraction of assertions (nonmonotonicity). The unpredictability of message
order in the system and our design principle to go ahead and reason with
available data can sometimes lead to false inferences during connection and
fusion. Path Association must be able to robustly manage the retraction of these
assertions. For example:

When an FPC notices that a connection between two FPSs calls
for a change in connection conditions previously imposed, it
must notify and/or create OFPs as needed to establish the correct
FPS-OFP relationships.

SA PFafform is capable of recognizing when an OFP has been
falsely fused into its composite, and takes the steps necessary to
repair the incorrect association (a Platform split).

Consistency maintenance of cache data. Path Association must provide
appropriate measures to deal with the possibility that high-level objects in the
system may not have complete information about the events of their lower-level
constituents. Some examples:

* Platforms must be kept up with the latest POR information
through forwarded messages from its OFPs so that it can properly
execute fusion of other OFP data.

# Before an OFP can report to a PM for fusion, it must collect the
latest line estimate information from all of its FPSs so that the Ps
can attempt fusion with the most current track data. (Strictly
speaking, this is not a matter of the consistency of cached OFP line
estmates since an OFFP does not store this inforrnation, but in the
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sense that the OFP provides updated FPS data for Platform use,

the principle still applies.)

Whenever an OFP receives notification (in an :add-P-parent or

:add-UFP-parent message) that it has been associated with a P or a

UFP, it forwards its entire store of current FM'S line estimate and

OFP connections to the higher-level object The P or UFP then
filters out all the information it already has, keeping only the data
received by the OF since the initial fusion request (during which
time it had no parent P or UFP to which to report updates). This
also eliminates the complication of unknowingly sending update
messages to recently deallocated objects before notification of such
an event is received by the OFP. (Note that the collection of S
line estimates is itself subject to cache consistency problems, as
mentioned above.)

As a result, Path Association does not simply employ forward-directed, data-
driven reasoning. Instead, it uses several feedback paths of communication that
add greatly to the complexity of the entire system.

What is new and exciting about all of this? After all, many knowledge-based
systems purport to include some or all of the above features. The important
consideration to keep in mind is that Path Association must deal with all of these
problems in an asynchronous, distributed environment of dynamic entities,
subject to the possible indeterm.inacies caused by message disorder. In this
context the design and implementation of Path Association represent a
significant challenge.

4.5. Outstanding Issues

Having described the complicated software architecture of Path Association
and the design philosophy which dominated our work, we are left with the
following important questions:

" What techniques and constructs are useful for development of
application software for murirocessor?

* Can we achieve major speedup of large, symbolic (knowledge-
based) applications through concurrency?

Each of these matters -"- be addressed in ,.,r min- the nex: two chapters.



5. ELMA

This chapter describes work which addresses the irst of the issues

mentioned in Section 4.5, namely, what techniques and constructs are useful for

development of application software for multiprocessors? We discuss

programming constructs developed in the course of developing Path Association.

The result of this work has come to be referred to as ELMA, an acronym for

Extended Lamina for Memory-management Applications.

ELMA consists of additional syntax and constructs for programming the

CARE architecture in the object-oriented style at a higher level than LAMINA.
From the outset of this project a strong effort has been made to separate
application-dependent c,)de from anything which could be generalized. Much of
the latter has worked its way into ELMA in the belief that it could be useful to
other applications. On the other hand, the task of writing Path Association has
been considerably simplified by the presence of these specialized, .igh-level
constructs.

ELMA actually provides a complete programming interface insofar as whole
applications are realizable without recourse to LAMINA. In fact, no knowledge
of LA - " is required. We beiieve the ELMA Programming Interface is
considera-. , tore transparent to the programmer than "raw" LAMINA, albeit dt

some loss of genera!ty.

ELMA provides the CARE programmer with the following:

9 Syntax and constructs for managing coincurrency and memory
usage.

* t .. arary of definitions of special-purpose LAMINA objects, for
the programmer to further specialize ("mix in") if required.

* A library of useful abstract data types.

These features are described in the following secdons. Appendix 4 contains
.n annotated exan'.::te ELMA program. The reader is referred to the ELMA
l-t.grammers Guide (Noble 88] for further details.

5.1. Syntax and Constructs

Ec'erience from earlier applicacions developed o: CARE, such as ELINT and

Da%'a Association, strongly supports the need for strict control of concurren rbject
creation. Bort" these applications, however, present rather ad hoc approai'ies to
:mpiementing such control. ELMA provides the programmer with hi;gh-level

nstructs which remo-,e the burden of writing su.h control code withx&:

,Atduly sacrificing performance.
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Unlike these earlier applications, AIRTRAC involves extensive allocation

ad deallocation of objects. Both Observed Flight Path and Platform objects are

destroyed when evidence for the existence of their corresponding real-world

counterparts disappears. For example, a platform believed to correspond to one

aircraft will be deallocated when evidence appears to the contrary; i.e., at least

two distict aircraft tracks are subsequently observed. An important feature of

ELMA, therefore, is the facility it provides for managing the storage of dynamic

objects at the level of the application. 1 This section describes these and other
constructs.

5.1.1. Memory management

ELMA memory management is based on free pools. The notion of a free
pool is easy to understand in a sequential program. The program maintains a list
of (pointers to) commonly used objects (or records) which are allocated in
advance. New objects are taken from We pool rather than being allocated from
heap storage directly, and returned to pool when deallocated. Apart from
syntactic nicety, free pools offer an elegant and simple memory interf& .-e that puts
the appli. ,:on in control of its own memory management (of pool objects).
New storage is allocated by simply returning the address of an empty, already
allocated object in the pool.2

In ELMA, a free pool is an cbject in the local address space of a manager
object which contains th. remote addresses of objects of some type (all the same
type), the latter spread out over a predefined pool of sites in the multiprocessor. 3

A manager may own multiple free pools, as in the case of Path Association
Platform Manager objects, which have free pools of both Platform and Unfused
Flight Path objects. Objects allocated from a free pool of a manager are said to be
subordinate objects. As in the sequential case, a new free pool object is allocated
by returning its (remote) address. However since objects in the F,'ol are separate
processes (typi,-ally on remote sites), the storage associated with a newly allocatea
object can only be (re-)initialized by sending a message to that object. This slot
initialization message is automatically prepended to any other messages sent to
the object, or sent separately if there are no such messages.

1 Note that processor memory is not simulated explicity 1rl CARE; memory and memory
management are both inhented from the host LISP machine. This makes the simulator
inherently non-deterministic since consing can take an indetermirate amount of time.
Simulation measuren"ent) also derive some randomness from the non-deterministic network
routing employed which depends on CARE load conditions.

Empty free pools can of course be made to grow in s,:e to accommodate requests for new
ooJects.
3 We use the term site rather than processor to refer to one CARE processing element, actually

two processors sharing local memory.
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As for sequential free pools, a new object is created only when the pool is

empty. Unlike sequential free pools, in which new storage is usually allocated

within local address space and always allocated on the same processor (since there

is only one processor!), a new ELMA object can be allocated on any site of the

multiprocessor. The programmer s "-p-ciies a list of permissible site numbersl for

placement of subordinates of each manager. A function can also be specified

which takes this list as its first argument and returns the CARE site for a new

subordinate. If the latter is omitted ELMA chooses a site randomly2 from the

specified list.

Similarly, object deallocation involves sending a :deallocate-self message to
the subordinate object as well as updating the state of the manager object's free
pool object. Furthermore, since the storage for one object can of course be
allocated and re-allocated any number of times, there is a need to distinguish
between different "incarnations" of a dynamic object to avoid proper handling of
messages. Message disordering makes it possible for messages sent to a object to
arrive after it has been deallocated, i.e., after it has received the deallocate-self
message. In fact, if the disordering is extremely bad, it is even possible for an
incarnation of a subordinate object to receive a message intended for a previous
incarnation, since LAMINA messages are sent to a given remote address and this
does not change between incarnations.

This problem is solved by taking the obvious approach of associating a
name 3 with each free pool object; every object is renamed each time it is
"reincarnated," i.e., re-allocated from the free pool. The ELMA programmer can
specify how deallocated objects are to handle messages which are received out of
order, on either a object type or object instance basi3. Possible actions include:

" always execute

" return to sender

* forward to another obiect (the forwarding address can be
determined dynamically if desired)

* drop and ignore (default)

* signal an error (useful for debugging)

1 A CARE site number is an integer between zero and the size of the CARE grid minus one and

is used to reference an Prray of CARE sites which are simulator components.
2 By default ELMA employs a random load balancing scheme for dynamic (subordinate) objects.

This is reasonable in view of the fact that there is no way of knowing a priori whether any

given dynamic object will be busier than another. In fact etmpirical evidence suggests that in
the absence of such load knowledge, random allocation is optimal. Note that static (manager)
objects are aliocated on sites determined by the :rograrmmer.
3 In fact, all ELMA objects, including managers, have a unique name. These are simple strings
in the present implementation.
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ELMA replaces the LAMINA message sending construct with one which

takes A destination name rather than remote address.1 The sender is therefore
able to specify which particular incarnation of a object the message is intended
for.

One final but important thing to note about the free pool mechanism
described here -5 that it competes with application-level methods for the
computational resources of the multiprocessor. Unless system resources are
available on other sites for subordinate object allocation and on the site of the
manager object for handling various handshake messages, no performance gain
can be expected. The free pool mechaxiism effectively trades off available
resources against object creation latency; providing the resources are available,
object creation latency is reduced.2

5.1.2. Smart message sending

Nakano (p. 36, Nakano 87] writes the following comment about the Data
Association module.

"A significant part of the [Data Association] LAMINA concvrent program
implements techniques to allow a LAMINA object receiving messages from a
single sender to handle them as if they were received in the order in which they
were sent, without gaps in the message sequence. By doing this we incur a
performance cost because the receiver waits for the arrival of the next appropriate
message, rather than immediately handling whatever has been received."

-IJnfortunately such code can be quite convoluted; the presence of additional
code for enforcing order detracts enormously from program clarity. The mapping
from concept to application code is less apparent and the program is
correspondingly more difficult to understand, maintain and debug. Nakano
introduced several nechanisms to simplify the message ordering task, which
7eflects the Data Association philosophy of "let's make sure everything is in order
before we attempt this action."

As mentioned earlier, the approach taken in Path Association is
fundamentally different.

First, for reasons described earlier, we have programmed to avoid
message waiting whenever possible.

LAMINA sending is ELMA mailing.
2 Reduced because the time for object creation is replaced by the time to send a message and

receive an acknowledgement. Since a message is invariably sent to a new object anyway, it is
usually a matter of just prepending ?he additional information necessary to reinitialize the
object, rather than sending an additional message. The net cost of this is only slightly more
than the cost of sending the original message alone so the "creation" is very cheap.

3-369



Second, when order is essential it is enforced automatically and is
transparent to the programmer wherever possible. Needless to
say, there are still times when message order is of paramount
importance. For example, although the outcome of initiating
creation of a object and then sending a message to that object is
ill-defined, the programmer's intent is clear enough; have the
object handle the message once it is created. ELMA constructs
reflect our conviction that the programmer should not have to
worry about details such as this. Indeed in this situation ELMA
automatically caches the message (and any others) for subsequent
re-sending upon receipt of an acknowledgement from the newly
created object (cf. example program in Appendix 6).

Third, general-purpose mechanisms exist for those times when
sequentiality is desirable.

5.1.2.1. Automatic deferral

To implement the name-based sending required by the free-pool
mechanism, each ELMA manager maintains a name table, which translates
names to remote addresses. This table is also used to store data about the various
objects known by the manager. Managers use this data to automatically defer
messages to subordinates still being created. This is transparent to the
programmer who can send messages to an object given its name without concern
for the status of the object.

5.1.2 2. Combining multiple messages

Sometimes it is convenient to group messages together to guarantee
sequential execution of their methods. Of course it is always possible to define a
single method which includes the messages in the group but this defeats the
purpose of structured programming. ELMA provides the mailing-together
c.-,,struct for the desired functionality.

5.1.3. Application-level meters

Although the simulator provides sophisticated hardware-level
instrumentation for CARE [Delagi 87a], LAMINA provides nothing similar for
the application level, leaving this entirely in the hands of the programmer.
ELMA, however, provides numerous meters for recording application-level data
which are useful for both debugging and performance analysis. This is a major
reason why programming in ELMA is ea.sier than in LAMINA. Methods and
functions are included for:

* recording received messages
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" recording sent messages

" timing LAMINA methods ("triggers")

" timing LISP methods and functions

* measuring message queue lengths

" measuring dynamic object recycling, i.e., free pool utilization

" recording user-specified events

" measuring user-specified data

These are described in detail in the ELMA Programnmers Guide [Noble 88].

5.L4. Other Constructs

ELMA also includes a variety of utility functions as well as some c.nstructs

which are refinements of those found in LAMINA. These are described in detail
in the ELMA Programmers Guide [Noble 88].

5.2. Specialized objects

ELMA includes a small library of specialized object types and mixins to
facilitate program development through code reusability. An ELMA application
is implemented exclusively in terms of managers, subordinates and allocators.
These object types are described in this section.

5.2.1. Manager

Managers are objects which are allocated statically l , i.e., at initialization
time, and are typically responsible for tasks involving many (subordinate) objects
such as distribution, search, and object creation. Each manager can maintain zero
or more free pools of subordinates. The number of managers required depends
on the partictlar application and its input data and must be determ;. ed a priori.
For example, Path Association has four types of managers in the folluwing
numbers.

I Managers can also be "cpherneral," that is. created d,-amcally to perform a specific task.

At the present time, however. ELMA does not support non-static managers.
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Table 5.1 path Association Mangers

DAS one simulates Data Association
by reading POR. from
scenario file

FPM ohe per aircraft type/radar distributes PORs to FPS&

FPC one per aircraft type/radar connects FPSs into OFPs

PM one per aircraft type fuses OFPs into Ps

5.2.2. Subordinate

Subordinates are objects which are created dynamically, i.e., at run time, by
managers and typically contain the state of the system. Subordinates can be
allocated (created), deallocated, and reallocated many times over in the course of
program execution.

5.2.3. Allocator

Allocators are objects which create manager objects at initialization time and
start applications. There is only need for one allocator object per ELMA
application. The (start-ELMA) call creates the allocator and initiates the
,nitialization process, in accordance with initialization data supplied by the
application. This initialization data includes the following:

" allocator name

" allocator type

" allocator site number

* start message

" start message recipient (name)

" manager initialization data

The allocator is created on the specified site and given the specified name.
Thereafter, the managers specified by the manager initialization data are
initialized. When all newly created managers have acknowledged their creation
to the allocator, the allocator Initiates execution by sending the start message to
the start message recipient.
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5.3. Ab( ar iata types

ELMik ,Iio includes a library of abstract data types (ADTs) such as the
following:

" Ta., ADT which can be arbitrarily large, of arbitrary dimensions
end' ndexable on arbitrarily defined keys

* K<ing buffer ADT for efficient maintenance of time-dependent
daU, i.e., the addition of new data and timely removal of old,
" o ;,f date" data.

Most ot these ADTs are so general that they would be a useful addition to
any softwa- .'-rary. They are included in ELMA simply for the convenience of
the p!.ogr,r,,. r. Refer to the ELMA Programmers Guide [Nob!e 88] for more
details.
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6. Performance

This chapter describes work which addresses the second of the issues
advanced in Section 4.5, namely, can we achieve significant speedup of large
symbolic applications through concurrency? In particular, we discuss the design
and execution of a series of experiments to determine the performance of Path
Association. We show that Path Association achieves an S64,4 speedup of 12.
This is contrasted against Data Association's linear speedup over an even broader
range. We attempt to reconcile our understanding of Path Association with these
earlier results and the experimental results discussed herein.

Common terms appearing in this cnapter are defined below.

v Speedup:

Speedup Sn,rm is defined as the ratio Tn/Tm, where Tk characterizes
the execution speed of a given task on a k-site multiprocessor1 . Tn
and T, represent the same program running on n-site and m-site
mufiprocessors respectively.

* Scenario:

Simulated input data (PORs for Path Association; RT?,s for Data
Association). The number of simultaneous aircraft in the
scenario dictates the amount of data parallelism and thus the load
on the system.

" Exception:

A scenario situation involving one or more tracks which does
not conform to regular behavior, for example, the splitting into
two tracks of observations which had previously been detected as
only one track.

* Data rate:

The rate at which scenario data is actually put into the system,
varied in order to load the system and typically faster than that
specified by the scenario. A very slow data rate allows the system
time enough between inputs to return to quiescence; a very fast
data rate can overload the system2.

