
AD-A238 047 7r

RL-TR- .- /, VoI (of four),,
Final Technical Report
June 1991 kOf

EXPERT SYSTEMS ON MULTIPROCESSOR
ARCHITECTURES Technical Reports

Stanford University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. 5291

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and
s.4 .,ld not be interpreted as necessarily representing the official policies, either C,
exp, .sed or implied, of the Defense Advanced Research Projects Agency or the U.S. Cf
Grvernment. V)

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13A41-5700

0 2 5

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-91-76, Volume II (of four) has been reviewed and is approved
for publication.

APPROVED: /7~
NORTHRUP FOWLER III
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

RONALD RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(COE) Griffiss AFB, NY 13441-5700. This will assist us in maintaining 3
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Best
Available

Copy

EXPERT SYSTEMS ON MULTIPROCESSOR ARCHITECFURES,
Technical Reports

Edward A. Feigenbaum
Robert Engelmore AF, For
H. Penny Nii'z
James P. Rice R

Contractor: Stanford Unliversity
Contract Number: F30602-85-C-0012 ...
Effective Date of Contract: 14 March 1985
Contract Expiration Date: 31 March 1990 .
Short Title of Work: Concurrent Expert Systems

Architecture 'Dist spca
Program Code Number: OE20 Spc !
Period of Work Covered: Mar 85 - Mar 90

Principal Investigator: Edward A. Feigenbaum •
Phone: (415) 723-4878

RL Project Engineer: Northrup Fowler III

Phone: (315) 330-7794

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of
Defense and was monitored by Northrup Fowler III,
RL (COE), Griffiss AFB NY 13441-5700 under Contract
F30602-85-C-0012.

iREPORT DOCUMENTATION PAGE OM NoTA 0 0VED

Puk.-t af binU f Ucr "r' dat rori awef~ to a ~ nu I.~ wniwt .ugfc am=s-~vvawuju~

Daft HN Sf i20 A*h,0zz VA 2=u- il "aOfb dh i Muwar "~ B~g Paps"O ReOP~ 'i C4U ~r~D C

1. AGENCY USE ONLY (Leave Blanl) 2. REPORT DATE !3, REPORT TYPE AND PATES COVERED

June 1991 !Final Mar S ' - Oct 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
EXPERT SYSTEMS ON MULTIPROCESSOR ARCHITECTURES, C - F30602-85-C-0012

Technical Reports PE - 62301E

PR - E291
6L AUHO(S) TA - O00

Edward A. Feigenbaum, Robert Engelmore, WU - 01

H. Penny Nii and * aes P. Rice I

7. PERFORMING ORG/' ,lION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Knowledge Systems Laboratory REPORT NUMBER

Stanford University N/A

701 Welch Rd, Bldg C

Palo Alto CA 94304

9. SPONSORIINGMONITORING A3ENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING

Defense Advanced Research Rome Laboratory (COE) AGENCY REPORT NUMBER

Projects Agency Griffiss AFB NY 13441-5700 RL-TR-91-76, II (of

1400 Wilson Blvd four)

Arlington VA 22209-2308

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Northrup Fowler III/COE/(315) 330-7794

12a. DISTFRBUTIOWAVAILABIJFY STATEMENT I12b). DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACToY'- W
This final report documents the results of a five-year investigation of methods for

achieving higher performance for knowledge-based systems through the design of

innovative software and hardware systems architectures. Volume I summarizes the work

performed and lessons learned, and serves as an annotated index to the set of over

50 project technical reports. Volumes II through IV contain the project technical

reports.

NOTE: Rome Laboratory/RL (formerly Rome Air Development Center/RADC)

14. SUBJECT TERMI8 i1 NdSER O PA ES
Multiprocessor Architectures, Artificial Intelligence, __478

Blackboard Systems a PRCE CODE

17. SECURITY CLA81ICATION 18 SECURITY CLASSFICATION 1 . SECURITY CLASSFICATION 20. UMIT.TION OF ABSTRACT
OF REPORT IOF TIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED U! .

N.SN 74M -2100J= SCw F 2rer. r 2 n,
29&1~S02 SSc ~

Table. of Contents fer Volume 2

[Aiello 86] User-Directed Control of Parallelism. The CAGE System 2-1
[Aiello 88] Cage: The Performance of a Concurre'i, Blackboard

Environment. 2-15

[Ajello 89i The Cage System User's Manual. 2-26

[Bandini 89] An Application in Poligon. 2-58

[Brown 86] An Experiment in Knowledge-Based Signal
Understanding Using Parallel Architectures. 2-73

[Byrd 87a] A Point-to-Point Multicast Communications Protocol. 2-116

[Byrd 87b] Considerations for Multiprocessor Topologies. 2-148

[Byrd 87c] A Dynamic, Cut-Through Communications Protocol with
Multicast. 2-155

[Byrd 88a] A Performance Comparison of Shared Variables vs.
Message Passing 2-181

[Byrd 88b] Multicast Communication in Multiprocessor Systems. 2-196

[Byrd 89] Support for Fine-Grained Message Passing in Shared
Memory Multiprocessors. 2-205

[Davies 86] CAREL: A Visible Distributed Lisp 2-226

[Delagi 86a] LAMINA: CARE Applications Interface. 2-243

[Delagi 86b] An Instrumented Architectural Simulation System. 2-272

[Delagi 87] Instrumented Architectural Simulation. 2-294

[Delagi 88a] CARE User's Manual. 2-301

[Delagi 88b] ELINT in LAMINA: Application of a Concurrent Object
Language. 2446

[Delaney 86] Multi-System Report Integration Using Blackboards. 2-459

2-i

Knowledge!Systems iaboratory April 1986
Report No. KSL 86-31

User-Directed Control of Parallelism;
The CAGE SYstem

by
Nelleke Aieilo

KNO LEDGE SV.iIENIS LABOR VIORY
Computer Science Department

Stanford University
Stanford. California 94305

To Appear in the Proceedings of April 1986

DARPA conference.

2-1

Abstract

CAGE provides a framework for building and executing application programs as concurrent
blackboard systems. The user controls which constructs of the blackboard system are
executed in parallel.

2-2

1. Introduction
CAGE1, Concurrent AGE 2, provides a framework for building and executing application

programs as a concurrent blackboard system. With CAGE, the user can control which parts of
the blackboard system are executed in parallel. A blackboard application can be implemented
and debugged serially on CAGE. Once the serial version i- debugged, concurrency can be
introduced to different parts of the system, allowing the user to experiment with various
configurations. We believe this incremental approach will facilitate the censtruction of
concurrent problem solving systems and will teach us much about programming in a orrallel
environment. This paper describes the design of the CAGE system and gives detailed
instructions for implementing an application, using the CAGE language and compiler [Rice
86]. We have included advice, warnings, and caveats based on our experience using CAGE.

The target parallel system architecture for the CAGE system is currently the same as that of
QLAMBDA, a queue-based multi-processing Lisp ([Gabriel 84]and McCarthy) on which the
parallel simulation is based. We are assuming a shared memory and a large number of
processors. The user can specify his CAGE application in an extension of the L100 language,
called the CAGE language, and use the CAGE compiler to generate CAGE code. CAGE runs
on LOQS, a functional simulator for QLAMBDA. CAGE is implemented in ZETALISP for
Symbolics 3600 machines and TI Explorers.

2. Overview of CAGE Design
CAGE is a blackboard framework system. In addition to the basic AGE [Nii 79]

functionality, CAGE allows user-directed control over the concurrent execution of many of its
contructs. The basic components of a system built using CAGE are:

1. A global data base (the blackboard) in which emerging solutions a,- posted. The
elements on the blackboard are organized into levels :ad represented as a set of
attribute-value pairs (a frame).

2. Globally accessible lists on which control information is posted (eg. lists of events.
expectations, etc.).

3. An indefinite number of knowledge sources, each consisting of an indefinite
number of pro 'jction rules.

4. Various kinds of control information that determine (a) which biatkboard element
is to te tt. focus of attention and (b) which knowledge source is to be used at any
given point *n the problem so.lving process.

5. Declarations 'hat specify what components (knowledge sources. rules, condition and
action parts of rules) are to be executed in parallel, and when to force
synchronization. During the execution of the ser's applica:on CAGE will run
these specified components in parallel.

Using the concurrency control spet.ifications, the user can al'er the simple, serial control loop
of CAGE by introducii.b concurrenit actions. CAGE allows parallelism ranging from
concurrently executing knowledge sources all the way do%-, to concurrent actions on the
right- or left-hand-siides of the rules. The serial execution and parallel executions possible in
CAGE are summarized below.

in KS Control
serial:pick one event and evecute asic-ciated KSs

lThis research is)r:ed by r ARP\/R.%t)C u11der L untrait muunber Fll-02-85-C-0012. by NASA under c ntract
numbtr NCC 2-220. • by By:" ",n;pucr Ser.'ccs under cunradt number W-266875-

CAGE is bas:d un th.- AGE Sste'. and *e h.-,e ,nuwned here that the rr.i.!er is f,'miliar %kth the .AGE s)t~em.

2-3

parallel:
1. as each event is generated execute associated

KSs in parallel3

2. wait until several events are generated then
select a subset and execute relevant KSs for
all subset events in parallel

in KS
serial: 1. evaluate bindings

2. evaluate LHS then execute RHS of one rule
whose LHS matches (in writien order)

3. evaluate all LHS then execute all RHS
whose LHSs match

parallel:
1. evaluate bindings*
2. evaluate all LHSs in parallel

a. then s';nchronize (i.e. wait for all
LHS evaluations to complete)
and choose one RHS(pick one in order)

b. then synchronize and execute the
RHSs serially (in written order)

c. execute RHS as LHS matches*

in Rule
serial:evaluate each clause then execute each action

parallel:
evaluate clauses in parallel then execute actions
in parallel*
(first nil clause -- > no match; first all non-NIL
clauses -- > match)

in clause

serial: Lisp code

parallel: Qlambda code

For more information about the concurrent options available in the CAGE System and how
to specify them refer to Section IV of this paper.

3. Building applications in CAGE
In each of the following sections we will outline the application data that must be supplied

by the user and how that information should be structured for use by the CAGE System. The
CAGE System provides a CAGE language with which the user can write his application. The
type of user-supplied information is similar to that required for applications constructed in the
original AGE s>stem. However, the structure of the user information is somewhat different
from that of an AGE application.

3Thc starr cd upuons ,nJ,ctle the greatLst use of conmurrvni.>

2-4

3.1. Blackboard Data Structure
There are two major components in the CAGE blackboard structure, the hypothesis classes

(frequently called levels in hierarchical blackboard structures) and the hypothesis nodes. The
user must specify the classes that make up his application's blackboard structure. For each
class, the user must define, the fields to be associated with the nodes created in that class.
Nodes are created in those classes, either a priori by the user or dynamically while executing
the user's rules. The following example shows the definition of several classes and their fields
in the CAGE language.

Class Definitions for k.,del "example"

Class name-of-levela.attribute1
attribute2
attribute3

Class name-of-levelb
attribut94
attribute6.

This will compile into two macro calls, DEFHYPOTHESIS-STRUCTURE and DEFLEVEL,
which the CAGE System will in turn compile into the appropiate hypothesis structure.

(defhypothesis-structure
user-hypothesis-structure
(application-system-root)
name-of-level a
name-of-levelb
name-of-levelc

(deflevel name-of-levela
((attributel nil
attribute2 nil
attribute3 nil

Each of the levels(or classes) will be defined as ati object with the attributes as instance
variables and with the nodes as instances of those objects as they are created. (The user can
define methods for the level objects which are generally used for printing information
contained in the nodes on those levels.)

Definitions:
user-hypothesis-structure: A name the user gives the application's blackboard

-structure.
application-system-root: A handle on the above hypothesis structure for user

access, generally a node where the input data, or a massaged version of the input
data will reside, or the top level of a hierarchical hypothesis structure.

name-of-level: Each level or class must have a user supplied name.

node: An instance of a level, created either before or during the execution of the
application, inheriting all the attributes of that level, but no values.

attribute: For each level the user must specify the names of the slots, which will
become a template for the instance nodes, which in turn will contain the values used
by the KSs. These values are initially NIL.

link: The user may also define links for connecting nodes. These links are defined

2-5

in the knowledge sources which use them and consist of a link name and an
optional, opposite link. The value of a link on a node is the name of another node.

valve: The value of an attribute depends on what was stored there by the rules
and its structure depends on how it was stored. Values can be modified only by the
user's initialization function and by the application rules. The structure of the
values is arbitrary. How values are added or changed is explained in the knowledge
source section.

3.2. Control Structure
All CAGE control information is referenced through the Control-Structure object. The

major components of the Control-Structure are:
User-Initialization: This is a user-defined function, handling any initialization

needed for the user's program, e.g. setting-up the appropriate blackboard structure
(on top of the predefined hypothesis framework) from the input data.

Termination-Condition: Another user-defined function, which determines when the
application should be terminated. The Termination-Condition can access the step-
lists for events or expectations, perhaps checking for a significant event; or the
blackboard, checking a particular node or nodes. It should return a non-nil value
when the application is to be terminated.

User-Post-Processor: When the termination condition is true, a user supplied post
processing function is invoked. This function can be used to print out the
application's results in a readable form. or to handle any other post processing
details.

Event-info: This is a pointer to the Event-Information object which contains
both the user-specified information on how events .h-,uid be scheduled, and run-
time data including the event list and the current focus event.

Expect-Info: Similar to the Event-Info pointer, th- object keeps track of the
expectations generated by the application and information specifying how those
expectation should be scheduled.

Control-Rules: A list of of control rules defined by the user to determine when to
execu'e which control step (evtnt or expectation). The control rules are defined
using the DEFCONTROL-RULE macro. Each control ru:e consists of a condition,
an arbitrary LISP expression and a stept pe, either event or expect. The following
example of a control rule says that if there are any ee:i's pending on the e%,ent list
(steplist of event-info is not null), then do an esent next.

Example:

Control Rule f Crule-1
Condition Part:

If : event-infoGsteplist
Action part : event

LHS-Ealuator: Fhe def -ut function for eaiuating (he ,,nd " tos of a rwe if the
knowledge source contanei that rule ha.s no left h.a!i "; e ealuator oer-riding
this default. For most :1-ti.c-tions the CAGE protded fsi'action QAND %kill suffice.
It is a serial or .oncurrent hoiean AN[) depending on he p-rnlel options selected
by the user

3.2.1. Esent-lnforma.ion
A blackboard sstem can he ee-1uted in seeral .,a.s. the ,t:-piest heing e,.ent-dri,.en. fhis

means that each time a rule at;i'n is exctuted the sstem re. :Js that Ohange to "he hlackboard

as an event. Each event is added to a list called the event list. The scheduler selects an event
from the event list to become the next focus event. The typ: of focus event is matched
against the preconditions of the knowledge sources, and all the matching knowledge sources are
activated. The rules of the activated knowledge sources are evaluated, those rules with satisfied
conditions are executed and the cycle repeats until the termination is true.

To run a blackboard model with an event-driven control structure, certain control
information must be supplied by the user.

selectiou-uetod: a function that determines which event to select from the event
list. The user can write his own best-first selection method or use one of the
CAGE provided functions. FIFO. LIFO, or AGENDA. If the AGENDA selection
method is chosen, the user most also specif) the agenda and an order.

agenda: An ordered fist of event types Seoplied by the user. (See knowledge source
specification for definition of event type.)

order LIFO or FIFO order en which to check the agenda. There may be several
different events of the same type on the e-ent !ist.

collection rules: In some applications many events of the same type and the same
node are generated and added to the event list. If the user specifies that type of
event as a collection rule, then only one event is pursued and the others are
collected and deleted from the event list.

3.2.2. Expect-laformation
In an expectation-driven system, a rule may specify an expected result or change on the

blackboard as one of the actions of ,hat rule (called an expectation rule). When an
expectation rule is executed, the expectation part of the ruie is added to the expectetion list.
Later. when the control rules specify that an "-expect" step hould be executed, a focus is
selected from the expectation list. If a change has occurred on the blackboard that satisfies the
expect portion, actions associaied with the expectation rule are -_xCuced.

Much of the information required to execute an zxpectatiowi-riven system is similar -o that
of an event-driven system. The user must supply a selectioa-method, possibly including an
agenda and order, and collec'uon rules. Some add-rtonai mnformation is required to execute
expectation.

marcher: a function which defines how to match exp-eclations to the blackboard.
CAGE provides on default. PASS!VEMATCH. which srmpi- ev aluates the expectation
portion of the expectation rule to see if its value is non-7id.

3.3. Knowledge 5ourrits
CAGE knowledge sources are 4 parttmonialt of the apn~iz.attun knowledge into sets of rules

Each knowledge sour.e consists of some declarative inforntton and a set of rules

3.3.1. Knowledge Source Declarat-ons
The definition of a knowledge source cons-sts of more than j.st groups of rules. In order to

properly interprets those ru!es. CAGE needs to know cel- n knowledge source control
information. e.g..

I. Under what circumstances should thzs knowledge source he inoked?

. How should the rule conditions be evaluated.

3. what levels of the blackboard structure will be changed?

4. Which one or a!l of the rules %host conditions are true -hould be executed?

S. Are there any local variables or links to be defined for :1--s KS?

L-7

The following features are ava. .,le for the user to tailor a knowledge source to his own
specifications:

Preconditions: A list of tokens, representing the e"ent types used in rules. If the
focus event has an event type that matches one of the knowledge source's
preconditions, then that knowledge source is activated.

Levels: A list of pairs of blackboard levels or classes. The user must specify
between which levels of his hypothesis -tructure a knowledge source makesinferences.

Links: If a knowledge source adds links between nodes on the blackboard, they
must be defined here. The definition consists of a list of pairs of link names, a
link and its inverse.

Hit Strategy: There are two main hit strategies available in CAGE, SINGLE and
MULTIPLE. When a knowledge source with a single hit strategy is interpreted the
rules of that KS are evaluated, in order, until one rule's condition evaluated to true.
Then that rules actions are executed and no other rules are even considered. With a
multiple hit strategy, the conditions of all rules of a knowledge source are evaluated
and then all the actious of rules which successfully evaluated executed. In
conjunction with either single or multiple hit strategies, the user can also specify
ONCEONLY. This will cause a rule to be marked when its conditions are
successfully evaluated. Its actions will be executed and it will never be evaluated
again during that run of the application.

Definitions: A list of local definitions, available to all the rules of a knowledge
source. The definitions are an efficiency feature to avoid the repeated calculation of
the same value by all the rules. The structure is similar to that of LET, a list of
pairs, a variable name and an expressions to be evaluated and assigned to the the
variable. If the value is NIL it can be omitted.

Rule Order: A list of rule names, representing the rules of the knowledge source.
This is the order in which the rules will be evaluated serially. Because the rules are
actually defined as methods of the knowledge source to which they belong, each
name should begin with a colon (:).
LHS Evaluator: The user can optionally specify a left hand side rule evaluation

function for each knowledge source. There is also a default LHS evaluator specified
for the entire application in. the Control data. The evaluator specified here will
override the default evaluator for this specific knowledge source. The LHS evaluator
is a function which determines how the rule conditions are evaluated. CAGE
provides several built-in functions which the user can select, including AND, for a
simple boolean AND of the conditions and QAND for a concurrent boolean AND,

The following is an example of the definition of a knowledge source from the CRYPTO
system written in the CAGE language.4 The name of this knowledge source is "combine-
weights", it has two preconditions, makes inferences from the Cryptoletter level of the
hypothesis structure to the alphabet-letter level,, defines a pair of hi-directional links, and uses
the single-hit rule selection strategy. The combine-weights knowledge source also makes two
definitions, possible-values gets the value NIL and Ihs-evaluator the value QAND.

4The colons in the CAGE language are weparators when separated by p,.cs from other words in the language.
Colons indicate keywords when they directly precede a word.

2-8

Knowledge Source : combine-weights
Preconditions : Confirmation, Contradiction
Classes : Cryptoletter : alphabet-letter
Links : Possible-Value-of : possible-Letters
Rule Selection : Single

Definitions :
possible-values Es nil
lhs-evaluator = qand

This compiles to the following CAGE macros.

(defknowledge-source COMBINE-WEIGHTS
:preconditions (confirmation contradiction)
:levels ((cryptoletter alphabet-letter))
:links((possible-value-of possible-letters))
:hit-strategy (single)
:bindings ((po%sible-values))
:rule-order (:,ttters)
:lhs-evaluater qsnd)

3.3.2. Rules
CAGE rules consist of three major parts; definitions, conditions, and actions. H1ere is an

example from CRYPTO in CAGE.

Rule : letters {3)

Definitions :
possible-values

possible-values(focus-nodeE
possible-letters)

Condition Part

If qand(focus-node.is-cryptoletter,
possible-values)

Action Part
Changes

Change Type Update
Updated Node focus-node
Event Type possible-assignment
Updated Slots :

possible-letters 4- possible-values

;Combine the weights of identical possible
;values.

CAGE also provides a macro for defining rules called DEFRULE, to which the above will
compile.

2-9

(defrule (combine-weights :letters)
((possible-values

(possible-values
($value focus-node :possible-letters

:all))))
((is-cryptoletter focus-node)
possible-values)

((propose :EVENT-TYPE 'possible-assignment
:CHANGE-TYPE 'supersede
:HYPOTHESIS-ELEMENT focus-node
:LINK-NODE nil
:ATTRIBUTES-AND-VALUES

'((possible-letters
,possible-values))

:SUPPORT 'combine-weights)

After specifying the knowledge source to which a rule should be added and the name of the
rule, preceded by a colon, the user must specify the three major parts of the rule.

Definitions: The definition part of a rule is similar to a LET in structure. The
local variables set here are available only to this rule, both in the condition and
action parts, as well as other definitions of this rule. This is an optional component
of a rule, and can be NIL.

Conditions: The second part of a rule contains the conditions. These can be one
or more arbitrary LISP expressions which will be evaluated according to the left
hand side evaluator as specified in the local knowledge source or at the control level.
The conditions can reference both local variable definitions or variables bound at
the knowledge source level. The CAGE system provides several access functions for
retrieving values from the hypothesis structure, which can be used in the conditions
of rules. It is important when writing the conditions of rules for a CAGE
application to keep in mind the feasibility of running those clauses concurrently, i.e.
keeping them independent of each other.

Actions: The action clauses make up the final part of a CAGE rule. These
clauses have a very specific structure as evidenced by the preceding examples. The
actioins specify what changes are to be made to the hypothesis structure by a rule and
how those changes should be made. The user must specify what node and attributes
on the blackboard are to be changed, what the new links or values are, and how
those changes are to be made (possibly deleting some old values). The user must
also specify an event type, a name representing the type of change this action makes
to the blackboard. If and when the event created by this action is selected as a
focus event, this token will be matched against the preconditions of the knowledge
sources to determine which KS to invoke next.

3.4. Initialization
There are two types of initialization which can occur at the beginning of a CAGE run. First

CAGE must create the instances of all the application defined flavors which will constitute the
executable form of the user's system. In addition, the user can do any other initialization he
feels appropriate by defining his own initialization function, the name of which should be
stored in the application's control structure. Since the major components of the application
are defined as flavors, initialization can be done by defining :initialize or :after :init methods.

3.5. Input Data
The user must define two functions to handle his input data.

2-10

1. INPUT-PROCEDURE(Record, Time) : Given an input record, retrieved
automatically at the correct time by CAGE, do what ever should be done with that
inpute.g. add it to the blackboard.

2. TIME-OF-INPUT-RECORD(Record) : Given an input record, return the time
stamp.

At the beginning of each run the user will be asked to specify an input data file by typing in
the file name or selecting a file from a menu of pre-specified input data file names. The data
file consists of records that can be read by the above two functions. A time stamp is
mandatory on each input record.

4. Specifying Concurrency
CAGE supports the concurrent evaluation of pieces of knowledge. Once an application has

been debugged in serial mode, the user can specify one or several knowledge source components
to be executed in parallel. For example, the user might specify that the rules of the knowledge
source be evaluated concurrently, or perhaps just the actions of the rules or a combination of
the available options. With a minimum amount of recompilation, the user can change his
parallef specifications and experiment with many different configurations.

In general more speed-up should occur as more components are run in parallel. But for
some applications the overhead of setting up the new processes and inter-process
communication costs will be greater than thf. speed-up gained by executing particular
components concurrently. For example, if most or all of the knowledge sources of an
application contain only one rule, then it would not be efficient to evaluate rules in parallel
since for any one KS invocation there would only be one item to evaluate.

4.1. Concurrent Components
The use of knowledge sources to partition the knowledge in blackboard systems and, in

particular, the structure of the knowledge sources in CAGE provide several obvious places for
concurrency. The knowledge sources group the domain knowledge into independent modules,
which theoretically, could be invoked independently and concurrently. Within '.ach knowledge
source the rules provide another source of parallelism, and within each rule, the clauses of the
condition and action parts provide yet another. Of course not all clauses, rules or even
knowledge sources are actually implemented totally independently of each o.her and some
serialization may be necessary to correctly solve the application problem.

The following are the options for parallelism available in CAGE, grouped according to their
allowed use in combination.

Clause level: can be used in combination with each other or any other parallel
option.

actions: Execute the RHS action clauses of a rule in parallel. Note:
When running RHS actions concurrently a non-deterministic system may
result if both destructive (Supersede in CAGE) and constructive (Modify)
actions occur to the same object in parallel. (Same object and attribute) A
QLOOP macro is used to initiate the parallelism for loop actions,
requiring recompilation of the rules containing loop actions.

lhs: Evaluate the LHS condition clauses of a rule in parallel. Note: Use
the rule bindings to set any local variables tested here, insuring that the
lhs clauses will be independent. A QAND macro is provided as the LHS-
evaluator to initiate the concurrency for the conditions, requiring
recompilation when this option is used.

rule-bindings: Evaluate the definitions of a rule in parallel. Again, these
definitions should be independent of each other if their concurrent
evaluation is to result in an actual speed-up.

2-11

Rule level: bindings can be used in combination with any of the other options, but
only one of the rule options, single, multiple, sync or nosync can be used at a time.

bindings: Concurrently evaluate the definitions at the begirning of a
knowledge source.

rules-single: Evaluate all of the conditions of the rules of a knowledge
source concurrently, but only execute the actions of one successfully
evaluated rule.

rules-multiple: Evaluate all of the conditions of the rules of a knowledge
source concurrently, then serially execute the actions of all the successfully
evaluated rules.

rules-sync: Evaluate all of the conditions of the rules of a knowledge
source concurrently, then concurrently execute the actions of all applicable
rules.

rules-nosync: Begin evaluating the conditions of the rules of a knowledge
source in parallel and execute the actions of each rules as soon as the
conditions are known to be true. With this option there is no
synchronization between the left and right hand sides of rules.

Knowledge source level: Only one of the knowledge source options can be set at
any one time.

kss: Invoke all the applicable knowledge sources concurrently at step
selection, synchronizing by waiting for all knowledge sources to complete
execution and add events to the event list before concurrently invoking a
new set of kss.

kss-nosync: Invoke all applicable knowledge sources as soon as a new
event is created. This option provides the least control of all the options
available and does no synchronization. Many applications will have to be
changed slightly to execute reasonably under these conditions, particularly
removing any possible circular knowledge source invocations. To
implement the parallel execution of knowledge sources without any
synchronization, the control loop of CAGE was drastically altered from
that described at the beginning of this paper. (See CAGE Overview.)
Without any synchronization, as soon as an event is created it immediately
allows all relevant knowledge sources to be invoked. No events are added
to the eventlist and no focus event is ever selected. A timed loop was
added to the top !evel control to re-invoke the user's initial knowledge
source in case the system exhausts all preious events before the
ierr.,ination condition is satisfied.

kss-ir.ir.isyv, : Add an event to the event list and do minimal
computation at the po at of synchronization before invoking the next set
of knowledge sources. The main computation done is the collection and
pruning of similar events, leaving ftwet evtnts to activate subsequent KSs.
The mini-sync and no-s nc options are different from the parallel kss
option in that they . uot'se the serial step-selection pjo;edijre.

4.2. How to specify and change parallel components
A function, SELECT-PARALLEL-OPTIONS is provided to allow the user to qutckly change

the selected parallel options. SELECT-PARALLEL-OPTIONS has no arguments. A menu of
parallel options will)op-up on the screen and the user can select new options or delete old
ones.

2-12

5. Design Details
CAGE is currently implemented in an object-oriented style, using the Flavors feature of

ZETALISP. The top level object in CAGE is called the BLACKBOARD. From the
Blackboard object there are pointers to each of the principle components of the system, as
follows

control-structure: all control information specified before compilation is stored
here, as well as pointers to run-time control structures.

hypothesis-structure: the blackboard solution space, which must be structured by
the user.

knowledge-source-list: names of the knowledge sources containing the production
rules of the user's application.

user-functions: optional, user-defined functions invoked by the rules

information-structure: optional, user-defined, static data structures
A separate data structure, Parallel-Specifications, is used to store the parallel options selected

by the user.
The DEFKNOWLEDGESOURCE macros will create, at compile time, an object for each

knowledge source, and a set of associated methods. During the initialization process an
instance of each knowledge source object is created. Other instances may be created during
system execution if one of the concurrent knowledge source options ;s selected. One of the
associated methods, SETUP-AND-START, evaluates the knowledge source definitions and
initiates the rule interpretation when a knowledge source is invoked.

Each rule is created as three methods, EVALUATE-DEFINITIONS, EVALUATE-
CONDITION, and EVALUATE-ACTION, associated with the rule's name using the :case
method-combination feature of Flavors. The keywords of the action clause listed above are
keywords in the method definitions, and therefore must be preceded by colons in the macro
definition of a rule.

CAGE utilizes a global variable, PARALLEL-SPECIFICATIONS, whose value is a list of the
current parallel options specified by the user. It is initilly NIL and is updated using
SELECT-PARALLEL-OPTIONS.

During execution CAGE prints out messages indicating the state of the execution and uses
some simple graphics to help the user observe the simulation of concurrency. A set of small
windows will appear on the right side of the screen, one for each process initiated by CAGE.
Any state messages generated by the parallel process will appear in one of these associated
windows, instead of the main terminal i/o window. There is only room to display 12 of these
small i/o windows at the same time and still have them large enough and leave them up long
enough to be readable. If more than 12 processes are active at the same time, the windows wil!
overlap.

6. Future Directions
The next step for CAGE will be a reimplementation on CARE. The instrumentation in

CARE will provide us with the needed tools for measuring the speed-up gained from each of
the various concurrent options in the CAGE System. CAGE users will be able to implement
and debug their applications in the current CAGE-on-LOQS s~stem with its fast simulation
time. Once an application is debugged it could then be run on the CAGE-CARE system for
complete and accurate measurements.

2-13

References

[Gabriel 84] Gabriel, Richard P. and McCarthy, John.
Queue-based Multi-processing Lisp.
Proceedings of the ACM Symposium on Lisp and Functional programming :25

- 44, August, 1984.

[Nii 79] Nii, H. P. and N. Aiello.
AGE: A Knowledge-based Program for Building Knowledge-based Programs.
Proc. of IJCAI 6 :645 - 655, 1979.

[Rice 86] Rice, J. P.
The LIO0 Language and Compiler Manual.
Technical Report KSL-86-21, Heuristic Programming Project, C. S. Dept.,

Stanford University, 1986.

2-14

Knowledge Systems Laboratory December 1988
Report No. KSL 88-80

Cage: The Performance of v acurrent
Blackboard Environn tent

by
Nelleke Aiello

Knowledge Systems Laboratory
Stanford University

701 Welch Rd. Bldg C
Palo Alto, Ca. 94304

The auithor gratefully acknowledges the suppo;~ t~ ('the following funding agencies
for this project; DARPA/RADC, und' Y Vintract F30602-85-C-00 12; NASA, under
contract number NCC 2-220- TBoeing Computer Services, under contract number
W-266875.

2-15

Abstract
This paper describes Cage, a concurrent problem solving system which attempts to
deploy parallelism within the traditional blackboard model. With Cage, the user can
specify in detail which parts of his blackboard application to execute in parallel. It
was hoped that by imbedding parallelism at different levels of the blackboard model
a multiplicative speed-up could be achieved. The Cage system, its architecture, and
its operation in a multi-processing environment are discussed. A number of experi-
ments which were conducted to evaluate the speed-up and through-put achievable
by Cage for one particular application are also presented.

1. Introduction
A common complaint about blackboard systems is that they are too slow and cum-
bersome to be of practical use. -)nt solution is to use multiple processors to exe-
cute different parts of the blackboard model simultaneously. Cage is a problem-
solving system designed to speed-up the execution of traditional blackboard sys-
tems through parallel processing. 1." this paper the Cage system, its architecture,
and its operation in a multi-processor environment are described. An application
called Elint has been mounted on Cage and the results of experiments performed to
test the speed. up and throughput achieved by Cage for this appiication are also pre-
sented.
Work on Cage was conducted as part of the Advanced Architectures Project at the
knowledge Systems Laboratory of Stanford University, to study ways of exploit-
ing parallelism at all different levels of a system's hierarchical structure from the
application to the machine architecture level Cage uses parallelism at the problem
solving level, and is further corstraincd to a target system architecture of shared-
memory multi-processors. 2 The potential applications envisioned for this work can
be characterized as performing real-time interpretations of continuous streams of er-
rorful data, a class of applications which curr-ntly run too slowly on serial black-
board systems to be of practical use.

2. Cage System
The Cage system is an extension of the serial Age system [Nii 791. The two sys-
tems are identical except that Cage allows parallel execution of many of its applica-
tions' components. Parallel execution in Cage can occur at different levels of gran-
ularity, based on natural divisions in the blackboard model. In this section, we will
first give some background information about Age, and then we will describe Cage
and how the use' can specify concurrency in Cage.
2.1 Age Derivation
Age is an implermentation of a serial blackboard system. It is composed of a
knowledge base, in the form of knowledge sources(KSs), and a structured solution
space, a blackboard, where the KSs can post interim results and read the results of

IIt is assumed that the reader is familiar with the blackboard model and :nc relevant terminology.
For more information, the reader is referred to [Nii 861 and [Engelmore 881.
2Those interested in distributed-memory architectures may want to read al)ut Pohgon. a
concurrent blackboard system designcd for distributed memory multi-procesor machinesiRice 881
[Nii 881.

2-16

other KS executions. KSs contain condition-action rules that can read the black-
board and make changes on it. The blackboard is a structured set of levels on which
objects are created and modified by the rules. These changes to the blackboard are
called events. A scheduling mechanism, or controller, programmable by the user,
invokes one KS at a time from among those triggered by the preceding events. Fig-
ure 1 shows the control and data flow of this serial control cycle.

InftiaI-*..
KS Execute KS Terminate

2.2 Cage Architecture

The basic components of Cage are the same as Age's with one addition--the
declarations that specify which components to execute in parallel and at which
points to synchronize. The components which can be executed in pwrallel ii' Cage
are the KSs, the rules within the KSs, and the condition and action parts of rules.
Synchronization points can be specified (1) in the control cycle between sets of con-current KSs; (2) within a KS after evaluating all the rules' conditions but before
executing any actions; or (3) within a rule, between the condition and action parts.By selecting one of the concuency control options, the user can alter the simple,
serial execution of KSs and their components so that they ae executed in paralel.
Next we will discuss each potential source of concurrency in detail.
Knowledge Source Concurrency
Two possible sources of concurrency exist at the KS level. A number of KS can
work either on different parts of the blackboard at the same time or in a pipeline
fashion. In the application area of real-time interpretation of data, many instances
of the same KS can simultaneously deal with new data items. Each of these KSs
then becomes the first in a chain of KSs which interprets the data up the black-
board's levels of abstraction.
KSs in Cage can be executed in parallel with or without synchronization at the con-
trol level. With synchronization, the controller waits for all previously iavoked KSs

to complete before invoking the next set of triggered KSs. Without synchroniza-
tion, KSs are invoked immediately when triggered, without waiting for any other
KS.

2-17

Rule Concurrency
Within each KS further concurrency is possible by executing the rules in parallel.
Again, Cage provides several different options for running the rules in parallel.
First the condition parts of rules are evaluated. Next, if the user opts to
synchronize, the controller will wait until all the conditions have been evaluated
before executing the action parts of the applicable rules concurrently. The user can
also specify the parallel evaluation of the conditions with the serial execution of the
actions. Without synchronization, the applicable actions are executed as soon as a
rule's conditions have been evaluated.
Clause Concurrency
Even finer grain concurrency is possible in Cage within each rule, by executing in-
dividual predicates of the condition part concurrently. Only one option is available,
evaluation of the predicates in parallel, and execution of the action clauses in the
action part of applicable rules in parallel.
2.3. Using Cage
In addition to the speed-up and through-put data about Cage gathered in the experi-
ments described in the next section, we also learned a number of lessons about
programming in a concurrent environment. Implementing the concurrency outlined
above created a number of programming problems. For example, at the rule level,
the state of the blackboard which lead to a rule firing may be changed before that
rule's actions can be executed. Also, a rule may access values from several differ-
ent blackboard objects with no guarantee that those values are consistent with each
other. Memory contention can be a problem at the clause level, if a number of
clauses refer to the same blackboard object at the same time, negating the benefits of
concurrent execution.
Data inconsistency was alleviated by creating an atomic operation that could
read and then write a blackboard object without allowing any intervening opera-
tions. In addition, a block read operation was defined, so that a rule can read all
relevant information from an object with the guarantee that data will be consistent
within that object. No other operations are allowed to an object during a block read
of that object.
Data coherence can be maintained when running KSs in parallel, by reading all
the slots of a object that are referenced in a KS at the same time, locking the object
just once. This is in contrast to locking the object every time a slot is read by the
rules. In other words, all necessary blackboard data is collected into local vari-
ables, called definitions in the KS's activation context before any rules are evalu-
ated. Thus all the rules within a KS refer to data from the same time.
In a serial blackboard system one KS precondition may serve to describe several
changes to the blackboard adequately. For example, suppose the firing of one rule
causes three changes to be made serially. The last change, or event, is usually a
sufficient precondition for the selection of the next KS. In a concurrent system,
however, since those changes may occur asynchronously, all three events must be
included in a KS's precondition to ensure that all three changes have actually oc-
curred before the KS is executed. In general, a simple precondition consisting of an
event token is not sufficient as it was in a serial system. A detailed specification of

2-18

the activation requirements of the KSs must be available, either in their precondi-
tions or in the controller.
Occasionally two KSs running in parallel may attempt to change a slot at almost the
same time. It is possible that the first change could invalidate the later changes. To
overcome this race condition, a conditional action--an action which checks the
value of a slot before making a change--was added.

3. Experiments
In this section we will describe seven experiments conducted with Cage,' the appli-
cation used, and the results. The purpose of the experiments was to determine the
speed-up and through-put achievable by Cage under various conditions, concur-
rency specifications, and resource allocation schemes. The first four experiments
measured the speed-up gained by executing various blackboard components in
parallel. The last three experiments related to improving the through-put of the
Cage system.
The application, Elint, is a signal understanding system which iategrates reports
from passive radar collection sites in order to understand the positions and inten-
tions of aircraft traveling through a monitored airspace. The application takes
streams of observations from the various collection sites, zibstracts them into radar
emitters, tracks the emitters, groups them into clusters, and determines the inten-
tions and degree of threat of the clusters. An emitter might be a single aircraft; a
cluster could be a group of planes flying in formation or one aircraft with multiple
radars systems.
Two different input data sets were used for the experiments. The first, called
Lumpy, was a realistic data set with inconsistencies, errors and a variable number
of observations per time interval. The problem with this data set was the variation
in data density that made it very difficult to measure performance. Thus a second
data set, Fat, with a constant data density was created.
Experit"en;sal Method
The method- .ised in the experiments changed over time, based on the results of
earier exp-::r- -nts. In the first experiment speed-up was measured very simply,
dividing the " .e for the application to run a given set of input data on one proces-
sor by the tic. "'or the same system executed on multiple processors. This speed-up
neasure di, .. work well, howevef, because the behavior of the system changed
dependingr, w heavily or lightly it was loaded. A rate of 4-tta arrival which ad-
equately lcale. a 4 processor machine caused data starvation for 16 processors.
Laer expcrie: ts used a more equitable comparison scheme in which different
samplinf irtc-vids were used for different numbers of processors. The sampling
interval for a particular number of processors was set to be the shortest interval
which zt:!. produced non-increasing latencies, where latency is the time between the
input of data and the output of reports based on that data. Speed-up was measured
by comparing these sampling intervals with the uni-processor sampling intcrval.
The sampling intervals are indicators of the through-put for a particular number of
processors.

1A more complete description of these experiments can be found in [Nii 881.

2-19

All measurements generated by the experiments were provided by the underlying
Care simulator. Delagi 861 Because Care uses a distributed memory architecture, it
was necessary to emulate the shared memory model by using half the processors
for processing and the other half as memory only.' A variation of Qlisp[Gabriel
841,a queue base Lisp including Qlet's and Qlambda's was created to program the
concurrency.
3.2. Experimental Results

2.5

1.5 Speed-up

2.0

1L 1.0

0.5

0.0 • • - •
0 4 8 12 16

Processors

Figure 2. Results of Experiment I
Experiment I measured the speed-up attainable for a varying numbers of proces-
sors with parallel KSs. For this experiment the controller started all triggered KS
executions in parallel, waiting until they were done before selecting another set to
run in parallel. Using the realistic "Lumpy" data set, this experiment exercised all
the problem solving capabilities of the Elint application. Experiment 1 was run se-
rially on one processor and then over multi-processors varying from 2 processor to
16 processors. By comparing the time required to run the data set on one processor
with the time required to run with 2-16 processors. a measure of speed-up was ob-
tained.
As show in Figure 2., the basic speed-up began to level off with 4 processors and
reached 2 with 8 processors. To explain why only a factor of two speed-up was
achieved, we need to look at the serial case. In the serial case (see Figure 3) the
controller selects one KS to execute from among all the KSs applicable at that time.
SContrl1 Fq Conlrol . 1:11,0on'ro:11 1-

Figure 3. Basic Control Cycle for Serial Execution
In Experiment I all the pending KSs are executed in parallel, as seen in Figure 4.

!In the experimental description, the "number of processors- refers to the number of processors
used for processing and does not include those used for menory only.

2-20

Figure 4. Baskc Cycle with S~ria Control and Parallel KSs
In Experiment 1 all the pending KSs are executed in parallel, as seen in Fi,,ure 4,
Although the KSs were run ;n parallel **Amdahl's limit" limits th.- speed-up to the
longest serial component. in this case the controller plus the longest KS, When all
component parns of the Cage execution were individually timed, it was found that i-i
the multi-processor case slightly less than half of the execution cycic time was beina

spetn te eral schoizn controller. Experiment I demonstrates that no
matter how many K~s are run, speed-up gains are limited by the duration of the
synchronizing controller and the KSs.

1000 4

3

E -Data Rate C.

2

100 ' I I 10
0 2 4 6 8

Figture 5. Results of Experilent2
Experiment 2 also measured Speed-up. but in a manner that was felt to be more
fair than the basic speed-up expcriment. using the second speed-up measure cx-
plained in section 3. T-his and subsequent experiments used the Fai data set. Ex-
perime:.:, 2 was run with three grid sizes- 1. 4, and 8 processors- Because of what
was learned in Experiment L in this exoeri-ient the KS were executed wi;hout
synchronization, reducing the waiting aie. As each KS completed, the controller
immediately invoked any newly triggered KSs without waitingt for any other KSs to
finish-
The speed-up obtained by running KSs, concurrenltiv without synchronizing in the
serial controller was slightly less than 4.(See figure 5) This is almost double the
speed-up obtained with synchronization. The time spent in the controller was re-
duced to almost half of that in Experiment 1. But. at should be noted that the centala
controller is still a bottleneck. Given the architecture of blackboard systemrs, cen-
tralized -ontroller time can be reduced- but not eliminated. without a major shift in
the wa-, we view blackboard svygems.

2 -21

Experiment 3 attempted to increase the speed-up by exploiting parallelism at a
finer granularity than in Experiment 2. We hoped to gain a multiplicative increase
in the overall speed-up for each KS by executing the rules in parallel. The rules
were executed with both condition and action parts running concurrently and with-
out synchronizing between the condition and action parts. Otherwise the ex-
perimental variables of Expe.iment 3 are identical to those of Experiment 2.
The initial results of Experiment 3 were disappointing. For 8 processors only a
5.5% speed-up over Experiment 2 was attained, for a total speed-up of 4.12. For 4
processors there was no speed-up at all over Experiment 2. The overhead of
spawning processes offset any gains from more parallelism. We tried running
Experiment 3 on a 16 processor grid in hopes of alleviating the congestion on the
smaller grids. This resulted in slightly better results, a total speed-up of 5.6. This
extra speed-up is due to the greater availability of free processors to handle the
greater number of processes produced with rule level granularity.

1000 6

5

4E Interval

Speed-up -

-2 U)2 u)

1

100 * 0
0 4 8 12 16

Processors

Figure 6. ResulLs of Experiment 3

Throughout the first three experiments one troubling aspect was the apparent low
sampling intervals Cage could support. (The sampling interval gives a measure of
the actual through-put rate.) The minimum sampling intervals for Elint on Cage
were around 120ms which was considerably slower than that of other concurrent
Elint applications, such as the one done on Poligon.[Rice 88] To determine the rea-
sons for this slow through-put various timings on all components parts of Cage
were taken. As expected, most of the time was being spent setting-up and execut-
ing KSs. However, within the KSs a very high percentage of time was spent in the
creation/match process; searching for existing blackboard objects or creating new
ones if no matcl was found. A separate creation processor handles this cre-
ation/match process in Cage. A second interesting observation was that the timings
were not regular, they were, in fact, very spiky, Operations that on average took
only a few milliseconds occasionally took a hundred milliseconds or more. An ini-
tial hypothesis was that the spikes were caused by blocked and descheduled pro-
cesses, an indication of problems in resource allocation.
Experiment 4 attempted to solve both the spikiness problem and the unexpectedly
high cost of creation by allocating some of the processors to specific tasks, thus

2-22

freeing those processors from interruption by other tasks. The three most time con-
suming tasks were creation/match, control, and data input, so these three processes
were pre-allocated to specific processor- and no other processes were allow to run
on those processors.
The results of this experiment were not c .,-elusive, Experiment 4 had a speed up of
3% over experiment 3, or a total speed-up of 5.7x. But 3% falls within the margin
of error for these measurements. The queue lengths for KSs and object cre-
ation/match processors increased, indicating (1)that insufficient numbers of proces-
sors were available for the KSs, because of the three pre-allocated processors and
(2)that the object creation/match handler probably needed two or more processors to
handle its load.
Experiment 5, a second experiment involving specialized processor allocation,
was more successful. In this case only one processor, the input-handler, was used
to execute the entire input procedure. Previously the creation of new input objects
(observations), one for each input data item, had been handled by a separate cre-
ation handler. By eliminating the cost of spawning the separate creation process
and the possibility of blocking tlhe input process while waiting for the creation to
complete, the input object creation time was decreased by 59%. Also the spikiness
in the creation measurements almost disappeared.
One other improvement made in experiment 5 involved the use of a new, more ac-
curate simulator with 4 times faster memory access. This improved the total
through-put by 43%. The combination of local creation by the input handler and
optimizations in the simulator improved the best sampling interval in experiment 5
from 120ms to 40ms.

Exneriment ms % overExp 5
Experiment 5
Single creation processor 0 n/a
Experiment 6 31 22%
Multiple creation processors 2
Experiment 7 J3
Local creation 25 37%

Figure 7. Through-put Results of Experiments 5, 6, and 7
In Experiment 6 and 7 the number of processors used was increased to 32. Pre-
liminary runs showed little improvement in through-put due just to the increased
number of available processors. To use those additional processors experiment 6
also increased the number of creation process handlers from I to 4. Separate pro-
cessors were used to handle the creation of objects at different levels of the black-
board. These multiple creation handler processors together with the 16 additional
processors reduced the through-put to 31 ms, a 22% improvement over the best re-
sults of Experiment 5. This improvement is a strong indication that the single cre-
ation process was a bottleneck.
Experiment 7, the final experiment, was an attempt to remove the creation bottle-
neck completely, by doing all creation on the local processor, not on a special cre-
ation processor. In order to avoid the creation of duplicate objects, the blackboard

2-23

level object was locked by the KS until a new object was created or an existing
match was found. Local creation, on the same processors as the KS or rule, also
eliminated the need for Qlisp closures. Qlisp closures are one of the most expensive
features of the Qlisp language which Cage uses to program in parallel, because the
Qlisp closure requires the passing of the context of the local processes to the cre-
ation handler. With local creation and without the Qlisp closure through-put was
improved to 25ms, or a 37% improvement over experiment 5. (See Figure 7)

4. Analysis of Speed-up and Throughput Achieved
The Cage experiments resulted in two important measurements. These are the
maximum relative speed-up, comparing uni-processor runs with multi-processor
runs, and the minimum sampling interval, measuring the total throughput.
4.1 Speed-up
Experiments 1 through 4 resulted in a best speed-up of 5.7x using a 16 processor
grid with KSs and rules running concurrently without synchronization. The factors
limiting this speed-up include:

• The existence of a central controller
* The serial definition section of KSs
* The inefficient allocation of processes to processors
- The high overhead of Qlisp closures

The affects of the central controller were minimized in experiment 2 through the
elimination of synchronization at that level. The definitions, which are the local
bindings done at the beginning of each KS to maintain data coherence (see section
2.3), are the only part of the KS still executed serially. Executing definitions in
parallel is an option in Cage, but because of the cost of blackboard object creation
(63% of the average definition time) and the difficulty in writing independent defi-
nitions, at most a 15% improvement in speed-up could be expected from concurrent
definitions.
Experiments 4 and 5 showed that careful resource allocation could improve speed-
up. We believe that further improvements in speed-up are possible with tailored re-
source allocation for additional Cage processes. While experiment 6 and 7 only
measured through-put, a prelimary run under similar conditions showed a speed-up
of 6. Some of this gain is also due to the elimination o: the use of Qlisp closures
for object creation. Qlisp closures are particularly expensive for Cage because they
entail the copying of the context from the spawning processors to the executing
processor. However, some Qlisp is still required to program concurrency ;.n
Cage's shared memory architecture on the underlying simulator.
4.2 Through-put
The second major result of the Cage experiments is the slow through-put achieved.
The minimum sampling rate for Cage is about 9 times slower than that of a similar
distributed memory system running the same application. The factors limiting
speed-up also limit the through-put. In addition, it should be noted that there was
no optimization of Cage or the Elint application, which could improve through-put
significantly.

2-24

5. Conclusions
On the positive side, Cage can execute !rultiple sets of rules, in the form of KSS,
L.orcurremnly. A speed-up of 4.12 was achieved, by the early expe-rrnemrv', im-
proved to 5.7 with optimizations of the restr-we a, ,xcaton and ". rocessors, and
further improved (c ilmost 6 with 32 proc~,ssors in the last e~perimciiz. C(' - rK f, olh-
eihind. the use of a central controller to determine whichi KSs lo run in parallel
drasaically limited spted-up. no matter ho -i many l(Ss were executed in parallel.
fhe shallow knowledge base of the. application limnited concurrercy at the ra'ule eve,
but more. ruhks per KS would increase coneurrency. Overall, we bellicve that, with
optimization and direptr appl.,-ations. Ca~ge can be lived as a viable concurrent
Llackboard 'Fnvironment.

6. References
[Aielio 86) Nelleke Aiello, User-Directed '%,ntrol of Parallelism: The Cage

Systemi.KSL-86-31. Knowledge Systems Laboratory, CSD,
Stanford Univ., April 1986.

ijOclagi 861 Bruce Delagi. CARE Users Manual. KSL.-86-36, Knowledge
Systemis Laboratory, CSD, Stanford Jniversity, 1986.

(Engelmore 881 R'bc~t Engelmrore and Tony Morgar eds). Blackboard Systems.
AJdison-Wesley. Wokingham, Epgland. 1988.

[Gabriel 84) Ric,_., P. Gabriel, and John McCarthy. Queue-based Multi-pro-
cessing Lisp. Proceedings of the ACIM Symposium on Lisp and
Flnctioaal Programming: 25-44, August, 1984

[Nii 791 H. Penny NPi and Nelleke Aiello. AGE: A Knowledge-based
Program fj)r Building Knowledgie-based Programs. Proceedings
of the 6th International Joint Conference or Artificial Intelligence:
645-655, 1979.

[Nii 88) H. Penny Nii, Nelleke Aiello and James Rice. Experiments on
cage and Poligon: Measuring the Performance of Parallel Black-
board Systems. KSL-88-66, Knowledge Systems Laboratory,
CSD, SQtanford University, October 1988.

[Rice 86] James Rice. Poligon: A System for Parallel Problem 5 olving.
KSL-86- 19, Knowledge Systems Laboratory, CSD, 'Stanford
University, April, 1986.

2-25

Knowledge Systems Laboratory December V14-89
Report No. KSL 89-SE

The CAGE System TTser Manual

by

Nelleke Aiello

Knowledge Systems Laboratory
Stanford University

701 Welch Road
Palo Alto, CA 94304

The author gratefully acknowledges the support of the following
fundirg agencies for this project: DARPA/RADC. under contract
F30602-85-C-0012; NASA. under contrac number NCC 2-220: and
Boeing Computer Serices. under contract number W-266875.

2-26

1. Introdiction

This user manual describes the Cage System and its funr' onality. You
will find a detailed description of the Cage compr.,ents, the domain
information the user must supply to simulate the execution an
application in parallel with Cage, and the syntax for that information.
We have also included listings of the user functions available in Cage
and the global variables defined by Cage, as well as example domain
specifications from the Elint application and a short description of the
underlying simulator upon which Cage executes applications in
parallel.

L.. What is Cage?

Cage, Concurrent -GE, "s an expert system shell for building and
executing app',catior. p -ograms as concurrent blackboard[Nii86]
bystenis. With Cag;. the user can control which parts of the
blackbozrd system ere executed in parallel. A blackboard application
can be implemented and debugged serially in Cage. Once the serial
version I- debizged, concurrency can be irtroduced t) different parts
cc the system, allowing the user to experiment with various
confIguratinns. We expect this incremental approach to facilitate the
construction of concurrent problem-solving systems. In addition to
the bablc finctionality found !n AGE(Nii79, Alello 198 1a,b]. Cage allows
the user direct cGntrol of the concurrent execution of many of Its
constructs. Otherwise. the two sy .sems are functionally identical.

The basic components of a system built with Cage -rM.:

1. A global data store tthe blackboard) on which emerging solutions
are posted. The elemnts on the blackboard are organized into
levels and represented as a set of attribute-value pairs.

2. Globally accessible lists on which control information is posted
(e.g. lists of events, expectations, etc.).

3. An indefinite number of knowledge sources, each consisting of
an indefinite number of condition-action rules.

4. Various kinds of control information 'that determine (a) which
blackboard element is to be the focus of attention and (b) which
knowledge source is to be used at any given point in the problem
solving process.

5. Declarations that specify which components (knowledge
sources, rules, condition and/or action parts of rules) should be

2-27

executed in parallel, and when execution of components should
be synchronized.

The serial control cycle begins with the selection of a knowledge
source(KS) to invoke. After a change to the blackboard several
knowledge sources may be applicable. Cage uses an event list to keep
track of the changes to the blackboard and selects one of those events
to match against the preconditions of the KSs. The user can specify
which method to use for this event selection, such as FIFO, LIFO, or
some user defined best-first mechanism. Once an event is selected,
the match with the KS preconditions occurs, producing an ordered
set of K.Ss, which are invoked one at a ume. The rules of each KS are
evaluated and finally the rule actions are executed for those rules with
satisfied conditions. The number of rules executed depends of the KS
specifications; the user may choose to allow only one rule or many
rules to fire per KS invocation. Each action that is fired may cause a
change to the blackboard. These changes are recorded on the event
list and then the cycle repeats. Figure 1 depicts the serial Cage
control cycle.

Initial
KS

Execute KSS To", ir~e? 9 _W

Ftgure 1. Cage Serial Control Cycle

Parallel control can be implemented in Cage with several variauions ofthe serial control; by selecting more than one event from the eventlist
at a time or selecting events asyncnronously, tbereby executing morethan one KS concurrently, Cage also allows morez than one rule within
a KS to fire concurrently, or more than one clause within a rule, or
numerous combinations of the above. The following is one possiblecontrol cycle for concurrent Cage.

2-28

K K

Figure 2. Basic. Cycle with Serial Control and Parallel KSs

A m-ore complete discussion of the concurrent options available in
Cage can be found in Section 3.

2. Cage Application Components

Next we will describe the kind of information the knowledge engineer
must supply for each of the major Cage components and how that
information should be structured. Some user input is required in the
specification of each of the major Cage components; the blackboard,
knowledge sources, and control. The user input is similar in
semantics to that required for applications constructed in the AGE
system, however, the syntax is somewhat different. The concurrency
specifications are outlined in a separate section of this manual.

2.1. Blackboard Structure

There are two major components in the Cage blackboard structure,
the hypothesis classes (frequently called levels in hierarchical
blackboard structures) and the hypothesis nodes. The user must
specify the classes that make up his application's blackboard structure.
For each class, the user must define the fields to be associated with
the nodes created in that class. Nodes are created in those classes,
either a priori by the user or dynamically while executing the user's
rules. The following example from the Elint' application shows the
definition of several classes and their fields in Cage.

CAGE-HYPOTHESIS-STRUCTURE

REPORT-DATA-LEVEL
CLUSTER-LEVEL
EMITTER-MANAGER- LEVEL
EMITTER-LOCATION- LEVEL
EMITTER-LEVEL
OBSERVATION-LEVEL

OBSERVATiON-LEVEL

I All the examples in this manual are taken from Elint. a knowledge-based
application which interprets real-time radar emissions from aircraft.

2-29

TIME
EMITTER-ID
SITE
LOB
OBSERVATION-TYPE
MODE
SIGNAL-QUALITY
ID-ERROR
REDIRECT-FLAG
ASSOCIATED-EMITrER

Each of the classes (or levels) will be defined as an object with the
attributes as instance variables and with the nodes as instances of the
class objects. (The user can define methods for the level objects
which are generally used for printing information contained in the
nodes on those levels.) Two macros are provided by Cage to aid the
user in defining a blackboard structure, DEFHYPOTHESIS and
DEFLEVEL. The following examples are again taken from the Elint
application.

(DEFHYPOTHESIS-STRUCTURE CAGE-HYPOTHESIS-STRUCTURE
(APPLICATION-SYSTEM-ROOT)
REPORT-DATA-LEVEL
CLUSTER-LEVEL
EMITTER-MANAGER- LEVEL
EMITTER-LOCATION- LEVEL
EMITTER-LEVEL
OBSERVATION-LEVEL)

(DEFLEVEL OBSERVATION
((TIME NIL)
(EMITrER-ID NIL)
(SITE NIL)
(LOB NIL)
(OBSERVATION-TYPE NIL)
(MODE NIL)
(SIGNAL-QUALITY NIL)
(ID-ERROR NIL)
(REDIRECT-FLAG NIL)
(ASSOCIATED-EMITTER NIL)))

The DEFHYPOTHESIS-STRUCTURE function takes three arguments;
the n-me of the hypothesis structure, a root node' and the node

1Application-system-root is provided by CAGE and should be sufficient for most
applications.

2-30

names for the level in the user's particular application. The

DEFLEVEL function expects the name of the level being defined and a

list of pairs--the attributes and initial values (not necessarily NIL) for

those attributes--which will be associated with all nodes created at the
specified level.

2.2. Knowledge Sources

Cage knowledge sources are partitions of the application knowledge.
Each knowledge source(KS) consists of some declarative information
and a set of condition/action rules.

Knowledge Source Declarations
To interpret the rules of a KS properly, Cage needs answers to

some questions about knowledge source control, for example;

1. Under what circumstances should this knowledge source be
invoked?

2. How should the condition parts of rules be evaluated?

3. What levels of the blackboard structure will be changed by this
knowledge source?

4. Which rule or rules out of all the rules whose condition parts
are satisfied should be executed?

5. Are there any local variables to be defined for this knowledge
source?

The following are the major knowledge source control options
available to the user to tailor a knowledge source to his specific needs:

Preconditions: A list of tokens, representing the event names used
in rules. If the focus event has an event name that matches one of the
knowledge source's preconditions, then that knowledge source can be
activated. See the Control Section for more information about events
and how they are used.

Hit Strategy: The hit strategy determines how the rules are
evaluated and executed; which rules have conditions which are true,
how many of those rules should be fired, and in what order should the
selected rules be executed. There are two main hit strategies available
in Cage, Single and Multiple. When a knowledge source with a single-
hit strategy is invoked, the rules of that knowledge source are
evaluated, in order, until one rule's conditions are satisfied. Then the
actions of the action part of the rule are executed. and no further rule
is evaluated. With a multiple-hit strategy, the condition parts of all the

2-31

rules are evaluated, and all the action parts of the rules whose
conditions were true are executed. In conjunction with either single-
or multiple-hit strategies, the user can also specify Onceonly. This
option causes a rule to be marked when its action part is executed.
The marked rules will never be evaluated again during the course of a
run.

Definitions: A list of local variables. The definitions are an
efficiency feature to avoid the repeated calculation of the same
variable. The structure is similar to that of LET pairs of variable names
and expressions, except that an initial value is required for each local
variable.

Rule Order: A list of rule names, representing the rules of the
knowledge source. This is the order in which the rules are to be
evaluated when in serial mode.

Condition.hand-side Evaluator: The user can optionally specify
how the condition side of the rules within the knowledge source are
to be evaluated. There is a default condition-evaluator specified in the
Control data (See the Control Section). The evaluator specified within
a KS will override the default evaluator for the span of that KS. The
LHS-evaluator is a function which determines how the condition parts
are to be evaluated. Cage provides several built-in functions which the
user can select, including a boolean AND and QAND for a concurrent
execution of the boolean AND, if the rule allows concurrent execution
of its conditional clauses.

The macro DEFKNOWLEDGE-SOURCE is provided by Cage to aid the
user in defining knowledge sources.

(DEFKNOWLEDGE-SOURCE <knowledge source name>
&keywords
:PRECONDITIONS <list of pre-condition event tokens>
:DEFINITIONS <list of LET-type bindings>
:KS-CONTROL<list of concurrency specifications for different

parts of the knowledge source-->
(definitions <t or nil>
LHS <serial or parallel>
synchronize <t. nil or first>
RHS <serial or parallel>)

:RULE-ORDER <ordered list of rule descriptors>

The ks-control list specifies how different components of the KS are
to be executed. If definitions is followed by T then the definitions will
be executed in parallel. Similarly the rule conditions (LHS) and rule
actions (RHS can be executed seri lly or in parallel. The value for
5Ynchronjze determines whether or not to synchronize the firing of

2-32

the rules in a IKS. If fil,. is I then all the rules conditions will
be evaluated and then all the applicable actions. If synchronize is nil,
then rule actions can fire immediately after their conditions evaluate
to T. If synchronize is fLrU. then only the actions of the first rule to
evaluate to T will he executed. The following is an abbreviated
example of a knowledge source specification from Elint.

(DEFKNOWLEDGE-SOURCE Process-Observations
:PRECONDITIONS

(new-observation-read)

:DEFINITIONS
((the.observation FOCUS-NODE)
((observation-time observation-emitter-id ...)
($MULTIPLE-VALUES the.observation

($VALUE the.observation observation-time :latest)
($VALUE the.observation

observation-emitter-id :latest) ...)
((matched-emitter-list new-emitter-node)
($CREATE emitter-level

(make-emitter
id (CU:SHARED-LIST observation-emitter-id
emitter-type (cu:global-list observation-type)
associated-observations

(cu:global-list the .observation)
last-observed

(CU:SHARED-LIST observation-time)

($FIND-FOR-SLOT 'emitter-level emitter-Id
observation-emitter-id :latest)

'new-or-matched-node 'process-observations-defs))

:KS-CONTROL (definitions nil LHS :serial synchronize :first
RHS :serial)

RULE-ORDER
(:observation-id-errorp-with- cluster
:observation-id-errorp-no-cluster
:inconsistent-site-observation
:old-emitter-old-location
:create-two-new-nodes)

A similar macro DEFRULE is available for defining rules. The rules are
evaluated according to the concurrency specifications in KS-control.
A rule's condition and action clauses are evaluated according to the
rule-control specifications. I.e. QAND will check the rule-control to
determine whether to execute the condition clauses serially or in
parallel.

2-33

(DEFRULE (<ks name> <:rule descriptor>)
:IF-PART <form>
:ACTION-PART <form>
:RULE-CONTROL (:lhs <t or nil>

:rhs <t or nil>))

The rule-control component specifies how the rule conditions andactions should be executed, serially or concurrently; nil or Trespectively. An example illustrating the use of DEFRULE in the Elintsystem is given below.

(DEFRULE (process-obcervations :create-two-new-nodes)
:IF-PART

(QAND new-emitter-node new-emitter-location)
:ACTION-PART

(PROGN
($SUPERSEDE new-emitter-node

((emitter-my-location
(CU:SHARED-LIST new-emitter-location)))
'new-emitter
process-observation-2-new-nodes)

($SUPERSEDE the.observation
((observation-associated-emitter

(CU:SHARED-LIST new-emitter-node)))
'emitter-matched)
process-observations-2-new-nodes))

($MODIFY new-emitter-location
((emitter-locaUon-control-information-site

(LIST observation-site
observation-time the.observaton)))

'new-emitter-location)
process-observations-2-new-nodes)))

:RULE-CONTROL (:lhs t :rhs nil)

This rule has two conditions, a new emitter node and new emitter-location node have been created, and three actions, linking the twonew nodes with each other and the observation node which led totheir creation. In this case the concurrency specifications indicatethat the conditions should be evaluated in parallel, but that the actions
should be executed serially.

2.3. Control

All Cage control information is referenced through the Control-Structure object which is basically the same as in AGE. The user canspecify various parts of control by setting the appropriate globalvariables. The major components of the Control-Structure are:

2-34

User-Initialization: This is a user-defined function, handling
any initialization needed for the user's program, for example, setting-
up the appropriate blackboard structure from the input data. The
name of the user-initialization function should be stored in the global
variable INITIALIZER*.

Termination-Condition: Another user-defined function. This
function determines when the application is to be terminated. The
Termination-Condition can access the event list. expectation list. and
the blackboard nodes. It should return a non-nil value when the
application is to be terminated. (01I"ERMINATION-CONDITIONO)

User-Post-Processor: When the termination condition is true. a user
supplied post processing function is invoked. This function can be
used to print out the application's results in a readable form. or to
handle any other post processing details. (*POSTPROCESSOR)

Event-Ifo: This is a pointer to the Euent-Information
object which contains both the user-specified event-scheduling
information and run-time data, including the event list and the
current-focus event. See the description of event-driven-control later
in this section for more information on how event-information is used.

The actual structure of Event-Info is as follows;

(selection-method agenda order collection-rules matcher seeker focus
steplist number-of-steps)

where selection-method is a function--that the user specifies in the
global variable "EVENT-EXTRACTOR--which picks an event to act
upon. Items on the event steplist are the events that have occurred so
far. Once an event is selected it is deleted from the event steplist..
The events have the following structure:

(type node hypothesis-change support rule number predecessor effect)

Agenda allows the user to specify a predetermined priority for event
types and order specifies how to compare the events on steplist with
the agenda. ie in LIFO or FILO. Collection rules consists of a list of
event types which can be collapsed if more than one of that type
appear on the event list. This allows the system to generate many
events of the same type without forcing it to follow-up on each one
individually. The focus is the currently selected event.' See the
section on Event-driven control for a more detailed description of the
usage of items in Event-Info.

'Used in serial execution.

2-35

Expect ltfo: Similar to the Event-Info, this object keeps
track of the expectations generated by the application and information
specifying kow those expectations are to be scheduled.
EXPECTATION-EXTRACTOR holds the name of the selection funtion.
Expectations also require a matcher function to determine when an
expectation matches the current state of the blackboard.

Control-Rules: A list of control rules defined by the user to
determine when to execute which control step (event or expectation).
Each control rule consists of a name, a condition (an arbitrary
expression), and a steptype (either event or expect). The following
example of a control rule says that if there are any events pending on
the event list, then do an event next.

Example:

Control Rule: Crule- 1
Condition: event-info@steplist
Step: event

It would be defined using the specification function, DEFCONTROL-
PULE, as follows:

(DEFCONTROL-RULE :Crule- 1
:condition event-info@steplist
:step :event)

Left-hand-side-Evaluator: The default function for evaluating the
condition part of rules. This default function can be over-ridden by
specifying a different evaluator inside a knowledge source (see Section
2.2). For most applications the Cage-provided QAND function will
suffice. It is a serial or concurrent boolean AND depending on
whether the condition-side clause evaluation is 1o be in parallel or not.
A simple boolean AND may be used, but then the clauses can not
evaluated concurrently.

Input Data: The user must define a function to handle the input
data, as described below. This procedure is executed by its own
process, automatically inputting data according to time tags associated
with the data. If the user so specifies, this process can run on a
separate processor. (See Section 5.2.)

Input-Procedure(Reord . Time): Given an input record consisting of
a stream of time-tagged data, a record is retrieved automatically at the
correct time by Cage using this function. This function should also do
some actions on the data, for example, adding it to the blackboard.

At the beginning of each -un the user will be asked to specify an input
data f~le by typing in the file name or selecting a file from a menu of

2-36

pre-specifled input data file names. The data file consists of records
that can be read by the above function, i.e. the format of the records is
left to the user. However, a time stamp is mandatory on each input
record.

Event-Driven-Control: A blackboard system can be executed in
several ways, the simplest being event-driven. In an event driven
system each time a rule action is executed the system records that
change on the blackboard as an event. Each event is added to a list
called the event list. The scheduler selects an event from the event
list to become the next focus event. The type of the focus event is
matched against the preconditions of the knowledge sources, and all
the matching knowledge sources are acLvated. The rules of the
activated knowledge sources are then evaluated, those rules with
satisfied conditions are executed and the cycle repeats until the
termination condition is true.

To run a blackboard model with an event-driven control structure, the
following control information must be supplied by the user.

1. A Control Rule which always returns event as the next s-ep.
(See Control Rule example above.)

2. Event-Info, including a Selection-method and possibly some
Collection rules. (See below.) For event-driven control you do not need
either a matcher or seeker, and the focus, steplist, and number- f-steps
contain run-time information generated by the system.

Selection-method: a function that selects an event for focus from
the event list. The user can write his own best-first selection method
or use one of the Cage provided functions, FIFO, LIFO, or AGENDA. If
the AGENDA selection method is chosen, the user must also specify
the events on the agenda and their order. In this case the Selection
Method should have the form (AGENDA <order><an agenda of ordered
event names>).

Agenda: An ordered list of event names supplied by the user.

Order. LIFO or FIFO order in which to check the agenda.
There may be several different events of the same type on the event
list.

Collection rules: In some applications many events of the same
type and on the same node are generated. By specifying an event
name in the collection-rules list of Event-Info, only one of the events is
pursued while the others are collected and deleted from the event list.

3. Concurrency Specifications

2-37

Using the concurrency control specifications, the user can alter the
simple, serial control loop of Cage by introducing concurrent actions.
Cage allows parallelism ranging from concurrently executing
knowledge sources all the way down to concurrently executing the
conditions and actions of the rules. The serial execution and parallel
executions possible in" Cage are summarized below.

Knowledge Source Control

serial:
Pick an event and execute the associated knowledge
sources.

parallel:
1. As each event is generated, execute the associated
knowledge sources in parallel.1

2. Wait until all active knowledge sources complete
execution, generating a number of events, and then
execute concurrently the knowledge sources relevant to
those events.

3. Wait until several events are generated then select a
subset and execute the relevant knowledge sources for all
the subset events in parallel.

Within Knowledge Sources
serial:

1. Evaluate the bindings.
2. Evaluate the condition sides, then execute the action
sides of one rule whose condition side matched.
3. Evaluate all the condition sides then execute serially
all the actions of rules whose condition side matched.

parallel
1. Evaluate the bindings in parallel.*
2. Evaluate all condition sides in parallel,

a. then synchronize (i.e. wait for all the condition
side evaluations to complete) and choose one action
side, or
b. synchronize and execute the actions serially (in
lexical order), or
c. execute the actions in parallel as the condition
side matches.*

Within Rules
serial:

Evaluate each clause then execute each action.

IThe starred options indicate the greatest use of concurrency.

2-38

parallel:
Evaluate the condition-side clauses in parallel then

execute actions of the action side in parallel.*
(First nil clause --> no match;
all non-NIL clauses --> match.)

Within the clauses
serial:

Lisp code

parallel:

Qlambda code

3.1. Syntax of Parallel Specifications in Cage

At the top level, the user can specify how the knowledge sources
should be executed, serially or in parallel, with or without
synchronization. The variable *CAGE-CONTROLS* contains a list of
keywords and values including the :knowledge-sources to control the
KS execution. The allowable values are :no-synchronzation, :knowledge-
sources, and nil, which run the knowledge sources in parallel without
synchronization, with synchronization. and serially, respectively. If
the KSs are run with synchronization then the control loop will wait
for all the KSs to complete before invoking the next set of KSs in
parallel from all the events added to the eventlist by the previous set
of Ss. If the KSs are executed without synchronization then a change
made by a KS is not recorded on the eventlist but instead immediately
invokes any subsequent KSs.

Within a knowledge source the u3er can specify how the components
of that KS should be executed, serially, in parallel, and with or without
synchronizing. Using the Defknowledgesource function, the
concurrency can be specified using the keyword :ks-control. The
definitions of KS can be executed either serially or concurrently, as
can the condition sides of the rules and the action sides. If
synchronize is T then all of the conditions are evaluated, waiting for
completion, before the actions are executed. If synchronize is first
then Cage evaluates all the conditions in parallel, but only waits for the
first rule who's condition evaluates to T before executing that rule's
actions. If synchronize is nil then Cage executes a rules actions
immediately after its conditions evaluate successfully, without waiting
for any other rules.

:ks-control (definitions <t or nil>
LHS <serial or parallel>
synchronize <t, nil or first>
RHS <serial or parallel>)>

2-39

In a rule the user can control the execution of the condition and
action clauses. In Defrule the keyword is :rule-control.

:rule-control (:lhs <t or nil>
:rhs <t or nil>)

3.2. Paraliel Functionality for Cage

A number of special purpose functions and macros were added to Cage
to facilitate the implementation of concurrency in a shared-memory
model. These include the ability to lock nodes while accessing slot
values, the locking of blackboard levels while creating or deciding to
create a new node. new conditions allowed on the action side of rules,
an input handler and a trace mechanism. The functions beginning
with a $ sign are intended for general use by application builders, and
are described in the next section with the rest of the Cage user
functions.

The functions beginning with the package designation cu: and
described below are lower level functions from the system which
emulates Cage's shared memory model on the Care simulator's
distributed memory. These functions provide access to data
structures between processors. Local data structures can only be
accessed by the local processor, they must be copied into dynamic
space before other processors can access them. For more detailed
information about these functions and the shared memory
architecture, see [Saraiya 891 and [Delagi 871.

cu :cache-shared-structure(list)-function
List is a shared list in "dynamic space"--thus this function copies

the list into "local space" corresponding to the processor at which the
call is made and returns the new copy.

cu:in-memory(site &body body)-macro
Ensures that any data structures created in "dynamic space" will

be in the memory module corresponding to site. within the dynamic
scope of IN-MEMORY.

cu:shared-list(&rest elements)-function
Constructs a list in "dynamic space" with elements; returns it.

cu:shared-lock(lock-address) -function
Locks a spin-lock: lock-address is the remote-address of a

memory cell in dynamic space. Returns when lock is acquired.

cu :shared-read(address)-function

2-40

Read the contents of memory cell corresponding to remote-
address, address.'

cu:shared-writefaddress contents)- function
Write contents into the memory cell corresponding to

remote=address, address.

cu:without-clock(expressionl
The expression is executed off the clock. This macro is useful

for debugging and I/O that should not be timed with simulation of the
user's application.

*djnln- -global variable
Contains the data rate in milliseconds. This should be set by the

user.

domain-timeO--macro
Returns the domain time, ie simulation time minus the base

time in domain ms.

select-parallel-optionsf)--function
Displays a menu Gf parallel options, allows the user to select

options, and changes the default specifications to the user's
specifications.

parallel (option)--function
Returns T if option is set to execute in parallel.

4. Cage User Facilities

In this section we describe a set of user functions, macros, and global
variables provided by Cage to access the blackboard and generate
events from the knowledge source rules. We would discourage the
user from building rules which access the blackboard through other
means, or from accessing the blackboard from outside the rules. Many
of the following functions and macros have side affects, such as
maintaining history lists, necessary to the proper functioning of Cage.

4.1. User Functions2 and Macros

$modify($node accessor-value-Dairs change-type &optional

Add a new value to the list of existing values of $node and
attribute. Accessor-value-pairs is a list of pairs, of slot (Accessor)

lAutomatic coding/decoding of structured data occurs on transfers between
"local" and "dynamic" spaces. See pp 2-4 of (Saraiya 891.
2 Unless otherwise stated, all the items in this section are Lisp functions.

2-41

indicating the slot to be changes and the new value to be added to the
existing values of node and slot.

$supesede*fnode accessor-value-pairs change-type &optional
SURortl-macro
Add a new value, deleting all old values of node and attribute.

$supersede-iffcondition $node accessor-value-pairs change-type
&optional supDort)--macro

If condition is true, make a change to the blackboard at $NODE
and accessors slots, replacing all the old values with new value from
accessor-value-pairs

$createflevel-name creation-form finder-form change-type
&goptional support- -macro

Create a new node(s), using creation form, on the blackboard if
the node specified by finder-form doesn't exist yet. $Create does not
allow the creation of two copies of the same node by different
processes because it locks the level while creating the first, and
checks for existing nodes when trying to create the second. Change-
typc indicates which event is causing this creation. Support can be the
name of the knowledge source containing the rule with this call to
$Create or other documentation.

$value(node attr &optional selector)
Read the blackboard node and attribute, returning a value stored

there. If selector equals :latest return the newest (ie. latest) value. If
selector is not given or not equal to :latest, return all the values.
$value is an explicit macro to allow Cage to keep track of all
references to the blackboard.

$multiple-values($node &body $value- forms) --macro
Retrieve several values from the blackboard at the same time.

with only one call tG Lhe $node and thus only one memory request to
the process where that node resides. This macro allows the user to
retrieve multiple values from a node without interruptions, ie. no
write can change any values on the selected node until all the
requested values have been read.

$find-for-predicatefcollection predicate satisfaction)
Finds all nodes in collection that satisfy predicate. If sat Lsjfaction

is non-nil, $flnd-for-predicate will return all nodes in collection that
do not satisfy predicate

$flnd-for-slot(collection slot value select-type satisfaction)
Find all nodes in set collectio-i which have a slot with value equal

to value. Collection can be a level specification or a set of levels. If
satisfaction is non-nil, $find-for-slot will return all nodes in collection
that do not have the specified slot and value.

2-42

$propose(&key event-type change-type hypothesis-level hypothesis-
element lnk-.lQde attribute-and-values support
commentl

Allows the user to !tfer the blackboard from outside a knowledge
source and generates events for those changes. This function is useful
in dealing with input data, ie. writing data on the blackboard or
recording preprocessing results on the blackboard. $propose should
not be used in general. The KSs should be the only component to
write on the blackboard and generate events.

$null-event($node change-type &optional support)--macro
Generate a null event, i.e. add an event to the eventlist without

making a change to the blackboard.

SLIFO
Last-In, First-Out event scheduler.

$FIFO
First-In. First-Out event scheduler.

$ALL
Select all events at the same time.

4.2. Global Variables

The following global variables are available to the user to aid in the
development and execution of Cage applications.

default-parallel- specifications
Global list of components to execute in parallel, generated by the

system from the user's concurrency specs.

cae-ks-names
List of knowledge sources in an application, generated as the

knowledge sources are defined.

propose-history
History list of all event generating actions.

blackboard
Pointer to the top level object in the blackboard. The levels can

be accessed from here.

leve names
._ist of names of the levels on the application blackboard.

foc-s

2-43

The current focus event, the latest event selected from the
eventlist.

The real time that the current simulation started, used to
calculate the time passed since the start of the simulation.

5. Care Components

Underlying the Cage system is a model of a MIMD, shared-memory.
parallel architecture. This model and Cage have actually been
implemented on two different simulators. One (Cage-Loqs) is
implemented on a low-overhead version of Qlambda(Gabriel84]. The
second is Cage-Care which is built on a distributed, parallel simulator
called Care[Delagi86a]. This manual is intended to describe the Cage-
Care implementation.

Cage-Loqs is intended for quick conversions of serial blackboard
systems to parallelism. It uses the Cage language for a clear, non-lisp
representation of the user's rules. It executes a simulation relatively
quickly, showing the user where and when concurrency is being
exploited. Using Cage-Loqs one can debug a parallel blackboard
system and calculate the potential concurrency quickly. Cage-Loqs
assumes there are as many processors available as needed. The major
disadvantage of Cage-Loqs is that it cannot make accurate
measurements of the parallelism achieved. The Cage-Loqs system is
described in earlier Cage documentation[Aiello86l, and the Cage
language is a variation of the LI00 language[Rice86b]. Cage-Care is
intended for detailed simulations, measuring many factors during the
simulation. It therefore executes an application much slower (1-2
orders of magnitude) than either its serial version or the Loqs version.

5.1. Shared-Memory model

In order to simulate a shared memory machine on a distributed
simulator we have set up the following model. The odd numbered
rows of the grid of processors are used as regular processors to run
the generated processes in parallel. The even numbered rows are
used only as memory. Since the grid is fully connected, the processes
will have roughly equal access to all parts of the memory as in a shared
memory machine.

5.2. Circuits

Currently, Cage can run on CARE with circuits of different sizes
varying from 2 to 32. ie I to 16 processing processors and the same
number of memory processors. *CIRCUIT* is a global variable through

2-44

which the user can determine which size circuit to use. The user can

specify that certain processes be executed on specific processors by

setting the variables *Control- Processor*, *Input-Handler-Processor*,
and *Creation-Handler-Processor*. The user can also allocate

different memory sites for various application data. The following is a

typical Cage configuration file for a 16-site circuit. [8 processors].

(setq *Control-Processor* '(2 3))
(setq *Input-Handler-Processor* '(1 1))
(setq *Creation-Handler-Processor* '(1 3))
(setq *QLisp-Task-Queue-Memory* '(3 2))
(setq *Blackboard-Memory* '(1 4))
(setq *Control-Memory* '(2 4))
(setq *Hypothesis-Memory* '(2 2))
(setq *Input-Data-Memory* '(1 2))
(setq *Level-Memories* 0)

application dependent alist ((level . location)...)

5.3. Data Rates

DOMAIN-MS is a global variable containing the rate, in milliseconds,
at which data is read. Data is read into the system by an independent
data handler as described earlier in the Control Section.

5.4. Instruments

A number of different instrunents are available from the CARE system
which allow the user to monitor the simulation of his application. The
CARE User Manual[Delagi 861 describes in detail how, to use these
instruments.

6. How to run Cage

Cage was designed for use on a Symbolics LISP machine under release
6.1 and under the compatible version of Care, released on June 8.
1988. The top level, calling function for Care-Cage is BB:BOOT-CAGE.
Assuming the user has defined all the necessary application
components. BOOT-CAGE will initialize the system. start the input
handler and pass control to the control loop. A sample start-up file,
illustrating the load-up procedure and other essential initializations, is
listed in Appendix C of this manual.

References

[Aiello 81a] Nelleke Aiello. Conrad Bock. H. Penny Nii. and William
C. White. Joy of AGE-ing: An Introduction to the AGE-1
System. HPP-81-23. Heuristic Programming Project.
CSD, Stanford University, October 1981.

2-45

[Aiello 81b] Nelleke Aiello. Conrad Bock. H. Penny Nil, and William
C. White. The AGE Reference Manual. HPP-81-24.
Heuristic Programming Project, CSD. Stanford
University, October 1981.

[Aeilo 86) Nelleke Aiello. User-Directed Control of Parallelisr: The
Cage System.KSL-86-31. Knowledge Systems Laboratory,
CSD, Stanford University, April 1986.

[Aiello 881 Nelleke Aiello, Cage: The Performance of a Concurrent
Blackboard Environment. KSL-88-80, Knowledge Systems
Laboratory, CSD, Stanford University., December 1988.

[Delagi 861 Bruce Delagi. CARE Users ManuaL KSL-86-36,
Knowledge Systems Laboratory, CSD, Stanford University,
1986.

[Delagi 871 Bruce A. Delagi, Nakul P. Saralya, and Greg T. Byrd.
LAMINA: CARE Applications Interface. KSL-86-67.
Knowledge Systems Laboratory, CSD, Stanford
University., November 1987.

[Engelmore 881 Robert Engelmore and Tony Morgan, (eds).
Blackboard Systems. Addison-Wesley. Wokingham,
England. 1988.

[Gabriel 841 Richard P. Gabriel, and John McCarthy. Queue-based
Muti-processing Lisp. Proceedings of the ACM Sympo-
sium on Lisp and Functional Programming: 25-44, Au-
gust, 1984

iNli 791 H. Penny Nil and Nelleke Aiello. AGE: A Knowledge-
based Program for Building Knowledge-based Programs.
Proceedings of the 6th International Joint Conference on
Artificial Intelligence: 645-655, 1979.

[Nil 861 H. Penny Nil. Blackboard Systems KSL-86-18. Knowledge
Systems Laboratory, CSD, Stanford University, April
1986. Also in Al Magazine, Vol. 7-2 and vol 7-3. 1986.

[Nil 88a] H. Penny Nii. Nelleke Aiello and James Rice. Frameworks
for Cc-,current Problem Solving: A Report on Cage and
Poligon. '.'SL-88-02, Knowledge Systems Laboratory,
CSD, Stanford University., March 1988.

[Nil 88b] H. Penny NiL Nelleke Aiello and James Rice. Experiments
on Cage and Poligon: Measuring the Performance of
Parallel Blackboard Systems. KSL-88-66. Knowledge
Systems Laboratory. CSD. Stanford University, October
1988.

[Rice 861 James Rice. Poligon: A System for Parallel Problem Solv-
ing. KSL-86-19. Knowledge Systems Laboratory. CSD.
Stanford University. April. 1986.

[Rice 86b] James Rice. The Poligon User's Manual., KSL-86-10.
Knowledge Systems Laboratory. CSD. Stanford University.

2-46

[Rice 881 James Rice. The Advanced Architectures Project. KSL-
88-17, Knowledge Systems Laboratory, CSD, Stanford
University, March. 1989.

(Rice 891 James Rice and Neleke Aiello, See How They Run... The
Architecture and Performance of Two Concurrent
Blackboard Systems. KSL-89-08, Knowledge Systems
Laboratory, CSD, Stanford University. January. 1989.

[Saraiyal Nakul P. Saraiya. A Shared Memory Lisp Package for
CARE. KSL-88-85. Knowledge Systems Laboratory. CSD,
Stanford University, January, 1989.

Appendix A. Global Variables

Values for the following global variables should be specified by the user
as part of his/her application specification. Most are also described
earlier in this manual in the sections that pertain to their
functionality.

initializer

(FUNCTION <name of initialization function>)

*termination-condition
(FUNCTION <name of termination function>)

user-post-Drocessor
(FUNCTION <name of post processing function>)

event-extractor
A function to select events off the eventlist. LIFO and FIFO are

provided or the user can write his/her own function.

expectation -extractor
A function to select events off the expectation list. LIFO and FIFO

are provided or the user can write his/her own function.

Cage-Controls
A set of rules to determine what type of item to handle next.

generally an event or expectation.

debugLing-cage
Set to T if in debugging mode, to generate extensive traces of

the application execution.

input-data- file
The file path specification for the input data of the application.

2-47

The file path specification for output trace file.

domain-ms

The number of milliseconds to wait between data readings in

simulated time.

Control- Processor
Specify which processor in the CARE circuit to use as the

control processor, ex. '(2 3).1

Inut-Handler-Processor
Specify which processor in the CARE circuit to use as the input

handler, perhaps '(1 1).

Creation-landler-Processor
Specify which processor in the CARE circuit to use as the

creation handler, '(1 3).

*QLisn-Task-Oueue-Memory
Specify which processor in the CARE circuit to use for the QLisp

task queue. '(3 2).2

*Blackboard-Memory
Specify which processor in the CARE circuit to use as the

blackboard memory. (4).

Control-Memory
Specify which processor in the CARE circuit to use as the

control memory. '(2 4).

*H_othesis-Memory'
Specify which processor in the CARE circuit to use as the

hypothesis memory, '(2 2).

*Input-Data- Memory
Specify which processor in the CARE circuit to use as the input

data memory. '(1 2).