Tk is greater if execut-on is f.s'e:. This subs:.-es Nakano's defi-i;io:n (Nakano 87], in which
-he Mvse ratio TraITn  is the ra:io of :ask execu:ion imes. sinc :nhe latter obviouslY

characterizes task execution speed.
2 System overload is characterized vy queues of unbounded size.
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6.1. Experiment Design

There are a tremendous number of parameters affecting Path Association.
These include the number of CARE sites (grid size), ELMA free pool sizes (initial

size and threshold size for replacement), input scenario (size and exceptions),
input data rate, and application-specific parameters such as connection search
interval, connection ring buffer length, fusion retry period, maximum creation

attempts (of new platforms). The number of observables is even greater:
processor utilization, update and creation latencies, message frequency, method
and function execution times, free pool utilization, queue lengths and service
times, correctness of output, etc.

For our initial experiments we chose to focus on three parameters, namely
CARE grid size, input scenario, and input data rate1 . Specifically, we chose to
explore the following hypotheses:

* For a given input scenario, performance improves directly with
grid size.

" For a given grid size, performance degrades with increasing input
scenario exceptions, slightly at first and then markedly.
Exceptions require invocation of relatively expensive exception-
handling code. Thus while small numbers of exceptions can be
tolerated with only slight loss of performance, large numbers
usurp resources to the extent that performance is severely
degraded.

Figure 6.1 shows a profile of the base input scenario we generated to test
AIIiRTRAC, the so-called CONTROL-10 scenario. There are three dimensions to
any scenario: length, -. idth and exceptions. The scenario must be long enough to
enable the system to settle down into steady-state behavior. It must be wide
enough, i.e., contain enough simultaneously observed aircraft as manifested in
PORs per cycle, to provide sufficient data parallelism and thus opportunities for
parallel computation. Finally, it needs exceptions to invoke exception-handling
code which causes assertion retraction or computational "unwinding."

Results of other experiments n progress "iil appear in a forthcoming paper.
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The follgwing characteristics should be noted:

o The scenario contains three types of aircraft which are observed

by three different radar sources.

* Scenario duration is 900 seconds, which constitutes 18 POR

periods of 50 seconds each1. Each POR consists of 5 scans of data,
i.e., the scan period is 10 seconds.

e After an initial buildup, approximately 100 PORs (never less than

85 and never more than 113) appear each POR cycle2

* Approximately 20 new PORs3 appear each POR cycle

• The number of new PORs surges to twice the average just before
the end of the scenario (and although this "bump" is not
unrealistic of real-world data, it does complicate measurements)

Two experiments were designed and performed: the Basic Speedup
Experiment tested the former hypothesis and the Exceptions Experiment the
latter.

" Basic Speedup Experiment:

We ran AIRTRAC for CONTROL-10 on six different grid sizes: 4,
8, 16, 32, 64 and 128.

" Exceptions Experiment:

We generated two additional scenarios, CONTROL-1OX and
CONTROL-IOXX, almost identical to CONTROL-10 but
containing approximately 10% and 30% exceptions respectively.
We then ran AIRTRAC for both of these scenarios on the three
largest grid sizes: 32, 64 and 128.

The following section addresses the question of how exactly we measured
system performance, i.e., what quantity,Tk, we chose to characterize execution
speed.

I For trend analysis purposes a longer scenario would have been desirable but simulator

garbage collection problems limited the size. One AIRTRAC run for the CONTROL-10 scenario
ran for 2 to 3 hours on a TI Explorer II with 16MB of physical memory and 100MB of virtual
memory.
2 Trial runs indicated that 100 PORs/cycle was adequate for our purposes. This corresponds

to approximately 33 simultaneously observed aircraft, since one aircraft is picked up by three
different radar sites.
3 A "new" POR corresponds to a previously undetected aircraft.
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6.2. Quantitative Performance

6.2.1. Criteria

Performance evaluation of parallel systems with continuous signal data
input is a topic which justifiably warrants a separate paper. In the context of
AIRTRAC, however, the bottom line is execution speed; the goal is to achieve
speedup with increasing multiprocessor grid size, and preferably linear speedup
at that. The approach taken with Data Association was to fix the input data rate
(scans of data per second) at some "reasonable" value determined a priori and
measure key latencies at that data rate1 . This is not by itself a reliable measure,
however, since a given data rate can affect different grid sizes in qualitatively
different ways. For example, a data rate sufficient to keep a large grid busy is
likely to stress the smallest grids to the extent they will simply be emptying
backlogged input queues for the duration of the scenario and beyond. (This
behavior is evident in the latency graph for the highest data rate in Appendix 1).
This is undesirable since it is the steady-state behavior of the system which is of
interest2.

Subsequent work refining the ELINT application has led to the notion of
sustainable data rate, which is defined as the maximum data rate for which
designated latencies do not increase over time. Speedup is determined by
plotting sustainable data rate versus grid size rather than latency. The choice of
latency is quite important, since latencies which reflect sporadic, irregular activity
are not representative of the steady-state behavior of the system. Care is also
required in selecting latencies so that they indicate the true performance of the
whole system, not just a portion or subsystem. For AIRTRAC we monitored five
latencies and used three of these-FPS update latency, Platform update latency,
and initial fusion latency-to determine the sustainable data rate.

" FPS update latency:

Time between a POR for an existing FPS entering the system and
being incorporated into that FPS.

* Platform update latency:

Time between a POR for an existing Platform entering the system
and being incorporated into that Platform.

" Initial fusion latency:

1 Latency is defined as the duration between the time when the system receives a datum (a POR
in the case of Path Association) and the time when it actually uses that datum to assert some
fact (for example, incorporates the POR data into an FPS).
2 The underlying problem is really how to determine steady-state behavior from simulated
runs of relatively short duration.
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Time between a POR for a newY PcLO d, dEtering the -ystem and
the result of the first fusion attempt, i.e a ratch or otherwise,
being made known to the appropriate Pittorm Manager.

Note that only the initial fusion latency truly :sects system throughput as a
whole, since unlike FPS and P updates, only the -' al, fusion process requires a
chain of messages between objects of all types:

FPM->FPS->FPC->FPO->PM->P

Nevertheless, the other two latencies are of interest since they characterize
the more common and certainly more regular update tasks. A well-tuned Path
Association would ideally sustain approximately the same data rates for all three
types of latencies. A large disparity would indicate that part of the system is
sustaining the load while another part (or the system as a whole) is not, thus
suggesting load imbalance of some sort.

Unfortunately the relatively short length of the input scenario (necessitated
by simulator limitations) combined with irregularities in the scenario itself made
latency trend analysis extremely difficult (cf. Appendix 1 for example latency
graphs). The straightforward l.near regression analysis program for determining
the trend over time of a latency which had sufficed for ELIT failed for
AIRTRAC primarily because of insufficient data. in addition, the surge in new
PORs occurring towards the end of the input scenario often caused a misleading
rise in initial fusion latencies wi'ch further skewed trend analysis results.

Sustainable data rate thus required a new definition for Path Association.

* Sustainable data rate:

Sustainable data rate SDRa,b is defined as the input data rate for
which absolute latencies are below a threshold of a at least b
percent of the time.

This definition meets the objectivity requirement that the sustainable data
rate be program determinable, and has the following additional advantages:

The definition allows for some exceptional latences in the course
of a run providing the system recovers, i.e., the average latency
stays low. This permits excessive latencies resulting from short-
lived surges in system load, such as those due to the spike in new
POPs in the input scenario, to be treated more fairly.

This definition is also a meaningful and adequate engineering
specification for perfomance.

The following two sections describe experimental results obtained using a
criterion of SDRg, O.9, for g in Table 6.1. In particular, we measured sustainable
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POR frequency, defined as the number of PORs per second. For example, a
sustinale FR fequncy. of 10 Hz corresponds to to a POR period of lO0ms

which in turn corresponds to a scan period of 2OmsI.

Table 6.1 Sustainable Data Rate Latency Thresholds (13)

FPS Update 40ms

Initial Fusion SOOmS

P LaS form Update 60ms

6.2.2. Experimental results

6.212.1. Basic speedup experiment

Figure 6.1 below shows the results of the basic speedup experiment.

1Given a sustainable POR frequency of 10Hz and 100 PORs per cycle in the input scenario,

1000 PORs enter the system each (simulated) second. At this rate the scenario's entire 1500
PORs are pumped into the system in a mere 1.5 seconds. (Due to buildup and builddown,
howev-.r, the actual time is longer).
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Sustainable POR Frequency vs. Grid Size
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Figure 6.1 Basic Speedup Experiment Results
Sustainable data rates for CONTROL-10 scenario on grids 4, 8, 16, 32, 64, and 128, with
alternative load balancing schemes for grid size 32.

The following should be noted:

* Each point, except for grid size 4, represents the minimum
sustainable data rate of all three three latencies measured.

Results for the 4-grid require special explanation. For this small
number of sites all managers shared sites with other managers
and subordinates and were so overloaded that, even for the
slowest data rate tested, there was no sustainable data rate for both
update latencies, i.e., these latencies exceeded their respective
thresholds for all data rates tried. The point for grid size 4 is the
sustainable data rate for initial fusion latency alone.

* For grid sizes 4, 8, and 16, managers and subordinates alike share
all sites.

For grid sizes 64 and 128, all managers have dedicated sites and
subordinates share the remaining sites.

For grid size 32, two allocation schemes were tried. The low
point, 10a, corresponds to 10 managers with dedicated sites and 12
managers and all subordinates sharing the remaining (22) sites.
The high point, 10b, corresponds to dedicated manager sites for all
22 managers with subordinates sharing the remaining (10) sites.
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Queue data for 10a shows long queues for some of the managers
lacking their own site. The marked in',rease in perfom.Ance can
clearly be explained by manager bottlenecking in the former
scheme, which is mitigated in the latter since previously affected
managers no longer compete with subordinates for
computational resources.

" Absolute latencies decrease with grid size (.-,s observed for Data
Association).

" For grid size 8 and beyond, the sustainable Iata -ate is increasingly
dictated by the initial fusion latency. For the grid sizes 64 and
128, the two update latencies are almost an order of magnitude
smaller (approximately 10ms) than the specified latency
thresholds. Initial fusion latencies, on the other hand, are just
under the 500ms threshold.

SS64, 4 speedup is 12, i.e., a twelve-fold increase in the sustainable
data rate accompanies a sixteen-fold increase in grid size from 4 to
64 sites. This is in contrast to Data Association's achieved S64,4
speedup of 16, i.e., linear speedup.

• No additional speedup is observed beyond 64 sites. This indicates
that Path Association processing this input data (no exceptions) is
manager-limited, not subordinate-limited. Manager queue data
alse supporn this conjecture.

6.2.2.2. Exceptions experiment

Figure 6.2 below shows results of the exceptions experiment.
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Sustainable POR Frequency vs. Grid Size
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Figure 6.2 Exceptions Experiment Results

Sustainable data rate for three scertarios with increasing numbers of exceptions:
CONTROL-10: 0%; CONTROL-1OX: 10%; CONTROL-IOXX 30%.

The following should be noted:

* Performance continues to improve beyond 64 sites for both
exception-full scenarios (CONTROL-10X and CONTROL-10XX).
This suggests that resources underutilized (sites for dynamic
objects) in processing the exception-less (CONTROL-0) scenario
are utilized more fully for the exception-full scenarios.

Performance for CONTROL-10X is only marginally worse than
for CONTROL-10 (12Hz vs. 16Hz for a grid size of 128).

Performance for CONTROL-10XX is significantly worse than
either CONTROL-10 or CONTROL-10X and improves less with
increasing grid size.

6.2.3. Discussion

* Load balance:

How uniformly the computational load is distributed both
spatially and tempcrally over the sites in the multiprocessor.

The basic speedup experiment clearly supports our first hypothe<s that (for
the given input scenario) performance improves directly with grid size. Two
observations, however, indicate that Path Association as implemrented is
manager-limited. The most obvious of these is the lack of pertormance gain
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beyond 64 sites. RecalEng that al mangers reside on dedicated sites and that the

number allocated is the same for both the 64, and 120c grid (namely 22 sites), the

only thing distinguishing the 128 grid from the 64 grid is the presence of an

additional 64 sites for dynamic objects. If the system were subordinate-limited,
these additional objects would reduce bcttleneckirng -Ane lead to improved
performance on the larger grid.

The second observation is the marked difference ir. performance for the two
manager allocation schemes used for grid size 32. The poor observed
performance for the first scheme in which some managers share sites with
subordinates indicates the presence of manager bottlenecking. This bottlenecking
is alleviated in the second scheme because all managers have their own site.

The exceptions experiment supports our second hypothesis that (for a given
grici size) performance degrades with increasing input scenario exceptions. Given
our s/stem design in which exception detec 'n is cheap btxt exception handling
relatively expensive, this result is not unexpected. Small numbers of exceptio.s
are tolerated with only slight loss of performance, but large nunibers aramn
computational resources and lead to severe performance degtada-to,. We
believe this appioach is justified given the domain of aircraft tracIng; exceptions
of the kind generated for the purposes of this experiment are not commonly
observed In practicel.

Path Association clearly suffers from load imbalance and it is apparent that
performance is impaired by a few extremely busy managers. Queue length and
service time data hidicate that the PMs are the mc3t tottlenecked, followed by
certain FPCs; FPMs do not appear to be overloaded. Fvrthermore, the sustainable
data rate is heavily dictated by the initial fusion latenc.y (except for grid size 4)
which is further evidence for manager bottlenecking, since a well-tuned,
"balanced" Path Association would ideally sustain approximately the same data
.ates for all three types of latencies. We cannot use this data alone, however, to
determine which types of managers are most severely overloaded since we have
no latency data which inciudes connection time and do. s not include fusion
time, or vice versa; neither FPS nor P updates are routed via an FPC or PM.
Queue data actualiy indicates that both types of managers fo: one aircraft type2 are
considerably busier thdA those of the other two aircraft types, although the
differenze, a-'oss aircraft types is less marked for PMs than for iPCs. In any case,
the (unirn-periented) solution i. to decompose PM and FPC managerial tasks,
.e., further 4i~tri'.;:te '.he work of these managers, particularly the work of the

PMs.

SUnfortunately, t excep L*n 1and:ng code took most of the time to design, deve!op and

debug.
2 The number of PORt cffers for each of type of aircraft, the scenario is in effect the
superimposition of , _.:'-ir'raft s-enarios.
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The performance of Path Association is influenced aiversely by the need for

coordination .between managers and subordinates inherent in the connection and

fusion processes. This need for coordination, or synchronization, is a serious
threat to concurrency. Indeed, a pessimistic conjecture is that concurrency
achievable with complex reasoning problems in general will be limited by the

synchronization requirements of their sub-parts, i.e., sub-problem dependencies.
Further conjecture is fruitless, howc.ver, until the known bottlenecks have been

first removed from Path Association. Potential remedies are discussed in

Chapter 8.

Processor utilization L3 relatively poor in Path Association, again du:e to load
imbalance. For example, for grid size 32 and a sustainable POR frequenz- of 10Hz
(1 POR every !00ms), less than 50% of the processors are utilized 801 of the time
(with naturally less processor utilization at slower frequencies).

Table 6.2 compares data rates for Path Association and previous LAMINA
applications. This table is offered as a rough guide to quaniiative performance;
care should taken interpreting the numbers since each application not only runs
from differer.t input data but employs a different criterion for sustainabilityl.
The larger Path Association data rate reflects both a very much wider input
scenario, many more LAMINA and LISP objects, and much more computation.

Table 6.2 Data Rates for Various LAMINA Applications

ELINT < In's per scan

Data Association 5ms per scan

Path Association 12ms per scan (60ms per POR)

In conclusion, Path Association achieves monotonically decreasing speedup
up to 64 or 128 sites, depending on input data. Although poor contrasted with
Data Assozation's linear speedup up to 100 sites, tbh.i result is perhaps reasonable
given the the complexity of the connection and fusion processes 2 and the
amount of input data processed. Furthermore, given our current understanding
of bottleneck locations, we expect to improve upon this result with future design
enhancements.

t In fact, Daa Association has no -o.t'3n of sustainable data rate.

2 By conpiled LAMZNA code count alone. Path Associaticn is almost ten times larger Umn Data

Associa' ion.
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6.3. Qualitative Performance

Qualitative performance naturally requires some retic oi quality. For Path
Association this Is the quality of the resuiting Platforms,- but evaluating this is far
from trivial. Data Association was completely reirnplemented in BB1 which
provided a serial implementation to compare results against; output from the
serial program was by definition "correct."! Path Association has no serial
equivalent and a reimplemnertation does not seem viable on account of its size.
The approach to date has ben to visually inspect Platform output and check for
"expected" connections and Ls,-ns which do not materialize. The most that can
be said is that Path Associatior, doe; ;et fail by these criteria. Connections and
fusions are imperfect on occasion, N'. ±, ese results are explainable in terms of the
heuristics and parameters governing these operations. The issue of measuring
qualitative performance remains one which has yzt to be addressed effectively.