Level- Memories
The level memories are assigned dynamically by Cage.

depending on the application. The structure of this variable is an alist.
associating the level with its processor, ((level . location)...), initially
'0.

I Remember, processors in the odd numbcrcd rows of the processor grid are
used as processors.
2Even numbered processors are used for memory in this sharcd memory
model.

2-

Appendix B. Cage macros and Functions

The following functions and macros are available to the user to develop
a Cage application. Many of them are also described earlier in this
manual in their respective, relevant sections. For examples of their
use. see the sample application appendix at the end of this manual.

Defhypothesis-structure(<namfe of -blackboard> (<name of root>)
.<list of levels>)

Generates a hierarchical hypothesis structure of the given levels
for a blackboard.

Deflevelklevel n&me>. <list of slot nIe a~dinitial value pairs>)
Defines a level of the hypothesis structure with given slots and

inittal values, which can be nil.

Defknowledgesourcek<knowledge source nwme>
:2reconditions 4l1st of preconditions event tokens>
:definitions <list, of let-typ b-indings>
:KS-control <list of concurrency spes>
:rule-order <ordered list of nule descr1 tors>l

Defines a knowledge source with the given specifications.

Defruleffcks name> <:rule descriptor>) Ai-2art <form>
:action-part <form>
:ru!e-control <rule concurrenCy specs>)

Defines a rule with the given specs within the ks named.

Defcontrol-rulefkname> :condition <s-expression>
:step <EVETr/ EXPECTATIOW>

Define a control rule to invoke a given step.

Appendix C. Sample Cage start-up file

;; Mode: Usp; Package: User: Base: 10: Syntax: Zetalisp -

(SEND 'IV:SELECTE-D-WINDOW :SET-MORE-P NIL)
(SETF Si:PRINLEVEL 3)

.Either load the system files for the following systems or add them to
your local system directory.
[MAKE-SYSTEM "CARE" :SILEN7 :NOWARUN :NOCONFIRIM)1
(MAKE-SYSTEM "QL; :SILENT :NOWARIN :NOCONFIR.M)
(MAKE-SYSIEM "CC" :SILENT :NOWARN :NOCONFIR.-)

2-49

(MAKE-SYSTEM tIELINfl-CpJRh :SILENT :NOWARN
:NOCONFIRM)

(GC-OFF)
;Load a CARE circuit,.iLe octou-s- 16

(CU:SIMPLE :design 'OCTORUS- 16 :RUN NIL)

.Assign processes to processors.
(setq *Control- Processor* '(2 3))
(setq lInput-Handler- Processoi- '(1 1))
(setq *Creation-Handler- Processor* '(1 3))
(setq *QLisp-Task-Queue- Memmy* '(3 2))
(setq *Black' jard-Memor* '(1 Q)
(setq *Control-Memory* '(2 4))
(setq *Hypothesis-Memor* '(2 2))
(setq lInput-Data-Memory* '(1 2))
(setq *'Level -Memories* ' 0)

:Care specs for Cage, simulating shared memory instead of distributed.
(SETQ CARE: **PRODUCTION-CARE-RUN*** T)
(PUTPROP :VALUES-MEMORY-REQ T 'C:EVALUATOR-WAn

;specify the input and output files for this run.
(SETQ BB:INPUT-DATA-FILEO "device: >yourdirectory>all-at-
once.obs)
(SETQ BB:*OUTPUT-TRACE-FILE* "device: >yourdlrectorv>any name

;Set desired control specs and debugging flags. yulk"
(SETQ BB:*CAGE-CONTROLs' '(:NO-SYNCHRONIZATION

(SETQ BB-1DEBUGGING-CAGE* T) :NWEG-ORE)
(SETQ QU,**DEBUGGING-QL*** NIL)
(SETQ CU:**COUNT-LOCKS* NIL)
(SETQ BB:**TIME-trace* NIL)
(SETQ BB:*DOMAIN-MS* 50.0) ;controls the data rate

(SETQ SI:GC-REcLAIm- IMMEDIATELY- IF- NECESSARY T)

;Load tl.- patch files.
(SETF *CAGE-PATCHES*

';evice: >yourdirectory>ql,.Stop- Process- Patch"

'"device: >yourdirectory>ql>memory- reque st- patch"
'device: >yourdirec'Lory>ql>Areas"
"device:>yourdirectory>Sv-mbolics-GC"
'device: >yourdirectrory>time- trace"
"device: >yourdirecto ry>no- creator- processors

2-50

(MAPC 'LOAD *CAGE-PATCHES)

(DEFUN BB:RUN 0
(UNWIND-PROTECT

(GC-ON :dynamic t :ephemeral nil)
(BB:BOOT-CAGE))

(B:KILL-SIMPLE-HARDCOPY) ;don't tie-up the printer after
;long runs.

(CLOSE BB :*INPUT-DATA-STREAM*)
)

;Call BB:RUN to start the simulation.

Appendix D. Sample Cage application specifications

D.1. Hypothesis Structure

(DEFHYPOTHESIS-STRUCTURE CAGE-HYPOTHESIS-STRUCTURE
(APPLICATION-SYSTEM-ROOT)
REPORT-DATA-LEVEL
CLUSTER-LEVEL
EMITTER-MANAGER-LEVEL
EMITTER-LOCATION- LEVEL
EMITTER-LEVEL
OBSERVATION-LEVEL)

(DEFLEVEL REPORT-DATA
((NEW-CLUSTERS NIL)
(CLUSTER-SPLITS-AND-MERGES NIL)
(CT TTSTER-REFINEMENTS NIL)
(-(.' STER-THREATS NIL)
fi ')T-SITUATIONS NIL)
(EMI'TER-THREATS NIL)
(NUMBER-OF-CLUSTERS NIL)
(CLUSTER-NODES NIL)
(ACTIVITY NIL)))

(DEFLEVEL CLUSTER
((ID NIL)
(LAST-UPDATE NIL)
(FIX-HISTORY NIL)
(SPEED-HISTORY NIL)
(HEADING-HISTORY NIL)
(PLATFORMS NIL)
(NUMBER-OF-PLATFORMS NIL)

2-51

(ACTIVITY NIL)
(SPLITS-AND-MERGES NIL)
(ASSOCIATED-EMITTERS NIL)))

(DEFLEVEL EMITrER-MANAGER
((RECYCLE-CANDIDATES NIL)
(EMPTY-NODES NIL)
(NODES NIL)))

(DEFLEVEL EMITTER-LOCATION
((LOB NIL)
(FIX NIL)
(HEADING NIL)
(ID NIL)
(LAST-OBSERVED NIL)
(MY-EMITTER NIL)
(CONTROL-INFORMATION-SITE NIL)
(CLUSTER-SPLIT-DEMON NIL)))

(DEFLEVEL EMITTER
((ID NIL)
(EMITTER-TYPE NIL)
(STATUS NIL)
(CONFIDENCE NIL)
(ID-ERROR NIL)
(LAST-OBSERVED NIL)
(NO-OF-OBSERVATIONS NIL)
(ASSOCIATED-OBSERVATIONS NIL)
(ASSOCIATED-CLUSTER NIL)
(OBSERVATIONS-RECYCLED (cu:shared-list NO))
(CLUSTER-RECYCLED (cu:shared-list NO))
(MY-LOCATION NIL) (CLUSTER-DEMON NIL)
(THREAT-CHECK-DEMON (cu:shared-list YES))
(RECYCLE-CANDIDATES NIL)
(EMPTY-NODES NIL))

)
(DEFLEVEL OBSERVATION

((TIME NIL)
(EMITTER-ID NIL)
(SITE NIL)
(LOB NIL)

(OBSERVATION-TYPE NIL)
(MODE NIL)
(SIGNAL-QUALITY NIL)
(ID-ERROR NIL)
(REDIRECT-FLAG NIL)

(ASSOCIATED-EMITTER NIL))

2-52

D.2. Knowledge Base

(DEFKNOWL.EDGE-SOURCE Process-Observations
:PRECONDITIONS
(new-observation-read)

:DEFINITIONS
((the.observation FOCUS-NODE)

((observation-time observation-emitter-id ...)

($MULTIPLE-VALUES the. observation
($ALUE the .observation observation- time :latest)
($ALUE the.observation observation-emitter-id

:latest)

((matched-emitter-list new-emitter-node)
($CREATE emitter-level

(MAKEEMITTER
id (CU:SHARED-LIST observation-emitter-id
emitter-type (CU:SI-ARED-LIST observation-type)
associated-observations

(CU:SHARED-LIST the. observation)
last-observed (CU:SHARED-LIST observation-time)

($FIND-FOR-SLOT 'emitter-level emitter-id
observation-emitter-id
:latest)

'new-or-matched-node 'process-observations-defs))

:KS-CONT±ROL (definitions nil lhs :serial synchronize :first
rhs :serial)

:RULE-ORDER
(observation- id -errorp-with- cluster
:observation-id -errorp- no -cluster
:inconsistent-site-observation
:old-emitter-old-location
:create-two-new-nodes)

(DEFRULE (process-observations :create -two- new- nodes)

IF-PART
(QAND new-emitter- node new- emitter-location)
:ACTION- PART
(PROGN ($SUPERSEDE new-emitter-node

((emitter- my- location
(CU:SHARLED-LIST new- emitter- location)))

tnew-emitter

2-53

'process-observaton-2-new-nodes)

($SUPERSEDE the.observation
((observation-associated-emitter

(CU:SHARED-LIST new-emitter-node)))
'emitter-matched)

'[process-observations-2-new-nodes))

($MODIFY new-emitter-location
((emitter-location-control-information-site
(LIST observation-site

observation-time the.observation)))
'new-emitter-location)'process-observations-2-new-nodes)))

:RULE-CONTROL (:lhs t :rhs nil)
)
D.3. Control Information

(setq *Initializer" 'ELINT- INITIALIZATION)

(setq *Termination-condition* 'ELINT-QUIT)

(setq *Postprocessor* 'PRINT-RESULTS)

(setq *Event-extractor* (function $ALL-SORT))

(setq *Expectation- extractor* (function $FIFO))

(setq *Goal-extractor* (function $FIFO))

(setq *Cage-controls* '(:serial))

(defvar *agenda*
'(clock-tick cleanup-cluster new-observation-read

corrected-emitter corrected-emitter-location
new-emitter-location
matched -emitter-location new-emitter
computed-fix
earlier-fix-computed associate-emitter- cluster
emitter-cluster-already-matched
assoc-cluster-emitter new-cluster
matched-cluster))

(DEFCONTROL-RULE :CRULE- 1
:condition (not (equal (send EXPECT-INFO :STEPLIST) nil)
:step :EXPECTATION)

(DEFCONTROL-RULE :CRULE-2
:condition (not (null (control-events)))

2-54

:step :EVENT)

(setq *input-data-flle* fs2:>aielo>basic. input")

(defvar *output- trace-file* "local: >alello> trace- elint- on- care. lisp")

j(defvar *time- trace-file* "local: >aiello>trace- tirnes.lisp")

D.4. User Functions

(DEFUN TIME-OF-INPUT-RECORD,
(RECORD)
Mf~

(DECLARE (UNSPECIAL RECORD))
(if (equal record 'eoi) nil (first RECORD))

(DEFUN INPUT-PROCEDURE
(RECORD TIMESTAMP)

(DECLARE (UNSPECIAL RECORD TIMESTAMP))
(IGNORE TIMESTAMP)
($reate OBSERVATION (make-observation

TIME (cu:shared-list (FIRST RECORD))
SITE (cu:shared-list (SECOND RECORD)
EMITTER-ID3 (cu:shared-list (THIRD

RECORD))
LOB (cu:shared-list (FOURTH RECORD)
OBSERVATION-TYPE (cu: shared-list

(FIFTH RECORD))
MODE (cu:shared-list(SIXTH RECORD))
SIGN'~AL-QUALITY (cu:shared-list

(SEVENTH RECORD))
REDIRECT-FLAG (cu:shared-list

(EIGHTH RECORD)))
nil (quote NEW-OBSERVATION-READ) (quote INPUT))

(defun elint-initialization 0
($create report-data-level (make- report- data) nil 'report-node

'elint-initialization)
($create emitter-manager-level (make- emitter-manager) nil

'emitter-manager-node 'elint- initialization)
(output-if *debugging-cage* "-&Opening trace file -A' *output-

trace-fileb)
(when *output- trace-file : [nps]

2-55

(setq *output-trace-stream* (open *Output- trace- fle* :direction
:Output))

(cw.without-clock (print (list ':data-rate bb:*domain-ms*)
output-trace- stream)

(print (list ':circuit-name user:*circuit*)
*output-trace-stream))

(output-if *debugging-cage* "-&Opened trace file -A"
output- trace- file))

(when cu**count-locks**
(setq Cu :count-locks-stream* (open *count-locks flle* : irection

(when *time-trace* o:.pt)
(setq *tlme-trace-stream* (open *time-trace file* :direction

output))))

(defun elint-quit ()
(print "testing termination-condition" Cu: *output..stream*)

(cu:without-clock (and (Cu :shared-read *end-of-input)
(null (control- events)) ;former event list
(or (cu:wait 100) t)
(null (control -events)))))

(defun PRINT-RESULTS,
nil
(cu:without-clock (when *output-trace-file*

(prini "elapsed time in mins. = "
"'OutPut-trace- streaml)

(print (quotient (quotient (time-difference (time)
b: *simulation-start- time*)

60) 60)
output-trace -stream)

(close *output- trace- stream')
*Print results of Elint computation
(mapcar (function DESCRIBE-FLAVOR)

(send (send (HYPOTHESIS- STRU CTU RE)
:cluster-level) :NODES))

(is: close- all -files)

(defun $ALL-sort (change-list- address &aux local)
(unwind-protect

(progn
(cu:shared-lock (locf (control- lock)))
(setf local (cu:shared-read change-list- address))
(cu: shared -write change-list-address nil))

(cu:shared -unlock (locf (control -lock))))
(agenda-sort (cu: cache -shared -list local)))

2-56

(defuin Agenda-compare (event 1 event2)
(declare (special *agendal)
(let ((ype 1 (change-type event1))

(type2 (change-type event2))
(let ((pos 1 (or (cl:position typel 1*agenda*) 0)

(pos2 (or (cl:position type2 *agenda",) 0)))
(greaterp pos1 pos2))))

(defun agenda-sort (event-list)
(sort event-list #(lanbda (evi ev2) ;do we need sort-stable here?

(agenda-compare evI ev2))))

2-57

Knowledge Systems Laboratory January 1991
Report No. KSL-89-43

An Application in Poligon

by
Jean-Christophe Bandini

and
James Rice

Knowledge Systems Laboratory
Stanford University

701 Welch Road
Palo Alto, CA 94304

The authors gratefully acknowledge the support of the following funding agencies for tills
project; DARPA/RADC, under contract F30602-85-C-(X)12; NASA. under contract num-
ber NCC 2-220: Boeing Computer Services, under contract number W-266875.

2-58

Abstract

This paper describes the design, implementation and performance of ParAble, a problem
solving application built using the Poligon framework, a concurrent blackboard-based pro-
grimming system. ParAble is a system for the diagnosis of faults in particle accelerator
beamlines. The factors that motivate and constrain the design of Poligon applications are
discussed. Experimental results and their interpretation provide an evaluation of the
Poligon system in terms of the performance of this application.

1. Introduction

Concurrent problem-solving is a relatively recent field that has emerged as a result of falling
hardware prices and the consequent burgeoning availability of multiprocessors. With the
availability of concurrent hardware has come the problem of programming these machines.
Multiprocessors have been used for quite a while for very regular, primarily numerical
problems. The work described in this paper was performed within the Advanced
Architecture Project (AAP) of Stanford University's Knowledge System Laboratory I Rice
88b]. The goal of the AAP is to investigate the use of multiprocessors for Al applications
in the hope of achieving substantial speedup due to parallelism. Why this is not a trivial
problem is described in [Rice 88a].

The goal of this sub-project was to study the design and performance of a new application
mounted on Poligon [Rice 861 and [Rice 89], a concurrent problem-solving framework de-
veloped as part of the AAP. This application was required to be different from those which
had already been studied (real-time radar signal interpretation [Nii 88]). The main issues of
interest were-
" Performance measurement
• Measurement and analysis of speedup
• Study of resource allocation
• Study of the influence of granularity on system performance
" Design: the adequacy of Poligon for a different type of programming problem and

the influence of the requirements of concurrent problem solving on the conceptual-
ization of the problem and the knowledge engineering process. Previous work on
the AAP had already determined that an appropriate decomposition of the problem
domain into suitably parallel terms is a major part of the problem of concurrent
problem solving.

Although we needed a "new" application, instead of starting from scratch, it seemed better
to select an existing, serial, application and implement it using Poligon. This approach
would let us draw comparisons between the serial and parallel implementations in term of
design. The application we chose was called ABLE which had previously been developed
by Scott Clearwater and Larry Selig [Selig 871 to help to align and debug particle accelera-
tor beamlines.

The experiments described in this paper were carried out on the CARE simulator [Delagi
86a], which can be used to construct simulated multiprocessors of various shapes and sizes
with a set of instruments to analyze the run-time behavior.

2-59

1.1. The Target Problem Solving Framework: Poligon

The Poligon framework is a skeletal blackboard-based concurrent problem solving system.
Unlike conventional blackboard systems, to make efficient use of the multiprocessor hard-
ware for which Poligon was designed, there is no centralized control.

The nodes of the blackboard can be viewed as active agents with attached daemon-like rules
triggered by changes made to the blackboard nodes. When a node is created it is installed
on a processor-memory pair (i.e. a processing element of the CARE machine) and rule in-
vocation may use other processor-memory pairs (see Figure 1). The allocation of black-
board nodes to processors is usually handled by the Poligon framework, though it can be
influenced by the application program.

Poligon is a high level approach to parallel programming and a lot of details are taken care
of by the system, such as node object instantiation, rule invocation and the creation and de-
futuring of futures. By default, Poligon tries to parallelize as much as possible in the
user's application, but the programmer can place restrictions on this parallelization when
more control is required.

Rules

PieUpdate El[~

Rules ules

Update

Figure I. Poligon blackboard nodes and rule invocation. Updates to
slots in Poligon nodes cause the concurrent activation of rules associated

with those slots. These rules in turn go on to cause updates to slots in other
nodes. This results in the implicit creation of pipelines.

2. The Application

The ABLE application was developed to solve the problem of misaligned or defective
beamlines in particle accelerators. Beamlines are composed of a source of particles and a
target connected by a pipe (see Figure 2). The particles are guided through the pipe with
magnets which can focus, defocus and bend the beam very much like lenses and prisms af-
fect rays of light. Monitors distributed along the beamline provide data to tune the mag-

2-6()

nets. The tuning operation is done on-site with the beam on. This mode of operation en-
tails high costs (often of the order of $0.25M per day) and requires considerable expertise
and can often still take of the order of months to complete. The goal of the ABLE project
was to automate the process of finding faulty magnets and monitors by using expertise, an
analytical model and simulation.

Target
Figure 2. A Beamline. In particle accelerator beamlines, magnets are
used to serve functions analogous to focussing, defocussing and prismatic

components in an optical system. The source emits sub-atomic particles
whose behavior is ideally to be measured by detectors sited at the target.

The path of the beam, even in the absence of magnets is roughly sinusoidal
because of quantum mechanical effects.

In order to control the beam as it travels along the beamline, monitors (detectors) are placed
in the beam pip , which can detect the proximity of the beam. The output of these monitors
can be used to control the strengths (and hence "refractive indices") of the magnets and thus
control the beam. Unfortunately, physical limits prevent beamline designers from putting
monitors in all the ideal places. This is often caused by the fact that magnets are physically
so close together that there is no room for a monitor. Thus, the beamline debugging pro-
cess must reason from incomplete information (see Figure 3).

No Monitor Monitor

Figure 3. Monitors are placed along the beamline where feasible.

2. 1. Serial Problem Solving

The method used to solve the beamline alignment problem at most existing particle accelera-
tors can hardly be called anything other than mere knob-twiddling. Those trying to com-
mission the beamline tweak the strengths of the magnets in the hope of achieving better
alignment. This can often take many months because the effect of adjusting a particular
magnet's strength can be strongly counter-intuitive. This counter-intuitivity can be due to
many number of factors. For example, the effect of a change to a particular magnet's be-
havior is often not visible until the fractional change in beam trajectory it causes has been
integrated down a substantial portion of the beamline. What is more, because sometimes
the beamline is physically incorrect, either because someone bumps a truck into a magnet,
deforming or moving it, or because magnets and monitors can easily be wired up with their
intended polarity reversed, those commissioning the beam can exha-ist vast resources in as-
suming that the problem can even be solved by parameter adjustment.

In response to these primitive debugging methods the ABLE system was designed. The
serial ABLE problem solving method used numerical simulations and expert knowledge to

2-61

find the beamline error as quickly as possible. The numerical simulations provided two
kind of results:

Monitor

Souce

Relaunch point
and tajectory

Figure 4. The simulated beam can be relaunched from any point in the
beam. If it is relaunched with a trajectory equal to that measured from the

real beam at the specified relaunch point then afautless beamline woudd re-
sult in a perfect match between the trajectories of the simulated and real

beams downstream of the relaunch point.
Relaunching: the analytical model of the beam can be started at any point in the
beamline with the beam being started with a known trajectory (see Figure 4). This
allows the simulation of any segment of the beamline under controlled conditions.
Because the real-world beam's trajectory can be determined by the monitors in the
beamline, a simulated relaunch can be made from the position of a monitor with a
trajectory equal to the measured trajectory. Comparison of the real beam with its
simulated beam's path downstream of the relaunch point allows the system to de-
duce the approximate location of errors (see Figure 5). The exact location cannot
easily be found because some errors do not show up until a long way
"downstream" and also because the number of monitors is not as great as would be
ideal because of physical limitation in the construction of the beamline.

~Monitor

Target,
Relaunch point
and tajectory

Figure 5. In this case the simulated beam rapidly diverges from the real
beam's measured path (gray). This indicates that afault is likely near the

monitor from which the relaunch was made.
Magnet Fitting: Once the approximate location of an error has been found, a linear
optimization process can be performed, which modifies the parameters of the pos-
sibly erroneous magnets around the suspected error point until a good fit is ob-
served between the simulated and the actual beam paths.

The serial problem solving method relaunches the simulated beam from the beginning of
the beamline. A set of rules is used to analyze the differences betv, 'en the simulated and
real beams and also to find at which moritor the error is located. This monitor is called the
"bad-monitor" I. A range of monitors downstream of the "bad monitor" constitutes a re-
gion of the beamline which is supposedly error-free and which is called a "good-region".
The beam is then relaunched from the end of the good-region to find the next bad-monitor
and the process proceeds to the end of the beamline.

'Note: This doc+ not irdicalc that 'th monI.,r i, hroken. hougli iIt nia) Iv. it sinply idcntific.% a [Xivoe.

approximnite location for the error.

2-62

The magnets in the vicinity between good-regions (i.e around a bad-monitor) are then
checked to see if, by varying their parameter'. ,hz y can account for the observed discrep-
ancy between real beam data and the simulated beam path. In the best of all possible
worlds the beam alignment problem could be solved by running an opimization process
over all of the parameters of all of the magnets in the beamline simultaneousiv.
Unfortunately, this is comb.natonally explosive, so the goal of the ABLE system was to
localize the area of the problem so that the computational task of pefforming these linear
optimizations was tractable.

The serial implementation of ABLE runs using KEE'4and a large body of FORTRAN code
to perform the simulation of the beam and the above mentioned linear optimization.' ABLE
was tested on real data from the Stanford Linear Accelerator (SLAC) and was shown to be
able to find problems in only a few minutes that would have required days or possibly
weeks to find bv traditional means.

2.2. Parallel Problem Solving

ParAble is a parallel implementation of an ABLE-like system. In many senses ParAble is
an artificial problem since the commissioning of beamlines is something that takes place
over months, and it is really not necessary to gain any speedup over the existing ABLE
implementation. However, recent developments in particle accelerators, particularly those
spurred by the Strategic Defense Initiative, has resulted in designs for accelerators that are
much more sophisticated and in need of much more automation so as to control and debug
them. It is by no means ridiculous to think in terms of accelerators that would require con-
tinuous real-time monitoring and debugging so as to keep them running at peak perfor-
mance.

Nevertheless. independent of the requirement for a real-world parallel implementation of
ABLE, our own goals were to investigate the process o' concur,..it problem solving boh
from the human and the machine's point of view and in this respect the ParAble application
was thoroughly instructive. The design and problem solving strategies in the seril and
parallel systems are widely different. This section provides a high-level description -if the
design of the ParAble applicaon.

2.2.1. Goals

The goal of the new design for a parallel ABLE was to find a reformulation of the problem
solving method which would make efficient use of the underlying parallel architecture To
this end it was our goal that the expert, Scott Clearwater. an accelerator pnysicist. should

-vy to reformulate the problem solving method so that:
- The problem was solved by solving independent subproblems. so that the compu-

tation could be split between several processors without requiring synchronization
and communication.

- The problem solving method exploited parallelisn whenever possible.
The need for control in the problem solving method was reduced to a minimum.

The motivation for these goals was the efficient use of parallel hardware with minimal syn-
chronization and communication.

2KEE is a tradcmark of IntelliCorp Inc.

2-63

2.2.2. Problem Solving

The problem solving method used in ParAble differs from V~at used in the serial ABLE
implementatior, in a number of interesting ways. In the seril ABLE implementation, a
single relaunch of the simulated beam is made from the beginning of the beamline to locate
the monitor where the actual beam and the simulated, relaunched beam diverge, this moni-
tor is termed a "bad monitor". When asked to think of how he would ideally solve the
problem, our expert came to the conclusion that relaunching the beam only once to find the
likely location of the error was not at all the best way to think about the problem. This was
beLause using only one simulated relaunch of the beam made it very difficult to diagnose
problems due to multiple error- in the beamline. In the case of ParAble, therefore, becatise
the Poligon programming r , lel assumes the availability of substantial computing re-
sources, multiple, simultaneous simulated relaunches were possible, one from each moni-
tor in the beamline, i.e. one relaunch for each available beam trajectory data point. Having
multiple relaunches also improved the reliability of the system's conclusions and succeeded
in getting correct diagnoses in some cases for which a single relaunch, such as that used by
ABLE, would have re,' lted in a gross error concerning the location of the bad monitor.

In the seiial implementation, even when relaunching is performed as part of the magnet pa-
rameter linear optimization, the simulated beam is analyzed only downstream of the re-
launch point. This is because the expert was thinking originally of how he would address
the problem serially. When debugging a beamline serially it makes sense to work down-
stream, since as you go you can be sure to what extent errors are influencing the propaga-
tion of the beam. This mind-set was also largely motivated by the fact that the real beam
travels from one end of the beamline to the other, you cannot make the beam travel back-
wards in time. However, when tme expert viewed the problem as one in which problem
solving activity could occur concurrently he made thi 'iscovery that the real goal was to
separate the beam into goou ard bad regions. i dic i matter in which order this hap-
pened. What is more, because the beamline si-ulator simul,.tes the magnets in terms of
their transfer function by means of matrix operations, the beam is simulated as a mathemat-
ical abstraction, not as a discrete simulation of the propagation o' individual particles.
Thus, the simulation can be run "backwards", i.e. it proved to be entirely legitimate to cor-
relate the relaunchcd beam with *he actual btam both upsiream and downstream of the re-
launch point. This means that a relaunch from any given monitor position can suggest the
presence oi an error, or lack thereof, either upstream, or downsteam of the relaunch moni-
tor, or both. This reconceptualizzfon of the problem allowed a totally different problem
solving method from the serial ARLE implemelitation. Rather than relying on only one re-
launcL to find q- error, the 5ystem w:s , ble to relaunch the beam from every monitor and
use the results oi analyzing each elaun.h in voting scheme to pick the most likely
cause(s) for the misalignment.

Thus, the parallel problem solving method ;s organized in tv.o major steps. First, find the
"bad region(s)" along the beam. As mentioned above, a bad region is a segment of the
beamline between :otre sequence of monitors, which presumably h&,s a faulty magnet.
Since ;everal r-1buwiches are perfoirmed, their conclusions need to be iategrated to find
where the bad legions are. This is done by a voting scheme. The second phase in the
-roblem solvir'- activity i'equired that for each bad region the system we should find the
bad magnet (the rr agnct causing the actual beam misalignment). Once a bad region is
known t(, hav;e a faulty magnet, linear optimization runs can be performed for each of the
magnets in the bad region simultaneouisly to tiJd tile one ;t fault.

2-64

2.2.3. Sources of Parallelism

From a problem solving point of view, there are only really three sources of parallelism.
Poligon is designed to be able to exploit these on distributed memory multiprocessors.
• Pipeline parallelism. This is the form of parallelism seen on industrial assembly

lines. The amount of speedup in a perfectly balanced pipe is proportional to the
number of stages in the pipe. If the ParAble application were to have been used in a
continuous, real-time manner, then we could have hoped for pipeline parallelism as
a result of pumping new data into the system while it was still working on old data.
We did not, however, investigate this area, since real-time systems was the primary
research area of other parts of the Advanced Architec -ires Project.

° Replication. This is the parallelism due to having multiple processors all doing
similar things to different data. This form of parallelism is more like that seen in a
car repair shop, where there is likely to be one mechanic working on each car.
More speedup for the business overall could be achieveo by adding more mechanics
and getting more cars to work on. This is tne form of parallelism most appropriate
to the ParAble application. Indeed, the presence of multiple magnets and monitors
in the beamline, each of which could be considered in the problem solving process
indicates that one might hope for speedup that was proportional to some function of
the number of magnets and monitors.

" Decomposition into separate sub-problems. Some might view this aspect as being
no different from the two previous ones, that is, a pipeline represents a decomposi-
tion of the problem too. We include this since there are often qualitatively different
things that have to be done, which can nevertheless be done in parallel. This could
be viewed as replication at some level of abstraction, but such a view does not help
the cognitive process of problem decomposition. For example, when building a
house, it is possible to install the plumbing at the same time that it is being wired
and roofed. Clearly, each of these activities is being Jone by a similar "processor",
but it is not useful to think of them as being simply replicated, since at the house
building level of abstraction they aie still qualitatively different operations. We can
think of this form of parallelism as "Knowledge Parallelism"

The parallelism that results from repliL ation is often referred to as "Data Parallelism", since
it is the form of parallelism that is a function of the structure of the data in the problem, not
the proce,sing that has to be done on the data. Adding more data typically adds more po-
tential for parallelism. The main source of parallelism in ParAble is data parallelism.
• During the finding of the bad region(s) multiple relauz, 'ies must be run. These re-

launches can be run in parallel and they do not require any synchronization.
* Once the bad region(s) have been found, multiple magnet fit simulations (linear op-

timizations) must be run. These optimizations can also be run in parallel.
" Overlapping between the two phases is possible (pipelining). Once a bad region

has been found the finding of the faulty magnet is an independent subproblem
which can be solved concurrently with relaunches or other bad region finding sub-
problems.

Clearly, the numeric simulations and optimizations may well also offer considerable oppor-
tunities for parallelization. However, our project was more interested in the process of
concurrent symbolic programming, than numeric programming. Thus, we chose to view
these activities as monolithic (black boxes). We were, however, able to adjust the simu-
lated time taken to execute the simulation. This was possible for our experiments by exe-
cuting the simulation for every possible combination of parameters and measuring the run-
time of each such execution. Then, when ParAble wanted to execute a simulation it had, in
fact, only to look the result up in a table and charge the appropriate amount of time-to the

2-65

CARE simulator. This strategy allowed us to investigate the impact of the speed of the

beamline simulations on the overall performance of ParAble.

2.2.4. Design of ParAble for Poligon

Poligon's programming model gives the user a view of the world that is separated into ob-
jects that belong to classes. These classes represent the natural partitions in the solution
space, often referred to by blackboard systems as "levels" because they are often used to
represent distinct levels of abstraction in the solution space. Knowledge in the form of
pattern/action rules is associated with these classes and hence with their instances. The de-
sign of ParAble uses Poligon nodes to represent and hold the state of the beamline objects
and the state of the evolving solution. More specifically, the classes of Poligon nodes used
in this application were as follows (see also Figure 6).
* Magnet, instances of which hold the state of the real magnets of the beamline.
• Monitor, instances of which hold the state of the real monitors.
• Segment, instances of which hold the state of the region of the beamline delimited

by two consecutive monitors.
• Experiment, of which there is only one instance which retains the overall state of

the solution and which is used for some global synchronization and initialization.
* Bad regicn, whose instances represents a sequence of monitors that contain a mag-

net error.

[Experiment1

Moitori Magnet nr MantIge[get Monitor ___

[Bad Region

Beamline
Figure 6. The configuration of ParAble's blackboard.

2.2.5. The Application in Operation

ParAble's design was strongly organized so as to exploit the sources of parallelism de-
scribed above. Its behavior fell into two primary components, the finding of the bad re-
gion(s), and the finding of the had magnet within each of these regions.

To find the bad regions, a simulation was relaunched in parallel for each monitor. The in-
tegration of the simulation results used a voting scheme, whose goal was to reduce any
synchronization overhead to a minimum. The result of each relaunch was used in a dis-
tributed fashion: a vote was sent, by the monitor that performed the simulation, to each of
the monitors which were suspected as being bad as the result of the simulation. Each
monitor collected the votes cast for it and was empowered to make a decision on whether to
create a bad region or not on the basis of the votes cast. A simple comparison of the sum
of the votes with a threshold proved to be enough, but further refinements may be possible.
This scheme avoided any bottleneck that might have been caused if a central object had

2-66

been used to collect all the results of the simulations and to make a final decision.
Furthermore, this design allowed the finding of bad regions before the completion of all the
relaunches by all of the monitors, i.e. there was no synchronization necessary in order to
continue with the problem solving. Nevertheless, some control was necessary after the
decision to create a bad region was made to avoid creating overlapping bad regions. This
would have entailed redundant computation.

To find the bad magnet within a bad region, ParAble started by creating a Bad Region ob-
ject. This bad region was then responsible for solving the subproblem of finding the bad
magnet inside the region of the beamline that it denoted. Linear optimizations were run in
parallel for each magnet in the bad region so as to try to find a set of magnet parameters that
would best fit the behavior of the real beam. All the results of these optimization operations
had to be collected before making a choice concerning the bad magnet.

3. Experiments on ParAble

Numerous experiments were performed on Poligon and ParAble, some of which we will
describe here. As was typically the case in experiments on the AAP, our primary concern
was for speedup. We were, however, also interested in using the experiments to deliver
some insights concerning the generality of Poligon and the probable limits of its perfor-
mance. Thus, the main goals of these experiments were:
" Measurement of speedup.
• Study of any resource allocation problems.
• Study of the performance of ParAble when encountering multiple errors as opposed

to only one error in the beamline. Note, the serial ABLE implementation was not
--ble to handle multiple errors satisfactorally at all.

• Study of the granularity of Poligon and the application.
" Validation of previous experimental results.

3. 1. Experimental Parameters

The design of the program was kept constant for all experiments. The parameters that were
changed for the experiments were:
" The data set: a variety of data sets were available. These fell into two broad cate-

gories: those with single errors in the beamline and those with double errors.
* The numerical simulation timing scale factor: Simulations were involved whenever

a relaunch was made or whenever an optimization run was made. A scale factor
was applied to the true, wall-clock time of these simulations in order to study the
behavior of the system with respect to computational grain sizes.

* The number of processors: These ranged between one and 128 in powers of two.

3.2. Experiment Measurements

The experiments measured the execution time of the application. More precisely we mea-
sured:
" Initialization titue: th,- time to set up the Poligon objects.
• Problem solvinE the time to solve the problem, (i.e. total time minus the ini-

tialization time) ,me was broken up into two main quantities:
* the time to find the bad-region
* the time to find the bad-magnet inside the bad-region.

For a finer grained analysis we also use a time stamped trace of the executions. In the fol-
lowing experiments we did not pay much attention to the initialization time. This was be-

2-67

cause we anticipate that if a system such as ParAble were to be used in the real world it
would be used in a real-time manner. In this case, initialization is payed for only once at
load time and is therefore not relevant to normal system operation. In these experiments,
the initialization time was not trivial because of the time taken to create the objects on the
blackboard and to connect them up in a manner suitable to the application. This involved a
certain amount of synchronization.

3.3. Theoretical Analysis

The first question to answer is: what is the available parallelism of the application and what
is the maximum speedup we can expect? As mentioned in the description of the program
design, the two main sources of parallelism are:
" Multiple relaunch simulations can be carried out in parallel.
" Once a bad region has been found, the computation of the linear optimization to find

the bad magnet can be performed in parallel.

Let us assume we have infinite resources, infinite Poligon system speed and instantaneous
communications. The execution time of the relaunch simulations to find the bad magnets
all have about the same duration. The relaunch time Trelaunch = 2 seconds using a simula-
tion scale factor SF=I, except for one which takes about 4 seconds. Since 17 relaunches
are typically performed, the theoretical speedup for the relaunches is:

(16 Trelaunch + 2Trelaunch) 9
Speeduprelaunch = 2Trelaunch

But the speedup for finding the bad region is different because bad region finding does not
require waiting for the results of all the relaunch simulations, since a subset may be enough
to go above the vote threshold. In particular, the long simulation (2 Trelaunch) may not be
necessary, thus, in general:

Speedupbad-region-finding - Trelaunch +
Trelaunch

For the magnet optimization simulations, the bad region has 8 magnets and the average
simulation time is Topt --2.5 seconds but one of the simulation times is 4.1 seconds (=
1.65Topt). Thus, the maximum speedup for the magnet optimization simulation is,

(7T~ot+ 1.65Topt) 52
Speedupmagnet.opt - 1.65Toot) 5.25

Thus for the overall problem-solving speedup we have:

Speeduptotal -- (16 Trelauncau + 2 Trelaunch + 7Topt +1.5 5Topt) = 9.4(Trclaunch + 1.65Topt)

In summary:

2-68

Speedup source Maximum Theoretical Speedup

Bad region finding, 18.0

Bad magnet finding 5.25

Total 9.4

3.4. Measurement of Speedup

The purpose of this experiment was to have a coarse approximation of the speedup and to
have a basis to analyze the performance. This experiment was run with a single error data
set. The scaling of the times for the simulations used the scale factors; 0, 1/1000, 1/100,
1/10 and 1, relative to the actual run time of the beamline simulation when executed in
FORTRAN on a Lisp Machine. Thus, one data point represents what w- Id happen if the
simulations ran infinitely fast (0), and another data point refers to the s..,, Iti .n running in
one tenth (1/10) of the actual measured time. The reason why all of our measurements
used scale factor less than or equal to one was that we knew that the simulations ran at at
least this speed on a real machine. The simulator could probably have been made faster by
better programming, faster hardware or by the use of parallelism. There was, therefore, no
reason ever to suspect that this code would rur -lower than its measured performance.
This experiment was performed on eight different sized processor networks comprising re-
spectively, 1, 2, 4, 8, 16, 32, 64 and 128 processors.

The results from these experiments are shown in Graphs 1-5.

Simulation Scale Factor =0

101

62 -6Q
.. .

032 64 96 128
Processors

Graph 1. Speedup of the ParAble application measured with no time at
all spent in the beamline simulator.

2-69

Simulation Scale Factor =1/1000

10-

__i pedupI

8-- RS~edup

32 . 4 ...

036496 128
Processors

Graph 2. Speedup of the ParAble application measured with the time
spent in the beamline simulator being only 1/1000 of the real-world time

needed for the simulations.

Simulation Scale Factor =1/100

_______WE S~eedupI

8oa Spe~dup

. 6-

0 32 64 96 128
Processors

Graph 3. Speedup of the ParAble application measured with the time
spent in the beamline simulator being only 1/100 of the real-wvorld time

needed frr the simulations.

2-70

Simulation Scale Factor =1/10

10-

. 6-

Graph ~ ~ ~ ~ ~~~~~~ ~G 4.k SedpothPablaplcinmaSuredutphetm

Graph 4. Sp eed fted for he simulationes rdwt tetm

Simulation Scale Factor I

V G- Init Speedup
~. 4 ____ 4Total Speeup

CA i-I r - Camp Speedup

0 32 64 96 128
Processors

GraphS5. Speedup of the ParAble application measured with the time
spent in the beamnline simulator being equal to the real-world time needed for

the simulations.

3.4. 1. Interpretation

Each of the Graphs 1-5 have three curves. The curve marked "Init Speedup" is the

speedup curve resulting only from the timing of the system's initialization. As can be eas-

2-71

ily seen from all of the graphs, the initialization of the application had a certain amount of
concurrency, which was independent of the beamline simulation scale factor because, of
course, there was no need to run the beamline simulator during the application's initializa-
tion process. The initialization procedure consistently delivered a speedup of about six.
This is consistent with other results derived on the AAP, which have shown that speedup
of the order of ten is relatively easy to achieve. Not much effort was spent in making the
initialization more effectively concurrent, indeed, it was only made parallel at all because
this is the natural way to program in Poligon.

The second curve is marked "Total Speedup" This indicates the speedup resulting from the
whole of the application's execution, including initialization. We we mentioned above, the
initialization time was not deemed to be as interesting as the problem solving aspects of the
application, so this curve is shown mostly to give a feel of the effect of composing the two
different components of the application.

The second, and most significant, curve on these graphs is labeled "Comp Speedup". This
denotes the speedup delivered during the actual computation of the application. The
speedup varied from a peak of about three for the scale factor (SF)=O case to about ten in
the SF=1 case. The speedup in the latter case was almost entirely due to the data paral-
lelism inherent in the application. This can be seen most readily by examining Graph 6.

Simulation Scale Factor =1

10000:

I Comp Time
Rcv-Vote
Magnet

4 Stop

,o.__ _ _ _ ! _ _

100 7 -• "• t

032 64 96 129Processors

Graph 6. Execution times measured for different aspects of the
ParAble application with simulation scale factor = 1.

In Graph 6, we see the execution times of different components of the ParAble application
plotted against the size of the processor network used. The Y axis has a logarithmic scale
to enhance the detail. One unit on the Y axis is equivalent to 100 CARE machine simulated
microseconds. On this graph, we see the computation time, which is the same time used to
compute the computation component speedup in Graphs 1-5, and the three components of
the simulation that contribute most to it (they account for 99.5% of the time, at SF=I).
These components are, respectively, the time taken to receive enough votes to be able to
identify a bad region, the time taken to run the linear optimization process on the magnets in
the bad region and the time taken to wait for the conclusion of the optimizations and to fin-
ish up. It turns out that the speedup in the vote receiving phase was about 18. This was

2-72

simply because of the number of monitors in the whole beamline (see theoretical discus-
sion). The speedups derived in the other components were similarly a function of physical
limits imposed by the structure of the beamline, not by the problem. The aggregate maxi-
mum speedup of about ten is simply a function of the fact that part of the time is spent in a
highly parallel component, the bad region finding, and part is spent in the bad magnet
finding component, which is less able to exploit parallelism because there are typically not
many magnets in a bad region.

Thus, the speedup of the system, when not limited by the granularity of Poligon itself is
determined entirely by the physical characteristics of the beamline. If we were to run on a
larger, more complex beamline then we might reasonably expect to achieve more speedup.

Simulation Scale Factor = 0

5-

4,
4i Relaunch-Req$ Rcv-Vote

3-1 - Create-Reg ...
o 1 " "Magnet

.E -- ---- ---.

0 32 64 96 128
Processors

Graph 7. The time taken to execute certain portions of the ParAble
application for beamline simulation SF=O, plotted against the number of

processors in the network.

If we now consider the diametrically opposite case, that of SF=0, we can see also how
speedup is limited in the fine-grainEd case by the granularity of Poligon's rule execution
mechanism. In this case, we see plots for the times taken by the vote receiving part, the
magnet optimization and the stopping point as before, but in this case we also show two
other typical times, one for the time taken to make the request to do a relaunch and one for
the time taken to create a bad region. These times are entirely typical of those of other
timed components in the ParAble system. From this we can conclude that, even if we pay
no price for the beamline simulation, we still pay a price of about one millisecond for
Poligon operations, such as rule invocation. This is consistent with the predictions and
measurements made in [Nii 881 regarding the granularity of Poligon's rule invocation
mechanism. We can therefore conclude from this that it is likely to be fruitless to break up
a Poligon application into grains of less than one millisecond because the framework's
overhead will result in an overall decrease in performance. The Amdahl limit for this appli-
cation is therefore met early when the scale factor is set to zero, because there is a certain
amount of processing that must be done serially, whatever. A discussion of the implemen-
tation of Poligon and of means by which this one millisecond overhead could be substan-
tially reduced is given in [Rice 891. Note that although we present here the experimental

2-73

results from only one data set, we in fact ran ParAble on a number of data sets and consis-

tently achieved similar results.

3.4.2. Resource allocation

When we first ran the above experiment, we did not achieve the speedup reported.
Furthermore the speedup plots that we received showed significant irregularities and we
found the results not to be repeatable. We ran a number of additional experiments to de-
termine why we were getting such irregular behavior from the system. Analysis of these
experimental data revealed that the cause was Poligon's default random site allocation for
processes. The Poligon model assumes that, by default, the computations being executed
by the application are likely all to be approximately of the same duration and so, in the ab-
sence of a user specified resource allocation strategy, instantiates new blackboard nodes
and executes rules concurrently on randomly selected processors. The rationale for this is
that the "law of large numbers" will smooth things out in a large application.
Unfortunately, the ParAble application is not like this, especially when the simulation scale
factor approaches 1. In this case, the large computation grains are spawned and with
Poligon's default allocation strategy, an analysis of the probability of a "collision" between
large computational grains showed that in almost every run we would expect to have two
long operations assigned to the same processor. The result of this was to double the appar-
ent length of each of these components, thus increasing the serialization in the system and
reducing parallelism. What we needed was a different resource allocation method.

What we chose to do was to divide the sites up in two equal sized groups, one group was
dedicated to run Poligon rules that caused beamline simulations and the other group was
used for everything else (blackboard nodes and other rule activation contexts). The alloca-
tion scheme we chose was round robin for the sites dedicated to the beamline simulations
and random for the other sites.

For large beamline simulation granularity (SF=I), the following table shows that the
s eedups are very close to the theoretical ones we computed.

Speedup source Theoretical Speedup Measured Speedup
(128 processors)

Bad region finding 18.0 17.5

Bad magnet finding 5.25 5.2

Total 9.4 9.5

Another important point to note is that, as can be seen in Graph 5, measured speedup lev-
eled off above 32 processors. In other words, 32 processors is enough to reach the theo-
retical maximum speedup, when a careful resource allocation method is used.

3.5. Multiple Errors

The previous experiments were carried out with single error data set. In this experiment,
we used a double-error data set. The experiment was in all other respects, basically the
same as the previous experiment.

With multiple errors, a slight improvement in speedup could be expected for the magnet
finding sub-task because with two regions. a larger number of magnet optimizations need

2-74

to be computed and thus the speedup is potentially larger. On the other hand, having two
bad-regions means that each of the bad-monitors receives a smaller number of votes.
Thus, the bad-region finding may take longer (although the total amount of relaunching is
exactly the same as with a single error problem).

For the large granularity case (SF= 1), the following table gives the results and a compari-
son with the results from the single error experiments.

Measured Speedup Single Error Double Error
(128 processors) ._

Bad region finding 17.5 15.85

Bad magnet finding 5.2 5.75

Total 9.5 10.27

As can be seen easily from the above table, no significant change in speedup was observed.
However, this belies the fact that ParAble was solving a problem that was twice as hard
(and which the serial ABLE couldn't have solved at all). Thus, in some senses an extra
speedup of a factor of two was delivered.

4. Discussion

We learned a great deal about using Poligon during the implementation of ParAble.

4.1. What is missing

Although the following features are available in Poligon by using programming tricks, it
may be useful to integrate them in Poligon, or Poligon like architectures, for ease of use
and eventually better performance:
• Rule locking, mutual exclusion between a set of rules. Other applications work in

Poligon not described here has revealed that rule locking is sometimes necessary to
enforce consistency between fields of an object.

" Rule on/off. In some cases it appears that it would be useful to have the ability to
switch on/off a set of rules attached to a node. For instance, if some rules should
become inapplicable after some event happens, this feature could be used.
Poiigon's expectation mechanism partially allows this sort of behavior, but not as
first class behavior.

" Resource allocation. It would be useful if Poligon gave more support for control-
ling the mapping of objects and rule invocation contexts onto processors.

4.2. Programming Hints

Numerous lessons were learned about the programming process in Poligon itself. Here,
we enumerate some of the programming tips we learned while implementing the ParAble
application.
* The high level design should be done with two important ideas in mind. First, con-

trol should be reduced as much as possible because control entails synchronization,
atomicity and communication overhead. Second, the blackboard, when viewed
globally, has many transient inconsistencies, even in a well written appliation.
;e design of applications should take this fact into account.

2-75

• We found it useful to think of the nodes as objects and of the slots updates as asyn-
chronous messages. This view of a Poligon program actually corresponds to the
underlying implementation. It also avoids being misled by the usual assumptions
we make when we deal with slot updates in a uniprocessor implementation of a
frame system.
The programmer should keep in mind the non-deterministic nature of the system.

• The Poligon system tries to parallelize as much as it possibly can by default. This
characteristic implies that a lot of care should be taken to ensure data consistency
when it is necessary, though Poligon's "smart slot" mechanism is helpful with this
problem in general.

5. Conclusion

In this paper we described ParAble, an application program written to run on the Poligon
concurrent blackboard architecture. ParAble is a concurrent version of ABLE, an expert
system for the diagnosis of particle accelerator beamlines.

This project has shown that the Poligon framework can be effectively used for implement-
ing problem solving systems other than real-time signal interpretation systems, such as
Elint fNii 881. Speedup of the order of 10 could be achieved with careful resource alloca-
tion, further speedup being likely with a larger problem domain.

A number of experiments that were performed on ParAble were described and their results
enumerated. These experiments highlight the significance of rule granularity and identify
resource allocation as a crucial aspect of application design, particularly when computation
granularity is heterogeneous.

6. Bibliography

[Aiello 86] Nelleke Aiello. User-Directed Control of Parallelism: The Cage
System. Technical Report KSL-86-31, Knowledge Systems Labo-
ratory, Computer Science Department, Stanford University, April
1986.

[Delagi 86a] Bruce Delagi. CARE Users Manual. Technical Report KSL-86-36,
Knowledge Systems Laboratory, Computer Science Department,
Stanford University, 1986.

[Delagi 86b] Bruce A Delagi, Nakul P. Saraiya, Gregory T. Byrd. LAMINA:
CARE Applications Interface. Technical Report KSL-86-76,
Knowledge Systems Laboratory, Computer Science Department,
Stanford University. 1986.

[Delagi 881 Bruce A. Delagi and Nakul P. Saraiya. ELINT in LAMINA:
Application of a Concurrent Object Language. Technical Report

KSL-88-33, Heuristic Programming Project. Computer Science
Department, Stanford University, 1988.

[Engelmore 881 Robert Engelmore and Tony Morgan (eds.) Blackboard Systems.
Addison-Wesley Publishing Company Inc.. Menlo Park 1988.

2-76

[Ensor 851 J. Robert Ensor and John D. Gabbe. Transactional Blackboards.
Proceedings of the 9th International Joint Conference on Artificial
Intelligence: 340-344, 1985.

[Gabriel 841 Richard P. Gabriel, and John McCarthy. Queue-based Multi-pro-
cessing Lisp. Proceedings of the ACM Symposium on Lisp and
Functional Programming: 25-44, August, 1984

[Lesser 831 Victor R. Lesser and Daniel D. Corkill. The Distributed Vehicle
Monitoring Testbed: A Tools for the Investigation of Distributed
Problem Solving Networks. The Al Magazine, Fall: 15-33, 1983.

[Nii 791 H. Penny Nii and Nelleke Aiello. AGE: A Knowledge-based Pro-
gram for Building Knowledge-based Programs. Proceedings of the
6th International Joint Conference on Artificial Intelligence: 645-
655, 1979.

[Nii 861 H. Penny Nii. Blackboard Systems. Technical Report KSL-86-18,
Knowledge Systems Laboratory, Computer Science Department,
Stanford University. April 1986. Also in Al Magazine. vol. 7-2 and
vol. 7-3, 1986.

[Nii 881 H. Penny Nii, Nelleke Aiello and James Rice. Experiments on
Cage and Poligon: Measuring the Performance of Parallel
Blackboard Systems. Technical Report KSL-88-66, Knowledge
Systems Laboratory, Computer Science Department, Stanford
University, October 1988.

[Rice 861 James Rice. The Poligon User's Manual. Knowledge Systems
Laboratory, Computer Science Department. Stanford University.
1986.

IRice 88a! James Rice. Problems with Problem-Solving in Parallel: The
Poligon System. Technical Report KSL-88-04, Knowledge Sys-
tems Laboratory, Computer Science Department, Stanford Uni-
versity, January 1988. Also in Proceedings of Third International
Conference on Supercomputing, May 1988.

[Rice 88bi James Rice. The Advanced Architectures Project. Technical Report
KSL-88-71, Knowledge Systems Laboratory, Computer Science
Department, Stanford University, January 1988.

1Rice 891 James Rice. The Design of a High Performance. Concurrent
Problem Solving System.. .and many Lessons Learned on the Way.
Technical Report STAN-CS-89-1294 (KSL-89-37). Heuristic
Programming Project, Computer Science Department. Stanford Uni-
versity, November 1989.

,Selig 871 -2wrence J. Selig. An Expert System using Numerical Simulation
-:A Optimization to find Particle Beamline Errors. Technical Report

- -87-36, Heuristic Programming Project. Computer Science Dc-
pz:-w:a:nt. Stanford University. 1987.

2-77

Knowledge Systems Laboratory October 1986
Repoit No. KSL 16-69

An Experiment in Knowledge-based Signal
Understanding Using Parallel Architectures

by

Harold D. Brown, Eric Schoen, and Bruce A. Delagi

KNOWLEDGE SYSTEMS LABORATORY
Computer Science Department

Stanford University
Stanford, California 94305

This research was supported by DARPA Contrac: F30602-e -C-0012,
NASA Ames Contrac: NCC 2-220-SI, and Boeing Cont,-ac? "V266875.

Eric Schoen was supported by a fellowship from NL h.1dustrfes.
Bruce Delagi is currently a visiting research scientist a.

Stanford from Digital Equipment Corporation.

.8

Abstract

This report documents an experiment investigating the potential of a parallel computing

architecture to enhance the performance of a knowledge-based signal understanding system.

The experiment consisted of implementing and evaluating an application encoded in a parallel

programming extension of Lisp and executing on a simulated multiprocessor system.

The choosen application for the experiment was a knowledge-based system for interpretinra

pre-processed, passively acquired radar emissions from aircra.t. The application ,as

implemented in an experimental concurrent, asynchronous object-oriented framework. 7i,1s

framework, in turn, relied on the services provided by the underlying hardware system. 1'he

hardware system for the experiment was a simulation of various sized grids of processors with

inter-processor communication via message-passing.

The experiment investigated the effects of various high-level control strategies on the quality

of the .;'oblem solution, the speedup of the overall system performance as a function of the

number of processors in the grid, and some of the issues in implementing and debugging a

knowledge-based system on a message-passing multiprocessor system.

In this report we describ' the software and (simulated) hardware components of the experiment

and present the qualitative and quantitative experimental results.

2 -79

1. Introduction
This report documents an experiment investigating the potential of a parallel computing

architecture to enhance the performance of a knowledge-based signal understanding system.

This experiment was done within the Expert Systems on Multiprocessor Architectures Project

of Stanford University's Knowledge Systems Laboiatory.

The computational characteristics of complex knowledge-based systems are poorly understood,

especially in parall-!l computational environments. Our Architectures Project is performing a

number of experiments to try to gain some understanding of these characteristics and, in

particular, of the potential for concurrent execution of such systems. A primary goal of the

project is to develop software and hardware system architectures which exploit this concurrency

to increase the performance of knowledge-based signal understanding and information fusion

systems.

The Architectures Project is organized according to a hierarchy of computational abstraction

levels as shown in Table 1-1. Each experiment represents a narrow, vertical slice through these

levels and consists of a specific system choice for each level.

For the reported experiment, the choosen application is a knowledge-based ELINT (ELectronics

INTelligence) system for interpreting processed, passively acquired radar emissions from

aircraft. The ZLINT application is implemented in CAOS, an experimental concurrent,

asynchronous object-oriented framework built on Zetalisp [1]. The CAOS framework, in turn,

relies on th- services provided by the underlying hardware system environment. For this

experiment, the hardware system environment is a simulation of a parallel architecture, called

CARE (2]. CARE simulates a communications grid of processing sites where each site

contains a Lisp evaluator, private memory, and a communications and process scheduling

sub. 'stem. Message-passing i' the only means of inter-site communication. CARE is

2imu.lated using a general, event-based simulator, SIMPLE [3]. SIMPLE is written in Zetalisp

and executes on a Symbolics 3600 or a Texas Instruments Explorer Lisp machine. 1 Figure

1-1 illustrates the relationship between the various software components of the experiment.

The ELINT-CAOS-CARE experiment investigated both qualitative and quantitative aspects of

the performance of the overall system. The CARE arcnitecture uses dynamic, cut-through (as

1A version of the SIMPLE simulator whtch runs on a local area network of "nultiple Lisp machin-s has also b5een

implemented (4].

2-80

Table 1-1: Computational levels.

IAev Research questions

Application Wher is the potential concurrncy in knowledge-based
signal understanding tasks?

How does the problem solver recognize and express
application dependent concurrency?

Problem-sulving What ae suitable framework constructs for organizing
framework and encoding concurrent signal understanding tasks?

What ame appropriate granulaxities for knowledge,
knowledge application and data to maximize concurrency?

What types of srategies for control of knowledge application
ve needed to assure acceptable solution quality without
intoducing excivc eexecution seria;ization?

Knowledge What kinds of knowledge representation mechanisms are
representation suitable for exploiting concurrency in inference and search?
and management

System How can general-purpose symbolic programming languages
programming be extended to support concurrency and help manage the
languag resource allocation a reclamation asks aon a disutibuted

memory multiprocessor?

Hardware What multiprocessor architectures best suppor the
system organization and cooncumncy in knowledge-bued
architecture signal understanding applications?

opposed to store and forward) routing through the communication grid for interprocessor

message transmission. Message transmission time is indeterminate. As a consequence, without

the imposition of significant message sequencing protocols (and the corresponding serialization

of execution), operations are intrinsicilly non-deterministic in the sense that two executions of

the same program oi the same input data can result in different problem solutions depending

on different message arrival orders. For many knowledge-based systems, in particular, the

ELINT system, there is no such thing as the correct problem solution but only satisficing (i.e.,

acceptable) problem solutions. One primary objective of the experiment was to investigate the

trade-offs between the imposition of various synchronizations (and the resulting loss of

concurrency) and the quality of the problem solution. A second primary objective was the

more usual investigation of the speedup of the overall system performance as a function of the

number of processing sites in the CARE grid. A third objective was to gain some

understanding of the difficulties in implementing and debugging a reasonably complex

knowledge-based system on a multiple address space, message-passing multiprocessor system

such as that represented by CARE.

2-81

ELINT Interpretation of radar
emissions from aircraft

CAOS Concurrent, asynchronous
I object system

Zetallsp+ Zetalisp plus locality and
communication constructs

CARE Grid-based, message-passing
multiprocessor specification

SIMPLE Hardware specification system

and event-driven simulator

Zetalisp

Figure 1-1: The software component hierarchy of the experiment.

In the following sections we describe, in decreasing hierarchical order, each component of the

experimenL Section 2 describes the ELINT application. Sectinn 3 gives an overview the

CAOS programming framework and its approach to concurrency. ELINT's implementation in

CAOS is described in Section 4, and Section 5 describes the salient features of the CARE

architecture and its simulation environment. In Section 6 we present the results of the

ELINT-CAOS-CARE experiment.

2. The ELINT Application
The driving application for our vertical slice exoeriment is a prototype, knowledge-based

ELINT system for interpreting processed, passively acquired, real-time radar emissions fncr

aircraft. This ELINT system is one component of a multi-sensor information fusion system.

TRICERO [5] developed several years ago. ELINT was originally implemented in AGE L'61

an expert system development tool based on the blackboard paradigm [7, 8]. ELINT is

relatively simple, but non-trivial, knowledge-based system. Much of is knowiedge

implemented procedurally. However, if ELINT had been implemented as a production rt;e

2-82

system, we estimate that its knowledge base would consist of about one thousand rules. 2

ELINT's basic analysis technique is to correlate a large number of passively observed radar

emissions into the smaller number of individual radar emitters producing those emissions. It

then correlates the emitters into the yet smaller number of clusters of co-located emitters.

ELINT maintains the track and activity histories of the clusters

L,. ELINTs Inputs

The inputs to the ELINT system are multiple, time-ordered streams of processed observations

from multiple collection sites. Each observation is presented in a record format. The fields

of an input observation record are shown in Table 2-1.

Table 2-1: Elint observation record.

Field Contents

Observation-Time An inter d -tag indcatng when

the radar emission was sampled

Observation-Site The symbolic name of the collecton
site acquirng the observatoi

Site.Location The positonal coordinates of the
colection site at the trne of observation

Emiuer-ldentifier An integer idcntifing de radar emitter
producing the erussion

Line-of-Bearing The line of bearing from the collection
site to the observed emimn

Emitter-Type A symbolic radar emitter type designator

Emitter-Mode The operadonl mode of the emitter at
the ane of observation

Signal-Quality A symbolic indicator of the signal
quality of the observed emission

The Site-Location field is necessary since the collection sites can be mobile. The

Emitter-Identifier is a unique integer identifier assigned by the collection sites to each distinct

observed emitter. This identifier is used by the collection sites to indicate multiple

observations of the same emitter both over time and from different collection sites. In

particular, two concurrent observations of the same emitter from different collection sites

2In general. there are currently no adequate metrics for measuring the complexity of knowledge-based systems. One

crude measure used for rule-based systems is the number of rules. Although the numoer of rules does somewhat

if .'icate the amount of knowledge., it does not give much indication of the complexity of the reasoning.

2-83

should have the same identifier. Both the intra-site and inter-site determination of whether

two observed emissions are from the same emitter are based on the electronic characteristics of

the emissions and on signature analysis. This determination may be in error, and the ELINT

system must cope with such identifier errors. The Emitter-Type of a radar emitter indicates

the functional class of the emitter, for example, Air-intercept (AI), Navigation (NAV) or

Identification-Friend-Or-Foe (IFF), and, if known, the equipment type class of the emitter.

Certain classes of emitter types can have multiple operational modes. The Emitter-Mode, if

applicable, is emitter-type specific. For example, an Al radar can be either in Search Mode or

Lock-on Mode depending on whether it is scanning for a target or whether it is automatically

tracking a specific target. The Signal-Quality of an observation is a subjective, qualitative

measure of the strength of the observed emission, for example, strong, normal, or fading.

All of the input information required for the ELINT system is obtainable from the raw radar

signal data using current, passive radar signal collection and processing techniques. These

techniques are largely automated and employ special-purpose hardware.

2.2. ELINrs Outputs

The primary outputs of the ELINT system are periodic status reports about the tracks and

activities of clusters of emitters in the area under surveillance. A cluster is defined as a

collection of emitters which are co-located over time. That is, two emitters are in the same

cluster if for some given minimum number of consecutive time units (three in the current

ELINT system) their corresponding time-tagged locational fixes are within a distance

determined by the line-of-bearing resolution of the observation site equipment (one degree

resolution in the current ELINT system). Conceptually, two emitters are in the same cluster if

if they are on the same aircraft or are on two tactically associated and co-located (over time)

aircraft, for example, a lead aircraft and his wingman.3

The periodic output reports contain, for each cluster, information about the cluster's current

3An aircraft can be operating w,-h some (or all) of its radars off. "i zneral. it is impossible to distinguish

between, for example, two co-located aircraft, one with an Al radar on and one with a NAV radar on. and one arcraft

with both its Al and NAV radars on. tence. our EUN- system does its assessments based on emuiter clucters rather

than aircraft

2-84

heading, position and track; an estimate of the number and types of aircraft in the cluster;4 an

indication of the cluster's current activity; and an indication if the cluster represents an

immediate threat, for example, if it is within a certain proximity of a friendly aircraft, if its

At radar is in Lock-on Mode, or if its missile guidance radar is on.

2.3. ELINTs Processing Flow

The basic reasoning strategy used by the ELINT application is data-driven accumulation of

evidence for the existence, the tracks, and the activities of emitters and clusters based on input

observations and infered information. The primary processing flow is a kind of pipeline

where the pipeline stages are observations, emitters and clusters.

Upon receipt of a new observation, the system first determines if the observed emission

matches (i.e., has as a source) a known emitter (i.e., an emitter on ELINT's "situation board").

This match is based on the Emitter-Identifier assigner by the collection site to the observation,

and it is verified using the emitter's characteristics and its track and heading histories.

Depending on the outcome of the match, one of the frilowing actions is taken:

1. If the observation does not match a known emitter, then a new emitter which is the

source of the observed emission is hypothesized on the situation board and

initialized from the information contained in the observation.

2. If the observation does match an emitter on the situation board and the match is

verified, ther, --. information contained in the observation is used to update the

attributes of the matched emitter, including increasing the confidence level of the

hypothesis that the emitter represents. Moreover, if the new observation is the

second (or greater) observation of the emitter for the current time and it is from a

different collection site than the previous observation(s) at that time, then a

locational fix for the emitter is computed using the observed lines of bearing. If,

in addition, the Emitter-Type and/or Emitter-Mode indicate a near-term threat to a

friendly aircraft then a threat report is output.

4Knowledge relating an aircraft type, for example F-15 or MIG-3, with the number and types of radars it carries is

available. Using this knowledge and the identified emitter types in a cluster, it is possible to roughly estimate bounds

on the number and types of aircraft in the cluster.

2-85

3. If the observation matches a known emitter but fails the match verification test.

then an error in the Emitter-Identifier is indicated and the situation board is

modified so as to undo any incorrect inferences based on the error. Also, an

ide- ifier error report is output to the collection sites.

On a periodic basis, the status of each emitter on the situation board is evaluated and various

actions are taken:

1. If there have been no recent observations of the emitter, then the confidence level

of the emitter is reduced. If. as a consequence of this reduction, that level falls

below a given no-confidence threshold, then the emitter and all of the consequences

infered from it (including cluster association) are deleted from the situation board.

2. If the confidence level is above a given full-confidence threshold and the emitter is

not currently associated with a known cluster, then an attempt is made to match the

emitter with a cluster on the situation board. This match is based on the track ar

heading histories and the type attributes of the emitter and the cluster. If a match

is made, then the emitter is associated with the matched cluster and the emitter's

current attributes are used to update the attributes of the cluster. If the match fails,

then a new cluster is hypothesized on the situation board and the emitter is

associated with it.

3. In the remaining case of a recently observed emitter with an associated cluster, the

current attributes of the emitter arc used to update the attributes of its associated

cluster.

Also on a periodic basis, the state of each hypothesized cluster on the s;tuatior bcard is

examined. If all of the emitters associated with the cl Lster have been eld :, . e . .- :

is deleted from the situation board. Otherwise:

1. The cluster is checked to see if it should be split into two (or more) clusters based

on the currrent locations of its associated emitters. If so, new clusters with .he

appropriate associated emitters are hypothesized on the situation board.

2. The track history, heading history, speed history and activity hutory of ,>. ci.stdr

are updated; and, if any new emitters have been recently assoc;ated with he cluster.

an estimate of the types and numbcrs of aircraf- comprtstng the cluster :s derveu.

2-86

3. A current status report for the cluster is output.

The ELINT processing flow lends itself naturally to concurrent execution. The parallel

implementation of ELINT using CAOS is described in Section 4. The CAOS system itself is

described in the following section.

3. The CAOS Programming Framework
CAOS is a framework which supports the encoding and the execution of multiprocessor expert
systems. It represents an early attempt to bridge the gap between the application specification

and the multiprocessor system programming primitives. The design of CAOS is predicated on

the belief that many highly parallel architectures (e.g., hundreds of processors) will emphasize

limited communication between processor-memory pairs rather than uniformly shared memory.
We expect that such an architecture will favor relatively coarse-grained problem decomposition

with little synchronization between processors. CAOS is intended for use in real-time, data

interpretation applications such as continuous speech recognition and radar and sonar signal

interpretation (see, for example, [9, 10]). CAOS is based on an object-oriented programming

paradigm, and it draws many of its ideas from the Flavors system [1] and the Actors paradigm

[11].

A CAOS application consists of a collection of communicating, active agents, each responding

to a number of application-dependent, predeclared messages. An agent retains long-term local

state. Each agent is a multi-process entity, that is, an arbitrary number of processes may be

active at any one time in a single agent.5 Conceptually, an agent can be thought of as virtual.

multiprocess processor and memory pair. It responds to externally sent messages, and these

message responses can alter the state of its local memory and can include the sending of

messages to other agents.

CAOS is designed to express parallelism at a relatively coarse grain-size. For example, in the

ELINT experiment, the message handlers (i.e., the methods) which implement the message

responses are written as Lisp procedures, each averaging about one hundred lines of primitive
Lisp code. CAOS supports no mechanism for finer-pained concurrency such as within the

execution of agent processes, but neither does it rule it out. We could easily imagine message

5The active procenes in an agent am not scheduled preemptivly. Ins4ad, an executing agent process either runs to

completion or until it is "blocked' awaiting some remote service (see Section 5).

2-87

methods being written, for example, in QLisp [123. a concurrent dialect of CommonLisp which

supports finer-grained concurrency.

3.1. CAOS Approach to Concurrency

A CAOS application is structured to achieve high degrees of concurrency in the application

execution in two principal manners: pipelining and replication. Pipelining is most appropriate

for representing the flow of information between levels of abstraction in an interpretation

system. Replication provides means by which the interpretation system can cope with

arbitrarily high data rates.

3.1.1. Pipelining

Pipelining is a common means of parallelizing tasks through a decomposition into a linear

sequence of concurrently operating stages. Each stage is assigned to a separate processing unit

which receives the output from the previous stage and provides input to the next stage.

Optimally, when the pipeline reaches a steady-state, each of the processors is busy performing

its assigned stage of the overall task.

CAOS promotes the use of pipelines to partition an interpretation task into a sequence of

interpretation stages where each stage of the interpretation is performed by a separate agent

As data enters one agent in the pipeline, it is processed, and the results are sent to te next

agent. The data input to each successive stage represents a higher level o' abstraction.

Sequential decomposition of a large task is frequently very natural. Structures as disparate as

manufacturing assembly lines and the arithmetic processors of high-speed computing systems

are frequently based on this paradigm.

Pipelining provides a mechanism whereby concurrency is obtained without duplication of

mechanism (i.e.. machinery, processing hardware, knowledge. etc.). In an optimal pipeline of n

processing elements, the throughput of the pipeline is n times the throughput of a single

processing element in the pipeline.

Unfortunately, it is often the case that a task cannot be decomposed into a simple linear

sequence of subtasks. Some stge of the sequence may depend not only on the results of its

immediate predecessor, but also on the results of more distant predecessors, or worse, sL l-e

distant successor (e.g., in feedback loops). An equally disadvanwLageous decomposition is one in

which some of the processing stages take substantially more tCme than others. The effect of

either of these conditions is to cause the pipeline to be used less efficiendy. Both these

2-88

conditions may cause some processing stages to be busier than others. In the worst case, some

stages may be so busy that other stages receive almost no work at all. As a result, the

n-element pipeline achieves less than an n-times increase in throughput. We discuss a partial

remedy for this situation below.

3.1.. Replication

Concurrency gained through replication is ideally orthogonal to concurrency gained through

pipelining. Any size processing structure, from an individual processing element to an entire

pipeline, is a candidate for replication. Consider a task which must be performed on the

average in time t, and a processing structure which is able to perform the task in time T.

where T > t. If this task were actually a single stage in a larger pipeline, this stage would then

be a bottleneck in the throughput of the pipeline. However, if the single processing structure

which performed the task were replaced by Tit copies of the same processing structure, the

effective time to perform the task would approach r. as required. Replication is more costly

than pipelining. but it does avoid some of the problems associated with developing a pipelined

decomposition of a task.

Our work leads us to believe that such replicated computing structures are feasible, but not

without drawbacks. Just as performance gains in pipelines are impacted by inter-stage

dependencies, performance gains in replicated structures are impacted by inter-structure

dependencies.

Consider a system composed of a number of copies of a single pipeline. Further, assume the

actions of a particular stage in the pipeline affects each copy of itself in the other pipelines.

In an expert system, for example, a number of independent pieces of evidence may cause the

system to draw the same conclusion. The system designer may require that when a conclusion

is arrived at independently by different means, some measure of confidence in the conclusion

is increased accordingly. If the inference mechanism which produces these conclusions is

realized as concurrently operating copies of a single inference engine, the individual inference

engines will have to communicate between themselves to avoid producing multiple copies of

the same conclusion rather than a composite conclusion. Any consistency requirement between

copies of a processing structure decreases the throughput of the entire system, since a portion

of the system's work is dedicated to inter-system communication. Examples of this situation

are shown in Section 4 where we describe the CAOS agent types for the ELINT application.

2-89

3.2. Programming in CAOS

CAOS is basically a package of operators on top of Lisp. These operators are partitioned into

three major classes -- those which declare agent classes, those which initialize agents, and those

which support communication between agents. We now describe briefly the CAOS operators

for each of these classes. A more complete description of these operators is given in [13].

3.2.1. Declaration of Agents

Agents classes, like most object-oriented classes, are declared within an inheritance .ecwork.

Each agent class inherits the attributes of its (multiple) parents. The root CAOS agent c'.ss.

vanilla-agent, contains the minimal attributes required of a functional CAOS agent. Ai l:her

CAOS agents have the vanilla-agent as a parent, either directly or indirectly. Another

CAOS-declared agent class, process-agenda-agent, is a specialization of vanilla-agent, a.'d

includes a priority mechanism for scheduling the execution of messages. The vanilla-agent

schedules its messages in a FIFO manner only.

Application agent classes are declared by augmenting the following primary attributes of

CAOS-declared or other ancestral agent classes:

Local-Variables: An instance agent's local variables store its private state. The agent's message

handlers may refer freely to only those variables declared loc.lly within the agent. Each local

variable may be declared with an initial value.

Messages-Methods: The only messages to which an agent may respond are those declared in the

agent's class declaration. Associated with each declared message name is the name of tle

message's method (i.e., the message's message handler). In CAOS, a method name must refer to

a defined Lisp procedure. This declaration simplifies .he ask of a resource allocator which

must load application code onto each CARE site.

Clocks-Methods: An agent may periodicaliy invoke actions based on internal clock "tkks.' -

example, the periodic update of emitter agents and the periodic outpuz of c.uster sta:;s -. rEs

are invoked by clock ticks. A clock is defined by its tick interval. Wl-enever ad. :n::--n.;i

agent clock ticks, the set of methods associated with that clock are scheduled for exec-Uiea

Critical-Methods: This attribute declares certain sets of methods as being mutually "'critical

7 90

regions" for their owning agents.6 Each such set of critical methods has an associated lock.

Before an owning agent agent executes a critical method, this lock is checked., If it is

unlocked,-the agent locks it and executes the method. Upon completion of the method, the

agent unlocks the lock. If the lock is locked, the method is queued in a FIFO queue awaiting

the unlocking of the iock.

There are a number of additional basic agent attributes. However, most of these are used only

interr:ally by CAOS.

3.2.2. Initialization of agents

An initial CAOS configuration is specified by a two-component initialization form. The first

component of the form creates the static agent instances. Some agent instances are created

durin3 system initialization and exist throughout a CAOS run. Such agent instances are called

static agents as opposed to dynamic agents which are created (and possibly deleted) during

program execution. For programmer convenience, we allow code in agent message handlers and

default values of local-variables to reference such static agents by name. Before an agent

instance begins running, each symbolic reference to the declared static agents is resolved by the

CAOS runtimes.

The second component of the form is a list of expressions to be evaluated sequentially when

CAOS's static agent instantiation phase is complete. Each expression is intended to send a
message to one of the static agents declared in the first part of the form. These messages serve

to initialize the application. For example, in the ELINT application the initialization messages

open log files and start the processing of ELINT observations.

Agent instances may also be. created dynamically during execution. The creation operator

accepts an agent class name and a location specification. 7 The remote-address of the

newly-created agent instance is returned. The remote-address of an agent includes the CARE

site coordinates where the agent resides and a pointer to the agent in the address space of that

6A design goal for ELINT in CAOS was to avoid the use of critical methods, and our ELINT implementation does

not use any. The CAOS initialization routines, however, do use such methods.

7Currently, agents may be created only "at" or "near" specified CARE sites. CAOS makes no attempt at dynamic

load balancing.

2-91

site. A dynamically created agent may not be referenced symbolically, however, its

remote-address may be exchanged freely.

3.2.3. Communications Between Agents

Agents communicate with each other by exchanging messages. CAOS does not guarantee when

messages reach their destinations. Due to excessive message traffic or processing element

failure, messages may be delayed indefinitely during routing. It is the responsibility of the

application program to detect and recover from such delayed messages.

Two classes of messages are defined: those which return values, called value-desired messages,

and those which do not, called side-effect messages. The value-desired messages are made to

return their values to a special cell called a future which represents a "promise" for an

eventual value.8 Processes attempting to access the value of a future are blocked until that

future has had its value set. Futures are first-class data types, and they may be manipulated by

non-strict Lisp operators (e.g., list) even if they have not yet received a value. It is possible

for the value of a CAOS future to be set more than once, and it is possible for there to be

multiple procesvs awaiting a future's value to be set.

The CARE primitive post-packet, which sends a packet from one process to another, is

employed in CAOS to produce three basic kinds of message sending operations:

post: The post operator sends a side-effect message to an agent. Th,! sending process supplies a

remote-address to the target agent (or its name in the case of a static agent), the message's

routing priority, and the message's name and arguments. The sender continues executing while

the message is delivered to the target agent.

post-future: The post-future operator sends a value-desired message to the target agent. The

sending process supplies the same parameters as for post, and it is immediately returned a local

pointer to the future which will eventually receive a value from the target agent. As for post,

the sender continues executing while the message is being delivered and executed remotely. A

process may later check the state of the future with the future-satisfied? operator or access the

future's value with the value-future operator. This latter operator wilt block the process (i.e..

suspend its execution and "swap it out") if the future has not yet received a .alue. When the

8 Futures are also used in Multtlisp [14]. The HEP Supercomputer [15) implemented a simple %ersion of futures as

a process synchronizaton mechanism.

2-92

future finally receives a value, the blocked process is rescheduled for resumed execution.

post-value The post-value operator is similar to the post-future operator except that the

sending process is immediately blocked until the target agent has returned a value. This

operator is defined in terms of post-future and value-future, and it is provided for

programming convenience.

It is possible to detect delay of value-desired messages by attaching a timeout to the associated

future. The operators post-clocked-future and post-clocked-value are similar to their untimed

counterparts but allow the caller to specify a timeout-period and timeout-action to be

performed if the future is not set within the timeout-period. Typical timeout-actions include

setting the future's value to a default value or resending the original message using the repost

operator.

There also exist versions of the basic posting operators which allow the same message to be

sent to multiple agents simultaneously. These versions exploit the multicast facilities of CARE

(see Section S)Y

Multipost sends a side-effect message to a list of agents while multipost-future and

multipos-value send value-desired messages to lists of agents. In the latter two cases, the

associated future is actually a list of futures, and the future is not considered satisfied until all

the target agents have responded. The value of such a message is an association-list where each

entry in the list is composed of an agent'! remote-address or name and the returned message

value from that agent. There exist clocked versions of these operators (called, naturally.

multlpost-clocked-future and multipost-clocked-value) to aid in detecting delayed multicast

messages.

3.3. The Runtime Structure of CAOS

CAOS is structured around three principal levels: site, agent, and process. Two of these levels,

site and process, reflect the organization of CARE. The remaining agent level is an artifact of

CAOS. We describe here only briefly the runtime structure of CAOS. This structure is

described in greater detail in [13].

9 Neither CAOS nor CARE currently support a "predicated multicast" mode wherein messages would be sent to all

agents satisfying a particular predicate. Messags can only be niulticast to a fully-specified list of agents. Receiving

agents can, of course, apply arbitrary predicates to the message in order to determine their consequent action.

2-93

The implementation of CAOS described in this report is written in Zetalisp (1] and the

primitive CARE operators using Zetalisp's object-orientad programming tool, Flavors~l].

Each CARE site contains a CAOS Site-Manager. A Site-Manager is realized as a Flavors

instance. its instance variables store site-global information needed by a!l agents located on

the site. In addition, each Site-Manager includes CARE-level processes which perform the

functions of creating new agents on its site and translating static agent symbolic names into

agent addresses.

Each CAOS agent is also realized as a Flavors instanct A CAOS agent is a multiprocess

entity. Most of the processes are created in the coursc of problem-solving activity. These

processes are refered to as user processes. At runtime, however, th!re are always two special

processes associated with each CAOS agent -- the agent input monitor process and the agent

scheduler process. The agent input monitor process watches the CARE stream by which the

agent is known to other agents. It handles request messages and responses from value-desired

messages from these agents. CAOS user processes are created in response to request messages

from other agents or clocked methods. The agent scheduler process collaborates with the

CARE site's operator processor in the scheduling of these user processes (see Section 5).

4. ELINT's Implementation in CAOS
We describe now the agent types and their organization for the ELINT application as

implemented in the CAOS framework. This implementation illustrates some of the benefits

and some of the drawbacks of the framework. As discussed in S';on 2, ELINT is an expert

system whose domain is the interpretation of passively-observed radar emissions, ELINT is

meant to operate in real time. Emitters appear and disappear during the lifetime of an ELINT

run. The primary flow of information in ELINT as implemented in CAOS is through a

pipeline with replicated stages. Each stage in the pipeline is an agent. The basic ELINT %ent

pipeline is illustrated in Figure 4-1

Raede Hade cis

Figure 4-1: The basic ELINT a ;nt processing pipeline.

2-94

4.1. ELINT Agent Types

The ELINT agent types described here are those used by the CT control strategy version of

ELINT in CAOS (see Section 6).

Observation-Reader Agent

Observation-reader agents are an artifact of the simulated environment in which our ELINT
implementation runs. Their purpose is to feed radar observations into the system.

Observation-readers re driven off system clocks. At each clock "tick" (one ELINT time unit),
they supply all .' .,vations for the associated time interval to the proper observation-hand!er

agents. This behavior is similar to that of radar collection sites in an actual ELINT setting.

Observation-Handler Agent

The observation-handler agents accept radar observations from associated radar collection sites.
Of course, in the simulated environment the observations actually come from
observation-reader agents. There may be several observation-handlers associated with each
collection site. The collection site chooses to which of its observation-handlers to pass an
observation based on some scheduling criteria, for example, round-robin.

The contents of an ELINT observation was described in Section 2. In particular, each
observation contains an identifier number assigned by the collection site to distinguish the
source of the observation from other known sources. This source identifier is usually, but not
always, correct. When an observation-handler receives an observation, it checks the
observation's identifier to see if it already knows about the emitter which is the observation's
source. If it does, it passes the observation to the appropriate emitter agent which represents

the observation's source. If the observation-handler does not know about the emitter, it asks
an emitter-manager agent to create a new emitter agent and then passes the observation to that

new agent.

Emitter-Manager Agent

There may be many emitter-manager agents in the system. An emitter-manager's task is to
respond to requests from observation-handlers to create new emitter agents with associated

source identifier numbers. If there is no such emitter agent in existence when the request is

received, the manager will create one and return its remote-address to the requesting

2-95

observation-handler agent. If there is such an emiter agert in existence when the request is

received, the manager will simply return its remote-address to the requestor. This situation

arises when one observation-handler requests an emitter that anothar observation-handler had

previously requested. Emitter-managers must also handle the case of "almost concurrent"

requests for the same emitter. This case occurs when ' request is received for an emitter agent

which is currently being created by another process on another CARE site in response to a

slightly earlier request.

The reason for the emitter-manager's existenca is to reduce the amount of inter-pipeline

dependency with respect to the creation of emitters. When ELINT creates an emitter it is

similar to a typical expert system drawing a conclusion based on some evidence. ELINT must

create its emitters in such a way that the individual observation-handlers do not each end up

creating copies of the "same" emitter, that is, creating maltiple emitter agents with the same

associated source identifier (see Section 3.1.2). Consider the following strategies that the

observation-handler agents could use to create new emitter agents:

1. The handlers could create the emitter agents themselves inmediately as needed.

Since the collection sites may pass observations with the same source identifier to

any observation-handler, it is possible for multiple observation-handlers to each

create its own copy of the same emitter. This strategy is not acceptable.

2. The handlers could create the emitter agents themselves, but inform the other

handlers that they have done this. This scheme breaks down when two handlers try

simultaneously (or almost simultaneously) to create the same emitter.

3. The handlers could rely on a single emitter-manager agent to create all emitters.

While this approach is safe from a consistency standpoint, it is likely to be

ikmpractical as the single emitter-manager could become a processing bottleneck.

4. The 'andlcrs coold send requests to one of many emitter-managers chosen by some

arbitrary method. l[his idea is nearly correct, but does not rule out the possibility

of two emitter-.vanagers each receiving creation requests for the same emitter.

5. The handlers couiJ send requests lo one of many emitter-managers chosen through

some algorith"i -,;:i: ,s ;-varant with respect to the source identifiers.

2-96

This last strategy is the one used used in our implementation of ELINT. The algorithm for

chomsing which emitter-manager to use is based on a many-tc-one mapping of source

identifiers to emitter-managers. 10

Emitter Agent

Emitter agents hold the state and history of the observation sources they represent. As each

new observation is received by an emitter agent, it is added to a list of new observations. On

a periodic basis,. this list of new observations is scanned for interesting information. In

particular, after enough observations are received, the emitter may be able to determine the

heading. speed, and location of the source it represents. The first time it is able to determine

this information, it asks a cluster-manager agent to either match the emitter to an existing

cluste agent (as described in section 2.3) or create a new cluster agent to hold the single

emitter. Subsequently, it sends an update message to the cluster agent to which it is associated

indicating its current heading. speed, and location.

Emitters maintain a qualitative confidence level of their own existence (possible, probable,

positive and was-positive). If new observations are received often enough, the emitter will

increase its confidence level until it reaches positive. If an observation is not received by an

emitter in the expected time interval, the emitter lowers its confidence by one step. If the

confidence falls below possible, the emitter deletes itself, informing its manager and any

cluster to which it is associated of its deletion.

Calster-Manager Agent

The cluster-manager agents play much the same role in the creation of cluster agents as the

emittei-manager agents play in the creation of emitter agents. However, it is not possible to

compute an invariant to be used for a many-to-one mapping between emitters and cluster

manager . If ELINT were to employ multiple :luster-managtrs. any strategy for which of the

many managers an emitter agent chooses to request a cluster maawh could still result in the

creation of multiple instances of the "same" cluster (i.e., multiple cluster agents representing

the same physical cluster of emitters). Thus, we have chosen to implement ELINT using only

a single cluster-manager. Fortunately, new cluster creation is a relatively rare event, and the

10 The algorithm simply computes the source identifier modulo the number of emitter-manaers and miaps that

nun' o a pr.ticular manager.

2-97

single cluster-manager has never been observed to be a Processing bottleneck.

As described above, requests from emitters to associate themselves with cluster, are specified as

match requests over the extant clusters. Emitters are matched to clusters on the basis of their

location, speed, and heading histories. However, the cluster-manager does not itself perform

this matching operation. Although it knows about the existence of each cluster it has created.

it does not know about the current state of those clusters. Thus, the cluster-manager asks all

of its clusters to (concurrently) perform a match.

If none of the clusters responds with a positive match, the cluster-manager creates a new

cluster for the emitter- If one cluster responds positively, the emitter is added to the cluster

and it is so informed of this fact. If more than one cluster responds positively, this usually

indicates that there is not yet sufficient resolution of the emitter's history to uniquely associate

it with a cluster. In this case the emitter to cluster matching operation is tried again after

more observations of the emitter have been processed.

Cluster Agent

The radar emissions from a cluster of emitters often indicate the activities of the aircraft

represented by that cluster. For example, emissions from a missile guidance radar indicate that

an air-to-air attack is imminent. Each cluster agent periodically applies heuristics about types

of radar signals to try to determine the current activities of its represented aircraft, and, in

particular, if these activities represent a threat to friendly aircraft. This activity information.

the aircraft type information, and the merged track parameters of the emitters associated with

each cluster are the primary outputs of the ELINT system. Also, each cluster periodically

checks to see if all constituent emitters have been deleted. If so. it deletes itself.