BBI is a serial blackboard system.
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7. Lessonts

This chapter describes the lessons we have learned in the course of
developing Path Association.

7.1. Programming Paradigm

The Path Association system embodies many interesting i(Aeas about
parallel programming on CARE-like architectures. Many evolved out of earlier
work within the Advanced Architectures Project developing "ELINT (in CAOS
and LAMINA) and Data Association. The elements of this programming
paradigm can be sumnmarized as follows.

*Object-oriented

*Structured in terms of managers and subordinates

*Concurrency through replication and pipeliningl

*Implicit continuafions

*Control through handshaking

*High-level constructs (initialization, creation, deallecadion,

sending)

7.2. Progranr development

The First Law of Parallel Programming could be stated simply as:

1it wi13 go wrong."

Humans are essen~tially serial thinkEr3.2 Our intuitions and assumptions
can as.y lead us astray programming concurrent syNtem-. Only by chekn

these instincts and taking the time to investigate the full ramnifi-:ations of'
concurrency is it ;ossible -o achieve successfui paraliei programs. This is
especially true of symbolic applications, such as AIRTRAC, where timelorder
dependencies are often subtle and yet critical. On several occasiwts these
dependencies were only apparent a posteriori- Chiefly for this reason, it has been
our experience thei. approxin- ately one order of magnitude more tite is required
.o develop parallel program- th-an their serial equivaleats. Table 7.1 corrpLres
development time for the two mrplementations of Data Acssociation.

-Parth Associinion has oly a loose piciestructure; a 'Oetter example is Data Association.
2 hsi o dn n~re~tu~eii.gparallelism. High-level rezsoning, on the other

;,and, seems best character--d 4s a serial process.
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Table 7.1 Data Association Implementation Times

852 Two peron-weks

LAMINA One pemon-yr

There is, however, reason for optimism. Both the ELINT and Data

Association applications which consist of less than 50KB of compiled LAMNA
code took approximately one person-year to develop. Path Association which
consists of '~-r 300KB of compiled code was completed in the same amount of

time1 . Clearly, we are doing something better. A contributing factor which
should not be understated is what he have learned from previous applications.
Probably the biggest contributor, however, has been the intermediate ELMA layer
we developed to support the application. Needless to say, considerable time has
been gained by being able to program at a higher level of abstraction. Debugging
time has also been slashed, not only because many ELMA constructs were
debugged independertly of Path Association but also because of the various
application-level meters provided.

73. Load Balancing

Speedup of parallel applications is invariably imited by bottleneck, which
arise due to poor load balancing. Results of the basic speedup experiment
indicate that Path Association performance is certainly no exception. Two load-
balancing issues are involved.

The first involves the placement of newly-created objects. The goal is to
distribute such objects as evenly as possible without recourse to a centralized site

allocation facility. 2 Several schemes have been used in the past.

" statistical: each site has information about neighboring sites

* knowledge-based: uses knowledge about the domain

* random

We used the same modified random load balancing used by Data
Association [Hailperin 87, Nakano 871 which essentially involves random
selection from the set of all sites excluding those used by managers (providing the
multiprocessor is large enough). Excluding dynamic objects from manager sites
works well, aithough it is likely that some managers do not require a dedicated
site.

Excludes graphics in.terface, ELMA, analysis code, e:c.

2 Actually, 'he goal is to distribute objects such t.hat the work they do is as even as possible.
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The second issue involves overloaded objects, such as some Path

Association managers. When a site cannot cope with the load of even a single

resident LAMINA object, the work of that object must be divided and distributed.
This then reduces to the basic problem of decomposing a task into multiple,
independent sub-tasks. Unfortunately, there are no dear-cut rules for doing this.
Furthermore, the potential need for synchronization among sub-tasks could
become a limiting factor which prevents finer granularity and thus better load
balancing.

7.4 Performance evaluation

Performance evaluation of continuous parallel systems is difficult. The
notion of sustainable data rate has proven to be useful for quantitative
performance evaluation. Qualitative perforinance evajuation is tied more
closely to the nature of the application and is less tractable. One way to evalua.e
z:ualitative performance is reimplement the application serially and compare
results of the serial and parallel programs.
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8. Future Work

With only two series of AIRTRAC experiments performed to date, many
interesting experiments and enhancements remain for future work.

Ad-itional experiments worth pursuing with the present system include:

* measure performance gains afforded by free pool mechanism;
verify or disprove that ELMA free pools offer performance
advantages in addition to the proven syntactic ones.

" measure/analyze timing data to determine the cost of exception
recognition and handling; verify or disprove that exception
rtcognition is cheap while exception handling is expensive.

" measure an additional latency, namely initial connection latency.
This would enable the cost of connection to be factored out of the
initial fusion process.

* measure platform correctness (qualitative performance). UTFP
timeouts, for example, can be used as a metric, although others
will also be needed.

" measure/analyze queue data to determine if there are managers
which do not need dedicated sites.

" remeasure sustainable data rates using an alternative definition
(Hailperin 881: giver a data rate and a grid size, what is the widest
scenario sustained?

Slightly more ambitious but interesting work would entail reimplementing
parts of the system in order to alleviate the load imbalance. Alternative designs
to be explored include:

* pipelined managerial tasks

* "time-sliced" managers, i.e dynamically created managers which
process a particular time interval

Finally, future work, in the form of major software additions, includes:

* extending ELMA to support dynamic managers

• integrating ELMA history/reporting mechanisms into the
simulation environment for more in.teractive performance
feedback

* designing and implementing Path iterpretation



9. Summary

This paper has described the development of the Path Association module of

AIRTRAC, a knowledge-based application written in LAMINA for the CARE

family of multiprocessors. The high-level goal of AIRTRAC is to monitor the

fiig't of aircraft in a particular region of airspace aid to interpret and predict their

behavior, given continuous tracker data from one or more radar sites within the

region.

AiRTRAC has two conceptually distinct, yet very related, parts: the solution

to the aircraft tracking problem (the knowledge-based portion), and the

realization of that solution in anS appropriate software architecture (the

mUliprocessor portion). We described in great detail the design and

implementation of the system an, show that it is very difficult to separate the

two parts in practice.
We developed a set of h _i-evel prog-raring constructs and Libraw obects

in the course of developing the Path Association, collectively referred to as

ELMA. By programming at a higher level of abstraction the task of
implementing the applicaton was greatly simplified. In this paper we described

the salient features of ELMA:

* Syntax and constr uct for managing concurrency and memory
usage.
* A iibrarv of definitions of spedial-purpose L.AM1NA obects-.

• A library of usefui abstract data types.

We next defined and then refined the notion of a sus,,.inaV¢,'* -- a"--ata rate f1or
-no - u--- . - s'e .

the cuantitative performance evaluation of co.tinucus pa alie I stems.

.5stainabie data rate SDRa'j, was defined as the input data rate for ;hich absolute

latencies are below a threshold of a at least 5 percent of the time. We applied this

criterion to confirm the following experimental h-'4 hs concerning Path

Association:
* For a given input scenar'o. perornance improves .irectiy wfl

:n aeasing numbers sites gd size).
tFor a given zid size r - - - L ,anc uegrades with increasing .iput

scenaro exceptions, si.. .- at and ,en "arkedy.
4 r

We decried LA.MNU/EL MA programming style .. d tips for flara.:el
prograrmning CARE-'-ke arhite.- Xres. W e de and ;usir'd The Fist Law of
ParailPrr n ,.& . r -a showed h 'c d imbalance.-- S I

performance.
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We obtained monotonically decreasing speedup up to a maximum of 64 to

i28 processors, depending on input data. More importantly, we were able to

explain the factors limiting performance and suggest improvements. Although

poor compared to Data Association, this result is perhaps reasonable given the

the complexity of the connection and fusion processes and the amount of input

data processed. Future design enhancements should see performance
improvements.

The following questions remain unanswered:

* Does the described free pool mechanism offer performance
advantages over ad hoc creation?

" How should qualitative performance be evaluated?

" Are there are better approaches to evaluating quantitative
performance?

" Will concurrency of complex reasoning problems suffer from
subproblem dependencies which limit the granularity of
processing load and thus limit load balance?

In conclusion, we believe that the techniques and constructs that we have
described and the lessons we learned in the course of developing Path
Association will be useful to others working in the field of parallel symbolic
computation.
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Appendix 1 Sample Latency Graphs
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Appendix 2 Sample Queue Graph
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Appendix 3 Sample Latency Threshold Graph
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Appendix 4 Example ELMIA Program
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ModeCSAonLiSpP pg4:CARt-USfly !onts:(cP2YOfl TliO50 TXi01); lasetlO

;Autkhen Alan C Noble

This file contain a complete but simple ELMA program,
;; acludlsg SIMPLE imulate interfac.

(defvar *fret-pOOl-init-lenqth* 2)
(defyar tfree-poolthreaholdlflgth* 1)

;PROGRAM EXPLANATION

;Two use object types are defluet Boss, an ELMA-maagr, a"d m, an ELMA-suherdlste.
MWTh (atart-IM& call Imtlaltme the program by creating an ELMA-allocater which lawn

;creausl a DOSS object. Tb. ELIMA-allocator auteautICAlly set6 a :get-ball1-rolflngam
;to the aOG whoa it recoin, a creation acknowledgment from the latter.
,;m ThBOGS allocates three CLERKS5, Alfred, Oliver aUE sarry, ad seads them t appl, :oran;.

A; sadbanana. mensage respectively. The BOSS thea deallocates Oliver sad sarry ad 0

;the sens& tkem variu message. Since they are deallocated, the Iacorrect adkms meesalsm
k;bndies ;hes messges ant automatically retuns, forwards3 or drop thenm coring

Sto settiuis.

;OBJECT DEFINITIONS

;BOSS

(def flavor boss

(elza-aaflager)
- serr-able-inustanct-variables
(!-docuamftatiol RBous--doles mat work to rte clerks)

;CLERK

(defflavor clerk
r)

(:d--cuAe1tation -Clerk--daes all the work')

;recon; incming messaes for these triggers
notab1a-tr-iggers '(:apple oarange :banana)

113tim the executio of these trigger methods
:tzd-triggers '(:appie :Orange :banana)

tnc..rectaddessacton % default settiup for CLERK instan
':apple .2=rETURN1 L ;Ie., return all apple messages to snder
(zOran-ge - &N ) 1 .e., return all banaa uma" *o unesr

bamana not specified, so droped by defsnit
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BOS

(defun boss-init-list-fu (clerk-sites)
"Returns an it-list for a boss object, in this case the :free-pools

slot and its value*
(list :free-poolx (list (make-free-pool

node-type I'CLU ;; each bosn has a tree pool of clerks
initial-length 'free-pool-init-length*
threshold-length *free-pool-threshold-langth*
sites clerk-sites))

(deftrigger (boss :get-ball--rolling) (
Trhis trigger gets the ball roling.'

;; Allocate three clerks from the pool
(with-subordinate (alfred)

(with-subordinate (oliver
after-messages
((oliver '(( :pinleapple))))
,r; L~e, send ;pineapple message to object named oliver as soon as It Is allocated

(with-subordinate (barry)
,.; get clerks working
(mailing alfred :apple nil)
(mailing oliver :orange nil)
(mailing barry :banana nil)
;; deallocat oli'er and barry
(deallocate oliver
(deallocate barry

incorrect-address-action
((:FORWARD :orange (,alfred)))) ,;overide the default so :orange Is forwarded

;send oliver and harry some work and see what happens
(mailing oliver : apple nil) ;; this should be returned to the boss
(mailing baxrry :apple nil) ;; this should also be returned
(mailing barry -orange nil) ~;this should get forwarded to alfred
(mailing barry :banana nil) ; this should get dropped

(deftri jger (BOSS :returned-inessage)
((original-message sent-name new-name original-args))

"Trigger for handling returned message"
(debug-format output-stream *-- -a raceivod a RETURNED-MESSAGE* name)
(debug-format output-stream "-% Messag* -a wasn sent to -a, now named -a, with arga -s'

original-message sent-name new-name original-args)
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; CLERK

(deftrigger (CLERK :apple) ()
(untimed-format output-ste*aN %-a ot an APPLE' name)

(deftrigger (CLERK :orange) ()
(untimed-format output-stream % got an ORANGE' name)

(deftrigger (CLERK banana) ()
(untimed-fornat output-stream '_%-a got a BANANA' name)
)

(deftrigger (CLERK :pineapple) ()
(untimed-foruat output-stream '%a got a PINEAPPLE' Name)

;; SIMULATOR INTERFACE
I;

;; The rest of this file defines functions which set up the simulator and start a simulation.
;; The top level function is START-ELMA.

(defun elma-example (&optional &key initializs
(circuit 'care: octorus-32) (instrument 'care:observer))

"Run elma example program.
Initialize simulator if initialize Is t."
(when initialize ;; initialize the simulator

(simple :run nil :reset t :flush t :circuit circuit :insi.~nt instrument:;
(let ((clerk-sites (cl:remove 0 (care-site-numbers)))) ;; use &0 :!Fes except I-liss sit

(start-ELMA
:initialization-parameters
((:ALLOCATOR . 'th-ALLOCATOR')
(:ALLOCATOR-TTPZ . ELMA-allocator)
(:ALLOCATOR-SITE . 0)
(:START-MESSAGZ :get-ball-rolling)
(:START-MESSAGZ-RECIPIENT . "the-BOSS')
(:MANAGER-INITIALIZATIONS ("the-BOSS' ;; name of the manager

BOSS ;; typ of the manager
0 ;; site of the manager
boss-init-list-fn ;; function to generate init-list of manager
(,clerk-sites) ;; args of function
NIL))

'compile-flavor-methods clerk)
('ompile-flavor-methods boss)
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> (pkg-gc-o 'care-user)
> (setq I.ZIMA-debug* t)
> 1% lma-exanvle)

Time 4.0987s the-ALOA=TOR CREATED
FOR-EYFEC
Time 7.4321003: the-BOSS CREATED
Time 15.5513, CLERK-Of-the-BOSS CREATED
Time 10.57741 CLERK--Of-the-"BOSS CREATED
) CLERK-_2-of-th*-Boss creation requested
> CLERK-3-of-the-BOSS creation requested
> CLER-4-of-the-BOSS creati-an requested
Time 16.2048: CLERK-2-of-the-BOSS CREATED
Tin* 17.398901: CLERK-3-of-the-BOSS CREATED
CLERK-3-of-the-BOSS got a PINEAPPLE
Time, 17.764702: CLERK-4-of-the-BOSS CREATED
CLERK-2-of-the-HOSS got an APPLE
CLER-4-of-the-IOSS got a BANANA
Time 30.10361 CLERK-4-of-the-BOSS DEALLOCATED-AND-RflA=
> tncorrect address action for CLERK-6-Of-thO-BOSS;

Returning APPLE to sender the-DOSS
> Incorrect address action for CLERK-6-of-the-BOSS;

Forvarding ORANGE to (CLERK- 2-of-th-BOSS)
> Incorrect address action for CLER-6-of-the-BOSS,

Dropping BANANA
CLERK-3-of-the-BOSS got an ORANGE
Time 31.748: CLEPK-3-of-th-BOSS DEALLOCATED-AND-RENAmED
> Incorrect address action for CLERK--of-the-BOSS,

Returning APPLE to sender the-BOSS
> CLER-4-of-ths-BOSS deallocated and renamed CLERK-6-of-the-BOSS
CLERK-2-of-the-BOSS got an ORANGE
-n-> the-BOSS received a RETUJRNED-MESSAGE
Message APPLE was sent to CLERK-4-of-the-BOSS?
now named CLERK-6-of-the-DOSS, with args NIL
> CLERK-3-ot-the-BOSS deallocated and renamed CLERK-5-of-the-BOSS
-->) the-BOSS received a RETURNED-MESSAGE
Message APPLE was sent to CLERK-3-of-the-BOSS,
now named CLERK-5-of-the-BOSS, with arga NIL

NIL
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1 t-M - 1-0-

2T MA (Exteadt.d .AMINA for Met~-~ngmi~Applicatio) Is i.; -lve prailci

proga %!Tir'mng1J :::" '%Lce r.- the f' R41' famiiv of &di:.t; ted-mnemorv i

built on top ol LAVINA. the basic language .tfceto %CARE. I wb;ch prevides priiitive
mechanisms~ and i '.age syntax fior expressing di-d ma~~concurrency andi locality.
ELMA i , P.n exteiis!9n '.f 1bet~-~t' LAMN~z2 and EL'NA ol.Jtocta zre Mf fact sneciai
Izations oi LAINA ot"'e-Os.