Time-Manager Agent

Many of the knowledge-based actions taken by an ELINT agent make use of the agent's

last-observed time, that is. the time stamp of the most recent observation associated directly or

indirectly with the agent. For example, if an emitter agent determines that it has received io

new associated observations for several data time intervals (i.e.. that it is "out-of-date"), :t -will

consider itself as no longer exisiting and it will delete itself and all of its relational links from

ELINT's situation board 11

U!Thi$ action reflecus the expectation knowledge that if an emitter A-ichin the area of observation .s observed at :ime

t. then it is expected that it will be observed at time t+1.

2-98

In an asynchronous message passing system such as CARE. it is difficult for an agent to

determine whether it is out-of-date because it has not been observed recently or because

messages to it which would result in an update of its last-observed time are delayed due to

overall system load or local load imbalances. One solution to this problem would be for each

observation-handler agent to send an "end-of-observation-time-interval" message to each of its

known emitter agents whenever it observes the crossing of an observation time interval

boundary.
12

This solution was rejected for the reported implementation of ELINT because of a perceived

excessive message overhead. 13 Instead. our ELINT experiment uses a time-manager agenL
Whenever an observation-handler agent observes a new inpoit observation time stamp, it reports

this new time to the time-manager via a message. The time-manager maintains a conservative.

global current observation time which is the minimum of the the reporte time stamps.
Whenever any agent considers taking a drastic, non-reversible action which is based on its
being out-of-date (eg., deleting itself), it requests a confirmation from the time-manager that

its (the requesting agent's) last-observed time is sufficiently older than the time-manager's

global current observation time. The requesting agent does not perform its considered action

until it receives the confirmation. If in the interim, the requestin; age. receives any messages
which result in an update of its last-observed time, the confirmation is ignored.

Reporter Agent

Instances of the reporter agent class are used to asynchronously output various ELINT reports

to displays and/or -iles, for example, threat reports and periodic siLuation board reports. In

addition. insta, -es of a specialization of the reporter class, tebul-trace-reporter, are used

during applicatioit program debugging to asynchronously output debugging traces in a manner

that minimally impacts system timing dependencies.

12Since each input obstrvation stream is in observation-time sequential oraer. each observeaion-handi r evertually

knows when such a time boandary is crossed.

13Thiq overhead may be more xcrceived thai actual. A more recent ;mple-rentation of ELTINT uses such

'end-of -observation- tme-interval" -'m-suga. Inittal reSult. seem to indicate that the associated cost is not excessive

(see [16]).

4.L. EUNT Agest Organizatift

The ELINT agents are basically organized as a pipeline with replicated stages where each stage

is an agent. Inter-pipeline dependencies and dependencies between replicated stages are

managed by emitter-manager and cluster-manager agents. The amount of replication (i.e., the

number of agents) at each pipeline stage is a function of that stage. For some stages, the

number of replicated agents at that stage is fixed during system initialization. For example.

the numbers of observation-handler agents, emitter-manager agents, and cluster-manager agents

are pre-determined based on the number of collection sites and their output data rates. The

numbers of emitter stages and cluster stages vary during the course of execution since the

corresponding emitter agents and cluster agents are created and deleted as the radar emitters

and collections of radar emitters which they represent appear and disappear over time.

The overall organization of the ELINT agents is illustrated in Figure 4-2

4--d Managrs smalle

Figure 4-2: The overall ELINT agent communication organization.

5. An Overview of CARE
The CARE architectural specification and its simulation environment provide a parameterized

and instrumented multiprocessor simulation testbed designed to aid research in alternati e

parallel architectures. The testbed executes within SIMPLE. a hierarchical, event-driven

simulator (3].

A CARE architecture is a grid of tens to hundreds of processing sites interconnected via a

2-loO

dedicated communications network. The network uses dynamic, buffered, cut-through routing.

and it supports multicast inter-site message transmission. The ELINT experiment, for example.

was performed on various square CARE grids of hexagonally connected sites, that is, each site,

excluding those at the edges of the grid, is connected to six of its eight nearest neighbors.

As shown in Figure 5-1, each CARE site consists of an evaluator, a generl-purpose

processor-memory pair. an operator, a dedicated communications and process scheduling
processor which shares memory with the evaluator. and network interfaces -- net-inputs and
net-outputs -- that accomplish pipelined message transmission, flow control, deadlock
avoidance., and routing. Each net-input at a site may establish a connection with a net-output
at any site, and all such connections at a site may be simultaneously active.

EV__ AIIT OR [

Figure 5-1: A hexagonally connected CARE grid.

Application-level computations take place in the evaluator. The operator pe-forms two duties.

As a communications processor, it is responsible for initiating and rectiving messages. As a
scheduling processor, it queues application-level processes for execution in the evaluator.
Message routing is performed by the net-input and net-output network interfaces.

In our simulation of CARE, :be evaluator is treated as a 'black box" Lisp processor. None of
its internal operation is sirr'h,,a:. The Lisp machine hosting the simulation serves as the
evaluator in each processitt, sute. The operator, however, is functionally simulated, and the

network interfaces are siin ,, :td instrumented in great detail.

Ei

CARE allows a number of parameters of the processor grid to be adjusted. Among !hese

parameters are: the speed of the evaluator, the speed of the communications network, the

network routing algorithm, and the speeds of the process creating and switching mechanisms.

By a!ftring these parameters, a single processor grid specification can be made to simulate a

wide variety of actual multiprocessor architectures. For example, we can experiment with the

optimal level-of-granularity of problem decomposition by varying the speed of both

process-switching and communications. Alternative network topologies can be studied by using

SIMPLE's graphic interfaces and composition operators to configure CARE components into

any topology that can be wired.

The CARE simulation environment provides detailed displays of such information as evaluator.

operator, and communication network utilization, and process scheduling latencies. This

instrumentation package informs developers of CARE applications of how efficiently their

systems make use of the simulated hardware.

A more detailed description of CARE is given in [16]. and the technolo-y considerations

underlying the CARE architecture are discussed in Appendix 1.

6. Results and Conclusions
The CARE architectural simulation testbed and the CAOS system we have described have been

fully implemented, and they are in use by several groups wihir our Architectures Project-

CAOS-CARE executes on the Symbolics 3600 family of machines as well as on the Texas

Instruments Explorer Lisp machine. ELINT. as described in Sections 2 and 4. has also been

fully implemented, and we have analyzed its performance on various size CARE grids.

6.1. Eruhuating CAOS

CAOS is a rather special-purpose environment, and it should be evaluated with respect to the

programming of concurrent, real-time signal interpretation systems. In this section, we explore

CAOSis suitability along the dimensions of expressiveness, efficiency, and scalability.

6.1.1. Expressiveness

When we ask that a language e suitably expressive, we ask that its primitives be a good match

to the concepts the programmer is trying to encode. The programmer should ,oE need €,

resort to low-leel "hackery- to implement operations which ought to be part of the :anguage

We believe we have succeeding in meeting this goal f)r CAOS (although to date, only CAOS'i

designers have written CAOS applications). Programming in CAOS is essentially programming

2-102

in Lisp using objects but with added features for declaring. initializing, and controlling

concurrent, real-time signal interpretation applications.

6.LL2 Efficietcy

CAOS has a very complicated architecture- The lifetime of a message involves numerous

proces-ing states and scheduler interventions. Much of this complexity derives from the desire

to support alternate scheduling policies within an agefiL The cost of this comp'exity Is

approximately one order of magnitude in processing latency. For the common settings of

simulation parameters, CARE messages are exchanged in about 2 to 3 millisecoads, while

CAOS message require about 30 milliseconds. It is tis cost which forces us to decompose

applications coarsely. since more fine-grained decompositions would inevitably require more

mesae traffic.

We conclud that CAOS does not make efficient use of the uniderlying CARE architecture.

This conclusion has lead to an evolutiort of both CAGS and CARE which is described briefly

in Section 6.3 and in detail in (16].

6-1A Soklbiliy

A system which scales well is one whose performance increases commersarately with its size.

Scalability is a comroon metric by which multiprocessor hardware architecture are Judged- For

example, does a 100-processor realizaton of a particlar avchitecture perform ter times better

than a IG-processor realization of the same architecture Does ~t perform only five times

bettur only just as well. or does it perform even worse? In hardware systems. scalability is

typically limited by various forms of contention in memnorieS, busses etc. The 100-processor

system might be no faster than the 10- processor syste because zlt interprocessor

communicationis are routed through an element which is only fast enough to support ten

Processors.

We ask the same question of a CAOS application. Does the throughput of ELINT. for

example, increase as we make maore processors availsibli to it? This question is critical for

CAOS-based. real-time interpretation systems. Our only means of coping with arbitrarily high

data rates is by increawiqg the numnber of processors.

We believe CAOS scales well with respect to the number of available processrs The potential

limiting factors to its scaing are increased software contention. such as the inter-pipeine

bottlenecks described in Section 3. and increased hardware contention. such as everloaded

Processors and/or communication channels. Software contention can be minimized by the

design of the application. Communications contention can be minimized by executing CAOS

on - of an appropriate hardware architecture such as that afforded by CARE. CAOS

applications tend to be .. ! 'y decomposed. They are bounded by computation, rather than

communication, and communications loading was not a problem in our ELINT-CAOS-CARE

experiment.

Unfortunately, processor loading i.mains an issue. A configuration with poor load balancing

in which some CARE sites are busy while others are idle does not scale well. Increased

throughput is limited by contention for processing resources on overloaded sites while resources

on unloaded sites go unused. The problem of automatic load balancing is not addressed by

CAOS as agents are simply assigned to processing sites on a round-robin basis with no attempt

to keep potentially busy agents apart. We currently have no solution to the problem of

processor load balancing beyond that of carefully "hand crafting" a site allocation strategy for

each application and then "tuning" that strategy via succesive refinement.

62. Evaluating ELINT Under CAOS

The input data set used for most of our ELINT-CAOS runs was based on a scenario involving

16 aircraft mounting a total of 88 radar emitters with between 4 and 45 !mitters active and

observed during any one data time interval. The scenario takes place in a 60 by 80 mile area

over 36 time units, and it involves 1040 separate emitter observations.

Our experience with ELINT indicates that the primary determiner of throughput and solution

quality is the strategy used in making individual agents cooperate in producing the desired

interpretation. Of eccndary importance is the degree to which processing load is evenly

balanced over the processor grid. We now discuss the impact of these factors on ELINT's

performance.

The following three "control" strategies were used in our experiment:

1. NC: This "no control" strategy represents limited inter-agent control. Agents

initiate actions independently. Whenever an agent wants to perform an action, it

does so as soon as processing resources are available. For example, whenever an

observation-handler agent needs a new emitter agent, it simply creates it with no

attempt to coordinate this creation with other observation-handlers. As a result,

multiple, non-communicating copies of an emitter may be created, and each copy

receives a only portion of the input data it requires. The NC strategy was expected

to produce qualitatively poor results, and it was primarilly intended only as a

2-104

baseline against which to compare more realistic control strategies. What was

surprising was that the strategy also produced quantitatively poor results (see below).

2. CC: In this strategy, agents cooperate in the creation of new agents via manager

agents as described in. Section 4. The manager agents assure that only one copy of

an agent is created, irrespective of the number of simultaneous creation requests.

All requestors are returned a reference to the single new agent. Originally, we

believed the CC (for "creation control") strategy would be sufficient for ELINT to

produce satisficing high-level interpretations. Our experiment results showed that

: :s was not always the case (see below).

3. CT: The CIr ("creation and time control") strategy was designed to additonally

manage the skewed views of real-world time which develop in agent pipelines. For

example, this stratery prevents an emitter agent from deleting itself when it has not

received a new oL'stvaion in a while even though some observation-handler agent

has sent the emitter an observation which it has yet to receive. The agents

corresponding to the CT strategy are those described in Section 4.

Table 6-1 illustrates the qualitative effects of the vaxious control strategies and grid sizes. The

table presents the six major performance attributes by which the quality of an ELINT run is

measured. Since the input data for the ELINT experiment were generated from known

scenarios, it was possible to compare the results of an ELINT run with "ground truth."

Table 6-1: ELINT Solution Quality Versus Control Strategies and Grid Sizes.

Qualitative Control strategy/grid size
performance
attribute

NCI16 CC16 CC/36 CT14 CT/16 CT/36

False alarms 1% 0 0 0 0 0

Reincarnation 49% 42 2 0 0 0

Confidences 19% 20 90 89 93 95

Fixes 48% 42 99 100 100 100

Threats 65% 63 81 87 87 90

Fusion 0% 0 77 85 88 89

T.,e major qualitative performance attributes are:

False Alarms: This attribute is the percentage of emitter agents that ELINT should not have

2-105

hypothesized as existing with respect to the total number of emitter agents hypothesized.

ELINT was not severely impacted by false alarms in any of the control configurations in

which it was run as the knowledge used for hypothesizing new emitters was quite conservative.

That is, the knowlege was such that it prefered missing a true, but low confidence, emitter to

creating a false alarm emitter.

Reincarnation: This attribute is the percentage of recreated emitter agents, that is, emitters

which had previously)xisted but had erroneously deleted themselves due to lack of recent

observations, with respect to the total number of emitters created. Large numbers of

reincarnated emitters indicate some portion of ELINT is unable to keep up with the data 7ste.

This can be caused by the data rate being too high globally so that all emitters are overloaded

or by the data rate being too high locally due to poor load balancing so that some subset of

the emitters are overloaded.

The CT control strategy was designed to prevent reincarnations. Hence, none occurred when

Cr was employed on any size grid. When the CC strategy was used, only the 36 site grid was

large enough for ELINT to sufficently 'eep up with the input data rate so that emitters were

not erroneously deleted due to overloat

Confidence Level: This attribute is the p- ige of correctly deduced confidence levels for the

existence of an emitter with respect to th1Z L. A number of times such ',onfidence levels were

determined.

For each hypothesized emitter, ELINT maintains a dynamic confidence level for the existence

of the emitter based on accumulating evidence (see Section 4.1). The correct calculation of

confidence levels depends heavily on the system being able to cope with the incoming data

rate. One way to improve confidence levels was to use a large processor grid. The other was

to employ the CT control strategy.

Fixes: This attribute is the percentage of correctly-calculated positional fixes of emitters with

respect to the total number of times fixes could have been determined from the ground truth

data.

A fix can be computed whenever an emitter has seen at least two observations from differert

collection sites in the same data time interval. If, for example, an emitter is undergoing

reincarnation, it will not accumulate enough data to regularly compute fixes. Thus, the

approaches which minimized reincarnation tended to maximi'e the correct calculation of fix

2-106

information.

Threats: As described in Sections 2 and 4, certain emitter and cluster events represent

immediate threats. This attribute is the percentage of recognized threats with respect to the

total number of threat events based on the ground truth data.

Fusion: This attribute is the percentage of correct clustering of emitter agents to cluster agents.

The correct computation of fusion appeared to be related, in part, to the correct computation

of confidence levels. The fusion process is also the most knowledge-intensive computation in

ELINT, and our imperfect results indicate the extent to which ELINT's knowledge is

incomplete.

The overall goal of the control strategy experiments was to see if it was possible to determine

strategies where the quality of the output results were relatively insensitive to grid size and load

balance but still achived significant concurrency.

We interpret from Table 6-1 that the control strategy has the greatest impact on the quality of

results. The CT strategy produced high-quality results irrespective of the number of processors

used. The CC strategy, which is much more sensitive to processing delays, performed nearly as

well only on the 36 site grid. We believe the added complexity of the CT strategy, while never

detrimental, is primarily beneficial when the interpretation system might be overloaded by high

data rates or poor load balancing.

Table 6-2 gives the simulated execution times for the ELINT runs used to derive the data in

Table 6-1, and Table 6-3 gives the total CAOS message counts for these runs.

Table 6-2: Simulated ELINT execution times for various control strategies
and grid sizes.

Grid size
Control
strategy

4 16 36

NC > 1.19 sec.

CC 10.87 5.12

CT 11.80 8.10 4.17

Tables 6-2 and 6-3 clearly show that the processing cost of added control is far outweighed by

the benefits in its use. Far less message traffic is generated, and the overall simulated time is

reduced. Note that for the runs whose execution times are shown in Table 6-2, the input data

2-107

Table 6-3: CAOS message counts for ELINT executions with various contrcl
strategies and grid sizes.

Grid size
Control
strategy 1trtv4 16 36

NC >16118 msg.

CC 7375 4823

CT 4516 4703 4616

rate was .1 seconds per ELINT time unit. Since the input data set used for these runs spanned

36 time units, the last observation was fed into the system at 3.6 (simulated) seconds. Hence,

this is the minimum possible simulated execution time for these runs.

Table 6-4 and Figure 6-1 show the quantitative effect of processor grid size when the CT

control strategy is employed. These results were produced with the input data rate set ten

times higher (.01 seconds per ELINT time unit) than that used to produce Table 6-2. The

minimum possible simulated execution time for the runs used to produce Table 6-4 is 0.36

seconds.

Table 6-4: Simulated ELINT execution time versus grid size for production
runs using CT control strategy.

Grid size Excution time

1 9.476 sm.

4 3.237

9 1.517

16 .761

25 .541

36 .557

As shown in Figure 6-1, the speedup alc!ieved by increasing the processor grid size is nearly

linear in the 1 to 25 proctoor site range. However, the 3-6 %its grid was slightly slower than

2-108

3 20 tTheoretical limit

0.

12212.44

.6.24

4 9 16 25 36

Number of CARE processing sites

Figure 6-1: The relative speedup of ELINT executions on various size CARE grids.

the 25 site grid.14

In this last case, there was not sufficient data per ELINT time interval to warrant the

additional processors. That is, there was not enough concurrency to exploit 36 processors.

This can be seen from Table 6-5 which gives timing results for larger data sets with more

emitters and observations during each time interval and, hence, more potential for concurrency.

Table 6-5: Simulated ELINT execution times and speedup for larger data sets.

Number of I.site grid 36-site grid Speedup of
Observations executio time execution time 36 over 1

1040 9.476 see. .557 sec. 17.0

2080 25.10 .948 26-5

4160 55.87 2259 24.7

As shown in this table, for an input data set representing twice as many emitters and

14Because of the intrinsic non-determinism of a CARE architecture, we obsetved variations in the solution qualities

and the run times between different runs of the same input data set on the same size CARE grids. For such runs, the

variations in solution qualities never exceeded a fraction of a percent. However, the varitions in run times where as

much as five percent. This accounts for the slightly longer execution time on 36 versus 25 processors.

2-109

observations than the basic data set, the 36 site grid achived a speedup factor of 26.5 (as

opposed to a speedup of 17.0 for the basic data set) over a single processor. However, for a

data set four times larger than the basic data set, the speedup factor was only 24.8. This was

because this larger, and hence more concurrent, data set saturated the 36 site grid. That is, the

2080 observation data set already provided enough concurrency to fully exploit .he 36 site grid.

6.3. Some- Open Questions

CAOS has been i suitable framework in which to construct concurrent signal interpretation

systems, and we expect many of its concepts to be useful in our future computing architectures

Of principal concern to us now is increasing the efficiency with which the underlying CA.PE

architecture is .sed. ',i addition, our experience suggests a number of questions to be exp!ored

in future research:

" What is the appropriate level of granularity at which to decnmpose problems for

CARE-like architractres?

* What is the most efficient means to synchronize the actions of concurrent problem

solvers when necessary?

* How can flexible scheduling policies be implemented without significant loss of

efticiency? What is the impact on probtam solving if alternate scheduling policies

are not provided?

* Are there efficienm mechanisms for dynamically balancing processor loads?

We have started to investigate these questions in t.e context of a new CARE environment.

One of the primary difference between the original environment and the new environment is

that the process is no onqer tle basic unit of computation. While the new CARE system s.ilh

supports the use of processes, it emphasizes the use of -- 'exts which are computations "ui

less state than those of proces..

When a context is forced to suspend to await a value from a remote service, it is aborted. and

restarted from scratch later when the value is available. This behavior encourages more

fine-grained decomposition of problems written in a functional style where individual mcthods

are small and consist of a binding pha.-A followed by an evaluation phase.

In addition, CARE now supports arbitrary priortizatior of r,,essages deliveted to streams. As

2-110

a result, it is no longer necessary to include in CAOS a complex and expensive scheduling

strategy. Early indications are that the new CARE environment with a slightly modified CAOS

environment performs around two otders of magnitude faster than the configuration described

in this paper. The evolution of CARE wid CAOS based on the results of our ELINT-CAOS

-CARE experiment is described in greater detail in [16].

Acknowledgements

Our thanks to Russell Nakano, Sayuri Nishimura, -% ., A - Nakul Saraiya who helped

implement and maintain the CARE environment. AL wish to thank the staff of the

Symbolic Systems Resources Group of the Knowledge Sy ,ems Laboratory for their excellent

support of our computing environment. We express spc, graditude to Edward Feigenbaum.

His continued leadership and support of the Kno,. A-.e Systems Laboratory and the

Architectures Project made it possible us to do the reported research.

2-1 11

I. Technology Considerations Underlying the CARE Architecture
The CARE simulation testbed can be used to simulate shared memory as well as message

passing multiprocessor architectures. For example, it has been configured to simulate a single

address space, shared global memory architecture where the processors (and their local cache

memories) are connected te the shared memory's controllers via a switching network. However,

the intended focus of the CARE testbed is on message passing, multiprocessor architectures

where each processor has significant local memory. This focus is based on technology

considerations -- primarily communication versus processing costs.

The base for development of general purpose multiprocessor systems, as for computer systems

generally, is given by the design constraints and opportunities established by evolving

semiconductor design and manufacturing processes. The VLSI design medium brings a new

perspective on cost -- switches are cheap while wires are expensive. Communication costs

dominate those associated with logic. Communication is currently the resource in shortest

supply, and it will become more of a constraint rather than less as semiconductor lithographies

decreasa.

The consequence of relatively expensive communication is that performance is enhanced if the

design establishes that whenever a lot of information has to move in a short time, it does not

have to move far. Significant locality of high bandwidth links is a design goal. Amcng the

highest bandwidth links in a computer system are those connecting the processor and memory.

Thus, close coupling of processors with local i "nory is preferred.

To reduce demand on the communications resource to supportable levels, local memory sizes

for multiprocessors can be expected to increase to the 100K byte level and beyond, and block

transfers between backing store and such several hundred kilobyte local memories will be used

to make the most efficient use of both memory structures and communications facilities.

Moreover, the furnctionallity of memory controlers will expand to include, for example,

managemert of request oueues, the dispatching of results, and execution of synchronization

primitives, and thus, the distinctions between a memory controller and a small, simple

processor will become blurred.

The proportion of area for a simple, high performance processor to the total area of a -::'e

with, for example. 256K bytes of local storage can be re.so,.ably estimated at around 15%.

From (i) this estimate of the incremental cost of adding a processor to a block of memory. (ni)

the significant size of the total local storage in the system, (iii) the blurring of distinctions

2-112

between fast, simple processors and memory controllers of increasing complexity, and (iv) the

tendency towards block tranfers between local memory and backing store, it follows that the

level of the storage hierarchy now labeled as "random access memory" is likely to be subsumed

by a combination of large local memories and fast, block access backing stores in

multiprocessor systems.

The performance of the available communication resource merits special attention in the

design of multiprocessor systems. For example, dynamic routing which selects available

inter-site links as needed is useful ii balancing load, and thus it allows more of the

communication resource of the system to)e exploited throughout a computation. Cut-though

routing which makes a routing decision on the fly as a packet is received reduces buffer

requirements in the system and minimizes latency experienced in network transit. Flow control

via signalling transmission delays back to tht; source based on local blockage information

together with single "word" buffering and transtaission validation at each network input and

output port allows the source to complete a transmission in a time that does not depend on the

size of the network. Point to point multicast which sends (approximately) the same packet to

multiple targets using common resources to the largest degree possible can significantly enhance

overall communication performance. A communication resource with these features provides a

multiprocessor system with "virtual busses" that are established precisely as and when they are

needed.

These technology considerations have led us to focus our attention on the class of

multiprocessor hardware system architectures exemplified by CARE.

2-113

References

1. Weinreb, D. and Moon, D. (1981) Lisp machine manual, 4th ed. Artificial

Intelligence Laboratory. Massachusetts Institute of Technology.

2. Delagi, B., et al. (1986) CARE user's manual. Technical Report, Knowledge Systems

Laboratory, Stanford University.

3. Saraiya, N. (1986) Simple user's manual. Technical Report, Knowledge Systems

Laboratory, Stanford University.

4. Saraiya, N. (1986) AIDE: A distributed environment for design and simulation.

Technical Report, Knowledge Systems Laboratory, Stanford University.

5. Williams, M.. Brown. H. and Barnes, T. (1984) TRICERO design description.

Technical Report ESL-NS539, EST, Inc.

6. Aieilo, N., Bock, C., Nii, H. P. and White, W. (1981) Joy of AGEing. Technical

Report, Heuristic Programming Project, Stanford University.

7. Nii, H. P. (1986) Blackboard systems: The blackboard model of problem solving and

the evolution of blackboard architectures. Al Magazine, vol. 7, no. 2. pages 38-53.

8. Nii, H. P. (1986) Blackboard systems part two: Blackboard application systems. Al

Magazine, vol. 7, no. 3, pages 82-106.

9. Erman, L, Hayes-Roth. F., Lesser, V. and Reddy. D. R., (1980) The HEARSAY-I

speech understanding system: Integrating knowledge to resolve uncertainty. ACM

Computing Surveys. vol. 12, pages 213-253.

10. Nii, H. P., Feigenbaum, E., Anton, J. and Rockmore. A. (1982) Signal-to-symbol

transformation: HASP/SlAP case study. Al Magazine. vol. 3, no. 3. pages 23-35.

11. Lieberman, H. (1981) A preview of Acti. Artifici-i Intelligence Laboratory Memo

625., Massachusetts Institute of Technology.

2-114

12. Gabriel, R. and McCarthy, J. (1984) Queue-based multiprocessing Lisp. In

Conference Record of the 1984 ACM Symposium on Lisp and Functional

Programming. Austin, Texas.

13. Schoen.E. (1986) The CAOS system. Technical Report, Knowledge Systems

Laboratory, Stanford University.

14. Halstead. R. H., Jr. (1984) MultiLisp: Lisp on a multiprocessor. In Conference

Record of the 1984 ACM Symposium on Lisp and Functional Programming. Austin.

Texas.

15. Denelcor. Inc. (1981) Heterogeneous element processor. Principles of operation.

Boulder, Colorado.

16. Delagi, B., et al. (1986) Lamina: Streams and objects for concurrency. Technical

Report, Knowledge Systems Laboratory, Stanford University.

2-115

Knowledge Systems Laboratory January 1987

Report No. KSL-87-02

A Point-to-Point Multicast
Communications Protocol

Gregory T. Byrdt
Department of Electrical Engineering

Stanford Universitv
Stanford, CA 94305

Russell Nakano~

Department of Computer Science
Stanford U--niversity
Stanford. CA 94305

lituce A. Delagi

Worksvstems Engineering Group
Digital Equipment Corporation

Maynard. MIA 01754

Thi workc wra support.-d D' DARPA Cotraca F'70.602-.S.C-190:2. SAIA .4 .4 ;

XCC -*-22Y1-S!. and L~i

'tG. Byrd -. -pportedG,:a'~
iy rh'! EE D!p*#.

2-116

Abstract

Many network topologies have been proposed for connecting a large num-
betr of processor-menory pais in a high-performance multiprocessor system In
terms of parqfmance, however. the communications protocol decisions may be
as crucial as topology This paper describes a protocol to support point-to-point
interprccemor communxcatons with mukicast. Dynamc. cut-through routing
with local Low control is used to provide a hith-throutisput. low-latency com-
mueicatocs path between proc-rs. In addition. mi :.c:ast transmissions are
available, in which copes 4 a packet are sent to m,..-e destinatons using
common -ft rces as much as be. Spec:ai pack- -rmmnators and selec-
tive bufferin; are ntroduc-e to avo-d deadlock du.:c -u-irtcasU. A simulated
implementation of :he proto- .v also described.

2-117

1 Introduction

Many network topologies have been proposed for connecting a large number of
processor-memory pairs in a high-performance multiprocessor system [1]. These
topologies are often evaluated in terms of the average number of hops traversed
by a packet, for example. However, the network performance may depend as
much on its communication protocol as on its physical topology, For example,
suppose the average number of hops in a network is M and the average packet
length is N. In a store-and-forward network, the transmission time of a packet
would be proportional to M x N. If cut-through switching is used, however,
the transmission time would be proportional to M + N, a significant difference
for relatively large values of M or N. An appropriate communications protocol,
then, is crucial if the full benefits of a topology are to be realized.

The protocol described in this paper is designed to fully utilize network
resources. Dynamic, cut-through routing with local flow control is used to pro-
vide a high-throughput, low-latency communications path between processors.
In addition, a multicast facility is provided, in which copies of a packet are sent
to multiple destinations, using common resources as much as possible.

Dynamic routing means that the communications channel to be used is cho-
sen at transmission time, based on what channels are available. The alternative,
static routing, would prescribe a specific channel for every destination-if that
channel were not available, the transmission would be blocked. Dynamic rout-
ing, by adapting to current channel usage, attempts to balance the network
load. It is especially useful when the communications traffic is unpredictable or
variable over time [2]. Balancing the load allows more of the communications
resources of the system to be well used throughout a computation.

Cut-through routing [3] means that a routing decision is made on the fly, as a
packet is received, rather than first buffering the entire packet and then deciding
what to do with it.' This reduces buffering requirements in the system, since the
packet does not need to be stored at intermediate points in the transmission -

Kernami and Kleinrock (51 demonstrate that the cut-through approach outper-
forms both circuit switching and message switching (store-and-forward) when
the communication paths are short, network utilization is relatively high, and
messages are fairly small.

Flow control, in general, is any mechanism which attempts to regulate the
flow of information from a sender to match the rate at which the receiver can
accept it [%1. In this protocol, a transmission may be blocked and resumed in
the event of ietwork congestion. If an output channel becomes blocked,, the
sender stops sending data and halts the flow of data from upstream. When the
channel becomes unblocked, the transmission is continued from where it was

I A relate-I concept is staged circut switching, described in [4)
2Cut-t!trough switclung as described in (31 requires that the packet be completely buffered

if the output channel is blocked. In this protocol. no further data wiU be received from
downstream until the channel becomes available Thus, packet buff-ing is not required

2-118

halted. The flow control mechanism is local, because actions are taken based on
the state of the downstream component rather than global information about
the entire network.

Multicast transmissions in a point-to-point network allow a packet to be
sent to multiple destinations, using common resources as much as possible. The
packet is replicated as needed, and subsets of the original target list are assigned
to the copies. Thus, "virtual busses" are available precisely as and when they
are needed. Selective buffering and special packet terminators allow potential
deadlock conditions in multicasts to be detected and avoided.

The network components which define the protocol are introduced in Sec-
tion 2, and the protocol itself is described in Sections 3 and 4. Finally, Section 5
describes an implementation of the protocol in the CARE simulation system.

2 Components

This section defines the network components used by the protocol. The protocol
is defined by the behavior of these components and the values that are passed
among them. Of course, these components do not necessarily correspond to
distinct physical entities in a machine which implements this protocol-they are
merely a useful means of specifying the functional behavior of such a machine.

The sate component corresponds to a processor-memory pair in the target
machine. In particular, a site contains in operator. an evaluator, a router,
some local storage, and some network iro-erface components, which are called
net-inputs and net-outputs (see Figure 1).

The evaluator is the part of the site which executes application code. The
evaluator can request network activity, but otherwise .,a,, no role in the network
behavior of the system, so very little will be said abou, it it, this paper.

The operator is responsible for handling system-level activity. %:vquding com-
munication. In the target machine, it would create packets to be se. over the
network and accept transmissions destined for its associated processor. The
operatcr and evaluator communicate through shared local memory. The details
of this communication will not be addressed in this paper.

The site components which interface directly to the network are called net-
inputs and net-outputs. On each site, there is a net-input/net-output pair con-
nected to the operator, for local packet origination and delivery, as well as a
pair for every communication channel to the network.3 We will refer to the pair
connected to the operator as the "local" net-input and net-output.

The net-input is responsible for accepting a packet, making connections (us-
ing the router) to one or more net-outputs, and sending it on its way. The
net-output is concerned with delivering the packet to a particular location, ei-
ther the local operator or the next site on the transmission path. Note that,

'The exact number of net.inputs/net.output pairs required by a site depends on tht net-
work topolog'.

2-119

rTo

ro ,

Nor*** Rout

Figure 1: Components of a CARE sate.

because of cut-through routing, net-inputs and net-outputs are only required to
have enough storage for one word of a packet. rather than the entire pa'ket.

The router connects all the net-inputs on a site to all the net-outputs. When
it receives a packet from a net-input, it determines the destination (or destina-
tions) and makes the connection to the appropriate net-output (or net-outputs).
Also, flow control information from the net-outputs are relayed by the router to
the appropriate net-input.

A pair of buffers, called fifo-buffer, queue packets between the operator and
local nt-input and net-ouut. The upstream fifo-buffer queues packets from
the network to the operUtor: the downstream queues packets from the operator
to the network.

2-120

3 Pratocol Overview

1.1 Packets
Figure 2 --hows the -. 4anization of a packet. The first part a racket is devoted
!,o the target intres. La-h entry contains a target address, a pointer to data
withirt the packet, and flag5 indicating the last target in the list.

Following the target addresses are zero or more words of data and a one-
word packet terminator. There are -h, distinct packet terminators, as shown
in Table A, which are used by the operator to determine the status of the
packet.

4

Target Entry
Target Entry,

Target Entry n

Data

Packet "Le.minator

Figure 2: Organization of a packet

Terminator .f caning
:end-0f.packet Normal packet termination.
:abort-packet Packet is to be discarded by oper;.or _
:local-end-of-packet Treat as :end-of-packet. except ignore

all packet targets other than th,: local site.

Table A: Packet terminators.

3.2 Packet Transmission

The transm ssion path of a packet is shown in Figure 3 First, an evaluator
requests a ,acket transmission. The operator thf.n sends the packet (through
a buffer) to the local net-input. For the momeat, assume that there is only
one target Vfor the packet. (This ,s called a uncast transmission) The router
then decides which net-output should receive tae pack., bd.c' on the tar.
get address and the availability of net-outputs, sets up a connection betwe;:
the local net-input and the selected net-output, and oc,-ins the transfer of the

'As described in Subsection 4 3.

2-121

Interconnection Network

Net- Net- e-Nt
Input ('ut Inpuf otput

RoirRouter

=oc a Local Loa
Net. Net.Ne.eL

Ou~I t ut put Output___
7 s e al ownstrea pstreamn ownstrea

jF fo - Fifo- Ff io
Bufter Buffer fe Butter

VI Oerator. V4jOperatorI
e e II
M M
0 0
r 1r

y Evaluator y Evaluator
site-i1 Site-2

Figure 3: Network component interu.-nnections. Packets travel in the direction
marked by arrows. Flow control information 'flows in the opposite direction.

2-122

packet. Each non-local net-output is physically connected to a net-input on a

(logically) neighboring site. When available, this net-input accepts the packet.

and its router sends the data to the local net-output, if the target has been

reached, or to another net-ontput, if not. This continues until the target has
been reached, where the local net-output delivers the packet to the operator

(through a fifo-buffer). The operator can then perform whatever operation is
specified by the packet, such as storing the value in memory or queueing srme
operation for the evaluator, for example.

If the packet has more than one target, the router may split it-that is, it
may send (eseptially) the same packet to several net-outputs. This is called
a Y, .iicast ran. mission. Each transmitted packet contains a distinct subset
of the targel j g the original packet. The copying operation is done during
transmto.. .j, one word at a time, as opposed to buffering the entire packet and
making copies. If ae branch of tlhe multicast is blocked, the net-input sends
isd characters down the other branches until valid data may be sent down all
tht vaths. The pad charat.ers are thrown away when received by a fifo-buffer.

3.3 Flow Control

Flow control information, in the form of status signals, flows in the direction
opposite to packet transnmission. There are four distinct status signals, as shown
in Table B. The status sign&'. are used to indicate to the upstream component
whether the packet or packet te-i.nator can safely be transmitted.

A 'free signal means that the componest is not ,:urrently involved in a
transmission and is ready to receive data. An 'open s$nal is used when the
component is involved in a transmission and i ,eady to _'-ceve the next word of
the packet. If the transmission becomes blocked foc s*z1ie reason, . 'wait signal
is sent upstream to temporarily halt the flow of data. Finally, the 'abort-
request signal indicates that a potential deadlock condition ;,as been detected
and the transmission may be aborted. Details about how these s,gnals are
generated and interpreted will be presented in Section 4.

Status .Mfeaning
'free Available to receive packet.
'open Packet header has been received; available

to receive more data.
a-ait Busy or network is blocked; do not send

_ more data.
'ab~ort-request Potential deadlrcic detecteao.

*Only a fio-buffer may originate the 'abort-request signal.

Table B" Flow-control signals.

2-123

Component Odd Phase Even Phase

Latch status from
downstream and Open status latch to

Net-Input conditionally open data allow status information
latch to allow data to to flow upstream.

flow downstream.

Latch status from
Open status latch to downstream and

Net-Output allow status information conditionally open data
to flow upstream. latch to allow data to

flow downstream.

Table C: Communication cycle phases.

A communicaiion cycle consists of two major phases3 (see Table C). During
one phase, a component latches the status signal from downstream. Based
on that signal, it may open its data !dtch to allow data from upstream to
flow downstream. Otherwise, it holds the previously latched data. During the
other phase, the component opens its status latch to allow status information
(perhaps modified by the component) to flow upstream. The cycles of adjacent
network components (e.g., net-inputs and net-outputs) are arranged so that one
component is latching the status information while the downstream component
is determining the status for the next cycle. Thus there cannot be a race between
the latching of data and the status signal which controls it.

3.4 Deadlock Avoidance

The existence of packet multicasts introduces the possib:Lty of deadlock. A
packet traveling through the network acquires he use of network resources
(e.g., net-inputs and net-outputs) and simultaneously excludes the use of those
resources by other packets. Without special attention paid to the possibility of
deadlocks, it is possible that resources are consumed to ptrtorm ,he multicast,
out completion of the multicast is not possible because the resources acquired
are insufficient.

If only unicast transmissions were allbwed, this kind of deadlock would not
occur. Assuming that a packet cannot be infinitely long, a blocked unicast
packet will eventually either acquire the network connection that it needs or
be (temporarily) stored at the local site (freeing ":p any upstream resources for'

.Any necessary signal serzahzation wouldi occur within a major phase.

'-124

Ste-2

Figure 4: Example of deadlock in a multicast.

this packet). In other words, any resource that is acquired will eventually be
released.

Figure 4 illustrates an example of how multicast deadlock can arise. Sup-
pose we have two multicast transmissions, call them A and 3. with common
destinations, sate-i and site-2. Suppose that one of the packets from multicast
A has already gained access to the local net-output on site-1. A packet from
multicast 8 has similarly gained access to the local net-output on site-2. For
multicast A to continue, it needs to gain access to the local net-output of site. 2:6

for 8 to complete, it needs to gain access to the local net-output on sIte-I Also.
neither of the multicasts can release the resources it has already required until
the transmission is completed. Since each multicast has acquired a resource
that the other needs, a deadlock results.

In order to recover from such a situation, the system must.

" Detect a potential deadlock condition, such as the situation described
above;

" Back out of the unsafe condition (by aborting one or more transmissions.
L0-.-reb" releasing some set cf resources); and

OThe transn.a ,. .-. ot continue because the net-input cannot s;e..[any words until
all branches of trte multicast are ready to receive it. Since the branrh waiting for the local
net-output of site-2 is blocked, none of the branches may proceed.

2-125

* Retransmit the aborted packets later, when the network is (hopefully) less
congested.

Whenever a packet is split for multicast, the protocol requires that a copy of
the original packet (with a complete target list) be sent to the local net-output.
This packet will then be stored in a fifo-buffer. so that it may be retransmitted
in the case that the current multicast must be aborted due to deadlock.

The packet terminator has two roles in deadlock avoidance. First, a fifo-
buffer can detect a potential deadlock if the packet terminator has not been
received in a "reasonable" amount of time.7 Second, the packet terminator in-
dicates to all operators which received the packet what should be done with
it. For example, a multicast is aborted by sending the :abort-packet termi-
nator downstream-all operators which receive a packet with this terminator
will ignore the packet. Also, the operator which receives the copy of the original
packet can tell whether it needs to be retransmitted by looking at its terminator.
More details will be presented in the next section.

These actions are sufficient to prevent persistent deadlock during multicasts.
However, since there is finite storage in the system, a scenario can be constructed
in which all the storage becomes committed and no packets can be delivered.
The protocol does not prevent this type of resource exhaustion. The assumption
is made that the designed capacity of the system is sufficient for its applications.

4 The Protocol

This section provides a detailed description of the behavior of each of the net-
work components. First, however, we present the details of the deadlock avoid-
ance mechanisms, so that the behavior of individual components can be under-
stood in the context of an overall transmission.

4.1 Deadlock Avoidance Mechanisms

The protocol mechanisms which allow deadlocks to be detected and avoided are
as follows:

I. If a packet has multiple targets. before a router can split the packet for
multicast, the local net-output must be available. This is to insure that a
connection to the fifo-buffer is possible, so that the packet may be stored
for possible retransmission.

(a) The local net-output is sent a copy of the packet which contains a
complete target list (rather than a subset). This assures that the
packet may be retransmitted to all of its targets if the multicast is
aborted.

'See Subsection 4 1.

2-126

(b) If the local net-output is unavailable, then the packet may be sent.
but only to a single target. The intent is that a packet sent in this
fashion will either visit each target site individually, or will eventually
reach a site with an available local net-output and be multicast to
the remaining sites on the packet target list.

2. Upon receiving the front end of a packet. the fifo-buffer starts a timeout
procedure.5 If the timeout occurs before the packet terminator is received.
the fifo-buffer asserts the 'abort-request signal upstream on the flow
control line.

(a) When a net-input currently engaged in a multicast receives an
.abort-request (from a downstream fifo-buffer) before it sends the
packet terminator, the net-input goes into abort mode.

(b) Net-inputs which are not involved in a multicast ignore the 'abort-
request signal; net-outputs merely pass an 'abort-request up-
stream.

3. In abort mode, the net-input performs several actions:

(a) All connected non-local net-outputs are sent the :abort-packet ter-
minator, and they are disconnected from the net-input. This signals
any downstream operator to ignore the packett when it is received.
At this point, only the connection to the local net-output is active.

(b) The 'open flow control signal is sent upstream to unblock the packet
transmission.

(c) When the packet terminator arrives at the net-input, the packet ter-
minator that is received is passed on to the local net-output. The
:abort-packet terminator causes the local operator to discard the
packet. The :end-of-packet terminator will result in retransmission.
if the original target list contained remote (not local) sites.

4.2 Generic Component Description

Next we describe the behavior of individual components. Most of the com-
ponents are described as finite state machines which have input ports. output
ports, and internal state variables. The input and output ports are used to
paws packets and flow control information-packets flow downstream, flow con-
trol signals flow upstream. The ports and their functions are shown in Table D.
Figure 5 shows a "generic" network component, with its input and output ports.

'The intent is to determine when the packet terminator has not arrived in a "reasonable"

amount of time. This might actually be a timer, where the interval is some function or the
expected packet length. or it ught be some threshold linut for the number of consecutive pad
chsacters a f-fo-buffer will accept. The details are not specified by the protocol documented
here.

2-127

packet-in status-out

Component

packet-out status-in

Figure 5: Generic network component.

Port I Function
packet-in Packet data from upstream component.

packet-out Packet data to downstream component.
status-in Flow control from downstream component.
status-out Flow control to upstream .component.

Table D: Input and output ports.

The behavior of most of the components can be described in terms of states
and transitions between those states (i.e., a state machine). It is often useful to
illustrate the states and transitions in a state transition diagram, as in Figure 6.
The transitions are labelled with the condition used to trigger the transition.
and the status signal to be sent upstream (through the status-out port) when
the transition is made.

Figure 6: A state transition diagram.

4.3 Operator

The operator sends and receives packets through the network and through the
memory it shares with the evaluator Thus. it has more than one set of ports for

2-128

packet communication. To avoid confusion, the ports it uses to communicate
with the network are prefixed network- (e.g., network-packet-in), while the
ports used for communication with the evaluator are prefixed evaluator- (e.g..
evaluator-packet-in). Only network communication will be discussed in this
paper.

With respect to the network, both the upstream and downstream compo-
nents of an operator are fifo-buffers. The upstream fifo-buffer queues packets
from the local net-output and sends them to the operator. The downstream
fifo-buffer queues packets from the operator and sends them to the local net-
input.

Two state variables are used by the operator for network communications:

I aetwork-buffer: Used to temporarily store an incoming packet from the
network.

2. network-buffer-status: Indicates whether the packet in the network-
buffer has been serviced ('new or 'old).

4.3.1 Sending a Packet

The operator has a queue of opertisons. or requests, which it services in order
of arrival. If the head of this queue is a packet to be sent out into the network,
and network-status-in is 'free, indicating that the downstream fifo-buffer is
ready to accept a packet, the operator sends the packet (with an :end-of-packet
terminator) through the network-packet-out port.

4.3.2 Receiving a Packet

A packet arrival at the operator is signalled by the appearance of data on
the network-packet-in port. The network-status-out port is set to *open.
which signals to the upstream fifo-buffer to keep sending packet data until the,
packet terminator arrives. The packet data is stored in the network-buffer.

The arrival of an :end-of-packet signifies that the packet transmission was
successful. Network-buffer-status is set to 'new. signifying that the data
in the temporary buffer should be looked at. At some later time. the operator
services the packet and sends a 'free signal to the incoming fifo-buffer (through
network-status-out), indicating that another packet may be received, and
network-buffer-status is set to 'old. so that the packet is not serviced twice.

If the operator notices that some or all of the target addresses of the recei'.ed
packet do not correspond to its own address, the packet is sent back o'..t into
the network. This might happen for one of the following reasons:

1. During a unicast transmission, a net-input could not make a connection
to the desired net-output. The packet is forced into the local fifo-buffer.
so that the operator may resume the transmission at a later time. freeing
up the net-input and its upstream components.

2-129

2- A multicaut transmission was aborted. The local fifo.-buffer teceived a
copy of the packet with a complete target list, so that the packet could be
retransmitted in came of an abort.

A :iocaleud-of-ipcket terminator instructs the operator to accept the
packet, as in the case of :end-of-packet. but to ignore any non-local target
addreses. This irlicates that a multicast was successful, and so does not have
to be retried.

The arrival of an :abort-packet terminator instructs the operator to discard
the packet. The operator then asserts 'free on network-status-out, indicating
that another packet may be received, without setting network-buffer-status
to 'new-that is, the packet data in the temporary buffer is never serviced.

4.4 Fifo-buffer

Each site has two fifo-buffers. which have identical behavior but perform slightly
different functions. One fifo-buffer is upstream with respect to the operator, and
the other is downstream.

On its output side. the upstream fifo-buffer is connected to the operator,
while the downstream fifo-buffer is connected to the local net-input. If the
queue is not empty, the fifo-buffer responds to a 'free or *open signal on the
status-in port by removing the oldest item from the queue and sending it
through the packet-out port. If a 'wait signal is received. the transmission is
temporarily halted until a non-'wait signal appear.

On its input side. the upstream fifo-buffer is connected to the local net-
output. and the downstream fifo-buffer is connected to the operator. The fifo-
buffer needs to keep track of (1) whether the packet data and terminator have
been received and (2) whether they have been placed in the queue. The state
diagram of the input side is shown in Figure 7. and the states are described in
Table E.

I ie i Meanimg
State

open Ready for more data; terminator not received.
'wait j Queue full; terminator not received-
'done Terminator received, but not yet queued.
'donie-w Terminator received, but queue full.
'free Terminator queued. ready for next packet.

Table E. Input states for fifo-buffer

The fifo-buffer begins in the *free state. Whenever data arrives on the
packet-in port. if the queue is not full. the 'open state -s entered and 'open
is asserted on status-out- f the queue is full. the *wait state is entered and
'wait is asserted; whe, space becomes available in the queue. the *open state

2-130

• 'free

Cond eitio ei

TNffe Fre

"w i Iir o e "TFI'wait o e
vi'.aitwait

DF Dam a vs, and queue full
D N F Dat arrives, and queue not full.

F Queue full.
NF Queue noffull.
T F Terminator aives, and queue full

TN F Terminao arives, and queue -.ot full.
TQ Terminator queued.

F;Sure - Fifo-buffer state diagam.

is entered and 'open is asserted. If the queue becomes fu-, at any point m.
--he trasmission, the *wait state is entered and the 'wait s;na| is asserted on

status-out. so that no more data will be vent from upstrean When space
becomes available, the 'open state is re-entered. and 'open is Sent Upstream. to
-esume the flow of data.

When a packet terminator arrives- if the 3ueue is not fuH. the 'done state
ts entered and 'free is asserted on status-out. If the queue %s fuil. the *done-
wait state us entered first. which aerts 'wait untli space =s avaiabe in the
queue_ Then the 'done state may be entered- When the terminator is actually
in the queue. the "free state .s entered, and the fifo-buffer :s reaiy to re-e-ve
another packet.

Not shown in te state diagram is the timeout procedure mentioned in Sub-
section 4 1 This is because the details of the timeout procure are dependent
on the impiementaz:--in The intent of the timeout :s to in.-a'e wnen the fifo-
buffer has been waitw-- an unusually long time for the pacKet terminator. When

a timeout occurs, the 'abort-request signal is sent upstream through status-
out. The fifo-buffer behavior then continues as described above.

4.5 Net-Input

The downstream component from a net-input is a router, but the values on the
status-in port are actually originated from a downstream net-output and are
passed through the router. If the net-input is local (connected to an operator),
its upstream component is a fifo-buffer; otherwise, its upstream component is
a net-output (on a logically neighboring site). The states of the net-input are
shown in Table F, and the transitions are illustrated in Figure 8. A state
variable, connection, is used to save the type of the current downstream con-
nection.

Mle M eaning

'first Packet received, but net-input not yet
connected to the network.

?open Conraected to network and packet trans-
mission in progress.

'wait Downstream requested wait after trans-
Imission started.

'done Terminator received, but not sent.
'last Downstream requested wait after termi-

nator received, but before it was sent.
'abort Abort requested from downstream.
'fin-abort Abort requested, and terminator received.
'free Idle-remains in this state until the net-

work connection goes free and a new
.packet is received.

Table F: States for net-input.

The net-input begins in the 'free state, with all its downstream connections
free. When the front end of a packet arrives on packet-in, it is sent directly to
the router, which attempts to make the proper connection based on the packet's
target list. If the router is successful, it makes the appropriate connections, be-
gins transmission of the packet to the connected net-output(s), and returns one
of the follow~ng values on connection, which indicates the type of connection
that was made:

'unicast All targets of the packet reside on a single site.

'passthru The packet has multiple sites in its target list, but has only been
sent to a single net-output. This type of connection indicates that the
local fifo-buffer was not available to accept a copy of the packet.

2-132

S/

'first D!'free

ARMI'pen opnT/'done ARMP open

Conditio Meanin

CF Connecn oFbtained.
1Wa 'Wai re'donsatstn

0 ~Open rec onsttusin

TR/ Termnato recived

DT TerDatr andwaivrceied

NW NoWait sa rec'd on status-in

Figure 8: Net-input state diagram.

2-133

'all-remote The packet has multiple sites in its target list, and the router

has made connections to multiple net-outputs. The packet's target list

contained only non-local sites.

'some-local The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet's target list
included the local site.

If the connection attempt is unsuccessful, because of busy channels, for ex-
ample, the router returns 'seek, which prompts the net-input to try again. If
the number of unsuccessful attempts exceeds a threshold, the router sends the
packet to the local net-output-the local operator will retransmit the packet if
any destination in the target list is not local.

A successful connection causes the net-input to enter the 'open state and
to assert 'open on status-out. At this point, several possible transitions can
occur., We will first consider the comnit case, where no 'abort-request is re-
ceived and the net-input successfully delivers the packet. Later, we will consider
the abort case.

4.5.1 Commit Mode

Ignoring 'abort-request for the moment, two possible events can occur: (1) the
packet terminator arrives on the packet-in port, or (2) one or more downstream
net-outputs send 'wait over the status-in port. The 'wait state is entered if
a 'wait signal is received: the 'done state is entered if the packet terminator
is received; the 'last state is entered if both are received. Figure 8 shows the
possible transitions among these states. Whenever a 'wait is received from
downstream. 'wait is asserted on status-out to halt the information flow from
upstream, a, vell. The wait condition is cleared when an 'open signal appears
on status-in. This indicates that all the downstream net-outputs are ready to
receive the packet terminator and causes a transition from 'wait to 'open, or
from 'last to 'done.

If the net-input is in the 'done state and 'open is received from downstream,
the appropriate packet terminators are sent according to the type of connection:

'unicast or 'passthru: An :end-of-packet is sent to the single downstream
net-output (local or remote).

'all-remote: An :end-of-packet is sent to all the non-local connected net-
outputs; :abort-packet is sent to the local net-output, because the oper-
ator should discard the packet rather than attempt to re-send it.

'some-local: An :end-of-packet is sent to all non-local connected net-outputs:
:local-end-of-packet is sent to the local net-output. so that the operator
will ignore the remote addresses in the packet's target list.

2-134

After the packet terminator has been sent out, all connections to net-outputs
are released, the 'free state is entered, and the net-input is available to receive
the next packet.

4.5.2 Abort Mode

Abort mode is entered if an 'abort-request is received from downstream be-
fore the packet terminator is sent downstream, and the current transmission is
a multicast ('all-remote or 'some-local). ('Abort-request is ignored on a
non-multicast transmission. From this point, we will assume a multicast trans-
mission.)

If the 'abort-request is received before the packet terminator (i.e., while
in 'open or 'wait), the 'abort state is entered. When the packet terminator
arrives, the net-input enters the 'fin-abort state. Alternatively, the 'abort-
packet could arrive after the packet terminator, in which case 'fin-abort is
entered directly from 'done or 'last.

Whenever abort mode is entered, the net-input sends an :abort-packet to
all non-local connected net-outputs and disconnects them. They will, in turn,
pass the terminator downstream when possible. The only connection retained
is to the local net-output. When the local net-output is ready to receive the
packet terminator (i.e., 'open is received on status-in), the net-input pauses
on whichever type of terminator it received. The two cases are as follows:

:end-of-packet No upstream packets have been aborted. so it is the responsi-
bility of this site to abort the downstream transmissions and to re-transmit
the packet Upon receiving the :end-of-packet, the operator will notice
some non-local addresses in the packet's target list and will send it back
out into the network.

:abort-packet Some upstream site is aborting the multicast and will eventually
resend the packet. The operator on this site, then, is instructed to ignore
this packet.

The net-input then enters the 'free state and releases the local connection.
ready to receive the next packet.

4.6 Router
The router is responsible for the following:

" Determining to which net-outputs a packet should be sent, based on its
list of target addresses, the system routing strategy, and the current avail-
ability of net-outputs; and

" Creating, maintaining, and deleting the connections between a net-input
and a set of net-outputs, including transmitting data and flow control
signals between them.

2-135

The router, unlike the other components, is not modelled as a finite state
machine-it is conceived as a priority network (implemented in combinational
logic, for example). Information about routing and active connections can be
thought of as residing in the tables shown in Table G.

Table Contents
preference-table For each logical output

direction, a sorted list of
net-outputs to be considered.

input-connection-table For each net-input, a list of
connected net-outputs.

output-connection-table For each net-output, its
connected net-input.

output-status-table For each net-output, its
transmission status.

Table G: Routing tables.

The first words of the packet are always the target list. As each target is
received, the router makes an appropriate connection to - net-output and sends
that address downstream. The routing (for each target address) takes place in
a single communication cycle, 9 so there is no additional delay introduced by the
router.

If there is only one target, the router makes the connection (see below) and
returns 'unicast. If there is more than one target, the router checks the status
of the local net-output. If the status is 'free, then the appropriate connections
are made and either 'all-remote or 'some-local is returned. If the local net-
output is not 'free, then a single connection is made based on the first target
on the list (ignoring the other targets), and the returned connection value is
'passthru.

Making a connection involves determining the logical "direction" (e g., up
or down) of the target from the local site, then determining which net-output
should be used for that direction, and finally updating the connection tables
and starting the packet transmission.

Determining the logicai direction depends on the network topology and is
usually straightforward. For example, a grid or torus requires only some arith-
metic comparisons between the target address and the local address to get Up,
Down, Right, Left, or some combination of these. A hypercube., on the other
hand, requires an exclusive-OR operation to see which bits in the destination
address are different than the local address. Equally simple operations can be
envisioned for most other network topologies, as well.

'See Subsection 3.3.

2-136

Once the logical direction is determined, the router looks in the preference-
table for a list of net-outputs to consider. This table implements the system
routing strategy and is determined when the system is built. It lists, in de-
creasing order of preference, all the net-outputs that might be used to send a
packet in a given logicaJ direction. The router checks all the status of each of
these, in turn, until an available net-output is found. If none is found, then the
connection fails, and 'seek is returned to the net-input.' 0 Examples of rout-
ing strategies which may be implemented by the routi ig table are (I) try all
net-outputs, starting with the closest to the target, (2) try only one net-output
(static routing), and so forth.

During the- transmission, the router is responsible for pasing flow control
information from the net-outputs to their connected net-inputs. if a net-output,
for example, asserts 'wait on its status line, the router must relay that signal
to the net-input which is connected to it. Also, the router cannot pass the
net-input an 'open signal until all of its downstream net-outputs are in a non-
wait state. The input-connection-table, output-connection-table, and
output-status-table are useful for these types of operations.

4.T Net-Output

The upstream component of a net-output is always a net-input. On the down-
stream side, the local net-output is connected to the fif.-buffer which delivers
packets to the operator. while a non-local net-output is connected to a net-input
on a logically neighboring site. The net-output states are listed in Table H, and
the transitions are illustrated in Figure 9.

I State .ef caning
*first Packet received, but not yet sent.
lopen Packet transmission in progress.
' wait Downstream requested wait.
'done Terminator received, but not sent.
'last Downstream requested wait after termi-i

nator received, but before it was sent.
Tree Terminator sent, ready to receive next

packet.

Table H: States for net-output.

The net-output is initially in the 'free state. When a packet arrives on
packet-in, it enters the *first state. If its downstream component (either a

10 Note that, in the case of a multicast. partial finds (in which only a subset of the targets can
be asigned to net-outputs) must be forced to fal (by sending an :abort-packet terrmnator
over the connections mde thus far). or the operator would not know which parts of a multicaut
to retransmit in case of an abort.

2-137

ARaot requestes N /7-e

Condtin Mean 'don

FW Free or waitedonsasin
fWa fWiwrcd nstts-n

0 Ofpen recd n tausin

AR bor-reues red o sttusin

DA Teiatr receied

WTR Terminator aditreceived.

AP :Abort-packet terminator received.
NW Non-wait sienal rec'd on status-in.1

Figure 9: Net-output state diagram.

2-138

net-input or a fifo-buffer) has placed 'wait on the status-in port, the net-
output asserts 'wait on status-out, which inhibits the upstream net-input
from sending anything else. When the downstream component becomes ready
to accept the packet, it will assert 'free.

When a 'free signal is received from downstream, the net-output transmits
the packet and enters the 'wait state, asserting 'wait on status-out. The
net-output remains in the 'wait state until an 'open signal is received from
downstream.

The net-output then enters the 'open state, sending an 'open signal to
the upstream net-input (via the router). Things then continue much the same
as in the net-input. 'Wait is entered if the downstream component requests
a wait and the packet terminator has not arrived. 'Doae is entered when the
packet terminator arrives; 'last is entered if a wait is requested from downstream
after the terminator arrives. If an 'abort-request is received from downstream
before the packet terminator arrives, it is relayed to the upstream net-input.
If the packet terminator has already arrived, then the 'abort-request was
premature and is ignored.

Then the net-output sends the packet terminator, when the downstream
component is ready to accept it, and enters the 'free state. When the down-
stream net-input accepts the packet terminator and responds by asserting 'free,
the net-output asserts 'free on its status line. The upstream net-input will then
release the connection, and the net-output becomes available to receive the next
packet.

5 CARE Implementation

In this section, we provide an overview of the implementation of the proto-
col in the CARE simulation system. CARE is a library of functionat modules
and intrumentation built on top of an event-driven simulator (TI, which is used
to investigate parallel architectures. The typical CARE architecture is a set
of processor-memory pairs (sites) connected by some communica~ioris network,
though it can also be configured to represent a system of processors communicat-
ing through shared memory. The behavior and relative performance of CARE
modules can easily be changed, and the instrumentation is flexible and useful
in evaluating the performance of an architecture or in observing the execution
of a parallel program.

CARE is implemented using Flavors-an object-oriented extension of Zetal-
isp [8]. Roughly speaking, each component described in Section 2 is implemented
as an object (an instance of a flavor). (One notable exception is the router-its
functions and tables are assumed by the site object. rather thtn implemented
as a separate component Also. the memory at a site is not explicitly repre-
sented as an object, but exists implicitly in the simulator) Associated with
each object is a set of instance variables, used to hold state information, and

2-139

a set of methods, procedures used by the object to respond to messages from
other objects." The instance variables loosely correspond to the ports and
state variables used to describe the protocol in Section 4. In particular, each of
the components which are described in terms of & state machine has a instance
variable, packet-status, which hold the current state of the component.

These objects communicate through shared structures called vias, which
represent unidirectional data paths. These are the "wires" which connect the
components' -ports." Asserting a value on the sending end of the via imme-
diately (in simulated time) triggers an event for the object at the other end.
Therefore, a via can be considered a zero-delay wire which can transmit any
arbitrary value (not just single bits).

The simulation is functional, 2 rather than circuit-level, and event-driven,
rather than clock-driven, because cycle-by-cycle simulation of a parallel machine
would be extremely time-consuming, especially when the number of processors
is large. For this same reason, we do not wish to model the transmission of
a packet one word at a time. Instead, a packet is represented by two distinct
parts, one representing the contents of the packet, and the other representing
the packet terminator. In the following discussion, packet will refer to the first
part (representing the front edge of a "real" packet), and packet terminator will
refer to the terminator part.

In the simulation environment, explicit packet terminators allow us to (1)
implement the deadlock avoidance mechanisms described earlier, and (2) model
the transmission of a packet through the network in terms of its front edge and
its back edge. In this way. if the time between the transmission of the packet
(front edge) and its terminator in the simulator is the same as the transmission
time of the packet in a real machine, we can accurately model the transmission
of the packet without explicitly representing every word.

In the following subsections, we describe how the protocol is implemented
in terms of objects, packets, -and packet terminators.

5.1 Operator

The time required to transfer a packet from the operator to a fifo-buffer (one
word at a time) would be propcrtional to the size of the packet. To model this,

"Objects and messages art only a software tool used by the simulator. Sending meusages
betweem objects in the simulator has no particular correspondence to sending packets between
component in thi target machine.

12 The simulation is functional. in the .erje that not every aspect of the hardware is sim-
ulated in detil. Some aspects are simulated by register transfer level behavior, while other
aspects have only a functional description. For example, the execution of application code by
the evaluator is not simulated at all-it is directly executed by the host machine. However.,
timing information for the execution of application code. based on measurements and esti-
mates, is used to assure that the simulation is reasonably faithful to the execution)f a "real"
machine.

2-140

the operator delays an appropriate time between sending a packet and sending
its terminator.

Because storage in the simulated fifo-buffer is in terms of packets, rather than
bytest 3, there will be no wait signals received from the downstream fifo-buffer.
Therefore, merely delaying for a time proportional to packet size is sufficient.

A CARE operator receives a packet as described in the protocol Note that
the time between receiving the packet and its terminator is dependent on the
size of the packet plus any delays encountered on its transmission path.

5.2 Fifo-buffer

In the simulator, the amount of storage in the fifo-buffer may be set at run
time.' 4 Each packet or packet terminator takes up one space in the buffer,
no matter what its actual size. In particular, the buffer cannot fill up in the
middle of accepting a packet. so the 'wait state will never be entered. Thus
the operator, which feeds data into a fifo-buffer, does not have to deal with any
waiting time in the middle of transmitting a packet, as described above. This
simplifies the implementation of the protocol, at the expense of a slight loss of
fidelity in the simulation.

On the output side, however, the simulated fifo-buffer is more complex than
the protocol indicates. If a packet is being output f.om the queue, the fifo-
buffer must introduce a delay between the packet and is terminator to model
the packet transit time. However. the transit time is not merely proportional
to packet size, because downstream blocking could cause arbitrary delays in the
transmission.

The simulated fifo-buffer output transitions are shown in Figure 10. In this
case, the transitions are labelled with conditions and actons. rather than flow
control signals, Some additional instance variables for the fifo-buffer are required
to implement the output funcrtion. They are:

1. transmission-status: State of packet output.

-2. delay: Accumulated time spent waiting.

3. last-wait: Event time when last 'wait was received.

Initially, transmission-status is 'free. If the downstream component r
quests data (status-in goes to 'free) and the queue is not empty. the top of the
queue, which must be a packet. is placed on the packet-out via. delay is set
to zero, and transmission-status goti to 'busy. Also, transmission-status
is scheduled to go to *done at a time that is proportional to packet size.

13See subsection 5.2.
1iBy setting the care:000buffer-size"O variable to any posittve integer. or to nil. which

means "unbounded."

2-141

F 'Free free nsau-n
0 'en rcdo sau-n

DONE 'oneOeEnt
WDus 'Witoenean

[dely nnzeo O as t-atno-i]

ConAtion Meaning

sendOend packetn shul ne. o

WDLas-ait = anw
(ea el=delay now R last-wait)nni]

(dl=0Nlast-wait -_ nil.

bsy Sen kt chedule 'done for day

Last-wait = nil.

term Send terminator.

Figure 10 Implemented fifo-buff'er output State diagram.

2-142

If no 'wait signals are received from downstream while the transmission is
'busy, then the transmission will be done after the packet transit time has
elapsed, and the packet terminator will be sent as soon as the downstream
component is ready to receive it.

However, if 'wait is received during 'busy, last-wait is set to the current
time and waiting is set to t. If 'open is received during 'busy, the time spent
waiting is added to delay and waiting is set to nil.

If 'open is received when transmission-status is 'done, and delay is
non-zero, then 'busy is entered again, 'done is scheduled for the current time
plus the accumulated delay, waiting is set to nil. and delay is set to zero.
Alternatively, if waiting is t and delay is zero, then 'done has occurred in the
middle of a wait; 'busy is entered, waiting is set to nil, and 'done is scheduled
for the current time plus the difference between now and last-wait.

Finally, when 'transmission-status is 'done, delay is zero, and waiting
is nil. the top item of the queue (which must be a packet terminator) will be
sent. Then transmission-status becomes 'free. and the fifo-buffer is ready to
respond to the next data request.

All of this is to ensure that the time between the packet and its terminator is
dependent on the packet size plus any network delays along its path. The other
components, net-inputs and net-outputs, do not require this added complexity
on the output side. They will either maintain the currnt time separation or
add to it due to downstream blockages, so there is no "hance of their sending
the packet terminator prematurely.

5.3 Net-Input

The main differences between the implementation and protocol concerning the
net-input stem from the fact that there is no explicit router in CARE. Each net-
input, then, communicates with the ste which owns it (see Section 2). rather
than with a downstream router. The communication is done by passing Flavors
messages, rather than asserting data on vias-thus, there is no packet-out
instance variable, and status-in is not a via.1 s

To connect to net-outputs, the net-input sends a :connect message to the
site. The site then performs the routing and makes the connections as described
in Subsection 4.6. returning either 'seek or the type of connection made. Also.
the site relays flow control information from the connected net-outputs by set-
ting status-in.

Other site methods used by the net-input include :disconnect-remote,
which releases the connections to all net-outputs except the local one, and
:send-all, which transmits a packet or terminator to all connected net-
outputs. (:Send-local and :send-remote transmit to a subset of connected

"5 Via must connect two distinct objects: status-in may be connected to any group of
net-outputs at a given time. so using a via is not appropnate.

2-143

ri Wait redfnitausln

0 Open red stts-n

TRpe Temntr eceived.op
WTR, Temnao and I waitreied

#wi 'olatsgalr ns as t

ARfor i-plemet n-nptsAtedram.'o

'abortTR/ i--14W

net-outputs-)
Thiere is a potential software race in the simulator, which is avoided by

adding an additional state in the net-input state machine description. If the
net-input is in the 'done state and notices that none of the downstream net-
outputs has asserted 'wait. it sends the packet terminator- However. there
might be a simulation event scheduled for the same time slot in which one of
the net-outputs receives a 'wait and propagates it upstream. In a real machine.
this means that the terminator would not have been sent, but there is no way
to Oundo" the first action by the simulator.

Thus, insead of sending the terminator from the *dos state- the net-input
schedulis a trintos to the lial state two ewen-timei later. This allows time
for all the possble 'Waiit signals to be handled during the sawn eveis. Whes the
'finasl state is entered, the state of the connected met-outputs as ganexaminedl.
Kfnn of then are blocked. the packet termnators ace seat immendiately (in
simulation tame), and the fr&e state is entered- Any 'wait sial which could
arrive at that same instant would be too late to block the transmausioe in a reat
machine. The implemented version of the net-input state machin is ilustrated
in Figure I1I.

5.4 Router

As mrentioned earlier. there is no explicit router object in th-e CARE imnplemen-
tatin. There are. however site functions and methods which perform roung
in response to a -connect message sent by a net-input.

The :fnd-direction method determines the logical direction of a target.
given its address. This us defined as a method. rather than a function. becas
this operation is topology-dependent. In Flavoes. we can define a specialized
site object for a particular topology by changing this one method and inheriting
the remaining behavior from the generic site definition.

The setup-targets function examines the tanget list. mnakes the connections.
and copies the packet, as needed. Finally, the mnake-connections function is
resposible for actually setting up connections and sending the packet down-
stream.

.5.5 Net-Output

In the CARE impleoentation of thie ftet-outjpit. here is no mpsicat status-
out instance variable for sending flow control :Mnormation upstream insteadl.
messages are sent to the site. as above. which updates the status table for the
particular net-output and relays the information to Ute ccnnected net-input
There are :wait. :open. :abort-request and :free mnethods -di; for th
site for this purpose. Also. because packet input Can come fromin any of the
net-inputs on the site, packet-in Ls not implementIed as I ~

2-145

Finally, on the initial transition into the 'wait state (from 'first) the net-
output sends a :first-wait message, which updates the status table but does not
trigger an event for the upstream net-input. This prevents unnecessary simula-
tor events used to propagate the 'wait signal upstream; they are unnecessary
because the net-input will not send anything else until the net-output sends an
'open signal.

5.6 Results

Variants of this protocol have been used for many CARE simulations over the
course of several months. Though the performance has not b-en extensively
measured, the protocol appears to offer reasonable performance over a range of
network loads. Deadlocks and lost packets do not occur, even when the net-
work is extremely congested. Thus, our experience with the protocol 'Sndicates
that it cifers efficient and robust one-to-one and one-t,.-many interprocessor
communication.

6 Conclusion

A protocol for high-performance interprocessor communication has been pre-
sented. This protocol supports dynamic, cut-through routing with local flow
control, which allows high-throughput, low-latency transmission of packets. In
addition, multicast transmissions are allowed, in which a packet is sent to several
targets using common resources as much as possible.

The protocol also prescribes mechanisms for detecting and avoiding deadlock
nditions due to resource conflicts during multicast. In particular, a copy of

the packet is saved before it is split, special packet terminators are used to
abort transmissions and trigger retransmissions, and random timeout intervals
are used to detect potential deadlock conditions.

Finally, the implementation of this protocol in the CARE simulation sys-
t..m is described. Explicitly represet'ing a packet as the front edge and the
terminator allows accurate modelling of word-by-word packet transmission in
a functional, event-driven simulator. Also, the success of the implementation
indicates that this is a reasonable protocol for interprocessor commun:cation.

References

(11 Tse-yun Feng. A survey of interconnection networks. Computer, 12-27,
December 1981.

(2] V. Ahuja. Design and Analysis of Computer Communicaton .Vetworks.
McGraw-Hill, 1982.

2-146

(3] P. Kernarni and L. Kleinrock. Virtual cut-through: a new computer Com-
munication switching technique. Computer Networks, 3:267, 1979.

[4] M. Arango, H. Badr, and D. Gelernter. Staged circuit switching. IEEE
Transactions on Computers, C-34(2):174-180, February 1985.

[5] P. Kermani and L. Kleinrock. A tradeoff study of switching systems in
computer communication networks. IEEE Transactions on Computers, C-

[6] Richard W. Watson. Distributed system architecture model. In Dis-
tributed Systems-A rchttecture and Implementation, chapter 2, pages 10-43,
Springer-Verlag, 1981.

[7] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. An
Instrumented Architectural Simulation System. Technical Report KSL-86-
36, Knowledge Systems Laboratory, Stanford University, January 1987.

[8] Sonya Keene and David Moon. Flavors. object-oriented programming on
Symbolics computers. In Common Lisp Conference. 1985.

2-147

Knowledge Systems Laboratory January 1987
Report No. KSL-87-07

Considerations for Multiprocessor Topologies

Gregory T. Byrd-,

Department of Electrical Engineering
Stanford University
Stanford, CA 94305

Bruce A. Delagi

Worksystems Engineering Group
Digital Equipment Corporation

Maynard, MA 01734

This work was supported 5!/ DARPA4 Contract F.Y0602-85-C-0012, ATASA4 .mel Contra,-"
NCC 2-220-SI. and Boeing Contract WV2668 75.

IG, Byrd i3 suipported bil an VSF Graduate Felloivship. with additional qupport proud,
by the EE Dept.

2-148

Considerations for Multiprocessor Topologies*

Greg Byrdt Bruce Delagi
Knowledge Systems Laboratory Worksystems Engineering Group

Stanford University Digital Equipment Corporation
Stanford, CA 94305 Maynard, MA 01754

Abstract At the system level, the consequence of relatively
expensive communication is that performance is en-

Choosing a multiprocessor interconnection topology hanced if the design establishes that whenever a lot
may depend on high-level considerations, such as the of information has to move in a short time, it does
intended application domain and the expected num- not have to move far. Significant locality of high
bet of processors. It certainly depends on low-level bandwidth links is a goal. Among the highest band-
implementation details, such as packaging and com- width links in a computer system is that connecting
munications protocols. We first use rough measures of the processor and memory. Early computer systems
cost and performance to characterize several topolo- separated these pieces and put a bottleneck between
gies. We then examine how implementation details them to accommodate the packagirg realities of the
can affect the realizable performance of a topology. time. processors were implemented with electronic

means, memory with magnetic, and their power re-
quirements and EMI characteristics were best dealt

1 Introduction-Design Con- with separately There are new realities now: close
coupling of processors with local memory is preferredstraints and Opportunities With these design constraints in mind, we consider

a multicomputer implementation based on a set of
The base for development of general purpose mul- processor/memory pairs connected by a communica-
tiprocessor systems as for computer systems today tions topology. Many topologies have been proposed
generally is given by the design constraints and op- [8] and have been compared in terms of theoretical
portunities established by evolving semiconductor de- cost and performance measures [16]. We argue, how-
sign and manufacturing processes. The VLSI design eer. that the realizable performance of these topolo-
medium brings a new perspective on cost: switches
are cheap; wires are expensive. In modern micropro-
cessors. communication costs dominate those associ-
ated with logic. Power and cooling budgets are spent 2 Interprocessor Connection
driving wires and overwhelmingly, chip area is dedi-
cated to wiring rather than logic [17] To an increas- Topologies
ing degree, the dominant delays are associated with
driving lines rather than the accomplishment of logic Connection schemes between processing sites can be
functions per se. One implication is that, all other compared with respect to their cost and performance
things being equal, smaller, simpler processors can be as a function of the number of sites connected. For
expected to have shorter operation cycles than larger. a particular connection scheme, if the cost grows no
more complex designs (18]. They are also likely to be faster than the number of sites and the performance
available in a more recent, higher performance base grows at least as fast. that scheme can be described
technology. as scalable A rough measure of cost is the number of

input-output ports required for connection. A rough
'This work was supported by DARPA Contract F30602- measure of performance is the number of links in the

85-C-0012, NASA Ames Contract NCC 2-220-S1, and Boeing topology divided by the largest number of links that
Contract W266875.

t Supported by an NSF Graduate Fellowship and by the must be traversed, and thus occupied to accomplish
Stanford Dept. of Electrical Engneenng. a transmission. in order to get from one node in the

2-149

network to another. This indication of the bound on relatively long w.res, which is undesirable if link tran-
the number of independent, concurrent transmisions sit time dominates switching time.2

we will call the coscurm el of the network. A major difference between the two topologies is
For some topologies, the concurrency of a network that switching and routing are centralized at the pro.

may understate performance as actually experienced cesor in the hypercube, whereas the switching in the
in a given application: to the extent that there is banyan is distributed throughout the network. To
locality of reference in transmissions, the number of the extent that storage is required at the switch (as
links actually traversed may be better approximated in (3]), it becomes more economical to centralize the
by a constant than some function of the number of switch and utilize the local storage of the processor.
connected sites. Network concurrency may also over- For this reason, we prefer the hypercube.
antte performance of one topology with respect to an-
other: to the extent that the time to traverse links
is not the same for all topologies, those that have 2.2 Topologies With Scalable Cost
non-uniform link costs (perhaps due to physical dis-
tance considerations applied to the realized lengths There are alternative topologies not as richly con-
of links) will deliver less performance than the con- nected as those just considered. The topologies in
currency measure suggests. This is because in these Table 2 all have fixed degree connectivity, so they all
cases, logical adjacency due to high dimensionality have scalable cost as measured by port count. Un-
is merely apparent-embedding the topology in the fortunately, none of them has scalable concurrency.
dimensionality of space available tends to incur just So, at least among the ten representative topolo-
thooe expenses related to physical distances that the gies discussed, there is no topology that has cost-
topology was expected to eliminate. performance characteristics intrinsically superior to

all the others.

2.1 Topologies With Scalable Con- Concurrency for the ring and the bus topologies
currency does not increase at all as the number of processors

increases. Given no guarantee of transmission source
Several topologies are shown in Table I which have to target locality, these seem unsuitable for systems
scalable concurrency. As the number of sites is in- with a large number of processors (e.g., > 1.00).
creased, the network grows enough to support theconequntil, ~dtioal rafic.Infac, b ths ma- The perfect shuffe and cube-connected cycles
consequentiai ofdpitional traffic. In fact, by this mea- (CCC) topologies emulate the O(logn) latency of the
sure of performance, the last thre of these four hypercube, but the number of links is linear with
topologies scale performance equally well. However, the number of processors, so concurrency does not
as will be described, there are other considerations to scale. Also. if we measure cost in terms of layout
weigh.area, the cost of the perfect shuffle ((-

In the crossbar and completely connected topolo- a s lo (- and
gies, the number of ports, a first approximation to CCC (0(1-r--)) [15] do not scale and so will not be
cost, grows quadratically with the number of nodes considered further.
in the network. Weighing cost and concurrency, then, The tree. grid, and torus topologies ill have fixed
we might prefer the banyan and boolean k-cube (also degree connectivity and have the optimum 0(n) area
known as "hypercube") topologies. requirement.The tree has a slightly better capacity

By these measures, there does not seem to be a measure and a lower latency bound. Note, however,
clear-cut choice between the banyan and the hyper- that the tree provides no alternate communication
cube. A more sophisticated measure of cost would paths (useful in network balancing and defect toler-
take into account the area required for laying out the ance) and has a bottlenecking root.3 Connections
topology in a plane (11]. The banyan may have a might be added to provide alternate paths, but, as
slight edge in this category', but both layouts require we will see in the next section, physical link consid-

iThe area required to lay out a hypercube in a plane is erations may make the grid or torus a better choice.

0(n2) (21, where n is the number of processors. Since "banyan"
actualy denotes & class of interconnections it is dif icuit to better bound than for the hypercube. Other types of banyan.
make a general statement about its layout. However, let us with different fan-in, fan-out, and connectivity characteristics
consider a particular banyan network, the omega network 'i0). ught have even smaller bounds.
which is log n stages of perfect shuffle connections. The per- 2 See Section 3.
tect shuffle ha area 0() [], so we would expect log n 3 We might be able to deal with this by increasing the band-width of the links as we proceed toward the root. for example
perfect shuffles to requre area O('). which is a lightly with -fat trees" (121.

2-150

3 Link Costs- Examining The dynamic routing of messages, and additional comput-
ing resources make the grid potentially more powerful

Free Lunch than the tree.

Most studies of topologies assume a constant cost Though the torus appears to suffer from extremely

for link traversals as the number of links increases, long wires which "wrap around" the edges, a simple

This is a useful approximation if the time to drive renumbering of the processors in a grid brings each

and receive link signals is constant with link length one within two hops of its logical neighbors6 (see Fig-

and large compared to signal transit time on the link. ure 3). Thus, we can effectively create a torus by

However, this is increasingly not a good assumption changing the routing algorithm of a grid. Alterna-

both as the underlying feature size of the compo- tively, we could keep the original torus connections

nent technology decreases and as we consider larger and lay out the processors as in Figure 3(b), result-

numbers of sites in a system. Given a fixed circuit ing in links which are at most twice as long as those

feature size, topologies with scalable concurrency, as for a grid. In the remainder of the paper, we will

discussed in Section 2.1 suffer increased link lengths speak of the grid bearing in mind construction of the

and thus longer signal transit times-with possibly torus in these terms.

incieasing drive times-as the number of processors
increases. Alternatively, given a fixed volume of cir- 4 A Packaging Example
cuits in these topologies and decreasing circuit feature
size, the number of processors in the system increases We are now faced with two topologies: one with
but so does the ratio between link lengths and feature scalable performance--the hypercube-and one with
size. Thus relative to the circuit delay times which scalable cost-the grid. The arguments presented
are dependent on (and decrease with) circuit feature above suggest that, all else being eqsial, the communi-
size, the link transit times become increasingly a more cation cycle time for the hypercube would be greater
important consideration. 4 than that of the grid, due to its long links. Even so,

Topology has to be viewed as a dependent variable the average message latency of the hypercube may
determined principally by the packaging technology still be smaller, due to its high connectivity. To get
of the system. As an example, consider the recursive- a better understanding of the relative performance of
H layout for the binary tree (Figure 1) under the the two systems, we should examine how they might
assumption that link transit time dominates switch- actually be implemented in near-future technology.
ing time. Now consider the grid in Figure 2. which In the mid-1990's we would expect a 0.5-pm MOS
can be laid out in the same area. If transit times fabrication process to be available [7]. We will assume
dominate, then shorter links and more switching sites that the complexity of our processor is comparable
will likely shorten the point-to-point communications to today's typical 32-bit microprocessor. The Nli-
cycle time and improve the realized capacity of the croVAX 78032 chip (41, for example, is implemented
network.' Furthermore, additional data paths allow in 3-pm technology; it measures about 8 5 mm on

4The dependence of communication delays on signalling a side. Using 0.5-pm technology, we could expect a
lengths as circuit feature size decreases depends on assump- similar processor to require around 1 5 mm on a side
tLions made on the thickness and thus the resistivity of asso- Let us allow 256K bytes (2M bits) of local memory
ciated interconnects Uniform scaling leads to relative sig- for our processor. Fujitsu's megabit RAM using 1 4-
nalling times that increase quadratically with distance [19]
Detailed analysis of the equations of voltage and current in pm technology takes 54 7 mm2 [6] If the dimensions
VLSI wire implementations (including consideration of the of the Fujitsu chip are about 10 mm by 5 5 mm. then
non-linear characteristics of signal drivers) demonstrated hn- a 0.5-.pm version would be 3.6 mm by 2 0 mi. Two
ear dependence. (11 but were done assuming that the inter-
connect (and field oxide) thicknesses did not decrease at all of these (since we want 2M bits) would be around
wule all other dimensions scaled with the circuit feature size 3.6 mm by 4 mm As an approximation, then, each
of the technology [17] Another approach inagines a hierarclhy processing element. including a processor, 256K by tes
of interconnect of increasing thicknesses %ith distance [13] to of local memory. and s't itching and routing circuitry
achieve signalling times that grow only with the logarithm of could be expected to fit onto a 5 mm X 5 mm piece
the distance. Yet another approach accepts resistive links but
given control over both mirumum and maximum wire lengths of silicon.
and use of high impedance receivers, notes that it is possible Even as devices shrink, die sizes continue to grow
to counter dispersive losses with reflective voltage doubling at By the mid-90's, the state-of-the-art chips may be
the receiving end of a point to point link [9].

'The assumption made here is that the message routing is as large as 15 mm on a side. Each chip would be
relativelyindependentofthecomputngactivitiesat aprocess- expected to have 400-600 I/O pads (14]. Therefore.
ing site. so there is no penalty associated with being routed at
a processing site rather than a switch. 6Thus approach is attributed to R. Zippel.

2-151

we could put up to nine processing sites on a si. gle 5 Beyond Topology
die.

The dice could be flip-mounted on a silicon (5] As the previous example indicates, the electrical and

or ceramic (91 substrate with thin-film transmission physical characteristics of the circuit packaging in a

lines and integrated capacitors. In (9], the maximum system may dictate the scheme used to wire the nodes

length for 5-prn-thick lines is around 20 cm, so we together. In addition, the communications protocol,
will assume a 10xl0 cm module size, on which we can that is, the actual signalling on the links are an im-

easily place up to 36 dice. We will assume on the portant component of achievable performance. There

order of 1000 1/0 pins per module [5]. are many relevant details-for example:

Consider first packaging a (32x32) 1024-e!ement oc-
tal grid, in which each processor is connected to eight eDynamic routing, selecting available links as
neighbors. With nine processors (arranged as a 3x3 needed, is useful in balancing load and thus al-
grid) on a die, 32 (bi-directional) communication links lows more of communication resources of the sys-

must come off the chip through the I/O pads, so no tern to be well used throughout a computation.

more than 18 pads could be used per channel. A mod-
ule can carry 324 processors, arranged as an 18x18 Cut-through routing, making a routing decision
grid. The entire system, then, could fit on four mod- on the fly as a packet is received, reduces buffer
ules (with room to spare). The communications links requirements in the system and minimizes Ia-
from two sides of the 18x18 grid (105 bidirectional tency experienced in network transit.
channels) must go off-module. Thus, each channel e Local flow control, signalling transmission delays
could use 10 pins-one pin for clock and status infor- back to the source based on local blockage in-
mation and four for data, in each direction. formation, together with single "word" buffer.

Now consider a 1024-element hypercube (a -10- ing and transmission validation at each network
cube"). To allow for more complex wiring and easier input and output port allows the source to corn-
packaging, we will assume that each die contains eight plete a validated transmission in a time that does
processors, and each module will hold 32 dice, for not depend on the size, of the network.
a total of 256 processors per module. (Extra space
might be used to provide redundant processors for Point to point multicast, sending (approxi-
fault tolerance.) Again, only four modules are re- mately) the same packet to multiple targets
quired to package all 1024 processors. Each processor using common resources to the largest degree
has ten bidirectional links to its logical neighbors. If possible-ccupled with dynamic, cut-through
the eight processors on a die are wired as a 3-cube, routing, flow control. and word level buffering
then seven channels from each processor must go off- and transmission validation-provides "virtual
chip. Five of these channels are connected to other busses" precisely as and whevk they are n~eded.
processors on the same module, but two must go off
the module. With only - 000 1/0 pins for 512 bidi, A point-to-point protocol utilizing these mechanisms
rectional channels. it appears that a 1-bit combined is described in [3].
control/data stream is all that can be supported for
the hypercube communications. If we decrease the
number of processors per die to four (and possibly 6 Conclusion
add more memory), we can use separate wires for
control and data but the wires will be longer. Communications performance of practical systems

Note that in both cases the module pin-out is the depends first of all on available packaging technology
limiting factor for channel width, rather than the chip and second on protocol considerations. No topology
pin-out. If more off-module I/O pins are available, considered here has both scalable cost and perfor-
things will look better, but there will still be around mance, so the topology chosen must be in the context
a 5-to-1 ratio of the number of required off-module of the number of processors targetted. For a thou-
channels in the hypercube as compared to the grid. sand processors or so, given the assumptions on mid-
As mentioned before, the average interconnect length 1990's technology discussed earlier, the grid (or torus'
for the grid will be much shorter than that for the beems an appropriate choice. The performance of the
hypercube. Therefore, the grid offers shorter (i e. grid will depend on the signalling protocol and w:l.
faster) and wider communication paths than the hy- be best predicted through application simulations de-
percube when implemented in projected near-future tailed enough to relect design decisions made at that
technology, level.