As in o-th-r cbJect svisterr.. LAMVIT."A objectz encapsulate stape --e. variables, Ant'
W"~ .vior rmiehodsi. Methods are iavokrJ by message send'ng but , care of se-
quential 3ei this involves transnaitting a pa,.ket containifg th ~ e -. nec-
ject to arother. typically tn dlifferent sitcs, or proce,,scr 'mnry un.its. Mebsaze t,. ng

is ~onbkc~i~iand thle time rc-quir;ed ior comriu:tiizatior. is this visible t~the UMN
programn-Ir. Iothods run A to~kiczAly v, it'irt processes wi-icare wti-,,Aiv restai'table but
not zesurniabie. A1r. Gblleo and its -,,et',-oJ5 Can be conside-red a non-nested -nonitor; exclu

guarnted b th tat t~-t~i oze method is ever scheduled to run at a time, and
then runs t~cmlo.The time required tc; c.-ea-e a LA'MINA obiect is aiovisible to
the programmer The.- readei is recirred o LAAIINA: CA RE A.-pWations Interface, 3 for a
detailed deszription of LAMINA.

EMA is tailored tc Ci" RE applications which inivolve extens> dynamic object creadon
and '?allocation and thus require some Form of memory manayernent. Its syntax and con-
structs facilitate programming- :n the object-oriented style at a higlher level than LAMINA.
This makes prcg-r-.n developmrent easir-i in ELNIA than in LAMINA for this class of ap-
plications. ELM'A is a completE programrniigo interface; strictly speaking, no knowledge of
LAMINA is reqflird to mount an a.pplication written in ELMIA on CARE.

ELMIA prov.ides the CARE programmer with the following:

" A library of definitions of specialized objects, for the programmer to further specialize
("mix in") if required.

" Syntax and constructs for managing concurrency and memory usage.

" A library of useful abstract data t.pes.

These features are described in the followig sections.

1CARE is a distributed- memory message-passing t.-hitecture, simulated by a highly-instrumeted system
called SIMPLE Refer to. B Delagi. N Saraiya and G. B) rd, Instrumented Architectural Simulation, Report
No. KSL-86-65, Knowledge Systems Laboratory, Department of Computer Science, Stanford University

'LAMINA actually suppor' nrce ityies of programming, nai ly functional, shared- variable, and object-
oriented.

3B, Delagi, LAMfIA. CA-RE .Applications Interface, KSL Report "o. 86-87, Knowledge Systems Labo-
ratory, Department of Computer Science. Stanford University
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2 Specialized objects

ELMA includes a small lbrary of specialIzed object t, pes and mixins to facilitate program
development through code reusability. An ELMIA application is implemented exclusively in
terms of managers, subordinates and allocators. These object types are described in this
sectijon.

2.1 Manager

Mlanagers are objects which are al'doc~ted staticaly, .i.e.. at initiaLization time, and are typi-
cally responsible for tasks involving many (subordinate' objects s-uch as distribution, search,
andt object tEe..n acti manager can maintain ro or more free pools of subordinates.

ait! nui,. br of in .- .ers , equired depends on the particular application and its input data
and mrust be .> '-rniined a priori.

Tirh- t-aric ELIA manavger is 'he type ELMA-anager.

U(..tJf.1avor EL"Azisiager

(acknowledge :reat.oa-rnixiJn-
;;managers a6.--,iledge creatlon. or, init-ack-stream

free-pocl1-owner-mix' -±

;managers mainicain if- pool obJects
ELMA

(:docuxentation "For ELMA manager nodes"))

2.2 Subordinate

Subordinates are objects which are created dynamical-ly. i.e.. at run time, by managers
and typically contain the state of the system. Subordinates can be allocated fcreated),
deallocated, and reallocated many times over in the course of program e'xecution.

The generic ELMA subordinate is the type ELMA-subordinate.

(defflavor ELMA-subordinate
0

(:docuxnentation "For rLMA subordinate nodes"))

3-411



2.3 Allocator

Allocators are objects which create manager objects at initiedization time and start applica-
tons. There is only need for one allocator object pei ELMA application. The start-ELMA
call creates the allocator and initiates the initialization process, in accordance with ini-
tialization data supplied by the appication. This initiaLzation data includes the following:
allocator name, allocator type, allocator, site number, start message, start message recipient
(nar..e). and manager initializatiop data.

start-ELA &key initialization-parameters &optional init-list [function]

start-ELMA starts an ELMA application. initialization-parameters is an alist of the form:

(:ALLOCATOR . name-of-allocator)
(:ALLOCATOR-TYPE. type-of-allocator)
(:ALLOCATOR-SITE . site-of-allocator)
(:START-MESSAGE . start-message)
(:START- NIESSAG E-RECIPIENT . start-message-recipient)
(:MANAGER-INITIALIZATIONS manager-initializations)).

An object of type type-of-allocator is created with the name name-of-allocator on site-of-
allocator, a site number between zero and the total number of sites in ti'e multiprocessor (or
CARE -design-) less one. Thereafter, the managers specified by the manager-initializations
are created. When all newly created managers have acknowledged their creation to the
allocator, the allocator i.atiates program execution by sending the start-message (with
no arguments) to the start-message-recipient. The generic ELMA allocator is the type
ELMA-allocator. The type-of-allocator must be ELMA-allocator or a specialization of
ELMA-allocator.

init-list Idefault nil) is a list of alternating slot keywords and values with which to initialize
the allocator object. This list should not include :start-message, :start-message--
recipient or :manager-initializat ions since these are specified by initiolization-param-
eters. It is in;.ended that this list be used tn initialize user-defined slots, not the standard
ELMA-allocator ones.

(defflavor ELMA-allocator
()

(stat ic-allocator-miixn

ELMA)
(:documentation "For ELMA static allocator nodes"))
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Example:

(start-ELMA :initialization-parameters

'((:ALLOCATOR . "the-ALLOCATOR")

(:ALLOCATOR-TYPE ELMA-allocator)

(:ALLOCATOR-SITE 0)

(:START-MESSAGE . :get-ball-rolling)

(:START-MESSAGE-RECIPIENT . "the-BOSS")

(:MANAGER-INITIALIZATIONS

("the-BOSS" ;; name of the manager

BOSS ;; type of the manager

0 ;; site of the manager

boss-init-list-fn

;; function to generate init-list of manager

(,clerk-sites) ;; args of function

NIL))) )

This call initialLes a simple application in which there is only one manager, named "the-

BOSS.- First an ELMA-allocator with the name "the-ALLOCATOR" is created on site

number 4 zero. i.e.. CARE site (1 1). As soon as "the-ALLOCATOR" is created, it creates,

als ' on site number zero, an object of type BOSS named "the-BOSS." "the-ALLOCATOR"

applies the function boss-init-init-function to (,clerk-sites) to get the init list

to creat.! "the-BOSS." "the-ALLOCATOR" automatically .-,nds a :get-ball-rolling

message io "the-BOSS" once it has received the mandatory creation acknowledgement

from the latter.

3 Syntax and Constructs

3.1 Free Pools

Experience from early applications developed on CARE. such as ELINT and AIRTRAC

Data Association, strongly supports the need for strict control of concurrent object creation.

Both these applications, hoe~pr. present rather ad hoc approaches to implementing such

control. ELMA provides the programmer with the high-level constructs with-subordinate
and with-named-node for object creation and deallocate for object deallocation. These

,., aL- provide a means of dynamic object .- ::,ry management, based on the use
of free poois.

'A CARE Wite is a simulator component. whereas a site number is an integer between zero ar 3 the total
number of sites in the multiprocessor less on-. There is a unique mapping from site number to site
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The notion of a free pool is easy to understand in a sequential program. The program

maintains a list of (pointers to) commonly used objects (or records) which are allocated

in advance. New objects are taken from the pool iather than being allocated from heap

storage directly, and returned to pool when deallocated. Apart from syntactic nicety, free

pools offer an elegant and simple memory interface that puts the application in control of its

own memory management (of pool objects). New storage is allocated by simply returning

the address of an empty, already allocated object in the pool.

In ELMA, a free pool is a LISP object in the local address space of a manager object which

contain pointers 5 to objects of some type (all the same type), the latter spread out over
a predefined pool of sites in the multiprocessor. The function make-free-pool returns a
*ree-pool object.

make-free-pool &key node-type sites &optional (initial-length 'default-free-pool-length*)
(threshold-length "default-free-pool-length*) (site-function # "random-fp-site) [functioni

A manager may own multiple free pools or none. In other words the ELMA-manager
free-pools slot cab, be a list of zero or more free-pool objects, instantiated by make-free-
pool. Objects allocated from a free pool of a manager are said to be subordinate objects. As
in the sequential case, a new free pool object is allocated by returning its (remote) address.
However since objects in the pool are separate processes (typically on remote sites), the
storage associated with a newly allocated object can only be (re-)initialized by sending a
message to that object. This slot initialization message is autoumatically prepended to any
other messages sent to the object, or sent separately if there are no such messages. As for
sequential free pools. a new object is created only when the pool .s empty. Unlike sequential
free pools. in which new storage is usually allocated within locai address space and always
allocated on the same processor (since there is only one processor!). a new ELMA object can

e allocated on an, site of the multiprocessor. The programmer specifies a list of permissible
s z- numbers (the sites argument in make-free-pool) for placement of subordinates of each

manager. A function can also be specified (the site-function argument) which takes this
list as its first argument and returns the CARE site for a new subordinate. If the latter is
omitted ELMA chooses a site randomly from the specified list using random-fp-szte.

3.2 Remote Addresses and Names

In LAMINA, objects are referenced exclusively by means of remote addresses, which can
be regarded as inter-site pointers. Each object's remote address is unique and invariant
since, once created, an object is never relocated to another site. Remote addiesses are also
referred to as handles.

In addition, ELMA gives each object a unique name. Static objects, such as managers
ave exactly one name for the entire duration of the program. Dynamic objects such as

-These pointers are remote addre.ses. since they can reference objects on other sites.
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subordinates, however, can have many different names in the course of being deallocated and

reallocated during program execution. With each reaUocation, or reincarnation, a dynamic

object acquires a new name, although its remote address is of course unchanged. By using

names, it is possible to distinguish between different incarnations of an object possessing

the same remote address.

Each ELMA object maintains an address table which maps names to remote addresses. This

is usually a many-to-one, apping. Names are sim.' str*ngs in the present implementation

of ELMA.

3.3 Object Creation

with-named-node (node-name node-handle optional &key node-type before-form init-list
after-messages) [macro]

Allocates a new object, or node, from the free pool. A new object is created only if the free

pool is empty.

1. The name of the new node is bound to the n',de-name symbol.

2. The remote address, or handle, of the new node is bound to the node-handle symbol.

3. node-type is the t.pe of the new node. The default is the ,ype of the node of the first

free pool in this manager's free-pools slot.
4. before-form is evaluated within the curren, context before allocating or creating the

node.

5. init-list is the init-list of the new node, a list of alt-.rnatiing slot keywords and values

(indentical to that specified for LAMINA's creating function.)

6. after-messages are sent (by mailing-together) as soon as the new object has been

created.

Example:

(defflavor foo-type
(slot-i
slot-2
slot-3
sloc-4)
(ELMA-subordinate)

( :documentation "Example subordinate definition"))

3-415



(with-named-node
(foo foo-handle
: node-type

'foo-type
:before-form
(progn

(do-something)
(do-something-else)

:init-list
(list

:slot-1 slot-l-value
:slot-2 slot-2-value
:slot-3 slot-3-value)

:after-messages
(

(foo
(list (:message-for-foo some-args)))

(name
(list
(:message-for-creator some-more-args)

(:another-message-for-creator some-args)))

(baz:
(list (:message-for-bazz foo foo-handle)))

)

(some-function foo)
(something-else-to-do-within-the-scope-of-foo))

The (with-named-node ... ) of this example would exist within a method or function of a

manager containing a free pool of foo-types (and possibly others). The forms (do-something)

and (do-something-else) are evaluated first. An object is then allocated from the free

pool of objects of type foo-type and the name and handle (remote address) of this object are

bound to foo and foo-handle respectively. The slot-1, slot-2 and slot-3 slots of the new

object named foo are initialized as specified and the slot-4 slot is made unbound. Finally

when foo is created, it executes :message-for-foo, sends back to its manager (which is

named name since after-message targets are bound within the scope of the manager) two

messages, and sends to the object named bazz a :message-for-bazz message which takes

foo and foe-handle as arguments. In the meantime, the creating manager is evaluating the

forms (some-function .. ) and (something-else-to-do-within-the-scopeof-foo).

with-subordinate (node-name &optional &key node-type before-form

init-list after-messages) -macrol

with-subordinate is identical to with-named-node except that only the name of the new

node is returned, not its handle.
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In ELMA, the time for object "creation" is the time to send a message and receive an

acknowledgement. Since a message is invariably sent to a new object anyway, it is usually

a matter of just prepending the additional information necessary to reinitialize the object,

rather than sending an additional message. The net cost of free-pool allocation is thus

only slightly more than the cost of sending the original message which means that "cre-

ation" is very cheap. The caveat is that the ELMA free pool mechanism competes with
application-level methcds for the computational resources of the multiprocessor. Unless

system resources are available on other sites for subordinate object allocation and on the
site of the manager object for handling %arious handshake messages, no performance gain
can be expected. The .'ree pool mechanism effectively trades off available resources against
object creation lateny; providing the resources are available, object creation latency is
reduced.

3.4 Object Deallocation

As for creation, object dea~location involes sending a :deallocate-self message to the
subordinate object as well as updating the state of owning manager, specifically the free-
pool object. The storage for one object can of course be allocated and re-allocated any
number of times. ELMA uses names to distinguish between different incarnations and
thus avoid mishandling of messages. For example, message disordering makes it possible
for messages sent to an ob-ect to arrive after it has been deallocated, i.e., after it has
received the :dealiocaze-,elf message. In fact. if the disordering is extremely bad, it
is even possible for an incarnation of a subordinate object to receive a message intended
for a Drevious incarnation, since LAMINA messages are sent to a given remote address
and this does not change between incarnations. The ELMA programmer can specify how
deailocated objects are to handle messages which are received out of order, the so called
incorrect address action, on either an object type or object instance basis. Note that a
subordinate can only be deallocated by its manager.

deallocate names &optional incorrect-address-action [function of elma-manager]

Deailocates free pool nodes named names. either a list of names or a single name. incorrect-
address-action is a list of lists of the form
((action I messages I &optional forwarding- names 1)
(action2 messages2 &optional forwarding-names2) ...
which specifies the incorrrect address action for the node being deallocated, i.e. what to do
when a message is received by an object other than the intended one. Actions may be one
or more of the following:

:DOIT Go ahead and execute the message even if it is out of order.
:DROP Ignore the message.

:RETURN Return the message to sender.
The sender must have a :returned-message trigger.

3-417



:ERROR Signal a resumable error when messages arrive out of order

This is useful for debugging.
:FORWARD Forward messages to names.

(forwarding-names may be specified in this case)
trigger Execute trigger instead of messages.
function Execute the trigger and args returned by funcaUing function.

function should take 3 args: target-name.
original-message and orginal-message-args.

A subordinate can request its own deallocation by invoking request-dealocat ion.

request -deallocation optional other-messages 'function of eima-aubordinatel

request-deallocation sends a :request-deaiLocation message to the owning manager.
which results in the subordinate being deallocated, other-messages is a list of messages
for the manager to execute immediately after deallocating the subordinate. It is a list of
message names and arguments in Mailing-together format.

set-incorrect-address-action action messages koptional (incarnation name)
for',trding-names-and-handles Ifunction of elma-subordinatel

set-incorrect-adiress-action definies the incorrect address action for messages targeted
to the object named incarnation. Messages is a single mesaz, or ist of ressages. Action
may be one or more of the following:

:DOIT Go ahead and execute the message even if it is out of order.
:DROP Ignore the message.
:RETURN Return the message to sender.