2-152

References [12] C. E. Leiserson. Fat-trees: univeral networks

for hardware-efficient supercomputing. In Pro-
(11 G. Bilardi, M. Pracchi, and F. P. Preparata. ceedtngs of the 1985 International Conference on

A critique and an appraisal of VLSI models of Parallel Processing, pages 393-402, IEEE, 1985.
computation. In H. T. Kung, B. Sproul, and
G., Steele, editors, VLSI Systems and Compu- (13] C. Mead and M. Rem. Minimum propagation
tatioti, pages 81-88. Computer Science Press, delays in VLSI. In Caltech Conference on VLSL
Inc., Rockville, MD, 1981. pages 433-439, January 1981.

[2] G. Brebner. Relating routing graphs and two- [14; D. Nelsen. Personal Communication.
dimensional grids. In P., Bertolazzi and F. Luc- [15] F. P. Preparata and J. Vuillemin. The cube-
cio, editors, VLSI: Algorithms and Architectures, connected cycles- a versatile network for paral-
pages 221-231, Elsevier Science Publishers B.V., lel computation. Communications of the ACM,
Amsterdam, 1985. 24(5):300-309, May 1981.

'3] G. T. Byrd, R. Nakano, and B. A. Delagi. A [16] D. A. Reed and H. D. Schwetman. Cost-
Point-to-point Muticast Communications Proto- Performance bounds for multimicrocomputer
col. Technical Report KSL-87-02, Knowledge networks. IEEE Transactions on Computers, C-
Systems Laboratory, Stanford University, Jan- 32(1):83-95, January 1983.
uary 1987.

[17] C. L. Seitz. Ensemble architectures for VLSI-
[4] r). W. Dobbetpuhl, R. M. Supnik. and a survey and taxonomy. In 1982 Conference on

R. T. Witek. The MicroVAX 78032 chip. a 32- Advanced Research in VLSI, MIT, January 1982.
bit microprocessor. Digtal Technical Journal, 8] C. L. Seitz. Experiments with VLSI ensemble(2):12-23, March 1986. [18 .. Set.EprmnsihVS nebl

machines. Journal of VLSI and Computer Sci.
[5] Capt. B. J. Donlan. J. F. McDonald. R. H. Stein- ence. 1(3), 1984.

vorth. M. K. Dodhi. G. F. Taylor. and 191 C L. Seitz. Self-timed VLSI systems. In Cal-A. S. Bergendahl. The wafer transmission rood- tech Conjrence on VLSI, pages 345-355, Jan-ute. VLSI System: Desion, 7(l) .54-58. 88-90, uary 1979.
January 1936.

[6] Flectronic News, July 1,1985. N .umber Lonst
T.. olo " I of Ports I Path roncurrency

[7] C. K. Lau, et. al. A high performance half- C=mVletelyconnetted O(nl O1F Din-)

micron gate CMOS process for VLSI. In Pro- Combar ' W-i" 011 n)
aanan 05filog n; 0i:oq. n (n)ceedings of the 198.5 International Conference on Bootean k-cube ,n =." O-i,ogn; Oegi 0tOrs

Computer Design: VLSI in Computers. IEEE, ,h, ,,be it J,,

October 1985.
Table 1: Scalable Concurrency Topologies. [in

:S] T Feng. A survey of interconnection networks. processors!
Computer, 12-27, December 1981

[9] C. W. Ho, D. A. Chance, C. H. Bajorek. and V..moer .ULgstcT.pology) -,Pr:l NEt. h -:'n. ' -:
R. E. Acosta. The thin-film module as a high. R.n5 .,-1 ,1), ,.,,
performance semiconductor package. IBM Jour. .- us. ,) ,
nal of Research and Development. 26(3) 286- Pirflect silutfle) 00 0~'n -)4'2" O .
296. May 1982. , ":-es 00.-. : -

9, nary tr_. Qt';(, t ' a''4

(10] D. H. Lawrie Access and alignment of data in : . ,l.-
an array processor. IEEE Transactions on Com- Table 2. Scalable Cost Topologi z k proces-
puters. C-24(12):1145-1155. December 1975. Tor S asots i1

[11] C E. Leiserson. Area-Efficient Graph Lqyouts
(for VLSI). Technical Report CMU-CS-80-138,
Carnegie-Mellon University, August 1980

2-153

~L4 C.~

L- 0 i a 14

--- 5 -5i t' -5 -- 2- SH 3 -

- D- I -K -i3:- -

t-l OH64 A64A - -0 3 -1 36 31-

Figure ~ ~ Flur 3: Torusie- b(aar aree Figumb re gri Twob Imesoa

- -- - - - - 2- -154

Knowledge Systems Laboratory August 1987,
Report No. KSL-87-44

A Dynamic, Cut-Through
Communications Protocol

with Multicast

Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi

KNOWLEDGE SYTEMS LABORATORY
Department of Computer Science

Stanford University
Stanford, CA 94305

2-155

A Dynamic, Cut-Through
Communications Protocol

with Multicast*

Greg Byrdt
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

Russell Nakano;
Department of Computer Science

Stanford University
Stanford, CA 94035

Bruce A. Delagi
Worksystems Engineering Group
Digital Equipment Corporation

Maynard, MA 01754

"This work was supported by DARPA Contract F30602-85-C-0012, NASA Ames
Contract NCC 2-220-S I, and Boeing Contract W266875.

tSupported by an National Science Foundation Graduate Fellowship, with addi-
tional support provided by the Dept. of Electrical Engineering. Any opinions findings.
conclusions or recommendations expressed in this publication axe those of the a-Ithor
and do not necessarily reflect the views of the National Science Foundation.

lAuthor's present address: Digital Equipment Corporation. 100 HEamidton Avenue
UCO-I, Palo Alto. CA 94301.

2-156

Abstract

This paper describes a protocol to support point-to-point intetprocesbar coM-
munications with multicast. Dynamic, cut-through routing with local fow con-
trol is used to provide a high-throughput, low-latency communications path
between processors. In addition, multicast transmissions are available, in which
copies of a packet are sent to multiple destinations using common resources as
much as possible. Special packet terminators and selective buffering are intro-
duced to avoid deadlock during multicasts. A simulated1 implementation of the
protocol is also described.

2-157

1 Introduction

This is a revision of an earlier paper (1J, in which we presented a high-perfor-

mance point-to-point communications protocol with multicast capabilities. The

protocol described here is elsentially the same, but an effort has been made
to describe the protocol in terms that more closely correspond to the intended

hardware implementation.
The protocol described in this paper is designed to effectively utilize network

resources. Dynamic, cut-through routing with local flow control is used to pro-
vide a high-throughput, low-latency communications path between proceors.
In addition, a multicast facility is provided, in which copies of a packet are seat
to multiple destinations, using common resources u much possible.

Dynamic routing means that the communications channel to be used is cho-
sea at transmission time, based on what channels are then available. The alter-
native, static routing, would prescribe a specific channel for every destination-if
that channel were not available, the transmission would be blocked. Dynamic
routing, by adapting to current channel usage, attempts to balance the network
load. It is especially useful when the communications traffic is unpredictable or
variable over time (2]. Balancing the load allows more of the commnnication
resousca of the system to be well used throughout a computation.

Cut-through routing means that a routing decision .s made on the fly, as a
packet is received, rather than after buffering the entire packet. For example, in
"virtual cut-through" routing (3], the packet is passed on a word at a time, until
a desired channel is blocked, at which time the packet is buffered.' "Wormhole"
routing [5], on the other hand, uses flow control signals to halt the packet
flow, rather than buffering it. Cut-through routing offers reduced buffering
requirements (since the packet need not be buffered at each node) and low
latency. ([,71

Flow control, in general, is any mechanism which attempts to regulate the
flow of information from a sender to match the rate at which the receiver can
accept it (8]. In this protocol. a transmission may be blocked and resumed in
the event of network congestion. If an output channel becomes blocked, the
sender stops sending data and halts the flow of data from upstream. When the
channel becomes unblocked, the transmission is continued from where it was
halted. The flow control mechanism is local, because actions are taken based on
the state of the downstream component rather than " bal information about
the entire network.

Multicast transmissions in a point-to-point network allow a packet to be
sent to multiple destinations, using common resources as much as possible. The
packet is replicated as needed, and subsets of the original target list are assigned
to the copies. Thus, -virtual busses" are available precisely as and when they
are needed. Selective buffering and special packet terminators allow potential

'A relaed concept is staged circuit switcing, described in j4j.

2-153

deadlock conditions in multicas to be detected and avoided.
The network components which define the protocol are introduced -n sec-

tion 2, and the protocol itself is described in section 3. Section 4 presents a
hypothetical hardware implementation of the protocol, while section 5 describes
the implementation in the CARE simulation system.

2 Components

This section defines the network components used by the protocol. The protocol
is defined by the behavior of then components and the values that ae pawed
among them. Of course, these components do not woearly conewpoM to
distinct physical entities in a machine which impleaga this protocol-they
an merely a useu means of specifying the com "aa behavior of smck a
machine.

The site component coTtesponds to a procemor-memory pair in the target
machine. In particular, a site contains an operator, an evhadtoe. a router,
some local storage, and some network interface components, which are called
net-inputs and net-outputs (see figure 1).

The eveiwtor is the part of the site which executes z'plicatiou code. The
evaluator can request network activity, but otherwise hs no role in the netwm
behavior of the system. so very little will be said about it in this paper.

The operator is responsible for handling system-leve! activity, including cont-
munication. In the target machine, it would create packets to be sent over the
network and accept transmnisions destined for its associated procesor. The
operator and evaluator communicate through shared local memory- The detail
of operator-evaluator communication will not be addressed in this paper.

The site components which interface directly to the network are called act-
inputs and aet-outputs. On each site, there is a net-input/net-output pair con-
nected to the operator, foe local packet origination and delivery. as well as a
pair for every communication channel to the network.2 We will refer to the pair
connected to the operator a the Olocal" net-input and net-output. Because
of cut-through routing, net-inputs and net-outputs are only required to have
enough storage for one word of a packet, rather than the entire packet, where a
0wored" is long enough to specify a target site.

The routrconnects all the net-inputs on a site to all the net-outputs. When
it receives a packet from a net-input, it determines the destination (or destina-
tions) and makes the connection to the appropriate set-output (or net-odtputs).
Also, flow control information from the net-outputs are relayed by the router to
the appropriate net-input.

A pair of fifo-baffers queues packets between the operator and local net-input
and net-output. The upstresm fifo-buffer queues packets from the network to

'The exact munber o net-'aput/net-output pair requaredby a ute depen~ oa th- aetwork

2-15 9

rTo

Net-iwNet*

Immm

the nctwork.

3 Th~ rotoco
Fan N~c*t

NON**~ 2Locute r a l~to of. c ack h is ato akti

Th oeatr eeries~h Mau oapeaktobrxmnn tstriao.

0 -6

Target Entry 1
Target Entry 2

Target Entry n

Data

Packet Terminator

Figure 2: Organization of a packet.

from data. There are two types of tags used for specifying a target site--one
which indicates that there is only one target for this packet (i.e., unicast), and
one which indicates that there may be more than one (i.e., multicast). This
allows the router to handle unicasts efficiently, without the extra mechanisms
required for multicasts described later. There are also a tas for the other words
it, a target entry, which do not specify a site.

Also, tags are used to implement several spt -ial characters required for the
protocol. There are two types of pad characters: one for denoting a null target
entry, and one for indicating that there is no word availabie for transmission.
Finally, there are three distinct packet terminators--:end-of-packet, :local-
end-of-packet, and :abort-packet. The uses of these special characters will
be further explained as the 1 rotocol is described.

Table A summarizes the tags needed to implement target entries and special
characters.

Target Sites :unicast-sik.
:multicast-site

Pad Characters :null-target
:null-transmission

Terminators :end-of-packet
: local-end-of. packet
:abort-packet

Table A: Tags used by 'ommnications system.

2-161

3.2 Packet Transmission

The transmission path of a packet is shown in figure 3. First, an evaluator

requests a packet transmission. For the moment, assume a unicast transmission
(only one target). The operator then sends the packet (through a fifo-buffer)
to the local net-input. The router decides which net-output should receive the

packet, based on the target site and the availability of net-outputs, sets up a
connection between the local net-input and the selected net-output, and begins
the transfer of the packet. Each non-local net-output is physically connected
to a net-input on a (logically) neighboring site. When available, this net-input
accepts the packet, and its router sends the data to the local net-output, if
the target site has been reached, or to another net-output, if not. This contin-
ues until the target site has been reached, where the local net-output delivers
the packet to the cerator (through a fifo-buffer). The operator can then per-
form whatever operation is specified by the packet, such as storing the value in
memory or queueing some operation for the evaluator, for example.

If the packet has more than one target, the router may split it-that is, it

may send (essentially) the same packet to several net-outputs. This is called
a multicast transr.iiuior "ach transmitted packet contains a distinct subset
of the targets of the or l packet.4 The copying operation is done during
transmission, one word at a time, as opposed to buffering the entire packet
and making copies. If any branch of tae multicast is blocked, the net-input
sends :null-transmission characters down the other branches until valid data
may be sent down all the paths. The pad characters (either :nul-target or
null-transmission) are thrown away when received by a fifo-buffer.

3.3 Flow Control

Flow control information, in the form of status signals, flows in the direction
opposite to packet transmission. There are three distinct status signals, as

4 Each copy o the packet as it is tranuitted will have the same number of target entry
"slots." but some of them wll contain null entries.

Stut .feans g
'open Available to receive data.

'wait Busy or network is blocked; do not send
more data.

'abort-request I Potential deadlock detected.*

"Only a fifo-bufler may originate the 'abort-requeot signal.

Table B: Flow-control signals.

2-162

Interconnection Network

Ipatem Outut Iptm Ouatut

Ropterao Route

Inu Evalu Inat

Oealator Operato

Si*g 1 % Site*2

Figure 3: L.e. -irk component interconnections. Packets travel in the direction
marked by arrows. Flow control information flows in the opposite direction.

2-163

shown in Table B. The status signals are used to indicate to the upstream
component whether data can safely be transmitted.

An 'open signal is used to indicate that the component is ready to receive the
next word of the packet. If the transmission becomes blocked ior some reason, a
'wait signal is sent upstream to temporarily halt the flow of data. Finally, the
'abort-request signal indicates that a potential multicast deadlock condition
has been detected and the transmission may be aborted.

3.4 Deadlock Avoidance

3.4.1 Unicast Deadlocks

Dally and Seits (5] have developed s deadlock-free unicast transmission scheme
for wormhole routing, based on virtual channels. Our strategy is different-if
progress cannot be made, a packet may be temporarily buffered at an interme-
diate site. In this way, at least one of the packets responsible for a deadlock will
be removed from the network, so that the other packets may make progress.
Thus, this protocol is a compromise between virtual cut-through (31, in which
the packet is always buffered when it is blocked, and wormhole routing [5), in
which the packet is never buffered.

More specifically, if the number of connection attempts for an acceptable
net-output exceeds a threshold, then the local net-output is considered as a
potential target. If the local net-output becomes available before the desired net-
output, the packet is buffered, freeing its upstream channels. When the operator
examines the packet and discovers that the packet was targetted for another site,
it will retransmit the packet. Assuming packets cannot be infinitely long, either
the local net-output or an acceptable remote net-output will eventually become
free, so that deadlocks can be avoided, as long as there is sufficient space in the
site at the front edge of the transm..iion.

3.4.2 Multicast Deadlocks

The existence of packet multicasts introduces the possibility of another type of
deadlock. A packet traveling through the network acquires tbe use of network
resources (e.g., net-inputs and net-outputs) and simultaneously excludes the
use of thciw resources by other packets. Without special attention paid to the
possibility of deadlocks, it is possible that resources are consumed to perform
the multicast, but completion of the transmission is not possible because the
resources acquired are insufficient.

Figure 4 illustrates an example of how multicast deadlock can arise. Sup-
pose we have two multicast transmissions, call them A and 8, with common
destinations, site-1 and site-. Suppose that one of the packets from multicast
A has already gained access to the local net-output on sMte-i. A packet from
multicast B has similarly gained access to the local net-output on st.e-2. For

2-164

Figure 4: Example of deadlock in a multLcst.

multicast A to continue, it needs to gain access to the local net-output of sife-f,
for B to complete, it needs to gain access to the local net-output on site-/. Also,
neither of the multicasts can release the resources it has already required until
the transmission is completed. Since each multicast has acquired a resource
that the other needs, a deadlock results.

In order to recover from such a situation, the system must:

* Detect a potential deadlock condition, such as the situation d&-cribed
above;

* Back out of the unsafe condition (by aborting one or more transmissions,
thereby releasing some set of resources); and

e Retransmit the aborted packets later, when the network is (hopefully) less
congested.

Whenever a packet is split for multicast, the protocol requires that a copy of
the original packet (with a complete target list) be sent to the local net-output.
This packet will then be stoed in a fifo-buffer, so that it may be retransmitted
in the cae that the current multicast must be aborted due to deadlock.

5The tranamsion cannot continue because the net-input cannot send any words until
11 branches of the multicast are ready to receive it. Since the branch waiting for the local

net-output of este-2 is blocked, none of the branches may proceed.

2-165

A potential deadlock is detected by the fifo-buffer when the number of con-
secutive :null-transmission characters exceeds a threshold. This indicates
that one or more branches of the multicast have been blocked fo: a long time,
which implies the possibility of deadlock. When the threshold is exceeded, the
fifo-buffer asrts an 'abort.request signal upstream, so that the router may
abort the transmission if necemsary.

A multicast is aborted by sending the -abort.packet terminator
downstream-all operators which receive a packet with this terminator will is-
nor* the packet. Also, the operator which receive. the copy of the original packet
can teil wethe it needs to be retransmitted by looking at its terminator.

Thee actions are sufficient to prevent persistent deadlock during multicasts.
However, since there is finite storage in the system, a scenario can be constructed
in w4ich all the storage becomes committed and no packets can be delivered.
The protocol does not prevent this type of resource exhaustion. The assumption
is made that the designed capacity of the system is sufficient for its application.

4 Implementation
This section provides a detailed description of the behavior of each of the net-
work components in a hypothetical hardware implementation. Figure 5 shows a
"generic" network component, with its input and output ports. The input and
output ports are used toPa packets and flow control information--packets tow
downstream, flow control signals flow upstream. The packet-in port accepts
data from upstream, and the packet-out port sends data downstream; the
status-in port accepts Bow control signals from downstream, and the status.
out port sends flow control signals upstream.

packet-il status-out

Component

packet-out itatus-In

Figure 5: Generic network component.

2-166

4.1 Operator

The operator sends and receives packets through the network and through the
memory it shares with the evaluator. Thus, it has more than one set of ports for
packet communication. To avoid confusion, the ports it uses to communicate
with the network are prefixed network- (e.g., network-packet-in), while the
ports used for communication with the evaluator are prefixed evaluator- (e.g.,
evaluator-packet-in). Only network communication will be discussed in this
paper.

With respect to the network, both the upstream and downstream compo-
nents of an operator are fifo-buffers. The upstream fifo-buffer queues packets
from the local net-output and sends them to the operator. The downstream
fifo-buffer queues packets from the operator and sends them to the local net-
input.

4.1.1 Sending a Packet

The operator has a queue of operahons, or requests, which it services in order
of arrival. If the head of this queue is a packet to be sent out into the network,
and network-status-in is 'open, indicating that the downstream fifo-buffer
is ready to accept a packet, the operator sends the packet (with an :end-of-
packet terminator) through the network-packet-out port.

4.1.2 Receiving a Packet

A packet arrival at the operator is signalled by the appearance of a target entry
word on the network-packet-n port. The network-status-out port is set
to 'open, which signals the upstream fifo-buffer to keep sending packet words,
and the packet is stored in a temporary buffer.

The action taken by the operator when the packet is completely received
depends on the type of packet terminator. There are three types of terminators,
shown n Table C, and their interpretations are given below.

The arrival of an :end-of-packet signifies that the packet transmission
was successful. The operator sends 'wait to the upstream fifo-buffer (through
'network-status-out) until the packet is serviced (e.g., an evaluator operation

Terminator Weaning
:end-of-packet Normal packet termination.
:abort-packet Packet is to be discarded by operator.
:local-end-of-packet Treat as :end-of-packet, except ignore

all Racket targets other than the local site.

Table C: Packet terminators.

2-167

is queued). When the operator is ready to receive the next packet, it asserts

'open.
If the operator notices that some or all of the target addresses of the received

packet do not correspond to its own address, the packet is sent back out into

the network. 6 This might happen for one of the following reasons:

1. During a unicast transmission, a net-input could not make a connection

to the desired net-output. The packet is forced into the local fifo-buffer,
so that the operator may resume the transmission at a later time, freeing
up the net-input and its upstream components.

2. A multicast transmission (originated locally) was aborted. The local io-
buffer received a copy of the packet with a complete target list, so that
the packet could be retransmitted in case of an abort.

A :local-end-of-packet terminator instructs the operator to accept the
packet, as in the case of :end-of-packet, but to ignore any non-local target
addresses (i.e., no retransmission). This indicates that a multicast was successful
and does not have to be retried.

The arrival of an :abort-packet terminator instructs the operator to ignore
the packet. In other words, the temporary buffer holding the packet is released
without servicing the packet.

4.2 Fifo-buffer

Each site has two fifo-buffers, which have identical behavior but perform slightly
different functions. One fifo-buffer is upstream with respect to the operator,
and the other is downstream. The fifo-buffer can be thought of as three distinct
parts: the input, the queue, and the output.

The queue is a simple FIFO queue, with one-word input and output ports.
It responds to a 'take signal from the output by placing the oldest item in
the queue on the output ports. It responds to a 'put signal from the input by
placing the incoming data at the tail of the queue. It also presents a queue-
status signal to both the input and output, which can be 'empty, 'some, or
'full. If the queue is empty, it sends a pad character to the -"utput in response

to a 'take signal.
On its output side, the upstream fifo-buffer is connected to the operator.

while the downstream fifo-buffer is connected to the local net-input. The output
interprets an 'open signal on status-in by sending 'take to the queue and
sending the resulting output downstream. Nothing is removed from the queue
if status-in is 'wait.

'If any of the targets are local, the apertot keeps & copy of the packet and strips the local
targeta rom the retrananuttrd packet.

2-168

Nfree

Condition Meaning,
DF Data arrives, and queue full.

DNF Data arrives, and queue not full.
F Queue full.

N F Queue not fulL
TQ Terminator queued.

Figure 6: Fifo-buffer state diagram.

On its input side, the upstream fifo-buffer is connected to the local net-
output, and the downstream fifo-buffer is connected to the operator. The fifo-
buffer needs to keep track of whether the terminator for the current packet has
arrived, because of the multicat abort procedure needed for deadlock avoidance,
so we describe the input handler as a finite state machine, whose state diagram
is shown in figure S. The labels on the ares represent the condition which caused
the transition and the status signal amerted on status-out as a result.

The fifo-buffer input begins in the 'free state. Whenever new data arrives
on the packet-in port, if the queue is not full, the 'open state is entered and
'opme is asserted on status-out. If the queue is full, the 'wait state is entered
and 'wait is asserted; when space becomes available in the queue, the 'open
state is entered and 'open is asserted. If the queue becomes full at any point
in the transmission, the 'wait state is entered and the 'wait signal is asserted
on status-out, so that no more data will be sent from upstream. When space
becomes available, the 'open state is re-entered, and 'open is sent upstream to

2-169

resume the flow of data.
When the fifo-buffer is in the 'open state, a "time-out" may occur, which

indicates that number of consecutive :ul-transmission characters has ex-
ceeded a threshold. When this happens, it remains in the 'open state and

asserts 'abort.request on the status-out port.
When a packet terminator arrives, if the queue is not full, the 'free state

is entered and 'open is asserted on status-out. If the queue is full, the 'wait
state is entered first, which asserts 'wait until space is available in the queue.
Then the 'free state may be entered. At this point, the fifo-buffer is ready to
receive the next packet.

4.3 Net-Input

The downstream component from a net-input is a touter, but the values on the
status-in port are actually originated from a downstream net-output and are
passed through the router. If the net-input is local (connected to an operator),
its upstream component is a fifo-buffer; otherwise, its upstream component is a
net-output (on a neighboring site).

The net-input serves as a one-word data buffer and relays flow control infor-
mation to its upstream component. It has a two-phase operation:

1. During phase one, the status latch is opened, and the current value of
status-in flows upstream. This value will either be 'open of 'wait-the
router will not allow an 'abort-request signal to ever reach the net-input.
The data latch (fed by packet-in) is closed during this phase, and the
stored value is output on packet-out.

2. During phase two, the net-input clomes the status latch and examines the
latched signal. If the signal is 'open, it opens the data latch, allowing
data to flow downstream. If the signal is 'wait, the data latch remains
closed. In any cae, the data latch is closed at the end of this phase.

4.4 Net-Output

The upstream component of a net-output is always a net-input. On the down-
stream side, the lucal net-output is connected to the fifo-buffer which delivers
packets to the operator, while a non-local net-output is connected to a net-input
on a logically neighboring site.

The operation of the net-output is the same as the net-input, except that
the phases are reversed. The net-output conditionally latches data during phase
one, and allows flow control signals to flow upstream during phase two. The only
other difference is that the 'abort-request signal may be passed upstream.

Table D summarizes the net-input and net-output operations during the two
communication phases.

2-170

Component Phase One Phase Two

Latch status from
Open status latch to downstream and

Net-Input allow status information conditionally open data
to flow upstream. latch to allow data to

flow downstream.

Latch status from
downstream and Open status latch to

Net-Output conditionally open data allow status information
latch to allow data to to flow upstream.

flow downstream.

Table D: Communication cycle phases.

4.5 Router

The router connects the net-inputs and net-outputs of a site, and is responsible
for:

9 Determining to which net-outputs a packet should be sent, based on the
packet's target addresses, the system routing strategy, and the current
availability of net-outputs;

" Creating, maintaining, and deleting the connections between a net-inputs
and sets of net-outputs, including transmitting data and flow control sig-
nals between them; and

" Sending appropriate pads and packet terminators, in order to implement
the deadlock avoidance mechanism.

For a unicast transmission, the function of the router is quite simple. Upon
examining the packet target, it selects a net-output (possibly the local one) to
continue the transmission, based on the location of the target site relative to
its own and on the availability of net-outputs. If no connection can be made,
a twait signal is sent to the requesting !et-input until a net-output becomes
available. After a net-output is selected, the router maintains the connection
by sending data from the net-input to the net-output and sending flow control
signas from the net-output to the net-input. When the packet transmission is
completed. the net-output becomes available to accept another connection.

During a multicast transmistion, the packet targets ate read one at a time.
and the connections to net-outJuts are made as the targets are read. For each

2-171

net-input the router keeps track of the type of its current connection. There are

three possible connecton types:

'unicast The packet is being transmitted to only one target, either because
there was only a single target in the packet, or because the packet is being
'pamed through- because the local net-output was not available.

'ail-remote The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet's target list
contained only non-local sites.

'9smo-local The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet's target list
included the local site.

In the next two sections, we present further details about how connections
are made and how multicasts are handled.

4.5.1 Making a Connection

Making a connection involves determining the logical "direction" (e.g., up or
down) of the target from the local site, then determining which net-output
should be used for that direction, and finally updating the connection tables
and starting the packet transmission.

Determining the logical direction depends on the network topology and is
usually straightforward. For example, a grid or tons requires only some arith-
metic comparisons between the target address and the local addres to get Up,
Down, Right, Left, or some combination of theme. A %vpercube, on the other
hand, requires an exclusive-OR operation to see which bits in the destination
address are different than the local address. Equally simple operations can be
envisioned for most other network topologies, as well.

The protocol does not prescribe a particular routing policy for the network.
Instead, information about possible connections is "hard-wired" into the router
in the form of a priority network. Conceptually, we model the priority network
as a preferce g able-for every logical direction, we provide a prioritized list of
net-outputs that may be considered. Examples of routing strategies which may
be implemented in this way are (1) try all net-outputs, starting with the closest
to the target, (2) try only one net-output (static routing), and so forth.

Given a direction, the router checks the status of each net-output in the
preference table, in turn. until an available net-output is found. If none is
available, then the connection fails, and 'wait is sent upstream to the net-input.

4.5.2 Multicast Transmissions

When a multicast packet arrives, the router makes a connection for each packet
target, one at a time. If the connection for a target has already been made (in re-
sponse to an earlier target). the target entry is merely transmitted downstream

2-172

to that net-output. Whenever a target entry is transmitted. :null-target char-

acters are sent down all of the other connections. In this way, the target list

is partitioned along several paths. When the packet data is received by the

router, it is transmitted to all the connected net-outputs. If any of the down-
stream paths becomes blocked, :nuil-tranissmios characters are transmitted
down all the other paths.

There is an additional complication for the router, however, since the local

net-output muit be sent a copy of the packet to be buffered, in cae the triin-
miion is aborted and must be retried. Becaue of the special :uanicast-site
tag, the router knows immediately whether a packet should be treated as a
multicaut or unicast. Note. however, that since the router only looks at one
address at a time, the router cannot determine when the lou tatge occurs for
a particular branch of the multicas. Thus downstrm routes may mistakenly
interpret a packet with only one target as a multicast. As a result, unnecessary
local copies of this packet will be made as it maken its way to its target site.T

When the first target of a multicast is received, the router uies to conect to
the local net-output. as well as the net-output specified by the preference table.
If the local net-output is not -ailable, then the packet is not split at this site.
Instead, the entire packet is sent down the remote connection. In this way, the
packet will either sequentially visit each target on the list or will finally reach a
site where it may be split.

If at any time during the connection proces, a -sired net-output is not
available, &'wait is sent upstream to the net-input to halt the fow of additional
targets. While waiting for a net-output to become free. the router must send
target pad characters down the established connections. Unlike in the unicut
case, we cannot decide to divert this target to the local net-output. since then
there would be no way to tell which targets were actually serviced and which
were diverted. Therefore, to avoid the possibility of deadlock during target
processing, the local net-output must be sent data pad characters, so that the
downstream fifo-buffer can time out, if appropriate. an the multicast can be
aborted.

If the transmisnion completes successfully (i.e.. is not aborted), the received
packet terminator is passed on to all the remote (non-local) net-outputs, but the
local net-output may be sent a modified terminator, a@ follows. If the received
terminator is -abort-packet, it is sent as is, instructing the local operator to
ignore the packet. If the received terminator is :end-of-packet, the terminator
sent to t _- local net-output depends on the connection type:

"all.remote An :abort-packet is sent, since the packet should not be retrans-
mittes -.-d may be ignored.

?Te outer c-,fu- be opimid to not"c when an aI-frote cohnectpoo only no"~ S
$in&e cecsco- --' .*bort-pscket could then be inot to the I*cai fifo-bujTet.sune theme
is so posumbihty d JA ..- ck and thus no retramn niae li be %ecessry.

2-173

'some-local: A docal.end-of-packet is sent, instructing the operator to ac-
cept the packet for the local targets, but to ignore the remote targets (i.e.,
do not retransmit).

If, during the multicast transmission, the router receives an 'abort-request
signal from the local net-output (generated by the dovunstrearn fifo-buffer), the
router aborts all the remote connections for the connected net-input by forcing
the net-outputs to latch an :abort-packet terminator. An 'open signal is
passed upstream to the net-input, and the transmission proceeds as if it were
a unicast transmission destined for the local cperator. When the packet ter-
minator is received, it is passed directly to the local net-output. Note that
an :end-of-packet will cause the packet to be retransmitted by the operator,*
since there are non-local targets, and an :aborw.-packet will iause the packet
to be discarded.

5 CARE Implementation

In this section, we provide an overview of the ir'.;ementation of the protocol
in the CARE simulation system. CARE is a library of functional modules and
instrumentation built on top of an event-driven simulator [91, which ;: used
to investigate parallel architectures. The typical CARE architecture is a set
of processor-memory pairs (sates) connected by some communicatiuns network,
though it can also be configured to represent a system of processors communicat-
ins' thrc~igh shared memory. The behavior and relative performance of CARE
modules can easily be changed, and the instrumentation is flexible and useful
;n evalua:.ing the performance of an architecture or in oserving the execution
of a parallel program.

CARE is implemented using Flavors--an object-oriented extension of Zeta-
lisp (101. Roughly speaking, each component described in section 2 is imple-
mented as an object (an nstcnce of a flavor). (One notable exception is the
router-its functions and tables are assumed by the site object, rather than im-
plemented as a separate compc.nient. Also, Ihe memory at a site is not explicitly
represented a& an object, but exists implicitly in the simulator.) Associated
with each object is a set of instance variables, used to hold state information,
and a set of methods, procedures used hy the object to respond to messagrs
from other objects.9 The instance variables loosely correspond tc the ports r.vd
state variables used to describe the protocol in section 3. In particular, each of
the components which are described in terms of a state machine has a instance
variable, packet-6tatus, which hold the current state of the component.

'It then am local targets, a copy of the paclat will be epg and the local targets wsl be
removed front the target List upon retransmission.

"Objects and message are only a softwa-e tool used by the simulator. Sending ,neeeeres
between objectAs in the i'mulator ha no particular correspondence to sending ,ckts between
components in the target machine.

2-174

These objects communicate through shared structures called vias, which

represent unidirectional data paths. These are the "wires" which connect the

components' "ports." Asserting a value on the sending end of the via imme-
diately (in simulated time) triggers an event for the object at the other end.
Therefore, a via can be considered a zero-delay wire waich can transmit any
arbitrary value (not just single bits).

The simulation is functional,10 rather than circuit-level, and event-driven,
rather than clock-driven, because cycle-by-cycle simulation of a parallel machine
would be extremely time-consuming, especially when the number of processors
is large. For this same reason, we do not wish to model the transmission of
a packet one word at a time. Instead, a packet is represented by two distinct
parts, one representing the contents of the packet, and the other representing
the packet terminator. In th! following discussion, packet will refer to the first
part (representing the front edge of a "real" packet), and packet terminator will
refer to the terminator part.

In the simulation environment, explicit packet terminators allow us to (I)
implement the deadlock avoidance mechanisms described earlier, and (2) model
the transmission of a packet through the network in terms of its front edge and
its back edge. The transmission time of a packet is the time between arrival
of its front edge and its terminator. In this way, we can accurately model the
transr -ision of the packet without explicitly representing every word.

In the following subsections, we describe how the protocol is implemented
in terms of object, packets, and packet terminators.

5.1 Operator

The time required to transfer a packet from the operator to a fifo-buffer (one
word at a time) would be proportional to the size of the packet. To model
this, the operator delays an appropriate time between &.-uding a packet and
sending its terminator. When the transmission time of the packet has elapsed,
the terminator is .ent as soon as an 'open signal is received from the fifo-
buffer. This is a simplified model, since there can be arbitrary delays involved
in freeing up space in a full buffer, but the fifo-buffer output module ensures
that the proper space is inserted between packet and terminator in the network.

A CARE operator receives a packet as described in the protocol. Note that
the time betweeL receiving the packet and its terminator is dependent on the
size of the packet plus any delays encountered on its transmission pa.h.

1OThe simulation is functional, i the ,nse that not every aspect of the hardware is sim-
ulated in detail. Some aspects a r simulated by regiter transfer level behavior, while other
aspects have only a functional description. For example, the communications system im sunu-
Lated in terms of register transfers, while the execution of (uniprocessor) application code by
the evaluator is not simulated at all-it is directly executed by the host machine. However
titnng information for the execution of application code, based on measurements and esti-
mate, is used to assure that the simutla&tion is reasonably faithful to the execution of a 'eal"
machine.

2-175

5.2 Fifo-buffer

In the simulator, the amount of storage in the fifo-bt,'Eer may be set at run

time." Each packet or packet terminator takes up one space in the buffer, no
matter what its actual size.

Since we do not simulate each word of a packet transmission, the fifo-buffer
cannot count pad characters to detect a potential multicast deadlock. Instead,
the simulated fifo-buffer uses a time-out procedure: when the packet is received,
the fifo-buffer schedules a wake-up event at random time in the future, based on
the packet size (for example, between 1.5 and 3 times the packet transit time).
If the packet terminator has not arrived by that time, the fifo-buffer asserts
'abort-request. This is not a viable option for actual implementation, since a
real packet header contains no information about the packet size.

On its output side, the simulated fifo-buffer is more complex than the pro-
tocol indicates. If a packet is being output from the queue, the fifo-buffer must
introduce a delay between the packet and its terminator to model the packet
ttscsit time. However, the transit time is not merely proportional to packet size,
because downstream blocking could cause arbitrary delays in the transmission.

The sirrulated fifo-buffer output transitions are shown in figure 7. In this
case, the transitions are labelled with condition and actions, rather than flow
control signals. Some additional instance variables for the fifo-buffer are required
to implement the output function. They are:

1. transmission-status: State of packet output.

2. delay: Accumulated time spent waiting.

3. last-wait: Event time when last 'wait was received.

Initially, transmission-status is 'free. If the downstrearr component re-
quests data (status-in goes to 'open) and the queue is not empty, the top of
the queue, which must be a packet, is placed on the packet-out via, delay is set
to zero, and transmission-status goes to 'busy. Also, transmission-status
is scheduled to go to 'done at a time that is proportional to packet size.

If no 'wait signals are received from downstream while the transmission is
'busy, then the transmission will be done after the packet transit time has
elapsed, and the packet terminator will be sent as soon as the downstream
component is ready to receive it.

However, if 'wait is received durinv. 'busy, last-wait is set to the current
time and waiting is set to t. If 'open is re:eived during 'busy, the time spent
waiting is added to delay and waiting is set to nil.

If 'open is received when transmission-status is 'done, and delay' is
non-zero, then 'busy is entered again, 'done is scheduled for the current time

"By setting the care:*00buffer.,isi *00 variable to any posit;ve integer, or to nil, which
means -unbounded."

2-176

F 'Free ree nsau-n

DONE DoneOeEnt

WD 'Wait rec'd onan si

(delay nonzero OR last-wait non-nil].
OND 'Open rec'd and

(delay =-0 AND last-wait -nil].

Action Meanins
send Send packet, schedule 'done for

now +. trsmission-time.
Iwnew Last-wait = now.
delay Delay a delay + (now - last-wait);

Last-wait - niL.
busy Schedu~e done for now + delay;

Last-wait - niL.
term Send termninator.

Figure 7: Simulated fifo-buffer output state diagram.

2-177

plus the accumulated delay, waiting is set to nil, and delay is set to zero.

Alternatively, if waiting is t and delay is zero, then 'done has occurred in the
middle of a wait; 'busy is entered, waiting is set to nil, and 'done is scheduled
for the current tima plus the difference between now and last-wait.

Finally, when transmissidn-status is 'done, delay is zero, and waiting

is nil, the top item of the queue (which must be a packet terminator) will be
sent. Then transmission-status becomes 'free, and the fifo-buffer is ready to
respond to the next data request.

Ad of this is to ensure that the time between the packet and its terminator is
dependent on the packet size plus any network delays along its path. The other
components, net-inputs and net-outputs, do not require this added complexity
on the output side. Since they merely pms packets and terminators from one
point to the next, 12 the flow control signals ensure that they will maintain the
proper separation between a packet and its terminator.

5.3 Net-Input, Net-Output, and Router

As mentioned earlier, the router is not an explicit object in the simulation.
Instead, the site object performs its operations. Net-inputs and net-outputs
communicate with it by pasing messages (in the Flavors sense) rather than
making asertions on vias. Likewise, the site updates net-input and net-output
"ports" by setting instance variables.

To connect to net-outputs, the net-input sends a :connect message to the
site, which then attempts to make the appropriate connections. The result is
stored in the connection instance variable of the net-input. If no connection
could be made, 'seek is returned; otherwise, the type of connection (unicast, all-
remote, or some-local) is returned. If only some of the desired connections could
be made, the unsuccessful targets are placed in the pending-connections in-
stance variable. The net-input keeps sending :connect messages to the site
until all the targets are satisfied.

Other site methods used by the aet-input include :disconnect-remote,
which releases the connections to all net-outputs except the local one, and
:send-all, which transmits a packet or terminator to all connected net-
outputs. (:Send-local and :send-remote transmit to a subset of connected
net-outputs.)

Similarly, the net-output uses the :wait, :open, and :abort-request meth-
ods to relay flow control signals to the site, which then maL.s the appropriate
assertions to the connected net-input.

In the router, the :find.direction method determines the logical direction
of a target, given its address. This is defined as a method, rather than a func-
tion, because this operation is topology-dependent. In Flavors, we can define

12 Thj is in contrat to the f5.fo-buffer, which must snsert the packet and terminator into

the network " the proper time.

2-178

a specialized site object for a particular topology by changing this one method

and inheriting the remaining behavior from the generic site definition.
The setup-targets function examines the target list, makes the connections,

and copies the packet, as needed. Finally, the make-connections function is

resposible for actually setting up connections and sending the packet down-

stream.

5.4 Results

Variants of this protocol have been used for many CARE simulations over the
course of several months. Though the performance has not been extensively
meseured, the protocol appears to offer reasonable performance over a range of
network loads. Deadlocks and lost packets do not occur, even when the net-
work is extremely congested. Thus, our experience with the protocol indicates
that it offers efficient and robust one-to-one and one-to-many interprocessor
communication.

6 Conclusion

A protocol for high-performance interprocessor communication has been pre-
sented. This protocol supports dynamic, cut-through routing with local flow
control, which allows high-throughput, low-latency transmission of packets. In
addition, multicast transmissions are allowed, in which a packet is sent to several
target. using common resources as much s possible.

The protocol also prescribes mechanisms for detecting and avoiding deadlock
conditions due to resource conflicts during multicast. In particular, a copy of
the packet is saved before it is split, special packet terminators are used to
abort transmissions and trigger retransmissions, and random timeout intervals
are used to detect potential deadlock conditions.

Finally, the implementation of this protocol in the CARE simulation sys-
tem is described. Explicitly representing a packet as the front edge and the
terminator allows accurate modelling of word-by-word packet transmission in
a functional, event-driven simulator. Also, the success of the implementation
indicates that this is a reasonable protocol for interprocessor communication.

References

[1] Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi. A Point-to-point
Msluicest Communicstons Progocol. Technical Report KSL-87-02, Knowl-
edge Systems Laboratory, Stanford University, January 1987.

t2] V. Ahuja. Design and Analysu of Compter Communication Networks.
McGraw-Hill, 1982.

2-179

(31 P. Kernami and L. Kleinrock. Virtual cut-through: a new computer com-
munication switching technique. Computer Networks, 3:267, 1979.

(4) M. Arango, H. Badr, and D. Gelernter. Staged circuit switching. IEEE
Transactions on Computers, C-34(2):174-180, February 1985.

(5] William J. Daily and Charles L. Seit2. Deadlock-free message routing in,
multiprocesor interconnection networks. IEEE Transactions on Comput-
era, C-36(5):547-553, May 1987.

[6] P. Kermani and L. Kleinrock. A tradeoff study of switching systems in
computer communication networks. IEEE Transactions on Computers, C.
29:1052, December 1980.

(7] William J. Dally. Wire-efficient VLSI multiprocessor communication net-
works. In Paul Loeleben, editor, Advanced Research in VLSI-Proceedings
of the 1987 Stanford Conference, pages 391-415, MIT Press, 1987.

(8] Richard W. Watson. Distributed system architecture model. In B. W.
Lampoon, M. Paul, and H. J. Siegert, editors, Distributed Sysiern -

Architecture and Implementation, chapter 2, pages 10-43, Springer-Verlag,
1981.

(9] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. ti:

Instrumented Architectural Simulation System. Technical Report KSL-8...
36, Knowledge Systems Laboratory, Stanford University, January 1987.

(10] Sonya Keene and David Moon. Flavors: object-oriented programming
Symbolics computers. In Common Lijp Conference, 1985.

2-180

-1

Knowledge Systems Laboratory January 1988

Report No. KSL-88-10

A Performance Comparison of
Shared Variables vs. Message Passing

Gregory T. Byrd

Department of Electrical Engineering
Stanford University

Stanford, CA 94305

Bruce A. Delagi

Digital Equipment Corporstion

- iynard, MA 01754

Submitted for publication to:

I1I Supercomputing Conference

May 1988

2-181

A Performance Comparison of

Shared Variables vs. Message Passings

Gregory T. Byrd Bruce A. Delagi
Stanford University Digital Equipment Corporation
Stanford, CA 94305 Maynard, MA 01754

Abstract
In this Paper, we examine the performance of a parall applica implemented in both

skated variabl, and message pasdug styles. Out purpose is to illuminate the differeaces between
the programming models and show how these differences affect -he performance of the programs
when .ected on systems incorporating hundreds of processing elements.

First, we present the programming models used for the implementations. Thea we examine
the comt associated with each model, focusing on interprocessor communication and synchro-
nisatioa. Stategies fm minimising data co mmuication costs are discussed and comied
through simulation. Also, architectural features awe identiied which have a substantial impact
on shated variable and message passing performance.

1 Concurrent Programming Models

Though there is & wide range of concnrurt programming models, they can usually be classified ac-
cording to the ptimary means of communicating between processes. If communication is performed
by passing values, we call it a message paaing model. If communication is done by reading and
writing shared memory locations (i.e., passing references), we call it a shared variable model.

In this section, we present the details of what we will take as our working example of each
of these models. There are certainly other possible models, but they will, for the most part, be
mixtures or specializations of the two models presented here.

1.1 The Shared Variable Model

We take thread-oriented shared Variables to be our primary example of a shared variable model.
All comumnication and synchronization is performed th:ough reading and writing shared variables.

*This matera is baed oa work supported under a National Science Foundation Graduate Fellowship. Any
opinions, fndings. conclusions, or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the National Science Foundation. This work was also supported by DARPA Contract
FSOM-8I-C-0012, NASA Ames Contract NCC 2-220-Si, and Boeing Contract W266875.

The authors may be contacted at Knowledge Systems Laboratory, 701 Welch Road, Bldg. C. Palo Alto, CA,
94:11; or through electronic mai at ByrdOSumex-Aim.Stanford.EDU or Delgi@Suznez-Aim.Stauford.EDU.

2-182

I CONCUIMRT PROGRAAMVG MODELS

There is one process, or thread of control, for each physical processor involved in the computation,

hence the term "thread-oriented."
Various forms of synchronization based on shared variables may be used, including spin locks,

semaphores, monitors, barriers, and so forth. In addition, it may be possible for oat processor

to interrupt another, passing it an interrupt vector which may contain self-eferential values (e.g.,

integers) or references.
When reading or writing global (shared) data, the processor is stalled until a response from the

memory system is received.1 It is presumed that access to global memory is short, compared to

the process switch time, so it is more efficient to stall processing than to schedule another process.

This means that only one memory request is pending for a given processor at any time.

We do not asrzme any automatic caching mechanism for shared data, since maintaining cache

coherency for large numbers of processors is problematic, and since we want to study alternative

compiler- and programmer-directed caching techniques. Instead, globally shared read/write data

is declared to be non-cacheable (as in the RP3 parallel computer (101). Each processor has local

(private) memory, and block reads and writes are provided for efficient memory ccess.

1.2 The Message Passing Model

As representative of message passing styles of computation, we present the objec-oiented stresms
model, as embodied in the LAMINA programming language [5]. Objects encapulate local state vari-

ables and procedures which manipulate them in response to messages from other objects. Streams

represent queues of messages-they are generalizations of futures "6', in that a reference to a stream

may represent the promise of either a single value or a collection of values to be computed.

The only entities which may be passed through streams are self-referential values (e.g., numbers,

symbols, and code bodies), references to streams, and structures, which may have arbitrary internal

structure but otherwise contain only self-referential values (as above) or references to streams.

Internal structure involving shared substructure is preserved as it is passed between objects.

Synchronization is realized by messages arriving on a stream. Each object has an associated

self-stem. Whenever a message arrives on an object's self-stream, an execution context for the

object is created and control is transferred to the procedure dedicated to handling that message.

Execution is, for the most part, takta to completion and is data-driven, although mechanisms for

demand-driven computation are also provided.

1.3 References vs. Values

In shared variable systems, a reference (or address) is usually given to a location where shared data

may be accessed-if the data is needed, it may be read from that location. This is particularly

efficient if the needed data is only a piece of a large structure, or if the data associated with the

'This resuiction maintains the serialisation of memory accesses from a single processor. It is particularly important

to guatee that pending writes have completed: consider the initial conditions a-0, b-0 and the operations a: a&+'.

bb:-b+l, e:-"a goater $kan or oqual bb" ifa is the same cell as a and b is the same cell as

2-183

2 COST MODZE

refe ce need not be accessed at all, but perhaps is passed in turn (as a reference) to another
c tatioa which may require the data.

Message passing systems, on the other hand, usually communicate through passing the data
itsel. If all (or most) of the data is needed for the computation, then this is mote efficient, since
extra network accesses are not needed. Arbitrary structures, such as graphs, may be passed,
but some effort is required on both the sending and receiving ends to linearize the structure for
transmissios over the network.

Both paradigms, however, recognize the necessity to deal with exceptions to the usual case. In
the shared variable model, block transfers may be used for efficient access to vectors of data-less
regular structures, however, must still be accessed by "reference chasing." In the stream-based
model, data may be encapsulated on a stream, and the reference to the stream passed around until
the data is actually needed.

2 Cost Model

In this section, we examine the costs associated with implementations of the two programming mod-
els discussed above. Our goal is to identify the costs of program execution in terms of parameters of
the underlying multiprocessor system. We then discuss which costs dominate in "efficient" paralel
programs, what can be done to minimize the performance deprada ion due to these costs, and how
communication and synchronization overhead relate to overall completion time for a program.

2.1 Evaluation Time

Evdalation time is the term we use to refer to the amount of time spent execting application-level
code. If we assume that the same fundamental algorithm is being used in both programming styles,
then the amount of application-level work to be done is the same, so the evaluation time should be
equivalent.

2.2 Network Communication

We define network communication time as the time it takes for a processor to make data available to
another processor. In particular, it is not the time for one process to accept data from another-that
will be discussed in the next section.

First, we will introduce a few parameters which characterize the communications network. We
assume that the network employs some sort of cut-through routing protocol, such as those described
in [7,3,1].

We define the parameter W as the number of cycles it takes to transfer one word over a, network
channel. Therefore, in the absence of contention, the time to transfer an L-word message3 over D

2L cepreses" the amount of data w the messge--it does not include the target addiem.

2-184

2 COST MODI

chamW (hops) is W .D + W - L, assumgin a one-word target address. 3

LDsug represents the average number of hops traversed by a message and Lavg is the average

length, in words, of a message, then the average network delay is given as

Tnet = W - Dav, + W-- Law-

in ou thread-oriented shared variable model, accessing globally shared data always causes
network activity.4 As we mentioned earlier, read and writes cause the processor to block until an
acknowledgement is received from the memory module. Every shared variable access, then, requires
a round trip through the network.

A one-wotd read requres sending out a target address (W. Dg,9 cycles) and receiving a two-
word (data plus target) response, (W . Dgu7 2 + W cycles). A write is the same, except that the
request takes two words, and the response takes only one. Therefore, a one-word read or write
takes 2W- Da, + W cycler.

Block reads and writes are similar. A block read request consists of sending an address and a
count (2 words) and receiving L words (plus a target address) in return. Though a block write
does not require a count, since that is supplied implicitly by the number of values it supplies, we
assume tiat one is supplied explicitly, to handle exceptions and the like. If Lag is the average
block sue, then the average memory access time is

TSV 2 WDawg-W*L.vg+&I.

In a message passing envirenment- however, we are required to pass values with arbitrary
internal structure. These values must be encoded into a linear form prior to network trarsmission.
We model this encoding time as a fixed overhead, Tc, plus a constant number of cycles per word,
c.' For the purposes of this paper, we assume that the encoding operation must be completed
before the packet is transmitted (although this is not strictly necessary), so the average network
delay for a message is

TMP =WD - W Lavgi (T+cLavg).
net - Davg+ • +cag.

2.3 Process Communication

As meztioued in the previous section, network communication time does not represent the time
needed to comuaicate data between processes. One process must send and the other receive,
and there must be coordination between these two phases. (We are not implying synchronous

$In a •I .. -nd-L.' atwogk, the entire packet must be transmitted at each hop. so the latency would be

D- W - (L + 1, apia with one-word target addrem.
h1s is. efatmeqme of not modelling automatic cacling of data-shhaed data must always be read from and

writim to a moeoy 0odule. In particular, writes to shared data do not inclutie updating copies of that data in
other IXoXr" loc-l l emasy.

"We model encoding/decoding as a linear cost, because we envision an algo.ithm which use forwarding pointers
(9) to ch& for sbared structures, instead of hashing, which is not necessarily linear, depending on the occupancy of
the hah tabl.

2-185

2 COST MODEM

yw aia which the sender/writer waits for the receiver/reader to retrieve the data, but

ae merely noting that the sending must come before the receiving, and the receiver usually is

notifed when data becomes available.)
In the object-oriented model, when a message arrives at its target processor, its data is placed

on the destination stream, and the object waiting on that stream must be invoked with the proper

method. The time required to place a messge on a stream is the wtng time, Tt The time
required to awaken the necessary object is divided into the dispau& time, T4 , which involves

selecting the proper object and method, and the process owwth time, T.e-
Theree, the total (average) time for communication between objects is

TML -Mp+(T+CL)+(T+ T.)

= WDew+W-Lasvg+2c. Lawg
+2Tc + Tq+ Td + To.

In the shared variable model, communication between two process (A and B) generally takes
the following form: A writes a value; A sets a lock; B reads the lock; B reads the data. Thus,
com,uniati time depends on what sort of lock is being used. We will consider spin locks at this
tie, but the analysis may be extended to other synchronization policies.

To estimate the cost of setting and reading a spin lock, consider the optimistic case, where the
read is serviced by the memory module just after the write is completed. It takes WDSVS + W
cycles for the write request to arrive at the memory and WDvg - W cycles to get the result to the

reading process, so the overhead time represented by access to a spin lock, TSV is 2WDlwg+ 2W.
Thus, the average process communication time using shared variables and spin locks is

TSV = 2TLV .f _

= 6WDavg + 2WLag + 3W.

2.4 Improving Process Communication

One way to lessen the impact of interprocess communication delays is to make eicient use of the
network resources-transfer large messages whenever feasible. When 14 9 is large, in comparison to
the other costs, the figures foe average laeucy between processors become approximately 2WLs, 3

for shared variables and (2c + W)Larg for message passing.

Thus, when 1,9 is larg, relative to Da9 and when c = 1W, the latency for interprocess
commenicatios is the same for shared variable and message passing environments. Notice, however,
that the only larg 'messages" that may be passed in a shared variable system are blocks (vectors)
of selffreferential values. These structures do not need to be coded, even in & message passing
environment, since they are already linear. Thus, if this special case can be recognized by the host
machine coding can be avoided altogether, and the message passing latency becomes approximately
WLSat

Another approach to improving communication would be to decrease Dang and/or W. These
are both dependent on the type of interprocessor network used in the system. In high-connectivity

2-186

2 COST MODEL

net=- I I a hypercubes, the nunber of hops Erca mne node to another (D49y) is fairly small-

O(logP), for P processr-but pinout and wiring ,.dertions tends to keep the channel width

small (21, thus increasing W. Therefore, decreasine '71t, by using topology may not decrease the

W. Dal, product and, in fact, may increase the avc ag- latency by increasing W- Las-

Another way to decrease Davg for an application s tV exploit locality. If processes (or objects)

are placed nearby the data (or other objects) which they need to reference, then the average distance

travelled by a message is smalL In some cases, good static placement strategies may be developed,

based on the network topology and the communication pattern of the application, but in general,

determining optimal placement is difficult.
Finally, process communications throughput may te improved by overlapping communication

with process execution. For example, in the current CARE machine models (4,, there are two

processor on a processing site--one (the evaluator) is concerned with executing applicatioa code,

while the other (the openstoc) handles communication and process scheduling. Thus memse en-
coding/decoding, networ-- transmission, and process execution may all proceed in paralleL For
example, while the operator is encoding a messag to be sert to a remote object, the evaluator may
be invoking a new object, based on the previous message.

2.5 Completion Time

Using the estimates on interprocess communication developed above, we can estimate a lower bound

on the execution time of a parallel program.

2.5.1 Shared Variable

For the shared variable case, the minurmu-m completion time is the sum of the evaluation time,

Es,, plus the communication time, TS - Ynet, where neis the number of interprocess transfers

performed by a single process. (One read plus one write counts as a single transfer.)

Thus, a lower bound on completion time is
-SV > , '

Tomp -E Toc n.

2.5.2 Message Pasing

A minimum bound for the object-oriented case is harder to compute, since evaluation, coding,

and transmission can all occur in parallel. We consider three cases: (1) when the computation is

compute-bound, (2) when coding is the dominant overhead, and (3) when network transmission
dominates.

In the first case, the completion time depends merely on the sum of the evaluation and

invocation4 times of all the objects on a site (Emp)--communication is completely overlapped

with execution. In the second case. completion time is limited by the encoding and decoding of

messages. If we assume that there are an equal number of messages sen, and received, the bound

'See gcti 2.8.

2-187

3 Z RIMaNTAL RESULTS

is twice the coding time (T + c. Lavg) times the number of messages sent by the objects on a site

(N,,g). In the third case, the network is the limiting resource, so the bound becomes the product

of the network transit time and the number of messages sent.

Therefore, a mhnimum bound estimate of the completion time for the message passing model is

Oip , a 2(Te + c.- Lag) - ,ne,
(W. Dag + W . Lavg) • Nne}

2.6 Summary

The table in figure 1 summarizes the completion time bounds for the shared variable and message
passing m- '-.i, in the general case and when Lagg is large. The major differences in the two models
are that t. shared variable model is much more sensitive to network distance (Dgvg), while the
message passing model is more concerned with message encoding and process switching.

These differences fade away when large blocks of data are being transferred (assuming c = W).
If we assume that there is a fixed amount of information (dicated by the problem) that must
be accessed b; the processors for the computation (i.e., the product Lavg" Nnet is a constant),
then the most efficient programs will increase Latgand decrease Nnet . Thus, to a first order of
approximation, shared variable and message passing systems deliver the same performance for these
efficient programs. To the extent that this type of efficiency is not feasible, performance of the two
systems will be largely determined by the factors mentioned above.

3 Experimental Results

In this section, we report the results of a simulation experiment undertaken to explore the perfor-
mance differences between shared variable and message passing programs. After a brief description
of the application, we will present two shared variable implementations and two object-oriented
applications. The performance of these programs indicates that, for this application, the costs
expressed by the model developed above were in fact the dominating ones for the more efficient
implementations developed in both paradigms.

Shared Variable. Me.age Paaing

Emp,
In general Eiv + Xnet -(6WDavg + 2W~avg9 + 3W) max 2(Tc + c -lavg) et

__________~~~~~ _________________ (W.D 0 4- W Lav))Nnt

For large Lavg Eov + Nnet .2WLavg max 2c. La g" -/net,

Figure 1: Minimum bounds for completion times.

2-188

3 EXPlRMNETAL RESULTS

3.1 Application Description

The application, called LineSim, is an explicit solution of a system of linear difference equations.

The difference equations represent a discretisation of the partial differential equations which model

the voltage transmission of lossy VLSI metal lines over a substrate.7

The wires are divided into segments, where each segment represents an equipotential region
and has associated resistance and capacitance parameters. At each time step, a segment's voltages

(to the substrate and to the adjacent wire) are computed using its own values and the values of
its neighbors calculated during the last time step. The time steps are small enough to guaran-
tee convergence, so there is no need for global synchronization. The segments were divided into
rectangular regions, and each region was assigned to a processor. All of the performance numbers
presented below are for a 64 x 64 grid of segments, calculated for ten time steps.

The various implementations of LineSim were all written using the LAMINA programming lan-
guage [5], which provides parallel extensions to Zetalisp [121 and Flavors [81 for programming in
functional, object-oriented, and shared variable paradigms. The programs were executed using
the CARE/SIMPLE simulation system [4]. For the experiments described here, the processors were
connected in a torus topology-that is, the processing sites were configured in a rectangular grid,
with each site connected to its eight neighbors (including diagonal connections), and the edges were
wrapped around in the vertical and horizontal directions.

Different machine models were used to execute the shared variable and object-oriented programs.
For the object-oriented programs, each processing site corresponds to the model discussed earlier.
It contains an evaluator, for executing application code; an operator, for handling communications
and process scheduling; a private memory, which is shared by the operator aud evaluator; and
network components, which actually transmit data across the wires. All of the overhead costs
introduced by the message passing cost model are implemented as parameters in the simulation
model and are easily varied between (or during) program executions.

In the shared variable model, sites are distinguished as either processing sites or memory sites.
The operator on a memory site acts as the memory controller-its accepts requests from the network
and sends replies over the network. Some of the overhead costs associated with the operator are
ignored, such as packet encoding/decoding, since they are not part of the shared variable cost
model. For these experiments, the torus topology was also used for the shared variable programs,
with alternate rows representing processing sites and memory sites.

The CARE/SIMPLE system also provides an extensive instrumentation package for monitoring
the execution of parallel programs. These instruments display current information about the state
of the machine and the program, such as network delays, execution times, and so forth. Most of
the numbers discussed below were obtained by the simulator's instrumentation.

3.2 Shared Variable Implementations

Two shared variable implemetations of LineSim were developed, called sv-poin-t and si-block.
Their execution times for systems ranging from four processors to 256 are shown in figure 2.

"This is easentialy the puabolic PDE system represented by the "diffusion" equation.

2-189

3 EXPERfMEN7.AL RESULTS

1 ,02.. -D--SV-PO~IM '

TIM (06 18.
U8

64.0

47 16 32 64
Number of Processors (p)

Figure 2: Shared variable LineSim completion times.

Both implementations use the thread model--one process per processor. Each process has a
local array containing the voltagf s for the segments in its block. Only the values for segments along
the edges of the block need to be shared.

The basic operation of the threads is as follows:

I. Get the edge values of the neighboring blocks, and store them in the local voltage array.

2. Calculate the scgment voltages for this time step.

3. Write the edge values of this block to global memory.

Both implementations use spin locks to synchronize with its neighbors. Men a thread is ready
to read a neighbor's edge values, it reads a location associated with that thread until its value
corresponds with the current time step. Similarly, when the thread writes its Owa -dge values, it
increments the lock locations for its neighbors.

The difference in the two implementations is strictly in how its values are read and written.
The sv-poizt thread reads in voltages one at a time, while sv-block uses block transfers. Since
block transfers allow fewer network accesses, they incur less overhead cost than word transfers. In
view ol the cost model, terms involving Davg are dominating in sy-point, while terms involving
Lavg dominate in sv-bloak.

The relative performance of the twe? programs becomes more disparate as the number of pro-
cessors increases, because the computation time decreases by a factor of 2 with each doubling of
processors, while the communication time only decreases 25%. This is because the computation

2-190

3 XPERIMBNTAL RESULTS

1024.0

5120 -e- ObJ-Bocl

-Reference t . k/P

Tim (t) 12S.0
m

64.0

32-0

4 6 32 124 M_ k " 1
Number of Processors (p)

Figure 3: Object-oriented LineSim completion times.

depends on the area of the region of segments, while communication depends on its perimeter. (No
performance data was taken for sv-point at 256 processors, because of excessive simulation time
required.)

One final observation about these programs has to do with the effectiveness of automatic caching.
Ta this application, the naive thing to do would be to store all the segment voltages in a global
array. Assuming the cache is big enough, all of the values for the local segments would have been
collocated with the processor after the first iteration. However, some edges are represented by rows
of the array and some by columns. If the array were stored in a row-major fashion, for example,
a block transfer of a column would not be accomplished just by fetching the first value-instead,
* lot of interior points would be needlessly transferred to the other cache, and would have to be
transferred back when they had to be written. Unless the shared variables were recognized -V
shared and set apart as vectors, which would be fetchep -s blocks by a caching syst-.;, there would
be much wasted network bandwidth.

3.3 Object-Oriented Implementations

Two implementations were developed in the object-oriented style. These are obj-point and
obj-block, and their performance numbers are shown in figure 3.

Obj-point represents the naive object.oriewted iolution to this problem, in which each segment
is represented as a separate object. As before, the segment waits for values from its neighbors,
calculates its new voltages, and then sends the updated .%lues to its neighbors. " '.tis time, however,
the computation and communication are on a per segment basis.

2-191

3 WRfIfM nL RESULTS

There ae two potential problems with this approach. First, each segment uses message passing
to send new values to all of its neighbors, even when they reside on th! same processor site. In fact,

at least two neighbors are guaranteed to be on the same site. Taii needlessly consumes operator

resources. Second, the process switching cost is incired for every segment computation, rather

thau being amortized over all the computations for a block.

As it turns out, for the nominal values of the machine parameters chosen, the second problem
is the critical one--since the operator handles packets in parallel with execution, and since tle
evaluator has lots of objects to deal with, the communication sy'tem usually manages to keep up.
However, the process switching overhead represents a fair percentage of the computation time, so
speedup is degraded.

ObJ-block, on the other hand, represents a block of segments as an object. As in the shared
variable implementationi, only the edge values are commuzicated. When all the edges are received,
the segment calculations are performed, and the updated edge values art sent to the neighboring
blocks.

The block-oriented implementation consistently out-performs the segment-oriented version .,ver
a wide range of system size. When the number of processors gets very large, however, the number
of segments per processor gets small, and obj-point becomes more efficient. For this problem,
the crossover occurs between 256 processors (16 segments/processor) and 512 processors (8 -eg-
ments/processor).

3.4 A Closer Look

Figure 4 shows the performance of all four LineSim implementations. (Again, the shared variable
programs were not run for large numbers of processors because of excessive simulation time.)
The two best implementations, sv-block and obj -block, show essentially lhe same performance
through 128 processors.

Since the process granularity is so large, small differences in overhead would tend to be swamped
out. Therefore, we measured the performance using an evaluator which is 00 times faster than the
earlier runs. This greatly decreases the computation time, while communication time 3tays fixed,
so liffei'ences in communication overhead should be more evident.

Figure 5 shows the completion times of the two block-oriented programs for 64 processors, with
ncrear,ed proc.-ssing speed. First, each program was run with the nominal values used by our

simulation system, namely N7 = 16 (corresponding to 4-bit channels) and c = 16. (TLe value of c
is ignored in the she.-ed variable r.~j5. Foe this program, Davg = 1, and L.:g = 32.

Us' -g '.he defavlt 7aL.s, the shared vwriable program did slightly worse, due to the fact that
execution may not pro :,zd -. zJtiJl wth. communication. The dominating costs in the message
passing program, according to the 'ost mod,1, is coding time.

Nex., the value of W was decreased to two cycles per word. The model would suggest that
decreasing W woukld, Wsve . $.T 7_It ct on the shared v-riable model (due to more trips through
the network) thaz on tb tmi.ss.ge pwsing model. As expected, the shared variable completion time
decreased by 70%, while Jie t:--:ct-oriented program showed only an 11% improvement.

2 '52

3 ExpERIMENTAL RESULTS

1024.0 0 b-on

512.-- b-BOI

Ma- Reference t ak/n]

64.0

M

Number or Processors (p)

Figure 4: LineSim completion times.

* Walc16~

= W-2. *1
MW.1& co

:3~~ wax C

Figure 5: Completiona times with 1O0z evaluator speeduip.

2 - !3

4 CONCZUSZONS

HKowever, decreasing coding time to zero (by not coding vectors, for example) had a more
pronounced affect on the message passing program. The dominant costs moved to the network,

resulting in a performance increase of 36%. When the zero coding time is combined with large

channel width, the two programs have virtually identical performance.

4 Conclusions

The goal of this experiment was to understand some of the potential performanre differences for
message passing and shared variable programs. In particular, we looked at the implications of the
communications mechanisms in both paradigms.

The analytic cost model developed in this paper appears to provide a reasonably good first
approximation to the costs of data communication in parallel programs. Many factors, however,
are not included in the model. Some of these factors, such as network contention and routing
strategy, are modelled by the simulatior system. The close agreement between the analytic model
and the results supplied by the simulator demonstrate that, for this application, those costs did
not dominate the performance. System factors, such as paging costs and global resource allocation
and reclamation, were not included in the models or in the simulations. The costs associated with
the system considerations were assumed not to dominate performance.

The cost model developed here is an attempt to quantify the difference in overhead costs fox the
two programmg models. The shared variable model is particularly sensitive to network latencies,
while packet formatting is a greater concern in a message passing system. The experimental results
are not meant to be conclusive evidence of the superiority of one programming style over another,
but they do offer an indication of the important machine parameters to be optimized to support
one or both of these paradigms.

Acknowledgments

The authors would like to thank Nakul Saraiya for his extensive work on the simulation system.
and in particular the shared variable interface, and Sayuri Nishimura, whose efforts in developing
and supportin- the instrumentation system have allowed meaningful measurements to be taken.
We also acknowledge the many users and developers of SIMPLE/CARE for helping to enrich the

system and direct its growth.

References

[1] Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi. A Point-to-point Multicast Commu-
nications ProtocoL Technical Report KSL-87-02, Knowledge Systems Laboratory, Stanford
University, January 1987.

2-194

REFERENCES

[21 William J. Dally. Wireefcient VLSI multiprocessor comrminication networks. In Paul

Lodeben, editor, Advanced Reserch in VLSr-Proceedins of the 1987 Stanford Conference,

pages 391-415, MIT Press, 1987.

(31 William J. Dally and Charles L. Seits. Deadlock-free message routing in multiprocessor inter-

connection networks. IEEE Transactions on Computers, C-36(5):547-553, May 1987.

(41 Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. An Irstfjmented Ar-

chitedural Simulation System. Technical Report KSL-86-36, Knowledge Systems Laboratory,

Stanford University, January 1987.

[51 Bruce A. Delagi, Nakul P. Saraiya, and Gregory T. Byrd. LAMIrA: CARE Applications

Interface. Technical Report KSL-86-67, Knowledge Systems Laboratory, Computer Science

Department, Stanford University, November 1987.

(61 Robert H. Halstead. Multilisp: a language for concurrent symbolic computation. ACM Tr ns-

actions on Programming Languages and Systems, 1984.

[7] P. Kernami and L. Kieinrock. Virtual cut-through: a new computer communication switching

technique. Computer Networks, 3:267, 1979.

(81 David A. Moon. Object oriented programming with Flavors. iv Objec'.-Oriented Programming

Systems, Languages, and Applications [OOPSLAI '86 Proceedings, pages 1-8, September 1986.

[91 David A. Moon. Symbolics architecture. Computer, 20(1):43-52, january 1987.

(10] G. F. Pfister, et. at. The IBM Research Parallel Processor Prototype (RP3): introduction

and architecturr. In Proceedings of the 1985 InternationG. Confem'nce on Petvllel Proce,68ing,

pages 764-771, .:EEE, 1985.

L11] Marc Snit. .tober 1986. In lecture, Stanford University.

(121 Daniel Wei=vb and David Moon. Lisp Machine Manual. Symbolics, Inc., Cambridge, MA,

1981.

2-) 5

Knowledge Systems Laboratory June 1989
Report No. KSL-88-81 (revised)

Multicast Communication in Multiprocessor Systems

Gregory T. Byrd and Nakul P. Saraiya

Stanford University
Stanford, CA 94305

Bruce A. Delagi

Digital Equipment Corporation
Palo Alto, CA 94301

Tro appear in:
1-969 Ittonwtionis (ont'irence ori [ara 2"-4 Processing

2-196

Multicast Communication in MIultiprocessor Systems

Gregory T. Byrd antd Nakul 1. Saraiya Bruce A. Delagi
Knowledge Systems Laboratory Digital Equipment Corporation

Stanford University, Stanford, CA 9,1:30.5 Palo Alto, CA 94301

Abstract: Recent high-performance multi- systein or the application build a tree of communi-
processors exploit cut-through routing for unicast cating processes whose leaves are the "real" targets
transmission, with packets routed ms their first of communication, Intermediate nodes of this tree
bytes arrive. We extend ideas considerol for f- itore packets and forward them to the next level of
ficient cut-through routing in multiprocessor .sys. the tree. Such store and forward techniques may
tens to include multicast, in order to benefit the take limited advantage of available network facili.
many parallel programs in which producers provide ties in a system providing cut-through routing (6).
each value to multiple consumers. We describe sev- Additionally, interrupt handling (and possibly pro-
,,ral alternative cut-through multicst protocols, in- Cess switching) latencies are incurred at each for-
Cluding a restrictive (yet adaptive) routing scheme warding step. 4 iiese can be significantly larger than
for deadlock avoidance. Simulations using syn- the transmissivu time of the packet itself. These
thetic and application-driven loads show it has sig- performance cotisiderations motivated us to study
nificaritly better performance than either multi- means to provid,, direct support for multicast corn-
cast CTmulation or deadlock detection and resolu- munication.
tion. The scheme provides cut-through multicast
without requiring dedicated storage in the commu-
nication facilities for a full packet. 1.1 Unicast Protocol

'l'he unicast communication protocol underlying
1 Introduction ,he multicast facilities discussed here has been de-

.cribed in [1]. It includes provision for adaptive
The communication patterns naturally found m routing and is deadlock-free so long as the corn.
parallel programs include those in which a producer putinq nodes (see figure 1) of the system have suf-
p rovides values to more than one consumer (.I]. ficient available storage to hold the blocked pack-
These patterns can be directly supported by com- ets. The communication facilities themselves pro-
munication facility routing protocols or indirectly vide only enough buffering at each port to hold
supported by arranging that either the operating a packet target address. Flow control is done in

, uits of transmission activity equal to one of these
This work was supported by Digital Equipment Corpo. buffers. Independent routing decisions based on lo-

ration, by DARPA Contract F30602.85.C-0012, by NASA
Ames C~ntract NCC 2.220.SI, and by Boeing Contract ,al path availability information are made by each
W26875. G. Byrd wa supported by a National Science router encountered by a packet as its front edge
Foundation Graduate Fellowship. Any opinions, flniings, makes progress from its source to its target.
conclumions, or recommendations expressed In this publica.
tion are thome of the authors and do not necessarily reflect For normal operation, only small amounts of ded-
the views of the National Science Foundatlon, ,'atr c rflources are used in the transmission and

2-197

Figuire I, Multicast Deadlock

reception of information, namely the small amount largest possible mnessage. Motivated as discussed
Of bufrering provided at each port. In the excep- above, however, ouir design goal was for the multi-
tional rondition that no suitable output port is cast communication facility to have little dedicated
.vailbefra noigpceadtoa tr storage relative to anticipated packet sizes.2

age is made available by contending for it from a We will consi .,r three alternative approaches for
buffer pool managed by the local computing node.1 dealing with dI. dlock-: (1) emulating multicast by
Trhe packet is then stored for forwarding to its tar- multiple tinica:,,, -eliminating the problem by ef-
get at a later time. The use of small dedicated fectively eliminairing the facility, (2) detecting and
buffers for normal operation together with larger resolving deadl-cks, or (3) avoiding deadlock. We
b)u ffe r. allocated from a common pool of storage to call the first apl~roach multi-unicasi (MU). For the
handle exceptional conditions permits high perfor- second approach, the dleadlock detection and res-
inance with simple, low cost, implementations, olution scheme we consider allows all but, the po-

tentially deadlocked subtree to proceed. The trans-
1.2 N'Iuticast Deadlock inission of jusit this subtree is aborted arnd later re-

surmed. (Two such subtrees are shown in figure 1.)
If direct siupport of multiple consumer communica- We call this scheme resumable multicast (RM). Fi-
1,ion patterns in concurrent programs is to be pro- nially, the third app roach- restricted branch mul.
vided, the possibility of deadlock must be consid- ticast (RI13M)-provides deadlock avoidance by re-
1'red. As shown in figure 1, when two multicasts .stricting rouiting alternatives.
have each acquired some paths also needed by the
other, e.ach will block progress by the other: a dead- 1.3 What WVill Be Shown?
lock is the result.

On,, way to handle deadlock is to ensure that no In the' remnainder of this paper %ve will describe the
path may be blocked; that is to asoriate with each details of each A. the three schemes and present
input port enough dedicated storage to buffer the their simulated performance. Our studies, using

Through the ue of -irtuAl channels 12) we coidd elirn- 'As indicated, the dedicated storage in the transmission
na~te the requirement for such bufferv at the c~ost, of conasUrn path need only be large enough to hold a target address,

ur -utwnrk ro~iources holding delayed pAickcts in the net B~reakinug packets into stub. packets introdluces sliifcant par.
.1'i with qignYuicAnt impact on the possibilities for adaptive hition and re-asisenuhty overhead and entails substantial pro.

roijtinj, rtionate ini:I iue in such dedicated storage.

2-198

the CARE simulation system [3], include both test (the number of channels) traversed by the packet.; L
cases contrived to exercise mnulticast facilities and is the length of the packet (data only), in bits; and
also an application characterized by a mix of mul- W is the width of the network channels, in bits.
ticast and unicast communication, Based on our The above equation gives latency in terms of cy.
expectations of the relative times required to drive ces, where a cycle is the time to transfer W bits of
signals within and between sites in multiproces- data from an input port of one site to an input port
sor systems, the computing nodes in these simu- on the next site. In describing the latencies expe-
lations execute instructions four times faster than rienced by the multicast schemes, we will use the
the network ports accept, transmit, and deliver in- symbols D) and L to denote the average distance
put. Based on expected die pin count limitations, and length, respectively.
four pairs of 16-bit network ports are associated
with each site. The computing node at each site
is assumed to include a resource for message han- 2.1 Multi-Unicast
dling (including forwarding) that is independent of The simplest form of support for multicast, the
the resource doing computation, multi-unicast (MU) protocol, emulates it by trans-

We will discuss the performance of the communi- mitting the entire packet sequentially to each tar-
cations system in each of the three schemes in terms get.
of the measured network latency for the packets it In an N transmission with n targets, the av-
handles. Network latency is defined in this paper erage packet must wait for the .(n - 1)/2 packets
as the difference betwee'n the time a packet is made ahead of it to be delivered to the network. Adding
availabe for transmission and the time it is corn- this to the network delay experienced by the aver-
pletely received at its target computing node. If, age packet yiels
due to unavailability of a suitable output port, a
packet is temporarily stored at a computing node i ni n-I Ft n-I FZi
which is not its target, the time taken to forward Tmu 1W + +TV 2 W.2
the packet (as well as the time spent waiting to be
forwarded) is included in the network latency for For large n or L, the cost of placing multiple copies
that packet. By this measure, the restricted branch of the packet onto the network is likely to dominate
approach to multicast transmission (RBM) will be the average latency.
shown in many cases to have significantly better
performance than the other two schemes consid-
ered. 2.2 Resumable Multicast

Multi-unicast creates n independent copies of a
packet to be sent to n destinations. If the trans-

2 Multicast Protocols mission paths between the source and several des-
tinations have some set of channels in common,

* In this section, we describe the three multicast pro- MU uses those channels inefficiently by transmit-
tocols and give expressions for the average network ting the same data multiple times. A more efcient
latency in the absence of contention. Then, in order approach might be to transmit along a common
to assess, the performance of each approach in the path as much as possible, then "split" the packet
presence of network load, we compare the latencies by transmitting the data down several paths simul-
experienced while running a test program designed taneously.
to exercise the multicast facilities. This is the approach taken by the resumable mul-

The latency of a unicast packet in a cut-through ticast (RM) scheme. Because of the limited buffer-
network, in the absence of contention, is T ing at network ports, data can only be transmitted

. FT D + [f'], where: t is the number of bits in if all paths are able to receive it. If one path is
a target, i.e., a network address; D is the distance blocked, it must become unblocked before any of

2-199

its siblings may proceed. As described earlier, this frcm using them. Aborts thus add to the network

can lead to deadlock (see figure 1)-neither multi- congestion. which can cause more aborts-positve

cast can proceed, since each has acquired resources feedback which can degrade the performance of the

needed by the other. In RM, each site at which a whole network.

split has occurred can detect a potential deadlock This lead us to consider a third multicast pro-
situation (e.g., if the number of consecutive blocked tocol, the restricted branch multicast (RBM). The
cycles has exceeded some threshold) and request main characteristics of this protocol are (1) a re-
that all the downstream transmissions from that duction in the fanout of a split packet, and (2) a
point be aborted. scheme for deadlock avoidance, rather than dead-

.'o recover from the abort, a local copy of the lock detection and resolution.
packet is always kept and may be retransmitted In RBM, a packet may split into at most two
at a later time. Since the network ports them- paths at any site. In our simulated implementation,
selves do not have sufficient storage to temporar- one of these paths must be local--that is, it includes
ily buffer the packet, space must be allocated from the port connected to the computing node at that
the buffer pool of the site's computing node. If site. The single non-local path is determined by the
space is not available, or if access to the comput- first non-local target in the packet, and all non-local
ing node is blocked, the packet is not split but is targets are routed along that path.
merely "passed through" toward the first target in This restriction in rtself does not prevent us from
the packet's target list. getting into deadlock-in figure 1, each split satis-

In the absence of contention, the average RM la- fies the conditions described above, yet deadlock
tency is very close to the unicast latency. However, occurs. To avoid deadlock, we provide an addi-
an RM packet contains n- I additional targets, rel- tional port, called the split port, to the computing
ative to a unicast packet. Thus, the average latency node at each site. to be used exclusively for the local
equation is path of a split packet. If this port is not available,

[-11 [-, LW the packet may not be split. It may be buffered
TRM = / + + (n - 1) . completely at the local site (using the normal unz-

II TV TV cast port to access the computing node), in which

The targets are now transmitted in series with the case the local targets will be stripped off and the
data, rather than sending a copy of the data with packet retransmitted later, or it may pass through,
each target. The number of targets, then, is an ad- without servicing any local targets.
ditive component in the latency, rather than multi- Since it cannot split, a packet which represents
plicative, as we found in the MU case. the leaf of a multicast is identical to a unicast

packet and therefore must utilize the unicast port
2.3 Restricted Branch Multicast (not the split port) to connect to the computing

node. If busy, the unicast port will eventually be-

Resumable multicasts can be very sensitive to net- come free, since no multicast packet can use it, and
work load, for three reasons. First, they split all packets are of finite size. Therefore, no multi-
aggressively, thus increasing the chances that one cast will block indefinitely, and deadlock is avoided.
branch will be blocked due to contention with some (Two local ports are sufficient, because we only al-
other packet in the network. Second, each split con- low two-way splits. Higher fanout would require
sumes the port connecting to the computing node additional ports.)
at a oite, regardless of whether there are any local To calculate the average latency for RBM, we
targets, this precludes any other useful packet (mul- first assume that the distance between any pair of
ticast or unicast) from being accepted at that site. targets is D. Second, we assume that the chances of
Third, all branches of a blocked subtr.e are aborted encountering another target on the path is small-
and retransmitted, thus wasting the resources they i.e, a packet is only split when it reaches the first
have seized as well as excluding other messages

2-200

5VUu
-0- RM3000- -w MU. fanout=63

400- -- MU RBM. fanout=63

-4' RBM MU. fanout=8
MRBM fanout=8

_1J 300 2000 '

*b1000-

100 ot= 8Congestors =16

Dat.- 16 words .

0 8 2 4 8 4 4 5 6
0 8 1624 3240 48 5664 0 8 1624 32 4048 5664

Congestors Packet Data (words)
Figure 2: congest: Variable congestors. Figure 3: congest:, Variable packet size.

target on its current target list. The head of the 3 Benchmark Performance
average RBM packet, then, will travel 1(n + l)D
hops to arrive at its target site. As in the RM case,
the packet length must take into account the ad- According to r latency equations developed
ditional targets. For the average packet, half the above, one would ,xpect resumable multicast to be
targets will have been split off when ics destina- the clear winner If we make the reasonable as-
tion is reached, giving a packet length of F + int. sumptions that L > t and D > 1, it will never have
Thus, the latency of the average packet in an RBM a higher latency than the other schemes. Those
multicast is given by equations, however, assumed no contention in the

network. To study how the three multicast schemes
performed under load, we ran a test program called

TRBM = i + + The congest program creates a number of pro-
cesses, called congestors, each of which simultane-
ously multicasts a packet to a fixed number of other
sites. While holding the network size and topology

The only difference between this and the multi- constant, there are three ways of increasing net-
unicast latency (TMU) is anO(ntD) term in place work load using congest: increasing the number

of an O(nL) term. Thus, if L > tf), RBM performs of congestors, increasing the multicast fanout, and
better than MU for a single multicast to randomly increasing the packet size.
distributed targets. In the best case, all targets lie We simulated the executing of congest on an
on the path between the source and the farthest 8 x 8 torus. The congestors were placed randomly,
target, in which case the total number of channels one per site; the same random placement was used
travesed equals the distance to the farthest tar- for all experiments. Finally, the multicast targets
get, and the average latency is the same as in the were picked randomly, and the order of the target
resumable multicast case. list was also random. Figure 2 shows the average

2-201

latency for each scheme as the number of congestors smaller fanout (and thus lower load), the perfor-
was increased from one to 64, with afanout of eight. mance of MU and RBM are almost identical for
For a fanout of 63 (i.e., broadcast), the relative per- small packets.
formance of the three protocols was almost identical A final distinction between MU and RBM is the
to the results shown. Figure 3 shows the effect of rate at which the source can deliver messages to
varying the packet size (data only) from one to 64 the network. In the MU scheme, the source must
words, with sixteen congestors and fanouts of eight place n packets sequentially onto the network, so
and 63. that no other packet may be sent for O(n(L +))

Resumable multwcast predictably shows the low- cycles. With RBM, the next message may be sent
est latencies for a single multicast, but its perfor- after O(L + nt) cycles. The rate at which messages
mance degrades dramatically as the number of con- may be sent to the network may limit the effective
gestors is increased. This is not surprising, espe- granularity of the computation at a site.
cially in the high fanout case, since simultaneous While it is interesting to study the behavior of
multicasts are very likely to interfere with one an- these multicast protocols under varying loads, we
other, resulting in a high number of aborted pack- recognize that congest is a contrived test case and
ets. may be pessimal, especially towards RM. In the

The average latency for multz-unzcast is almost next section, we will examine how the protocols
constant for one, two, and four congestors-since perform in the context of a more realistic applica-
there are few packets in the network at one time, tion program.
there is little degradation due to network con-
tention. The dominant cost in these cases is the
time to place the multiple packets on the network.
At sixteen congestors and above, the effects of net-
work load become significant. Also, as predicted by
the latency equations above, the average latency for 4 Application Performance
MU is a strong function of packet size, especially for
large fanout. We studied the performance of the three multicast

Restricted branch multicast shows the lowest av- schemes in the context of ELINT[4], a real-time sys-
erage latency in almost every multi-congestor con- tern for interpreting radar emissions from aircraft.
figuration. It is competitive with RM for the single- The application correlates streams of radar emis-
multicast case, and clearly exhibits better perfor- sions that have been observed by detection sites
mance under load. With respect to IU, the ef- into radar emitters. These are grouped into clusters
fects of network contention are more pronounced that are tracking together, and the activity of in-
for RBM under light loads. Each time an RBM ferred aircraft is monitored. ELINT is implemented
packet must be temporarily -tored and forwarded, in a concurrent, object-oriented language called
the retransmission delay may effect more than one LAMINA[5], in which objects respond to messages
target (compared to only one target in MU). Thus, by executing data-driven, run-to-completion tasks.
for congest, retransmission has a greater effect on ELINT uses pipelines of dynamically created ob-
the average latency. However, RBM still wins, ex- jects to represent the hypothesized emitters and
cept for very small packets, since it does not have clusters in the airspace. Objects are replicated as
the overhead cost of handling multiple packets at necessary to widen pipelines and relieve congestion
the source. This introduces the need to send the same data to

With small packets under high loads, IU shows multiple places, for example, in propagating times-
lower average latencies than RBM. This is partly tamps to emitter pipelines, or in matching an ermt-
due to the impact of retransmission costs, discussed ter against a cluster, which is represented by repli-
above. Additionally, the O(nL) overhead of multi- rated objects. ELINT relies on a multicast facility
pie packets is not as great when L is small. With to provide this i'-rvice.

2-202

100.. 1 .. 00-

0 0 -

i .. i--RBM 148 (RBM 65
20- -- - d Mu 485 20 MU 13

'i ""RM 18595 RM 1346200

0 200 400 600 800 1000 0 200 400 600 800 1000
Latency (cycles) Latency (cycles)

Figure 4: ELINT: Multicast latency distributions. Figure 5: ELINT: Unicat latency distributions.

4.1 Results pacted unicasts mnd increased their average latency
by an order of ini ignitude. To understand these re-
sults, let us e, .i-der each multicast approach in

For the experiment reported here, using a 16 x 16 tsn

torus, a typical object processed a 25-35 word mes-

sage in 1500-2500 processor cycles before sending Multi-Unicast. The O(nL) source delay in-

approximately one message of about the same size. volved in injecting multicasts into the network is

The sources and sinks of messages were randomly the major drawback of MU. Besides affecting the

distributed because objects were randomly sited as constituent messages of the multicast as discussed

they were created. Multicasts'constituted 7.-9 per- earlier, it also impacts messages that are queued
cent of all transmissions and 25-30 percrit of all behind it, be they messages initiated by the corn-

receptions, with an average fanout of 4 and a max- puting node at that site or those that are temporar-

imum of 30 targets. The network latency distribu- ily stored at the site due to netvork congestion. In
tions of multicast and unicast packets are shown in ELINT, L was sufficiently large and multicasts suf-
figures 4 and 5, respectively. ficiently frequent for this to be visible in the latency

Multicasts performed best with the restricted of both multicasts and unicasts.

branch scheme, achieving an average latency that Resuinable Multicast. As discussed earlier,
was one-third that of multi-unicasts. Resumable resumable multicasts both increase network loadwas ne-hirdtha ofmult-uncass. Rsumble and perform poorly as a result of such load. Thismulticasts performed very poorly, showing an aver- anpefrpolyaarsutfschod.Tiage latency that was more than an order of magni- was particularly evident in ELINT, for two reasons.tude higher than the others. First, some high-fanout multicasts were driven byThe majority ofunicasts displayed vrtually idea- the arrival of input data (e.g., the distribution of

Ti alormncwity bo uunicast displayed uaide- timestamps to emitters); the constant data arrivaltical performance with both multi-unicast and re- rate led to the generation of multicasts at a con-
stricted branch multicast, although the average la- stant rate that was higher than the rate at which
tency was half as much with restricted branch be- they could be delivered. Second, multicasts often
cause of the smaller tail in the distribution. Resum- occurred in bursts. The net result was the same in
able multicasts, on the other hand, significantly im-

2-203

both cases-increasingly severe contention for lir- communication networks based on cut-through
ited resources, to the detriment of all. In fact, the routing with minimal buffering. The restricted
only reason many multicasts were successfully de- branch multicast protocol provides lower latency
livered with RM was that the program accepted than a multi-unicast approach, over a significant
only a finite amount of data so that new multicasts range of network conditions. While the resumable
stopped being generated, allowing those in transit multicast protocol provides good performance in
to finally complete. Hence, the "average" latency isolation, its behavior in the presence of network
of RM multicasts reported here may be unduly op- contention appears to make it unsuitable for gen-
timistic. eral use.

Restricted Branch Multicast. There are two
potential drawbacks with the RBM approach. The
first is the O(nD) latency that is incurred as the References
front edge of a multicast visits each target in turn.
For the 16 x 16 torus, b is approximately 8; this [1] G. Byrd, R. Nakano, and B. Delagi. A dynamic
was sufficiently small relative to L to make this la- cut-through communication protocol with mul-
tency tolerable. The second problem is that the ticast. Technical Report STAN-CS-87-1178,
delay incurred by a multicast packet that is stored Dept. of Computer Science, Stanford Univ.,
and forwarded due to network congestion is also in- Aug. 1987.
curred by all its constituent messages (targets). In [21 W..J. Dally and C. L. Seitz. Deadlock-free mes-
ELINT, 5-7 percent of all packets (,nulticasts and
unicasts) were stored and forwarded for both RBM sage routing in multiprocessor interconnectionnetworks. IEEE Trans. Compul., C-36(5):547-
and MU. This affected twice as many messages us-

ing the RBM scheme, but the average added delay 553, May P 7.

per packet was higher for multi-unicast, due to the [3] B. Delagi er d. An instrumented architectural
source delay discussed above, simulation -.stem. Technical Report STAN-

CS-87-1148. Dept. of Computer Science, Stan-

5 Conclusions and Future ford Univ., Jan. 1987.

Work [41 B. Delagi and N. Saraiya. ELINT in LAMINA:
Application of a concurrent object language.
SIGPLA4N Notaces, Apr. 1989.

The experiments reported here represent only the

first step toward a complete evaluation of the costs [5] B. D-'agi, N Saraiya. and G. Byrd. LAMINA:
and benefits of network-supported multicast. More CARE applications interface. In 3rd Intl. Su.
work is needed to understand the performance percomputing Conference. Intl. Supercomputing
of these protocols for applications and systems Institute, May 1988
with different network load characteristics, such
as the multicast invalidate traffic of a directory- [6] P. Kerman and L. Kleinrock. Virtual cut-
based cache coherence .4cheme. Additionally, a de- through: A new computer communication
tailed analysis of the hardware coat is required. Fi- switehing technique. Compuler Networks,
nally, performance enhancements should be -on. 3:267-286, 197w.
sidered, such as sorting the targets of an RBM
packet to specify an optimal path or adding re-
sources to reduce the cost of retransmitting tem-
porarily buffered packets.

Nevertheless, the data presented here suggests
tdat rnvuiticaat transmission can be directly sup-
ported in multicomputer systems which utilize

2-204

Knowledge Systems Laboratory March 1989

Report No. KSL.89-15

Support for Fine-Grained Message Passing
in Shared Memory Multiprocessors

Gregory T. Byrd

Department of Electrical Engineering
Stanford University

Bruce A. Delagi

Digital Equipment Corporation

To appear in:

Proceedings of the Fifth Annual Computer Science Sympo.siuni
Univer,avy of South (arolina, Clwmbii, SC

April 7-8, 1989

2-205

Support for Fine-Grained Message Passing
in Shared Memory Multiprocessors*

Gregory T. Byrdt Bruce A. Delagi
Stanfc': University Digital Equipment Corporation

Abstract

aSince the highest performance parallel implementation of an application may require either
ademnand-driven (shared variable) or a data-driven (message passing) execution paradigm, we

need to consider the efficient implenf-ntatior. o! both in general purpose multiprocessor systems.
Furthermore, as large-scale systems, utilizin; hundreds or thousands of processors, are devel-
oped, it becomes increasingly desirable to support mnore finely grained execution than is feasible
in current systerns.

This paper proposes a hardware mechanism for supporting fine-grained messages on large-
scale shared memory multiprocessor syst 'ins. The support is based on the concept of streams
and is integrated with the cache and memory management system. We analyze the potential
benefit of such support, and discuss an initial i-nplerrwntation, which will be simulated to provide
more detailed performance information.

1 Introduction

There are two "traditional" approaches to parallel processing-shared variables arnd message
passing-and these approaches have generally been considered incompatible. More recently, how-
ever. they have comne to be viewtd as extreme points along a continuum of communications
styles (241. Some applications am miore naturally programined in terms of mnessages. others in
terms of shared variables, a-Ad still othi'rscan beniefit from a hlybrid approach.

The debate between messages ind ,hared meniory predates ia- wid;e nroa' availability of par-
allel machines. Lauter and Needharnm 'I")j dliscuss thfe is.-ie in the cont- - un;Irocessor operating
systemns which sapport multiple thr-eads of control. They compared a blhared memory approact
based on monitors with a message-oricitted approaui. aind coticl'de,' that the two paradigis -ire
essentially duals of one another-nvither- i-, intrin-,iall. ,.' bite;, inl terms of expressing concurrent

*This work was supported by Digital Eqii.pinen.' CX,,rpormrioni by D XRPA Contract F101102.85-C-0012, by NA$V-
Aines Contract NCC -20S.and by 9oetnq Cont tart 'Vv 2,687! Bvrd mav. stpported by a National Science Foun-
dation Graduate rellowship. Any opinion,. tiniiig. _uiimojn ot toininendations expressed in this publicatiou
are those of the authors and do not ne'-tL -trdiy tdica~ thet vie-,..ll Nationial Scitaze Fciindation.

IThe authors inay be reach~ed at. lN;,owledg- e ti Lahmai.ii' -. ii.wordl UViver-tity, 701 WVelch Road, Bldg.
Palo A\lto, CA 94304

2-206

execution or in terms of high-level perforu?.nce. Any differences in performance, they concluded,

must come from features at the architectural level, not the operating system level.

Unfortunately, the architectural differences among current large-scale parallel computers are

significant. Two major classes of architecture have emerged ,-c' designed to fundamentally sup-

port one of the two programming paradigms-shared vart.iii-i aessages. Although either style

of program can, of course, be executed, there may ;t ".. . :i "- -formance penalty for using
the style not directly supported by the hardware.

For example, most message passing machines [1,13,25,2oj a a significant startup cost (hun-
dreds of processor cycles (27j) for sending a message. Additio, - ly, the memory on each processing

node is not directly accessible by other processors, so that r. b data from a remote processing
node requires message sendin~g, reception, and interpretation -h the requesting and responding
processors.

Similarly, shared memory multiprocessors [2,21,22] provide low-overhead demand-driven access
to global memory locations, which is the type of support needed for shared variables. However,
they have very little support for more data-driven styles of communication, such as messages.
Data-driven operations are typically implemented in software, either directly as application code,
or through operating system routines (e.g., Mach [321), or by handling interprocessor interrupts.

The effect of these added overheads is to increase the granularity of computation required for
efficient execution. We define granularity as the amount of work performed by a thread' of compu-
tation before non-local communication is required, either through sendinag a message or accessing a
shared memory location. For many applications, granularity naturally decreases as the number of
processors increases--i.e., a fixed amount of work is divided among more and nore threads. There-
fore, decreasing the achievable granularity is especially desirable in large-scale systems utilizing
hundreds or thousands of processors.

This paper proposes a hardware mechanism for supporting Elseagrained message passing in
large-scale shared memory multiprocessors. The mechanism is based on the concept of a stream,
which represents a potentially infinite sequence of values. We use the memory management system
to provide efficient communication of stream values, to synchronize instruction execution with the
availability of such valuos, and to associate thread activation with the arrival of values on a stream.

In the next ce.:ion, we will discuss why we choose to add inessage stpport to a .hared memory
multiprocessor, rather than adding shared variable support to a Il-ev ,ge pa.sing machine. Then
we will justify the use of special-purpose hardware by niakilig lower-hotuds performance estimates

nf various software implementations of mef .ges. Finally. we describe t lie specifics of the proposed
hardware.

'We use the term "thread," as in Birreil '1]. to denete onie of po.;ibly many iiiiI tiu:deir .,',uential flows ofconitrol
within a sinsle add"t.s space. T. term -pri- -s l.wi come to he ,-sociated % it h ,t .ttkle flow of cont rot Aociated
one-to-one with an add:ess space.

2-237

2 Why Shared Memory?

There an (at least) two approaches to creating a machine which has efficient, fine-grained support
for both messages and shared variables:

* add support for shared variables to a message-passing machine, or

* add support for messages to a shared memory machine.

TwQ proposals which adopt the first approach are Dally's message-driven processor (MDP) (4,5]
and Lindsay's shared memory hypercube f201. Our proposal adopts the second approach.

2.1 MDP

The message-driven processor (MDP) [5] is designed to support fine-grained message passing be-
tween objects by providing direct execution of messages as they arrive from the network. The
processor consists of two cooperating subunits: the message unit (MU), which accepts messages
from the network, and the instruction unit (IU), which interprets the messages.

When a message arrives, the message unit either passes it directly to the instruction unit, if the
1U is not currently busy, or buffers it in memory. (There is no cache in the proposed implementation
of the MDP, but all the memory is on-chip, so a single-cycle memory access is achieved.) The
instruction unit uses the first word of the message to branch to a subroutine for handling that type
of message. The remaining words of the message are interpreted by the handler subroutine.

The MDP provides a global narnespace for objectc-all references to objects are in terms of a
global identifier, which is then translated into a proce-.or identifier and a physical address for that
processor. A set-associative lookup mechanism is provided to assist in the translation process.

With low-latency message execution and a global namespace, the MDP could be used to execute
shared variable programs. However, read and write requests must be interpreted by the instruction
unit. This takes up cycles that could be used to run application code and is likely to be slower
than servicing the request with a memory controller. Also, there is no hardware mechanism for
maintaining consistency between copies of writeable objects. Either a software mechanism wouild
be needed, or copies of writeable data would not be allowed.

2.2 Shared Memory Hypercube

Lindsay [201 proposes to support shared memory operations on a hypercube miilticompitter bY
allowing the communications controller to directly interpret meniory reque.st messages. These
messages could include f he usual read and write operations. as well as more (oniplex operations
like fetchkadd or swap.

Unlike the MDP approach, access to physical nernory can be handled independently of ihe
applications processor. btt operations requiring virtual addresses and/or cache coherence could
involve interrupting the processor. In comparison, our approach closely couples the network inter-
face with the cache and virtual nnior .ystea-- e can consider writing messages directly into

2-208

the cache or receiving virtual, instead of physical, addresses over the network without interrupting
the processor. Additionally, automatic coherence of information cached by several processors is

implicit.

2.3 Proposed Approach: Virtual Memory Support

In contrast to the above, we propose to integrate support for messages with the cache and virtual
memory management system of a shared memory multiprocessor. This has the following advan-
tages:

* Memory access requests are handled directly by the cache/memory controller, rather than by
the processor, even if virtual addresses are passed over-the network.

* The message passing mechanisms can be tightly integrated with existing cache and mem-
ory management hardware. Common inechanisms and resources can be used for handling
messages, cache coherence operations, and block transfers.

* Stock processor and memory modules can be used. This lets us utilize the best uniprocessor
technology, as it becomes available. with little or no redesign of the message passing mecha-
nisms. It is also in keeping with what has been learned concerning the benefits of building
fast, simple, general-purpose processors.

* The interface between the processor/compiler and the message passing hardware is based
on reading and writing memory locations, and protection is provided by the normal virtual
memory protection mechanisms.

3 Why Hardware Support?

In order to investigate the performane benefit of adding message passing hardware to shared
memory multiprocessors, we estimate the performance achieved by various shared memory imple-
mentations of messages. We then compare those estimates with the estimated performance of a
system with dedicated message-handling hardware.

3.1 Message Passing Implementations

In all the shared memory implementations. %e a-s'mie the following opelatio':

1. The message is written into a buffer in shared memory.

2. The receiver is notified that the buffer contains a message.

.3. The message is read from the buffer.

4. The sender is notified that the buffer is empty and available for a new Iie.sage.

2-209

In this paper, we asume a single-sender, single-receiver (producer/consumer) style of memage
passing. Meusage buffers are preallocated (in both the shared memory and dedicated hardware
implementations), and a single synchronization variable is used to indicate the full/empty status
of the buffer.

We consider the following implementations:

* Parecomputer- This implementatior., based on Schwartz's ideal paracomputer model [23],
supposes that any number of processors can concurrently read or write a memory location in
one cycle. Although unrealizable, this represents the best-case implementation based only on
shared memory.

0 Remote, no cache: Here we assume that the message buffer is located in a memory module
which is local to neither the sending processor nor the receiving processor. This represents
the worst case shared memory implementation, but it could arise in practice, either because
there is no prior knowledge about the location of either the sender or receiver, or because of
an architecture which does not provide local memory.

* Receiver-local, no cache: The message buffer is local to the receiving processor. The message
is written a word at a time by the sending processor. The synchronization variable is also
allocated local to the receiving processor.

* Block transfer, no cache: The message buffer is local to the sender; the receiver transfers the
entire message into its local memory (using a block read) and then reads it locally.

* Invalidate-based cache: This implementation assumes that each processor has an infinitely
large cache, which is kept coherent through some invalidate-based hardware coherence mech-
anism. Both the sending and receiving processors are assumed to have a copy of the buffer
in their caches at the beginning of the message passing sequence.

9 Update-based cache: This is the same as the previous case, except that an update-based
coherence protocol is used.

* Alessage coprocessor: This implementation assumes- the pic'ece of dedicated message-
handling hardware which reads and writes rnes.ages direftli from cache. As in the shared
memory implementations, a single %ariable is used to indicat,' the -tatus of the buffer-this
variable is local to the buffer awl is olv accesed by ti lle v, oplIo.,ssor and the receiving
processor.

For each of these implementatiots,. we e-timate the late:, y ol -, -dintg a -ingle N-word message
between two processors, with the following assimtptions:

9 Cut-through netrork: We asnme a point-to-point iitrcoe, tion network between proces-
sors, utilizing cut-through ionting "6.1S]. Each net%%oik chiunel i.b IV bits wide, and the
network may he clocked at a different rate than the pzoce-oi-. Each packet contains a t-bit
target and L bits of data. For this analysis. e~erv pu !,et tav.,.is the aveiage distance in the
network. denoted as .

2-210

" No contention: There is no modelled contention, either in the network or at the memory
modules.

" Local memory: We assume that some globally accessible memory module is local to each
processor. The cost of accessing this local memory is M processor cycles. The memory is
assumed to be interleaved, so that accessing a block of data takes M cycles for the first word
and one cycle for each word thereafter.

" Single-cycle cache: For implementations which use cache, we charge one processor cycle for
each cache access.

" Multiple outstanding writes: To maintain memory consistency, writes to shared memory loca-
tions must be acknowledged. We assume that multiple write requests may be outstanding-
i.e., an arbitrary number of writes may be issued before the first is acknowledged. We enforce
consistency by using fence or delay operations, which cause the processor to wait until all out-
standing writes are acknowledged, before accessing synchronization variables. (See Shasha
and Snir [291.)

" Compiler prefetching: We assume that the compiler can issue read requests to non-local
memory locations before the data is actually needed-thus read requests can be pipelined.
(This is a assumption which optimistically favors the shared memory implementations, since
it may mean that there are enough free registers available to i-ae read requests for the entire
message before the first word arrives.)

" Cost-free directory access: Sin, e we are intc;ested in scalable systems, we assume a directory-
based cache coherence protocol. but directory operations are not counted in our performance
estimates. In other words. we assume that each cache has instantaneous access to direc-
tory ini'.%rmaion. For example, it always "knows" which other caches have copies of shared
data. Thu., mir estimates are a lower bound on the actual time required by the cache-based
ihplement iL. ,ns. (We estimate the error to be on the order of 10%.)

The late.acy eqt-t ms derived from these assumptions, for each implementation, are given in :he
a ppendix.

3.2 A Co:ncret, Example

The perfommatce of each of the bove iinplementations depends on -lie characteristic-. of the tuider.
lying harw.are. In this section, we model a 256-pinoessor torus-connected machine. representative
of the "next- generation" scalable ninti processors. The tietwork parameters ale modelled after
MIT's proposed Jellybean mnachine *I31]--eight-bit bidirectional channels, clorked at four time"
the processor clock rate. The paiameters of the torts model are shown in tabie 1.

Figure I shows the estimated miessage ltencv for each of the implementations discussed earlier
as the message size N. increases from one to :12 words. (.V refers to the size of the data only,
not the entire network packet.) Figire 2 .,hows the same data, rritive to the petforniance of the
miessage coprocessor i m plemen ta tioni.

2-211

4. SimT"I A

-e-@A~w~me#%I=

Figure 1: Latency vs. message length. Figure 2: Relative latency vs. message length.

Aside from the ideal paracomputer implementation, the message coprocessor scheme shows the
best performance over all message sizes. The update-based cache is next-for eight-word messages,
it is about 80% worse than the message coprocessor. This is followed by receiver-local, invalidate-
based cache, and block transfer, which are tightly grouped at around 2.4 times the latency of
the message coprocessor (for eight words). Finally, the clear loser is the remote-memory based
implementation, which has relative latency around 3.5 for eight-word messages and is, in fact, the
slowest for all messages sizes.

The major noticeable trend in figure 2 is that the relative performances of the different schemes
become closer as the message size increases. In fact, for 32-word messages every implementations is
Within a factor of two of the message coprocessor approach. This is because the data transfer cost
dominates the synchronization cost for large packets. The data transfer costs differ mostly because
of fixed-sized overheads, whose relative impact diminish at larger message sizes.

The next thing to notice is that. in figure 1, the curve for the i nvalidate- based cache has a
smaller slope than the rest, showing that its performance is less dependent on message size than
the other schemes. (The flat part of the curve is for message sizes less than or equal to the cache
line size-four words.) This is because compiler prefetching and multiple outstanding writes allow

Parnin ifr jSymabol 1 lme

Avg. network dkrd1Ilce (lwtS) JUD
Chanuel width hIt IV I_____

Cycle ratio (mnetworkproe.,ior) p 0.2.
Local memory a(-s tproc. cvclce .! ____

iCat-le line -.ize .uords) BI I 4

Tale I.' Machine' pdtratneies for 2356-proct-iot torw;.

2-212

most a(the fetch and invalidaion time to be overlapped with reading and writing from the cache.

Figures 3-8 show how vaying the machine parameters affects the performance of the various
alternatives, with the nssage size fixed at eight words.

The effects of changin tbe average distance (D) are shown in figures 3 and 4. Decreasing
distance corresponds to using a smaller (or higher-dimensioned) network or increasing the locality
of the computations. High values of V correspond to large networks or poor locality. All of the
shared memory implementations are more sensitive to distance than the message coprecessor case.
since round trips through the network may be required for synchronizati:m and data transfer.
The remote-memory and invalidate-based cache implementations are the most strongly dependent
on getwork distance--remote-memory, because both the sender and receiver must access data at
distance -0, and invalidate-based cache, because reading the lock requires a cache line fetch, which
means a round trip through the network-

The effects of changing the relative network and processor cycles times (p) are shown in figures 5
arld 6. Slowing down the network or speeding up the processor would have the affect of ic
p. Changes in the relative network speed have dramatic effects on the absolute lateacies of all
the approaches (except the par-computer. which does not depend on network latency). The block
transfer and message coprocesso approaches are the best for networks with cycles times equa to
or larger than the processor's, with equal channel width. These methods use long packets (rather
than multiple small packets) to make efficient use of the network resources. As the network gets
faster, the cache-based implementations show the greatest relative .:n provrment, and, in fact, come
very dose to the messap hardware approach.

In this model, increasing the channel width (W) has exactly ?ite same effect as decreasing the
cycle ratio (p)-i.e., speeding up the network. With -eference to figures 5 and 6, increasing the
width from 8 to 32 bits is the sme as decreasing p from 1/4 to 1/16 (the left-most point on the
graph). While it may seem easier than speeding up the network, note that increasing the channel
width may have a significant cost impact. "n terms of pin count. wiing costs, total area, and power.

Less interesting are the effects due to changing the local menory access tine (31). shown in
figure 7. and the cache line size (B), shown in figure S. The local memory access only affects the
non-cache implementations 2 : the block transfer and recei~vr-local tchermes are essentiaily equivalent
to an update-based cache for a single-cyle local memnory. 1.ht h- o'kp 'tor-- ".an et'e: ,ache-based
implementation for access times greater than four cycles.

Cache line size (figure 8) only affects the CI.ai-tle-b a r-d ,- t he pc.- ed cache usri
every write to the network and no fetch*-, are ;:_NIed. 50 t. -- z to ef- t In .r mod.1- _-.i

lines actually perform better, becatuse ' eAding "he syncho .!.o- .v...i3' - - An entire I' '

he fetched. (This can be improved by nX --- lot.d. th -0 ftch i"mk e rrferentced A|ata
is presented immediately to the pror--or. lrholut wait.-- for t, it of "he 'M-n.it-i Lines b;Ueer
than eight words (the message -ize,. of -o-e. - latp.I y o t'., t:atii d-a'-m ail. since nore
data than necessary i, heing Transferred.

4OfCOtr.4e. finittCaCh*5'*Hl C.ouId :cthe : to dg.&.. w:1 A -~~ cctis :mr-b 4;b
to local cache ri.'

2-213

me CNN 4. ama --ftom

IN 41 &N4 L eI He 45I 1P~wlatt m
05mm om.)J

In. U m m . 4.4isMm

- Mm Capm 4- oecp

....................... Cm. bus.................

Figure : Latency vs. cycle risai. Figure 4: Relative latency vs.. ycle aio.

4p~d kmh PsceA Nob MS~m -0, "cu
40 wo"i. OWN. -a-I U114 cum4-MI.

-&- 55C0Fan .. - -- - - - - - f Mm C,,ssm

L-a- MmO r ~ 0 ~ d
US ,45(M00in

Figur 40 PA"nc 31 ues

Figue 7 Latncyvs. emnr\ ace4

T-2-211+

3.3 Conclusions

The message coprocessor approach shows tht _est performance because:

* messages are read from and written to the cache directly, rather than to local memory;

* only one producer-driven network packet needs to be transmitted, as opposed to multiple
memory request and acknowledgement packets required by the shared memory implementa-
tions; and

* local, fast synchronization is used to notify the receiver that a new message is present.

In the ideal case, a shared memory approach would be better, as shown by the performance of
the paracomputer model, because the producer writes the message directly to the place where it is
read by the receiver, and no copying of the message is needed. In the cases we have studied, however,
the cost of multiple network transactions for data access and for synchronization can outweigh the
cost of copying. Additionally, there is the cost of allocating and deallocating global message buffers,
which is not considered in this cost model. The message coprocessor has an advantage in this area,
as well, since allocation and deallocation can be done locally (as in the Ametek 2010 [26]).

Our performance estimates show that the shared memory implementations (except for remote
memory) have a message latency of 1.5-2.5 times that of the message coprocessor for eight-word
messages. Two important questions come to mind: Why worry about such small messages? And
does a factor of two improvement warrant the additional hardware?

With respect to the first question, it is our expectation that large-scale systems will need to
support more finely grained computation. Except for applications which can increase in size as
the number of processors grows, yielding "size-up" or "scaled speedup" [11], most applications will
leverage large systems by dividing work up into smaller chunkrs which can be performed in parallel.
As the size of computational chunks decreases, so will the average message size.

We cannot answer the second question now: the answer will come -ornm the investigations that
we are now pursuing. However, we note that the factor of two estima- is based on a simplp
analytical model, which does not address the issue of network or memory conention. The ilare
memory implementations utilize more network transactions (to communicate the sam: dmOIit
of data) than the message coprocessor approach, so it is likely that network contention vo-,iJ
cause their relative performance to further degrade. Also. the aal. tical monel wa.s based on
several assumptions which optimistically favored the .-hared meinoiy implementations. The cache-
based implementations, for instance, would peiforn sonewlhat %oibe if directory operations were
included. Finally, only a simple synchronization protocol. based on a -ingle sender and receiver, was
modelled. More complex protocols involving multiple senders and reCeivers require the management
of global message queues--the me.:sage coprocessor approach. hoo.ver. only requires local queue
management. Even using the fetch&add-based queue management routines described in [101, we
estimate that the relative message latencies for eight-word messages would increase to 3.5-6, rather
than 1.5-2.5.

In summary, the achieved increase in performance by using special message.handling hardware
appears to be at least a factor of t %o For small inesages. The te benefit of supplying iuch

2-215

hardwae, of course, depends on the cost of the hardware and the actual effect on overall perfor-

mance. To more accurately assess the potential costs and benefits, we need to consider a specific

implementation.

4 Proposed Hardware Support

In this section, we introduce a new hardware mechanism for supporting fine-grained message passing
in shared memory multiprocessors. The mechanism is based on the concept of streams, described
below, and is integrated with the cache and virtual memory system.

4.1 Streams

A stream is a data structure which represents a potentially infinite sequence of values communicated
between processes. The values may be self-referential entities (such as integers, strings, or arrays),
pointers to globa data, or pointers to other streams.

Streams are produced and consumed incrementally, and operations on streams are non-strict-
that is, the operations can be applied to the stream before the entire sequence of values has been
computed. Producers write to a stream, which causes a value to be placed at the end of the sequence.
The order in which values appear on the stream does not necessarily correspond to the order in
which they were written. Also, writes from multiple producers are merged non-deterministically.
Consumers read from a stream, which returns the first value in the sequence and (optionally)
removes it from the sequence.

In addition to communication, a stream also provides a means of synchronization among pro-
cesses. Upon reading an empty stream, a consumer may become blocked and may later be resumed
when a value is written to the stream.

Streams may be considered a generalization of futures [12]. While an unsatisfied" future repre-
sents a "promise" for a single value, an empty stream represents the promise for (the next item in)
a sequence of values. In fact, a stream may be implemented .,s a sequence of futuies-each future
being evaluated as pair which contains a value and a future which represents the remaining values.
(This is similar to the representation of streams in Concni ent Prolog [2-S] as sequences of logic
variables.)

We choose streams, rather than futures. as the primirive to be suipported for these easous:

* We expect processes which communicate to continue communucatim.) ovei time (a., il l). We
therefore prefer to reuse a stream rathei than newly allocate a (%nte-once) futi;re for each
individual communication.

* Multiple writers can more easily be ,upported by a direct implementation of a ,rream, con-
pared to a sequence of futures, in which each writer mst -pecify the location of tie next

item. In other words, an extia rutf r9 opeator i" not requ(ied for nlon-(leterninistic operation.

* Often, a multi-word item needs to be communicated (e.g.. a ta. k identifier and a coplle of
arguments). While a single-%%oid futme would reqired that ai poin ter to the i tein he %. ,iten.

2-216

oi that savvral futures be satisfied, a stream ---, directly store mullt*Ple w~tds without the
need for indirection.

,5,reamy-Dke construct-, haire b-aen used in several concurrent environments-such as pipes in the
V iyi'tem [34], oi mailboxes in the SpuA- Lisp environmient [33]. Also, streame. are an integral part
(if Lan~ina (91, 1. concurrent object- orim ted exte.nsion of Lisp.

4.2 Stream Pa~ges

We Jm~'einent a stream as a special type of virtual memory page, the stream page. Stream pa,,es are
global, bt~t only locally cacheable-a processor may .-.rectly access (and cache) only those streams
which are assigned to its local memory.

In addition to the usual statlis and usage information maintained by the virtual merncry system,
stream pages must manage he following:

o head: a pointer (nodulo the .z,,e size) to the first vafid data word in the page;

* tail: a pointer (noctwo the page size) to the next available data word in the page:

& empty: a flag vihich, when set, indicates that the stream contains no valid data;

*overflow: a flag whiich ib set when the number of words onl .he stream exceeds thle number
of words in a stream page;

Ai blocked: a flag w'ijch, when set, indicates that there are threads wvaiting for data to arrive
on this (P;,y trearn;

* threads: a counter of the nunibpr of threads waiting on a blocked stream;

e readilock: a flag which. whleni set, indicates that a thread (or the network)i k' curlrently
removing data from thle streamn;

@ writoa-ock: a flag which. %% hen set, indicates th t a t hreatl (or tile aetwoik) i., % iiient ly
adding data to thle stream:

* linked: a flag which, wvhes -,e. inii(a~ te~hat t hi sri cain *-' 11CIi to Icd ot hei soi a i:

* link: a pointer (virtua'adr's to another streami:

e trap: a flag %vhich. -. hen ,et. inf(lica tPe that ani error ':on(litrion Thlould be signa lied '% lir'n
reading all em pty stieai. rather I hal i t allill' hie , e 'sor.

AE described earlier, a streaii wi-)es a -,eqtremce ol' 'alrues. This sequei.-e is impl' ineilled
in the memory systein b,. treatitig thie sr reani pdge as a ciicrlat b-iffr. The head and tail dlenote
which data words in the page lime .ihid s iearn entries. \t attempt to read anl .)d(rc,; oiltsie
this range results iii anl erroi.

2-217

The abv.,e rooro inforni-tiou may be stored in the first few wvv.J.; of the streayd page (o-t
in dome other 4oattioii associated with the pap table entry tor the stream page). During active
use, however, this information is needed for every stream accesi. Therefore we pro-vide a special
hardware module. c&wza ihe streavia tran-Oation unit (ST), which holds the data for tMe currently
active stream. This is analogous to the more tr1io iial2 translation lookasidie buffer (TLB), which
contains the most recently used virtual- to-s-~ -: address transiations. As with a TLB, a reference
to a stream which is not conta~ined in the STU results in a miss, which causes tile control information
for the referenced stream to be loaded into the STU for later use. (We still ru use a TLB to
perform virtual- to-physical translation for "normal" mnemory operations.)

4.2.1 Reading a stream

Currently, we only allow a thtread to read from a str' mn which is allocated to its own local nterory.3

To read froin a tream, the th read r,t reads th- no'rd. Read',tg the head sets t,~ readiock and
returns the current head and the (:d valty- of read-1c, k, so the thread cart tell whether or not
tite lock has been requireid. Any atr-:..pt to read data fr, m a locked streamr results in an error.
Locking the .tream is required. -: ,ice the reading thread may be p~re-emnpted or detcheduled for a
indefinite period of time 'aring that time, sonie other thread may be scheduled wbhch wishes to
read the same stream -thle result is tnat each thread inay read half a message.

If the empty flag is set during a read operation, then there ate two possible actionL-

1. If the trap flag is clear (or if the writeick is set), then the processor stalls until data is
written to the stream. (There may bw a timeout interrupt that prevents the processor from
stalling indefinitely.)

2. If the trap flag is set, then the blocked and writejlock flags are set, and an error condition
is returned. The error handler should then write a pointer to the thread's control block on
the tail of the stream and increment the threads counter-when da.ta. arrives. time thread will
be rescheduled. In the meantime. another thread maiy execute.

4.2.2 Writing to a stream

A inessage is never written directly to tile ,t reaiii from which it k w'ad. lmitead. th lImies.,.age
ik written to an intermediate, write-oni lv yr reaut (rdletd the sonircis -itite.i i) M lich k Ii tik~ed to thle
d1esired dlestintation stream (called the sink), The sotiice inI ai i~. a m-i k, * t1 tm iter-%dhen

lie message is completely written. lie t einli idIugha rd ma I e (OpiCh It (possibly" .mc ss tile
iietwork) to the sink stream, wvhich Is 'pecified hy the ,onice NlIream l" link liPIdI

There are two reasons for- adopting thik inditedt aplproa(h:

A schvine io Allow read access to remliote streami is unider detelopine.itt Reinii mi ti.- (ws"cild be %f'tv
jicefil in imnplemeniting efficient qhired queuE's. such as tA.k 'm',eiii-s

'The Iiii<ed flag is used to inidicate let hir tit lik fid i, %al '

2-218

9 Having multiple, noxt-loWa writers would require provid%-i a consistent view of the streams

head and tadi. Inste.id, our approach has each writer maintain its own local stream infor-

mation.

*A local writer can be -pre-empted or swapped out indefinitely. If this thread were writing

directly to a sink stream, then the write lock would be held indefinitely, which would block

any network messages arriving for that stream. Blocking the network for lang periods ef time

can degrade the performance of the entire system, so it was decided that local threa&c should

not write to the same stream as the network.

-Since several sources could be sending messages to the same sink, there is, of course, the

possibility of overflow. We can try to avoid overflow by sending negative acknowledge (NA K)

meagages back to a F,.,urce b.'rea - when the sink is almost full. The N AK would prohibit writes on

tile source until an ACK mi 3,..ge airives later, when the sink is not as full. When overflow does

occur, however, we plan .- reroute the miessage to an overflow stream, managed by the operating

6ystern, wvhich would later copy t.'re mnessage to thle proper stream. When the overflow stream

overs.1-ms, the processor would have to be interrupted, ;n order to allocate a. new overflow stream

snd/or service some o~f the overflow messages.

When a message is written to a stream whiich is blocked, then the waiting threads must be

reschedluled. One way to accomp tish-d this quickly is:

1. The lfirs: thread pointer on the i,h!,-cked streami (see abo,,e) is transferred to a scheduling

stream, whrich is serviced by the opezat~ng systemn.

2. When the thread is awakened, it removes tile wimiber ofl thlread pointers indicatei by the

threads counter, andl places them on the sclieduht, 4 streani.

3. Finally, the awakened thread continues execution, probbl hi lw eading the message that

arrived on the stream.

This approad. places some burden onl tlhe awakening thread (or thle chieduling roittii -I, but allows

an incomin message to be placed on tho qtream w ithouit %%aiting lIm ain arbitrary number of threads

to be placed on the scheduling stream.

4.3 Further Work

These ideas and rneclianims for h lm~didlf c,1iPpOlt Uf dtem re pli l ill nAr. and muchi more work

nteeds to be (lone, We ale in th,- pioce,,S of itufi ning thie iechanisii, ind iiailimi2 downt the de'tails of

a possible imlplemrentationi. We aw' cr. inteiesied in in.~i, th iti ppvitr of further -treamn

operations, such as acce~s to reniieie t i'ani. andl a moie extvasi- 511vi hanii for linkinga -treams

(to provide a niultica.-t-like fa ilit%). Soin othei ideas abhout itiefil tivainu opciations (an be found

in the description of La-Mina, a c~mcurrenlt object-oriented langpuie 'ct

Once a reasonable imiplementdtion hit. beent detailed, %%e munstv itlate its (ost and performance.

The analytical tech niqneq iseld at I e wg i iin of I li, paper ('dl on v pros ide a cmdu(e etinmate

2-219

of performance under (unreasonable) best-case conditions. In order to examine contention effects
and more complex data transfer patterns, we will simulate a target implementation running test
applications.

In particular, we will use the CARE simulation system [7), which allows us to run non-trivial ap-
plications on a variety of multiprocessor configurations. CARE also provides a flexible, non-intrusive
instrmentation system, which will enable us to measure various aspects of system performance,
such as message latency.

4.4 - Related Work

The BBN Butterfly [2] is large-scale shared memory machine which also provides some microcode
support for message passing. A coprocessor, called the processor node controller, is responsible
for interfacing the processor and memory to the interconnection .network, and contains microcode
routines for atomic operations. block transfers. and so forth.

In particular the microcode supports operating system constructs called events and dual-queues.
Events are used to signal a process-a posted event may cause a blocked process to become un-
blocked. (Portions of the process scheduler are also implemented in microcode.) Dual-queues are
used to hold either one-word data items (usually pointers) or events which represent processes
waiting for data to be placed on the queue.

While some aspects of events and dual-queues are similar to the stream approach that we have
proposed there are significant differences:

* Streams can accept multiple-word items. This means that the allocation and deallocation of
buffers is automatic, for messages smaller than the stream page size. Dual-queues only accept
events or one-word data items.

* Our stream support is integrated withi support for coherent caches. The Butterfly does not
provide caches.

* The microode roitines on the node controller are accessed by passing a pointer to a control
block to a special memory address [17]. Streams are accessel merely hv reading or wiiting
to the proper page-all the necessary control :nformarioi is mantged by the lhaid6are. The
Butterfly interface i-. more fle-ible b,,t (po'enhially) more e.xpn.ive. Our approdch is aiined

toward providing single-c.yc!e orvice for liv' eost li i-ai op.ario,,': :o e iely on exception-
handling. .are to handle he ittr'o:ro: opi,...

5 Summary and Conclusions

in summary, it is or conjectie im fitirre 1pr.gc..,cale m itipoc#i ot .'4ems liould suppoit
both fine-grained messages and line-grained actv,. i. %hared ' aua. IUegrained messages implies

efficient comin:,nication of imall blocks of dam, b.,rteen ltreadi,. -. nci;onization of instruction
execution with the availability of ni, age da'a. -, ud , .oxei head n,., hanns for associaing thread

2-220

activation with mesge arrival. Fine-grained shared variables implies direct servicing of memory
acces requests by the memory system (without the involvement of the processor) and (probably)
a hardware-based mechanism for maintaining cache coherence.

The approach that we propose is to integrate support for messages with the memory man-
agement system of a shared memory multiprocessor. We have presented evidence, in the form of
message latency estimates, that suggests that fine-grained messages can benefit from dedicated
hardware support.

Finally, in order to better quantify the cost and benefits of such hardware, we proposed a
possible implementation, based on streams. A model of this implementation will be simulated,
ruttning benchmark applications, so that performance parameters such P message latency, memory
traffic, and network throughput can be measured. Based on these measurements, we can evaluate
the impact of the added hardware on the overall system performance.

A Latency Derivations

In this appendix, we derive the latency equations used to estimate performance in section 3. We are interested
in the best-case latency of sending an N-word message between processes A and B, each on a different
processor.

For each implementation, the latency of each portion of the message transfer is identified. Since these
actions are serialized, the total latency is computed by adding the latencies of each step.

When either process accesses a lock (i.e., synchronization variable), only the portion of the access that
is serialized with the rest of the message transfer is counted. For example, we assume that the reading of a
lock happens immediately following an associated write operation-thus we do not charge for the network
delay of the read request or the write acknowledge, since they may be o~erlapped with other portions of the
transaction.

Other assumptions are explained in section 3.1.

A. 1 Terminology

U = average network distance (hops)
t = size of target address (hit.,)

W = network channel width (hit")
T(k) = network cycles to transmit k words = [fl ' +
S(k) = network cycles to place k woid- onto the network =

p = ratio of network cycle tmfi to processor cLle tIiui
M = memory access time, in proc -- or cycle.
B = cache line size, hoth foi i rat'ier n.id cniur-nc.

A.2 Parecomputer

1. A reads lock. I ccle,

2. A writes dara. cycle%.

3. A writes lock: I cycle:

2-221

4. B rea& lock: I cycle;

5. B reads data. N cycles;

6. B writes lock: I cycle.

A.3 Remote Memory, No Cache

1. A reads lock: pT(l) + M cycles:

2. A writes data: (N - I)pS(1) + 2p"(1) + M cycles;

3I A writes lock: pT(I) + M cycles;

4. B reads lock: pT(1) + M cycles;

5. B reads data: (N - 1)pS(I) + 2pT(l) + M cycles;

6. B writes lock: pT(1) + W cycles.

A.4 Receiver-Local Memory, No Cache

1. A reads lock: pT (1) + M cycles;

2. A writes data: (N - 1)pS(1) + 2pT(l) + M cycles;

3. A writes lock: pT(1) + M cycles;

4. B reads lock: M cycles;

5. B reads data: M + (N - 1) cycles;

6. B writes lock: &I cycles.

A.5 Sender-Local Memory, Block Transfer

i. A reads lock: pT(1)+ M cycles;

2. A writes. data. .1 + (N - 1) cycles;

3. A writes lock: pT(1) + At cycles;

4. B reads lock: .11 cycles;

5. B translhirs data: pT(l) + Al + pT(X) cycles;

6. B reads data: .11 + (.V - 1) cycles:

7. B write., lock: It cycles.

2-222

A.6 Invalidate-Based Cache

1. A reads lock (from B's cache): p(T(1) + T(B)) cycles;

2. A writes data: ([- 1)B + max(2pT(l) + 1, B) cycles5 ;

3. A writes lock: pT(1) + I cycles;

4. B reads lock (from A's cache): p(T(1) + T(B)) cycles;

5. B reads data (from A's cache): (r - 1)B + p(T(1) + T(B)) cycles;

6. B writes lock: pT (1) + I cycles.

A.7 Update-Based Cache

I. A reads lock: I cycle;

2. A writes data: (N - I)pS(1) + 2pT(I) + I cycles;

3. A writes lock: pT (1) + I cycles.

4. B reads lock: I cycle;

5. B reads data: N cycles;

6. B writes lock: pT (I) + I cycles.

A.8 Message Coprocessor

1. A writes data: N cycles;

2. data is transmitted: pT(N) cycles:

3. B is notified: I cycle;

4. B reads data: N cycles;

5. B frees buffer: I cycle.

References

[1] Ramune Arlauskas. iPSC/2 Svstni: a ,econd geupidti,) Itypvicube. Ii, volume I of Ilypr-
cube '88 [141, pages 38-42.

121 BBN Laboratories Incorporatd. Butterfly parallel proce(;sr oterview. BBN Report 6148.
March 1986.

[3] Andrew D. Birrell, An introdu tion to programmiing %%itli thiemds. SRC Research Report .35.

Digital Equipment Corporatioi. -Janitary 1989.

;Depending on the line size. B, the 1.i 4 knowledlement might have retu:,,ed belore the I.it of the line is written.

2-223

[4] William J. Daly. Fine-prain message-passing concurrent computers. In volume 1 of Hyper-

cube '85 [14J, page 2-12.

[5] William J. Dally et al. Architecture of a message-driven processor. In 14th Annual Sympoeium
on Computer Architecture, pages 189-196. ACM, June 1987.

[6] William J. Dally and Charles L. Seitz. Deadlock-free message routing in multiprocessor inter-
connection networks. IEEE Transactions on Computers, C-36(5):547-553, May 1987.

[7] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. Instrumented architectural
:simulation. In volume 1 of ICS '88 [16), pages 8-11.

[8 Bruce A. Delagi and Nakul P. Saraiya. ELINT in LAMINA: Application of a concurrent object
language. Technical Report KSL-88-33, Knowledge Systems Laboratory, Stanford University,
1988. To appear in SIGPLAN Notices, April 1989.

[9] Bruce A. Delagi, Nakul P. Saraiya, and Gregory T. Byrd. LAMINA: CARE applications
interface. In volume 1 of ICS '88 [16], pages 12-21.

[10] Allan Gottlieb, B. D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient
coordination of very large numbers of cooperating sequential processors. ACM Transactions
on Programming Languages and Systems, 5(2):164-189, April 1983.

[11] John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development of parallel methods
for a 1024-processor hypercube. SIAM Journal on Scientific and Statistical Computing, 9(4),
July 1988.

[121 Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Sy. tem.s. 7(4):501-538, October 1984.

[13] John P. Haves, Trevor Mudge, Quentin F. Stout. Stephen Colley. and John Palmer. A
microprocessor-based hypercube supercomputer. IEEE Micro, pages 6-17. October 1986.

[14] The rhird Conference on Hypercube C'onw-urrcn Coinpitls anr. d .- pliation.5. Pa.sadena, CA,
January 1988. ACM Press, New York.

[15] Proceedings of the 1988 Internationd Conference onz Parr'lki Pio*. .sing. The Penniisylvania
State University Press. August 19,,.

[16] Proceedings of the Thiird Inttrntional Confereme ,' Superconip tmny. Boston. N[A. May 198-.
International Supercomnptiting Institute. hic., St. Petershurg. FL.

[17] BBN Laboratories Incorporated. Development of a v'i(e futnel .yste:n Quarterly technical
report no. 12. BBN Report 1545. Janmuary 19$2.

(18] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer commntication switching
technique. Compater ,Vcttvoi'k. 3:267. 1979.

2-224

[19] Hugh C. Law and Roger M. Needham. On the duality of operating system structures. In
Proceedings of the Second International Symposium on Operating Systems. IRIA, October 1978.
Reprinted in Operotinq Systems Review, Vol. 13, No. 2, April 1979, pp. 3-19.

(201 Donald C. Lindsay. Towards a shared memory hypercube. Technical Report CMU-CS-88-190,
Dept. of Computer Science, Carnegie Mellon University, November 1988.

(21] Tom Lovett and Shreekant Thakkar. The Symmetry multiprocessor system. In volume 1 of
ICPP '88 (15], pages 303-310.

(221 G. F. Pfister et al. The IBM Research Parallel Processor Prototype (RP3): Introduction and
'architecture. In Proceedings of the 1985 International Conference on Parallel Processing, pages
764-771.

[23] J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Systems,
pages 484-521, 1980.

(241 Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh. Design rationale for Psyche, a
general-purpose multiprocessor operating system. In volume 2 of ICPP '88 [15], pages 255-262.

[25] Charles L. Seitz. The Cosmic Cube. Communications of the AC, 28(l):22-33, January 198-5.

[26] Charles L. Seitz et al. The architecture and programming of the Ametek Series 2010 multi-
computer. In volume I of Hypercube '88 (14], pages 33-36.

(27] Charles L. Seitz, Jakov Seizovic, and Wen-King Su. The C programmer's abbreviated guide
to multicomputer programming. Technical Report Caltech-Cs-TR-S.- 1, Department of Com-
puter Science, California Institute of Technology. January 19*$.

(28] Ehud Shapiro, editor. Concurrent Proloy. MIT Press. Cambridge. MA. 197.

(29] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that share
memory. Technical Report RC 12936 (#58037). IBM T. J. Wartson Reiearch Center. July
1987.

'301 Alan Jay Smith. Cache memories. Coniputing Sitrry., 1.1(3): I.3-5:30, September 19A2.

[31] Paul Y. Song. Design of a network for concurrent niessage p.,--ing y.steiii,. "faster*-; t hesi.
Massachusetts Institute of Technology. May 19SS.

[32] Michael Young et al. The duality of memory and communita:in In the iriplemeitation of a
multiprocessor operating system. In Pror-bdig-s of /hr lth S~q'..tuu, iu., , Opjrmhyn Sy.,tenis
Principle,,. ACM. November 1987.-

(33] Benjamin Zorn et al, Features-for nitltiprocessing in SPUR Li-p. Technical Report UCB/CSD
88/406, Computer Science Diviston (EECS), 'niver ity of CalUut-tia. Bei kele.. March 19S8.

(34] Willy Zwaenepoel. .lles.,ige Passinq on a Loral N.Iwork. PhD th k. Stanford University.
1985.

2-225

Knowledge Systems Laboratory March, 1986
Report No. KSL 86-14

CAREL" A Visible Distributed Lisp

by
Byron Davies

KNOWLEDGE SYSTEMS LABORATORY
Departments of Medical and Computer Science

Stanford University
Stanford, California 94305

2-226

CAREL: A Visible Distributed Lisp

Byron Davies

Knowledge Systems Laboratory
and Center for Integrated Systems

Stanford University
Palo Alto, California

and

Corporate Computer Science Center
Texas Instruments

Dallas, Texas

The author gratefully acknowledges the support of the followi ng funding agencies for th.
project; DARPA/RAOC. under contract F30602-'5-C-,)012: N4ASA. under contract numbe
NCC 2-220 Boen. under contract number W-26.oo5.

2-227

Abstract
CAREL is a Lisp implementation designed to be a high-level interactive systems

programming language for a distributed-memory multiprocessor. CAREL insulates the user

from the machine ianguage of the multiprocessor architecture, but still makes it possible for

the user to specify explicitly the assignment of tasks to processors in the multiprocessor

network. CAREL has been implemented to run on a TI Explorer Lisp machine using

Stanford's CARE multiprocessor simulator (Delagi 85].

CAREL is more than a language: real-time graphical displays provided by the CARE

simulator make CAREL a novel graphical programming environment for distributed

computing. CAR.EL enables the user to create programs interactively and then watch them run

on a network of simulated processors. As a CAREL program executes, the CARE simulator

graphically displays the activity of the processors and the transmission of data through the

network. Using this capability, CAREL has demonstrated its utility as an educational tool for

multiprocessor computing.

1; ontext
CAREL was developed within the Advanced Architectures Project of the Stanford Knowledge

Systems Laboratory. The goal of the Advanced Architectures Project is to make knowledge-

based programs run much faster on multiple processors than on one processor. Knowledge-

based programs place different demands on a computing system than do programs for

numerical computation. Indeed, multiprocessor implementations of expert systems will

undoubtedly require specialized software and hardware architectures for efficient execution.

The Advanced Architectures Project is performing experiments to understand the potential

concurrency in signal understanding systems, and is deveklping specialized architectures to

exploit this concurrency.

The project is organized according to a number of abstraction la.,ers, as shown in Figure 1-1.

Much of the work of the project consists of designing and implementing ianguages to span the

semantic gap between the applications la)er and the hard' are architecture.

The design and implementation of CAREL depends maink on the hardware architecture

level. The other levels will be ignored in this summir,,, but are described briefly in the full

paper. At the hardware level, the project is concentratnniz on a class of multiprocessor

architectures. The class is roughly defined as ,ilID. large grain, locally-connected. distributed

2-228

Layer Research Question

Applications where Is the Potential concurrency in signal
understandIng tasks?

Problem-solving How do we maximize useful concurrency and
frameworks minimize serialization in proolem-soiving

architectures?

Knowledge-representation How do we develop knowledge representations to
and inference maximize parallelism In inference and search?

Systems programming How can a general-purpose symboltc programming
language language support concurrency and help map

multi-task programs onto a distributed-memory
multiprocessor?

Hardware architecture What multiprocessor architecture best supports
the concurrency in signal understanding tasks?

Figure 1-1: Multiple layers in implementing signal understanding expert

systems on multiprocessor hardware

memory multiprocessors communicating via buffered messages. This class was chosen to match

the needs of large-scale parallel symbolic computing with the constraints imposed by the desire

for VLSI implementation and replication. Like the FAIM-1 project (Davis and Robison 85].

we consider each processing node to have significant processing and communication capability

as well as a reasonable amount of memory - about as much as can be included on a single

integrated circuit (currently a fraction of a megabit, but several megabits within a few years)

Each processor can support many processes. As the project progresses. thc .etailed design of

the hardware architecture will be modified to support the needs of the application as both

application and architecture are better understood.

The hardware architecture level is implemented as a simulation running on a (uniprocessor)

Lisp machine. The simulator, called CARE for "Concurrent ARray Emulator" (sic), carries Ou:

the operation of the architecture at a level sufficiently detailed to capture both instruction ru.i

times and communication overhead and latency. The CARE simulator has a programmah...

instrumentation facility which permits the user to attach "probes" to any object or collection

objects in the simulation, and to display the data and historical summaries on "instruments"

the Lisp machine screen. Indeed. the displa. of the processor grid itself Is Olle u'.

instrument.

2-229

2. Introduction
The CAREL (for CARE Lisp) language is a distributed-memory variant of QLAMBDA

[Gabriel anO McCarthy 84] and an extension of a Scheme subset [Abelson and Sussman 85].

CAREL supports futures (like Multilisp (Halstead 84]). truly parallel LET binding (like

QLAMBDA), programmer or automatic specification of locality of computations (like Par-Alft

[Hudak and Smith 86] or Concurrent Prolog [Shapiro 84] and both static assignment of

process to processor and dynamic spread of recursive computations through the network via

remote function call. Despite the length of this list of capabilities, CAREL is perhaps best

described as a high-level systems programming language for distributed-memory multiprocLssor

computing.

The CAREL environment provides both accessibility and visibility. CAREL is accessible

because, being a Lisp, it is an interactive and interpreted language. The user may type in

expressions directly and have them evaluated immediately, or load CAREL programs from files.

If the multiprocessing features are ignored, using CAREL is just using Scheme. The

multiprocessing extensions in CAREL are derived from those of QLAMBDA. For example.

PARALLEL-LET is a simple extension of LET which computes the values for the LET-

bindings concurrently, at locations specified by the programmer or determined automatically.

CAREL gains its visibility through the CARE simulator CAREL programmers can watch

their programs execute on a graphic display of the multiprocessor architecture. Figure 5-1

shows CARE and CAREL with a typical six-by-six grid of processors. A second window on

the Lisp machine screen is used as the CAREL listener, where programs are entered. As a

CAREL progra'm runs, the simulator illuminates each active processor and each active

communication link. The user may quickly gain an understanding of the processor usage and

information flow in distributed CAREL programs. CARE instruments may also be used tJ

gather instantaneous and historical data about the exection of CAREL programs.

The rest of the paper is divided into a discussion of the philosophy of CAREL. a descriptiorn

of the language CAREL. and some illustrated examples of CAREL in action on ,he CARF

simulator.

2-230

3. Philosophy and Design
The CAREL language was developed with a number of assumptions in mind. The followin

assulaptions are stated very briefly for this summary but appear in expanded form in the ful

paper:

1. CAREL (like Multilisp) was designed to augment a serial Lisp with "discretionary"

concurrency: the programmer, rather than the compiler or the run-time support

system, decides what parts of a program will be concurrent. CAREL provides

parallelism through both lexical elaboration and explicit processes [Filman and

Friedman 84].

2. Similarly, CAREL was designed to provide discretionary locality: the programmer

also decides where concurrent routines will be run. A variety of abstract

mechanisms are provided to express locality in terms of direction or distance or

both.

3. CAREL generally implements eager evaluation: when a task is created, it is

immediately started running, even if the result is not needed immediately. When

the result is needed by a strict operator, the currently running task blocks until the

result is available.

4. CAREL is designed to automatically manage the transfer of data, including

structures. between processors. CAREL supports general methods to copy lists and

structures from one processor to another, and specialized methods to copy programs

and environments.

5. CAREL is designed to maintain "architectural fidelit>": all communication of both

data and executable code is expltcitI. handled by the simulator so that all costs of

communication may be accounted for.

6. CAREL provides .ertain specialized "soft archi.c{Lures", suh as pipeliies, overla.ed

on the processor netork.

7. Through CARE. CAREL graphically display.s the runtime behavior of executing

programs.

2-231

8. Finally, and unfortunately, CAREL ignores resource management, in'ludiing the

problem of garbage collecting data and processes on multiple processors. Resource

management is a very important problem, but CAREL doesn't)et have a solution

for iL CAREL currently depends on the memory management of the Lisp machine

on which it

4. The Language
This section presents a language description of CAREL and examples - with graphics - of its

use. The functions and special forms of CAREL were selected roughly as the union oV the

capabilities of QLAMBDA (as extended for distributed memory) and Par-Alfi. There has been

no attempt as yet to create a minimal but complete subset of CAREL.

On top of St..eme subset, CAREL supports the following functions and special forms:

PARALLEL-LET: a special form for parallel evaluation of LET binding. Optionally, the

.-ogrammer may specify the locations at which the values for binding are to

be evaluated.

PARALLEL-LAMBDA: a special form to create asynchronously running closures. Optionally.

the programmer may specify the location where the closure is to reside. The

closure may also include state variables so that it's behavior may vary over

time.

PARALLEL a parallel PROGN, evaluating the component forms concurrently.

PARALLEL-MAP: a parallel mapping function which applies a single function to multiple

arguments at multiple locations, returning a list of the results.

MULTICAST-MAP: a parallel mapping function which evaluates the same form at multiple

locations and gathers up the %alues returned in the order in which they are

returned.

FUTURE: a special form specifying a form to be esaluated and the site at ,hich the evaluatj,..i

should take place.. Returns a future encapsulating the value that .

eventually be returned.

TOUCH/FORCE: a function to force a future to gi,,e up its alue.

ON: evaluates a form at a specified location. Equivaleit to (TOUCl1 (FUTURE ...))

2-232

8. Finally, and unfortunately, CAREL ignores resource management, in-luding the

problem of garbage collecting data and processes on multiple processors. Resource

management is a very important problem, but CAREL doesn't)et have a solution

for it. CAREL currently depends on the memory management of the Lisp machine

on which it

4. The Language
This section presents a language description of CAREL and examples - with graphics - of its

use. The functions and special forms of CAREL were selected roughly as the union of the

capabilities of QLAMBDA (as extended for distributed memory) and Par-Alfl. There has been

no attempt as yet to create a minimal but complete subset of CAREL.

On top of S%...eme subset, CAREL supports the following functions and special forms:

PARALLEL-LET: a special form for parallel evaluation of LET binding. Optionally, the

.-ogrammer may specify the locations at which the values for binding are to

be evaluated.

PARALLEL-LAMBDA: a special form to create asynchronously running closures. Optionally,

the programmer may specify the location where the closure is to reside. The

closure may also include state variables so that it's behavior may vary over

time.

PARALLEL a parallel PROGN, evaluating the component forms concurrently.

PARALLEL-M-AP: a parallel mapping function which applies a single function to multiple

arguments at multiple locations, returning a list of the results.

MULTICAST-MAP: a parallel mapping function which evaluates the same form at multipie

locations and gathers up the -.alues returned in the order in which they are

returned.

FUTURE: a special form specifying a form to be e~aluated and the site at which the evaluat ,,

should take place.. Returns a future encapsulating the alue that

eventually be returned.

TOUCH/FORCE: a function to force a future to gile up its alue.

ON: evaluates a form at a specified location. Equo-alei to (TOUCH (FUTURE ...).

2-232

Evaluating a PARALLEL-LAMBDA sets up a closure at a remote site specified by location

and returns a function of the specified arguments. When this function is applied, the list of

evaluated arguments is sent to the remote closure, the remote evaluation is initiated, and a
future is immediately returned. The remote closure created by PARALLEL-LAMBDA contains

some state variables, bound in state-bindings. A state variable is changed by applying the

PARALLEL-LAMBDA function to the arguments (:SET variable-name value).

parallel? is used, as in PARALLEL-LET. to determine whether parallelism is actually

employed.

PARALLEL:

(PARALLEL. body)

The PARALLEL special form initiates the concurrent evaluation of the forms in the body.

Control returns from PARALLEL when all of the forms have been evaluated. The value

returned by PARALLEL is undefined.

PARALLEL-M,.P:

(PARALLEL-MAP function-form arguments-form locations-form)

function-form evaluates to a function of one argument

argumei ts-form evaluates to a list. each member of which is to be used as an argument to

the function

locations-form, evaluated to a list of locations.

PARALLEL-MAP, like MAP, applies a function repeatedly to arguments drawn from a list
and returns a list of results. Unlike MAP. PARALLEL-MAP performs the function

applications remotely, and returns a list of futures that will eventually evaluate to the results.

M U.TICAST-NIA P:

(NIUL.TICAST-,MIAP f' inction-form Iocjutons-,!orm)

MULTICAST-%IAP invokes a function of no -reuienis at each locatio iln a ist off
locations. MLULTICAST-\I-\P mimediately returis .i i1st of futures corresponding to the values

that will eventually be returned. Since the function tailed takes no arguments. the values
returned can be different only if they depend in the local state of the processor at the location

of evaluation, as embodied in the -global" environment of (hat processor.

2-234

MULTICASTVAP->2 -RPLY:

(IULTICAST-MA P-NO- REPLY function-form locations-formn)

MULTICAST-MAP-NO-REPLY invokes a function of no arguments at each location in a

list. but does not cause results to be returned. The value returned by M.%ULTlCAST-M*VAP-NO-

REPLY is undefined.

PIPFLINF:

(PIPELINE stage! ... stagen)

where a stage -is:

(name args location-form state-variables . output-forms)

For each stage expression, PIPELINE establishes a remote-closure at the specified location,

and then links the remote closures so that the output of one stage becomes the input of the

next stage. The linked closures form the working part of the pipeline. PIPELINE then returns

a function which, when applied. passes its arguments on to the first stage of the pipeline and

immediately returns a future which will eventually conc.21n the result that comes out of the

pipeline. To ensure that the results that comes out of the pipeline correspond one-for-one

with the sets of arguments that went in, the future-object to hold the result is created

atomically with the entry of the arguments into the pipeline and is passed along with the data

through the pipeline.

5. Some Examples
PARALLEL-LET.

::This subroutine concurrently aorforms trivial com~outatlonfs at the four
;:corner neighbors of a given location and collects the results.

(define (cycle-corners-i start-location)
(parallel-let t ((l (list 1 Z) (neignbor 0 start-cation))

(x2 (list 3 4) (neighbor 2 (fteiqhfaor I start- location)))
x3 (list 5 6) (neighbor 3 start-lacatlon

(ap~mnd ~ x4 (list 7 8) (neighbor 5 (neicrioor 4 '!rt-location))))

CYCLE calls tte suoroutine startinig at -re current aroce-sor

(doftne (cycle) (Cycle-corners-i *her**))

2-235

PARALLEL-MAP (see Figure 5-1):

::: FOUR-CYCLE Calls the CYCLE program at tour different locations
;;; in the processor grid.

(define -jour-cycle)
(parallel-map cycle-corners-I:M 5 2) 122 s)

Figure 5-1: PARALLEL-MAP: Execution of the FOUR-CYCLE program.
Active processors are displayed in inverse video. Active

communications links are drawn as lines joing particular ports of the
processor nodes. The processors hand-annotated with asterisks are the

cycle centers. Each processor is at a different point in the cycle.

PARALLEL-LAMBDA:

;:: This creates a process at some other node in the network.
;;; returning an object which. when applied as a function to two
;;: arguments, evaluates a linear expression on those arguments.

(define (linear-evaluator at bi)
(parallel-lambda t (x y) ';any-other ((a al) (b 01))

(* (0 a X) (* b y))))

MULTICAST-MAP-NO-REPI.Y (see Figure 5-2):

This activates the processor at each location in SITES.

(define (activate-locations sites)
(multtcast-map-no-reply (lamoda () "here) sites))

M CLTICAST-NIAP (see Figure 5-3):

;; This sends a messaqe to each location in the list SITES. asking it
;;; to return its location.

(define (identify-yourself sites)
(multicast-map (lambda () "here) sites))

2-236

Figure 5-2: MULTICAST-MAP-NO-tREPLX: Samples from the executioni of the
ACTI VATE- LOCATIONS program. show~iig how the MUltiCaSE message is

distributed and how the processors receiving the message ar!
activated. Since no reply is required, the CornpUtaE~on just dies out

once the distributed programs are run.

PIPELENE:

This sets up a pinell,--. across the t0ttcm and u. -e right-hand
;;side of the processor array. This trivial aloe!-e sioly acids
I to the input value at each stage and passes tf~e result ^n to
the next stage. It also prints out the result at each stage.
using a printing mechanism "outside" the simulation.

(define (make-test-oiaeline)
(pipelini (si (X) '(1 6) (a t)) (print (~a im))Is2 (x) *(2 6) ((a p)) (print (~a x))i

s3 (z) '(3 6) ((a 1) (Print (~a x)))
s4 xl *(4 6) 13 1,, (print (.a x))
ss ~X) (5 65) ('a p) (print (.a im)
s6 (z) %6 6) dai)) (Print ~.a w))
0s7 (x) (6 5) aI)(print (~a 0))
(so (ax) (65 4) ((a 1)) (print (.a 6))
SS9 (x) *(6 3) ((a 0)) (orint (.a AM)

~IO(a (62)((a U) print 1* a W)
(s1i (x) *(6 1) ((a i)) (print (.

6. Implemnentation
CAREL is implemenzed by a *' emcreuid(- ilterrpreter, -mpi'emented -,n Zetah11sp and

drawing: heavily on the CA\RE 3iniul.ator. Some detcail of the :ltmlat1 are pro,,id:.,J ifl

the full paper. These include the representation uf L \RIEL ,--%(-types, the use of a*gba

'Scmurculjr. nut nctaciuidr. tc-iusc it is impicmeiotd in L~isp, ikut nut in CARFL.

2-237

I I k
ill VAI

Figure 5-3: MLCICAST-NIAP Samples from :h execution of the IDENTIFY-YOURSELF
prce.am. The multicasc me,,cd ;s disCr:buied 's ;n Figure 5-2. but In

this examole the processors mu .E i end a alue ack j :he requesEing process.
The ne.-6ork becomes conzes,,tJ ..s all the precessors respond hen
graduai! returns to rest .s :re ,'e s.aes rea n cheir desm ation.

The necw;on of , e, c, .- ;s !tar: ? s .

2-238

ME.Ni11EUh i

Figure 5-4: PIPELINE: Samples from the execution of programs constructing Ind
using a CAREL software pipeline. The pipeline runs along the bottom

and up the right side of the processor array. The pipeline is
constructed in two passes. The first pass (a) establishes a process
at each site and the second pass (b) links the processes together.

The execution of the pipeline on a sile argunient (c) shows data
flowin-. throuith the pipchne usil.e 01,.1. Iocal communication. The last

fi-L'ure (d) shows Multiple data item's nia) (lowing through the

pipellne simultaneously. keeping multile Processors busy.

2 -239

environment (full copies of which exist at each processor) and processor-local environments.

and the interface to the CARE hardware simulator.

7. CAREL and Other Languages
CAREL was strongly influenced by three other languages: QLAMBDA [Gabriel and McCarthy

84]. Par-Aifn (Hudak and Smith 86], and Actors CAgha 85]. QLAMBDA provided the idea of

having two kinds of parallelism (which Filman and Friedman called parallelism by lexical

elaboration and parallelism by explicit processes). CAREL addresses the question. "What would

QLAMBDA look like on a distributed-memory multiprocessor?".

Par-Alfl provided the notion of a dynamic variable Sself that a process could use.

reflectively, to determine where it was executing. The part of CAREL that implements

parallelism by lexical elaboration is very similar to Par-Alfl. CAREL adds the ability to deal

with processes as first class objects.

Actors continues to serve as the "right thing" in the domain of languages for parallel

symbolic computing. Calculating the difference between what CAREL can do and what Actors

should do is always a valuable source of ideas for improvement. CAREL provides one

particular set of primitives for describing both concurrency and locality. These primitives are

powerful enough to implement a wide variety of interesting programs, but still provide less

concurrency, less capability for managing synchronication. and less theoretical elegance than

Actors. For example, CAREL enforces synchronization at the inputs and outputs of a function

or closure: when APPLY is invoked, all the arguments must have been pre-evaluated. and

multiple outputs are considered to be generated in a single list. In the Actor language SAL

described by Agha, the inputs to an Actor may arrive at any time and in any order and

outputs likewise may be generated as)nchronously. Furthermore. Actors promise to make

process management as invisible as memory management is in Lisp.

The plan for CAREL Is to migrate it toward an Actor language. The CARE architecture IN

very close in spirit to the Actor approach. and would provide a nearly ideal environment t'or

implementing Actors.

2-240

8. Acknowledgements
Implementation of CAREL was made possible by Ehe exiscence Gf th CARE -:mato:, as

implemented by Bruce Delaga and augmented by Eric Schoen- The author f-,,,her wAstes to

acknowledge the intellectual support of the Stanford Advanced Arch:'ecures P:o,'ect.

Contributors to PARSYM, the netwide ma~iing list for parallel symbolc comput:ng. hae

provided fruitful stimulation.

2-241

Re feren ces

[Abelson and Sussman 85]
Harold Abelson and Gerald Jay Sussman with Julie Sussman.
Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, Massachusetts, 1985.

(Agha 851 Gui A. Agha.
A4ctors: A4 Model of Concurrent Computation in Distributed Syster.
Technical Report, MIT Al Laboratory, March, 1985.

[Davis and Robison 85]
A. L. Dayts and S. V. Robison.
The Architecture of Lne FAIM-1 Symbolic Multiprocessing System.
In Proceedings of IJCAI-85. 1985.

fDelagi 86] Bruce Delagi.
CARE User's Manual
Heuristic Programming Project, Stanford LUniversity, Stanford, Ca. 94305. 1986.

(Filman and. Friedman 84]
R. E. Filman and 0. P. Friedman.
Coordinated Computing: Tools and Techniqu--!- for Distributed Software.
McGraw-Hill, New York, 1984.

[Gabriel and McCarthy 84]
Richard P. Gabriei and John MIcCarth).
Queue-based multiprocessing Lisp.
In Proceedin~gs of the 1984 ACM Sy-mposium on Lisz' anid Functional

Programming, August 1984., 1984.

[(Halstead 84] Robert H. Halstead.
Implementation of Multilisp: Lisp on a MAultiprocessor.
In Proceedings of the 1984 ACM~ Symiposium on Lisp and Functional

Programming, August 1984. ACM. 1984.

(Hudak and Smith 86]
P., Hudak and L. Smith.
Para-functional programming: A paradigm for programming multiprocessor

systemls.
In Proceedings of,0 AC.vSywposeun on Principles of Programming Languages,

January 1986. ACM, 1986.

(Shapiro u4] E. Shapiro.
Systolic p~oyrrmmitig: A paradi of parallel processing.
In Proceedirgs of the (nt.'rnuwal Curje.rence on Fifth Generation Coinrute~r

S~stcins, 1934.

2-242

Knowledge Systems Laboratory November 1987

Report No. KSL 86-67

LAMINA: CARE APPLICATIONS INTERFACE

by

Bruce A. Delagi, Nakul P. Saraiya, and Gregory T. Byrd

Knowledge Systems Laboratory
Computer Science Department

STANFORD UNIVERSITY
Stanford, California 94305

and

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754

This work was supported by DARPA Contract F30602-85-C-0012, NASA Ames
Contract NCC 2-220-Si, and Boeing Contract W266875. Greg Byrd was
supported by an NSF Graduate Fellowship and by the Stanford University
Department of Electrical Engineering.

2-243

LAMINA 4 November 1987

ABSTRACT

LAMINA provides extensions to Lisp for studying expressed concurrency in functional
programming, object oriented, and shared variable styles of computation. The implementation
of the support for all three computational styles is based on the common notion of a smean, a
datatype which can be used to express pipelined operations by representing the promise of a
(potentially infinite) sequence of values. A pipelined algorithm to provide the sorted order of
sequences of set elements is presented in the functional, object oriented, and shared variable
programming styles for comparison.
In addition to demonstrating that a common set of primitives based on the notion of a stream
is adequate for support of all three styles mentioned, LAMINA illustrates the means by which
software pipelines may be managed and the means by which dynamic structure creation.
relocation, and reclamation may be localized in a multiprocessor system.
Algorithms and applications writtein in LAMINA may be run on the StMPLE/CARE simulation
system in order to study their execution on alternative multiprocessor architectures. This has
been done for two "expert system" applications and linear speedups over the range from one to
eighty processors have been measured using LAMINA.

2-244

LAMINA 4 November 1987

1 Streams, Values, and References

The SIMPLE/CARE multiprocessor simulation system [4] supports an applications programming

interface. LAMINA, which currently is built upon Zetalisp [14]. LAMINA has been used as the
basic programming language for two "expert system" application developments [2, 10]
demonstrating significant speedup with increasing numbers of processors. LAMINA includes
primitive mechanisms and language interface syntax for alternative approaches to the
expression and management of concurrency and allows their relative performance to be
measured on a common ground.
Functional, object oriented, and shared variable programming styles are all directly supported
by LAMINA. The support provided for these styles is described in sections 2, 3, and
4 respectively. Section 5 describes some general utility functions. Primitives implementing the
underlying mechanisms are described in an appendix. A second appendix lists the constructs
of LAMINA and provides references into the body of the paper for details. The remainder of
this section consists of background material describing how the values of one computation are
passed to another and how the address space of an application is spread across the processors
of a system in LAMINA.'

1.1 Futures and Streams "
Fatw'i, eS. 6] and stream C8. 11] provide the common ground between functional, object
oriented and shared variable programming in LAMINA. They are fundamental to th'. LAMINA
functional and object oriented programming regimes for parallel programming and. since they
are the only mutable items passed as references (rather than structure values) between
potentially concurrent computations in LAMINA, they are also used to build the mechanisms for
shared variable computation.
Futures and streams represent promises for values. We can arrange for promises for values,
that is, their futures, to be used as placeholders in a computation while the values themselves
are being eagerly [8] produced by concurrent evaluations for consumption as available.
Extending this idea, we can define a stream as an abstract data type which is a placeholder
representing a sequence of eagerly produced but potentially unavailable values.
Some operators do not require the actual values promised by a stream or future in order to
perform their work. For example, a constructor may create data structures that include streams
as structure elements. The creation can be accomplished without accessing any of the promised
values that the streams represent; referencing streams as placeholders is sufficient. Further,
streams, as sequences of potentially unavailable but eagerly produced values, can be used to
build pipelines of computation connecting the producers and consumers of such values.
Streams may be arguments to or the results of function application. In LAMINA, Streams are a
primitive data type developed for use in an object oriented programming style and futures are
a specialization of streams that represent only a single (potentially unavailable) value as
required for the functional programming style. Streams and futures are always passed as
references. In the remainder of the paper, the term stream or future is equivalent
(respectively) to a reference to a stream or a future.

1.2 Processor Address Spaces and Multilevel Allocation

In LAMINA, structures of arbitrary complexity can be supplied as a value of a stream or future
either local or remote to the processor address space in which the structure was generated.
Internal pointer references within copies of such structures are adjusted (for address relocation)
as the copies pass between the originating processor address space and the processor address
space of the stream that represents the promise for the values so supplied. External pointer

iFootnota in the paper generally deal with details, conventions, or implemenation issues that can be skipped on first
reading.

2-245

LAMINA 4 November 1987

references included in structures passed between spaces are restricted in LAMINA to locations in
global 46xaulc or stati address spaces ASshown in figure 1. Statically allocated structures are
not relocatable or reclaimable and may be regarded as cacheabte and immutable. Thus, they
may be globally referenced without a need for access coordination.

structured value ac copy

heap hea

stream k.

referenceX
........ M4I B

'cFEF)))

processor 1 l processor 2

Figure 1: LOCAL, DYNAMIC, & STATIC ADDRESSES
When values are passed between processor address spaces the structure representing the value,that is, the struture value, is recursively copied until a data structure is produced which has thesame form and internal relationships as the original value but which holds only: staticreferences (to code bodies and other structures in static space), dynamic references (to streams orother structures) in dynamic space, interad references (to subcomponents of the structurevalue), and self-ieferetidls (for example, numbers and characters).2 Copyiny of a structurevalue might be done asynchronously with evaluation of the user application, so if changes areto be made in the structures encompassed by a structure passed between address spaces,independent copies of such structures should be formed.
An example of values and references passed between processor address spaces is shown infigure 1. One of the values of the indicated stream in the application's processor 2 k4aladdress space is a copy of the structure value in the application's processor 1 local addressspace. Both structure values are heap allocated from independently managed heaps in separatelocal spaces. Allocation, relocation, and reclamation for each given heap may be doneasynchronously based on just the information in the associated processor address space. Theother value shown for the indicated stream in figure 1 is a reference (in this case, to theoriginal structure value) allocated in the application's dynamic space. Because the reference andits associated structure value are allocated within a single processor, relocation of the locallyallocated structure value can be done locally and asynchronously. Relocation of the reference,however, must be globally coordinated. Statically allocated structures are not relocated or
reclaimed.

2As a current implementation resriction. lexical closures [12] paued between processor address spaces may only bemade over free variables whose values are references or self-referentials items and not structures that contain them.

2-246

LAMINA 4 November 1987

References to stream s arallocated in dynamic space and streams are accessed by reference. A
stream reference, therefore, may only be relocated (for example as required by a compacting
garbage collector) through globally synchronized operations affecting all computations that
could access that stream. This global synchronization can be expensive and involve subtle low
level implementation considerations. Expectations about the expenses involved in correct

global syncronization 3 led the design of LAMINA to a multi-level allocation scheme described
below.
The cheapest approach to allocation (and deallocation) of memory for dynamically created
structures is stackw-ed (and local). However, the benefits of stack-based operation come at
the cost of a prescribed order of deallocation. Additionally (at least for the commonly used
memory management enforced stack limit schemes), stack-based operation entails a minimum
storage commitment that is significantly larger than the rest of the execution environment for
each highly concurrent, small granularity evaluation expected in LAMINA programs. Stack based
allocation is used in LAMINA whenever references to structures with dynamic extent [13] are
known to be entirely within a given sequential computation.
The next cheapest approach, for references that are local with indefinite extent [13]. is heap
based allocation in local space. Since such references are confined to a single processor address
space, they may be relocated asynchronously with operations on other processors and memories
or in the network connecting the components of the multiprocessor system.
Finally, as the most expensive approach. global references may be made to dynamically
allocated references (which must be relocated under a global synchronization scheme).
Allocation in 6aami space is done independently by each processor and each allocation is
distinct. Operations involving dynamically allocated references are handled by the processor
(or memory controller) associated with the reference. The referents for such references are
mutable and may be viewed as uncacheable.
References to locally allocated structures can also be passed between processor address spaces by
encapsulating them in dynamically referenced structures, that is, streams. By this indirection,
pointers to selected locally allocated structures are held locally (and may readily be relocated)
but a means is provided to reference them in other processor address spaces.
The multi-level allocation scheme just described creates references passed between processor
address spaces (with the attendant synchronization expenses) only as necessary. The remainder
of this section describes the syntax for creating and accessing such references.

13 Reference Creator and Accesser Functions

When a locally allocated data structure needs to be passed between potentially concurrent
computations as a reference rather than as (a copy of) its value, the form (reference item)
returns a reference for the value of the item.
The site of a reference, that is, the CARE processor (or memory controller) on which it w.U
created, may be determined by executing (reference-sits reference). The value returned by
calls to this function is a site refrence that may be used to specify sites as required as
parameters of other LAMINA functions.
Finally, references can be tested to determine whether they refer to the same item by the
function reference-eq. a function that accepts two references as arguments and returns a
non-nil value if they refer to the same item.

3For example, in a shared memory system with asynchronous writes to memory, a request to chanp the contents of a
location in dynamic space so that it points to a stream in a liven semispace of a compactin8 garbae Collector may
have been in transit to a memory controller when evacuation of that scmispace was requested. The evaution must be
delayed somehow until all such requests either in transit or queued anywhere in the system have been processed
Shaed memoY systems with synchronous writes delay di procesor operations on shared variable until the memory
request can fins traverse the network between processors and memories (or ocher caches) then be quued and serviced
in the memory (or other cache) controlle, and finally traverse the network back to the procesor.

2-247

LAMINA 4 November 1987

2 Functional Programming
Perhaps the style of computation most readily treated as concurrent is that of functional
programming. LAMINA supports concurrent programming using this style by providing means
(1) to spawn computations that will provide values to futures and (2) to accept such values in
a computation -- scheduling the computation when they are available. The constructs defining
the LAMINA interface for functional programming are:.

(future form) spawns execution of a lexical closure, that is. a pocedure body to
execute a given form together with an environment (determined by the rules of
lexical scoping) in which to do the execution (13]. This closure is executed
(eagerly) on a randomly selected site. A future which will contain the value of the
computation when it is available is immediately returned.
(with-values future-bindings forms) spawn!, an evaluation on the local site to
execute the closure corresponding to the forms. The evaluation is done within an
environment that includes bindings for given variables to the values available for
the indicated futures. The evaluation is deferred until all of the indicated futures
have values that are nor "hemselves futures. The immediate result of executing a
with-values form is future whose value will be supplied by the deferred
evaluation.

Each element of a future-bindings list is itself a list (binding-pattern future-specifier). If
evaluation of a future specifier in a with-values construct produces a value other than a
future, the future specifier is coerced to be a future holding that value. After all specified
futures have values (which are not themselves futures), the values of each of the futures are
destructured [13]. that is, the values are treated as list structures and the elements of these list
structures are used to bind corresponding variables in a binding pattern of arbitrary depth.
These bindings will be included in the environment in which the spawnsd computation is
executed. Only with-values can be used in LAMINA to reduce futures to values. Values of
futures are never taken as an ancillary consequence of any other operation.
The results of the evaluation spawned by with-values are returned as a future which will
receive the value of the spawned computation. The spawned evaluation that is created by a
with-values construct is treated as the continuation £12] of the computation in which it is
found and, as such, captures all stack allocated values required to execute that computation.
Thus, each spawned computation may be viewed as running to completion; its continuation. if
any, is an independent spawned computation.
Because all spawned computations run to completion (unless they are preempted by system level
operations), the stack of the executing processor is (generally) left clear and any space allocated
for it may be reused by the next computation on that processor. By this means, the advantages
of stack-based operation are retained without incurring the space penalty discussed in section
1.2. The costs of heap allocation are incurred only as needed.
To illustrate the use of the LAMINA functional programming interface, the implementation of a
(quicksorting) algorithm to associate ordering information with the numerical values of the
elements of sets supplied as input is shown in figure 2. The serial and parallel
implementations may be compared by contrasting the definitions of the functions orderO and
orderl.
The input to the ordering functions is sets of numbers to be ordered. Elements of a set are
the sequential elements of a list before a separator token (which is nil). The sets (including
their separator tokens) are concatenated to form the input list. The output is a list with each
ordered set represented by successive elements of a list and separated from other ordered sets
by nil tokens. The sets follow each other in the output in the same order in which they
appeared in the input. For example, the input list (7 9 4 nil 5 3 8 nil) would result in
the output (4 7 9 nil 3 5 8 nil). Thus the information concerning the ordering of the
elements of a set and the identity of that set is implicit in the Output.
In orderO and orderl, the result of ordering nil is nil. If the input list is not nil, the

2-248

LAMINA4 November 1917

(DEFUM ORDERO (input-list)
Sori quickuet te order eeVts Of LhP~t Sers"
(it (null input-list) nil

(let ((pivot (car inPt-itSt)))
(if (null pivot) ;(nil . .(orderOl (cdt' input-list)))'

(destructuringbind (smaller' larger rest)
(parti pivot (c.-0 input-list))

(let ((ordered-smaller (ordorO smaller))
(ordered-larger (orderO larger))
(ordered-rest (orderO rest)))

(.@ordered-smal let' ,pivot *gordered-large'
. ordered-rest)))))

(DEFUN ORDERI (input)
*Wkkoot pip~i~ recarsbely spawn ordering pwtitloud Iap~t sets"
(with-values ((input-list input))
(if (null input-list) nil

(let ((pivot (car input-list)))
(if (null pivot)

(with-values ((rest (orderi (cdt' input-list))))
'(nil . .rest))

(destructuring-bind (smaller larger rest)
(parti pivot (cd.' input-list))

(with-values ((ordered-suallor 'tuture (ordert sma ller)
(ordered-larger (?uture (orderi larger)))
(ordered-rest (future (ordert rest)))

'(Oordered-smaller ,pivot .@ordered-large'
. ordered-rest))))))))

(DEFy.; PARTI (pivot input-list)
-Yrikk &Wd elemwns from b; yUt sets late ame collection or o~r
(lot ((input (car input-list)))

it j null input) '(nil nil .lnpi.t-Iist)agrpr et
destructuring-bind (smaller-partlagrptre)

(if Pat ivo(parti pivot (cdr input-list))

(smaller-part (input . larger-part) rest)
((,input . sma 1cr-part) ,larger-part rest)))))

Figure 2: PUNCn'ONAL ORDERING

first edement of that list is used as a pivot. Vf that element is nil, it is a separator token.
The result then is the separator followed by the result of ordering the rest of the list. If the
pivot element is not nil. it is assumed to be a number that is used by parti. a serial
partitioning function which returns a list of three results: the (unordered) elements of the
current set smaller than the pivot, the (unordered) elements of the current set larger or equal
to the pivot. and the remaining elements of the input.
The function order I spawns executions to apply itself to each of the three sublists returned by
parti to order them. It then waits for the results. When these are available, it appends the
ordered sublist of elements that were smaller than the pivot to the list formed by the pivot, the
ordered sublist of elements that were not smaller than the pivot, and the result of ordering the
rest of the sets in the input.
The operation of order 1 is characterized by much waiting for the results of spawned

4Duw puining limitation& fte hekquote character will appear s' . Inclusion o(a comma in the foan Introduced
by a beckqm will disambiguate the quoting character.

2-249

LAMINA
4 November 1987

rest
input

part pr
larger input larg4

ordeder

sm orde

order

reesult

Figure 3 ORDERING PIPELINE

computations. The pattern of execution is to spawn a set of computations -- using future
constructs -- and immediately wait for all their values to be produced -- using with-values
constructs. This waiting represents serialization due to data dependencies and can significantly
limit the concurrency of an algorithm. If, instead, computations can be handed just what they
each require to get started (with promises for the rest), they can be pipelined as computation
assembly lines, each station operating ont a piece of the input from upstream producers and
delivering a piece of the output to downstream consumers.
A schematic view of a pipelined ordering algorithm is shown in figure 3 while the code is
shown in figure 4. The schematic is a recursive drawing terminating in a number of ordering
computations -- one leaf for each element and separator token in the sets of elements to be
ordered. Each non-leaf node of the ordering tree partitions its input by sending each input
element it receives (from its upstream parent) to one of its two downstream children. The
smaller child was created such chat its result is used as the result that the parent was asked to
produce and the rest of its input is the result of the larger child. The larger child was created
so that if it is a leaf (that is, if it has nothing to order), irs result will be the rest of the items
given to the patmnt. The rest of the items seen by the largest descendent of the smaller child
is the result produced by the smallest descendent of the larger child. Thus, using an approach
similar to the use of difference-list: in logic programming Eli]. the results of the leaf
elements are tied together to produce the result of the ordering tree.
The first input a child receives wail establish the pivot for partitioning unless it is the
separator token, nil. If it is nil and there is more input, the child returns nil as the first
part of the result together with a promise for ordering the rest of its input followed by those

2-250

LAMINA 4 November 1987

(wi itval-s ((pivo - (art-i t pivo~t r-n))))Ceceau

(lot* ((Ordered-lIargor-f uture ; Spawn order larger
(future (orderZ larger-future rest-pair)))

(ordered-i arger-pal r
(.pivot . .ordered-larger-future)))

Continue ordering smaller
(orderZ smaller-future ordered-i arger-pal r)))

(if (null rest-input) rest-pair
'(nil . .(future (order2 rest-input rest-pair))))))))

(DEFUN PARTZ (pivot input-future)
OProduces ((Cfxtr) (pair)) or (<pair> (futare)) for ((smallr) (lager)
(with-values ((input-pair input-future)) ; Coerce Palm.

(If i n pu t -pa ir Destructure pair as (raise .future)
(destructuring-bind (input-value . rest) input-paiP
(if (null input-val ue) '(nil (nil . ,rest))

: : Spawn continuation of this partiioning
(let ((future-part (future (pat pivot rest)))))

; nd get futures for destractared value of contin Ua
(let ((smaller-future

(with-values
((value future-part)) (first value)))

(1largrfte
(with-valus

((value future-part)) (second value))))
:;Return list: ((fauue> (pair)) or ((pair) (future)

(if (> input-value pivot)
'(.smallsr-future

(.input-value . largsr-future))
i.input-value . *smallcr-future)

Figure 4: PIPELINED FUNC17ONAL ORDERING

values larger than anything in that input. If there is no more input, it just returns promises
for the results of its larger relatives. that is, the rest-pair.
The receipt of a separator token while partitioning indicates that all the elements of a set to
be ordered have been received. A terminator, nil.* is passed to the smaller child and a
separator followed by the rest of the unordered input (if any) is passed to the larger child.
The code for this example is written assuming that each stream can only hold one value, that
is, streams are restricted to be simple futures. In the example, sequences of values are
represented by pairs consisting of a value and a future for the rest of the sequence. The value
of the future, when available, is a pair which itself consists of a value for the next element in
the sequence and a future for the rest of the sequence. The consequence of this approach is
that many short lived dynamic references are created (so that each element of the sequence has
an independent reference) and then abandoned. Reclaiming the space allocated for them
requires global synchronization as discussed in section 1.2.
Relaxation of the single value assumption for structures representing unavailable values -- as
well as extension of LAmmN to an object-oriented programming style -- is discussed in the
following section.