The sender must have a :returned-message triaaer.
:ERROR Signal a resumable error when messages arrive out of order
:FORWARD Forward messages to forwarding-names-and-handles.

incarnation and forwarding-names-and-handles may be specified.
or specified later by means of a set-forwarding-addresses)

trigger Execute trigger instead of messages
function Execute the trigger and args returned by funcailfing function.

function should take 2 args: target-name orginal-message-args.

set-forwarding-addresses krest forwarding-names-and-handles
Ifunction of elma-subordinate'

set-forwarding-addresses set s forwarding addresses to the names in forwardng-names-
and-handles. In other words, ai messages for which incorrect-address-action is :FORWARD
which are sent to the calling subordinate after it has been dea~located are forwarded to
names.
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set-forwarding-addresses zncarflatiofl forwarding-names-and-handLes
:trigger of elma-subordinate!

- se-'-fvardng-addresses sets zorwarding addresses for incarnation to the namers in
Ot~tdlg-l~l2S-Gld~GfdCS.an alternating Ustl of names and handles. frn oth er words.

almessages bound f-or the objet named incarnaio-1 for -which -icorrect-aacress-aciaon is
.FQRWVARD are forwarded to names. nA'ereas the a-unctio set-forward i~g- addresses is
.n'.okLed byv thte Subordinate itself,. the :se--forwarding-addresses message invoking thisC
trag e r is tvcav sent by the ow-n n anager.

3.5 Message Sending

L.IA replaces the LA.INA mEssaesendn cons: rcwn nnaIng coruc hc
PC a kps-tnation name :a!he-rian a remote addiress The ;ena:r -s tUS abe-o40 pr

*.~c. ar. ular inca rnation of a n ub e:tenese sitne for. and E-1A can rake
-.;D_ OD, a-,. action M. In -.7', rz z ne

fglrfle:(t±m's 'r' er t-lu czst Irmn -on'e

-a ' A-i *-C e:tr-narn- t I5W LA'IN sseA -

-'c-Dan ei h 'rre :-"4- ---. .aemote add'resses mote
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This sends a packet containing message-I and message-2 and their arguments to foo after

a delay of 20ms. Upon receipt of the packet, foo executes message-I and then message-2,

atomically. The mailing-together construct thus provides a means of guaranteeing se-

quential order of execution.

sending-together targets messages-and-args &rest lamina-keywords [function]

sending-together is like LAMINA's sending, but messages-and.args is list of the form
((messagel argsl) (message2 args2) ...) which are sent to targets in one packet and executed
serially -. d atomically by the target. Messages mailed to self are executed within the
current context rather than being actually packaged and sent to the operator. The use
mailing-together is strongly recommended over sending-together.

mailing-self trigger value &rest lamina-keywords [function]

mailing-self sends trigger message with value to self. Instead of a real mailing, however,
the method is simply executed within the present context.

As mentioned previously, each ELMA object maintains an address table of all objects it
knows about. Apart from storing remote addresses, manager address tables store status
data which is used to automatically defer messages to subordinates still being created.
'this is transparent to the programmer who can send messages to an object given its name
,ithout concern for the status of the object. For this reason it preferable to use mailing

or mailing-together over sending or sending-together.

3.6 Meter Functions

ELMA includes numerous functions for metering the application. These functions are useful
for both debugging and performance analysis.

3.6.1 Timing Functions

Triggers which are included in the timed-triggers slot of an ELMA object are timedl
automatically whenever *elma-time* is t. Functions and LISP methods, ho"'ever, must be
expic,:, -rapped in a timing macro at each point in the program they :.re Eo be timed.

timing [macro]

timing times the execution of a function call or ZetaLisp send. Note that timing currently
only wzraps around one form.
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Examples:

(timing
(send foo :bar (1 2 3)))
times how long it takes foo to execute the :bar method

(timing
(bazz '(1 2 3)))
times the function bazz

*trace-if-segment-takes-longer-than* [variable; default = 10000]

A trace message is printed if this is non nil and if a function or send takes longer to execute
than this number of .iiliseconds.

:method-timing-data method [method]

:method-timing-data returns the timing data for method. namely the frequency of execu-
tion and total execution time. method can be a trigger (one of timed-triggers), function,
or method name.

3.6.2 Recording Functions

ELMA automatically records incoming messages, outgoing messages, and measures dy-
namic (free pool) object recycling, message queue lengths and free pool lengths when the
variables *elma-record-history*, *elma-record-mailings*, *elma-count-recycling*,
*elma-count-queues*, and *elma-count-free-pool-lengths*, respectively are t. In ad-
dition, the foto\ .,6 functions are useful for saving arbitrary information on the history

list.

:record event &optional &rest other-info [method]

:record records when event occurred.

:record-msg message args [method]

:record-msg records when message was received.

increment-count action [inline function]

increment-count increments the count associated with the symbol action in the count-data
slot. count-data is an association list ((action-1 . count-i) .. (action-n . count-n)) ELMA
instance variable. It is also used by ELMA to store information such as object recycling
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data. If action is not currently in the list, increment-count adds it and sets the associated
count to 1.

3.7 Setup Function

adjust-elma-parameters &optional batch [function]

When batch is nil (the default), adjust-elma-parameters pops up a menu and prompts
the user to set ELMA parameters, otherwise it simply makes dependent parameters consis-
tent with the present parameter values.

ELAA Parameter Type
Description or ELMA action if flag is t

* elma-memory-management* Boolean
Conses objects to a static area

*elma-time* Boolean
Times selected triggers, messages and functions
(Specify actual triggers with timed-triggers slot)

* elma- count-queues* Boolean
Counts queue lengths

* elma-count-recycling* Boolean
Measures node recycling

*elma-count-free-pool-lengths* Boolean
Measures free pool lengths

*replace-upon-removal-from-free-pool* Boolean
Enables replacement of allocated free pool nodes
(If nil, allocated nodes are only replaced when the pool is empty)

*elma-record-history* Boolean
Records history (of messages received and recorded events)
(Specify actual triggers with notable-triggers slot)

* elma-record-mailings* Boolean
Records mailings

*elma-debug* Boolean
Prints diagnostic messages, i.e., elma-formats

* aima-history-t ime-span* Number
Time span of ELMA measurements

*elma-history-time-quantum* N umber
Time quantum of ELMA measurements

*ELM-simulation-to-domain-time-conversion-function* Function
Function to convert simulation time to domain time
(This is only used by time-lines and need not be specified if
*elma-count-queues* and *elma-count-free-pool-lengths* are nil)

3-422



Ncte that domain time is the time of input data as specified by the data set. Simulation
time is time according to which input data is put into the simulator.

3.8 Other Functions

ELMA also includes a variety of utility functions as well as some constructs which are
refinements of those found in LAMINA.

3.8.1 Name Functions

remote-address-of node-name [function]

remote'-address-of looks up node-name in the node's address-table and returns the cor-
responding remote address and status of the node.

add-to-address-table &rest rest (function]

Adds (alternating) node names and handles to the address table

update-address-table &rest rest [function]

Adds (alternating) node names and handles to the address table, unless they are already
present.

:add-to-address-table rest (trigger]

Adds list of alternating node names and handles to the address table.

:update-address-t able rest [trigger]

Adds list of alternating node names and hpndiEs to the address table. An error results if
entries do not exist for all names.

add-requests-to-address-table &rest rest [function]

Adds (alternating) node names and handles of requested nodes to the address table

creator-name name [function]

Returns the name of the creator of the object named name.

creator name (function]

Returns the type and number of the creator of the object named name.
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3.8.2 Stream Functions

new-streams n [function]

Returns a list of n new streams.

with-multiple-mess ages (list-of-values group-stream &optional ezpected-message

(filter-function #'cons)) [macro]

This construct spawns a (continuation) process to wait for messages of type ezpected-
message (specified just for checking purposes) on group-stream. It "adds" the values re-
turned from eacn stream to list-of-values using the filter-function. The default is simply for
all values to be consed onto list-of-values. Refer to LAMfLVA: CARE Applications Interface

for a detailed explanation of the continuation mechanism.

3.8.3 Format Functions

debug-format &rest rest [inline function]

Like format. but executed within a without- lock, i.e., untimed by the simulator, and only
if the global variable CARE-USER: :*debug* is t.

elma-format &rest rest (inline function]

Like format, but executed within a without-clock. i.e., untimed by the simulator, and only
if the global variable CARE-USER: :*elma-debug* is t.

untimed-format &rest rest [macro]

Like format, but executed within a without-clock, i.e.. untimed by the simulator.

3.8.4 Simulator Functions

now macroj

Returns the current simulation time in milliseconds.

care-sites [function]

Returns a iist of CARE sites for the current design.

care-site-numbers &optional Igrid-size (length care: **'all-sites-vector-*)) 'function]

Returns a list of CARE site numbers for grid-size.
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3.8.5 Arithmetic Functions

average &rest averagends (function]

Returns the average of averagends.

average- if -numeric &rest averagends (fNrctionj

Returns the avcrage of all numeric at'eragends.

max-if-niumeric &rest rest [functioni

Returns the maxium of all numeric rest.

mmn-if-numeric &rest rest [function!

Returns minimnum of all numneric rest.

ceiling-to-number dividendl &optional frr nzber 1) (divisor 1)) [function]

Like ceiing, but to the inearest miultiple of number.

round-to -number dividEnd &cit ional (number 1) tditvisor 1)) [function]

Like rotind. but to the nearest multiple of number.

f loor-to-number dividend &opt ional !number 1) (divisor 1,. [function]

Like floor, but to the nearest multiple of numnber.

4 Programmer Provided Methods

4.1 Optional Methods

:initialize :methiod of applfication's allocator type]

When the programmer define-b an :initiaiize method for the allocator type used by the
application. i.e., allocator-type- in the start-ELMA initialization-parameters, it is invoked
prior to creation of the managers ,,pecified in ranage r-initializat ions. The value returned
by this method is appended to the init list arguments explicitly provided in Manager-
inilinlizations for each m~anager.

3-425



Example:

(defflavor my-allocator
0)
(ELMA-allocator)

(:documentation "Allocator for my application"))

(defmethod (my-allocator :initialize)
''This is a silly example which simply returns the CARE

site numbers. in practice something more useful could
go here.'"

(care-s ite-numbers)

(defun boss-init-list-fn (c'lerk-sites all.-sites)
"'Returns init list for BOSS object''

'at-ELMA iniiaizati on-iparameters
'(:ALLOCATOR . "the-ALLOCATOR"l)
(:ALLOCATOR-TYPE .ELMA-allocator)

(:ALLOCATOR-SITE .0)

(:START-MESSAGE .:get-ball-rolling)

(:START- MESSAGE-RECIP IENT . "the-BOSS")
(:MANAGER-INITIALIZATIONS

("the-BOSS" ;; name of the manager
BOSS ;; type of the manager
0 ;; site of the manager
boss-nit-l14st--tn

;function to generate init-list of =anager
(,clerk-sites) ;; args of function
NIL))) )

The boss-miit-list-f unct ion is called with the value returned by the :4nitiai Ze

method appended to (list clerk-sites). In other words, instead of evaluating (boss--
init-list-fn clerk-s ites). ELNIA evaluates (boss -init-l ist-f n clerk-sites care--
site-num-bers) to get ,he it it of "the-BOSS."

4.2 Required Methods

:returned-mes sage (original- message s5ent-namne new-name orzginal-ar-gs) ftriggerl
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Any node which coull receive a returned message (due to :RETURN being specified for

incorrect-address-act :: of a node to which it sends messages) should have a trigger as

follows:

(deftrigger (some-node :returned-message)
((original-message sent-name new-name original-args))

"Trigger for handling returned messages"

;; code for handling the returned message

(debug-format t "-.Returned-message: -a -a -a -s"
original-message sent-name new-name original-args)

)

5 Abstract Data Types

ELMA also includes a collection of abstract data types (ADTs).

5.1 Table

The table is a generic table flavor which can be arbitrari!y ,rge, of arbitrary dimensions
and indexable on arbitrarily defined keys. A table can have multiple axes, where each axis
corresponds to a dimension. Each axis can be of fixed or variable length. A variable length

axis can be implemented as either an association list or a hash table (default is alist). The

function make-table returns a table. Refer to Appendix B for examples.

make-table &key axes &optiona! label init-values inction]

5.2 Ring Buffer

The ring-buffer is a generic ring buffer flavor for the efficIent maintenance of time-
dependent data, i.e., for manazing the addition of new data and timely removal of old.
".out of date" data. Refer to ela: structures; ring-buffer. lisp for details.

5.3 Time Line

The t-me-line is a flavor for recording data oer time. The history is discretized according
to domain time. Refer to e'--.a:main;elma.lisp for details.
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6 IELMA Flavor and Specializations

This section lists the flavor defintions for the ELMA flavor and its specializations. These

can be found in elma: main; alma. lisp. (Load Sys: site; elma. translations to get "he
logical names)

6.1 ELMA Base Flavor

The ELMIA flavor is the esssential component of any node in an ELMA application. Sub-
stitute it wherever the LAMJ.N 1.or ORDERED-SELF-STREAM flavor would have been
used in a LAMINA applicazicri.

6.1.1 ELMA Components

(defflavor EMA
0)
(reinitable-nixin
mu.i-mes sage-mix i
hnistory-mixin
defer-mixin
narae-mixif
oraerred-self -stream)

(,:documantation ZIELM-A is the!, base flavor flor
merory-m-nagement LAMINA applications .)

Each component mixin contributes the following be. savior.

-nodes.

h history-mix in maintdins usr-specifiable history of each node.

=u t -4.-mass age-mix in ha--les CARE postings which contain multiple messages.

*defe-mixin permits poV,*.- to nodes still being created by deferring them tern-

name-mixn aives node a c name and maintains an address table pe.-nit ring
ote -Odes to be r-feeCr-p c name.

*ordered-self -strea= gi'- .- .o(--e es~ential lamina node behavior with incoming tasks
ordered bv an inserti o
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6.1.2 ELMA Slots

The following are the most important slots of the ELMIA flavor. The history and data slots

accumulate information about each object. and can be inspected/rea4 to debug and/ot.

analyze the program.

name name of object

stream remote address of object

notable- triggers 'ncoming, trigger messages for which time, message name and message
argume-nts are to be saved in the history (when *elma-record-history* is t.

tirmed-triggers rgermethods to be timed -,when *elma-time* is t).

initial-addresses list of alternating names and remote addresses to be stored in the

address:-table wh-en the object is created.

output-stream output-streamn used for ou1tiut.

address-table table ot remote addresse s that object knows about (indexed on name)

history list of :Irggers ex-ecuted by the object an-d c her use.-Pecifled events.

mailing-historv list of mnessages mailed by this object (whc:. *elma-record-mail ings*

timingy-data data accumulated for timed- triggOers and other :.mned methods and fjnctions

(when *elna-t;_rne* is 0).

count-data data acCumnulated when alsinga inrcrement -count or for object recycling data
when *elm-a-count-recycllng* is t0.I

queue-data t.ime-line data accumulated (when welma-count -queues *kV t)/.

6.2 Acknowledge Creation Mhxin

(d e r lvor ackn-owle-dge-creatx-on-m4xinL
(init-ack-strea.n)

-; ode acknouledges oin this stream w.hen created

:set-table:.-inLsta.nc e-v ari ables
(;documenrtation "EL!MA node nosts an acknowledgement

to its Init-ack-stream when created.")
,recuired-1flavors elma)
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6.3 Static Allocator Mixin

(doff lavor static-allocator-mizi
(manager-initial izat ions
creat jon-acks
;; the number of acknowledgements expected at initialization
start-message
;the name of the start message to be sent when all managers
;have been created

start-message-recipient
;the recipient of the above start message

0
settable- instance-variables
(:documnentation "For creating manager nodes at initialization time.")
(:required-flavors elma)

6.4 Mvanager Mixins

(deflavor free-pool-allocator-mixin
(free-pools) ;;list of free pools maintaired by this node
0)

settable- instance-variables
(:reouired-flavors elma)

-Jocurnentat ion "Enables elma nodes to maintain and
allocate free pool objects")

(deff lavor filge-pool-reclaimer-mixin

(:documnentation "Enables free pool allocators to deallocate free pool nodes.")
(:required-f lavors free-pool-allocator-mixin elma)

(defflavor free-poDl-owner-mixin
()
(free-pool-allocator-mixin
free-peol-reclaimer-mixin)

(:Idocumentation "Enables elma nodes to allocate
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and deallocate free pool nodes."')
(:required-flavors elma)

6.5 Subordinate Mixins

(defflavor free-pool-allocatable-mixin
(owner-stream)
;; created object acknowledges its creator on this stream
0

settable-instance-variables
(:documentation "'Makes elna nodes allocatable from a free pool"')
(:required-flavors elma)

(defflavor free-pool-reclaimable-mixin
((subordinate-status :CREATED)
(incorrect-address-action niil)*
(incorrect-address-system-action '((:deallocate-self . :doit)

(:re-init .:doit)))

(cached-tasks)
(forwarding-data nil)

0

(:documentation "Makes free pool nodes reclaimable")
(:required-instan-ce-variables owner-stream)
(:required-flavors free-pool-allocatable-mixin elma)

(defflavor free-pool-node-mixin

(free-pool-allocatable-mixin
free-pool-reclainable-mixini)

(:docu~entation "'Makes elma nodes allocatable and reclaimable
from a free pool"')

(:required-flavors elma)

6.6 Free-pool Flavor

(defflavor free-pool
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((node-type)
;the nodb in the free pool

(initial-length *default-.free-pool-let6chi*)
;the initial length of the free pool

(threshold-length *default-free-pool-length*)
(unallocated-nodes)
(requested-nodes)
(allocated-nodes)
(deallocated-nodes)
(count 0)
(sites nil) ;; the sites available for free pool nodes
(site-function 'random-fp-s ite)

na'me of function which returns a site number on which to
,allocate a new node

(copy-seif-mnixin)
settabl-e- inst ance-variables

(l:documentat ion "The fr-ee-pools slot of a free-pool1-allccator is a
list of these objects. Use make-free-pool. rather
zhan. make-instance."))
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Appendix A
Example Program

A: ~az~eDar gra ii can be tour a~ma:exazi es;prac;c-n: exar-le.lisp.Tyen

iEnter (-Vess~m Az,:owei by, -ake-syst-en 'EA) at a LISP-listener

'.~ ~ a' e--eta ze t

;This file conz ains a creebut szle ELA urczren.
;: r~xidzg IMPL cila-r :nterf ace.