2-25 1

LAMINA 4 November 1987

3 Object Oriented Programming
In LAtAS objet oriented programming interface; an object encapsulates related state
variables and Is referenced throughout an application by that ob'utrs Self-Stream, a stream
(whose reference is in dynamic Space) which is one of the objects state variables. Objects are
allocated in loed space as described in section 1.2. To perform operations on an object,
potentially involving and modifying its state variables, a task requeS postiag consisting of a
task selector and associated parametric values for the operation is sent to, that is. provided as
one of the values of the self-stream for that object. Each of the task request postings that
provide the values for the self-stream of a object is taken in turn from that stream and
serviced by that object.
Task request postings are serviced atomically in the context of an object. Executions specified
by such request postings are done without visible partition with respect to other operations on
that object: operations on any given object will not be interleaved. Each operation is thus
defined to be hadepeadeat& itonc.
All the operations on an object done as specified by the requests are taken in turn from the
objects self-stream. Each operation runs to completion. If an operation on an object is
preempted (due, for example, to page faulting, schedule quanta lapse, or error condition), no
other operation on that object will be started before the preempted operation is completed.
However, operations on other objects may proceed normally. A stack is maintained for each
preempted operation.

3.1 Sending a Task Request
Sending a task request in LAMINA is non-blocking and thus pipelined operations on objects are
directly accomodated. The information required to accomplish a task is either passed with the
request or is included in the state variables of the object. In an object oriented programming
style, state is localized in objects and is not referenced otherwise. Arbitrarily structured values,
however, may be sent in task request postings between lamlna objects as (copied) values rather
than as references. Additionally. as is common in object oriented programming languages,
references may be sent in task request postings as well.
The construct for asynchronously sending a task request posting to a target self-stream of an
object resembles the Zetalisp (synchronous) send construction:

(sending self-streams task-selector value lamina-keyword ...)
Multiple targets for a posting may be specified as a target list and LAMINA keywords (as listed
in figure 5) can be used to provide additional control or debugging information. For example,
the task request may be sent with a tag field that can be used as a descriptive auxiliary value
for debugging purposes.
The value immediately returned by sending is the list of clients supplied following the
LAMINA keyword "for" (or : for-effect if no clients ure specified). As a convention, the
clients may expect to receive consequent task requests later in the computation.

3.2 Creating a New Stream, Ordered Stream, or Sequenced Stream
The streams that pass values between objects are created by the supplied function new-stream.
Streams may be tagged for debugging purposes by including a tag as the optional first
argument of new-stream as in (new-stream tag). The default argument, nil,. will cause a
stream to inherit a tag identifying the execution in which the call to new-stream appears.
The new-stream function returns a reference for a stream created on the executing site.
Often, the reference for a stream (for example, the self-stream of an object) is passed by a
procedure as a way of telling some other procedure how the executing (or some other)
procedure expects to receive values to use or tasks to accomplish.
A stream may be thought of as an ordered queue of postings. Information can be included in

2-252

LAMINA 4 November 1987

TO. ON targets A target stream (or site) or list of targets streams (or sites) for the indicated
LAMINA operation. If no site is provided and one is needed, an unspecified
site is chosen. Some LAMINA operations expect site targets rather than stream
targets. These are documented as they are introduced. The choice between
the alternative keywords shown is purely stylistic.

FOR clients A stream or list of streams acting as the continuation of the computation
that will be triggered by the LAMINA operation.

AS tag Arbitrary data for debugging. Defaults to the tag of the sending execution.

BY order-key A number which may be used to order information in target streams.

AFTER delay Positive number indicating the number of milliseconds that the operation
will be delayed before being attempted.

WITH properties Arbitrary data intended for user extensions of the posting protocol.

Figure 5: LAMINA KEYWORD VALUES

postings to allow them to be ordered in streams by specifying a value following the keyword
"by" in the call creating the posting. A stream ordered by increasing numeric keys can be
created by the function, ordered-stream. The function takes an optional argument for a tag:
(ordered-stream tag).
As an optimization to simplify programming and to reduce scheduling overhead (by deferring
executions involving out of order task invocations), a stream can be created that only presents
queued postings that have order keys less than or equal to the next expected order key. This
key is greater than or equal to zero and is one more than the highest order key of any
previously presented postingp. Thus, in the simplest case, the presented postings will have
order keys that are in the sequence of the integers beginning with zero. The function,
sequenced-stream, that creates such streams also takes an optional argument for a tag.
Streams that have at most one value may be created by the function new-future. This
function too takes an optional argument for a tag.

3.3 Defluing Objects

LAMINA object types are built upon the base flavor [9]. lamlna, which defines the instance
variable, Self-Stream. The default specification is for a first-in-first-out self-stream.
Flavors intended to be mixed in to lamine, the "mixins" ordered-self-stream and
sequenced-self-stream, are provided to override this default. As an example similar to the
one discussed in section 2, a LAMINA object to associate ordering information with the
numerical values of the elements of sets might be defined as shown in figure 6. In the
example. the state variables of an ORDER3 ordering object are all named, the default
initializations specified, and any state variables to be initialized by a creator are identified.

3.4 Triggers

Task request postings specify a task-selector, a value, and the information associated with the
keywords in the posting that originated the request. The value and other information in the
posting is formatted as a list: (value clients key tag origin properties). This list is
destructured for execution according to the trigger-pattern specified in the trigger definition.
Posting elements that are to be ignored need not be specified and an arbitray degre of
destructuring can be specified by the trigger pattern.

2-253

LAMINA4 November 1937

(DEFFLAVOR ORDER3 ((COtitrolss ("lcons :controls))

(Smaller-Chlld) (Larger-Child) Id Result-Stream)

: iitleinstance-variableS Id Result-Stream)) ; T*his mast be sped! iti

(DEFTRIGGER (ORDER3 :ELEMENT) (input)
Set pivet or partition by esta46 hed pivot. Check fo completed ser"
(destructuring-bind (value set-Id) input

(letO ((control (send self :control Set-Id))
(pivot (control-pivot control)))

(if (null pivot) (sotf (control-pivot control) value)
If (>* value pivot)

(sending Larger-Child :element input)
(sending Smaller-Child :element input)
(mcf (control -smaller control)))) ; CONWIfflU7in set

(send self :completed? control set-id)))

(DEFTRIGGER (ORDER3 :END) ((base set-Id expected))
ONote base and send :exd to children if comre
(lot ((control (Send self :control set-Id)))

(set? control-expected control) (1+ expected))
(setfi control-base control) base)
(send self :comnpleted? control set-Id)))

(DEFMETHOD (ORDER3 :CONTROL) (set-Id)
"Get or create control for inpt and make descendants if noe eve mae"
(when (null Smaller-Child)

Ssotq Smaller-Child (new-Stream) Larger-Child (now-stream))
icreating 'Order3 '(:Self-Strean .Smaller-Child :Id (< .Self-Stream)

Result-Stream *Rosul t-streem))
(creating 'Ordor3 '(:Self'-Stream .Larger-Child :Id Pes ,elf-Strem)

Result-Stream *Result-Stroam)))
(or (get Controls set-id) (putprop Controls (make-control) set-Id)))

(DEFMETHOO (ORDER3 :COM4PLETED?) (control set-id)
OCeea reeWe Is set agains expected &mE flhlsh off set Vf convlete"
(let ((expected (control-expected control)))

(when (eql expected (incf (control-count control)))
(lot ((pivot (control-pivot control))

(base (control-base control))
(smaller_(control-smaller control)))

(let ((pivot-order (+ base smaller))
(larger (- expected smaller 1)))

sending Result-Stream :element)'(.plvot .set-id .pivot-order))
let ((new-base (1+ pivot-order))
(if (plusp smaller)

(sending Smaller-Child :end '(.bass ,set-id .smaller)))
(if (plusp larger)

(sending Larger-Child :end '(.new-base .set-id *larger))))
(remprop Controls set-id))))))

(DEFSTRUCT (CONTROL :conc-name :named)
((pivot nil) (base nil) (expected nil) (count 0) (smaller 0)))

Figure 6: ODJECF ORDERING

SSa convention. capitalized nlames are understood to refer to the sate variable of an obica

2-254

LAMINA 4 November 1987

The syntactic form for trigger definition is modeled after the Zetalisp DEFMETHOD form:

(OEFTRIGGER (object-type riSer) trigger-pattern
documentation-string . trigger-bdY)

Example trigger definitions for an ordering object are shown in figure 6. Iteration and

assignment replace the recursion and binding used for the functional programming ordering

example shown in figure 4. Sequences of values on streams are represented by long lived

streams that couple producing and consuming ordering objects.

In the example, each :element message manipulated by the ordering routine indicates the
value of the element to be ordered and the set in which that element appears. The output
:element messages include this information together with the calculated order of the element
in the indicated set. An :end message may be generated either by the root calculation
requesting a set be ordered or by intermediate ordering objects serving that calculation. Each
such message includes a set identifier, the number of elements the receiver should expect for
that set, and the (bass) order of the smallest element to be expected. The ORDER3 objects
keep track of this (and other) information for each set they are dealing with in a (disembodied
property) list of control records. The set of an input is used to retrieve the appropriate
control record from among those in use by the object.
If there is no pivot yet received to use in partitioning the set, the ordering object saves the
input value as the pivot for the set. Otherwise, the :element trigger method passes the input
element to either its larger or smaller child and counts the number of elements sent to the
smaller child. If all the expected inputs for a set have been received, an :element message
including the v .e, the set, and the order of the value in the set will be sent to the result
stream. An :end message will be sent to any children that have been sent elements of the set
to order.

3.3 Creating LAMINA Objects

The form (creating type Initializations for client-streams on site ...) stipulates the
creation of a object on the indicated site (or on a randomly selected site if non,- is indicated).
When the creation has been accomplished, the client streams will receive a postir4 whose value
is the self-stream of the created object.
The Initializatlons are formed as a list alternating keywords (corresponding to the state
variable names for the object being created) with their initial values. These values are
computed in the context of the object requesting creation. As an example, creating forms
are included in the ORDER3 :control method definition shown in figure 6.
For convenience, a function, create-self-strea, is provided to create a stream which is
either an ordered stream, a sequenced stream, or a FIFO stream as appropriate for the self-
stream of the lamina object type specified by its argument.
An example of a trigger definition to create three intercommunicating objects is shown in
figure 7. In the example, three objects each with state variables referencing the self-stream of
each of its siblings are created together. State variables of each object representing an id for
the triplet and the object that requested the creation are initialized as well.

3.6 Implicit Continuations

For LAMINA objects, continuations of a computation are often some explicit trigger method of
some explicit objt. There are cases, however, in which it is inconvenient to create an explicit
name for a continuation. As a syntactic construct, execution of a continuation of a
computation can be specified to occur in the context of an executing object (as defined by its
set of state variables and the environment of the continuation) each time that postings have
been received on some given streams. The execution spawning the continuation is finished
normally and then the next operation to be done on the object is taken from its self-stream
without delay. Thus LAMINA objects can be viewed as moaitori El] (because the independently

2-255

TAMINA4 Novembet 1987

(OEFTRIGGER (TRIPLICATOR :AB-TRIPLET) (id client)
"Expect created object to Send Xotice of its creation"

(c sreang ' (lis:t::selfSra -stream
:8stea breselfsra :C Ctem I d:Prn cinj

(creating at (list :Self-StrSam b-stream
:A a-stream :C c-stream :Id id :Parent client)

(creating 'c (list :Self-Stream c-stream
:A a-stream :8 b-stream :Id id :Parent client)))

Figure 7: COUPLED OBJECT CREATION

atomic operations on objects give the required mutual exclusion) but operations on them are
unnested. TI is done to facilitate pipelined operation: task request postings queued for
operation on an object are not deferred for a pending continuation.
The construct (with-postings stream-bindings form) creatm an implicit continuation in the
context of an object. The stream- bindings is a list each element of which is of the form
(binding-pattern stream). Each of the postings on the indicated streams (including the
porting clients, tag. Key. origin, and properties) will be destructured and bound to a
co.-responding variable (identifier) according to the associated bindIng-pattern. These variables
and associated value3 are also part of the e;,ecution environment of the continuation.

(DEFTRIGGER ,OISTRIBUTER :MAKE-A SERVERS) ((count Input-stream))
"Round robin distribution of input re-quesis to created triplets of servers"
(let ((a.> (creating 'a nil for (now stream)

on (loop repeat cout collect (random-site))))
(bin> (creating 'b nil for (new-streao)

on (loop repeat count collect (random-sits))))
(CO> (creating *c 4ii; for (new-stream)

on (loop repeat count collect (random-site))))
(servers (ncons nl)11

(with-postings ((a r.z>) (b->) (c c >)) sres)
(if serverb (rplacd servers (cons (list a b c) (cdr sres)

Ssetq Sarver$ (Circular-_ list (list a b c))
wich- pos~lrig3 ((request input-stream))
(sandi-.g (pnp sa-vers) :request reques~t as Self-Stream))))))

Figurni S. WVITH-POSTINCS

As aft exarn;Ai of the use of with-postir,(,s, we can consido'r the example shown in figure 8.
It uses r~:~wit4-postings conistructs to creato cortinuation closures that create and collect
trip~les oi lamnina nodes and ther, distribute requeats on an input st:"am to the collected triples
in a redrobin fashion. Note that inistance variables may be accessed by the continuations.

The implicit continuation will be executed atomically weith fespect to any other -operations on
the incticated object arid in the context of ita state variables and the lexical environment in
which the form appears. A schemnatic of the mtechanism supporting implict continuations in
ubjects is shown~ in figure 9.

2-256

LAMINA 4 November 1987

task stream
141

[I] request posting

.. \ 131response

[21 continuation link
(i References for streams on which responses are expected are sent in (task request)postings to other objects as places to supply response postings. [21 Intermediate Yariables
(that is, the environment) and a pointer to a block of code required to execute the formwrapped In a with-postings construct are captured In a continuation closure, attached to astream, and linked to the stream(s) on which responses are expected. (3] When allrequired postings become available on these streams, r4) the response postings together withthe closure are sent to the self-stream of the object that generated the closure.
The closure Is executed (In its turn) atomically within the context of the object and lexicalenvironment of the form. Variable bindings are made as specified to the elements of theavailable response postings. Note that the executio, that spawned execution of the closureand the execution so spawned are Independently atomic. The state variables of the object andany structures they reference can be changed by son other operation taken from the self-stream between the two executions. The syntactic convenience is only that: invariants thatneed to be preserved across independent executions need to be met at the boundaries betweenthe execution that spawned execution of the closure and the execution so spawned.

Figure 9: CONTINUATION CLOSURES

2-257

LAMINA 4 November 1987

4 Shared Variables

Shared variables are dealt with in LAMINA by treating them as references whose associated value

may be mutated. A shared variable reference is constructed, accessed, and mutmted by the

interface operations described in this section. Support for shared data pairs and arrays is also

described. For all these operations, execution i- deferred and no other executions are

performed by the initiating processor until the indicated operation is accomplished.6

Shared queues (which are streams) are also provided. These queues are maintained in a

processor's local memory. When a process reads from a shared queue, it is halted and
descheduled; execution is resumed when the requested data arrives.

4.1 Creating and Accessing Shared Variables

A shared variable can be allocated on a specific site (containing a processor or memory
controller) and given an initial value by (shared-variable value site-reference). This
creates and returns a reference to the indicated value. The site-reference argument is optional;
if it is omitted, a randomly selected site is chosen for the default allocation. Alternatively, the
construct (in-memory site-reference forms) can be used to specify a default site for all
allocations done while executing the enclosed forms. Thus, the allocation done by the form
(In-memory slite-reference (shared-variable value)) is the same as that done by the form
(shared- variable value site- -eference).
Once a shared variable has been allocated, the following constructs may be used to access or
alter its value:

" (shared-read shared-variable-reference) returns the value of the reference.

" (shared-write shared-vari reference value) modifies the value of the
reference. The new value is r, aed.

" (sharrjd-exchange shared-variable-refereice value) performs the same function
as shared-write, except that the prior value of the reference is returned.

For each of these constructs, the operation is guaranteed to be completed before execution is
resumed.

4.2 Shared Data Structures

LAMINA also provides support for pairs or arrays of shared variables. A structure reference is
created by an executing process, which may then initialize the structure. The site for the
allocation is specified by an optional site-reference argument, by the innermost (dynamically)
enclosing in-memory form, or is chosen at random.

A shared pair is created by (shared-cons car-value cdr-value site-reference). The
accessors for a shared pair are shared-car and shared-cdr. Pairs are altered with the forms
(shared-rplaca shared-pair new-car) and (shared-rplacd shared-pair new-cdr). Also,
the form (cache-shared-pair shared-pair-reference) may be used to make a local, that is,
non-shared, copy of a shared pair.

The (shared-array dimensions site-reference) form returns a reference to a shared array.
The dimensions argument is a list of positive integers, denoting the size of each dimension of
the array. There are optional :initial-element and :Initial-contents keyword
arguments, which may be used (respectively) to initialize all the elements of the array to the
single value specified or to initialize each element of the array to the value of the

6 Note that, because the simulator is executins in a uniprocessor environment, a stack group must be maintained tor
each deferred execution. Thus executions must be resumable (not merely restartable) to use the shared variable LAMINA

interface described below. This is discussed in section 1.10.

2-258

LAMINA 4 November 1987

(OEFUN SHARED-BUFFER (size)
(let ((<signal> (shared-queU9)) (empty? t)

<lock> (shared-variable t))
<buffer> (shared-arraY size :initial-element nil))
<head> (shared-variable 0))
(<tal> (shared-variable 0)))

U'(lambda (operation &optional value)
(selectq operation

(:Insert
(with-spin-lock <lock>
(let* ((head (shared-read <head>))

tail (shared-read <tail>))
(new-tail (mod (1+ tail) size)))

(when (not (- head new-tail))
shared-aset value <buffer> tail)
when empty?
(setq empty? nil) (shared-enqueue <signal> <signal>))

(shared-write (tal 1> new-tail)))))
(:remove-.

(with-spin-lock <lock>
(let ((head (shared-read (head>))

(tail (shared-read <tail>)))
(if (not ("head tail))

(let ((new-head (mod (1+ head) size)))
(shared-write <head> new-head)
(shared-aref <buffer> head))

(when (not empty?)
(setq empty? t) (shared-dequeue <signal>))))))))))

Figure 10: SHARED BUFFER

corresponding element in a list or a list of lists. Shared arrays are initialized to nil by
default.
The form (shared-aref shared-array-reference subscript ...) reads elements of the shared
array. The number of the subscripts supplied must agree with the dimension of the array.
The form (shared-aset value shared-array-reference subscript ...) may be used to write
array elements. The cache-shared-array function returns a local (non-shared) copy of the
shared array reference it is applied to, and the fll - shared-array function copies data from
a non-shared array into a shared array.

4.3 Shared Queues
A shared queue construct, which is implemented as a LAMINA stream, is also provided. Because
queues are streams, the creator of the queue provides atomic access to the queue and when the
queue is empty, maintain. a FIFO queue of processes requesting data -- the requests are
serviced when data is aided tm the queue. Further, whenever a process attempts to remove data
from the queue, the pr, 's descheduled; execution is rescheduled when the requested data
arrives.
Shared queues are created by the shared-queue function, which takes one optional argument
representing the queue's tag, which may be used for debugging. Items may be added to the
queue with the shared-enqueue function. The shared-dequeue function removes and
returns the top item of the queue, while the shared-queue-top function merely returns it.7 A
shared-queue-p function is also provided to test whether an item is a shared queue

71n the current implementation. only FIFO queues are provided, and (in order to maintain a consistent timin; model
for cross address space transmissions) only shared variable or shared queue references may be placed on a shared queue.

2-259

LAMINA 4 November 1987

(DEFUN PART4 (<array) first last)
"Does partitoa on arrq, and retuns pokion of pivot - agorith from C7.
(let ((pivot (shared-aref (array firrst))

4 frst) (J1(1+ last)) (left-Item) (rihtiJ)
(loop for I- (loop for ni from (1+ 1) unti](-nt J

do (setq left-Item (shared-aref <array) ni))
when ()= left-item pivot) return ni
finally (return ni))

for j = (loop for nj downfrom (1- j) until (< nj (-1 i))
do (setq right-item (shared-arcf <array> nj))
when (<- right-item pivot) return nJ
finally (return nJ)))

if (> j i) do (shared-aset left-item <array> J)
(shared-aset right-item <array> i)

else do (shared-aset right-item <array> first)"(shared-aset pivot <array> J) and return j))

(DEFUN MAYBE-EXCHANGE (<array> first second)
"Exchans f wst and second items, iff first is greater."
(let ((first-item (shared-aref <array> first))

(second-item (shared-aref <array> second)))
(when (> first-item second-item)
(shared-aset second-item <array> first)
shared-aset first-item <array> second))))

Figure 11: SHARED VARIABLE PARTITION & EXCHANGE

Unlike other shared variable operations, accesses to shared queues do not cause the initiating
processor to stall waiting for completion. A process executing shared-enqueue continues
immediately, without waiting for the data to arrive on the queue. A process which accesses a
queue, using shared-dequeue or shared-queue-top, will be halted and descheduled.
Execution is rescheduled when the data arrives, but the initiating processor may perform other
executions in the meantime.

4.4 Other Synchronization

A simple spin lock is provided for busy-wait synchronization in the LAMINA shared variable
interface. The form (with-spin-lock shared-variable-reference form) executes the given
form after aquiring the lock specified by the indicated shared variable reference. Subsequently,
the lock is released and the value rroduced by the execution of the form is returned. The lock
must be a reference to a shared variable that was initialized to a value other than nil.
We might use such a synchronization operator in incrementing a shared counter as:

(DEFUN LOCKED-INCREMENT (<var>g <lock> &optional (delta 1))
(with-spin-lock <lock>

(let ((value (shared-read <var>)) (new-value (+ value delta)))
(shared-write <var> new-value))

We can also create locks based on the shared queue construct. For example, we implement a
mutual exclusion lock as a shared queue. To release the lock, a process places a token
reference on the queue. A process acquires the lock by removing the token -- any other
process which attempts to remove it will be blocked until the owner of the lock replaces the
token. Alternativ-ly, reading but not removing tbe token (by using shared-queue-top) allows

Sy convention, we denote references to shared variables and shared queues by enclosing angle brackets, as in
(lock).

2-260

LAMINA 4 November 1987

(DEFUN OROER4 (<threads> <lock> requests results &optional request)
(destructuring-bind (<array> first last) request
(if (array>

(let* ((pivot-position (part4 <array> first last))
(contents (list (shared-aref <array> pivot'positon)

pivot-position (array>))?
(funcall ; Order ofpiot data elementis established

results :insert (shared-array 3 :initial-contents contents))
(let (left-diff (- pivot-position first))

(right-diff (- last pivot-position)))
(let ((order-left (> left-diff Z))

(order-right (> right-dil? 2)))
(cond

((and order-left order-right) ;0. right partition
(let* ((request

(list (array> first (1- pivot-position)))
(request block
(shared-array 3 :initial-contents request)))

.(when (null (funcal1 requests :insert request-block))
(order4 (threads> <lock> requests-results request))

(order4 (threads <lock) requests results
(list (array> (1+ pivot-position) last))))

(order-left ; Exchange right and then order left
(when (- right-dill 2)

(maybe-exchange <array> (1- last) last))
(order4 (threads> (lock> requests results

(list <array> first (1- pivot-position))))
(order-right : Exchae left and then order right
(when (- left-dill 2)

(maybe-exchange (array> first (1+ first)))
(order4 <threads> <lock> requests results

(list <array> (1+ pivot-position) last)))
(:else ; Order by exhange for both left and right
(when (- right-diff 2)
(maybe-exchange <array> (1- last) last))

(when (- left-diff 2)
(maybe-exchange (array> first (1+ first,))

;;Declare completion of ordering request and tryagain
locked-increment <threads> <lock> -1)

(order4 (threads) (lock> requests results))))))
(let (((request> (funcall requests :remove)))
(if (shared-queue-p <request>) If buffer was empty-

(if $zerop (shared-read <threads>)) ; signal termination
%shared-enqueue <request> <request>)
shared-queue-top <request>) ; or block till signalled

(order4 (threads> (lock> requests results))
locked-increment <threads> (lock>) :Else, pickup request
let ((request (listarray (cache-shared-array (request))))
(order4 <threads> (lock> requests results request)))))))

Figure 12: SHARED VARIABLE ORDERING

2-261

LAMINA 4 November 1987

more than on* procs to be resumed. This last approach more closely resembles the type of

synchronization provided by s gnllinl and waiting on condition variables in a monitor.

Figure 10 shows an example of using some of these synchronization schemes in generating a

closure to perform operations on a shared buffer realized as a shared variable array. Processes

first gain access to the shared array by spinning on a lock. Once access is granted, items are

inserted or removed. An attempt to put information in a full buffer returns nil if it is

unsuccessful. When an attempt is made to remove data from an empty buffer, a shared queue

(rather than data) is returned -- the requesting process may then wait for something to be
placed on this queue by executing shared-queue-top.

4.5 An Example

As an example of using the LAMINA shared variable interface, we present yet another
implementation of ordering, this one using shared variables. The sets to be ordered are
represented as shared arrays.
Each processor will execute an identical thread of execution. The execution of the thread is
defined by the order4 function, shown in figure 12. Ordering requests are distributed to the
threads through a shared buffer manipulated by a closure previously formed by calling the
shared-buffer function. A request consists of a reference to a shared array and indices
representing the left and right boundaries of the array (or sub-array) to be ordered. Each
thread executes in a loop as follows:

" If there is an array (or sub-array) to order, the thread partitions the sub-array,
using the part4 routine, shown in figure 11. The order of the set element used as
the pivot is now established so the set element, its order, and the reference for the
array (as a set identifier) is placed in the specified result queue.

" If both sub-arrays resulting from the partition are longer than two elements, the
thread adds an ordering request to the queue for one sub-array and orders 0-e other.
If either sub-array has two or fewer elements, the ordering is trivial, so the thread
does it (using the maybe-exchange function, also shown in figure 11). If neither
sub-array has more than two elements, after the thread orders the sub-arrays, it
signals that no less thread is currently working on any ordering requests and notes
that it has no array to order.

* If the thread has no array to order, it attempts to remove a reques" from the queue.
If successful, it signals that one more thread is trying to-do orderin, and orders the
(sub-)array identified by the request. If the attempt is unsucessful and there are no
other working threads, there will never be any more requests generated so the thread
terminates. Otherwise, it tries again to remove a request from the queue. Note that
the first thread to terminate places a token on the shared synchronization queue
-- this wakes up the other threads, which will then terminate.

2-262

LAMINA 4 November 1987

S Utilities Random Sites, Local Sites, Dismiss, and Boot

A few utility operations are provided by LAMINA to specify computation (and storage) sites,
dismiss computations, and provide a timeout facility for applications desiring one. LAMINA

also provides simulation control facilities to initiate a CARE simulation, read the current

simulation time. and do a computation without increasing the simulation time.

The function random-site returns a reference for a site chosen randomly with uniform

distribution over the processor sites in the simulated system. The function random-memory

does the same thing over the memory controllers in the system. The function 1ocal-site

returns a reference for the CARE site executing the function. The function local-memory
returns a reference for a memory controller associated with the processor on which the

function is executed. 4

In order to provide a timeout facility, the keyword after followed by a number of
milliseconds in simulated time may be included in functions that take LAMINA keyword
arguments. The simplest use might be to specify that a posting to a stream be sent at some
future time.
A call to dismiss breaks execution. With no argument, execution is rescheduled immediately
(but occurs after all previously scheduled executions are run). If an argument is specified
which is a keyword, execution is terminated and will never be rescheduled. If a local stream is
specified, execution is rescheduled when next that stream receives a posting -- or immediately,
if that stream has a posting on it.

The current simulation time (in milliseconds) is returned by the function simulation-time.

Some computations irn a simulated application need not (or should not) be timed. The macro
(without-clock form) enclosing the forms of such computations will cause them to be
accomplished "off the clock". This is generally a good idea for calls to debuggers and the like
as well as for input-output operations.

Something special must be done to start up a simulation. The form
(boot (at time site-coordinates form) (at))

will spawn computations to execute forms at the indicated sites beginning at the specified
times (in milliseconds). The site coordinates are given as a list. for example, *(3 2), whose
length matches the represented dimensionality of the proceing unit (a surface for the case
shown). The boot construct resets the simulator and thus may only be executed as the first
operation of an application being simulated.

CARE user applications should be loaded into the Zetalisp care-user package where all
LAMINA interface constructs and primitive functions are defined.

6 Acknowledgements

The maturation of LAMINA. to the extent this has occured, has only come to pass through the
sufferance of its early users. Occasionally, a user has taken a direct hand in LAMINA's

definition and implementation. The work so done has invariably improved LAMINA and made
it a sounder base for concurrent programming. We are indebted to our colleagues, past and
present, Eric Schoen, Harold Brown. Masufumi Minami, Russell Nakano, and Max Hailperin
for putting up with our offspring and helping to direct its growth.

This work takes its roots in the achievements of Daniel Friedman, David Wise, Henry
Lieberman, and Carl Hewitt. The most important conce!pts underlying LAMINA are theirs. The
distortions of those concepts, done in error or out of a preoccupation with performance (or
both) are our own.

2-263

LAMINA 4 November 1987

I. LAMINA Primitives

A set of functional primitives underlies the interface syntax described in the previous sections
of this paper. The set of primitives described below has evolved to provide the mechanisms to
support all that syntax. It is documented here so that language implementers may more easily
define additional or alternative syntax.

LI Posting and Target Specialization

Streams acquire values as a result of postings received by them. This is directly done by the
posting operation as in (posting value to target-streams ..). A posting may be
multicast (3] by supplying a list of target-streams.
CARE provides a facility for specializing the values transmitted in a multicast to the individual
targets of the message. Anyplace a stream is used as a target of a posting, it may be replaced
by a cons of that stream and the value specialization for that stream. The value specialization
will be used with the value of the posting to form a list whose elements are the list elements
of the specialization (or the specification itself if it is not a list) followed by the list elements
of the posting value (or the" posting value itself if it is not a list). This combined list will be
taken as the value of the posting when it arrives at the target stream. The simplest use of this
may be to multicast some data to two remote LAMINA nodes as described in section 3. asking
them to perform two different operations on the data:

(posting data to ' ((,input-stream-l . ,task-selector-1)
(,input-stream-2 . .task-selector-2)) ...)

Specialization is specified by a list of lists even if only one target is involved. This is
required to distinguish it from a list of unspecialized targets.

1.2 Stream Posting Access Functions

The form (first-posting stream) returns the first posting of those present on a stream.
The form (next-posting stream) does the same but removes the posting from the stream.
The form (last-posting stream) returns the last posting and eliminates all others on the
stream.
If the stream is empty, the three stream posting access functions, just listed, return nil.
Otherwise, they return a posting as a list of the value, clients, key, tag, origin, and properties
of the posting in that order. This list may be used with Lisp destructuring operators.
Elements of this list may also be accessed by the posting- macros: -value, -clients, -key,
-tag, -origin, and -properties. Each of these takes a posting as an argument. The
number of postings available on a str-am is returned by the form (postings stream).

If it is desired that execution be blocked until there is a posting for a specified stream, the
stream posting access forms above may be wrapped in an (accept ...) construction, for
example, (accept (next-posting stream)). When a posting is available on the indicated
stream, the posting is returned to the restarted or resumed execution.

1.3 Copying Streams
A posting sent to parent streams in a tree (or graph) of streams set up by copying operations
will result in that posting also appearing on all the descendant streams in the tree (or graph).
Such a system of streams can be built by:.

(copying parents to child-streams for clients ...)

The references for the child-streams are sent in an operation request posting to the parents

2-264

4 November 1987LAMINA

where they are added to the child references of the parent. The current queue of postings held

in the parent stream is copied and returned in one combined posting that is multicast to the

child streams. These postings become part of each child stream. When each child receives the

combined posting&s, it sends on to the clients a completion posting whose value is the parent

stream from which it received the posting queue. This can be used to validate that a requested

copy operation has been accomplished.

1.4 Linking Streams

Linking is an optimization of copying for those cases where it is known that postings need

not be retained on intermediate streams in a system of linked streams. Linking parent
streams to child streams serves to restrict the parents to act only as intermediaries in a system
of linked streams. The syntax for linking is:

(linking parents to child-streams for clients ...)

The references for the child-streams are rlilticast in an operation request posting to the
parents. When a parent receives the referenc . any postings already on parent streams are sent
to the children specified by the references and eliminated from the parents. Further postings
are not retained on parents. after they receive a linking directive but are immediately passed
on to the child streams. For efficiency in forwarding, the implementation may bypass
intermediate levels in a system of linked streams.

1.5 Value Specialization

Target specialization may also be used with the 1 inking or copying operator to specialize the
value of postings transmitted from parents to children:

(linking parents to '((,child-I . ,value-speclallzaaon-j)) .. •)

Thereafter, all postings that traverse that link from parent to child will have the appropriate
value specialization prepended to their value. The resulting value is a list whose elements are
the list elements of the value specialization (or the value specialization itself if it is not a list)
and the list elements of the posting value (or the posting value itself if it is not a list). This
is the mechanism used to support the syntax of with-postings when a continuation closure
with associated response posting are to be put on a the self-stream of an object.

1.6 Relocating Streams

A linking operation does not change the way that a child stream orders postings or presents
them. Relocating a stream from one site to another with that stream's means of ordering and
presenting postings (together with any accumulated postings) is specified by:

(relocating parents to child-streams for clients ...)

This is used when there is an attempt to read from a stream that is not local to a site. The
attempt causes the reference used to specify that the target stream target a new child stream,
the relocation of the previously specified target. No lhange can be detected in the operation
of reference-eq on the reference after relocation.

1.7 Group Streams

An application in LAMINA may wish to view a group of streams as a composite, a prouprstrewr,
carrying out some operation when all of the streams in the group have received a posting. To
minimize unproductive scheduling, computations may wait on such stream composites rather
than the individual streams. Group-streams are created by new-stream called with a :group
keyword argument as in: (new-stream tag :group member-streams). A future, that is a stream

2-265

LAMINA 4 November 1987

which may have at most one value, may be a member of many groups but otherwise a stream
may be the member of only one group. If such streams of values are to be made available to
several groups, a system of linked or copied streams can be created as discussed previously.

If a member stream is not local to the site of its group stream, a local member stream is
created and the remote member stream is relocated there. The postings sent to the local
member streams are taken from the member streams whenever a request that has been made to
accept a posting from a group stream ca.t be satisfied. Each posting available from a group
stream will contain a list of postings received by its component streams as its value.

The order of posting elements in the list representing a group stream posting will correspond
to the order indicated in specifying the component streams of the group stream when it was
formed by calling the function new-stream as shown above.

Group streams are used to implement with-postings constructs. Continuations are only
scheduled when values are available on all the streams included in the specified stream
bindings.

1.8 Accessing and Exchanging Stream Values

Posting-by-posting access of the information on streams may be accomplished by requesting
that a stream access function be applied to the streams at the site they exist on:

(accessing access-function on target-streams for client-streams ...)
The access-function may be any of the stream posting access functions, for example, the
function next-posting described previously. A posting will be sent to the client streams
when one is available on a target stream. This is the only way provided for expressing
competitive access to a common stream.
An interlocked operation on streams is provided:

(exchanging value on target-streams for client-streams ...)

This causes last-posting to be applied to each target stream and the result sent to each
client stream. The value replaces the last posting on the target stream. This is done
atomically with applying last-posting to the stream.

1.9 Spawning a Restartable Computation

A separate, concurrent computation is created by spawning the execution of a closure as shown
in the following example:

(spawning #'(lambda () form) on site-reference for clients ...)

The closure is formed and the clients returned immediately as the value of the spawning
operation. The closure will sent to the indicated site and eventually executed there. The result
of that execution will be returned to the specified client streams.
Spawned computations can block waiting for a value to be available on a stream. When the
value is available they will be restarted and any intermediate computations done previously will
be redone. This approach is taken to avoid creation of stack groups for every spawned
computation. Resumable (as opposed to restartable) computations with their own stack groups
can be created by LAMINA operations discussed in section 1.10.
As an alternative to mounting computations with their own stack groups, the continuations of
partially completed computations can be spawned on the same site as their parent. This is
done by the with-values functional programming interface constructs described in section
2 and by the with-postings object-oriented programming interface constructs described in
section 3.6.

2-266

LAMINA 4 November 1987

1.10 Mounting Executions with Stack Groups

If an execution is blocked on trying to accept something from an empty stream, it is either
restarted (as discussed above) or resumed when that stream receives a posting. In general,
resuming a computation from where it left off (without spawning continuations) requires
preserving indeterminate amounts of intermediate state with a stack group. Maintaining many
independent stack groups is certainly an expensive operation in simulation and may also be so
in a target system implementation.

However. for occasions when the full power and expense of stack group switching is warranted.
LAMINA provides a construct in the same format as spawning:

(mounting closure on site-references for clients...)

The clients are returned immediately. The closure is sent to the specified site(s) where it will
be applied and the computed result sent to the clients. Note that the boot operation discussed
in section 5 spawns rather than mounts a computation. If a mounted computation is needed, it
must be explicitly mounted by the computation that boot spawns.

One could implement a multiple fork and join construct (like cobegin ... coend) by
mounting a number of processes with a common client stream. The creator could then wait
for the appropriate number of responses on the client stream (to insure that the other
processes had completed) and then continue its execution.

In applications that wish to view executions created with mounting as non-terminating, the
execution will typically have an initial section that sends a reference for a newly created (task)
stream to mutually agreed upon streams (by an explicit posting). The referenced task stream
will then be used to supply the newly mounted execution with additional operations to perform
after it completes its starting procedures.

1.11 Loading Sites and Passing Arguments to Remote Closures

An item may be sent to a remote site, a reference for it created there, and the reference sent
to specified clients:

(load'Gng item on site-reference for client-streams ...)

The clier-sireams are returned immediately by the form. Remote closures may be created by
loading closures:

(loading #'(lambda arglist form) on site-reference for (new-strem) ...)

The new stream immediately returned will eventually get a value representing a reference for
the closure on the specified site. A remote closure may be applied to locally evaluated
arguments by passing it those arguments:

(passing arglist to closure-reference for clients ...)

The result of the remote application is sent to the specified clients. The loading and
passig operations are combined in spawning.

2-267

LAMINA 4 November 1917

II. LAMINA Primitives and Interfaces

LAMINA primitive and interface functions ate listed in this appendix with a reference to the

section or sections in which they are described and discussed.

IL References

1.3 REFERENCE item Function

1.3 REFERENCE-SITE reference Function

1.3 REFERENCE-EQ referencel reference2 Function

L.2 Functional Programming Interface

2 FUTURE form Macro

2 WITH-VALUES future-bindings &body forms Macro
The future-bindings is a list each element of which is itself a list:

(binding-pattern future-specifier).

I3 Object Oriented Programming Interface

3.1 SENDING self-streams task-selector value &rest uamina-keywords Function

3.2 1.7 NEW-STREAM &opttonal tag &key group member-streams Function

3.2 NEW-FUTURE &optional tag Function

3.2 ORDERED-STREAM &optional tag Function

3.2 SEQUENCED-STREAM &optional tag Function

3.3 LAMINA. ORDERED-SELF-STREAM and SEQUENCED-SELF-STREAM Flavors

3.3 SELF-STREAM of LAMINA Instance Variable

3.4 DEFTRIGGER (object-type task-selector) trigger-pattern Macro
&optional documentation-string &body forms

The trigger pattern destructures the list (value clients key tag origin properties).

3.5 CREATE-SELF-STREAN object-type &optional tag Function

3.5 CREATING object-type state-variable-settings &.est lamina-keywords Function
State-variable-settings is a list alternating (state-variable) keywords and values.

3.6 WITH-POSTINGS stream-bindings &body forms Macro
The stream-bindings is a list each element of which is itself a list:

(binding-pattern stream-specifier).

2-268

LAMINA 4 November 1987

11.4 Shared Variable Interface
4.1 SHARED-VARIABLE site-referenice Value Function

4.1 IN-MEMORY site &body forms Macro

4.1 SHARED-READ shared-yariable-reference Function

4.1 SHARED-WRITE value shared-variable-reference Function

4.1 SHARED-EXCHANGE value shared-variable-reference Function

4.2 SHARED-CONS car-value cdr-yalue &opt ional site-reference Function
4.2 SHARED-CAR shared-pair-reference Function

4.2 SHARED-CDR sitared-pair-reference Function
4.2 SHARED-RPLACA shared-pair-reference new-car Function
4.2 SHARED-RPLACD shared-pair-reference new-cdr Function

4.2 CACHE-SHARED-PAIR shared-pair-reference Function
4.2 SHARED-ARRAY dimensions op t lanai site-reference Function

Skey : lnltial-element value :linitial -contents value-sequences
4.2 SHARED-AREF shared-array-reference &rsst subscripts Function
4.2 SHARED-ASET value shared-array-reference &res t subscripts Function
4.2 CACHE-SHARED-ARRAY shared-array-reference Function
4.2 FILL-SHARED-ARRAY array shared-array-reference Function
4.3 SHARED-QUEuE tag Function
4.3 SHARED-ENQLJEUE reference shared-queue-reference Function
4.3 SHARED-DEQIJEUE shared-queue-reference Function

4.3 SHARED-QUEUE-TOP shared-queue-reference Function
4.3 SHARED-QUEuE-P item Function
4.4 WITH-SPIN-LOCK shared-varlable-reference &body form Macro

2-269

LAMINA 4 November 1987

11.5 Utility Operakoi'
5 RANDOM-SITE and RANDOM-MEMORY Functions
5 LOCAL-MEMORY and LOCAL-SITE Functions
S DISMISS &optional stream-or-keyword Function

5 SIMULATION-TIME Function
5 WITHOUT-CLOCK &body forms Macro
5 BOOT &rest at-forms Macro

An at-form is a list of the form: (at. time site-coordinates &body forms)

11.6 Primitives
1.1 POSTING value &rest lamina-keywords Function
1.2 POSTINGS stream Function
1.2 FIRST-POSTING local-stream Function
1.2 NEXT-POSTING local-stream Function
1.2 LAST-POSTING local-stream Function
1.2 POSTING-VALUE posting Function
1.2 POS'ING-CLIENTS posting Function
1.2 POSTINC-KEY posting F.,'.tion
1.2 PASTING-TAG ,ostlng Fu icttn

1.2 POSTING-ORIGIN posting Function
1.? POSTING-PROPERTIES posting Function

T.2 ACCEPT strean-acces.-form Macro
1.3 COPYING parent-streams &rest lamina-keywords Function
1.4. 1.5 LY.bING parent-streams &rest lamina-keywords Function
1.6 RELOCATING parent-streams &rest lamina-keyword: Furction
1.8 ACCESSING access-function &rest lamina-keywords Function
1.8 EXCHANGING value &rest lamlna-keywordi Function
1.9 SPAWNING functhn &rest !amina-keywords Function
1.10 MOUNTING function &rest lamina-keywords Function

1.11 LOADING ltem &rest lamina-keywords Function
1.11 PASSING arglist &rest lamina-keywords Function

'-270

LAMINA 4 November 1987

References

I. Gregory R.Andrews and Fred B. Schneider. "Concepts and Notations for Concurrent

Programming." C,..mputing Surveys Is, 1 (March 1983). 3-43.

2. Harold D. Brown. Eric Schoen, and Bruce A. Delagi. An Experiment in Knowledge-Based

Signal Understanding Using Parallel Architectures. Tech. Rept. STAN-CS-86-11 36 or

KSL-86-69, Stanford University, October. 1986.

3. Gregory Byrd, Russell Nakano. and Bruce Delagi. A Dynamic Cut-Through Communication

Protocol with Multicast. Tech. Rept. KSL-87-44, Knowledge Systems Laboratory, Stanford

University, August. 1987.

4. Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. An Instrumented
Architectural Simulation System. Tech. Rept. STAN-CS-87-1148 or KSL-86-36, Knowledge

Systems Laboratory, Computer Science Department, Stanford University, January, 1987.

5. Daniel P. Friedman and David S. Wise. An Indeterminate Constructor For Applicative
Programming. 7th Annual Symposium on P:inciples of Programming Languages, 1980. pp.
245-250.

6. Robt. I. Halstead. Jr. "Multilisp: A Language for Concurrent Symbc,lic Computation."
ACM Transactions on Programming Languages and Systems 7, 4 (October 1985).

7. Donald E. Knuth. The Art of Computer Programming (Volume 3). Addison-Wesley,
Reading. Massachusetts, 1973.

S. Henry Lieberman. Thir;1ing About Lots of Things Without Getting Confused. Al Memo
626. MIT, May. 1981.

9. David A. Moon. Object Oriented Programming with Flavors. Object-Oriented
Programming Systems, Languages, and Applications EOOPSLA] '86 Proceedings,
September, 1986. pp. 1-8.

10. Russell Nakano and Masafumi Minami. Experiments with a Knowledge-Based System on
a Multiprocessor. Tech. Rept. KSL-87-61 Knowledge Systems Laboratc'y, Computer Science
Department, .anford University, 1987.

11. Ehud Shapiro. "Concurrent Prolog: A Progress Report." Computer 18 (August 1986).

44-58.

12. Steele, G.L. Jr. Lambda, the Ultimate Declarative. Al Memo 379, MIT, November, 1976.

13. Guy L Steele. Common Lisp: The Language. Digital Press, Billerica, MA 01862. 1984.

14. Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics. Cambridge, MA.
1981.

2-271

Knowledge Systems Laboratory January 1987
Report No. KSL 86-36

An Instrumented Architectural Simulation System

by
Bruce A. Oclagi, Nakul Saraiya, Sayurl Nishimuru, and Greg Byrd

KNOWLEDGE SVST*EMS LABORATORY
Comiputer Science Departmient

Stanford University
Stanford, California 94305

WORKSYSITMS ENGINEERING GROUP
Low End Systems and 'Technology

Digital Equipment Corporation
Maynard, Massachusetts 01754

This work was supported by DARPA Contract F30602-85-C-OO 12, NVASA Ames
Conlract'NCC 2-220-SI, and Boeing Contract W266875. Greg Byrd was
supported by an NSF Graduate Fellowship and by (he Stanford University
Department of Electrical Engineering.

2-2 72

SIMPLE/CARE 29 January 1987

ABSTRACT

AN INSTRUMFNTED ARCHITECTI'URAI. SIMULATION SYSTEM

Simulation of systet is at an architectural level can offer an effective way to study critical
design choices if (1) the performance of the simulator is adequate to examine designs executing
significant code bodies -- not just toy problems or small application fragments, (2) the details
of the simulation include the critical details of the design, (3) the view of the design presented
by the simulator instrumentation leads to useful insights on the problems with the design, and
(4) there is enough flexibility in the simulation system so that the asking of unplanned
questions is not suppressed by the weight of the mechanics involved in making changes either
in the design or its measurement. A simulation system with these! goals is described together
with the approach to its implementation. Its application to the study of a particular class of
multiprocessor hardware system architectures is illustrated.

2-273

SIMPLE/CARE 29 January 1987

1 INTRODUCTION
Simulation systems are quite often developed in the context of a particular problem. To a

degree, this is true for SIMPLE, an event based simulation system, and CARE, the computer
array emulator that runs on SIMPLE.1 The problem motivating the development of both
SIMPLE and CARE was the performance study of 100 to 1000-element multiprocessor systems
executing a set of signal interpretation applications implemented as "1000 rule equivalent
expert systems" [2].

A set of constraints pertinent to this problem governed the design of SIMPLE/CARE. The
applications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with the interactions of
multiprocessor system elenents were sufficiently unexplored prior to simulation th..
simplifications in the CARE system model, specifically with respect to element interactions,
were suspect. This need for detail was, of course, in tension with the need for simulation
performance. The ways that simulated system components would be composed into complete
systems was initially difficult to bound. Further, it was clear that the models of these
components would be elaborated over time and would undergo substantial change as design
concepts evolved. It was also clear that the ways of examining the operation of these
components would change independently (and at a great rate) as early experience indicated
what alternative aspect of system operation should have been monitored in any given
completed run.

The design goals that emerged then were (1) that the simulation system should support the
management of substantial flexibility with regard to simulated system structure, function, and
instrumentation and (2) that, in order to accomplish runs in acceptable elapsed times, the detail
of simulation should be particularly focused on the communications, process scheduling, and
context switching support facilities of the simulated system -- that is, on just those aspects of
system execution critical to multiprocessor (as opposed to uniprocessor) operation.

1.1 Design Time Interaction And Run Time Operation

Encapsulation of the state of design components with the procedures that manipulate that
state is one clear way to manage design evolution. Such encapsulation partitions the design
along well defined boundaries. Components (by and large) interact with other components
only through defined ports. Connections between components terminate at such ports. When
a system simulation is initialized, connections are traced so that for every port, the simulator
knows the connected (terminating) ports together with thei, containing components. Once such
initialization is complete, that is, throughout the simulation run, assertions about the state of a
port of one component can be directly translated to assertions about the state of connected
ports of other components.

Partitioning issues of system structure, component behavior, and instrumentation into separate
domains of consideration helps in managing a design that is both fluid and complex. System
structure, that is, the relationship between componen:s, can be specified through use of an
interactive, graphics structure editor and is largely independent of component function per se.
Component behavior is encapsulated in a set of definitions pertinent to the given class of
component. Each component in a SIMPLE simulated system is a member of a class defined
for that component type. Instrumentation is automatically and invisibly made part of the
definition of each simulated component that is to be monitored during a run. This is done by
arranging that the class of every component to be monitored is a specialization of the general
instrumented-box class. The basic data struLtures and procedures for monitoring simulated
components and maintaining the organizational relationships between each component and its
related instrumentation are inherited through this general, ancestral class and are thus made a
separate, substantially independent consideration in the design.

ISIMPI.E and CARF were de--cihped by the iuthtir t the Knowledge S t,,ns I ab of Stanford University. SIMPLE
is a desuendvit of PAI. ADIO (1) optimired tvr the)tibeL utf PAl t - DIO'5 apabhities relevant to hicrarlhical design
Lapture and simulatliI. It i!s written ii 7 itdh ,p [4] alld ,urircitly ru . un S mibvlh 3600 madtines And TI Explorers

2-274

SIMPLE/CARE 29 January 1987

A further partitioning of concerns is employed to separate out the definition of the
application programming language interface and its support (as provided by CARE) from the
underlying information flow control governing component behavior. The behavioral
descriptions of components (which are expressed as sets of condition/action rules) deal
generically with gating information, independently of the structure of the information, between
ports of the component and its internal state variables. This is separated in the component
model definitions from the functions performed to create and manipulate the information so
gated. The simulated implementation of the application programming language support
facilities, on the other hand, relies only orn the specifics of the information and its structure
and plays no part in gating it between the ccmponents of the system. Changing the definition
of the application language is thus done independently of changing component flow control
behavior. The application programmer and the implementer of the application language
interface may use whatever data structures seem suitable to them, be they numbers and
keywords or procedure bodies and execution environments. Th- simulation system doesn't care.

The component probe definitions, that is, the specifications of what information should be
captured for each component type, are separated f.om the descriptions of the behavior of such
components. In designing for flexibility in the instrumentation system, it turned out to be
important to further divide the information presentation from the information collection
;ssues. The mapping from particular component probes to particular instrument panels and the
transformations to be applied to the information as it passed from a given kind of probe to a
given panel (and between panels) is captured in the instrument specification. This is a
definition of what kinds of panels are included in an instrument, how they fit on an
instrument screen, how they are labeled and scaled, and what information from which kinds of
probes are displayed on each panel. The instrument specification also indicates what kinds of
probes are to be connected to which kinds (that is, which classes) of components in the system.

application code

component probe ey
interface pi

nat ment C&V

specifIcation wt: pher

design time Interactions simulation run

Figure 1: Design Time Interactions and Run Time Representations

Putting together all the definitions of components, component probes, panels, instruments,
applications interfaces, and inter-component relationships is done in a set of design time
interactions by a system architect. These interactions are used by the simulation system to
generate efficient run time representations so that simulation performance goals can be met.
Figure 1 illustrates the partition between design time interactions and simulation run time
oneration. Structure editing pulls together components from the component library to produce
a circuit. Associated with some components in the library, there are definitions for the syntax
and underlying mechanisms of a multiprocessor applications laiguage. These specify the

2-275

SIMPLE/CARE 29 January 1987

interface used to provide the program input to the multiprocessor system being simulated. 2

The definitions us-d to generate component probes are associated with each library component
to be monitors& There may be several such definitions, each appropriate to measuring a
different aspect of the associated component's operation. An instrument specification selects
from these definitions, elaborates them with selections from a set of probe operation modules
to include any pre'-processing (for example, a moving average) to be calculated by the probe,
and indicates under what conditions what information from the probe is to be sent to which
panels of the instrument and how it is to be transformed and displayed there. Instrument
specifications also partition the screen among the panels of the instrument. The end product
of these design time interactions is an instrumented circuit and an instrument. The instrument
comprises a set of instrument panels and a set of :onstraints relating them to the instrument
screen. The instrumented circuit ties together instances of components, probes, and panels for
a simulation run.

For each defined class of component and its associated probes, the design time interactions
produce code bodies that accomplish simulation operations during a run. It is an attribute of
the underlying Lisp base of the simulation system that changes in these definitions have
immediate effect even during a simulation run -- an important capability during debugging.

2 SIrRUCIURE AND COMPOSITION

Design time interactions to specify a system include the establishment of component
relationships. Such specifications can be said to accomplish the composition of the system
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships among their sub-
components. Additionally, such composite components may have function beyond what can be
inferred strictly from their composition. All this can then be included a higher level
composite (as shown in figure 2) and so on indefinitely until the top level "circuit", the system
structure, is reached.

fWts-buf oferf r a

Figure 2: HierarcS~cal Composition

The behavior induced on a composite component From its parts changes according to the
behavior of its parts. Thus, For exampie in Figure 2, 1f at any time during a simulation thefunction of CARE operator components is changed by redefining their operation, the behavor

2The lainguge primitives supplhed ,ii '.e u~ed tu deFine 1iuliproLe~sur lInmgu,1c giterfa~es fur either s)hjred-ynriable
or value-passing pairaidigns. As supplied, the lan~tuage ;nterf'a e built on these prinhitives supports value-paissing on
streams be:tween objects hut ,iiteriiaiii' inlriterf,rn . be (,iid h,ive becen) e., ily def'ined in terms of" the givenprimitives.

2-276

SIMPLE/CARE 29 January 1987

of the nine-site grid is in immediate correspondence.3

Composition is described graphically and interactively in SIMPLE by picking a previously
specified component type from a menu, placing i. in relationship to other components with
"mouse" movements, and, through the same means, specifying the connections between its

selected ports and those of other components (as indicated in figure 3).

Add LeN

Pdd Contatts

Nzlet e Cowasn".t

Respe OOcndons Sex
Ed-t Behav or

ffad * - Alit.but

Fnutet:Gpate Su r p f t
{nst Co

connected directly toprto sucop ens wihn th co oie. Itissdne

Ifn - 't WWld

a [rj9-

Sift I L,61i

Figure 3: Graphic Structure Specification

Through another menu selection, ports can be defined for the new composite component so
that it, in turn, can be fitted into yet higher level structures. Such external ports can be
connected directly to ports of sub-components "within" the composite. If this is done,
information appearing, on that external port will be the responsibility of the connected sub-
component. By this same means, a component previously described as a base level component,
can be red F ...d as a composite of yet lower level elements as its design is elaborated with
further detai:,.

Components and (internal) connections can also be deleted from a library component and
replaced with substitute components. After all sub-components and connections have been
added, deleted, elaborated, and replaced as required, the completed structure can then be entered
into a library of components and used in turn to compose higher or equivalent level
components.

2.1 CARE Base Components

CARE supplies a small library of system level base component types. Currently these are the
net-input, the net-output, the fifo-buffe-, the operator, and the evaluator. The net-input, net-

3However. for reasons toncerning sirnulstiuon performatle and because of ihe,r relatively low frequency. changes in
the number and names of the intcro..l -tate variables of LUmponents and the structural relationships between sub-
components of a composite are not reflected tn an already instantiated circuit. Changes in the internal structure of a
CARE site library component, for example. will be reflected only in circuits instantiated after the change took effect-
For this reason and to reduce long term stordge requirements and load time fur the fundamentally iterative circuits that
we primarily study, we do not ketp files of instantiated tircuits. They are instantiated as needed from a high level
library component with the -iame prototypical structure.

2-277

SIMPLE/CARE 29 January 1987

output and fifo-buffer accept (or block), route, and buffer transmissions. They do so in
accordance with a dynamic, flow-controlled, multicast, cut-through communications protocol as
described in E3]. The evaluator does the real work of the application: evaluating the
application of functions to their parameters. The operator does the overhead work associated
with such evaluations: for example, scheduling processes and sending and receiving (but not
routing) messages.
In keeping with the objective of focusing simulation cycles on the aspects of the simulation

particularly relevant to multiprocessor operation, the behaviors of the net-input, net-output,
and fifo-buffer component classes are defined in fair detail, that is, at the register transfer
level. Routing operations are described procedurally and assumed to occur within a time set by
a parameter to the simulation. As indicated previously, the simulation of the operator and
evaluator is broken into two aspects: the control of the flow of information and the functions
performed on that information. The former is described in terms of SIMPLE behavior rules
(as documented in section 3), register transfer by register transfer. The latter is described
directly in terms of procedures and the simulated time taken by such procedures is modeled.
In the case of the operator, this is done as a function of the number of storage cells
manipulated during an operator procedure. In the case of the evaluator, this is done as a
function of the execution time used by the machine executing the simulation, that is, the
simulation vehicle.

2.2 CARE Composite Components

The prototypical composite component supplied with CARE is the site. As supplied, it
includes net-inputs and net-outputs for up to eight "neighboring" components (generally other
sites), a net-input and a net-output with associated fifo-buffers for local receptions and
transmissions, and, finally, an operator and evaluator as described above. Specializations of the
site, for example, the torus-site, exist in the library to fit the site into alternative topologies by
supplementing the site routing and wiring procedures as appropriate to the topology.

2.3 Automatic Composition in CARE

Although any connection of components can be created by the means noted previously, for
some repetitive, well patterned systems of connections, composition can be automated. The
CARE library includes a component, the iteraied-cell, which represents a template for the
creation of composite components by iteration of a unit cell. The unit cells (for example, the
torus-site) are specializations of other components (for example, the site) as just discussed.
The specializations include a method for responding to a request to provide a wiring list. Such
a list associates each source port of a cell with the corresponding destination port (in terms of
port names) and the position of the destination cell relatN.e to the source cell in the iterated
structure. The iterated cell component uses this information to make the required connections
between each of its constituent cells.

3 SPECIFYING BEHAVIOR

SIMPLE is an event based simulator. The ela'ior of a simulated component is described in
terms of responses to the events pertinent to that component. A component's response ma,
include consequent events to be handled by the simulator as well as direct operations on
component state. Assertion of consequent e,.ents and the reponses to them (involving further
consequences) drives the simulation. When there are no more events to handle, the simulation
is complete.

To maintain modularit) in a simulation system. responses to simulation events should be
local to the affected component and its defined ports. that is. its connection to the remainder
of the simulated system. The composition system of the simulator maintains the relationship
between ports of one component and those of other components connected to them. Assertions

2-27,3

SIMPLE/CARE 29 January 1987

relative to a port of a component are thus systematically translated to events pertinent to
components connected to it. This is the general mechanism for event propagation between
components. In a limited number of cases, a direct operation on a related component may be
appropriate. With fair warning about its possibility of abuse, a facility is provided to
accomplish this.

3.1 Behavioral Rules

The behavior of a component is described in terms of its responses to pertinent events.
Each event stipulates the component affected, its port or state variable signalled with an
assertion, the asserted value, and the simulated "time" of the event. The time of an event may
be thought of as the "current" simulation time. Differences in event times represent the
temporal relationship between events. Event times in SIMPLE simulations are monotonically
increasing.

For each type of component, there is a procedure to handle pertinent events. The arguments
to the procedure are those stipulated by the event (as just described). The procedure tests for
conditions and, as satisfied, asserts or directly effects consequent actions. The conditions may
include arbitrary predicates on the event parameters and the state variables of the component.

Event based simulators are based on the assumption that state and port variables remain
unchanged until explicitly modified. Synchronous designs, that is, those in which the
opportunities for state change are temporally quantized to a clock, can be modeled in such
implicitly asynchronous, event based simulators by asserting the clock signal on a port of each
and every clocked component of the simulated system. If only some of the components in a
system need take action on each clock signal, there is an obvious inefficiency in this approach
that is crippling for systems with even a modest number of components.

If, however, event times in an event based simulator are restricted to integers, the clock can
be assumed. All that is needed is a way to detect the event for which a boolean combination
of conditions as strobed by an assumed clock is first met. Primitive condition predicates are
supplied for detecting an "edge" (a value changed by the current event) with a coincident
"level" (a value set before the current event) of two ports or state variables of a component in
either of the two possible event sequences. The predicate both-states in the example
evaluator behavior rule shown in figure 4 has these semantics.

; ;If the evaluator is ready and there is at least one runnable process-
((or (both-states Evaluator-Status 4 'ready Evaluator-Queue-Status 'some)

(both-states Evaluator-Status 'ready Evaluator-Queue-Status 'full))
- make it current, start evaluation, and adjust status as per removal.

(setq Evaluator-Status 'busy) ;block rule
(assert-state Evaluator-Status 'busy now) ;next event
(setq Current-Evaluation (queue-take Evaluator-Queue)) :note process
(user-evaluate Current-Evaluation now) ;execute it
(send self :evaluator-queue-decreased now)) ;note change

Figure 4: Example Condition/Action Behavior Rule

Figure 4 illustrates the generality of SIMPLE behavioral descriptions. The underlying object-
oriented programming system, Flavors [4], in which SIMPLE is implemented provides for
direct reference of component state variables. The conditions and actions of behavior rules for
a component then need only name the component's port or state variable (as stipulated in the
definition of that component type) to get or change the appropriate value in the component
instance for which the event is pertinent. Actions may include arbitrary procedures: for
example, the procedures user-evaluate and queue-take in the given example.

4By convention. coruni t state w %artabls are -t;I.Lcn in capialitid form.

2-279

SIMPLE/CARE 29 January 1987

3.2 Using Methods

The environment for the execution of the procedures defining responses to events includes
the state variables and ports of the component instance for which the event is pertinent.
These procedures are Flavor methods [4] (in this case corresponding to the :ApplyRules
message) of the component type and, as just noted, refer implicitly to the state variables of the
component instance handling the event. Other methods may be defined for simulated
components: for example, the :evaluator-queue-decreased method invoked in figure 4.
Such methods have proved to be a natural way to realize the functional operations of
components not described by behavior rules.

The composition system leaves information about the enclosing and contained component
instances for each simulated component in system defined state variables of that component.
With this information, methcis directly referencing the ports and state variables of such
related components may be invoked as needed. This is a useful but sharp-edged facility. The
warning about loss of modularity given previously applies here.

4 INSTRUMENTATION

The results of a simulation are primarily the insights it provides into the operation of the
simulated system. The "insight" we frequently experienced using an early version of the
simulation system was that more interesting results could have been produced by the run just
completed if only the instrumentation had been different With this in mind, the design for
the current version of the simulation instrumentation system was aimed at flexibility. This
was attained without significant performance impact by building efficient run-time system
structures before each run, as outlined in section 1.1, from the declarations defining the
instrumentation.

The organization of the instrumentation system is pictured in figure 5. The simulator
interacts with component instances through assertions, that is. calls on an assert function, in
behavior rules (the methods associated with :ApplyRules messages). All instrumented
components are specializations of an instrumented-box (as well as other classes). After each
invocation of :ApplyRules for such components, the :ApplyRules method for a generic
instrumented-box is applied. This causes invocation of the :trigger method for each
component-probe associated with that component. Since this flow of measurements is
accomplished by means invisible to the the writer of behavior methods for a component, the
concerr surrounding component design are effectively partitioned from component
instrumentation. The remainder of this section details these "invisible" means used to
accomplish measurement flow during a simulation run as the measurements are staged from
components through component probes to instrument panels.

4.1 Component Probes

The first filtering of events is done by component probes. Some events cause no further
measurement activity since, as it turns out. not all events merit action on the part of the
instrumentation system. The parameters of the eent and the ports and state variables of the
instrumented component dealing with the eent are av:ilable to the component probe as a,e
the state variables of the probe itself. Fach piece of the seletted information is tagged with an
identifying keyword and passed along as the parameters of the :trigger method along with a
keyword identifying the type of component pr ,he, a number representing the current event
time, and a pointer to the component with %hich the information is to be associated in the
display. This pointer might he to some component related to the one actually handling the
event, for example, the component enclosing it.

Component probes may he composed of predefined probe operation modules zo do standard
calculations (for example. moving awerages) and then to forward the results to selected panels.
In order to automate the composition of probes to accomplish such operations, each of these
operations is chained together by imn.oking the mnethod for that probe that is associated with

2-280

SIMPLE/CARE 29 January 1987

j :ApplyRules

:createupdate.

t iurenstrument sst r it

h yt di m ne e component

c :c:ateh
instru mented-box

fialcasthedte meho ofteslce aesascatdwt h rb.Poe r

u m n :trigger

a emplate-probe

enens component-prob rbseloct -c :Callo:update

Figure 5: Instrument System Organization

the system-defined message name of the generic next operation. Thus, the :tragged method

calls of tinstru atn o the probe which in turn. alls its :select method which,
finally, calls the :update method of the selected panels associated with the probe. Probes are
composed by naming them as specializations of appropriate probe operation modules (for
example a :calculate module for moving averages) as desired. The default, if no
specializations are stipulated, s to pass through information without change to all the panels
associated with a probe.

Information flow between components and panels is accomplished by the component probes
associated with each instrumented component. The creation of such component probes and
their association with appropriate components (by execution of :add methods) accomplishes

the instrumentation of a circuit. This is done when an instrument is created. During
simulation initialization, the components of the circuit (and their sub-components) to be
instrumented are (recursively) examined by each template probe defined for the instrument to
see if they are to be monitored. If so. the :copy method for the given template probe is
invoked to create a new instance of the appropriate component probe and add it to the probes
connected to the component. Each template probe previously received the identifiers for the
panels to which its clones should send information. These will be the panels identified whet) a
component probe invokes the :update method.

4.2 Instrument Specifications

The operations performed by an instrument panel are to:

•Find information previously stored according to the component pointer supplied by

the :update method;

2-281

SIMPLE/CARE 29 January 1987

" Link new data structures as needed (to save such information) to other such
structurm of the panel;

" Save in iM data structures the results of expressions that reference indicated
keyed informaton from the :update parameters and the prior contents of the
structures;

" Send the results of periodic analyses on the information associated with a panel for
display by the same panel or by some other, and

" Show processed information in the manner specified for the panel.

The defaults for the panel operations supply the most commonly required specifications
implicitly, so simple operations are simply specified. These defaults can be overridden as
needed and either predefined or user specified alternatives for the panel operations can be
selected in their place. Arbitrarily complex (Lisp) expressions can be used to specify the
transformations between the information provided by a probe and that saved and displayed by
the panel.

These transformations and all the default overrides for the panel operations that are
stipulated in the instrument declaration are scanned when a new instrument is created for a
simulation session. They are compiled at that time into code bodies referenced by run time
control blocks associated with each panel. A simulated system is instrumented by examining
all of its components and attaching to each component the copies of template probes specified
by the instrument definition that are appropriate for the component (by means of calls on the
:copy and :add methods for the probe). This can be a many to many relationship as shown
in figure 6.

panels probes components
umpping

__ "llo m. &" net-output-load

sgtmhitr net-outu
FLgr 6 s t-rm output-onnetio

eac operator-ande vala ori h ici. T el a " ad cret"o ncin o ah nt

Ois also to bmoodope tor-lonad

proces en o o ent operator

latency O _es such as th on mesrnopraoes-latencreieinusro mreta

producer-limited
-1= a il Fn wealuatr-laecduloo

consumer-lmted ulto

Figure 6: Instrument Probe and Panel Relationships

Component probes to measure "load'" and *'latency"° are specified in the given example for
each operator and evaluator in the circuit. The "'load" and current "connection" for each net-
output is also to be monitored. Some panels, for example t'he one showing "contsumer-limited"
processes, receive inputs from only one type of component probe, those measuring evaluator
latency. Others, such as the one measuring "process-lIatency" receive inputs from more than
one kind of probe (in this case. from probes measuring operator latency as well as those
measuring evaluator latency). A way must thus be provided to distinguish the type of probe
sending information to a panel: this is described in the next section.

2-282

SIMPLE/CARE 29 January 1987

Some probes send information to only one -aeel, for example, the net-output connection
probes. Others monitor information which is needed by several panels, for example, the
operator latency probe. Transformation of the raw information provided by a probe will need
to be specialized to the information expected k, each panel receiving it. A general way to
stipulate these transformations is stipulated in he next section.

5 EXAMPLE PANELS
Some example panels are described in this secL-on to give a feel for the instrumentation

possibilities available in CARE and elaborate oin how the requirements described in the
previous section for probe type identification at a panel and per panel specialization of the
information provided by a probe are handled.

5.1 Point Plot Panels

The first panel (shown in the left half of figure 7) is an example of a point plot panel used
to generate a scatter plot As an option, only points representing simulated activity over a
limited past history from the most recent event time are kept for display. In this example,
resource load5 information is provided by the operator-load and evaluator-load component
probes attached respectively to the operators and evaluators of the system.

ITE CORRELATIONSYTM IUT

T .bala itee Chomvlaility of Nh eawork ad opertor-fealuste Lhat sd h

1.9 - 61

1E 6 N
V - *12 -12
a

0 U
a 6.4 -
tr
aO-:: :I k 4 4 L
o .2 o n

9. 99
9.9 9.30 @.66 1.96 59 796 753

Operator Simulated Time [,%s]

Figure 7: Point Plot and &rolling Line Plot Panels

The balance between the "availability" Of the evaluator and operator of each site, that is. the
complements of their respective loads, is displayed during the simulation as events are
processed that change this measure. In order to avoid capturing information at too fine a
temporal granularity, previously gathered information for a given site is overwritten if it is
within a given sampling interval of the new information. Information that is beyond a given
history range is dropped. The scale of availabilities displayed is fixed between 0 and 1.0. The
panel specification to declare all this and to also stipulate the axis labels is shown in figure 8.

5Rcsourct load is dcfincJd as (I - I / I I * .l;frc jc-qucuc-lcngL)) where the .iureptc qucue-lnath is the sum of
the lengths of all queues pruvding work for the rmuur €.

2-283

SIMPLE/CARE 29 January 1987

'((("Operator") (0 1.0) - (:operator-load :busy))) ;Bottom axis
(("Evaluator") (0 1.0) ((1 (:evaluator-load :busy)))) ;Left axis
: ind (ftnd-sample-dstlfnct (:simulator :time) .sampling-interval)
:show (recent-history (:simulator :tlme) ,point-panel-history-range 0))

Figure 8: Site Correlation Panel Specification

5.2 Scrolling Line Plot Panels

An example of a scrolling line plot panel is shown in the right half of figure 7. This panel
sums the loads seen by the resources in the simulated system and displays this as a strip chart,
the "system history". Some of the same probe load information used by the previous panel is
used in this panel as well, but with different transformations defined in the panel specification
as shown in figur3 9.

'((("Simulated Time [us]") (,history-range) (:simulator :time)) ;Bottom
(("Network") (0 .sites) (:net-output-load :busy save-sum)) ;Left
(("Processing") (0 ,sites) ;Right

(average (:evaluator-load :busy save-sum)
(:operator-load :busy save-sum)))

:find (update-history (:simulator :time) ,sampling-interval)
:show (recent-history (:simulator :time) ,history-range 0))

Figure 9: System History Panel Specification

Line plot panels may have two independently scaled vertical axes. For the system history
panel shown, the sum of network loads as indicated by the net-output components of the
system is plotted against the left axis and the sum of the processing loads provided by the
current average of the sums of the operator and evaluator loads is plotted against the right
axis. Event time is plotted on the horizontal axis. The update-history function uses the
component pointer to find the information previously saved for that component and records
the current event time as the (:simulator :time) so that it may be used to display
information correctly on the horizontal axis. The current sums of the evaluator loads and the
operator loads measured by the system are stored in a record for the given event time (or a
prior event time within the specified sampling interval) by the calls to the save-sum function
specified as part of the save operation.

5.3 Self Scaling Line Plot Panels

Figure 10 illustrates both the self scaling of displays and the use of a display analysis
operation. For this self scaling line plot panel, two pieces of data are collected for each
operator in the system: the load on the operator, shown on the right axis, and the latency of
the information it has most recently received. This last item is provided by the operator
latency probe in two parts: (1) the interval between the creation of the information and its
receipt by the net-input feeding the operator and (2) the interval between such receipt and the
operator taking action on it. There are thus two curves plotted on the left axis. The
specification stipulates a list for the left axis display.. The elements of this list are the "net
delay" and the sum of this measure and the "operator delay" monitored by the operator latency
probe. Since both delays are non-negative, their sum must be at least as large as either one
taken alone: the two curves may be superimposed but can not cross. The difference between
the two curves is the incremental delay added by the operator.

The panel specification for the operator-network panel is shown in figure 11. In addition to
transformations shown previously, an analysis function is stipulated for the send operation of
the panel. The information saved from each of the probes sending :update messages to the
panel is to be sorted from the greatest to the 11east values of the associated sum of delays
described above. This information is to be saved as the operator latency rank and used as such
to determine the position on the horizontal axis that the delay and load information will be
displayed.

2-284

SIMPLE/CARE 29 January 1987

OPERATOR - NETWORK
Latency & Operator Load

5- 1.0
L
a 42- "0.8
t L

- 0.6 o

C 2 -- 0.

AS ----- 0.2
0 - -0.0

1 4 7 1 0 13 16
Operators

Figure 10: Self Scaling Line Plot Panel

'((("Operators") (1 .sites) (:operator-latency :rank))
((("Latency" "us")) (0 nil) ;Second string: 90 degree baseline shift
((:operator-latency (:net-delay (+ :net-delay :operator-delay)))))
(("Load") (0 1.0) (:operator-load :busy))
:send (sort-arrays

((,#'> (:operator-latency (+ :net-delay :operator-delay))))
((:operator-latency :rank))))

Figure I1: Operator-Network Panel Specification

5.4 Boxes and Lines Panels

Perhaps the most intuitively satisfying of the types of panels available is the boxes and lines
panel, a graphic representation of a circuit showing its components and their interconnections.
An example of such a panel is shown the left part of figure 12. This class of panels rses
information left behind by the structure editor when the circuit was defined. Its form is thus
automatically generated. The position of the components ("boxes") and the connections
between them ("lines") in the display are used to animate system operation. In the example
shown, the shading (or color) of the boxes is used to indicate the availability of the evaluators
in the simulated system as the simulation proceeds. Darkest shades indicate highest availability,
that is, empty queues for utilization of the resource; lighter shades indicate lower availability,
that is, longer queues. The lines between boxes indicate communication paths that are in use,
that is, not ":free" at the time of the most recent show operation for the panel.

The panel specification for the mapping panel, an instance of a boxes and lines panel, is
shown in figure 13. There are two specifications for the panel: one for the boxes and one for
the lines. The specification for boxes in the panel stipulates that the availability of evaluators
in the sites corresponding to the boxes displayed controls the shading of those boxes. The
scale is defined to run from 0 to 1.0. The specification for lines in the panel uses the
connection information reported for the net-output to determine line placement on the display.
When the status is reported as :free, the connection information is dropped from the panel
and the corresponding hnes are removed.

2-285

SIMPLE/CARE 29 January 1987

CAU O9191WPFODUCER LIMITED

El IPICI)Prows ptiwmg

64m1 1) P1 1116MUI

0 :(O"11215U (331PMV1

58 4(111If-O t C"f 4233111)16= M)

U1 9W (I I sE!-NIS16 (23) 16 4)

I,-Iir4-I O 1M I tIUO1311I 3) 1490 =1)

29C MEPI i~~2WIVOIW '1 1) am 214D
72 2t C 11 (13I z11-4UMIUS Q 3) 1143 214)

z (ZIP, 411 4*4~tWAVIXS I: 3'-nq 149) 5

Figure 12: Boxes and Lines Panel and Scrolling Text Panel

*(Evaluator Available") (0 1.0) (- 1 (:evaluator-load :busy))))
" (Packet Trace") nil (:net-output-connection :points))

(("Packet Status") nil (:net-output-connection :status))
:find (find-and-remove .#Ieq (:net-output-connection :status) :free)))

Figure 13: Mapping Panel Specification

5.5 Scrolling Text Panels
Sometimes, the most appropriate way to display information is to show iR as text. Based on

a similar facility provided by the underlying Lisp system, the scrolling text panel provides a
scrollable window into lines of text. In the right part of figure 12, the delay in each process
execution while waiting for something to do, that is, the event time interval spent waiting for
an appropriate task to appear on a certain stream of (asks, is shown together with the process
that finally produced the aNaited work. This informiation is sorted so that the text lines
appear from the greatest stream waiting interval to the leas(.

((fix (:stream-waiting :interval)) ;first field
(let* ((origins (packet-origin (:stream-waiting :packet'-))

(origin (if (listp origins) (first origins) origins)))
(remote-address-local origin)))) ;second field

:send (sort-arrays ((,#'> (:stream-waiting :interval))) nil))
Figure 14: Producer Limited Process Panel Specification

The values and formats used for display iii a scrolling text panel are defined much as in
previously defined pai'els. Format control strings take the place of scale information. As
usual, values are described by a list of forms, each one of which specifies the transformations
to perform on information received from probes. The example specification in figure
14 shows the generality with which probe information can be incorporated in Lisp expressions

2-286

SIMPLE/CARE 29 January 1987

to produce transformation specifications. The information used to generate the value for the
second field of the text display is based on the origin of the task packet that arrived on the
stream the prcem was waiting for.

5.6 Noting Simatlin Parameters

The CARE component models are parameterized through mncnu interaction as shown in
figure 15 to allow easy variation of their performance characteristic! relative to each other.
Additionally. the site model parameterizes alternative routing strategies: directed. that is.
blocking when progress can not be made toward the goal; spiraling around the goal if progress
toward it is blocked; and dithering, that is, routing away from the goal even if only the last
link towards it remains to be acquired. The rate at which each site accepts application data is
al-n a parameter, the data rate and can be used by an application tc control how hard it

yes the simulated system.

Data Rate [A1 s]: 25.0
Evaluation Override [,A]: NIL
Stack Group Switch Override C4s]: 1.0
Process Block Creation Override [%s]: 4.0
Stack Group Creation Override [As]: 20.0
Operator word Touch Time ['&s]: 0.2
Communication Cycles: 4
Routing: OVIECTED SPIRAUNG DITHERING
Exit E3 Quit 13

Figure 15: Parameter Menu

Many of the CARE parameters are specified as overrides. If not specified, the corresponding
performance is taken as measured on the simulation machine. Thus, the evaluation cverride,
that is, the time to perform an evaluation can be specified ,s non-nil in order to fix the time
that each user evaluation will take. (This is useful in making runs repeatable for debugging).
The time that it takes to switch context can be specified as the stack group switch override.
Similarly, the time to create a process control block and a stack context for that process can be
taken as given rather than measured by specifying respectvely the process block creation
override and the stuck group creation override.

The time required for operator execution is modeled in terms of the number of words the
operator must manipulate in handling a given message. The manipulation time per word is
specified by the operator word touch time. Last!y. the performance of the cemmunication
subsystem is specified as communication cycles. This is done in terms of the minimum
number of evaluator data path clock tirn..s (that is, event times) required for a 32-bit word to
pass a given point in the network. Thus the parametric specification, "4 communication
cycles", dictates that 8 bits may cross such a boundar. tjch tin,, ie evaluator passes through
one event time. If the communications path wzre n, "-wer or the base .ommunicatiol clock
rate were lower, a higher number would be specified.

SOT"..
214 014:48I 32 OI|C'ED Cycles, Act:eretto 2. Ceeattion 2m.. titc Z0 WS. fie vutltO 25M. Me0 150

Figure 16: Annotation Panel

The last example of SIMPLE panels is the annotation panel 's illustrated in figure 16. This

2-287

SIMPLE/CARE 29 January 1987

is used to (automatically) record the date, time. and par'ameters of the simulation run as well as

any othe infonmation the user chooses to keyboard into it.

5.7 Aa 1.uitriuu Scren

All these panel ore put together in an instrumeni screen according to a set of layout
constraints manipulated by the underlying window systeir. The finished screen might look like
figure 17. The instrument screen is redrawn at a rfte set by the user. By experience, it is
often better to update the screen at a frequency low enough to let the user interpret each
screen comfortably than at the maximumn rate possible. This approach also restricts thle
computing resources consumed by the instrumentation system. More focused approaches to
controlling instrumentation load on the system include the ability to freeze selected panels and
disconnect selected probes during a simulation run.

coW5auUM aIMID CRS OVERSEE LWs 037151111

1a41 uiinOiA 4. or,

lot "1 2n0 Z
"RiaIp &rnZ -ine43o

at 0 30~i~w V.. dJ m 1u~ c .,, t

:2827 F Af aato t.g ftgv
2930a m-0 YPkbfW tt W W8

2M 9-.e"u wr.*q oprftq f,.

Pro" e~ w caa

Na~~
WdN.I~n

at 4100ao""0t3(.rn0=
494 ?,-OWS~I xSintX4

t ~41110 110 6 8l i~ Dam

' W til
It LtUMIU~.

3 0.2 h44

QTM*- -

24 : I2~2e4 7 DINECTfI ~jCUCSS Acceerat'Oft 2, Cr""~On 7SO.O,,s. Svitchi2O. Eai-it~ Z5 .. s. Dta 25.9.3

F igure 17: Overseer Instrument

6 USINC, VRO(GRAMF DEVELOPMEN TrOOLS
The SIMPLE/CARE simulation system is integrated into the underlying Lisp machine

program development environment. The objects and data structures at both the component
model ar.J application latoguage interface have abstraction interfaces that provide summary

2 -2a80

SIMPLE/CARE 29 January 1987

sate information when they are displayed in text form. These text abstractions are "mouse
snitive" in the development machine environment anm so can be inspected at successively
finer levels of detail as desired.

In figure 1S, the net-output components of the site at grid coordinates (3 2). the particulars
of the net-output on the east side of the site (that is, net-output-3). and a summary of all
the sub-components of the site at (3 2) are being inspected. This same kind of view into the
progress of a simulation is provided in the debugging process and may, as shown in figure 19.
refer to the conceptual entities of the application that is driving the simulated system.

CO11IN IMITE CAIROVIUM O f LISP LISTENER

63.Itt SI3
Resu to - ftof

It es Bc0ET-fPUT (3 2) 0: FREE E8I-OF-PICFEt!
It Is g, .Epf-IUjt (3 2) 1: FRE fN-0F--Pfl .Ef-,

lit 2t tiHET-0UJlftf (3 2) 2: FREE V*-0FAR;4f-ET
, V? 12 t'" C i

t 2: Uh8 - UTPTJV (3 2) 3: WI t' :SPM NO i

Top 4d 40"~e onVaer"16- fawp-

V<WrIE-03UHW (32) 3,. WAI(- :I Wlm 010-CtO C 2

1 0 Q W ~ t o f f l a o r O W 04E I I T * u UI I T . F w ~ t i o i. s , -- 2.I-

Ci± :P#WXET-STRTUS: CARE: :UIT e.~~' *0fT to dt.

C ~ ~ no ±5NTioriS 2~ 0 407II gIT.~eUE ~it CORRELATIONI

PW4, lite soin Diet9

lNET-OUTPUT (3 2) 6: FREE EtlrP-OXLT
*,ET-WTPU (3 2) 2: FREE E*OFACtT . .,
ITvIIIUT t3 2) 2: FREE FM IG-W-PMRC i4

FIFOIFFE- I 2) OPEATROP tt it-iftf: FPEE U" l*'FIFOGFFEA 13 2) mET-OuTPJ to -VWEATOW: FREE -

UftYPU*16 ;3 21: nuS'I- *.MPPRTOP 13 2): WS- a 0.4
OIET'OUPUT (3 2) O: FRE EI/-0, PA,-T

.cFEI -[O 0UT (2 tO: F EE P .EE E - i lE T
t-ET-OTPUT 0 2) Y: FREE E---F-Po--El

-"EE F oE IDOF-PAC " .
--

vH T -O U T P U (3 2 P 0 : F-EE E• •-O F-OAC v-&
.O.0

MEIrFift (3 21 0: WRE FREE E141-WF-FROET c.ao
WFIF0Qq*.E TO to T'P: 4-1~ 0: 111I TSTEM 1ISTO 0

T~ic SocetE la..In Eii' a .VT-O-? 5143e036
Help example shw n ua nu

fe1)lt madee an imroe callW~u on;3 udt-oal ucindrngeeuino

mfrold crnents. That19 oooe t.ivEr-1u)T (' th

24 t2

13% 100

Figure 18: nspt lated i Cutpd components

In the example shown in figure 19, a distributer process running on the evaluator at Site
(1 1) has made an improper call on the update-locale function during execution of its
start riethod. It might have beer. appropriate to investigate this situation in terms of the

modeled components. That could t-t done, for example, using the debugger to inspect the
evaluator component, its enclosing site, related net-output components, or whatever else at the
component model level seemed relevant. In this case, what was done was to use a few mouse
clicks to indicate interest in the source file for ihe distributor : start method generating
the problem. It was brought up for review and control was then transferred to an editor using
the underlying program development environment as shown in figure 20.

Because of the implementation system chosen for the realization of SIMPLE/CARE, at any
point in the simulation, procedures either in the application or in the component models can
be modified, incrementally recompiled (within a few seconds), and be mqde effective for all

2-289

29 JAnuar 1907

SIMpLE/CARE

Calls an ohm vea those in the int6TUP St8w fandmTus 5tiWIet *jstif cn

backe up ~some feviO poinlt in the stack fraeadrtid(ia htIWIeIWsd

effectliS code. if ay. is=fely excual)

m pmi wm AIM OV 159 4.- . gown~ C- 0-

of

)1*
1i~tS

*=4U6CE
MUM

a5 (SUNaI 29 rq~ t~lt dt~ 4~ RQUEST to c 3di noth E-Ing):

'WW~~~~~~~~~~~
1111.u

ia ~ orUS~I~ 4I7Z
I I.K ZV (2)t'1O SORP ET 14(0

Figure&I OwM9:KI~ DeugiigA jnuaLf

(C",I~M_@@Uq OeI4-M-T2-29X0 001 aa IDIMTYE6m upnC ITG S014

SIMPLE/CARE 29 Jaur I"!7

(d lite so Ift 4 t W

onU~ toto 8M 1ma.qi a ~r~m
(NM a (aM*S* (~P*-&- [AW&AW -A*

(suppe OVDhms dia toTAn9 1 O-dm

(im-_fl -eO-e toM ka" as~
(wpgo 11A51Al RUIMVC-*UT an) do)).

(e~~-b~as dkbiw IEIlUiMT4!~2)

ONt OmweIit ouali e rvrWla oe.pw o. o f)) STE-LOX-O l T) 41L

for (asse YSPW 6*mf)

(f ~ ~ dW "mW Ob 'Umba~ akattedyma

(2, 2.) (l.p Agvuos) NSMISm-Im23. 0

(rsyin' ti 1.).wt uw) aftu"s Mu

(D W E I S S NA R I M C k (sp V O N E . I 5 .~ a d ,
r'lnt

3
.I ..

K9
t

(be~igr ZO:bo Changin Appia0o PN1LCE P.J

(00-om, low do a-,4) SOWT)2-291l)

SIMPLE/CARE 29 January 1937

7 CONCLUSIONS
The goWls d simulaion flexibility and simulation environment completeness have been dealt

with in the wW described throughout this paper. In summary, the system is flexible in that it
supportz

" Arbitrary data types and lengths in simulation. The information whose flow and
creation is controlled by simulated components may be of arbitrary complexity
-- from numbers and keywords to procedure bodies and execution environments.

" Instantaneous effect of definition change at both the application and component
modeling level (even during a simulation run).

* A broad range of instrumentation customization. Customizations may involve
arbitrary expressions for probe data transformations, many to many probe to panel
mappings, information from summary analyses on one panel's data included in
another, and control of what state is saved and for how long.

" Separation of probe and component definitions to facilitate their independent
modification.

" An application language interface that is easily extended or changed without
recasting the information flow control described by the component behaviors.

While there is always room for additional capability6, SIMPLE/CARE is a usefully complete
system. It now includes:

#Supplied components for a network multiprocessor simulation with many of their
parameters customizable by menu interactions.

A hierarchical structure editor that currently provides automatic grid and torus
composition operators. (Automated composition of richer topologies, such as
hypercubes. has been provided for in the basic design).
A rule language that supports a synchronous design style without incurring the
overhead of (naive) synchronous simulation.

Method invocation for functional simulation that is integrated into the behavioral
simulation rule system and which provides for operations by and on both local and
hierarchically related components.

Method specification design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).
An evolved set of panel templates providing sorted. scrollable text lines as well as
self and fixed scaling. "two and a half" dimensioned. history sensitive displays
which may be scatter plots. strip charts, line graphs, intensity maps, and signal
animations.

We set off to build a multiprocessor simulation system with performiance adequate for the
understanding of multiprocessor -,stems executing significant applications. The
SIMPLE/CARE simulation system has been used to study the operation of "expert systems" of
respectable size (2]. Depending on instrumentation loatd. these studies have involved
simulation runs from 20 minutes to several hours each. W!-'le faster would surely be better.
performance has proven adequate to these needs.

6A lteogram panel. rur cx.tnpk. is jw),t i ,j* cny aldcid 1- |h' '11 C Il|

2-292

SIMPLE/CARE 29 January 1987

S ACKNOWLEDGEMENTS
This work stab on the shoulders of its predecessor, the Palladio system, designed and

implemented by ueld Brown and Gordon Foyster. Our functional goals were more restrictive
them thein so we bed the luxury of design by simplification. Without their implementation
boe,, it would have bee hard to know even where to begin.

Many bands and minds have contributed to the development of SIMPLE/CARE. We are
perficularly indebted to the wo;k of Russ Nakano who started off to do a simple learning
exercise and ended up doing a particularly careful modeling of a intricate signalling protocol.

References

I. Brown, Harold, Christopher Tong, and Gordon Foyster. "PALLADIO: An Exploratory
Design Environment for Integrated Circuits." IEEE Computer 16 (December 1983).

2. Harold D. Brow,, Eric Schoen, and Bruce A. Delagi. An Experiment in Knowledge-Based
Signal Understanding Using Parallel Architectures. Tech. RepL STAN-CS-86-1136 or
KSL-86-69, Stanford University, October, 1986.

3. Greg Byrd. Russell Nakano, and Bruce Delagi. A Point-to-Point Multicast Communications
Protocol. Tecl RepL KSL-87-02. Knowledge Systems Laboratory, Stanford University, January.
1987.

4. Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics. Cambridge. MA.
1981.

2-293

Kuwe~~suems Laboratory November 1917
Rose N. KSL 87-65

Instrumented Architectural Simulation

by
Bruce A. Delagi, Nakul Saralya, Sayuri Nishimura,

and Greg Byrd

Digital Equipment Corporation
Ma1ynard, Massachusetts 017-4

Stanford University
Stanford, California 94305

This work was supported by DARPA Contract
F30602-85-C-00 12, NASA Ames Contract NVCC 2-220-SI, and Boeing

Contract W266875. Greg Byrd was supported by an NSF Graduate
Fellowship and by the Stanford University, Department of

Electrical Engineering.

2-294.

Instrumented Architectural Simulation
Bruce A . Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd

Digital Equipment Corporation Stanford University
Maynard, Massachusetts 01754 Stanford, California 94305

ABSTRACT

Simulation of systems at an architectural level can offer an effective way to study critical
design choices if (1) the performance of the simulator is adequate to examine designs executing
significant code bodies -- not just toy problems or small application fragments. (2) the details
of the simulation include the critical details of the design. (3) the view of the design presented
by the simulator instrumentation leads to useful insights on the problems with the design, and
(4) ther is enough flexibility in the simulation system so that the asking of unplanned
questions is not suppressed by the weight of the mechanics involved in making change either
in the desian or its meZsuement. A simulation systetn with these goals is described together
with th approach to its implementation. Its application to the study of a particular class of
multiproceor hardware system architectures is illustrated.

I INTRODUCTION

Simulatia systems are quite often developed in the context of a particular problem. To a
degree, this is true for SIMPLE, an event based simulation system, and CARE. the computer
arry emulator that runs on SIMt.PLF 1 The problem motivating he developmesit of both
SIMPLE and CARE was th performance study of 100 to 1000-element multiprocesor systems
erecuting a set of signal interpretation applications implemented as "1000 rule equivalent
expert sstem" (2].

A set of Constraints pertinent to this problem governed the design of SIMPLE/CARE. The
applications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with dw interactions of
multiprocessor system elements were sufficiently unexplored prior to simulation that
simplificadons in the CARE system model, specifically with respect to element ineractions,
were suspect. This need for detail was, of course, in tension with the need for simulation
performance. The ways that simulated system components would be composed into complete
systems was initially difficult to bound. Further, it was clear that the models of these
components would be elaborated over time and would undergo substantial change as design
concepts evolved- It was also clear thzt the ways of examining the operation of these
components would change independently (and at a great rate) as early experience indicated
what alternative aspect of s)tem operation should have been monitored in any given
completed run.

The design goals that emerged then were (1: that the simulation system skoud support the
management of substantial flextbility with regard to simulated system structure, function, and
instrumentation and (2) that, in order to accomplish runs in acceptable elapsed times, the detail
of simulation should te particularly focused on the communications. process scheduling. and
context switching support facilities of the simulated system -- that is. on just those aspects of
system execution critical to muitiproc ssor (as opposed to uniprocessor) operation.

SiMiDLE and CARE were developed by the 3uthors at the Knowledge Symems Lab of Stanford U nvertsty. SIMPLE
is a dscendent of PALLADIO [I1 opttmled for Ohv subset of PALLADKas capabilities -elevant to hierarchgcal design
capture and simulation. It is wratien :n Zetalhsp (3] and currently rars on Symbo-lics 3600 machines and TI Explorecs.

This work was supported by DARPA Contract F30602-85-C-0012, NASA Ames
Contract NCC 2-220-SI, and Boeing Contract W266875. Greg Byrd was
supported by an NSF Graduate Fellowship and by the Stanford University

Department of Electrical Engineering.

2-295

1.1 Design Time Inw¢action And Run Time Operation
Encapsulation of the state of design components with the procedures that manipulate that

state is one cle'-r way to manage design evolution. Such encapsulation partitions the design
along we!l d fi bcididaries. Components (by and large) interact with other components
only through o.T ports. Connections between components terminate at such ports. When
a system simulatl. is initialized, connections ae traced so that for every port, the simulator
knows the connected (terminating) ports together with their containing components. Once such
initialization is complete, that is, throughout the simulation run, assertions about the state of a
port of one component can be directly translated to assertions about the state of connected
ports of other components.

Partitioning issues of system structure, component behavior, and instrumentation into separate
domains of consideration helps in managing a design that is both fluid and complex. Systemstructure, that is, the relationship between components, can be specified through use of aninteractive, graphics structure editor and is largely independent of component function per se.Component behavior is encapsulated in a set of definitions pertinent to the given class ofcomponent. Each component in a SIMPLE simulated system is a member of a class definedfor that component type. Instrumentation is automatically and invisibly made part of thedefinition of each simulated component that is to be monitorec during a run. This is done byarranging that the class of every component to be monitored is a specialization of the generalInstrumented-box class. The basic data structures and procedures for monitoring simulatedcomponents and maintaining the organizational relationships between each component and itsrelated instrumentation are inherited through this general, ancestral class and are thus madeseparate, substantially independent consideration in the design.
A further partitioning of concerns is employed to separate out the definition of theapplication programming language interface and its support (as provided by CARE) from theunderlying information flow control governing component behavior. The behavioraldescriptions of components (which are expressed as sets of condition/action rules) dealgenerically with gating information, independently of the structure of the information, betweenports of the component and its internal state variables. This is separated in the componentmodel definitions from the functions performed to create and mamipulate the information sogated. The simulated implementation of the application programming language supportfacilities, on the other hand. relies only on the specifics of the information and its structureand plays no part in gating it between the components of the system. Changing the definitionof the application language is thus done independently of changing component flow controlbehavior. The application programmer and the implementer of the application languageinterface may use whatever data structures seem suitable to them, be they numbers andkeywords or procedure bodies and execution environments. The simulation system doesn't care.
The component probe definitions, that is, the specifications of what information should becaptured for each component type, are separated from the descriptions of the behavior of suchcomponents. In designing for flexibility in the instrumentation system, it turned out to beimportant to further divide the information presentation from the information collectionissues. The mapping from particular component probes to particular instrument panels and thetransformations to be applied to the information as it passed from a given kind of probe to agiven panel (and between panels) is captured in the instrument specification. This is adefinition of what kinds of panels are included in an instrument, how they fit on aninstrument screen, how they are labeled and scaled, and what information from which kinds ofprobes are displayed on each panel. The instrument specification also indicates what kinds ofprobes are to be connected to which kinds (that is, which classes) of components in the system.
Putting together all the definitions of components, component probes, panels, instruments,applications interfaces, and inter-component relationships is done in a set of design timeinteractions by a system architect. These interactions are used by the simulation system togenerate efficient run time representations so that simulation performance goals can be met.Figure 1 illustrates the partition between design time interactions and simulation run timeoperation. Structure editing pulls together components from the component library to producea circuit. Associated with some components in the library, there are definitions for the syntaxand underlying mechanisms of a multiprocessor applications language. These specify theinterface used to provide the program input to the multiprocessor system being simulated. 2

2The language primitives supplied can oe used to define multiprocessor language interfaces for either shared-variableor value-passins paradigms. As supplied, the language interface built on these primtlves supports value-passing onstreams between objects but alternative interfaces can be (and have been) easily defined in terms of the given
Primitives.

2-296

structure

probe
T opfintlnt component probe eent-bhsed

Smodules Interface

Ie e n a s a t s in s t r umen t l0;S* 0A2,Tn compiHer

-design 1tme inl~trctions Mrnulation runm

Figure 1: Design Time Interactions a.ai Run Time Representations

The definitiocn4 -used to generate component probes are associated with each library
component to be monitored. There may be several such definitions, each appropriate to
measuring a different aspect of the associated components operation. An instrument
specification selects from these definitions, elaborates them with selections from a set of probe
operation modules to include any pre-processing (for example, a moving average) to be
calculated by the probe, and indicates under what conditions what information from the probe
is to be sent to which panels of the instrument and how it is to be transformed and displayed
there. Instrument specifications also partition the screen among the panels of the instrument.
The end product of these design time ipteractions is an instrumented circuit and an instrument.
The instrument comprises a set of instrument panels and a set of constraints relating them to
the instrument screen. The instrumented circuit ties together instances of components, probes,
and panels for a simulation run.

For each defined class of component and its associated probes, the design time interactions
produce code bodies that accomplish simulation operations during a run. It is an attribute of
the underlying Lisp base of the simulation system that changes in these defirlitions have
immediate effect even during a simulation run -- an important capability during debugging.

2 STRUCTURL AND COMPOSITION
Design time interactions to specify a system include the establishment of component

relationships. Such specifications can be said to accomplish the composition of the system
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships among their sub-
components. Additionally, such composite components may have function beyond what can be
inferred strictly from their composition. All this can then be included a higher level
composite and so on indefinitely until the top level "circuit", the system structure, is reached.

Composition is described graphically and interactively in SIMPLE by picking a previously
specified component type from a menu, placing it in relationship to other components with
"mouse" movements, and, through the same means, specifying the connections between its
selected ports and those of other components.

2-297

Although any connection of components can be created by the means noted previously, for
some repetitive, well patterned systems of connections, composition can be automated. The
CARE library includes a component, the iterated-cell, which represents a template for the
creation of composite components by iteration of a unit cell. The specializations include a
method for responding to a request to provide a wiring list. Such a list associates each source
port of a cell with the corresponding destination port (in terms of port names) and the
position of the destination cell relative to the source cell in the iterated structure. The iterated
cell component uses this information to make the required connections between each of its
constituent cells.

3 INSTRUMENTATION
The results of a simulation are primarily the insights it provides into the operation of the

simulated system. The "insight" we frequently experienced using an early version of the
simulation system was that more interesting results could have been produced by the run just
completed if only the instrumentation had been different. With this in mind, the design for
the current version of the simulation instrumentation system was aimed at flexibility. This
was attained without significant performance impact by building efficient run-time system
structures before each run, as outlined in section 1.1, from the declarations defining the
instrumentation.

.*event-based

:Cet asr :ApplyRules

:o~euteate

Fssetrume

:copy :add t t ca po n an ae rt f o n, i

b rrlethe mt p u msariggertemplate-probe

}' :create,

Panel component-probe
:u:t select < :calculate

Figure 2: Instrument System Organi7ition

The organization of the instrumentation system is pictured in figure 2. The simulator
interacts with component instances through assertions, that is, calls on an assert function, in
behavior rules (the methods associated with :ApplyRules messages). All instrumented
components are snecializations of an instrumented-box (as well as other classes). After each

2-298

invocation of :ApplyRules for such components, the :ApplyRules method for a generic
instrumented-box is applied. This causes invocation of the :trigger method for each
component-probe associated with that component. Data from component probes is collected
and displayed by instrument paniels. Since this flow of measurements is accomplished by
means invisible to the the writer of behavior methods for a component, the concerns
surrounding cornponent design are effectively partitioned from cornponen t instrumentation.
Panels are put together in an instrument screen according to a set of layout constraints
manipulated by the underlying window system. The finished screen might look like figure 3.

ACTIVITY BY CLASS CARE EXAMINER: EVALUATOR QUEUE LOAD LISP LISTENER
rXt,c#1Qeeae Avoee IAORWJDviy A c~q 8 aijt* a cy a A lo a e * 0 i 24010001

*kI92) go6 w.2)1 40-59 Aogcti sk.01 H~rliceIy Pro.

22.26~~~~~o I. 2 2 ~-, Selc .c5t022 Usti insactoe t by ty

929622W* WWIM~1
8"Alkunt SAEAK.

(69 I I 01 r""U s<1IIIE ocotoeo oq

a,:: nmCnwmo I U 'AZa
ACTIVITY BY INSTANCE 46 NEW OD AEC

L V I ~=W _ " . .85 8 * * . U 2

RM. LU2W.u u n. aa m iNoa 366 35-

wL at..wn bee := '.
a it t

af L01 1 1. 9 .V
2 0

LI #41#11.41 boa u62a Mfl * 14 S

INS ~ ~ ~ .0 109. -8WU~Ru.i 109.54 56.! 05
two 11419LI .4 Sfft o Ia t o o t IR 0 (notI M " X Sloialted Time C(Au

CUMULATIVE LATENCIES PROCESSOR UTILIZATION SYSTEM QUEUE LOAD NIETWORK-OPIERATOR M4AP
mat-Opaert., -se.ivetorel58a . im rise g~r att" A ,,tg 0)" iff" J687.ee:Z.D.e Q...., 0 p.:qft ALe J1 N.*rik Actt

L 241y 2S a 31 10.

t' 204 u 00000000 CiX
o 16 23.C3JALi00 C30oo 062

C 2
0 is 0 152ocsa 0 2

-1000
10 3

974U 15:5626U3CE Cye 2"1 e~ C N...... U3 00 M Nratw 3W.'s. 56Stoh2.

Ivloto Sit ~ d 1411112N 25Ku.wFce 16.Og.wUrdbs ~e2I

Fi ur TE: Ov rs e
Enstomen

4 CONCLUSIONS
The design goals of simulation flexibility and simulation environment completeness have

been supported as discussed above. In summary, the system is flexible in that it supports:
a Arbitrary data types and lengths in simulation. The information whose flow and

creation is controlled by simulated components may be of arbitrary comp'exity
-- from numbers and keywords to procedure bodies and execution environments.

* Instantaneous effect of definition change at both the application and component
modeling level (even during a simulation run).

to A broad range of instrumentation customization. Customrizations may involve
arbitrary expressions for probe data transformations. many to many probe to panel
mappings, information from summary analyses on one panel's data included in
another, and control of what state is saved and for how long.

2-299

* Separation of probe and component definitions to facilitate their independent
modification.

* An application language interface that is easily extended or changed without
recasting the information flow control described by the component behaviors.

While there is always room for additional capability. SIMPLE/CARE is a usefully complete

system. It now includes:

* Supplied components for a network multiprocessor simulation with many of their
parameters customizable by menu interactions.

" A hierarchical structure editor that currently provides automatic grid and torus
composition operators. (Automated composition of richer topologies, such as
hypercubes, has been provided for in the basic design).

" A rule language that supports a synchronous design style without incurring the
overhead of (naive) synchronous simulation.

" Method invocation for functional simulation that is integrated into the behavioral
simulation rule system and which provides for c:)erations by and on both local and
hierarchically related components.

" Method specification design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).

" An evolved set of panel templates providing histograms and sorted, scrollable text
lines as well as self and fixed scaling, "two and a half"' dimensioned, history
sensitive displays which may be scatter plots, strip charts, line graphs, intensity
maps, and signal animations.

We set off to build a multiprocessor simulation system with performance adequate for the
understanding of multiprocessor systems executing significant applications. The
SIMPLE/CARE simulation system has been used to study the operation of "expert systems" of
respectable size [2]. Depending on instrumentation load, these studies have involved
simulation runs from 20 minutes to several hours each. While faster would surely be better,
performance has proven adequate to these needs.

5 ACKNOWLEDGEMENTS

This work stands on the shoulders of its predecessor, the Palladio system, designed and
implemented by Harold Brown and Gordon Foyster. Our functional goals were more restrictive
than theirs so we had the luxury of design by simplification. Without their implementation
base, it would have been hard to know even where to begin.

Many hands and minds have contributed to the development of SIMPLE/CARE. We are
particularly indebted to the work of Russ Nakano who started off to do a simple learning
exercise and ended up doing a particularly careful modeling of a intricate signalling protocol.

References
1. Brown, Harold, Christopher Tong, and Gor" n Foyster. "PALLADIO: An Exploratory
Design Environment for Integrated Circuits." IEEE Co:nputer 16 (December 1983).

2. Harold D. Brown, Eric Schoen, and Bruce A. Delagi. An Experiment in Knowledge-Based
Signal Understanding Using Parallel Architectures. Tech. Rept. STAN-CS-86-1136 or
KSL-86-69, Stanford University, October, 1986.

3. Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics, Cambridge, MA,
1981.

2-300

Knowledge Systems Laboratory September 1990
Report No. KSL 88-53

Care User Manual
Version 0 (for Release 0)

by
Bruce A. Delagi, Nakul Saraiya, Greg Byrd, Sayuri Nishimura

KNOWLEDGE SYSTEMS LABORATORY
Department of Computer Science

Stanford University
Stanford, California 94306

2-301

CARE User Manual
Vlersion 0 (for Release 0) 1

Bruce A. Delagi Nakul P. Saraiya Gregory T. Byrd
Savuri Nishimura

KNOWLEDGE SYSTEMS LABOR.'UORY
Stanford University
Stanford, CA 94305

and

DIGITAL EQUIPMENT CORPORATION
Palo Alto, CA 94301

July 30, 1990

'This work was supported by DARPA Contract Fi0602-85-C-0012. by NASA Ames Contract NCC 2.2120-SI, by
Boeing Contract W2663;5, and by D;g.al E,-.pinnt Corporation.

2-302

Chapter 1

An Overview of SiMPLE/CARE

This chapter corresponds to the forthcoming Release 1 of SIMPLE/CARE. However, it is
provided in this version of the manual (corresponding to Release 0) since the basic architecture
of SIMPLE/CARE has remained substantially unchanged between releases 0 and 1, even though
mIny of the interfaces to SIMPLE/CARE have changed. The chapter shoul. therefore be read to
simply gain an understanding of how the system works; later charters in tIL. manual will clarity
interface details.

1.1 Introduction and Overview

Simulation systerr.ns are often developed in the context of a particular problem. To a degree, this is true
for SIMPLE, a general-purpose modelling system, and CARE, the multiprocessor architecture simulator that
run- ,,u SIM'LE.! ' The problem motivating the development of SIMPLE/CARE was the performance study of
hundre.1- to thousand-element multiprocessor systems executing a set of signal interpretation applications
that were to be implemented in several alternative programming formalisms.

This problem offered a set of constraints that governed the design of SIMFLE/CARE.

* The kinds of multiproc,--..r iystem components that would be needed and the ways in which these
woltdi be composo] inLo complete systems was initially difficult to bound. This nieant that component
t.tidels w,.uhd ',e modified and elaborated over time as design concepts evolved.

* It was evident that instrumentation requirements were similarly fluid. Results from early Simulation
runs were likely to identify alternative aspects of system operation that should have been munitured,
but wetr. not. Further, since the simulator was to be used by system architects and applictions

is a descendent of the PAJ,,ADIO VLSI design systen [1), that hnju been optimihed for the subset of AL.1DIO'S
,pabilities relevant to hieranhical desiV. i epture And simudation. SimF;F. wms originally developed it-ng Zetahsp; it currently
uses Coinmmon Lip with Flavors.

2-303

programmers alike, their individual needs for detail in the view of system operation had to be satisfied.
It was thus important that instrumentation could be varied both rapidly and independently of the
system models.

The applications represented significant bodies of -ode, so simulation run times had to be minimized.
This meant that some simplifications in system models were indicated . On the other hand, the inter-
actions of multiprocessor system elements were the least understood aspect of system operation. Thus,
it was desirable that the system models capture the details of these interactions; otherwise, simulation
results would be suspect.

The primary design goals that emerged then were:

1. that EIMPLE should offer significant flexibility with regard to the specification of system models and
their instrumentation, while maintaining effiriency in simulating these models; and,

2. that, in order to accomplish runs with acceptable elapsed times, %-ARE should particularly focus on
the details of a multiprocessor system's comminications and scheduling support facilities: aspects of
system execution critical to multiprocessor (as opposed to uniprocessor) operation.

The remainder of this section describes how the organizations of SIMPLE and CARE contribute towards
meeting these goals.

1.1.1 The Organization of SIM r'LE

SIMPLE providts flexibility2 i specifying system models by partitioning issues of system funcionalzty and
system mr.,rumentation into separate, largely independent domains of consideration. In both areas, SIMPLE
furth-,r partitions concerns as shown in figure 1.1 and described below.

Tht principal abstraction suipported by Simpi, to specify system mlodlels is the conzponeut. A component
repr --sents a fragment of system functionality by encapsulating soin p~rivate state aloaug with the procedures
that define how that state changes ovcr time. A component is therefore naturally represented by an oh-
ifec. The component abstract ion partitions the lesign along well defined bondaries since, b~y and large,
comipont-nts interact only throuigh their (defined porls. Conre~tions between coiiipolieuts terminate at suich
ports so that, during a simulation runi, assertions about the state of a port of one component can be directly
translated to assert ions abouit the state of a connected port of Some other componlentI

System stritcture (defines how compoi.ents are combined to frmn -i larger %,,stni. This is specified ilicre-
mentally: as dlefinitions for each componri.t type which describe thle subcomponents (if any) a component

2 NtUCII of 51NsurLF/*AtE[.*s flexibility mjid power derives frozin its Cominhlot Lisp irnplenicilL.tinit ruviran,ent, which incdudes,
tonts suich As "Oti-li:&r inspectors and chubiggers, and J.%o pi-ovides a powerfid hbjrct-orirrated prngraxnining systemn, Flavors,
with extensive rapabilit e-, for nitiltipulr inherritance uind ititilo, comitti:atioii Favor% perimt the -v,,Itii,-,ary developmntt of
software fi,~risi.- all Lsp--ts (if the spa fil desigi, witl,'.1u: sa, I itjcing pri fot zmulvue.

230.1

SYSTEM nRJIQAO SYSTEM 1M~/AfTQN
D
e

S Built-In
Stawure eh-aiorPresentations

9 DfIntitons Defnitioris

I Component Probe PAe
m Deffinitins Deffinitions Definwtons
e

R

Ttrigger *ncate*G
T
e monitor analyze,
M ~ events display

e tr

FigSure 1.1: Simulator Organizat.on

2-305

of that type contains and how their ports are to be interconnected. Optional definitions for geometric lay-
out and routing allow the designer to view the structure graphically. These specifications are captured as
procedures, allowing efficient, parameterized and programmable structure generation. A complete design is
'constructed' before a simulation run by the recursive generation of its parts, yielding a hierarchical network
of interconnected components.

Component behavior defines how the state of a component changes over time. Behavior definitions are
encapsulated as procedures relevant to each class of component, and can thus be developed mostly in isolation
so long as interfaces are maintained. Behavior code is responsible for handling events-time-tagged state
changes to a component's ports and internal state variables during a simulation run-in order to generate
the local state changes 'caused' as a consequence. SIMPLE provides constructs that allow behavior code to
be stylized as condition-action 'rules' to ease readability.

System Instrumentation

Every component automatically includes support for instrumentation because every component inherits
the basic functionality required for monitoring it and for maintaining its organizational relationships with
the instrumentation system. Ths allows instrumentation to be introduced into the design non-intrusively:
without changing model function, and incrementally: as interesting aspects of a component's operation are
identified.

SIMPLE factors system instrumentation into the details of data capture, data analysis, and presentation. This
allows for the flexible intermixing of different capabilities for each of these concerns.

Component probe definitions specify what data should be captured for each component type. There may be
several probe types for a component type, each appropriate to measuring a different aspect of the component's
operation. Probes may make use of predefined modules to accomplish certain types of calculations (for
example, moving averages) on captured data.

Panels bring together the data analysis and presentation aspects of SIMPLE's instrumentation system. They
specify how the data supplied by probes is to be transformed through analysis, and how the results are to be
displayed. SIMPLE has a basic library of presentations. class definitions which represent particular display
styles such as histograms, intensity maps and scrolling line plots. It also provides a number of procedures
to accomplish standard data analysis operations.

A panel is defined by customizing the appropriate presentation class wit h descript ion., affecting its graphical
appearance (e.g., legends, axis labels and scales). along with mlerfarc spcJiceations. expressions using an
augmented Lisp syntax to describe probe types. data transfornis, and displa.ed ,uantilies. Defined panels
may then be aggregated into an instrunment, which ,ssociates a named type and a scrun layout policy with
the collection of panels.

Instrumentation is 'attached* to a design before a simulation run bI simply instantiating the appropriate
instrument type with the design as a parameter. This results in the appropriate panels being created,
at which time their corresponing interface specifications are compiled into eflicient data structures and
code that will accomplish the panel analysis and transformiation operations TIw required prohes are also
attached to components at that time. The end result is an instru,!ritrd drsqgn that tit-., together instances

2-306

of components, probes and panels for the simulation run.

1.1.2 The Organization of CARE

At the base level, CARE provides a library of multiprocessor components such as network interfaces, busses,
processors, message coprocessors and memory controllers. These can be composed into a number of standard
system configurations, such as toroidal networks or systems of hierarchical busses. Most components are
parameterized, allowing variation in performance characteristics such as cycle times and channel widths, as
well as choices on other aspects of system behavior, such as routing algorithms.

To satisfy the need for detail required in modelling multiprocessor system element interactions, the definition
of network components is fine enough to capture each of the many operations that accomplish cut-through
message routing of a packet of data in a torus network. To satisfy the runtime requirements of smulating
complete applications, the processor models are coarse enough (and thereby fast enough) to ignore the details
of simple processor operations that affect system operation only through their timing. Instead, this timing
information is captured during the simulated execution of concurrent programs by dynamically runniag
purely sequential segments of application code on the underlying machine and measuring their execution
time.

Concurrent Programming Models

V'&RE defines parallel programming language extensions (collectively called LAMINA) for message passing,
-hied variable and functional programming models. The primitive mechanisms that support these language
u,o.ls are encapsulated within component definitions, but are decoupled from the underlying information
0l: w .:-ntrol governing component behavior.

C.,. .. onent flow control actions deal generically with gating information between local ports and state
v.- ,!s, that is, communicating information, independent of its content. Language support actions, on the
nth :,and, create and manipulate information based sc. :y on its content, and play no part in communicating
it bz ieen components. This separation of functionality allows the study of alternative communication
protoc.;s or topologies without modification to language interfaces and applications. Further, new language
:,erf~~s may be defined or existing ones changed without redefining the communications protocol used by
the system components.

Instrumentation

CARE supplies a library of probe, panel and instrument definitions corresponding to particular multipro-
cessor systems and language models. For example, one CARE system architecture is a message-passing
multicomputer that executes application programs using the concurrent object-oriented LAMINA extensions.
An instrument for this system has probes which monitor the critical operations performed on messages both
by application objects and by the resources of the underlying multiprocessor. These drive panels that display
loads and latencies at the 'hardware' as well w. application levels.

2-307

1.1.3 Using SIMPLE/CARE

A system architect develops multiprocessor component models and instrumentation through a set of design
time inte.actions with the simulation system. The application developer, in turn, writes parallel code using
the LAMINA language extensions or higher level frameworks derived from these. All the definitions-for
models, instrumentation, languages, and applications-are compiled and loaded into the Lisp environment-
Incremental compilation, supplied by the environment, allows changes in these definitions have immediate
effect, even during a simulation run, which is an important capability during debugging.

The application developer or system architect starts a simulation by first instantiating a design corresponding
to the particular architectural model under study. The user then chooses a particular instrument and attaches
it to the generated design, so that the instrument panels appear on the workstation screen. Another call
then 'loads' the application program into the simulated multiprocessor and gets it running, at which time
the instrument panels begin to dynamically display the chosen system performance measures. The user is
free to interrupt the run both via the keyboard or by breakpoints inserted into the application or model
codes. Menu-driven interactions allow variation of component model parameters as well as control of the
instrumentation.

1.2 Building System Models

A system model or design is defined in SIMPLE by specifying its intended structure and behavior. As described
earlier, this specification is organized around the components that form the system. In this section, we discuss
the means by which system models are formulated in terms of components.

1.2.1 Structure

A system structure consists of a hierarchically-organized collection of typed components. :s shwvn in fig-
ure 1.2. Defining such a system structure in SIMPLF. involves defining each type of component and describing
its contribution to overall system structure in terms of its subcomponents and their relationships.

Defining Component Types

A component's type determines its private structure, that is, the set of attributes that make up the contpv
nent. SIMPLE provides the delcomponent macro to define a class of compouent a This inelude., .pecfication
of its inheritance, and of the named slots, or inslance rariables. present in an instance of the clans. Al-
though slots may he used for any purpose, they primarily represent the stale rarahies that are required for
generating history-sensitive component behavior.

3 This macro has a straightforward translation to the underlying defflavor et.nstruet whirl #1-fines a f4rfr. 1: als. xesflrnm-
definitions for an :it mrth-L. invoked hy the Flavors systern to initialiy. the sick 4 auw itst.in, .. , ul [o¢ a . reset t.
callcd by SIMPLr when a syst-in 'im.iilat n is re-initiali-ed.

2-308

F-gure I1- 2: Hierarchical Compoiion

'The code in figure [-3 shows a firagment of the witfinitioa of a CARE Og-er ior component type.

(4efcocosinut OUATM (delti-histary-uznu)
((Status -. state variable

:decinstatisa 'Curent status: readybsysevicft
:iaitfwm Ireay tresetIora 'ready)

(?euding-O2rattons ;state variable
:4csestation -Data sesat operations requieted'
isxitf 028 (zalia-queve) - fitoe

:resetfowa (reset-queve Peedin-Operations))

Figure 1 3 : Definiition~ of a Component T% e

In this example. an oporator is mnade to~ Wnh--ri* from dbug-history-azn. thus -air.:i- funictot ht.
for keeping a history of events 4iur;n beitw-tor diebutting Status defines a state vana~it "hatcon ns
a symbol thaat will reflect the run tuire tare of .he component. The Pezdizg-Cp#rartos ZOO constws a
complex data structure (a queue) that -.-al be niartaged by the component durnng its operation.

Defining System Structure

System structure in SIMPLE is built up thro-ugh the increrrnental combination eof carn ents. C zpone ts
can form a larger strutture through ~urr~~ o sfmand Anterro.%ftc'na

2-309

As shown in figure 1.2, at the base level are primitive components that have no structure beyond their ports.
An operator is an example of such a component. Composite components, such as a site, additionally
contain subcomponents as parts; parts may of course be primitive or composite. Additionally, composite
components may have function beyond what can be inferred strictly from their composition.

Composite components also determine the connections between the ports of their individual subcomponents,
and, further, the connections between their own ports and those of their subcomponents. Connections
thus establish pathways for information to propagate between ports: both within and across hierarchical
boundaries. Thus, the top-level composite, or design, forms the system structure under study.

SIMPLE originally captured component structure graphically and interactively, through the menu actions and
mouse gestures supplied by a structural editor. Defined component subsystems would then be placed in a
'library' for later reuse. It turned out, however, that this approach was sometimes inconvenient. Furthermore,
a database distinct from the underlying Lisp type database had to be maintained. Therefore, SIMPLE now
represents structural information procedurally. A procedural representation permits efficient, flexible, and
parameterized structure generation. It is particularly useful for automating the construction of the largely
replicated system structures that characterize multiprocessor architectures.

A component's structure is specified as a method (that is, a procedure relevant to the type of the component)
that is executed by SIMPLE'S component instantiation protocol. The method lees SIMPLE functions that
create ports, subcomponents and connections to generate a component's structure. SIMPLE also provides
additional functions that allow the description of the structural geometry of the component. In effect, then,
these functions form the primitives that allow the construction (and querying) of a database of component
objects. The protocol accomplishes the creation of a system structure in a depth-first fashion. Components
construct subcomponents, which in turn construct their subcomponents, and so on until primitive leaf
components are created.

To illustrate this approach, consider the code in figure 1.4 that might define the structure of a processing-element
in figure 1.2.4

Subcomponents. Subcomponents are created via the part construct, which takes as arguments a name
for the part, its type, and, optionally, parameters to customize the creation of the component. Thus, in
figure 1.4, ibuf will hold a fifo-buffer component named buffer-in and with a depth of ten items. Once
created, subcomponents can be accessed by name through the part? function, here, however, they were
stored into local variables for convenience. They may also be stored into predefined component slots, or into
data structures ac,-cssiblc via slots.

Although the structure shown here does not need it, arguments to be delivered to a subcomponent's structure
generation method can also be supplied to part For example, parameters specifying dimensionality and
connectivity might be amo'ng those passed to a subcomponent that generated a network of nodes organized
into a grid topology.

4 In reality, higher level fuiwtions., macros might be used to hide the details of the ptit.,-t,%es pio' ided by SiNptt. For
example, the construction and placexient of a port mnight be mnerged into a sngle construct.

2-310

(defsethod (PROCESSING-ELEMENT :iistantiate-structure)
(&key kaux ev op ibuf .buf)

;; Construct subcomponents and store into local variables
(setf ev (part 'evaluator 'evaluator)

op (part 'operator 'operator)
ibuf (part 'buffer-in 'fifo-buffer '(:depth 10))
obuf (part 'buffer-out 'fifo-buffer '(:depth 5)))

;; Construct ports
(in 'packet-in) (out 'status-out) ; for ibuf

;; Establish connections between ports
(con (port? 'packet-in) (port? 'packet-in ibuf)) 6
(conn (port? 'status-out) (port? 'status-out ibuf))
(conn (port? 'packet-out ibuf) (port? 'packet-in op))
(conn (port? 'status-in ibuf) (port? 'status-out op))

Figure 1.4: Defining Component Structure

Ports. Ports are classified by SIMPLE as either for input or output. Their corresponding constructors are
in and out, both of which accept a name for the port as a parameter. Thus, in figure 1.4, (in 'packet-in)
creates and returns an input port naiped packet-in for a processor. Ports can always be retrieved by name
through the port? function. An optional argument identifies the port's component; the calling component
is the default.

Connections. Unidirectional connections are established Jhrough the conn function, which tak.s two ports
as arguments. Connections between subcomponents must be ').) weeii disparate types of ports: from input
ports to output ports. Conversely, connected ports on a subcompor.t.tt and its superior must be of the same
type, so that information may flow up and down the hierarchy. The i.Iarmation oil . -oiw: -ion will be
handled by the lowest component in the hierarchy that has an input port accessible -- the cujnmctiji

Geometry. SIMPLE allows the structure generation code to be embellished with optional descriptions of the
geometry of the component structure. Components can then be inspected via a graphical previL-v'er, which
facilitates debugging. To accomplish this, SIMPLE provides constructs to define the rectangies representing
components, to place ports around the perimeter of the rectangle, to route connections in Manhattan space,
and to place, group, align, and geometrically transform subcomponents.

1.2.2 Behavior

A component is essentially a state machine with a notion of time. Its behavior defines the causal and
temporal progression of its states and relates this with the rest of the system via its ports. System behavior
is therefore no more than the compositio,. of the behaviors of its components.

2-311

In SIMPLE, events signify the temporal state changes in the simulated system, in terms of the changes in
the values of the ports and state variables of the system's components. Events make the simulation of large,
complex systems tractable, by exploiting the property that only a small fraction of the state variables in the
system actually change at any instant in time. This makes it more efficient to keep track of these changes
and to compute their consequences, than to recompute the state of the entire system at every time step.
An event-driven simulator maintains the temporal relationships between events so that time always moves
forward.

Within this framework, the behavioral specification of a component is formulated in terms of its responses
to the events relevant to it. These responses may include state changes caused in the simulated future,
4t is, consequent events to be handled by the simulator, as well as direct operations on component state.
The assertion of consequent events and the responses to them (involving further consequences) drives the
simulation. When there are no more events toliandle, the simulation is complete.

To maintain modularity in a simulated system, a component's responses to events should generally be local
to it. Consequent events involving a component's output ports are translated by the simulator into events
involving the connected input ports of other components. Hence, the effects of a local change propagate
between components along the connection paths defined by the system structure. Sometimes, however, a
direct, non-local operation on a related component (for example, a subcomponent) might be appropriate.
SIMPLE does not prohibit the modeller from accomplishing this.

SIMPLE captures behavior definitions procedurally, as a method on a component class. This method is
charged with asserting and processing the events that drive the simulation.

Asserting Events

In concrete terms, an event in SIMPLE is a record that represents a single state change to th, simulated
system. It stipulates the component affected, its port or state variable changed, the new value it will get,
and the (future) simulated time at which it will attain that value. Assserting an event therefore invohes
generating such an event record and passing it to the simulator for later processing

Ports are first-class citizens in SIMPLE, and events are asserted on them by ineans, of the assert-port
primitive. An output port can be retrieved via the port? function described earlier, and can thereby be
passed as an argument to assert-port, alon~g with its ne.w alue and the simulated time of th,, change.

State variables, on the other hand, are simply places (in the serf sense [31) that mnav Ild va!ue.. A ,tate
variable is therefore specified by the expression that will access the place that holds it., ,alue. Thus, foc
example, a slot denoting a top-level state variable of a component is simply specified by aaming the slot.
The Status slot of an operator is such a state variable. As a more general exiuuple. if Reg,.sters is a
slot denoting a vector of simulated registers, tien tle exprcssion (aref Registers 5) i., an. accessor for the
state variable representing the register identified. The assert-state primitive is uscd to renerate an eOenlt
on a local state variable. As with ports, there are no rest rictions enforced by SINHILF 0!, tlk- "xales hIeld , by
state variables.

2-312

Processirg Eveots

An e.-ent is passed to the simulator as it is asserted. At the appropriate gimulated time, the simulator
proresaes the event: that is, muakes the state change specified by the event and then ivokes the method that
defines affected componer-'s response to the event. The parameters to the behavior method are: a specifier
for the port or state variable affected, its new value, and the simulated tim-_ of the change (which may be
thought of as the 'current' time).

The behavior method defining a component' response to events is typically structured es a set of 'rules'. A
rule tests for conditions and, as satisfied, asserts or directly effects consequent actions. The conditions may
include arbitrary predicates on the event parameters as well as the state variables of the component.

SIMPLE supplies a number of primitive predicates ft - testing events. The simplest predicates test if the event
occurred on a sp cified port or state. Others additi 'ially test if the asserted value satisfies conditions such
as equality - ith constar.'-. membership in a set (. values, or membership as defined by type. Condition
predicates may be combined through Lisp operators such as and and or.

Modelling Synchronous Designs

Event based simulators are based on the assumption that state and port variables remain unchanged until
explicitly modified. Synchronous designs, that is, those in which the opportunities for state change are
terporally qvantized to a clock, can be modelled in such implicitly asynchronous simulators by asserting
the clock sir,.al on a port of each and every clocked component of the simulated system. However, if only
somne of the comtponents in a system need take action on each clock signal (as is typical), there is an obvious
inefficiency in this approach that is crippling for systems with even a modest number of components.

If, on the other hand, event times are restricted to integers, the clock can be acsumed. All that is needed
is a way to detect the event for which a boolean combnation of cone.itions as strobed by an assumed clock
ii first met. SIMPLE supplies primitive condition predicates for dete.-ting a. 'edge (a value changed by the
current event) with a coincident 'level' (a value E t before the curreLt event) of twc porng or state variables
of a component in either of tbo two possible event sequences. The)redicate port- state? in the exa- iple
behavior rule shown in figr.e 1.5 has these semantics.

This code also illustrates the generality of SIMPLE behavioral descriptionb. A, t .ns m .v dir ctly manipulate
state variables (as is done to set Status to 'servicing), assert events (as is done to the Status state
variable and the Ivaluator-Packet-Out port), call arbitrary procedures (for example, queue-take and
time-update), or call methods (such as :operation-cycle). In fact, the last approach hla proven to be a
natural way to realize the functional operations o ,)onents not described by behavioral rut!q.

1.3 CARE Architectural Models

CARE defines a small number of multiprocessor components, both primiti e and composite, along wil h the
data structures manipulated by them in support of the LAMN. concurrept language extensions. These -re

2-313

((vna (P-statis? v.auatr-Status-In. 'frc Status 'busy)
(not (queue-empty Pending-Operart-onc))
(eq 'to-evaluator

(operation-place P,,eue-top Pending-peratians))))
;; It the oerestor in 'busy & there's something in the

;; queue for the evaluator t the channel to the evaluator

i,.s 'free, then pop the queue and transmit.

(lot* ((top (queue-take Pending-Operations)) : pop queue

(post-time (send self :operation-cycle cop now)) ; when

(packet (operaticn-packet top))) ; what

(tiji:-apdate packet post-time) ; ti7 stamp
(Uetf Status 'servicing) ; block rif

(assert-port Evalve I-Packet-Out , W. et post-tinme) ; Yj it
(assert-state Status 'busy (1 oat-.-&)))

Figure 1.5: A Behavior Ruic

briefly described below.

1.3.1 Primitive Information Structures

The basic information structures manipulated by CARE components are the process, the stream, and the
packet. Processes encapsulate a single thread of application code, and, perhaps, an address space. They
communicate and synchronize by operating on streams, which are essentially queues that can store sequences
of arbitrary values, Although streams are localized to a single processing site, they Anay be referenced by
remote processes. Typical operations on streams involve treating them as message buffers, that is, sending
and receiving messages on them, or treating them as memory cells, that is, reading and writing them
Operations on streams tid processes are effected by packets of information being communicated between,
and interpreted by, the components of the simulated multiprocessor system.

The LAMINA primitives can be used to model shared variable or messagc passing styles of computation
(and variations in between) as described in chapter 2. An application program consists of sequential Lisp
code interspersed with LAMINA language constructs that have bcen built from these primitives. During
execution, the primitives cause control being passed to the simulator for their handling. In this way. a
simulation achieves its goal of focussing on the interactions between processcs.

1.3.2 Components

The component typcs supplied by CAiE aip esenti illy those shown in figure 1.2. They are elaborated upon,
below.

2-314

Communications Components

CARE supplies a small number of primitive communications components that accept (or block), route, and
buffer transmissions in accordance with a dynamic, flow-controlled, multicast, cut-through communications
protocol as described in the appendix 'A Dynamic Cut-through Communications Protocol with Multicast'.
Currently, these are the net-input and the net-output. Transmissions are encapsulated as packets con-
taining routing information along with control information and application data. To maintain integrity in
the simulation, data values transmitted in packets are copied before being passed to the communication
subsystem, and packets are sized accordingly.

In lt,tping w 'h t'e objective of focusing simulation cycles on the aspects of the simulation particularly
relevant to m Y°.processor operation, the behaviors of the communicat'ons components are defined in fair
detail, txoj. i, at the register transfer level. Routing operations are described procedurally and assumed
to occur within a tir:oe set by a parameter to the simulation. Other parameters allow choice of the routing
4Isorithm used, the width of data channels, and so on.

Processing and Scheduling Components

CARE supplies the proce.Mng-elefent to accomplish the processing work of a CARE system. This com-
posite consists of at, evaluatoet an opeaior and a pair of fifo-buflers. The storage associated with this
component is net explicitly modeii-4.

The b. - interface the processing bubsysi..'i with i.he ccm-nunications subsystem and are used for local
packet receptions and transmissions. Their behavior is alst -lescribed at the register transfer level, and allows
parametric control of buffer depth.

The evaluator does the real work of the application; executing application code, that is, runnng processes.
The operator does the overhead work associated with such evaluations, thaf is, maiiaging streams and pro-
cesses. For example, the operator schedules processes for execution by the evaluator, receives and interprets
request packet- for operating on local streams (such as queueing messages on thein), ann constructs packets
that require operations to be performed on remote streams and delivers them to the ommunications sub-
system. Depending upon the computation model, then, the operator can function as a message co-processor
or as a memory controller.

As indicated previously, the simulation of the operator and evaluator is broken into two aspects.- the control
of the flow of information and the functions performed on that information. The former is described in terms
of SIMPLE behavior rules, register transfer by r..gister tratisfer. The latter is described directly in terms of
procedures, and the simulated time taken by suzh procedures is modelled.

In the case of the operator, this is done as a function of the number of storage cells manipulated during
the operator method that handles some primitive operation. In the case of the evaluator, this is done as a
function of the execution time used by the machine executing the simulation, that is, the simulation vehicle.
Care is taken to ensure that such overheads as page faults and process switches are discounted in measuring
application execution time on the simulation vehicle.

The parameters axsociated with operators and evaluators include performance parameters such as cycle

2-315

times, interrupt times, process switch times, packet formatting times, and so on.

System Level Components

CARE system conit of a number of sites interconnected in some regular topology. Sites may currently be
embedded into mesh, torus and (hierarch;cally) bussed topologies. The basic site composite is parameterized
to generate communications components for up to eight 'neighboring' sites; it also contains a local processing
element. Specializations of the site, for example, the torus-site and the bus-site, exist to fit the site into
alternative topologies by supplementing the site routing procedures as appropriate to the topology.

1.3.3 Concurrent Application Development

CARE has evolved to provide a number of features that aid in developing concurrent applications. These
include:

" Full integration with the underlying Lisp program development tools such as inspectors, debuggers and
editors. Components and the data stiuctures they manipulate have abstraction interfaces that provide
asummary of their state information when they are displayed in text form. These text abstractions are
'mouse sensitive' and so can be inspected at successively finer levels of detail if desired. Application and
model code can be debugged via graphical inspection and manipulation of stack frames. Within the
debugger, a single keystroke brings the relevant source code into the editor. Incremental recompilation
allows changes to source code to take immediate effect, even within the interrupted stack frame.
Thereupon, execution can be backed up and retried, given that intermediate side effecting code is
safely re-executable.

" A rmeans for running batch simulations via script files. The script files might contain commands that
vary application-specific parameters and data sets, as well as system configurations and parameters-
perhaps based on the results of runs previously completed. This facility has been used for experiments
spanning several days to weeks.

" A facility for record:ng simulation executions for later replay [2]. The only inherently non-deterministic
quantities in a simulation run are those that capture the ti,!-iing ofsequential application code fragments
on the underlying simulation vehicle. Ties, timings xre rccrded into a file and may later be used to
derive the deterministic behavior of the rest of the system, that is. replay [he original rm, This :an
be useful both for debugging and for va-ying instrumentation for the ,d,,ticad rn.

1.4 Building Instrumentation

The results of a simulation are primarily the insights it provides into the operation of the simulated system.
The 'insight' we frequently experienced usi', an early version of the simulation sy:.tem was that more
interesting results could have been produced by the run just completed if only tlhe instrumentation had been

2-316

different. With this in mind. the design for the current version of the instrumentation system was aimed at
flexibility, while retaining efficiency to the greatest degree feasible.

1.4.1 Abstractions and Implementations

SIMPLE'S instrumentation system is organized around probe, panel, and instr'-ment abstractions. Probes
monstor individual components, and, when appropriate, supply absfrjc ted data they have collected to panels
Panels transform and save interesting data from particular kinds of probL~ in the system, organize the
transformed quantities along various dimensions, and periodically dtsplny the results of summary analyses on
this information. finstruments package together a collection of particular panels, thus providing simultaneous
access to different views of operation of the instrumented system.

Sim.PLE implements these abstractions by providing a library of classes, methods and procedures that obey a
predefined measurement protocol. Probes, panels and instruments are built through irstantiation of classes
derived from Ehe base classcz, and the protocol provides the foundation for customizations that allow them
to achieve the desired functionality. This is shown in figure 1.6.

applyrules
aseprobe ntuet IA

muC:select (analyze) :display

Figure 1 6: Instrumi.entatfin Ruztime

SIMPLE is designed to make the specification of these customnizations as incremental as possible so that
existing solutions can be reused. The metaphor it provides to do this is a familiar one: specialization, which
is implemented through the extensive inheritance facilities of the underly-ng Flavors system.

2-317

Specializations may range from defining the body of a method invoked by the measurement protocol to
providing default values for predefined slots that affect the behavior of the methods that implement the
underlying protocol. Default slot values may, in turn, range from simple values such as strings denoting panel
legends and functions defining probe filters, to lists representing code expressions that are parsed, compiled
and called at runtime by panels to accomplish their transformation, analysis and display operations. While
a full discussion of the system-supplied opportunities for customization through specialization is beyond the
scope of this paper, the following sections will attempt to show that the design tries to ensure that simple
things are simply specified.

1.4.2 Data Capture: Probes

Each probe is attached to a single component in the simulated design and is responsible for monitoring a
particular aspect of its behavior. This monitoring is made non-intrusive by ensuring that a probe is informed
of all events pertaining to its attached component, as shown by figure 1.6. The :applyrules method that
defines a component's behavior also has a daemon method that invokes the :trigger method of all attached
probes, passing the event parameters to each. A probe is then responsible for taking action based on the
event, if desired.

Probe actions may involve filtering events, querying the values of ports and state variables on the attached
component, manipulating the contents of the probe's own instance variables (so that probes can be history-
sensitive), and, finally, processing and forwarding data to attached panels. Processed data is formatted as
a property list that tags each data value with an identifying keyword symbol, and it is encapsulated with a
probe key signifying the semantics of the data, a probe object for which the data is relevant, and a number
representing the simulated time. The probe object can be an arbitrary data structure such as: the attached
component or one related to it (for example, the component enclosing it), a data structure manipulated
by the component (for example, a process structure of an evaluator), or even an 'application level' data
structure (such as a LAMINA object).

An Example

As an example probe, consider the evaluator-queue-probe defined in figure 1.7. This probe measures
the load on an evaluator in terms of the number of runnable (and running) processes queued on it. Since
processes arriving from the local operator (via the Packet-In port) increment the load, and since transitions
in the evaluator's Status reflect the status of the process currently being run and thereby affect its load,
the :trigger method checks to see if the event on the attached evaluator is relevant before taking action.
This is done through the state-svent? and port-event? predicates.

The declarations of this probe's instance variables use the probe-state primitive to cache static slots in
the evaluator. In general, instance variableb are used to store intermediate state as required for probes t hat
track interesting sequences of state changes (for example, the scheduling transitions of a process). Note that
supplied data is tagged with the :evaluator-queue probe key, and that the site component that contains
the evaluator is passed as the probe object for which the data is relevant. Note also the conversion of event
time units (now) into mod-l-specific time units, through scaling, as the data is pmLsed on to panels.

2-318

(defprobe F.VALUATOR-QUEUE-PROBE 0 ; no mixins
;; slots that cache the attached evaluator's slots
((Input-Queue (probe-state F.valuator-Queue))
(Site (probe-state Site)))

;; options
(:docuuentation "Report evaluator process queue lengths")
(:component-type evaluator) ; attach to evaluators
(:probe-key :evaluator-queue) ; data tag
(:trigger (tag value now) ; name the event parameters

(when (or (state-event? Status) ; status change?...
(port-event? Packet-In)) ; or process arrival?

(send self :select ; i.e. inform attached panels...
Site ; probe object - site component
:evaluator-queue ; probe key
(list :busy ; probe data property list

(+ (queue-length Input-Queue) ; # enabled processes
(case (probe-state Status) ; running process?

((ready stalled) 0) (t 1))))
(simulated-microsecond-time now))))) ; probe time

Figure 1.7: Example Probe Definition

The :select method is part of the measurement protocol for probes. It forwards the probe data on to
selected attached panels by calling the :update method of the panels. Selection is done via a filter that can
be specified in defprobe; the default is to pass data through to all connected panels.

1.4.3 Data Analysis and Presentation: Panels

Panel operations are accomplished by successive transformations on the data supplied by probes, ultimately
yielding the quantities that are displayed along the various 'axes' defined by the presentation style of the
panel. These transformations are conceptually accomplished through manipulations on two kinds of records:

" a state record for each probe object, that stores relevant information derived from the probe data
passed in.

" a display record that stores the quantities that need to be displayed, and forms the foundation for
display lists.

Display records are organized along panel-specific dimensions to satisfy display goals. These may be times,
durations, frequency and counting bins, probe objects, and so forth. Both state and display records are
created as needed by the panel.

The actions taken by a panel are then to:

2-319

" update the state and display records corresponding to the probe data passed as parameters to the
:update call. This involves extracting the required data from the probe data property list, computing
transformed values based on this and the retained data stored in the records, and storing results back
into the appropriate records.

* analyze the display lists periodically, that is, reorganize them based on display objectives, such as
sorting on display record fields.

" display.the results of these periodic analyses in the display style of the panel, that is, transform display
list quantities into graphics actions on the screen.

At the base level, SIMPLE provides presentations: class definitions that represent particular display styles.
SIMPLE'S current class library includes scrollable text displays, scatter plots, fixed and scrollable line plots,
histograms, strip charts, intensity maps and signal animations. These are customized through specialization
to define panels.

Customizations include those that affect a panel's graphical appearance, such as legends, scales, axes labels
and the like, as well as those that achieve its functional objectives. The latter include declarations of the
types of probes required to drive the panel, and interface specifications: arbitrarily complex expressions that
specify the transformations between the information provided by the probes and that saved and displayed
by the panel. Other customizations control the computing resources used by the panel; these are parameters
such as sampling intervals, refresh periods, and history depths. Presentations have been defined so that they
supply the most commonly iequired customizations implicitly.

To retain run time efficiency, the transformation expressions that are stipulated in the panel declaration are
processed when a new instrument is created. They are compiled at that time into code bodies referenced
by run time control blocks associated with the underlying methods that implement the panel measurement
protocol.

An Example

As an illustrative panel definition, consider the code shown in figure 1.8. This defines a strip chart that plots
the history of total evaluator queue lengths in the system over time, thus providing a view of the available
application concurrency.

The important points about the specification are:

" The probes slot, which specifies what probes are required and how the data supplied by different probes
will be mapped into the transformation expressions that use the data. This generalized binding format
allows the panel to distinguish or combine data from different types of probes, as needed. Keeping
probes isolated from the transformation expressions in this way allows different probes to be 'plugged
in' to the panel by simply specifying a different binding list. The resolution to actual probe keys will
be automatically done when the panel is instantiated and its rode expressions processed. ,

" The -axis-form slots, which contain expressions desrribing the transformat ions on probe data. Within
an expression, the general form for denoting keyed data values supplied by a probe is as a list composed

2-320

(defpanel EVALUATOR-QUEUE-HISTORY-PANEL
((name "EVALUATOR QUEUE HISTORY")
(legend "Total Evaluator Queue Lengths")
(tine-scale-factor 0.001) ; us [from probes] to us (display]
(sampling-interval 200) ; 1 sample kept per 200us
(scroll-range 10) ; 10is 'window' of time displayed
;; interface specifications
(probes '((:queue-probe evaluator-queue-probe)))
(left-axis-for. '(:queue-probe :busy save-sum)) ; queue lengths
(bottom-axis-fors '(:simulator :time)) ; reported probe times
(plot-update-form '(send self :update-time (:simulator :tie))))

;; axes specifiers
((left-axis (make-axis :label "Evaluator Queue Sum"

:range (make-range 0.0 nil))) ; open ended
(bottom-axis (make-axis :label (format nil "MS by-DUS"

sampling-interval)
:range scroll-range))) ; fixed range

(scrolling-line-plot-presentation)) ; base SIMPLE presentation class

Figure 1.8: Example Panel Definition

of an abstract probe key and the relevant data key, such as (:queue-probe :busy). These value
expressions can be combined with others as required (through arithmetic or user-defined functions)
to compute derived values. For example, one definition of 'load' on a resource in CARE is through
the formula 1 - (1/1 + Q), where Q represents the sum of the lengths of all the queues providing the
resource with work, which might be expressed as

(- 1.0 (/ 1.0 (1+ (:queue-probe :busy))))

The optional save-sum modifier in the probe value expression found in the left-axis-form introduces
a summation transformation, which requires that the overall sum be decremented by the previous :busy
value reported for the probe object, and then be incremented by the new reported value. Were the
modifier absent, the relevant display record would simply reflect the latest value reported; instead, it
now maintains the running total of the latest reported values per probe object. SIMPLE has a number
of such save functions to aggregate and classify data for display; it also provides a means for new ones
to be defined.

The :update-form slot, which ensures that the panel organizes display lists along the dimension or
simulated time, corresponding to the 'bottom axis' of the display. In general, this needs to be specified
only when mapping time; otherwise, the default update behavior is sufficient.

This panel does not need the analysis feature that most panels provide as an option- SIMPLEr.'s basic analysis
operation allows sorting display lists by arbitrary predicates applied to arbitrary record fields. This is
expressed through an analysis-form declaration such as

'(sort- arrays
(list (list #1> (:latency-probe (+ :launch :network)))))

2-321

This code specifies that display records are sorted in decreasing order of the sum of the 'launch' and 'network'
delays reported by a 'latency' probe (presumably monitoring communication latencies). The list of lists
format of the specification allows for progressively finer sorts on identical items.

1.5 Understanding Instrumentation in CARE

In this section, we will try to show how instrumentation helps understand the operation of concurrent CARE
systems. To do this. we will focus on a particular programming model-the LAMINA object-orwnted model,
and its corresponding multiprocessor model-a message-passing CARE multicomputer.

1.5.1 Monitoring Computations

In the LAMINA object-oriented model, an application consists of objects that interact only by asynchronously
passing messages containing data values. Objects execute the messages arriving on their local task streams
serially., Each message execution, or task, atomically manipulates the message contents and the object state
and then sends new messages, thus continuing the computation at some other object.

The CARE message-passing machine model provides the resources that accomplish the LAMINA computations
described above. Evaluators run the processes that execute the LAMINA object tasks- When a task needs
to send a message, the evaluator interrupts the local operator and passes it the message data. The operator
encodes the data values into a packet and passes it to the communications components for ren.ote delivery.
These route and deliver the packet to the remote site according to some communications protocol. The
operator at the target site queues the message packet on the relevant task stream and perhaps reschedules
a waiting object process for execution in the local evaluator.

A LAMINA application can thus be effectively monitored by simply monitoring the critical operations pe-
formed on messages by LAMINA objects: the generation of messages, the arrival of messages on the target
object's task stream, and the erccution of messages. Its performance can then be understood by monitoring
the actions performed by the underlying system resources in supporting this nessage traffic: the creation.
communication and receipt of packets, and the scheduling and execution of processes.

This captured information provides a basis for understanding system operation. The impact of the applica-
tion decomposition can be studied in teruns of task and message granularities, nsage volumes frequencies,
over- and under-utilized objects and class ., and so on. The impact of the system design, its operating
parameters, and its finite resources can be studied in ternis of resource utilization, service latencies. resource
conflicts, load imbalances, resource bottlenecks and so on. Some examples of ,hese are given in the next
section.

1.5.2 Seeing System Activity

In this section, we will '-scrihbe a few rrjlrs, -it atv palv-s that illustrate the visualiration capabiliti" of
CARE'S instrumentation

2-322

Activity add Load Maps ___________________NE-TWORK-OPERATOR(MAP
Opartot QLou Ntwirk ALctivity

CmF-U

Figure 1 9 Mapping Pane

Ont of the most intuitively useful kinds of presentatiorns ,.s the mqpaaf paneL, It provides ant animation
of activity in the design--sen in terrrs of the spatial arrangement the system ,designer laid out when the
structural organiztion of the design was defined. In the "network operator map" panel shown in figure 1 9
uses this topology to display operator loads and network activity.

The boxes in figure 1.9 correspond to operators in the system. Their - ling :ndicates how many packets
are queued up for service by the corresponding operator. As the simula- -n proceeds, the indicated !load on
operators shifts, so that bottlenecks in operator resources stand out vi. -i|y. Loa_-d imbalance on operators
show up as more or less constant utilizati on of only certain operators.

The lines between boxes correspond to connections made (hr packet transmission be-ween the network ports
of the indicated sites, so that a qualitative view of the decre to which the network is utizlizedi at t iv.
time in the simulation is available. We have found this useful "n debugging t he network prot'ocols thEat 'e
have experimrented with-.eadlocks and thrashing are imme-rdiately appaze.t-.

Mapping presentations have been specialized to depict a number of different measures. W* have toun1 :t
useful for seeing object load (the number of LAMI.NA objects at a sates, message koad {th su:m of the "e 'hs
of all LA34UNA task queues at the site). ev'aluator load (the nuimber of runnable processes at a ba-te). or. _ _mi

evaluator status.

Utilization Histograms

A more statistical view of the operat~on of the system over time is provided by t.he pre-sentation of. (or
example, the utilization of operator and evaluator res ources as Azulogramns. The -processor ucahzati-n" panel
shown in figure 1.10 ht been specii ndo show he percent of the rime dur an a simulation a cien nun;oer
of evaluators (displayed on the top haf of the panel) and a iven number of operators lispived on the
bottom half of the panel) have been used. l.ghlachtmg shows what the "urrent situation s as well as "hat
thare aueue situation has been throuh "he s :rent tme of sthe simulation

2-323

PROCESSOR UTILIZATION
TimW Ev aU M A Operators Busy

F..ure 1.1: u iiat iso ram

If it turns out that only a few evaluators are concurrently active, it may be that the application is not
generating enough concurrency, or that the load is unevenly balanced, so that available concurrency is not

exploited. Other panels, described below, may be used to clarify this explanation.

Load and Latency Strip Charts
OPERATOR"POTENTIAL & LATE"

2-3 Potentiel: d Se rvice C.) Wait
12

• 4. oo~~q"... aV " .*** "
ii ii : • -40

4e 3 --.. {;;......-.:............ .. ',.... -' c

1632-I ,r?.......... ,... e

4 16 2420 22 24

Simulated MlS by 200U$

Figure 1.11: Actility Stripchart

A. sfrip chart presentation is often a useful way to see what the history of some measure of system act!'aty
has been in the recent past. There are four such measures plotted in operator potential ,. latency' panel
shown in figure 1.11. Two of the measures are plotted on the scale at the right side of the strip chart. These
show the latency being experienced by operators in the vstem as they receive and service packets from the
network. The time to service packets appears to be relatively constant in the plot shown. As shown, there

are occasional delays between the time a packet is received and service on it is begun. This delay is shown
as an offset on top of the time plotted to service packets.

If latencies have a periodic character with unacceptable peak times, it may be that -re are load imbalances
that can be addressed to improve thts situation. Alternatively, more or less monotoically increasing latencies

indicate pipelines that a-e not keeping up with their inputs. If the aff'ected pipelines can be replicated and

2-324

work spread among them or the grain size of the larger pipeline stages reduced-and the resources dedicated

to all these pipelines and pipeline pieces are adaquate to the demand-the bottleneck causing the increasing

latencies may be broken.

The two other measures plotted in figure 1.11 refer to the 'potential' for additional work remaining in the
system. Their scale, indicating the number of operators not in use, is shown on the left side of the stripchart
The lower of the two plots indicates the number of operators that have no packets in their service queues.
The remaining measure plotted is like this one: it indicates the number of operators that have less than
three packets in their service queues.

The values of these potential plots is an indication of resource utilization over time. The distance between
them is an indication of load balance. if they are well spread, most of the resources so described have one to
three packets to handle. This is an indication of good load balance. Alternatively, both plots close together
toward the middle of the axis indicates that half of the resources described have more than three packets to
handle and half have none: an indication of poor load balance. Both plots drawn down toward the bottom
of the panel may indicate an overloaded system: all the resources being measured in this way have several
packets in their service queues.

As shown in figure 3.2, similar panels have been defined for the communicaticns subsystem (the 'network
load & latency' panel) and the processing subsystem (the 'evaluator potential & latency' panel). These can
be used together with the one described here to see the relative granularity among the subsystems and their
relative utilization, so as to discover the critical resources in the system

Activity Tables

ACTIVITY BY INSTANCE ACTIVITY BY CLASS
Sorvice/Q Avg (.uns) Delay Site Service/Q Avg (Runs) Instances

1.341 0.115(54) 1.446 (75) $.OVT IG-ISiUMI('1Z.0 0.?/0.6 0-M3S(IM) 15(0S1.A-g"T-US, OLXLTUMOM

1.2 4 ,3ee) Z,3 (78) $(41Ttm-IX S c76) I 0.1/.0 0,137C 29) 3c iO.W19.rI. TI)

1.0/4 0.2M (24) 0.7!7 (7 4) (, -STMIW 3 (7 4) 13 0.1' 1.0 0-104 39) 3 (CLO1.TU W- n OO

0.' ' 01 (I) 0- lS (4 Z) I(arm-TIMt .(42) 2 0./0=. (3M 20 r (C0U.TM.F EUM)

0.0/3 0Z. (5) 306 (75) O .MtoSNr 3 (7 5) 13 0.-0 006 O.WL I " ZD OTI-IIUO L.PME-0

0.7/3,V C.2 (3) 001 (7 8) O(W.6CC -grMuW 3 (7 a) 13 0.0 0.Z 04 (312) 2 -CTT*W1 , IDT)

O.SP'2 0-M 92) 0.13 C (7) S(UM-SM t(7 7)13 01. 020(171) 10 (Oisia-SINUS. rMOOl
0.4 3 0116(1) 0(W1 (71) NtOt.NMaO01 4.0 C 00. 0.0 0." C 1 1 1 QM 0)

0,31'1 00(1, 2)&.299 (71) MMIXTIM-ONUS0 C7 6) 13 0.0.'0-0 0-093 1) 1 (CUMI 0 0)

0-2/1 0.141 IX) O.W (42) VOWF.P-M51 2 (411) 72 0.0. 0. 02M 1 3) 1 (CLLST-rW~ . 7WlIrMtio

0.1/ 1 0.116 (29) 0,110 (53) (MITM-MMI1 .(0 1 0/ GO. 024 3) 3 (aCTUMrvI. W*01Mo

00/0.0 01491 (17) 1.0 (7) 0oU1IM-5fIM 1-0 (7 6) 0.10 040 0-149(3) 3 (MMIMWMS,1--(I

Figure 1.12. Activity Tables

Sometimes, the most iaformative way to show information is as text. The two panels shown in figure 1.12
use scrolling tezt presentation to dynamically summarize the activity of LAMINA objects in the system in
the form of tables.

In the 'activity by instance' panel, each line in the scrolling display represents a single LAMINA object. The
columns of the tables denote, respectively:

2-325

* the expected service time of the object, that is, the product of its average task execution time and the

number of messages in its task stream. This is an indication of the degree to which this object is a

bottleneck, The text lines are periodically sorted so that the objects that have the highest service time

bubble to the top of the display. Objects forming potential bottlenecks are thereby evident.

* the number of messages on the object's task stream.

" the average task execution time for this object, that is, the average time it has taken to process a
message up to this point in the simulation.

" the number of messages that have been processed by the object, an indication of its relative activity.

" the delay experienced by Lhe most recent message that was executed (as a task) by the object. This
delay is the interval from the generation of the message by the sending object at some remote site to
the actual execution of the task by this object at its site. It represents the overhead involved in getting
the task accomplished, and, as such, includes the latency in getting the message delivered as well as
the scheduling delay before the process corresponding to the object acquired the evaluator.

" the site at which the object is located. This can be used to discover if the object is bottlene:king
because of load imbalance: this is apparent if the most backed-up objects are colocated.

" a ptinted representation of the object, showing in particular its class. Text lines are 'mouse sensitive':
the LAMINA object can be inspected through a simple mouse click

The 'activity by class' panel presents this information averaged by the 1,ject class and type of message, as
shown in the rightmost column of the display. This information can be i:- -d to see the distribution of work in
the application design. An inappropriate distribution may indicate the ,pplication needs to be reorganized;
the display provides information about where this effort should be concentrated.

Cumulative Latencies
CUMULArIVI LATENCJg

, - !

z:•I I, I _ ._.- -' -

Figure 113. Cumulative Latencies

The 'cumulative latencies panel' in Figure 1 13 s an example of a ne plot presentaon. It displays a

snapshot of the message delays described abo'e, as experienced by the most recent messages received and

2-326

NETUU5FATI WCUMULATIV5 1AT9'iC15 hTWKLODpLATVCT
ow" Blo aU movin 0~4MEO. Rum.. a Af ll .) too. abd7

4110-

m I It I s a a

rim~~~~~5 stvi54ope"sly4 stw (. 0

OEEEIVER LWI USTIKXES ACTIVITY BY INSTANCE ACTIVITY BY GLAS AUTRMz A
I.'.4.. Se ti . t . AW W ON 1 'awl tial ~ 5 I M /"&No 1.0 P.ini 6 S O 1.) ta

47 . ** CUf.** JOt- .

bfte. ... in won It.t uu:: Pn

1: Z".. %. . e Ise PL tO3,W . II -..

I" 9111it 5135 1 10 O.eO oi SulepN O so. Ollip. i. - Z c.ss Min a .,.

Figure 1.14: CARtE Observer Instrurn,::.

processed by each of the extant application objects. There are nve cut, _ iric.en.entally showing the latency
experienced by the messages at the source operator, being routed in the nietwork, waiting for service at the
target operator, being serviced by the target operator, waiting for execui-ttn at tl~e target evaluator, and,
finally, the execution time of the task tha 't consumes the message. Th6 u'rves arp rainked by the sum of'
the first four delays above, which represents the overhead in getting thy. req-wtsced task accompplished at the
targeted object.

1.5.3 A Complete Instrument

The panels described above have been collected into the CARE observer instrumt..7. shown in figi -e 1 14.
Additionally, the instrument allows annotations reflecting system parameters and oth-er data, so that 0.xper-
imental parameters are evident.

The instrument thereby provides a unified view of system operation that correlates the activity of hardware
abstractions, that is multiprocessor subsystems, with application abstractions, that is, LAMINA objects.

2-327

Chapter 2

LAMINA Programming Models

LAMINA is an experimental programming framework that allows concurrent algorithms to be expressed
using both value-oriented and reference-oriented styles. It provides mechanisms and syntax (as extensions
to Common Lisp [31) to describe and control concurrent computations so that their performance may be
studied using the SIMPLE/CARE architectural simulator. This chapter describes the LAMINA functional,
object oriented message passing and shared variable programming models, along with examples of their use.
It also describes the underlying primitive operations that support the models. With this description in mind,
you will have the necessary basis for reading the next chapter-which describes how SIMPLE/CARE is used
to understand the performance of an already written application program.

2.1 Introduction

2.1.1 Cells, Futures and Streams

Cells form the basis for perhaps the simplest form of interprocess communication and synchronization.
Communication is accomplished by reading and writing cells that are shared between concurrent processes.
Synchronization can be accomplished by having the memory system support an atomic read-modify-write
cell operation (such as an exchange).

Futures can be thought of as cells that represent promises for potentially unavailable values. They can be used
as placeholders in a computation while their values are being eagerly produced by concurrent evaluations for
consumption as available. Futures therefore embody both communication (of the produced value) as well as
synchronization (because the value must be produced before it can be consumed). Streams generalize futures
by representing sequences of eagerly produced but potentially unavailable values as a single abstract data
type. Streams can thus be used to build pipelines of computation connecting the producers and consumers
of values.

Streams and futures may be the arguments to or the results of function applications. Furthermore, certain

2-328

operators (sometimes called non-strict operators) do not require the actual values promised by a stream or
future in order to perform their work. For example, a constructor (such as cons) may create data struc-
tures that include streams as elements without accessing any of the promised values the streams represent,
referencing the placeholders is sufficient.

LAMINA provides the stream as its primitive data type; a future is a specialization of a stream that
represents only a single value. Streams and futures, because they represent arbitrary values such as lists and
vectors, must be managed by a resource such as a processor-with attendant costs. Cells, however, can hold
only single, fixed-size quantities such as small integers or references to other cells; thus, operations on cells
(such as read and write) can be efficiently handled by simple memory controllers.

2.1.2 Multi-Level Address Spaces

LAMINA'S address space design is based upon expectations about the expenses involved in global storage
reclamation. If references (pointers) are allowed to exist between processor address spaces, relocation of the
referenced data (for example, as required by a copying garbage collector) requires global synchronization,
which can be expensive. LAMINA'S multi-level addressing scheme therefore creates inter-processor references
only as necessary, so as to allow for independent, globally unsynchronized storage reclamation to the greatest
extent possible.

As shown in figure 2.1, an application's address space consists of

" static space containing data structures such as code bodies and constants (e.g., keyword symbols),
which are regarded as immutable. They are therefore neither relocatable nor reclaimable, and so may
be freely referenced and cached by any processor. LAMINA does not explicitly model transactions
concerning data in static space; it assumes that static data is always available in a processor's cache.

" dynamic space containing cells (in the shared variable model), and indirect references to streams and
futures. Indirect references may be thought of as remotely unreadable and unwritable 'reference cells'
containing pointers to local data structures that represent streams and futures. References to data
structures in dynamic space are allowed to exist between processor address spaces; hence, the data
structures may only be relocated through globally synchronized operations affecting all computations
that could access them. Note, however, that streams and futures (and the data values that they
represent) may be locally and asynchronously relocated because of the indirection involved when they
are remotely referenced.

Streams, futures and cells are only visible as references in LAMINA. In the remainder of this discussion,
then, the terms 'stream', 'future' and 'cell' should be taken to be equivalent to references (perhaps
indirect) to data structures of the appropriate type.

* local space containing arbitrary local data values. Local data structures cannot be remotely refer-
enced and are always copied between processor address spaces. They may therefore be independently
reclaimed and relocated.

2-329

APPLICATN LOCAL
strutured value COPY

reference *. APUA NDY MI

APPLICATION STATIC

processor I processor 2

Figure 2.1 Loc:al. Dynamic. and Static Addr-es

2-330

Communicat ;r g Values

In LAMINA, a data structure of arbitrary complexity can be supplied as a value of a stream or future either
local or remote to the processor address space in which the structure was generated. This is passed by
copying, so that the structure is isomorphically reproduced at the target stream or future.

When values are passed between processor address spaces, the structure representing the value, that is,
the structure value, is recursively encoded until a data structure is produced which has the same form and
internal relationships as the original value but which holds only: static -eferences to structures in static space,
dynamic references to structures in dynamic space, internal references to elements of the new structure value,
and self-referenttals or 'immediate' data objects such as small numbers. This encoded data structure thus
contains all the information required to form a copy of the original structure at the target stream or future,
through the reverse operation of decoding.

Depending on the underlying system, encoding of a s-.ructure value might be done asynchronously with
evaluation of the user application, so if changes are -o be made (at any depth) ii the structure passed
between address spaces, independent copies of the structure should be formed.

An example of values and references passed between processor address spaces is shown in figure 2.1. One of
the values of the stream in the application's processor 2 local address space is an independent copy of the
structure value in the application's processor I local address space. Both structure values are heap allocated
from independently managed heaps in separate local spaces. The other value shown for the same stream is
an indirect reference to the other stream; the stream, in turn, represents (or contains) the original structure
value.

Storage Management

The cheapest approach to the dynamic allocation (and deallocation) of memory is stack-based and local.
However, the benefits of stack-based operation come at the cost of a prescribed order of deallocation. Ad-
ditionally, at least for the commonly used memory management enforced stack limit schemes, stack-based
operation entails a minimum storage commitment that is significantly larger than the rest of the execution
environment for each small granularity evaluation expected for LAMINA psograms. Stack based allocation
can be used whenever references to structures with dynamic extent [3] are known to be entirely within a
given sequential computation.

The next cheapest approach, for references that are local with indefiaite extent [3], is heap based allocation
in local space. Since such references are confined to a single processor address space, their referents may
be allocated, relocated, and reclaimed asynchronously with operations on other processors and memories,
based on just the information in the associated processor address space.

Finally, as the most expensive approach, global references may be made to dynamically allocated references
(that is, to cells and reference cells) which must be relocated under a global synchronization scheme. Allo-
cation in dynamic space is done independently by each processor and each allocation is distinct. Operations
involving dynamically allocated references are handled by the processor (or rnmiory controller) associated
with the reference. The referents for such references (that is, the streams, and futures) are mutable, and may
be viewed as uncacheable.

2-331

References to locally allccated structures can also be passed between processor address spaces, by encapsulat-
ing them in streams and then passing out the (indirect) reference to the stream. By this indirection, pointers
to locally allocated structures are held locally (and may readily be relocated) but a means is provided to
reference them in other processor address spaces.

2.2 LAMINA Primitives

2.2.1 Creating Streams

Streams are created by the primitive function nev-stream, which returns a reference to a new stream on
the executing (that is, local) site. Futures-streams that have at most one value--may be created by tile
function new-future. Streams and futures may be labelled for debugging purposes by including a 'tag' as
the optional ficst argument of its constructor, as in

(new-stream 'requests)

The default is for a stream to inherit a tag identifying the execution which creates it.

As described earlier, streauns and futures are only visible as references. The site of a reference, that is, the
processor on which it was created. may be determined by executing

(reference-site refercnce

which returns a site identifier that may be used to specify sites as required for parameters to other LAM-
INA primitives. References can also be tested to determine whether they are the 'equal' by the function
eq-reference, a predicate that tests if the two supplied references are to the same, potentially remote,
stream or future.

A stream may be thought of as an ordered queue of postings, each containing, among other things, a
value. The default order of postings on a st ream is non-deterministic arrival order. Sometimes, however, it
is desirable to override this default so x- to control tle order in which values are consum-d from the stream.

A stream ordered by incremsing i unieric keys. s i I*li,,I as part of the postinig. it re,elis, can he created
by the function, ordered-strean. Zhiis ,s typically uised to pri-ritize the values rurr-iitly availabl, on the
stream. Similarly, a stream that p.oviles valiis in -t rict seqence according io nin-d~cr,-sing integer keys,
again supplied as part of the receiv, d posting., can he created via sequenced-stream. this i. typically used
to minimize schedu ling overhead by deferring execrt ions ,iiolving the coniunuption of *out of order' values.
Both these kinds of stream have apllicatoll ill t I- LAMINA objvc oriented lpr,-gramitmAg model disciissd
in section 2.4.

When a locally allocated data structure needs to be pa."Sed betrw-eii potenltial. o-,mcuirrent computat-ios L%
a reference rather than as (a copy of) its vahe. the f,,rin (reference trim) ri tirus a r f 'rence for the value
of the item. 'rhis is imnplen, nted by- j'larin, "h.- (a1u 1 i . I,,al ialw. Sr, 'ya hidh ca ll liwn he remnotel,
referenced.

2-3 32

2.2.2 Producing Values for Streams

Streams acquire values as a result of postings recei. d by them. This is directly done by a producer using
the posting operation as in

(posting value to targets ...)

The operation is non-blocking- it immediately returns and the actual trans.nission of the (copied) value
will occur some time later.

The posting may be multicast by supplying a list of target streams rather than a single target, so that
each will receive a unique copy of the value. Additionally, there is a facility for specializing the value
transmitted in a multicast to the individual targets of the posting. Any place a stream is used as a target of
a posting, it may be replaced by a cons of that stream and the value specialization for that stream- The
value specialization will be prepended to the supplied value and the :ombined list will be taken as the value
of the posting when it arrives at the target stream. Specialization is specified by a list of lists even if clJly
one target is involved, in order to distinguish it from a list of unspecialized targets.

The keys required for correct operation of ordered and sequenced streams can be included in postings by
specifying a number following the keyword 'by' in the call creating the posting. Other keywords are alro
available, and, since they are used by many of the LAMINA primitivee, they are listed here.

" to, on targets: A target stream or list of targets streams for the indicated primitive LAMINA operation.
Some primitives expect site targets rather than stream targets, as discussed in later; for these, if no
site is provided Ad one is needed, an unspecified site is chosen. The choice between the alternative
keywords shown is purely stylistic.

" for clients: A stream or list of streams acting as the co,.tinuation of the computation that will be
triggered by the LAMINA operation.

" as tag: Arbitrary data for debugging. Defaults to the tag of the sending execution.

" by order-key: A number which may be used to order information in target streams.

* after delay: A positive number indicating the number of miliseconds that the operation will be
delayed before being attempted.

" with properties: Arbitrary data intended for user extensions of the posting protocol.

2.2.3 Consuming Streams

The primitive first-posting returns the first posting of those present on the referenced stream. The
primitive next-posting does the samc but also remove_ the posting from the stream. Finally, last-posting
returns the last posting and eliminates all others on the stream.

If the stream is empty, the three stream posting access fiinctions return nil. Ot herwise, tih:e return -t posting
as a list consisting of the value, clients, key, tag, orzgzn, and propertirs of t lie posting. For convenience, these

2-333

elements of this list may also be accessed by the posting- primitives: -value, -clients, -key, -tag,
-origin, and -properties. The number of postings available on a referenced stream is returned by the
primitive postings.

If it is desired that execution be blocked until there is a posting for a specified stream, the stream posting
access forms above may be wrapped in an accept construct, as in

(accept (next-posting stream))

In this case, when a posting is available on the indicated stream, the posting is returned to the restarted or
resumed execution.

Futures in LAMINA are defined so that their value, once attained, cannot be removed. Hence only the
first-posting operator is a valid accessor for a future.

The access primitives described above will, if necessary, coerce the referenced stream into one local to the
calling site (through relocating as described later). Sometimes, this is not the desired behavior, so a way
is provided to access potentially remote streams without incurring this side effect.

Remote Streams

Posting-by-posting access of the information on streams may also be accomplished by requesting that a

stream access function be applied to the streams at the site they exist on, as in

(accessing access-funchon on targets for clients ...)

"2t- access-function may be any of the stream posting access functions, for example, the function next-posting
de- rbed previously. A posting will be sent to the client streams when one is available on a target stream.
This u t'!e only way provided for expressing competitive access to a common stream.

An interlock,,, operation on streams is provided by

(exchangIng value on targcts for clients ...)

Thi- causes last-posting to be applied to each target st rrali and t lie rc-.tilt sent. to each client stream. The
ralue replaces the last po.ting on the target stream. The exchange is atonir with respect to each stream.

2.2.4 Managing Streams

St[reanLs ill LAMINA mayhe manlaged in various ways across the syst-Iii

2-.3:11-

Copying Streams

A posting sent to parent streams in a tree of streams set up by copying operations will result in copies of
that posting also appearing on all the descendant streams in the tree. Such a system of streams can be built by

(copying parents to children for clients ...)

The references for the child streams are sent in an operation request posting to the parent streams where
they are added to the child references of the parent. The current queue of postings held in the parent stream
is copied and returned in one combined posting that is multicast to the child streams. These postings become
part of each child stream. When each child receives the combined postings, it sends on to the client streams
a completion posting whose value is the parent stream from which it received the posting queue. This can
be used to validate that a requested copy operation has been accomplished.

Linking Streamns

The linking operation is an optimization of copying for those cases where it is known that postings need
not be retained on intermediate streams in a system of linked streams. Linking parent streams to child
streams serves to restrict the parents to act only as intermediaries in a system of linked streams as in

(linking parents to children for clients ...)

The references for the child streams are multicast in an operation request posting to the parent streams.
When a parent receives the references, any postings already on parent streams are sent to the children
specified by the references and eliminated from the parents. Further postings are not retained on parents
after they receive a linking directive but are immediately passed on to the child streams. For efficiency in
forwarding, the implementation may bypass intermediate levels in a syster- of linked streams.

Value Specialization

Target specialization may also be used with the linking or copying operator to specialize the value of
Dostings transmitted from parents to children as in

(linking parents to (list (cons child-I value-spec:alization-1) ...) ...)

Thereafter, all postings that traverse the links from parents to children will have the appropriate value
specialization prepended to their value. This is the mechanism used to support the implicit continuations
provided by the LAMINA object oriented model.

2-335

Relocating Streams

A linking operation does not change the way that a child stream orders postings or presents them. Relo-
cating a stream from dne site to another while preserving its accumulated postings as well as its means of
ordering and presenting them, is specified by

(relocating parents to children for clients ...)

This is used when there is an attempt to read from a stream that is not local to a site. The attempt
causes the reference used to specify that the target stream target a new child stream, the relocation of the
previously specified target. No change can be detected in the operation of eq-reference on the reference
after relocation.

Group Streams

An application in LAMINA may wish to view a group of streams as a composite. carrying out some operation
only when all of the streams in the group have received a posting. To minimize unproductive scheduling,
computations may wait on such composite group strcams rather than on the individual streams. Group
streams are created by new-stream called with a :group keyword argument as in

(new-stream tag :group member-streams)

A stream may be the member of only one group but a future, since its value, once attained, cannot be
removed, is not so restricted. If streams of values are to be made available to several groups, a system of
linked or copied streams must be used to accomplish this.

If a member stream is not local to the site of its group stream, a local member stream is created and the
remote member stream is relocated there. The postings sent to the local member streams are taken from
the member streams whenever a request that has been made to accept a posting front a group stream can
be satisfied. Each posting available from a group stream will contain, as its value, a list of the postings
received by its component streams. The order of posting elements in the list representing a group posting
corresponds to the order indicated in specifying the component streams of the group stream when it was
formed. Group streams are used to schedule an implicit continuation only when values are available on all
streams upon which the continuation is waiting.

2.2.5 Creating Processes

Restartable Processes

A separate, concurrent comlutation i- created by spawning lw ,-xeeution of a closure as In

(spawning #'(lambda) ferm) on sdr for chrlits ...

2-336

The closure is formed and the clients returned immediately as the value of the spawning operation. The
closure will sent to the indicated site and eventually executed there. The result of that execution will be
returned to the specified clients.

Spawned computations can block waiting for a value to be available on a stream. When the value is available
they will be restarted and any intermediate computations done previously will be redone- This approach is
taken to avoid dedicatingstacks for every spawned computation. hlowever, often the continuations of partially
completed computations can be spawned on the same site as their parent, thus preserving intermediate work
as well as eliminating the need for dedicated stacks. This is described in sections 2.3 and 2.4

Resumable Processes

If an execution is blocked on trying to access an empty stream, it can either be restarted, as discussed
earlier, or suspended and resumed when that stream receives a posting. In general, suspending and resuming
a computation (without spawning continuations) requires preserving indeterminate amounts of intermediate
(control and binding) state with one or more stacks. Maintaining many independent stacks is certainly an
expensive operation in simulation and may also be so in a target system implementation.

However, for occasions when the full power and expense of stack switching is warranted, LANIoA provides
the muitting primitive. This is called and behaves like spawning, except that it creates a process with
associated stack storage at the indicated site.

One could implement a multiple fork and join construct (like cobegin awl cored) by mounting a number of
processes with a common client stream. The creator could then wait for the app-opriate number of responses
on the client stream (to ensure that the other processes had completed) and then continue its execution.

In applications that wish to view executions created with mounting as non-terminating. the execution will
"-ypically have an initial section that sends a reference for a newly created atask' stream to mutually agreed
upon client streams (by an explicit posting). The referenced task stream will then be used to supply the
newly mounted executiop with additional operations to perform after it completes its starting procedures.

Remote Closures

An value may be sent to a remote site, a reference for it created there, a.-l the refemnce sent to speciftie
clients using

(loading vasle on stie for chntLs ...)

The client streams are returned immediately by the form, and they will cvenz wally re-_,-ivv a reference for
the value loaded on the specified site.

A remote closure may be created by

(loading I'(lmbda aryl.sftform) on sue for clnts ...

2-337

It may then be applied to locally evaluated arguments by passing it those arguments as in

(passing parameter-list to closure-reference for clients ...)

The result of the remote application is sent to the specified clients. The loading passing operations
are combined in spawning.