(defvar 'roci-.;enrs2)

(defvarsre-oorreoiLi.tcs'
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; and :banana message rfo.q;,qntively. The BOSS then deallocates Oliver
; and Barry and then sends them various messages. Since they are
; deallocated, the incorrect address mechanism handles these messages
; and automatically returns, forwards or drvps them according
; to settings.

OBJECT DEFINITIONS

;; ****

;; BOSS

(defflavor boss

()
(elma-manager)

:settable-instance-variables
(:documentation "Boss--doles out work to the clerks")
)

; CLERK

(defflavor clerk
()
(elma-subordinate)

(:documentation "Clerk--does all the work")
(:defau '-init-plist

;; record incoming messages for these triggers
:notable-triggers '(:apple :orange :banana)
;; time the execution of these trigger methods
:timed-triggers '(:apple :orange :banana)
:incorrect-address-action
'(;; default settings ror CLERK instances
('pple . :RETURN ) ;; i.e., return all apple messages to sender
(:orange . :RETURN )
;; i.e., return all banana messages to sender

:banana not specified, so dropped by default

))
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;;

;; TRIGGER METHOD DEFINITIONS
;;

;; BOSS

(defun boss-init-list-fn (clerk-sites)

"Returns an in4' list for a boss object, in this case the :free-pools

slot and its val
(list :free-po, j

(list
(make-free-pool

:node-type 'CLERK ;; each boss has free pool of clerks
:initial-length *free-pool-init-length*
:threshold-length *free-pool-threshold-length*
:sites clerk-sites))

(deftrigger (boss :get-ball-rolling) 0
"This trigger gets the ball rolling."
;; Allocate three clerks from the pool
(with-subordinate (alfred)
(with-subordinate (oliver

:after-messages

((oliver '((:pineapple))))
i.e., send :pineapple message to oliver as
soon as it is allocated

)
(with-subordinate (barry)

;; get clerks working
(mailing alfred :apple nil)
(mailing oliver :orange nil)
(mailing barry :banana nil)
;; daailocate oliver and barry

(deallocate oliver )
(deallocate barry

:incorrect-address-action

'((:FORWARD :orange (,alfred)))

;; overide the default so :orange is forwarded
)

;; send oliver and barry some work and see what happens
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(mailing oliver :apple nil) ;; this should be returned to the boss

(mailing barry :apple nil) ;; this should also be returned

(mailing barry :orange nil) ;; this should get forwarded to alfred

(mailing barry :banana nil) ;; this should get dropped
)

)
)

(deftrigger (BOSS :returned-message)
((original-message sent-name new-name original-args))

"Trigger for handling returned message"

(debug-format output-stream "'.==> -a received a RETURNED-MESSAGE" name)

(debug-format output-stream
"' Message -a was sent to -a, now named -a, with args -s"
original-message sent-name new-name original-args)

)

CLERK

(deftrigger (CLERK :apple) ()
(untimed-format output-stream 1".'a got an APPLE" name)
)

(deftrigger (CLERK :orange) ()
(untimed-format output-stream "7.a got an ORANGE" name)
)

(deftrigger (CLERK :banana) 0
(untimed-format output-stream "'%a got a BANANA" name)
)

(deftrigger (CLERK :pineapple) 0
(untimed-format output-stream "'-a got a PINEAPPLE" Name)
)

s9

,; SIMULATOR INTERFACE
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,; The rest of this file defines functions which set up the simulator

,; and start a simulation.
;; The top level function is start-ELMA.

(defun elma-example (loptional &key initialize
(design 'care:octorus-32)
(instrument 'care:observer))

"Run elma example program.
Initialize simulator if initialize is t."

(when initialize ;; initialize the simulator
(simple :run nil

:reset t
:flush t
:design design
:instrument instrument))

(let ((clerk-sites (cl:remove 0 (care-site-numbers))))
;; i.e., use all sites except boss site
(start-ELMA

:initialization-parameters
'((:ALLOCATOR . "the-ALLOCATOR")

(:ALLOCATOR-TYPE . ELMA-allocator)

(:ALLOCATOR-SITE . 0)
(:START-MESSAGE . :get-ball-rolling)

(:START-MESSAGE-RECIPIENT . "the-BOSS")
(:MANAGER-INITIALIZATIONS
("the-BOSS" ;; name of the manager

BOSS ;; type of the manager
0 ;; site of the manager
boss-init-list-fn
;; function to generate init-list of manager
(,clerk-sites) ;; args of function
NIL))

)
)

)
)
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Appendix B

Table Examples

Example 1: 2D Table, with initial values

(setq foo
(make-table

:label "handles"
:axes (list '(:name :aircraft-type

:type :variable
:keys (:TYPE-A :TYPE-B))

'(:name :radar-id
:type :variable
:keys (:RADAR-i .r.ADAR-2 :RADAR-3))

miit-values '((andle-A-i handle-A-2 handle-A-3)
(handle-B-i handle-B-2 handle-B-3)))

OR, alternative specification using a linear list of values
(but get the order right!)

(setq foo
(make-table

:label "handles"
:axes (list (list :name :aircraft-type

:type :fixed
:keys '(:TYPE-A :TYPE-B))

(list :name :radar-id
:type :fixed
:keys '(:RADAR-i :RADAR-2 :RADAR-3))

miit-values '(handle-A-i handle-A-2 handle-A-3
handle-B-i handle-B-2 handle-B-3)

,Referencing values:
(send foo :value :TYPE-A :RADAR-2) ~>handle-A-2
;; Setting values:
(send foo :set 'new-handle-A-2 :TYPE-A :RADAR-2) ~>new-handle-A-2
(send too :value :TYPE-A :RADAR-2) =>new-handle-A-2

Removing values
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(send foo :remove :TYPE-A :RADAR-2) ~)nil
(send too :value :TYPE-A :RADAR-2) ~>nil
;Adding values

(send foo :add 'another-handle-A-2 :TYPE-A :RADAR-2) ==> 'another-handle-A-2
(send foo :value :TYPE-A :RADAR-2) >'another-handle-A-2

;Returning and removing values (only for variable type tables):
(send foo :remove-and-return :TYPE-A :RADAR-2) ==> 'another-handle-A-2
(send foo :value :TYPE-A :RADAR-2) =>nil

Axis information:
(send foo :nth-axis 0) ):aircraft-type

(send foo :nth-axis 1) ~>:radar-id

Example 2: 1LD Table, no initial values, used as aLIFO queue

(setq foo
(make-table

:label "Names"
:axes '((:name :track-id

:type :variable)))

(sn) o ad'nm- ) nm-

(send foo :add 'name-0 0) narne-0
(send foo :add 'name-i 1) ~>name-i
(send foo :add 'name-2 2) >ne-

(send foo :pop) name-3 
(send foo :pop) ~>name-3

(send foo :remove-and-return 0) ==> name-0

Example 3: 3D table. with initial values:

(setq foo
(make-table

:label "Test things"
:axes (list (list :name :aircraft-type

:type :variable
:keys '(:TYPE-A :TYPE-B :TYPE-C))

(list : name :radar-id
:type :variable
:keys '(:RADAR-i :RADAR-2 :RADAR-3))

(list : narne :handle-or-handle
:type :variable
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:keys '(:name :handle))

:init-values '(((name-A-i handle-Ai1)
(name-A-2 handle-A-2)
(name-A-3 handle-A-2))

((name-B-i handle-B- 1)
(name-B-2 handle-B-2)
(name-B-3 handle-B-3))

((name-C-I handle-C-i)
(naie-C-2 handle-C-2)

(name-C-3 handle-C-i)

;Adding values
(send foo :add 'handle-D-1 :TYPE-D :PADAR-i :handle) =>'handle-D-1

(send foo :add 'name-D-2 :TYPE-D :RADAR-2 :name) = 'name-D-2
(send foo :remove :TYPE-D :RADAR-2 :name) =>'narne-D-2

(send too :value :TYPE-D :RADAR-1 :handle) ~>'handle-D-1

;; Referencing major axis values
(send faa :major-axis-values) == '(:type-D :type-A :type-B :type-C)

(send too :entries) ==> 19
;; Removing all table values for one major axis valus (only fcr :VARIABLE type

tables)
(send foo :major-axis-ren-.ove :TYPE-B)

(send too :major-axis-values) == '(:type-D :type-A :type-C)

(send foo :entries) => 13

Example 4: Variable Type TAble with only some axis values specified

(setq foo
(make-table

:label "'FPS stuff''
:axes (list '(:name :fps-name

:type :FIXED
:keys (fPs-O fps-1)

'(: name :fps-attribute
:type :FIED
:keys (:ime :fpo-parer.ts :postion :velocity)))
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;add some stuff for fps-0
(send foo :add 'time-O 'fps-O :time)
(send too :add 'fpo-parents-O 'fps-O :fpo-parents)

(send foo :add 'fpo-position-O 'fPs-O :postion)

;; add some stuff for tps-i
(send foo :add 'time-i 'fps-i :timo)

(send too :add 'velocity-i 'fps-1 :velocity)

;; Reference values:
(send too :value 'fps-O :time) =>time-O

(send too :value Ifps-i :veloci~y) =>'velocity-i

;Get maor axis values

(send foo :major-axis-values) ==> (FPS-0 FPS-1)

Examiple 5: 2D Table

(see-q foo
(make-table

:label "More stuff"E1
:axe3s (list I(:name :ai4rcraft-type

:type :FTXED

:keys (:T7YPE-A :TYPE-B :TYPE-C :TYPE-DI)
'name : radar-id
:type :VARIABLE))

(1send foo :add 'A-i :TYPE-A :R.ADA-R-i)
(send foo :add 'A-2 :TYE--A :RADAR-2)
(send foo :add 'B-3 :TYPE-B :RADAR-3)
(send foo :value :TYPE-B :RADAR-3)
;; or, referencing with numeric indices (only for fixed axes)

(send too :value '(:nt-h 0) :radar-i) =Z A-i

(send too :value '(:ntLIh 1) :radar-i) ~>nil
(send too :value '(:nth 1) :radar-3) =)B-3

(send foo :value :TYPE-E :RADAR-1) ==> error
(send t~oo :value '(:nth 1) '(:nt.- 0)) =t-> nil

Examiple 6: ID Tabl-e. w-ith tdic, :onary axis

(setq foo
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(make-table
:label "name"
:axes '((name :fps-name

:type :dictionary
:keys (CTPS-O" "FPS-1" "FPS-2"1)))

:init-values '(FPS-O FPS-1 FPS-2)

(send foo :add 'FPS-3 "FPS-3")
(send too :add 'FPS-S ,FPS-511)
(,send too :remove "FPS-O")
(send foo :remove-and-return "FPS-3") ==> FPS-3
(send foo :entries)
(send foo :pop-end)

Example 7: 3D Table. all axes fxed, without initial values

(setQ table
(m~ake-t able

:label "FPC names arid handles"
:axes (list '(:nam-e :aircraft-tYpe :type :FIXED

:keys (:TYPE-A :TYPE-B))
'(:name :radar-id :type :FIXED

:keys (:RADAR-1 :RADAR-2 :RADAR-3))
'(:name :name-or-handle :type :FIXED

:keys (:name :handle)))

using numeric keys
(send table :add 'A-2-handle '(:nth 0) '(:nth 1) '(:nth W)
;above is equivalent to (send table :add 'A-2-handle :TYPE-A 2 :handle)

(send table :add 'A-2-name '(:nth 0) '(:nth 1) :name)
(send table :add 'A-i-handle '(:nth 0) '(:nth 0) :handle)
(send table :remove '(:nth 0) '(:nth 1) :handle)
(send table :remove '(:nth 0) '(:nth 0) :handle)
(send table :nth-axis-rnth-key 2 1) ==> :handle
(send foo :valid-keys) =-- (:TYPE-A :TYPE-B))
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Abstract

Production systems (or rule-based systems) are widely usea for the development of expert

systems. To speed- up the execution of production systems, a number of different approaches

are being taken, a majority of them being based on the use of parallelism. In this paper, we

explore the issues involved in the parallel implementation of OPS5 (a widely used production-

system language) in QLISP (a parallel dialect of Lisp proposed by John McCarthy and Richard

Gabriel). This paper shows that QLISP can easily encode most sources of parallelism in OPS5

that have been previously discussed in literature. This is significant because the OPS5

interpreter is the first large program to be encoded in QLISP, and as a result, this is the first

practical demonstration of the expressive power of QLISP. The paper also lists the most

ccmmonly used QLISP constructs in the parallel implementation (and the contexts in which

they are used), which serve as a hint to the QLISP implementor about what to optimize. We

also discuss the exploitation of speculative parallelism in RHS-evaluation for Oi'S5. This has

not been previously discussed in the literature.
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Parallel Execution of OPS5 in QLISP

Abstract

ProducUon systems tor rule-based systems) are widely used for the development of expert systems. To speed-up

the execution of production systems, a number of different approaches are being taken, a majority of them being

based on me use of parallelism. In this paper, we explore the issues involved in the parallel implementation of

OPS5 Ia widely used producuon-system language) in QLISP (a parallel dialect of Lisp proposed by John McCarthy

and Richard Gabriel). This paper shows that QLISP can easily encode most sources of parallelism in OPS5 that

nave been previously discussed in literature. This is significant because the OPS5 interpreter is the first large
program to be encoded in QLISP, and as a result, this is the first practical demonstration of the expressive power of

QLISP. The pel c also ists the most commonly used QLISP constructs in the parallel implementation (and the
contexts in which they are used), which serNe as a hint to the QLISP implementor about what to optimize. We also
disc., s the expr'itaion of speculative paral.elism in RHS-evaluation for OPS5. This has not been previous'y

discussed in the literature.

1. Introduction
There are several different programming paradigms that are currently popular in Artificial Intelligence, examples

being production systems (or rule-based systems), frame-based systems, semantic-network systems, logic-based

systems, blackboard systems. Of the above, production systems have been widely used to build large expert systems

'10, 14]. Unfortunately, production systems ran quite slowly, and this has especially been a problem for

applications in the real-time domain. Production systems must be speeded-up ,ignificantly if they are to be used in
new in-reasinglv cumplex and time-critical domains. In this paper, we focus C,_r attention on a specific production-

system language. OPS5, that has been wideiy used to build expert systems and whose performance characteristics

have been extensively studied. We also focus on parallelism as a means to speed-up the execution of OPS5.

The parallel execution of the OPS5 production-system language has been studied by several groups [4, 8, 11, 131.
hleir general approach consisted of two steps. (i) the design of a dedicated parallel machine suitable for execution

vf OPS5; and msu the mapping of the OPS5 Lompiler and run-time environment on to the parallel hardware. In these
mplementations, the second step tthe mapping step) involves parallel encoding of OPS5 using hardware specific

and operaung-system specific structures. In this paper, we explore how this mapping step may be done in a
igh-'evei parailel dialect of Lisp, called QLISP. The main advantages of encoding using a high-level programming
.anguage are: ki. Increase in portability. since the code does not depend on machine spe-:fic features; (ii) Greater

flexibdity and expressive power of the high-level language results in faster turn-around time, fewer errors, and more

readable and modifiable code. The main disadvantage, of course, is that the encoding may not be as efficient as

hand-coded hardware-specific encodings. We normally do not worry about such issues for uniprocessors --
ianguage compilers for uniprocessors are good enough -- but the disadvantage is significant for parallel

:mplementations where the technology is rzez as far advanced. There is one more strong motivation for doing a

parai~el implementation of OPS5 wlb.ie remaining vwithin Lisp (unlike most previous parallel implementations).
,is -s that OPS5 is often used as a.i embedded system within larger Al systems, and the fact that the rest of these

Nvstems are encoded in Lisp. if OFSi is also encoded in Lisp, then it makes the task of interfacing much simpler.

I here are several oarallel L.sp lane ,e,. fur example. Mulutlisp '5, 6. 7] and QLISP [3', that are available for

.peed.ng up L~sp programs by using -.uit:-pe processors. Since QLISP is based on the Common Lisp (121, it

-ro;u:es very powerful faclities to he u-cr. *.uitisp is based on a func-ional programming subset of Lisp.
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Another distinguishing features of QLISP is that control mechanisms to access shared data or global data are

embedded in Lisp primitives. Other parallel Lisp languages use some data structures for locking, such as

semaphores. QLISP enables the user to write parallel programs without paying much attention to the consistency of

shared or global data. One of the main purposes of this research is to explore the expressive power of QLISP by

implementing a large program in it. Ours is the first large ("real") program implemented in QLISP, so this

constitutes the fL,,t practical demonstration of the expressive power of QLISP. We also list the most commonly

used QLISP constructs and the contexts in which they are used, which can serve as a guide for optimizing the

implementation of the QLISP language. A language where it is easy to express parallel constructs, but which does

not offer better performance is not of much use.

The approach we take for parallelizing OPS5 is based on that of the Production System Machine (PSM) project at
Carnegie-Mellon Unixc.sity [4]. The PSM project studied how the speed-up from parallelism increases as one goes
from coarse-granularity (rule-level) to fine-granularity (.,-ce) parallelism. We implement each of their
schemes and show that it is relatiely easy to encode these parallel schemes within QLISP. We also show some
interesting ways in which to exploit conflict-resolution parallelism and speculative parallelism' in RHS evaluation

using QLISP.

This paper is org inized as follows. Section 2 presents some background information about the OPS5 language,
the Rete algorithri used to implement OPS5, and about QLISP. Section 3 describes how we do a parallel
implementation of OPS5 using QLISP and the various issues involved. Finally, Section 4 is devoted to a discussion

and conclusions.

2. Background

2.1. The OPS5 Production-System Language
An OPS5 [I] production system is composed of a set of if-then rules called productiors that make up the

production memory, and a database of assertions called the working memory. The assertions in the working memory
are called working memory elements. Each production consists of a conjunction of condition eiements

corresponding to the if part of the rule (also called the left-hand side of the production), and a set of actions
corresponding to the then part of the rule (also called the right-hand side of the production). The left-hand side and

the right-hand side are separated by the "-->" symbol. The actions associated with a production can add, remove or

modify working memory elements, or perform input-output. Figure 2-I shows two simple pFoductions named p1
(with three condition elements)and p2 (with two condition elements).

(z coI (Cl ^color <x> ^size 12) o 2 1C2 ^price 33 ':o13r <v>)
(C2 ^pri-e.. ^38 o <x>) 0(C4 ^=_'i Or <v.>).

(C3 'color <x>)
__> -Cd_;fy I ^prizce 54'

(re-ove 2)

Figure 2-1: Example of productions

The production system in:erpre:er is :he underlying mechanism that deerrnes the set of sausfied producuons

anid controls the execudon of the producicn s stem program. The in:erpreer exe-,ites a production system program

:The arallel corpuutors of a zvog'm in be '- -a'qgT es Mun or,

,rner mean tha all of abG. execuzd .n . ..c e - sa-.... e .he .a::er -ean. ±a- s.-.e ccp'. ons excc,..td Cz =areL %a n-t
e ne- ssarv
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by performing the following recognize-act cycle:

* Match: In this first phase, the left-hand sides of all productions are matched against the contents of

working merxy. As a result a cofrlict set is obtained, which consists of istaniations of all satisfied

productions. A-. instantiation of a production is an ordered Lst of working mrnemory elements that

satisfies the left-hand side of the production.

* Conflict-Resolution: In this second phase, one of the production instandation; in the conflict set is

chosen for execution. If no productions are satisfied, the interpreter halts.

* Act: in this third phase, the actions of the production selected in the confitict-res)ltion phase are
ex-uted. These actions may change the contents of workmg memory. At the er4 d;)f this ph-se the
first phase is executed again.

Each working memory element is a parenthesized list consistng of a constant synbol called the c ss of the

element and zero or mnore attrbute- .ahe pain. 7he attributes are symbols that are preceded by the operator ^ The

v alues are sr mo-> zr numerc constants. nEach .ondticoal element in the I..S consists of a class name and one or

more terms. Each term consist of an atmrbute prefixed by A. an operator. and a value. An operator is optional and

its default value is =. Other ceators are c, <=. >. >=, <> ard <=>. A value is eiher a constant or a variable. A

,ariable is represented by an identifier enclosed by < and >. A variable can match any value. bu t all occurrences of

dhe same variable in the LHS of a rule s-.ou!d match the same value. Conditiofal ele ments may not contain a- pair

of attribute-value present in a working n-emory element_. if a conditional element is preceded by -. it is called a
negated condition element. The match f-r a re succeeds only if there is no workng rremor- ernnt marching its

netzated condition eleme4nt

he RHS of a prod=ctio- can contaia a.- number of acdons. Actions can be classified into:

* Working memory operations: These are make. remove, and ,,rtii-v.

* 11O operations: 7se are openfile, cosef!ie. and write.

* Binding operations: These ae b-nd and cbind.

* Miscellaneous operations: T-hese are &fi-lt , halt anid build.

The above action types often take furctiors as ar umenrts Some such funi.,A.ns are G (quote). substr, genato..

compute. iitval. accept and acceptiine.

.. The Rete Match Algorithm
Empircal study of ,arious OPS5 orograns shows two interesting charr.ernstics; terworal red.zdar and

sr.c*turi srz'r,, _21. Temooral redundwncy refers o the fact that a rule-firg .akes only a few .modificacons to

tfle -A 3ting memco- and most workng-memorv elements remain unchaneed. Scnictunal-si-irnt rfer to the fact

That all productions are not totally dStLM-L and that there are manv smrdrutes beteen the conditon eiements or

..ferent productions. T-he Re-e mratc -az-ri-hn exilo-its t'se two features t sp-d up the mamh p-ase of th-

intereter.

w.e Rete gi4vothm uses a sp;c-n .-' ota-row network cr ompip ed om trhe t ft -hand sid es o4 prcdurr-ons to

ert,-rrmarch. Thqe network iS ge-r-r- At ;cmpile imUe, b-fore te . od-i n sys-nems is arc .'i run. Fig-ue 2-2
'htows such a nrwor for the vwo orc1c'c-,s sho.vn in Figure 2-1. 1 rills 2- e. line have b daw-n between

:-;C os in d,.icate the -an's a.ongw -mrornaona flows from th- w_-node down along these

ThaS 71s odes with a single pre-iees or Emea. the too of t-"--h ej ze teOnes rat are concernedw-th
.c." l cc--ndion eeren.ets:.T ne x wo Me ons , -ieck o nsistencyof var -e * -dees-_ a . re C"- ' --- k co ...... nb-e

S;nngs between condinon elements. -we :tr re-ds are at 0 --om of the figure. Noce tha when two

-'" oands-e requireidenticA -he . hares c-art ofttnAork rather than buing picae nodes.
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root

I- cilass=;con ant- j class-C l lassass=C4

nodes

mem-nodemem-node
n~m- node

I terminal-node

terminal-node

01

Figure 2-2: Tne Rete network

To avoid performing the same tests repeatedly, th- Ret, orithm btores the result of the match with working
memory as state within the nodes. This way, onI,, changes made to the working memory by the most recent
producuon firing have to be processed every cycle. Thus, tie input to the Rete network consists of the changes to
the working memory. These chianges fiter through the network updating the state stored within the network. The
output of the network consist:. 01' i specification of changes to the conflict set.

The obects that are passed betweern nodes are called token , which consist of a tag and an ordered list of
workir:g-nemory elements. The tag can be eider P. +, indicating that something has been added to the working
memnoty, vr ai- indicretirig that something hzs be,'n removed from it. The list of working-memory elements
assoc'ated with 2tokreni corre, pjnds to a :-4uence of those elements that the system is trying to match or has already
matched aganast a abisequ-ince o&cond dion E dilents i.i the left-hand side.

IP% data-fio~j- networY pr'xiuced by (he flet algorithm consists of four different -Lpes cnodes. These arm:
1. Constant-tkist ries: Thest nodes are used -, test if the ,rtbutes in the condition element which

hsi:t . onsiant valne ate satisfied. These nodes always appear in the top part of the network. They
hav'e only ,-, ir-qut, anc' a- a resii, the-y asometinies called one-input s odxes.

2. Metrcry nodes: Tiese nodes sto,-e the resLits of tht. match phiase frc.m previous cycles as state within
them. -h-e statc stro,-d in a ii. emory node consists of a list Of the tokens that match a part of the
left-ha.-d s'Ac. of the associated. prc.-uction. For example, Jhe ixgt-most memory r.-Yd-e in Figure 2-2
stores aij zokens matchirg the seicond condition-eler-ent of produtcri~n p2.

At a more detai!ad level, there are two typ1  oif memory nodes -- the a-mem nodes and the f3-mem
nodes. The cr-mema rodev s'to-.~ tokens that match individual ccndition elemrents. Thu3 all memory
nodes immnediately below constarit-test nodes are ox-mem nodes. The P-mem nodes store tokens that
match a sequence of condition elements in the !eft-hand side of a prodilction. Thus all memory nodes
immediatalIy below two,-input nodes are . em nodes.
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3. Two-input nodes: These nodes tet for joint satisfaction of condition elements in the left-hand side of

a production. Both inputs of a two-input node come from memory nodes. When a token arrives on the

left input of a two-input node, it is compared to each token stored in t,e memory node connted to the

right input. Ail token pairs that have consistent variable bindings are sent to the successors of the

two-input node. Similar action is taken when a token arrives on the right input of a two-input node.

There are also two types of two-input nodes -- the and-nodes and the not-nodes. While the and-nodes
are responsible for the positive condition elements and behave in the way described above, the not-
nodes are responsible for the negated condition elements and behave in an opposite manner. The
riot-nodes generate a successor token only if there are no matching tokens in the memory node
corresponding to the negated condiion element.

4. Terminal nodes: There is one such node associated with each production in the program, as can be
seen at bottom of Figure 2-2. Whenever a token flows into a terminal node, the corresponding
production is either inserted into or deleted from the conflict set.

2.3. QLISP - Parllel Lisp Language

QLISP is a queue-based para!lel Lisp proposed by Dick Gabriel and John McCarthy [3] and is being implemented

on an AUiant FX/8 shared-memory multiprocessor by Stanford University and Lucid Inc. QLISP is similar to
Mululisp [5, 6, 71, but language constructs incorporate important mechanisms for parallel computation such as

spawning ind locking. The spawned processes are put Ln the system queue and given to a processor by the

scheduler to evaluate lt. The key ideas in QLISP were derived by reexamining Common Lisp [121 from the
perspective of parallel procebsing, and by striving to make the minimal number of extensions to Common Lisp.

Some QLISP primitives are summarized in the following subsections.

2.3.1. QLET
The qlet form executes its local binding in parallel.

(qlet predicate (I (var value) }*) (form)*)

The qilet form is a construct to evaluate all values in parallel 2. However, its computational semantic depends on the

result of predicate which is evaluated first in th, qlet form.
" If the result of predicate is nil, the qlet form acts exactly as the let form.

" If the result of predicate is neither nil nor eager, a process for each value is spawned and the process
evaluating a qlet form is suspended. When all the results of value are available, each result is bound to
each var and the process evaluating a qlet form resumes its comp a tion; that is, the body of a qlet form
is evaluated.

" If the resuit of predicate is eager, a special value, future3 , is bound to each var and the body of a qlet
form is evaluated immediately. A future is associated with a process which evaluates a value
eventually. In the execution of t le body, if the value is not supplied yet, the process executing the body
is suspended till the value is available.

Two kinds of parallel fibonacci functions are shown in Fig. 2-3.

The first one calculates a fibonacci number by spawning a prcess to calculate every fibonacci number of a

.maler number. There may occur a combinatorial explosion of processes if n is a large number. For example, the

number of spawned processes is 176, 21890 and 242784 for r = 10, 20 and 25, respectively. The second fibonacci

function spawns a process only if the depth of the nesting is less than the value of *cut-off*. The qlet predicate

:Since the pcall form in MultiLisp evaluates arguments of a function in parallel, it will be easily implement by qiet in QLISP

tmThe me: huntsm of eager is an implicit implementation of the future form in MultiLisp, c the iazy evaluaton.
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(defun fib (n)
(cond ((< n 2) 1)

(t (qlet t ((fl (fib ( n 1)))
(f2 (fib (- n 2)))

(+ fl f2) ))))

(defun fib-c (n)
(labels ((fib-cutoff (n depth)

(declare (special *cut-off*))
(cond ((< n 2) 1)

(t (qlet (< depth *cut-off*)
((fl (fib-cutoff (- n 1)) (1+ depth))
(f2 (fib-cutoff (- n 2)) (1+ depth))

(+ fl f2) )))))
(fib-cutoff n 0) ))

Figure 2-3: Two parallel Fibonacci functions - Example of qlet

enable: the user to control the spawning of processes. Needless to say, an appropriate value for *cut-off* should be
determined by "he tradeoff between the cost and bentfit of spawning.

2.3.2. QLAMBDA

The lambda form in the Common Lisp creates a closure which is used to share variables among several functions
or as an anonymous function. The qlambda form creates a process closure.

(qlambda predicate lambda.list (form) *)

A process closure is used not only to share variables among several process closures but also to control an
exclusive invocation of the same process closure. That is, only one application of a process closure is evaluated and
other applications of the same process closure are suspended. T-he evaluation of a process closure depends on the
value of predicate which is evaluated at the time of evaluation of the qlambda form, that is, creation of a process
closure.

" If the result of predicate is nil, the qlambda form acts exactly as the lambda form. That is, a lexical
closure is created.

* If the result of predicate is neither nil nor eager, a process closure is created. When it is appli;A with
arguments, a separate process is spawned for evaluation. If more than one applications occur, only one
applications are evaluated and others are blocked. This is an implicit locking mechanism.

" If the result of predicate is eager, a process closure is created and spawned immediately without
waiting for any arguments.4

A process closure may be used as an anonymous process, of which application is evaluated as a separated process.
The spawn form is a shorthand form to do it; that is,

(spawn {form}*) is the same as ((qlarmbda t () (form}*)

In a sequential construct such as block, -all forms may be evaluated in parallel by spawn. A set of functions to
update of the conflict-set is shown in Fig. 2-4. The global variable *conflict-set--lock* holds a qlambda
closure to control the exclusive access to the variable *conflict-set* which holds the list of production
instances. The idea to provide an exclusive access to *conflict-set* is to execute an update operation by using the

4This curious mechanism can be used to write a parallel Y operator, that is, for all f, Y(Of-Y(f)), in QLISP. However, other useful

applications ae not yet known.
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same qlambda closure. The lock is released when register-cs returns a value immediately or when

sort-conflict-set updates the *conflict-set* or executes a sorting by spawning a subprocess by qlet with the

predicate eager.

(proclaim (special *conflict-set-lock* *conflict-set*))

(defun ops-init ()
(setq *conflict-set-lock*

(qlambda t (body) (apply (car body) (cdr body))) ))

(defun insertcs (name data rating)
(funcall *conflict-set-lock*

(list 'register-cs
name data (cons (sort-time-tag data) rating) t )))

(defun removecs (name data rating)
(funcall *conflict-set-lock*

(list 'register-cs
name data (cons (sort-time-tag data) rating) nil )))

(defun register-cs (name data key flag)
(cond ((null *conflict-set*)

(setq *conflict-set*
(create-new-cs-element key nil name data flag) ))

(t (sort-conflict-set name data key flag *conflict-set*)) ))

Figure 2-4: Locking for Conflict-set

233. CATCH and THROW
A pair of catch and throw provides a way to do a non-local exit in the Common Lisp.

(catch tag form) and (throw tag value)

In QLISP, it provides not only a means of non-local exit but also a mechanism to control subprocesses spawned
during the evaluation of form in the catch form. If the catch gets a value by the normal termination of form or a
throwing, the catch kills all processed spawned during the execution of the form. If the value contains a future, the

associated processes are not killed Note that the execution of a process spawned at a value-ignoring position of a

sequential construct is aborted.

2.3.4. QCATCH
The qcatch form is similar to the catch form, but the control of spawned processes is different.

(qcatch tag form)

If the evaluation of the form terminates normally and the qcatch gets a value, the qcatch waits for all the --ocesses

spawned dring the execution of the form to terminate. Therefore, processed spawned at a value-ignorino position
will be evaluated before terminai,:g the qcatch form. If the execution of the form is aborted by a throwing, the
qcatch kills all spawned pro esses !-neath it.

2.3.5. UNWIND-PROTECT

The unwind-protect form is useful to do some cleanup jobs no matter what the unwind-protect form is

terminated.

(unwind-protect protected-form (cleanup-form)')

The unwind-protect form is very important in QLISP world in order to make the data consistent, because processes

can be killed by the catch even if no throwing occurs.
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2.3.6. Others
The suspend-process and resume-procesS forms are used for the user to control the scheduling of processes.

THe wait and no-wait are used to control the termination of a process spawned at a value-ignoring position of

sequential constructs.

3. Parallel execution of OPS5 programs
As stated in Section 2.1, the OPS5 interpreter repeatedly executes a match -- conflict-resolution -- act cycle. In

this section, we discuss how parallelism may be exploited in executing each of the three phases. Most of the

discussion focuses on the match phase, as the match phase takes 90% of the time in the interpreter.

3.1. Parallelism in Match Phase
In this section, we explore how parallelism may be exploited to speed up the match phase. We present several

different algorithms. We start with a coarse-granularity algorithm and slowly move towards finer granularity. In
particular, we explore parallelism at three levels -f granularity -- rule-level parallelism, node-level parallelism, and
intra-node parallelism. All of the above algorithms are based cn the Rete algorithm described in Section 2.2. What
changes from one parallel algorithm to the other is the kinds of node activations that are allowed to be processed in
parallel. The granularities w,. choose to discuss here correspond to those discussed in [4].

Before exploring the above schemes further, a word about the different kinds of node activations in the Rete
network. Activations of constant-test nodes (shown in top-part of network in Figure 2-2) require just a simple test
and are fairly cheap to execute. We call these crest activations. It is usually not worth it to spawn a process to
execute an individual ctest activation, because the overhead of spawning is larger than the work saved.

The second kind of node activations are the memory-node activations. These require that a token be added or
deleted from the memory node, and can be expensive because a delete request may require searching through all the
tokens stored in that memory node. The third kind are the two-input node activations, that require searching through
the opposite memory-node to find all matching tokens (tokens with consistent variable bindings). These are also
fairly expensive. We normally lump the processing required by the two-input node and the associated memory
nodes together into a single task/process, because the two are closely interrelated (the two-input activation examines
the memory node) and separating them incurs a large synchronization overhead. One also has to be careful about
the sequence in which the above node activations are executed. For example, the Rete algorithm sometimes
generates conjugate tokens, where exactly the same token is first scheduled to be added to the memory node and
later deleted. The final result should be that the state of the memory node remains unchanged. However, in parallel
implementations it is easily possible that the scheduler decides to pick the delete request before the add request, and
if not handled properly, the final state of the memory node may have an extra token. To process conjugate pairs
correctly, each memory node haa an extra-deletes-list to store a deleted token whose target token has not arrived yet.

Finally, there are terminal-node activations that insert or delete instantiations/tokens into the conflict-set. Here
also the problem of conjugate tokens can occur. The details for terminal-node activations are discussed later in
Section 3.2.

For all the parallel implementation discussed in this paper, we use a common strategy for handling the ctest
activations. (We present this strategy here, before discussing the differing strategies for the remaining types of
activations.) This strategy is that multiple activations of the root node are processed using separate processes (i.e.,
activations corresponding to different changes to working memory are processed in parallel). However, all
successors of the root node or the ctest nodes are evaluated using the following rule. If the successor node is also a
ctest ..ode then evauate it sequentially within the same process, otherwise fork a separate process to do the
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evaluation. The code for such an evaluation policy is shown in Figure 3-1.

(defun match (token root-node)

(qiet 'eager
((foo (dolist (node (succe3sor root-node))

(cond ((c-test? node) (c-test token node))
(t (qlet 'eager

((foo (eval-node token node))) ))))))))

(defun c-test (token node)
(cond ((do-c-test token node)

(eval-node-list token (successor node)) )))

(defun eval-node-list %token node-list)
(cond ((null node-list)

(t (let ((node (pop node-list)))
(qlet (cond ((lock-node-p node) 'eager)

(t t) )
((foo (eval-node token node))
(bar (eval-node-list token node-list)) )))))))))

(defun eval-node (token node)
(cond ((funcall (function node) token (arguments node))

(eval-node-list token (successor node)) )))

Figure 3-1: QLISP code to ,aluate Rete nodes in parallel.

3.1.1. Rule-level Parallelism

Rule-level parallelism is a very natural form of parallelism in production systems. Here the match for each

individual rule is performed in parallel. In the context of our Rete-based implementation, this requires that we

introduce lock nodes at points where a ctest node leads into a memory-node. All lock nodes before memory-nodes

of the same rule use an identical lock, and those before memory-nodes of distinct rules use distinct locks. Figure 3-3

shows how the onginal Rete network of Figure 2-2 is modified to exploit rule-le% el parallelism. (Identical locks are

shown grouped together in figure.) The locks are implemented using qlambda closures, and the code for one such

lock node is shown in Figure 3-2. As discussed earlier, a QLISP closure ensures that only one process can be

actively executing inside the closure. The proposed locks then ensure that all activations corresponding to a single

ule are executed in sequence, which is the desired semantics for rule-level parallelism.

(qlambda-cicsure successor-n..e) ;:; structure of lock node

(qla.rbda t (token node) (funcall (eval-node token node))) ;;; qlambda closure

Figure 3-2: Code for the lock node.

Finally, we need to provide locks before the tokens enter the conflict-set, since the conflict-set is a global data

structure and multiple processes should not be modifying it at the same time.

Using rule-level parallelism, previous s,udies (41 show that only about 3-fold speed-up can be obtained. This is

ii) because the number of rules that require significant processing is small and (ii) because even amongst these

affected rules there is a large v:aiation in the processing requirements. To reduce this variation in the prcessing

times, we now discuss exploiurg parallelism at a finer granularity where the processing for a single rule can be done

in parallel.
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Figure 3-3: Modified Rete Network for Rule-level parallelism

3.1.2. Node-level Parallelism

When using node-level parallelism (4], any distinct two-input nodes can be evaluated in parallel5 . To implement
node-level parallelism, lock nodes are placed before each two-input node and its associated memory nodes as shown

in Figure 3-4. The structure of a lock node is the same for node-level and rule-level parallelism. However, the

value of the qlet predicate are different for evaluating different types of node activations. The predicate is - for

evaluating a memory-node and a two-input node, but it is ' eager for evaluating successor nodes below a two.
input node. That is, the execution of a two-input node is terminated by a fa:ure and ,he lock is released.

Note that if some two-input node generates multiple tokens, the next two-input node becomes a bottleneck. This
is because only one activation of a given two-input node can be processed at the same time.

3.1.3. Intra-node Parallelism
The intra-node parallelism (4] exploits maximal parallelism present in the Rete algorithm. If multiple tokens

arrive at a two-input node, then these multiple activations of the two-input node are processed in parallel. However,
we have to be very careful about how we access the memory nodes: (i) it is not desirable to have multipie processes
modifying the same memory node; and (ii) the correct operation of the Rete algorithm rquires that the opposite
memory-node should not be modified while processing a two-input node activation. To ,nsure the correct
operation, we adopt the solution proposed by Gupta in [4]. We use a common hash-table for dil tokens stored in the
memory nodes of the Rete network. Tckens are put into hash-table buckets based on the node-id of the associated

SAccodiog to the result of the simu!atons of PSI. :he speedup of node-parallelism is about 54fod.
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3.2. Conflict-Resolution Parall elism
During the conflict-resoltiaon phase one of the several psoduCtion instantiations in the conflict-set is selected for

execution. The method by which zh .s produ.ction instantation is selected is called the conflict-resolution strategy.

OPS5 provides for two confi ct-reso u tiori suraegies --I - LFX (lexical) and MEA (means-ends -analysis). T-he two

differ in the way a key is constructed for somtng various instantiations. The key for LEX consists of the sorted
umne-tag values of the worki-ng-mery elmnsi teisatation. The key for .MEA consists of the time-tag of

the firs-,w g-memo'-ement in me instantiatiOn. followked by the sorted time-tag values of the remaining
working-memory elements in the instaiuation.

To perform confi~t resCluzuJn. riral.the c-onflict-set is maintained as a sorted list of production instandtiaions.
Executing conflict-resol-,ron in parallel imposes the following requirements:

* .ke Must aiow muti'r.le instzn- tions to be Inserted trto or deleted from the conflict-set in parallel.

* We must :iwfor ccnijugare x~: t atainthat is, %here the delete request for an instantiation
5received beftore -he add roet

*We would "ike to 'a-e the h_,g"eSt :on'- -.y i.;'an'_:!!:on available to the RHS evaluation process as
soon as p3scstie, a!khougbh r'-e re,Ec f teconflict-set data structure is not completely sorted.

To handle the fit recuuIemenl. -. e an :Lyncluirous s~stolic priori-ty queue structure in software [91 using
QLISP. in this struatre. n-%eris we~ ;r.:ut at the head of thie priority queue. T-hese then asynchronously
filter donuntil nheY fi.d he noght jn ie sor-ed queue. A delete may annihilate an element if it is already
present- !f a dei-1ee doe, -._- ind a c e.r~elemnt already there (conjugate token problem), it locates itself at
Lhe rnght :cauion in Lrte OUeLCe a a, : .g and wAa:Ls for the corresponding add request to come by later. An

L:,ert behaves s-_t'ariv. TekeN vc.nz .s -1-. th.e highest pr-ority istantiation is always available at the head of the
queue, ever. if e:ements a:e st,'1 pecc, .. ,.n im the lowker Priority regions ~fthe queue. The data structure that
w- e use for a s;Cnale is -tacnre iotyqUeue is show:n in Figure 3-6 and some related code is shown in
F igutre 2-4.

conflict-set-element
(key -ext-element positiv-e-ir.stance-i:sE rega-i, e-insmnce-list)

where next-e 'ement zmd-lsr conflict-Set-elernenti
~ce = sored-i e-tg-o- istaceeteent. rtig-of- prodluction)

postive-instance-IM- - posau:ve-instar-ce ..

extra-deletLes-iist = ex~a-c-':ees-instance ...)

tisatve-nstance '- flg_.wnhfe-fir) pr-ductionp istance-eeec-h,*-I-is-tI
extra-deietes-instance - (production. instance-eemer.i-iiSt)

Fioure 3-6: Reoresentation of a production instance

The timie to 1aC u, ate r!.me ax -u ea:men z n t.- o -e sch1.e me I s 0, 6. wrhere k is th e num7nbe r of ch anges to the
conflict-set per nec -,nize - w ZY .n e X : arczni _5 for most s sterns this is not a problem. Thwe timne to finish
sordtig however. can be rrnc 7-. tieIS x k/. xhe-re N is the total number of elements in the

eiement. Th ptml or sotn.btit is good for getting the highes pro0t
el m n . -1&h -cheSE prI N eis USC - -~ue~ the SpeCUlatiVe executon of the R -S
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3.3. Speculative Execution of RHS
in the normal execution of a rule-based system, one would wait until conflict-resolution finishes completely

before starting to execute the RI-IS of the highest priority rule. However, in a parallel implementation, this may

,mpIY too sequential a behavior. Even if RHS execution takes only 10% of the time, this limits the maximum

speed-up to l-fol& As a solution, Ae propose the speculative evaluation of RIHS in this paper. By speculative

-'zxon cf RES we mean the folio ing. While the match and conflit-resolution are still going on, we make a

guess about the highest priority rule. (This in our case is simply the rule currently at the head of the conflict-set.)
We start e-, aiuating the RHS of this rule, i.e., gathering up the changes it would make to working memory in a list

,,ithout actually changing the working memory). if our guess is proved wrong, that is whenever there is a change
.n the rue at the head of the conflict-set, we simply create a new process to evaluate the RHS of this new rule. We

.arrently do not abort the previously esaluating RHS because aborting is not easy to implement in QLISP.
Furt.-ern-re, t is poisible that the e aluated RHS of the nor-highest rule may come in useful on a later cycle.

T1-he OPS5 QLISP system provides a new action command srcall, side-effect-free call which execute a user-
zefined routines written in QLISP or in Lisp. These user-defined routines should not refer any global data which
-nay be modified by other routines, because the system assumes that simplification should be valid at any time and
independent from any global context The algorithm of simplification is sketched below:

1. Check the type of operations.

if a working memory operation, calculate all arguments and make a token.
* if make. make a token of add and replace the original action with it.

If remove, mae a token of delete and replace the original action with it.

* If modify, make a token of delete and a token of add and replace the original action with them.

Ho,.wever, if a. action contains a fruction such as accept, acceptline, these functions are not executed.
Only om"itted attnibu*-value pairs are supplied and the original action is replaced with a new action
%Iich has Al a"-•bute-vaue pairs.

ifra side-effect-free ca!l srcall, do it

-#. Oiewise. process next action.

-is sniplification f -u: similar to the argument e,,aluation for a Lisp function with keyword arguments of the

C:mmon Lisp. 7-e -s:mplification routine is invoked -when the maximum production instance of conflict-set is
- -'rzed and stores a simp lified form to the simplified form slot of the instance. Note that this simplified form is
£_ifd Lr an,, :me. because :t is calculated with using only local ,,alues which is specified in an instance. Conjugate

:.±.rs ma) zreate crnecessary processes. but he current implementation does not abort them, because such an
_'-::ngechanism 1is V easy to implement and the number of conjugate pairs are not expected to be large.

4. Discussion
n dhis paper, we present the details of an IMDlernentation of the OPS5 production-sy stem language using QLISP.

a parallel dialect of Lisp. We would iike to make the following observations:
SThe number of modifications need-d to the original lisp code for OPS5 were minimal to exploit the
different kinds of parallelism. For examnple, to exploit the three kinds of parallelism described for
match, less z-an 100 lines of c-de out of a total of about 3000 lines in the original code) had to be
mcdified or addec. We be!ieye th_!at su-ch a high-level prograrm-ning approach provides very powerful
and flexible tools for research in par-'!el progamm ing.

" The QLSP consmcts that we used most frequently in our parallel implementation are '(qlet 'eager ...,
to srpawnpnew Processes and -lan- .da t process closures for locks. The code sections that are
i-xked and e processes hat are -pawkne1 &-onsist of a few lines of lisp code with some but not much
:ecurson or rte;ation. On a-erage. -,% *e t-t de ,-dividual tasks to take about 1 millisecond of
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computation time on a 1 MIPS machine. This requires that the process creation overhead, the locking

overhead, and the scheduling overhead for the spawned tasks be significantly less than 1 millisecond, if

the suggested implementations are to be useful. If the overheads are much larger, then all the

advantages of parallel execution will be subsumed by the overhead.

" We are currently using a QLISP simulator to obtain some performance numbers. Our implementation is

running, and we have just started getting some performance numbers. Unfortunately, the simulator does

not model the underlying hardware very accurately, so we still do not have a good idea about the true

overheads involved. However, for reasons mentioned in the next point, this may not be a big problem
in practice.

" The parallel constructs provided by QLISP (qlet, qlambda, ...) take a predicate that controls whether a
parallel process is actually spawned or not. This convenient run-time method ot controlling the
granularity at which parallelism is exioited is a very powerful mechanism. It makes it extremely easy
to modify code to adjust to differe. .mplementations with differing overheads. It is also convenient to
adjust the granularity depending on t.he load present on the parallel machine.

" As stated in the beginning of this paper, another advantage of implementing OPS5 in QLISP, instead of
in Pascal or C, is that it is easy to embed the OPS5 system within other AI systems (which normally use
Lisp). Furthermore, if there are complex functions in the RHS of rules, then these functions can also
use the parallel consnucts available in QLISP, which is not possible in previously proposed parallel
impl2mentations of OPS5.

" As a final means for improving performance for exisdng OPS5 systems we are planning to directly
compile OPS5 into QLSP code, instead of using an interpreter as we currently do.
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