2.2.6 Miscellaneous Utilities

A few utility operations are provided by LAMINA to specify computation and storage sites, dismiss computa-
tions, and provide a timeout facility for applications desiring one. LAMINA also provides simulation control
facil:ties to initiate a simulation, read the current simulation time, and do a computation without increasing
the simulation time.

The function random-site returns a identifier for a site chosen randomly with uniform distribution over the
processor si'es in the simulated system. The function random-memory does the same thing over the memory
controllers in the system. The function local-site returns an identifier for the site executing the function.
The function local-memory returns an identifier for a memory controller associated with the processor on
which the function is executed.

In order to provide a ti-eout facility, the keyword after followed by a number of milliseconds in simulated
time may be included in functions that take LAMINA keyword arguments. The simplest use might be to
specify that a posting to a stream be sent at some future time.

A call to dismiss breaks execution. With no argument, execution is rescheduled immediately (but occurs
after all previously scheduled executions are run). If an argument is specified which is a non-nil symbol,
exr "ution is terminated and will never be rescheduled. If a local stream is specified, execution is rescheduled
when next that stream receives a posting-or immediately, if that stream has a posting on it.

The current simulation time in milliseconds is returned by the function simulation-time.

Some computations in a simulated application need not (or should not) be timed. The macro without-clock
may be used to wrap such computation. so that they are accomplished "off the clock'. This is generally a
good idea for calls to debuggers and the like as well as for input and output operations

oomething special must be done to start up a simulation. The form

(boot (at imne site-coordinotesform) (at ...) ...)

will spawn computations to execute forms at the indicated sites beginning at the specified times (in millisec-
onds). The site coordinates are given as a list, fob example, '(3 2), whose length matches the represented
dimensionality of the processing upit (a surface for the case shown). The boot construct resets the simu-
lator ane thus may only be executed as the first operation of an app'ication being simulated. Note that
boot spawns rather than mounts a computation. If a mountcd computation is needed, it must be explicitly
mounted by the computation that boot spawns.

2-338

2.3 Functional Programming

Perhaps the style of computation most readily treated as concurrent is that of functional programming.
LAMINA supports concurrent programming using this style by providing means to (1) spawn computations
that will provide values to futures and (2) accept such values in a computation-scheduling the computation
when they are available. The constructs defining the LAMINA interface for functional programming are

* (future form) spawns execution of a lexical closure, that is, a procedure body to execute a given form
together with an environment (determined by the rules of lexical scoping) in which to do the execution
[3]. This closure is executed (eagerly) on a randomly selected site. A future which will contain the
value of the computation when it is available is immediately returned.

" (with-values future-bindings forms) spawns an evaluation on the local site to execute the closure
corresponding to the forms. The evaluation is done within an environment that includes bindings for
given variables to the values available for the indicated futures. The evaluation is deferred until all of
the indicated futures have values that are not themselves futures. The immediate result of executing
a with-values form is a future whose value will be supplied by the deferred evaluation.

Each element of a future-bindings list ,is itself a list: (binding-pattern future-specifier). If evaluation
of a future specifier in a with-values construct produces a value other than a future, the value is
encapsulated by a future. After all specified futures have values (which are not themselves futures),
the values of each cf the futures are destructured, that is, the values are treated as list structures and
the elements of these list structures are used to bind corresponding variables in a binding pattern of
arbitrary depth. These bindings will be included in the environment in which the spawned computation
is executed. Only with-values can be used in LAMINA to reduce futures to values. Values of futures
are never taken as an ancillary consequence of any other operation.

The results of the evaluation spawned by with-values are returned as a future which will receive
the value of the spawned computation. The spawned evaluation is treated as the continuation of
the spawning computation, and, as such, captures -.a stack allocated temporary variables required to
execute that computation. Thus, each spawned computation may be viewed as running to completion;
its continuation, if any, is an independent spawned computation.

All spawned computations run to completion (although they may be suspended by system level operations),
and so the stack of the executing processor is generally left clear. Therefore any space allocated for it may be
reused by the next computation on that processor, allowing the advantages of stack-based operation without
incurring the space penalty discussed in section 2.1. The costs of heap allocation are incurred only as needed.

2.3.1 Ordering: An Example

To illustrate the use of the LAMINA functional programming interface, we develop parallel implementations
of the serial (quicksort) algorithm to associate ordering information with sets of numbers, shown in figure 2.2.

The input to ordero is sets of numbers to be ordered. Elements of a set are the sequential elements of a
list, and sets are separated by a nil token. The sets (including their separator tokens) are concatenated to
form the input list The output is a list with each ordered set represented by successive elements of a list

2-339

(defun ORDERO (input-list)
"Serially order elements of input sets"
(if (null input-list) ; done

nil
(let ((pivot (car input-list)))
(it (null pivot) ; end of set marker

(cons nil (orderO (cdr input-list))) ; do next set
(multiple-value-bind (smaller larger rest)

;; partition set around pivot
(partl pivot (cdr input-list))

;; recur and collect
(let ((ordered-smaller (orderO smaller))

(ordered-larger (orderO larger))
(ordered-rest (orderO rest)))

(append ordered-smaller
(list pivot)
ordered-larger
ordered-rest)))))))

(defun PARTI (pivot input-list)
"Partition one set of input around pivot"
(let ((input (car input-list)))
(if (null input) ; separator token

(values 0 0 input-list)
(multiple-value-bind (smaller-part larger-part rest)

(part] pivot (cdr input-list))
(if (> input pivot)

(values smaller-part (cons input larger-part) rest)
(values (cons input smaller-part) larger-part rest))))))

Figure 2.2: Serial Ordering

2-3,10

and separated from other ordered sets by nil tokens. The sets follow each other in the output in the same
order in which they appeared in the input. For example, the input list

(7 9 4 nil 5 3 8 nil)

would result in the output

(4 7 9 nil 3 5 8 nil)

Thus the information concerning the ordering of the elements of a set and the identity of that set is implicit
in the output.

The result of ordering nil is nil. If the input list is not nil, the first element of that list is used as a pivot;
otherwise, it is a separator token, and the result then is the separator followed by the result of ordering the
rest of the list. A numeric pivot is used by patti which returns: the (unordered) elements of the current
set smaller than the pivot, the (unordered) elements of the current set larger or equal to the pivot, and the
remaining elements of the input.

Functional Ordering

A parallel version of ordero is shown in figure 2.3.1 The function orderl recursively spaw.1s itself with
each of the three sublists returned by patti, then waits for the ordered results. When these are available,
it appends the ordered sublist of elements that were smaller than the pivot to the list formed by the pivot,
the ordered sublist of elements that were not smaller than the pivot, and the result of ordering the rest of
the sets in the input.

The operation of orderl is characterized by much waiting for the results of spawned computations. The
pattern of execution is to spawn a set of computations-using future-and immediately wait for all their
values to be produced-using with-values. This waiting represents serialization due to data dependencies
aiid can significantly limit the concurrency of an algorithm. If, instead, computations can be handed just
what they each require to get started (with promises for the rest), they can be pipelined as computation
assembly lines, each station operating on a piece of the input from upstream producers and delivering a piece
of the output to downstream consumers.

Pipelined Functional Ordering

A pipelined ordering algorithm is developed in figure 2.4. This scheme recursively forms a tree of spawned
computations with one leaf for each element and each separator token in the sets of elements to be ordered.
Each non-leaf node of the ordering tree partitions its input by sending each input element it receives (from
its upstream parent) to one of its two downstream children. The smaller child was created such that its
result is used as the result that the parent was asked to produce and the rest of its input is the result of the
larger child. The larger child created such that if it is a leaf (that is, if it has nothing to order), its result
will be the rest of the items given to the parent. The rest of the items seen by the largest descendent of the

The '?' as the frist character of a variable name is purely notational conenience to idrmtify a potentil future.

2-341

(defun ORDER1 (7input)

"Recursively spawn ordering partitioned input sets"

(WITH-VALUES ((input-list ?input))
(if (null input-list)

0

(let ((pivot (car input-list)))
(if (null pivot)

(WITH-VALUES ((rest (orderi (cdr input-list))))
(cons nil rest))

(multiple-value-bind (smaller larger rest)
(partl pivot (cdr input-list))

(WITH-VALUES ((ordered-smaller (FUTURE (orderl smaller)))
(ordered-larger (FUTURE (orderl larger)))
(ordered-rest (FUTURE (orderl rest))))

(append ordered-smaller
(list pivot)
ordered-larger
ordered-rest))))))))

Figure 2.3: Functional Ordering

smaller child is the result produced by the smallest descendent of the larger child. Thus, using an approach
similar to difference-lists in logic programming, the results of the leaf elements are tied together to produce
the result of the ordering tree.

The first input a child receives establishes the pivot for partitioning, unless it is the separator token, nil. If
it is nil and there is more input, the child returns nil as the first part of the result together with a promise
for ordering the rest of its input followed by those values larger than anything in that input. If there is no
more input, it just returns promises for the results of its larger relatives, that is, the rest-pair.

The receipt of a separator token while partitioning indicates that all the elements of a set to be ordered have
been received. A terminator, nil, is passed to the smaller child and a separator followed by the rest of the
unordered input (if any) is passed to the larger child.

The code for this example is written using single-valued fatures. Sequences of values are repres nted (that
is, 'streams' are simulated) by pairs consisting of a value and a future for the rest of the sequence. The
value of the future, when available, is a pair which itself consists of a value for the next element in the
sequence and a future for the rest of the sequence. The consequence of this approach is that many short
lived dynamic references are created (so that each element of the sequence has an independent reference)
and then abandoned. Reclaiming the space allocated for them requires the expensive global synchronization
as discussed in section 2.1.

Relaxation of the single Nalue assumption for structures rprr.senting unafalalle Nalues is discussed in the
following section.

2-342

(defun ORDER2 (?input &optional rest-pair)
"Future pipeline: rest and input pair (or its future) => ordered pair"
(WITH-VALUES (((pivot . rest-input) ?input)) ; Coerce value

(if (null pivot)
(if (null rest-input)

rest-pair
(cons nil (FUTURE (order2 rest-input rest-pair))))

(1ITH-VALUES ((('smaller ?larger)
;; Get promises for first elements of partition
(FUTURE (part2 pivot rest-input))))

;; Spawn larger ordering, continue ordering smaller
(order2 ?smaller

(cons pivot (FUTURE (order2 ?larger rest-pair))))))))

(defun PART2 (pivot ?input)
"Produce (<future> <pair>) or (<pair> <future>) for (<smaller> <larger>)"
(WITH-VALUES ((input-pair ?input)) ; Coerce value

(if (null input-pair)
nil
;; Destructure pair as (value . future)
(destructuring-bind (input-value . rest) input-pair
(if (null input-value)

(list nil (cons nil rest))
;; Spawn continuation of this partitioning

(let ((part? (FUTURE (part2 pivot rest))))
;; and get futures for destructured value of continuation
(let (('smaller

(WITH-VALUES ((value ?part)) (first value)))
(?larger

(NITH-VALUES ((value ?part)) (second value))))
;; Return list: (<future> <pair>) or (<pair> <future>)
(if (input-value pivot)

(list ?smaller (cons input-value 7larger))
(list (cons input-value ?smaller) ?larger))))))))

Figure 2.4: Pipelined Functional Ordering

2-343

Task stream

f oooo(methods)

message -- : ressag. send

State variables of emoorcry variables
(inaefinite extent) (cynaomc extent)

Figure 2.5: Message passing model

2.4 Object Oriented Message Passing

The LANINA object programming model is founded on the notion of asynchronously communicating objects.
An object, as used here, is a collection of variables-its state arzables-manipulated by (and only by) a set
of procedures-the methods associated with that object. Objects may be defined within a compiled class
inheritance network: the current implementation uses the inheritance facilities of Flavors.

A LAMINA object is allocated in local space and is referenced externally by its task stream, a stream main-
tained as one of its state variables. The information placed on this stream (. nat is. provided as its values)
specifies tasks for the object; each unit of information is called a message k message is internally structured
as a task request posting, whose value consists of a task selectorsymbct r - !dentifies the method to execute,
along with the associated parametric values for the execution.

2.4.1 Computational Flow

As illustrated in figure 2 5. the messages arriving on an object's task stream specify tasks to be performed
by that object. Every object has a spawned dispatch process associated with it that removes and executes
each message on its task stream in turn Tasks usually mutate the state 'aziables of the object and generate
new messages. Trhey have exclusive access to their environment -'i.e , state -.n,1 tomporary '.ariables) during
execution.

Tasks are data driven in that they are started only when all the needed information is aai!able. T>picaily. a
single message, in conjunction with the -bject's state variables, contains all the relevant information for the
task execution. Tasks are generally iifn,led to be accomplished as the 4tages :,f ptpohrtes that organize the
work performed by the objects of the appication In order not to block t pq'ne, t -nce starte,l. is
run to completion.

Providing Atomicity

Although LAMINA provides the pro-r-uanr w~th a run-t-ccmpiet;on mrc.lel. there may be system reasons
for preempting a task. for example. 'o h minle a 4ieblig trap or because I.:- t.-k's run quantum has expired.
When this occurs, the object does not -%-'" m.,,)rher a.ks .ntil the - - i::s resolvd. rhis prevents

2-344

other tasks on that object from gaining access to the environment of the suspended task. However, since
other objects may execute tasks during this time, true atomicity can only be enforced if no state is shared
between execution environments. The mechanism by whiAh objects communicate ensures this.

LAMINA objects can never share state because they only communicate by exchanging messages containing
independent copies of local structures. Furthermore, the state variables of an object are only visible to its
own methods and are therefore only accessible within a private task. Thus the atomicity of operations on
an object is preserved even in the presence of preemptions.

2.4.2 Programming Objects

Sending a Task Request

Se. ling a task request message in LAMINA is non-blocking so as to directly accomodate pipelined operations
on objects. The construct fox asynchronously sending a message is sending, which takes as arguments one
or moic target task streams, a task selector symbol, and a list representing the parameters to be provided
to the task executions. Since sending is no more than syntactic sugar for the posting primitive, the sender"
may provide additional control or debugging information as described in section 2.2.

The value immediately returned by sending is the list of clients supplied. As a convention, the clients may
expect to receive consequent task requests later in the c-)mputation.

Defining Objects

LAMINA object types are built upon the base flavor, lamina, which defines the instance variable, Self-Stream
that stores its task stream. The default kind of task stream is a normal unordered stream; the 'mixin' flavors
ordered-self-stream and sequenced-self-stream, are provided to override this default.

As an example similar to the one discussed in section 2.3, a LAMINA object to associate ordering information
with the numerical values of the elements of sets is defined in figure 2.6. In the example, the state variables
of an order3 ordering object are all named, the default initializations specified, and any state variables to
be initialized by a creator are identified.

Trigger Methods

The 'top level' methods executed as tasks by LAMINA objects are called triggers. They are defined using the
deftrigger macro as shown in figure 2.6. The parameter list provided to deftrigger corresponds to the
value (and the other information, which can be optionally ignored) containined in each posting received on
its task stream. In particular, the parameter specification may !,e u- ed to destructure the value provided,
as is done in the example.

2-34.5

Creating Objects

The form

(creating type initializations for clients on site ...)

stipulates the creation of a object on the indicated site, or on a randomly selected site if none is indi-
cated. When the creation has been accomplished, the client streams will receive a posting whose value is
the task stream of the created object.

The initializations are a list of alternating keywords (corresponding to the state variable names for the object
being created) with their initial values. These values are computed in the context of the object requesting
creation. As an example, creating forms are included in the order3 :control method definition shown in
figure 2.6. The function create-self-strea is provided to create a stream as defined by the type of the
LAMINA object being created. This can be used, as in the example, to create the object's task stream before
the actual object has being created.

2.4.3 Ordering Example

In figure 2.6, iteration and assignment replace the recursion and binding used for the functional programming
ordering example shown in figure 2.4. Sequences of values on streams are represented by long lived streams
that couple producing and consuming ordering objects. The objects make use of supporting procedures
defined in figure 2.7.

Each :element message manipulated by the ordering routine indicates the value of the element to be ordered
and the set in which that element appears. The output -:element messages include this information together
with the calculated order of the element in the indicated set. An :end message may be generated either by
the root calculation requesting a set be ordered or by intermediate ordering objects serving that calculation,
Each such message includes a set identifier, the number of elements the receiver should expect for that
set, and the (base) order of the smallest element to be expected. The order3 objects keep track of this
information for each set they are dealing with via a property list of control records. The set of an input is
used to retrieve the appropriate control record from anmong those in use by the object.

If there is no pivot yet received to use in partitioning the set, the ordering object saves tlhe input value as
the pivot for the set. Otherwise, the :element trigger method passes th," input element to either its larger
or smaller child and counts the number of elements sent. to the smaller child. If all the expected inputs for
a set have been received, an :element message including the value, the set. and the order of the value in
the set will be sent to the result stream. An :end message will be sent to any children that have been seit
elements of the set to order.

2.4.4 Implicit Continuations

For LAMINA objects,. continuations of a comuptitation are often some explicit t rlgg,,r met hod of snm, explicit
object. There are ,ases. however, in which it is inconvenient to create an explicit namle for a cont iimii;tion. As

2-346

(defstruct CONTROL
((pivot nil) (base nil) (expected nil) (count 0) (smaller 0)))

(defflavor ORDER3
((Controls ' 0)
(Smaller-Child nil)

(Larger-Child nil)
Result-Stream)

(LAMINA) ; inheritance

(:initable-instance-variables Result-Stream))

;;; 'Trigger' methods

(DEFTRIGGER (order3 :ELENENT) (input)

"Partition by established pivot or get pivot; check for completed set"

(let* ((value (first input))

(set-id (second input))
(control (send self :control set-id)))

(cond

((null (control-pivot control)) ; set pivot for [ne] set
(setf (control-pivot control) value))

((>- value pivot)

(SEEDING Larger-Child :element input))
(:else

(SENDING Smaller-Child :element input)
(incf (control-smaller control)))) ; Count smaller in set

(send self :completed? control set-id)))

(DETRIGGER (order3 :END) ((base set-id expected))

"Note base and send :end to children it complete'

(let ((control (send self :control set-id)))

(setf (control-expected control) (1+ expected))
(setf (control-base control) base)

(send self :completed? control set-id)))

Figure 2.6: Ordering with LAMINA Objects

2-347

;;;

';; ;Regular' methods

(defmethod (order3 :control) (set-id)
"Get or create control for input; maybe make descendants"

(unless Smaller-Child
(setf Smaller-Child (CREATE-SELF-STREAM 'order3)

Larger-Child (CREATE-SELF-STREaM 'order3))

(CREATING 'order3 (list :self-stream Smaller-Child

:result-stream Result-Stream))

(CREATING 'order3 (list :self-stream Larger-Child

:result-stream Result-Stream)))
(or (getf Controls set-id)

(setf (gett Controls set-id) (make-control)))))

(defmethod (order3 :completed?) (control set-id)
"Count received in set against expected and finish set if complete"

(let ((expected (control-expected control)))

(when (eql expected (incf (control-count control)))

(let ((pivot (control-pivot control))
(base (control-base control))

(smaller (control-smaller control)))

(let ((pivot-order (+ base smaller))

(larger (- expected smaller 1)))
(SENDING Result-Stream :element (list pivot set-id pivot-order))

(when (plusp smaller)
(SENDING Smaller-Child :end (list base set-id smaller)))

(when (plusp larger)

(SENDING Larger-Child :end (list (1+ pivot-order) set-id larger)))

(remf Controls set-id))))))

Figure 2.7: Support for Ordering Objects

2-3.18

(DEFTRIGGER (distributer :start-servera) ((count input-stream))
"Round robin distribution of input requests to created server pairs"
(let ((servers nil)

(as (CREATING 'a '0 for (NEW-STREAKI) on (RANDO-SITES count)))
(be (CREATING 'b 'O for (NEW-STREAK) on (RANDO-SITES count))))

(TH-POSTINGS ((a as) (b bs))
(cond

((null servers) ; first invocation of continuation
(setf servers (circular-list (list a b))) ; single elt
(WITH-POSTINGS ((request input-stream)) ; start distributer

(SENDING (pop servers) :request request))) ; multicast
(:else ; other invocations, upto count

(push (list a b) (cdr servers)))))))

Figure 2.8: Implicit Continuations

a syntactic construct, execution of a continuation of a computation can be specified to occur in the context
of an executing object (as defined by its set of state variables and the environment of the continuation) each
time that postings have been received on some given streams. The execution spawning the continuation is
finished normally and then the next operation to be done on the object is taken from its task stream without
delay. Thus LAMINA objects can be viewed as monitors (because the independently atomic operations on
objects give the required mutual exclusion) but operations on them are unnested. This is done to facilitate
pipelined operation:, task request postings queued for operation on an object are not deferred for a pending
continuation.

The construct

(with-postings stream-bindingsform)

creates an implicit continuation in the context of an object. The stream-bindtngs is a list, each element
of which is a list of a binding-pattern and a stream. Each of the postings on the indicated streams (including
the posting clients, tag, key, origin, and properties) will be destructured and bound to a corresponding
variable identifier according to the associated binding-pattern. These variables and associated values are also
part of the execution environment of the continuation.

As an example of the use of with-postings, consider the example shown in figure 2.8. It uses nested
with-post:*ngs constructs to create continuation closures that first create and collect pairs of lamina objects
and then distribute requests on an input stream to the collected triples in a round robin fashion. Note that
instance variables may be accessed by the continuations.

The implicit continuation will be executed atomically with respect to any other operations on the indicated
object and in the context of its state variables and the lexical environment in which the form appears. A
schematic of the mechanism supporting implict continuations in objects is shown in figure 2.9.

2-349

CIOSM

[21 It1 satkiu WUk

Fig~ure 2.9: Continuation Closures
L rl References for streams on which responses aze expected are sent in task request postings to other objects asplaces
to supply response postings. (2) Intermediate variables (that is. the environment) and a pointer to a block of %Ide
required to execute the form wrapped in a with-postiLngs construct are captured in a continuation closure, attached
to a stream, and finked to the stream(s) on which responses are excpected. 'I 'Whcn all -equired postings become
available on these streams, (4) the response postings together with the closure are sent to the task stream .Qf -he
object that generated the closure.
The closure is executed (in its turn) atomically within the context of the object and le'c-cal environ ment of the form.

Variable bindings are made as specified to the elements of the ava.dable responte postings. Note that the ex!cuion
that spawned execution of the closure and the execution so spawnc' Lre independently atomic. The state variabies
of the object and any structures they reference can be changed by iome other p-!ration ta~ken fromn the task stream6-
between the two executions. The syntactic convenience is only that; tn%,ariants 'hat need to he preserved across
independent executions need to be met -it the boundaries between the execu:;on that s;pawned execution of the
closure and the execution so spawned.

2-350

2.4.5 LAMINA Objects and ACTORS

The LAMINA object model is similar to Acrons, in that message arrival triggers computation and message
arrival order is non-deterministic. However, it departs from AcTORs in a number of ways, primarily by
trading off flexibility for efficiency.

" Not everything is an object. Predefined data ty)pes such as numbers, symbols, arrays and cons cells
exist as primitives, and operations on them do not entail message-passing. Although structures are
passed by copying, they are locally mutable.

* Streams are first-class entities independent of objects. Objects may establish communications over
streams other than their task streams. Stream may aso be shared between objects as described in
section 2.2.

9 The default operation of a LAMINA object is serial command execution. For serial execution sequences,
stack allocation of dynamically allocated structures can be used where the compiler can determine that
referenc-s-to the structures have dynamic extent.

" Mutation is explicit. Unlike actors, LAhMNA objects do not deal with state changes by specifying a
replecement actor for themselves, but rather explicitly manipulate their own state variables through
assignment.

• Although structures are passed by copying, they are locally mutable. Tasks may change them and pan
the changed structure to some other object. The copying done to transmit the structure will occur
asynchronously with method execution-

" Finally, LAMINA relies on compiled inheritance for method combination rather than upon runtime
delegation, and it does instantiation by compiled template rather than by cop nng a selected instance
with specified exceptions.

2.5 Shared Variables

Shared variables in LAMINA are cells that are managed by a mer-ry controller and whose associated value
may be mutated. LAMINA also supports shared data pairs ('conses) and arrays. A shared variable reference
is constructed, accessed, and mutated by the interface operations described in this section. For all these
operations, execution is deferred and no other executions are performed by the initiating processor until the
indicated operation is accomplished. 2

Shared queues (which are modelled using streams) are also provided. These queues are naintained in a
processor's local memory. When a proces- reads from a shared queue, it is halted and descheduled; execution
is resumed when the requested data arrives.

2 N,,4e that. beause t- sinmulator is executing in a upiprocessar enviran --. a stack nost be mtuantaned far ea& tiefered

execujtion. Thus ex-itions anust be remuabe (ruw nwrtzy rexx -zta k) to ue the Awed vaiar L AuwA :mnzwfe. Tim sa
discused in section 2.2.

2-351

2.6.1 Creating and Accessing Shared Variables

A single shared variable can be allocated and initialized using the shared-variable operator, that takes
as a required argument the initial value for the shared variable, and creates and returns a reference to a
cell containing the indicated value. The value of the cell, in general, must be a self-referential datum or a
dynamic or static reference.

An optional argu ,eant can be used to specify a memory site at which to allocate the cell; if it is omitted, a
ranidomly selected memory site is chosen. Alternatively, the macro

(in-memory stie-identifier ...)

can be , d to specify a default site for all allocations (for simple as well as structured shared variables)
performed within its dynamic scope.

Once a shared variable has been allocated, the following constructs may be used to access or alter its value:

" (shared-read cell) retrieves the value of the referenced cell.

" (shared-write cell value) modifies the value of the referenced cell. The new value i, returned.

" (shared-exchange cell value) perfor- - the same function as shared-write, except tt.... -rior
value of tia r:,ference is returned. Th .chang: is atomic.

* (shared-replace-conditional cell A1d new; atomically compares the contents of the referenced cell
with old, and, if they are identical, replaces the contei,'.s with new.

For each of these costucts, the operation is guaranteed to be completed before execution is resumed.

2.5.2 Shared Data Structures

LAMINA also provides support for shared data structures, n;mely shared pairs and shared arrays. Shared
pairs form the foundation of linked data stricures such as lit, t ind gr-tphs.

"'he -onst'uctor

(shared-cons car-value cdr value)

(-eates and initializes a shared Fair, returning a reference to it. l'he accessors are, naturally, shared-car
and E harei-cdr, while the mutatc.,s are shared-rplaca and shared-rplacd. Also, the form

(cache-shared-p-A r shared-pair-refrrence)

may be used to make a local, that is, non-shared, copy of a shared pair in local space

2-352

The form

(shared-array dimensions)

returns a reference to a shared array. The dimens;ons argument is a list of positive integers, denoting
the size of each dimension of the array. There are optional :initial-element and :initial-contents
keyword arguments, which may be used, respectivwy, to initialize all the elements of the array to the single
value specified or to initialize each element of the array to the value of the corresponding element in a list
or a list of lists. Shared arrays are initialized to nil by default.

The accessor shared-aref reads elements of the shared array. The mutator shared-aset writes ar-
ray elements. Both operations are bounds-checked against the dimensions of the array. Finally, the
cache-shared-array function returns a local (non-shared) copy of the referenced shared array, while
fill-shared-array copies data from a local array inito a shared array.

2.5.3 Shared Queues

A shared queue construct, which is implemented as a LAMINA stream, is also provided. Shared queues are
managed by a processor which provides atomic access to the queue and, when the queue is empty, maintains
a FIFO queue of processes toquesting data from it; the requests are serviced when data is added to the
queue. Further, whenever a process attempts to remove data from the queue, the process is descheduled;
execution is rescheduled when the requested data ,rrives.

Shared queues are created by the shared-queue function, which takes one optional argument represent-
ing the queue's tag, which may be used for debugging. Items may be added to the queue with the
shared-enqueue function. Tk,: shared-dequeue function removes and returns the top item of the queue,
while the shared-queue-top function merely returns it.3 A shared-queue-p predicate is also provided to
test whether an item is a shared queue.

Unlike other shared variable operations, accesses to shared queues do not cause the initiating processor to stall
waiting for completion. A process executing shared-, queue continues immediately, without waiting for the
data to arrive on the queue. A process which accesses a queue, using shared-dequeue or shared-queue-top,
will be halted and descheduled. Execution is rescheduled when the data arrives, but the initiating processor
may perform other executions in the meantime.

2.5.4 Other Synchronization

A simple spin lock is provided for busy-wait syrchronization. A lock is implemented as a cell that is ini-
tialized to a value other than nil, and and the atomic exchange operation is used to set and clear it. The form

(with-spin-lock lock form)

3 1n the current implementation, only FIFO queues are provided, and (in order to maintain a consistent timing model for
cross address space transmissions) only shared variable or shared queue references may be placed on a shared queue.

2-353

executes the given form after aquiring the referenced lock; subsequently, the lock is released and the value
produced by the execution of the form is returned.

Such a synchronization operator might be used in incrementing a shared counter as in4

(defun locked-increment (<counter> <lock> &optional (delta 1))
(WITH-SPIN-LOCK <lock>
(SHARED-WRITE <counter> (+ (SHARED-READ <counter>) delta))))

Locks can also be constructed from shared queues, as is done by LAMINA to implement mutual exclusion
locks. To release the lock, a process places a token reference on the queue. A process acquires the lock by
removing the token-any ether process which attempts to remove it will be blocked until the owner of the lock
replaces the token. Alternatively, reading but not removing the token (by using shared-queue-top) allows
more than one process to be resumed. This last approach more closely resembles the type of synchronization
provided by signalling and waiting on condition variables in a monitor.

Figure 2.10 shows an example of using some of these synchronization schemes in generating a closure to
perform operations on a shared buffer realized as a shared variable array.5 Processes first gain access to
the shared array by spinning on a lock. Once access is granted, items are inserted or removed. An attempt
to put information in a full buffer returns nil. When an attempt is made to remove data from an empty
buffer, a shared queue (rather than data) is returned; the requesting process may then wait for something
to be placed on this qu..ue by ... uting shared-queue-top.

2.5.5 Ordering Example

As an example of using the LAMINA shared variable interface, we present yet another implementation of
ordering, this one using shared variables. The sets to be ordered are represented as shared arrays.

Each processor executes an identical thread of execution, as defined by the order4 function that is shown
in figure 2.12. Ordering requests are distributed to the threads through a shared buffer manipulated by a
closure previously formed by calling the shared-buffer function. A request consists of a reference to a
shared array and indices representing the left and right boundaries of the array (or sub-array) to be ordered.
Each thread executes in a loop as follows:

* If there is an array (or sub-array) to order, the thread partitions the sub-array, using t he part4 rout ine,
shown in figure 2 11. The order of the set element used as the pivot is now established so the set element,
its order, and the reference for the array (as a set identifier) is placed in the specified result queue.

" If both sub-arrays resulting from tih partition are longer than two elements, the thread adds an
ordering request to the queue for one sub-array and orders the other. If either sub-array has two or
fewer elements, the ordering is trivial, so the thread does it (using the maybe-exchange function, also
shown in figure 2 11) If neither sub-array has more than two elements, after the thread orders the

'By convention, references to shmed 'aliables and shared ciiUcs ate denoted by enclosing angle brarckts, as in <lock>.
'The astute reader will note that the closure envilonment itself is not explicitly represented as shared;. this is a modelling

convenience clue to the fact that the environmen is not modified during the lifetime of the closuie.

2-3-54

(defun SHARED-BUFFER (size)
(let ((<signal> (SHAPED-QUEUE ':signal))

(<empty> (SHARED-VARIABLE)

(<lock> (SHARED-VARIABLE)
(<uffer> (SHARED-ARRAY size :initial-element nil))
M~ead> (SHARED-VARIABLE 0))

(<tail> (SHARED-VARIABLE 0))
*' (lambda (operation koptioraal value)

(WITH-SPIN-LOCK <lock>
(let* ((head (SHARED-READ <head>))

(tail (SHARED-READ <tail>)))
(ecase operation
(:nsert
(let ((new-tail (mod (11- tail) size)))

(if (- head new-tail)
nil
(progi

t

(SHARED-ASET value <buffer> tail)
(when (SHARED-READ <empty>)

(SHARED-WRITE <empty> nil)
(SHARED-ENQUEUE <signal> <signal>))

(SHARED-WRITE <tail> new-tail))))
(:remove
(if (not (- head tail))

(let ((new-head (mod (1+ head) size))
(SHARED-WRITE <head> new-head)
(SHARED-AREF <buffer> head))

(unless (SHARED-READ <empty>)
(SHARED-WRITE <empty> t)
(SHARED-DEQUEUE <signal>)))))))

Figure 2.10: Shared Buffer

2-355

(defun PART4 (<array> first last)
"Does partition on array, and returns position of pivot"
(labels

((first-larger (<array> index limit pivot)
(loop for position from index to limit

as item - (SHARED-AREF <array> position)
when (>= item pivot) return (values item position)
finally (return (values item (I- position)))))

(first-smaller (<array> index limit pivot)
(loop for position downfrom index to limit

as item = (SHARED-AREF <array> position)
when (<= item pivot) return (values item position)
finally (return (values item (1+ position)))))

(part4-step (<array> left right pivot pivot-index)
(multiple-value-bind (larger-item larger-index)

(first-larger <arry> (1+ left) right pivot)
(multiple-value-bind (smaller-item smaller-index)

(first-smaller <array> right left pivot)
(cond

((> smaller-index larger-index)
(SHARED-ASET smaller-item <array> larger-index)
(SHARED-ASET larger-item <array> smali ir-index)
(part4-step

<array> larger-index (1- smaller-index) pivot pivot-index))
(:else

(SHARED-ASET smaller-item <array> pivot-index)
(SHARED-ASET pivot <array> smaller-index)
smaller-index)))))))

(part4-step <array> first last (SHARED-AREF <array> first) first))

(defun MAYBE-EXCHANGE (<array> first second)
"Exchanges first and second items, iff first is greater."
(let ((first-item (SHARED-AREF <array> first))

(second-item (SHARED-AREF <array> second)))
(when (> first-item second-item)

(SHARED-ASET second-item <array> first)
(SHARED-ASET first-item <a-ray> second))))

Figure 2.11: Shared Variable Partition and Exchange

2-356

(defun ORDER4 (<threads> <lock> requests results &optional request)
(destructuring-bind (<array> first last) request

(if <array>
(let* ((pivot-position (part4 <array> first last))

(contents (list (SHARED-AREF <array> pivot-position)

pivot-position <array>)))
(funcall ; Order of pivot data element is established

results :insert (SHARED-ARRAY '3 :initial-contents contents))
(let ((left-diff (-pivot-position first))

(right-diff (- last pivot-position)))
(cond

((and (> left-diff 2) (> right-diff 2)) ; Order right partition
(let* ((request (list <array> first (1- pivot-position)).)

(request-block (SHARED-ARRAY 3 :initial-contents request)))

(when (null (funcall requests :insert request-block))
(order4 <threads> <-rk> requests results request))

(order4 <threads> <lock. requests results

(list <array> (1+ pivot-position) last))))

((> left-diff 2) ; Exchange right and then order left
(when (- right-diff 2) (maybe-exchange <array> 01- last) last))
(order4 <threads> <lock> requests results

(list <array> first (1- pivot-position))))
((> right-diff 2) ; Exchange left and then order right

(when (- left-diff 2) (maybe-exchange <array> first (1+ first)))
(order4 <threads> <lock> requests results

(list <array> (1+ pivot-position) last)))
(:else ; Order by exhange for both left and right
(when (= right-diff 2) (maybe-exchange <array> (1- last) last))
(when (left-diff 2) (maybe-exchange <array> first (1+ first)))
;; Declare completion of ordering request and try again
(locked-increment <threads> <lock> -1)
(order4 <threads> <lock> requests results)))))

;; else get next request

(let ((<request> (funcall requests :remove)))
(if (SHARED-QUEUE-P <request>) ; If buffer was empty...

(if (zerop (SHARED-READ <threads>)) ; signal termination
(SHARED-ENQUEUE <request> <request>)
(progn (SHARED-QUEUE-TOP <request>) ; or block till signalled

(order4 <threads> <lock> requests results)))
(progn (locked-increment <threads> <lock>) ; Else, pick up request

(let ((request (coerce (CACHE-SHARED-ARRAY <request>) 'list)))

(ord.r4 <threads> <lock> requests results request))))))))

Figure 2.12: Shared Variable Ordering

2-357

sub-arrays, it signals that one less thread is currently working on any ordering requests and notes that
it has no array to order.

* If the thread has no array to order, it attempts to remove a request from the queue. If successful,
it signals that one more thread is trying to do ordering and orders the (sub-)array identified by the
request. If the attempt is unsucessful and there are no other working threads, there will never be
any more requests generated so the thread terminates. Otherwise, it tries again to remove a request
from the queue. Note that the first thread to terminate places a token on the shared synchronization
queue-this wakes up the other threads, which will then terminate.

2-358

Chapter 3

CARE System Simulations

This chapter describes the CARE value passing machine model developed to support applications written
using LAMINA., In particular, it describes the system components in the CARE library, the parametric
variations that may be made to these, and the runtime view of the application presented by the default
instrumentation of a configured design. It concludes by detailing the steps that a user follows to simulate a
design running an application written using LAMINA.

3.1 A Value Passing Machine Model

In order to simulate the execution of programs expressed using the LAMINA programming model, the hard-
ware system supporting the model needs to be considered. CARE has a component library to provide such
support. This library includes the following components:

Evaluators which are responsible for execution of runnable application processes;

Operators : which are responsible for creating and accepting messages (including encoding and decoding
values as necessary) and queueing runnable processes for the evaluator's attention;

Fifo-Buffers : which maintain queues of messages between an operator and the network;

Net-Outputs : which are responsible for transmitting messages from a site to a neighboring site or, as a
special case, to the operator's incoming fifo-buffer;

Net-Inputs : which receive messages from neighboring sites and request connections to suitable net-outputs
for retransmission to that net-output. As a special case, one net-input on each site receives messages
from the operator's outgoing fifo-buffer rather than from a neighboring site;

Sites : which coordinate connections from net-inputs to net-outputs. Site library components have sub-
structure as shown in figure 3.1.

2-359

EfE-

Figure 3.1: Site Library Component

The operator, the evaluator, and the fifo-buffers associated with a giveit ite are assumed to share access to
a common local memory. In the value passing machine model, there is c., ,lobal memory: all memory in the
simulated design is local to some site.

Message transmission is accomplished by local flow control and cut-through routing with routing decisions
locally and dynamically accomplished through the interaction of a site with an associated net-input (indepen-
dently of the operator or evaluator at that site). Parametric choices permit modelling of a %ariety of routing
strategies to select among appropriate and available net-outputs as well as variation between cut-through
routing and (simple) wormhole routing. In cut-through routing, messages which can not be routed from the
site via an appropriate net-output are instead locally buffered by being sent to the operator. The message
will then be sent on its way again by the operator at some future time. Multicast transmission with deadlock
recovery is supported by the CARE library components by default but may be surpressed if desired.

3.1.1 CARE Library Component Parameters

The operating characteristics of the CARE component models may be changed parametrically to represent
a range of alternative hardware systems-both for a alue passing model supporting the LAMINA object
oriented paradigm and for a reference passing model supporting the LAMINA shared -.ariable paradigm
discussed in the next chapter.

The base system cycle time is normally set as lOOns. In this time, each site (asynchronously with other
sites) issues one instruction, executes one arithmetic unit operation, makes routing decisions, and transfers

2-360

information from the net-outputs of one site to the net-inputs of neighboring sites.

The default settings for the (network and operator) communication facilities of the system reflect expectations
that:

" creating and accepting a message each require a minimum of 100 cycles for 'basic service overhead' (to
gain the attention of the operator and setup internal registers) no matter how small the message;

" encoding and decoding each require an additional 16 cycles for each 32-bit word transmitted and
received-this is the 'packet formatting' time;

* 'transmission' of one 32-bit word from a net-input of one site to the net-input of a directly connected
site requires 16 cycles-8 cycles from the net-input to a selected net-output on the site and 8 cycles
from that net-output to the net-input of another site directly connected to it (corresponding to a 4-bit
data path between sites);

" routing decisions never result in moving information away from the target of that information but they
do permit alternative paths to the target. This is labelled 'directed' routing;

" 'queue insertion'-including a message in a stream other than as the last item of that stream (as
specified by priority information in the message) requires 10 cycles for each previously included message
between the place the new message is put and the last item of the stream;

" 'process creation' (for the value passing model) and 'stack group creation' (for the reference passing
model) require 150 cycles to form the appropriate control structures and pre-allocate storage; and

" there is no 'buffer bound' on the fifo-buffers. It is assumed that the shared storage at the site is utilized
for this purpose and that this is significantly larger than what is required for message buffering. The
user can study performance of systems for which this is not true by setting the fifo-buffer bound to the
number of messages that are to be buffered.

The evaluator by default is expected to execute ten million instructions per second. This applies the most
stress to the remaining components of a CARE multiprocessor design that a machine with a 100ns instruction
issue rate could possibly accomplish. However, the evaluator 'speedup factor' which establishes evaluator
performance can be adjusted to model whatever applications performance a single simulated processor is
expected to provide relative to the performance of the processor on which the simutlation system is being run.
For debugging purposes, the time of all evaluator operations can be fixed by setting the 'evaiator override'
to a non-null value.

The remaining parameters reflecting evaluator performance are 'context switch override' time (for the value
passing model) and 'stack group override' time (for the reference passing model). Both of these are set by
default to 300 cycles-representing the time to save and load register contents in a machine and oth, wise
deal with ("lightweight") process transitions in order to perform an evaluation for the next runnable process.
No optimization is made for the case where two successive process executions involve operations on the same
context or stack group. The user can use the simulating machine's actual context or stack group switch time
by supplying a null value for this parameter.

By default, there is no bound on the number of runnable processes that may be qmed for execution by a
given evaluator so the 'process queue bound' is null.

2-361

The remaining CARE simulation parameters control the documentation and operation of simulation runs.
The user may include arbitrary 'comments' in the output of the simulator in order to label results with
experimental conditions beyond the simulator parameters just discussed. Lastly, if a simulation is a 'pro-
duction CARE run', garbage collection and external interrupt conditions are set to improve the repeatability
of runs at the cost of some interactiveness in the simulation. When debugging applications, the user should
set this parameter to 'no'.

2:62

3.2 Seeing Multiprocessor Application Activity

In the LAMINA object computational model, objects interact by passing messages. In tile CARE value pass-
ing machine model, message arrival triggers component activity. To provide a consistent perspective for the
computational model, the machine model, and a measurement model, our measurement model is based on
monitoring message traffic. This leads us to an instrumentation system that monitors machine activity in
terms that are relevant to the computations performed by the application. We measure message volume,
message patterns in space, and message patterns in time to characterize the operation of the computational
model. To explain these measurements, we measure network conflicts, scheduling overhead, and synchro-
nization delays in monitoring the operation of the machine model.

By monitoring communications, we monitor process interactions. By monitoring process interactions, we
monitor the computation. In order that our simulation is responsive as well as accurate, we simulate only
the behavior in response to communication events and the time between such events. No other activity is
relevant to our measurements and therefore no other activity is relevant to our simulation. Further, to know
the time between communication events driven by execution of the application, we need only time actual
execution between communication events. Such activity need not be simulated.

The ability to monitor CARE components and LAMINA objects is provided by means invisible to the appli-
cations programmer. In writing applications, no attention need be given to instrumentation for monitoring
its activity. The underlying class behaviors of LAMINA objects and CARE components provide this facility.

3.2.1 Panels of the OBSERVER Instrument

When a SIMPLE simulation is run, an insir-ument may be selected for displaying the operation of the model.
One option for CARE is the Observer instrument. This presents a picture composed of panels listed below-
each showing ongoing activity of the simulated design according to a particular perspective.

Network-Operator Map : an animation of the multiprocessor design showing the communication chan-
nels currently passing (or attempting to pass) application information between sites and an indication
of the number of messages queued for processing by each site's operator.

Processor Utilization : a pair of histograms showing how many of the evaluators and operators in a
multiprocessor design have been utilized for what part of the duration of application execution. This
panel also indicates the number of currently active evaluators and operators.

Network Load and Latency . a strip chart with a horizontal axis (showing simulation time a message
arrives at its target operator) and two vertical axes. One vertical axis sho%%s the latency experienced
by messages from the time they are launched into the network by an operator until they arrive at
the operator they target-and. as an increment to this time, the time between their creation by an
evaluator and their launching into the net by the associated operator. The second axis shows the
'potential' left in the network. This is defined as the number of operators that are not sending a
message.

Operator Load and Latency : arother strip chart, also with a horizontal axis (showing the simulation
time a message is serviced) a.,d two vertical axes. One of these vertiral axes shows the time each

2-363

message required for service by its target operator-and, as an increment, the time spent waiting for
such service. The second axis, s above, shows the 'potential' remaining in the design being simulated.
In this case, operator potential is shown. There are two measures of operator potential provided: one
for the number of operators with no messages to handle (labelled on the instrunment as -less than one
message') and one for the number of operators with less than three messages to handle.

Evaluator Load and Latency : the third strip chart of the Observer is much like the second. In this
case, the times shown against simulation time are those required to perform an evaluation for an
application and the time spent waiting for evaluation after becoming runnable. The potentias shown
are those indicating the number of evaluators with less than one and less than three runnable processes.

Cumulative Latencies : message and process execution latencies are presented for each application con-
text in the simulation showing (cumulatively) the time required to launch a message, to transmit it
through the network, to wait for the target operator and service the message there, to wait for the
target evaluator, and, finally, to run the application code stipulated by the message. This information
is ordered from left to right according to which application contexts were associated with the longest
cumulative delays until execution was begun.

Activity by Instance : the activity of each object instance receiving a message is presented in the form of
'scrolling text' sorted so that those messages that have experienced the most delay ant those objects
with the longest expected service time are shown first. The expected service time for an object is
computed as the product of the number of messages in the object's task stream and the average time
for the object's past computations. These three measures are reported from left to right followed by
the number of messages handled by the object. the most recent delay experienced from the time a
message was created until the execution it requested was begun. the object's site, and an identification
for the object in terms of the kind of object it is. its site, and the simulation time at which it was
created.

Activity by Class : the activity of all objects belonging to each class is aggregated and shown in the form
of scrolling text sorted so that those classes with the longst average expected service times are shown
first. From left to right the information shown for each object class is the average expected service
time. average number of messages in task streams , average time to service a message. the total number
of messages serviced, the number of instantiated objects in the class., and. finally, an identifier for the
class.

Notes ; finally, the experimental conditions for ti.,- imulation run ar- sununarized. Tis, includes any
comments provided by the user when seltin ,- tiit the simnulation paratieters.

A compl-ted Ob.rver inst-runwent is show in figure 31..

XKTOJA.OSUAOI MAP CUMULATIVE LATENCIES NETWORK LOAD & LATNCY

opw~* QZaoi A 04Out Acei j1a.V*Oiw tu.t- Lase & va ir 1 M hey

C32

0MUATOI ii - ~
m.Il -wtw &I~ - -dw -lr -1 -aglw - go" 1. W" *1

ot **.~*

I. --- 4 A

:A z- M -

OUSUVER LIS ISk AMITT ST IMSTANCIE ACTIIT By Ic CLVSALUATOR POTE~nTAL &LA?
1tty * I' ;0 rL 2 fL Si=M4Lu ALSO ha7- a a .wm JAn (.'m -i 4 t a1 £NP zi -f ,r

gibs .2RM~oin y0l~

.1.0r-cbo s '%2 b1*&~ 91* b soma S we "a . am ;$.mo -,a 40

sMMutf spoon In. , IS cow~. 4m, w =~I

*&I' am MO s&" 60. UP -C-.-ow 4lWV%

*SAPS 21119- It~85 5" S Afifa -.

ta.,-%S ns am= aS Its as., t 77. r 2;.2 .a.a 4 :
w. a..iu.i P . 4 z m Uig-~.W S ~ ;~..

rsvtt Mac t 1U. gaw. ;&Wt .,. ~ 4 . 'tU w~.C .- ~ U -~

Fiotsre 3.2: ObSeri~er InSt-Mrnent

2-365

3.3 Running a CARE Simulation

This section describ-s the mechanics of simulating a CARE design with an application written in LAMINA.

3.3.1 Loading System Code

The first step in running a simulation is loading the CARE system code into the LISP environment. This is
accomplished by executing the following forms:

(make-system 'simple-care :noconfirm :silent :nowarn)
(make-system 'care :noconfirm :silent :nowarn)

On machines that have been booted with a core image (an EKplorer band) containing CARE, this is unnec-
essary.

3.3.2 Setting The Package

The next stev is to set the current package to one appropriate for using CARE. This is the care-user
packaro,, within which all the user interface functions are defined. Since the care-uber package has the
nickname cu, this can be done by executing:

(in-package 'cu).

3.3.3 Designs and Instruments

: design is a collection of CARE library compoi.ents that are connected together to re:e. eat a multiprocessor.
The structure of a design is defined by a graphical editor and is saved ;n a design fh A:l .redefined CARE
design files reside in the care:designs; directory.

Before a design can be tised in a simulation it must be loaded. At that time, all of its components are created
and are connected according to the saved structure defirition.

An instrument is a LISP window that displays the activity of a design diig a simulation. The instrument
window is divided into rtegions called panels. The previous section des -i ned the information presented by
he pianels of the Observer instrument.

2-366

3.3.4 The simple Function

Most simulation activities are started by calling the simple function. This function takes several keyword
arguments which allow it to load designs, create instruments, and execute applications. A few of the more
important arguments are described below.

" :design A symbol or pathname string that specifies wh;ch design to use for the simulation. It is first
loaded from a design file, if not previously loaded If this argument not present, the most recently
loaded design is used. The call:

(send s:*box* :name)

may be used to check the name of the "current" design.

" :reset A value of t causes the current design and instrument to be reset (i.e. to move back to the
beginning of simulated time and reinitialize).

* : flush A value of t causes all initial simulation events to be flushed from the event queue.

* instrument This is a symbol that specifies the flavor of instrument to be used for this simulation (for
example, 'observer). If this is not specified, the most recently instantiated instrument for fhe design
is reused. Instead of a symbol, an instrument instance may also be used (for example, from another
design; the function instrument may be used to retrieve such an instance).

* :new-instrument A value of t guarantees that a new instrument will be instantiated, rather than an
old one being reused.

* :run A value of t (the default) will cause a fresh simulation to be initiated after the above activities
have occurred.

3.3.5 An Example Simulation

The following steps will allow you to run a sample program under CARE:

1. Make sure CARE is loaded as described above.

2. Load the CAMINA code of the sample program, called LineSim, which models the voltage transmis-
sion across a group of VLSI wires. The implementation reflects an explicit solution to the difference
equations representing the voltage characteristics.

(make-system 'linesim :silent :nowarn -:noconfirm).

3. Use simple to load a design (sixteen sites configured as a torus) and create an instance of the observer
instrument.

(simple :flush t :reset t :instrument 'observer :design 'octorus-16).

2-367

If you get a message like "Definition for SIMPLE does not exist," then you are probably in the wrong
package. Execute (pkg-goto 'cu t) and try again.

4. When the Observer instrument window appears on the screen, a cursor will be blinking in the large
pane in the middle. This is a Lisp Listener winow, so you can type in any S-expression to be evaluated.

5. Middle button the mouse over the Lisp Listener to expose the simulator menu, and select the Modify
Simulation Parameters choice. This wll pop up anot:,er menu corresponding to the parametric
variations discussed in section 3.1.1. Make sure the 'production CARE run' choice is Yes and type in
any comments you may have. Choose the Exit box in the margin after you are done.

6. To run the program, type (obj-block) to the Lisp Listener panel.

2-368

Chapter 4

Writing Applications to Run on
CARE Machine Models

This chapter describes how to run example programs using the LAMINA programmer's interface. LAMINA
itself is documented in chapter 2.

4.1 Examples to Run

This section provides further examples of how the LAMINA programming interface is used to write applications
which run on CARE machine models. In particular, an object-oriented version of parallel Gaussian elimination
is presented, which utilizes objects with sequential self-streams. Also, code is given for implementing some
cmmon shared variable sypchronization mechanisms.

4.1.1 Object-Oriented Gaussian Elimination

As another example of how programs are written in the LAMINA object-oriented paradigm, this section
presents a parallel implementation of Gaussian elimination with partial pivoting. The algorithm is described
first, followed by portions of the serial and parallel implementations.

Column-Oriented Gaussian Elimination

This version of Gaussian elimination is column-ortenied- a matrix is viewed as a collection of columns, each
of which has an associated vector of data. To perform Gaussian elimination on an N x N matrix.

2-369

(defflavor SQUARE-MATRIX
((Columns)
(size 0)

initable-instance-variables
(:documentation "A square matrix manager."))

(defmethod (SQUARE-MATRIX :Init) (frest ignore)
"Create column vectors and the first column."1
(setf Columns (make-array Size))
(loop for index from 0 below Size do

(setf (aref Columns index)
(make3-instance 'Column :ID index

:Size Size
:Matrix Self)))

(send Self :Initialize-Data))

(defmethod (SQUARE-MATRIX : Initialize-Data) C)
(loop for index from 0 below Size

as col-vector =(make-array Size :initial-element 0.0)
do
(send Caref Columns index) :Set-Data col-vector)))

(defmethod (SQUARE-MATRIX :Gauss) 0)
(let ((active-cols (listarray Columns)))

(send (car active-cols) :Gauss-Pivot act--ve-cols)))

Figure 4.1: Definition of Square-Matrix flavor.

loop for i = 0 to Y - 2
do pivot exchange tor columnn i;
forall i < < N and i < k < N,

elliminate data in column j and row k
endl forall;

end loop;

Sequential Object-Oriented Implementation

In the sequential implementation, two flpvors, are defined. Square-Matrix andl Column. A Square-Matrix
object contains a vector of Column objects, and a Column object contains a vector of (lata.

2-370

The definition of the Square-Matrix flavor is shown in figure 4.1. Upon creation, a Square-Matrix executes
its :Init rethod, which creates its column objects and sends itself an :Initialze-Data message. The
:iiritialize-Data method initialzes the data vector for each column to all zeroes. Since this isn't a
very interesting matrix from a Gaussian elimination point of view, figure 4.2 shows the definition of the
Test-Matrix flavor, which specialzes the :Initialize-Data method to produce a lower diagonal matrix,
initialized as shown below. 1 0 0 0 ...

3 2 1 0
4 32 1

A Square-Matrix also responds to a :Gauss message. In this implementation, the matrix makes a list of all
of its column objects and sends it in a :Gauss-Pivot message to the first column.

Each Column object has a ID instance variable, which indicates which column in the matrix it represents
(starting with 0 for the left-most column). It also has instance variables which contain the data vector, the
number of elements in the vector, and the owning matrix object. The definition of the Column flavor is shown
in figure 4.3.

Column objects respond to two types of messages-: Gauss-Pivot and :Gauss-Step. These methods are
show in figure 4.4.

A :Gauss-Pivot message tells a column to determine its pivot, which is the data element with largest
absolute value, on or below the diagonal. The column then exchanges the diagonal element with the pivot
and sends a :Gauss-Step message to all columns to its right. As arguments to the :Gauss-Step message,
it sends its ID number, the row number of the pivot, and its column data. Finally, it sends a :Gauss-Pivot
message to the column to its immediate right.

Upon receiving a :Gauss-Step message, the column performs the row exchange specified by the pivot. Then
it eliminates its data elements on the rows below the pivot row.

2-371

(def flavor TEST-MATRIX
0
(Square-Matrix)

(:documentation "An invertible matrix."'))

(defuethod (TEST-MATRIX :Initialize-Data) (
(loop for column from 0 below Size

as col-vector = (make-array Size :initial-element 0.0) do
(loop for index from column below Size

for value from 1-0 do
(setf (aref col-vector index) value))

(send (aref Columns column) :Set-Data col-vector))

Figure 4.2: Specialization of Square-Matrix.

(defflavor COLUMN
(ID ; ;which column am I?
Data ; ;column array
Size ;;column length
Matrix ; ;owning matrix

0
* initable-instance-variables
(:docuentation "A column of a square muatrix.-))

Figure 4.3: Definition of Column flavor.

2-372

(detmethod (COLUMN :Gauss-Pivot) (active-cols)
"Find pivot and send to other columns."
(cond

'(= (length active-cols) 1)

(send Matrix :Display))
(: else

;;=Find pivot.
(let ((pivot ID)

(new-diagonal. (aref Data ID)))
(loop for index from (1+ ID) below Size

as element = (aref Data index)
fhen (> (abs element) Cabs new-diagonal))
do (setq pivot index

new-diagonal element))
=Exchange Rows =

(unless (= pivot ID)
(swapf (aref Data pivot) Caref Data ID))
;;=Do elimination. =

(loop for obj in (cdr active-cols) do
(send obj :Gauss-Step pivot ID Data))

(array-initialize Data 0.0 (1+ ID) Size)
(send (cadr active-cols) :Gauss-Pivot (cdr active-cols))))))

(defuethod (COLUMN :Gauss-Step) (pivot col-nuu pivot-column)
"Receive pivot and update vector and eliminate local elements.",
(let ((pivot-value (aref pivot-column col-num))

(pivot-row-value (aref Data pivot)))
=~Exchange rows for pivot,~

(unless (= pivot col-num)
(swapf (aref Data pivot) (aref Data col-num)))

;;== Eliminate elements below pivot. =
(loop for element from (1+ col-num) below Size

for update-index from 1
as value =(aref Data element)
as col-value = Caref pivot-column element) do
(unless (zerop col-value)
(setf (aref Data elem, nt)

C-value
(pivot-row-value

Figtire 4.4: Column flavor izietiods.

2-373

Parallel Implementation

Portions of the code for the parallel implementation of Gaussian elimination are shown in figures 4.5 and 4.6.

The first step toward converting the sequential implementation of Gaussian elimination described above to
a parallel implementation is to redefine all the objects as LAMINA objects, by inheriting from the lamina
flavor. This adds an extra instance variable, Self-Strea, which represents the task stream for the object.
Self-Stream is initialized when a LAMINA object is created.

The next step is to determine how the objects should be created and initialized. As before, the Square-Matrix
object does the creating-this time, however, data vectors are intialized before the column objects are cre-
ated, to minimize the number of messages sent to the column objects. The : Initialize-Data method puts
the data vectors in an instance variable called Local-Data; then the data vector is sent along with the
creation message for a new Column object.

A Square-Matrix of size N will need to create N Column objects. When a Column is created, it sends
a :Reply message, containing its ID and (a reference to) its Self-Strea, back to the matrix. For each
:Reply message, the matrix updates its Columns instance variable. When it has received N replies, it posts
its Self-Stream to its Reply=>1 instance variable, indicating that it is completely initialized and ready for
work.

In response to a :Gauss message, the Square-Matrix object collects a list of all the self-streams of the
columns and sends it to all the Column objects. In this implementation, the columns each maintain a local
copy of the list of active objects, to avoid the transmission cost of passing it with each pivot message. (In the
sequential version, there was no significant cost with sending the list, since it was just a pointer to something
on the heap. In the parallel version, there is no common heap-the list would be copied and transmitted
every time.)

Another change in the parallel version is to recognize that only the data below the diagonal of the pivot
column is needed for the eliminations in the other columns. (See the :Gauss-Pivot trigger in figure 4.6.)
Also, whenever a column is finished pivoting, it sends its data to the matrix, which updates its local copy of
the data.

Finally, to insure that each column performs its eliminations in sequential order, the Column flavor inherits
from sequenced-self-stream, as well as from lamina. This means that the messages will be removed
from the object's task stream in increasing order, according to their tag fields. Each :Gauss-Pivot and
:Gauss-Step message is sent with its tag equal to the ID of the column doing the pivot.

The code for the :Gauss-Pivot method is shown in figure 4-6; the code for :Gauss-Step is cs.sevitally the
same as for the sequential version. shown in figure 4.4.

'The symbol -> i a n-m-ni.- fr "Atrn.'" o Reply=> %hoI h- r,-l rply.stream."

2-374

(def flavor SQUARE-MATRIX
((Columns) ; ;array of column sell-streams
(Size 0) ;;number of columns
(Local-Data) ; ;local copy of column data
(Processors) ;;number of processors to use
(Replies 0) ;;tally of column creation replies
(Reply=>)) ;;streamt to reply to after creation
(lamina)

initable-instance-variables
(:documentation "A square matrix.,,))

(defuethod (SQUARE-MATRIX :After :Iit) (frest ignore)
"Create column vectors and initialize data."
(setf Columns (make-array Size))
(setf Local-Data (stake-array Size))
(send Self :Initialize-Data)
(loop for index from 0 below Size

as site = (aref c:***All-Sites-Vector***
(mod index Processors)) do

(creating 'Column '(:ID index :Size ,Size
:Matrix ,Self -Stream
:Data ,(aref Local-Data index))

on site)))

(deftrigger (SQUARE-MATRIX :Reply) ((column-obj column-id))
"Enter object into Columns array."
Csetf (aref Columns colu-n-id) column-obj)
(wh~en (= (incf Replies) Size)

(posting Self-Stream to Reply=>)))

(deftrigger (SQUARE-MATRIX :Gauss) 0)
(let ((active-cals (listarray Columns)))

(sending active-cols :Set-ActiveCols active-cols by -1)
(sending (car active-cols) :-Gauss-Pivot nil by 0)))

Figure 4.5: Square-Matrix code for parallel Gatussian efimination.

2.-37i

(defflavox COLUMN
(ID ;;which column an I?
Data ;;,column array
Size ;;column length
Matrix ; ;owning matrix
(ActiveCols)

(sequenced-self-stream lamina)
- initable-instance-variables
(:documentation "Column of a square matrix."))

(defmethod (COLUJMN :After lIit) Wtest ignore)
(sending Matrix :Reply %(Self-Stream ID)))

(deftrigger (COLUMN :Gauss-Pivot) (0
"Find pivot and send to other eliminators."'
(pop ActiveCols)

;;=Find pivot. =

(let ((pivot ID) (col-vector (make-array (- Size ID)))
(new-diagonal (ar~f Data ID)))

(loop for index from (1+ ID) below Size
as element =(are! Data index)
when (> (abs element) (abs new-diagonal))
do (setq pivot index

new-diagonal element))
;;Exchange Rows =

(unless (= pivot ID)
(swap! (are! Data pivot) (are! Data ID))

;;= Do elimination. =
(copy-array-portion Data ID Size col-vector 0 C-Size ID))
(when ActiveCols

(sending ActiveCols :Gauss-Step
(.Pivot JID ,col-vector) by ID))

(array-initialize Data 0.0 (1+ ID) Size)
(sending Matrix :Update-Local-Data '(.ID ,Data))
(when Act iveCols

(sending (car ActiveCols) :Gauss-Fivot nil by (1+ ID)))))

Figure 4.6: Column code for parallel Gaussian elimination

2-376

4.1.2 Shared Variable Synchronization Mechanisms

The shared variable ordering example. presented in chapter 2, used two types ofsynchronization inechanisins-
spin locks and shared queues. In this section, we show iow other synchronization ia-chani s4is lilay be
implemented in terms of shared variables and queues.

Distributed Spin Lock

In LAMINA, a simple (binary) spin lock may be implemented by initializing a shared variable to some non-NIL
value. To acquire the lock. a process exchanges the value NIL with the current contents of the variable-the
lock is acquired when the value returned is non-NIL. To release the lock, the process writes a non-NIL value
into the variable. This implementation is shown in the definition of with-spin-lock, shown in figure 4.7.

(deluacro WITH-SPIN-LOCK (lock &body body)
(let ((lock-name (gensym)) (value-ame (gensym)))

(let ((,lock-name lock))
(loop until (shared-exchange ,lock-name nil)) ;acquire
(let ((,value-name (progn @Ubody)))

(shared-write .lock-name t) ;release
,value-name))))

Figure 4.7: Simple spin lock.

Spinning on a single location can cause severe contention at that variable's memory module. In the CARE
reference passing machine model, if many processors are requesting the same variable. the requests may
build up in the fifo-buffer feeding the memory controller (the operator). This means long latencies for the
requests, and it also means that the write which will release the lock must wait for all the reads ahead of it
to complete. Another problem is fairness-the processors which are physically closer to the memory module
containing the lock will have more chances to acquire the. lock than distant processors.

To alleviate these problems. we define a dislrbuted spin lock. A distributed spin lock for I' procc.sors
involves 2P + 1 shared variables, distributed throughout the memory modules in the systent One shared
variable, called the Ley, cor.tains the identifier of the last processor to request the lock. The other variables.
called sub-locks, are locations which grant the lock. Each processor requesting the lock will spit on a different
sub-lock. Also, each processor keeps a local array which contains the references to all the- suhhoc -k

For the moment, assume that each processor has a unique ad. where 0 i ad < . The operation of tho spin
lock is as follows:

1. To acquzrc the lock:

(a) Exchange ad with value of key- store tie result in: last-key.

2. -37

(b) If last-key = NIL, then no processors has ever requested the lock, so it is acquired.

(c) If last-key 6 NIL, then exchange ilL with the value of the sub-lock associated with last-key. When
a non-NIL value is returned, the lock is acquired.

2. To release the lock, write T (or some non-NIL value) to the sub-lock associated with id.

Unfortunately, the above procedure may result in an undesirable race condition, as shown in figure 4.8. After
step (6), processors 1 and 2 are both spinning on sub-lock 0. If processor 2 reads the lock first, as shown
in step (7), processors 0 and 1 will spin forever. To eliminate this problem, we must provide 2P sub-locks,
rather than P, and each processor must alternate between setting id and id + P into the key location. In
terms of our example, processor 2 would spin on sub-lock 4, so the race is avoided.

Figure 4.9 shows an implementation of a distributed spin lock. The function distributed-spin-lock returns
a closure which may be used to acquire and release the lock. 2 The macro with-distributed-spin-lock is
used to delineate critical regions, similar to with-spin-lock.

2 As imptenented. the caller of the closure inI mlippiy an id azut k-ep track of wlihctr this i!- an -vn- or "odd" access.
Aten.ttively. earh proressor conld create its own i-cai leoI irr whi~h hawnl1" the |m kkerping.

2 3Th

key: rall1- key:

o 1 2 3 0 1 2 3

sub-locks: I l all nLI nil sub-locks: nI l [nil InLI aul

(1) tl sta. (2) Processor 0 gets lock.

key: key:

0 1 2 3 0 1 2 3

sub-locks: I &LI I all n il .,ub-locks: t I lLl l

(3) Processor I requests lock (4) Processor 0 relesM lock
(spins on sub-lockOI).

toy: key:
0 1 2 3 0 1 2 3

sub-locks: It ls ll rnfL! l sub-locks: t nIl sl Ii

(5) Processor 0 requests lock (6) Processor 2 requests lock
(spins on sub-lock[1D. (spins on sub-lockOlD.

key: key:

0 1 2 3 0 1 2 3
sub-locks: I12 D IALl nII nil sub-ock: n~lrnnil

(7) Processor 2 gets lock. (8) Processor 2 releases lock
(processors 0 and 1 spin forever).

F~pre 4 S Rct ~ s i~n a r istrvUted -- m7

2-379

(defun distributed-spin-lock (&rest ignore)
(let ((num-locks (length ***All-Processors***))

(let ((<key> (shared-variable nil (random-memory)))
(lock-array (make-array (* 2 lua-locks))))

(loop for site in ***All-Processors***
as index =(get-local-thread-number site t)
as memory (send site :get-associated-memory) do
(setf (aref lock-array index) (shared-vaiiable nil memory))
(setf (aref lock-array (+ index num-locks))

(shared-variable nil memory)))
#'(lambda (operation id-nun alternate-!)

(seleriuq operation
(:acquire

(let ((ast-owner
(shared-exchange

<key> (+ id-num (if alternate? nun-locks 0)))))
(when last-owner

(loop until (shared-exchange
(aref lock-array last-owner)

(:release
(shared-write

(aref lock-array (+ id-num (if alternate? num-locks 0)))

Cdeimacro WITH-DISTRIBUTED-SPIN-LOCK (lock id flag &body body)
(let ((lock-naue (gensym)) (value-name (gansym)))

'(let ((,ock-name jlock))
(funcall ,lock-name :acquire ,id ,flag)
(let ((,value-name (progn CQbody)))

(funcall ,lock-name :release ,id ,flag)
,value-name)

Figure 4.9: lImplementation of distributed spin lock.

2-380

(defmacro SEMAPHORE (&optional (initial-value 1))
'(let ((semaphore (shared-queue '(: semaphore : init ,initial-value))))

(loop repeat ,initial-value do
(shared-enqueue semaphore semaphore))

semaphore))

(defun P (semaphore) (shared-dequeue semaphore))
(defun V (semaphore) (shared-enqueue semaphore semaphore))

(defun MUTEX-SEMAPHORE () (semaphore 1))
(defun WAIT-SEMAPHORE) (semaphore 0))

(defun COUNT-SEMAPHORE (num) (semaphore num))

Figure 4.10: Implementation of semaphores.

Shared-Queue Semaphores

In the case where more than one process is running on a processor, it may be more efficient to deschedule a
process while waiting on a lock and reschedule it when the lock is acquired. Furthermore, the programmer
may want to deal with higher level constructs than spin locks. In this section, we consider how to implrnent
semaphores using shared queues.

One view of a semaphore is as a non-negative integer-valued variable. Two operations are defined on
semaphores. P waits until the value is greater than zero, then decrements it 3 , V increments the value by
one. Depending on how its value is initialized, a semaphore may be used for tcadtzig (intialize to 0). mutual
exclusion (initialize to 1), or counting (initialize to n, the number of "events" to be counted).

Because the value of the semaphore is not directly accessible by the process operating on it, it does not
strictly have to be implemented in terms of incrementing or decrementing an integer. In particular, we will
implement a semaphore in terms of a shared queue of tokens, where the number of tokens represents the
"value." (In this implementation, the token is a reference to the semaphore itself.)

Figure 4.10 shows the implementation of a general semaphore in terms of sharmd queu,s. When a process
executes a P operation, it sends a shared-dequeue request (and gets deschcduled). If there is a token on the
queue, it will be removed from the queue and sent to the requesting process, which will then be rescheduled.
If there is no token, the process will be added to a queue of requestors--whei a token is placed on the queue
(by a V operation), the request at the head of the request queue is serviced. Thus, access to the semaphore
is guaranteed to be fair, since the requests are handled in the order in which they arrive.

3 The test and decreient nst be atomic.

Barriers

Another common synchronization mechanism in shared-variable programming is the barrier, which represents
a synchronization point among several processes. When a process reaches a barrier, it waits until all the
processes have reached it. There may then be some critical section of code wh'ch is executed only by the
last process to arrive at the barrier. After the critical section is executed, all the processes may proceed.

Figure 4.11 shows how barriers may be implenie.ted out of a counter and tw. spin locks. The function
barrier returns a shared-array of four elements, three of which are references t- shared variables. The first
element (<entry-lock>) is used as a spin lock to gain access to the barrier counter. The second element
(<count>) is used to count the number of processes which have not yet reached the *arrier-this variable
is initialized by the call to barrier and is reset when the critical region is exited. The third element
(<exit-lock>) is used as a spin lock to determine when it is safe to continue execution. The fourth and
final element is an integer which represents the initial value of the counter.

The with-barrier macro specifies both the barrier and the code in the critical region. If the barrier passed
to the macro is a shared array, it is "cached" for f,,t access to the locks and counter. Alternatively, the
process can cache the shared array once and pass a local array (containing references) to the with-barrier
form to avoid repeated caching.

Within the with-barrier, the process first gets exclusive access to the counter and decrements it, if it is
not yet zero. Also, if this is the first process to reach the barrier, it sets <exit-lock> to NIL. Finally,
<entry-lock> is released, and the process waits for <exit-lock> to have a non-NIL value.

If the counter was zero, then this is the last process to reach the barrier. The critical code is executed, the
counter is reset, and the <exit-lock> is released. At this point, all the processes may proceed.

2-382

(defun BARRIER (num-processes)
(let ((ocal-barrier (make-array 4)))

(setf (aref local-barrier 3) (1- nw-processes))
(setf (aref local-barrier 0) (shared-variable

(I- num-processes)))
(setf (aret ocal-barrier 1) (shared-variable)
(set! (ar- .ocal-barrier 2) (shared-variable nil))
(shared-axray 4 :initial-contents local-barrier)))

(def macro WITH-BARRIER (barrier &rest body)
(let ((<count> (gensyin)) (<entry-lock> (gensym))

(<exit-lock> (gensym)) (mnit-value (gensyui))
(value-name (gensym)) (local-barrier (gensym))
(count-value (gensym)) (temp-count (gensym)))

'(let* ((,ocal-barrier
(it (c:remote-address-p abarrier)

(cache-shared-array ,barrier)
,barrier))

(,<count> (are! ,local-barrier 0))
(,<exitry-lock> (aref ,local-barrier 1))
(,<exit-lock> Caref ,local-barrier 2))
(,iuit-value (are! ,local-barrier 3)))

(let ((,count -value
(with-spin-lock ,<entry-lock>

(let ((,temp-count (shared-read <Ccount>)))
(when (= temp-count *init-value)

(shared-write *<exit-lock> nil))
(when (> ,temp-count 0)

(shared-write)<count> (1- ,temp-count)))
,temp-count))))

(cond
((> ,count-value 0)
(loop until (shared-read ,<exit-lock>)))

(:else
(let C(,value-name (progn CQbody)))

(shared-write <cut inmit-value)
(shared-write ,<exit-lock> t)
,value-name))))

Figure 4. 11:, Implemenationi of barrier sync hron izat ion.

2- 383

Chapter 5

CARE System Design

This chapter describes how to build a design'-that is, a system of components to be simulated--out of the
CARE components supplied with the system.

The basic tool provided for describing the structure of a design is the P-HELIOS structure editor. P-IHsLIOS
allows you to create a design by using components from a library of prototypes and connecting them in any
arbitrary topology. For the purposes of this chapter, the library of components to be used is provided by
CARE. (A later chapter will describe how to design and build your own component library.) Section 5.i
gives a brief tutorial on how to use P-HELIos-a more complete description of the commands available can
be found in the 'Helios User Manual' supplied as an appendix.

The basic building block of CARE designs is the site component. A site represents a processor-memory
pair together with communications hardware. (The subcomponents of a site are described in 'A Dynamic
Cut-through Communications Protocol with Multicast', supplied as an appendix.) Building a multiprocessor
design involves connecting sites together with communications channels in some topology.

Sites may be connected using manual, semi-'gvtomatic, or automatic wiring facilities. Automatic wiring is
currently supported for grid, torus, bus, and two-level hierarchical bus topologies. These represent a1 the
pre-defined multiprocessor organizations currently provided by CARE. The tools provided for tutomatic
wiring are described in section 5.2, along with several examples of how to create new designs.

At the other extrerr.,-, P-1FLIOS allows you to connect components together manually, by drawing linics
between communication r.orts. This fac;lity, described in section 5.3, would be used by a user who wants
to connect sites in some tc, ology which is -pt --urrn,tly supplied by CARE, or by those userc who v. ish to
create their nwn .-ompoi.-nt libraries.

Finally, you may a:torrviclly i!-rate AM3 coMpO:N,1,t in a two-dimensional grid pattern, by choosing the
component and manually specifyi'ig the conaectiors between neighbors. Both the component nnd the spec-
ified connections will be iterated v-hin the d-sign is lobwied. This approach is called semi-nutornatic wiring
and is described in se .toim 5.4.

IThe term design was riw-rii to ..void a nfi-,i with the L.-p mwlsine ronrept of a (softwar-e) syifem.

2-384

5.1 The P-HELLOS Structure Editor

The P-HELlOS structure editor allows you to gaphically specify the structure of a design to be simulated.
Designs are built by connecting together predefined components (prototypes) froin a component library.
Components are represented as boxes. Boxes may have ports, which may be connected lby lines (representing
communications chiannels) to the ports of other boxes. Also, boxes mnay contain other boxes, representing
sub-componenits.

Before building a design, you must load a component library. This library specifies the prototype companents
which may be used to build designs. You may add new prototypes to the library, or edit existing onies. Ini
addition, a design may be "'prototized," added to the library, and used as' a component in a later design. A
design or library may be saved to a file for later use.

The remainder of this section explains hlow to get started vvith P-HELlOS and provides a short tutorial about
how to use the editor.

5.1.1 Getting Started

The following steps are necessary to use the P-HEMlos editor:

1. Load the P-HELIos system.

Executing (make-system I'p-helios : noconf irm :silent : nowarn) loads all thle files necessary to
run the editor.

2. Load component definitions.

P-HE.Llos needs to know about the definitions of all the library components before it cani actually load
the library. If thle CARE system is already loaded. thenl notihing else njeeds to be (lone for this 'step.
Otherwise, execute thle followingf:

(make-system 'care-components : noconfirm :s ilent : novarn).

3. Invoke the editor.

Trhis may be (lone by typing SYSTEMN-h. or by executing (s:p-helios). 'Iwo wido,, will be
displayed (see figure .5.1): L' small one, called tile in--rartion trindlow -;r stat us reports and qli-ries by
the editor, and a large one, called thle manin st-rccn. used for edit Ili-.

4. Load the library.

If you are going o build designs using P-IlEiios, yon needl to loatd ;I component library. ('licking left
over the main screen hbrings up the Editor Opfrataons inenu, shown in figure 5i.2. (Click tv'~r the Load
Library command.

At this point, the mes-sage Enter library name: appears in the .nrteration wind~ow. Type, care-all 2.
fiwilowed by a carriage return. A v ,rification mnenu will t hen appeal. sho~wing the(de-fault jpathnanie for

'Th- librarv nameA care-all contains all the COupounnt nre'd~c to create thr d-3ijum dcewribe.l in this diap.'u_ Thr.re are
other lia'raries which contair rn , ' thr rnmponrnts nrrtffd to litld rertain Ltvprs of rixn fo.r ciaipglr, lite care-bus library
contains only the ceernponawnus tucde In btuld bus dlrsigns All tiz rrclkfint-4 lilyrarir -u an)' f..uiu its hco care librariess
direct 'ry

L7 -

Figure 5.1: Initial P-HELIOS screen.

Load Library
Cren.* Oesimgn
Edit Design

Edit Library.
Save Design

. elete Casign
Sve Library

EXIT

Fi,:Vie i 2- P-HELlos editor operations

2-386

the library you have unamed. Select No. A message will appear in the interaction wvindow, asking for
the chr.ect patliname. Ty'pe

care: libraries; care-all.x.

The verification menu will appear again, with (hopefully) the correct pathnane, so you should !elect
Yes. and the appropriate library file will be loaded.

5.1.2 Using P-HELIOS: A Brief Tutorial

After the steps in the previous section have been completed, you are ready to create a new design, or to edit
an existing one. The following tutorial will lead you through the steps of viewing and manipuilating designs.
Following sections will describe the wiring facilities which allow new designs to be created.

Loading a Design

To edit a design that was previously saved in a file, you must first load the design into the editor, as follows-,

1 . Click left over the main screen to get the Editor Operations menu (figure 5.2), nnd select the LoUad
Design commrand. This is very similar to loading a library, as in the previous section.

2. The interaction window will promnpt you to provide the name of a design. Type oct.orus-9 This will
load a nine-element torus, in which mach site is connected to its righit nei-ghbors.

3. A verification window will appear, showing the default patliname for the desigji_ As this will almost ter-
tainly be wrong, selec No. In response to the interaction window prompt, type care: designs; octoris-9. x.4
Whert the verification window appears again, check the displayed pathnanv.. anid select Yes if it is cor-
rect.

4. When the file is loaded, a message like

Design OCTORJ)S-9 loaded.

will be displayed in tile interaction wiiidow. Loading a design file sometimes- takes a long time, espe.:ialv

if tile designl rontains a lot of corupotits. (Loading octorus-9 should take a minute or so.)

Editing a Design

To edit a desigii which has pre--orusly been lo-tdd (or created), you must first cre'ate a window in wliii t,
view the design.

3As a conv,-ntion. drsign files anid library riles htave N r'ini .x. rather than . lisp.
4yrll ieI 0o1ly q , tit, portion -4r the pathntazne whir.i differ- front the defauill. For xan Or if thle drefault vucz-,

care; designsa;octorus-4. z. you cOmil' type -c'orus-9 to get thr .. '9iro'l ile.

1. Click left on the main screen and select the Edit Design command from the Editor Operations menu.
A menu showing all the defined boxes5-- select Octors-9.

2. The mouse cursor will change to -+," and the following message will appear in the interaction window:

Define the screen region for OCTORUS-9's vieuport.

This means that you should define the borders of the window which will be used for viewing and editing
the octoxus-9 design, as explained in the next two steps.

3. Move the mouse cursor to the position on the main screen where you want to place Ihe upper, left-hand
corner of the viewing window. Then click left. Similarly, select tne position of the lower, right-hand
corner and click left. A dotted-line box outlines the shape and position of the screen as you've specified
it so far.

If you're not happy with the position of the lower, right-hand corner, you can reposition it by clicking
(or dragging) the left button. If you want to reposition the upper, left-hand corner, first click the
middle button, and then click (or drag) the left button. Clicking the middle button always allows you
to reposition the other corner.

4. When you are satisfied with the size and placement of the viewing window, click right to confirm it.

5. At this point, if you set the display level to 2 (see the next section), the screen should look similar to
figure 5.3. The name of the design (octorus-9) is displayed at the bottom, left-hand corner the
window, as well as the number of levels of the composition hierarchy currently being displayed.

Viewing the Design

Clicking the right button over the design's viewport window will bring up a menu of Window Operatwns,
shown in figure 5.4. These allow you to change how the design is displayed on the screen. A few of the Dost
important operations are discussed below.

" Set Display Lerel: This command determines which levels of the design's composition hierarchy will
be drawn on the screen. At level = 1, the octorus-9 design is displayed only as two boxes (one for
the outer-level box. and otte for the box that contains the sites-see section 5.2).

Selecting Set Display Lerel from the |Window Operatons menu results in a nenu of numbers, front which
you can select the desired display level. Notice how the display for the octorus-9 design changes wln';
level= 2 and level= 3.

" Zoom In: This command will expand a portion of the current displa y Lo fill the entire viewing wiindo%-.
A menu is presented which allows you to select an expansion factor (e.g., selecting 2 makes ever% thing
displayed as twice the current size).

The mouse cursor then changes to a box which represents the portion of the current display which wi!!
be visible after "zooming in" Move the motse to position the box to include the portion oF the display
that you want to see. then click left.

SBzo is a P-IELIOS synonym Gvr design.

Fixure .5 3: Editing a1 CARE ein

'love Window. zdd C2ftt~s
R

1
o8 Window Z.f Z.:gnents

Bury Window. eee Corn ewts

Set OsolayLe"IRWWOi fts48d-o Box

fet gon. S&O~W ar ug

Zoo. Out .start~t -at* Box
Scroll Region P.3?2zt-:. CZACC-ent
R~t. Scroll :-Szect -Zwfn
ano indow. L-szect 54e-:d
Close indow f ~ e

Figure -5.4: Design viewing i: ndv, F-.-ure j j D'.-in --iiaig *:onrnar..s

2-389

o Zoom Oi: This is the opposite of Zoom li-the design is displayed at a fraction of the current size.
so more of the design will fit within the viewing window. Again, a menu is presented for you to select
a zooming factor.

* Scroll Region: This command allows you to change the relative position of the region being displayed-
The mouse :umor becomes "x"-click left on a position that you want to remain in the viewing
window.

Move the mouse t, change the display location of the position you selected, and click right to confirm,
The design will be redrawn in its new position.

Changing the Design"

Clicking left over the design's viewing window brings up a menu of Edit Operations, shown in figure 55.
This settion will describe some of the commands used to create CARE designs.

e Delete Components: This comnmand remonvs a component (and its subcomponents) from the current
design. The component may be- a box, a line, or a port. Only an entity which is currently visible may
be deleted.

1. Select the Delete Components command. The mouse cursor changes into a small x. and the
following message is printed in the interaction window:

Choose a subcomponent to delete (Riddle button if done deleting).

2. Place the muse cursor over one of the sites in octorus-9 and :lick left. The box should become
highlighted, which means that this box has been chosen for deletion.

3. Click right to confirm the choice (or middle to abort), and the site will disappear, along with any
wires conncted to it.

4. When you are finihd deleting components, dick the middle button to quiL

* Add Box: This coumna=d is used to add a component to the design being edited. Selecting this
command with the left or middle nouse button adds the box to the highest level box in the desig
(e.g., the box labelled octorus-9). If the right button is used instrad. yo, smus S'elrct a box I-, own.
the new component.

Two steps are ivolved it, adding a n-w component: (I) leetin g he protoy-p- -)f the c ,tum;,.ent 1
add. and (2) i-achig the new component in the exLsting design.

I. (7litk left oi1 the Add Bo ounnand.

2. An mnu will appear which li.ts the prototprs !ine-id i-y I'; irretly inaded i.hrar% S--i-
the type of rollp ill t oil wish to add, -g., tOrnsi'

3- Tie systelii will then create a box-d.scriplor correspomiliuing t ttle s.l-cted l-rotoyri. A nu-ni will
appear whii will a k if you want to use the default ratle fr the box- usimally .nitthin i ikr
torus-site-1. -S!-ecting A7o allows you tor naln lile rompol- m ' u-rsif

S o n leti nui- w h ile, rlitin g a & n irvh n ., ul' !tr r-a w ill I , .-.'in r pti l- . ' rw il g v il '.-w i P. t il n=- A i--

te nol*%r t ile uv1.us _-ur- e t-,id. hr wiri,-w W'iiers, h;lj'-:-. ,-i "-h. - "!- 1" l!-l ml)l.,v '! 1ii1,i3 .-

-SY-,%TFN1-l. %-,I fi'l it , F!LIOS.q tlin -s -4 --k r

2-.390

4. Place the new component by holding down the left button and dr~~gthe bov. Clicking the
uniddle button allows you to scale, rotate. or flip 0the objert.

.5. Click righ01t to confirmi the componentCs location.

* ilorwg Components: This cc~irmand is for changing the poksitionn of arrrnly '.si c cornen' t
port. liar-....).

L. First, select the comnpuoent to be nwwved by clicking left on it. as in the Decile Comnponsct'h
conunland. Click tight to confirmr the selectilon.

2Mow-L the componoent by holding down the left btrion and dragging ia T iddle butttoa pronidcS
scaling, rotations and reflections. -i in the- AU Her coniand. Confirm the new posation by
clicking right.

3. When do.-ef -"ping cnmp-onc-nts. clic the midebutton-

* Re-shape Boundiny seox: This coamnand allows the outer le%-Al box to be rrfined, in the sawnr way that
)nnu defined the shape and psitl.. of t-he vCeWfrl windw~ ahmv.

L. Click left to fix the- upper, le-ft-hand corner

2.Click left to fix the lower, right-band corner.

3. (ik rigti- to wnflrrn the new bouinding Lox

Soale of the, o-ther editingz commfiandsw will be dtserihcd in the- w;.-;ng secrt ns hpeaw-

Ciating a New Deign

To rr-ate a twrd tIrca -G- I, -C I -y t' Cy-atr-'e !V unr fr<411 I-' tda r Opr'.-omnien~fii
(figure 51-2)

A menru will- anpca ag c %I.'It =us- thr teral.i Inan f- - e WOIch I~ Sua~ ."

Then vm; wil-l 1- auszrd" t-= f.ine a i'ing .. rcnE bnew 1H = o rcti-i, s r!*a.,

l;e~g WU.- O1W vi%.Mz'4 I-:n! =' AID" tinetr a sz#-gle-1 r L. ir- ev A.~. iI.rc!

LOX f~ h ~~&-f~I-; n.~opiMmn.nstc. =ate -. ,---or.,i.c- ='

an-. -

San r a De'an"

ohr --ii'v YOU fnish.i't e.':i'i a ~I invnmySate iteo file S~-'T -he br lrsun rot1;naad fie!; IhI-
I, dater Opte.'-fpl ' .riMS Aatnt n aperUhtnItPHurr' leUr."r-n seet th

*n 'a .o t is;- to '- =a~. Ari'Ittr~w... tt i. At4I.Aa' ~p .~ ~. i t,. ~ i

21 391

A. verification window will appear, asking you to confirm the default name of the output file. Select No to
specify your own file. Remember that design files, by convention, should use the .x extension, rather than
.lisp.

5.2 Automatic Wiring

Wiring is the term used to describe connecting components together in a design by drawing lines between
their communications ports. For some extremely regular designs, mechanisms for automatic wiring have been
developed, in which all placement and connections are performed by the system. The topologies supported
by automatic wiring in CARE are grid, torus, single-level bus, and two-level bus.

In addition to sparing you the onerous task of wiring up large, repetive designs, the automatic wiring
facilities also save on file space. Instead of saving fully instantiated designs, which can be quite big, you
save a generator component. When this component is instantiated, it creates instances of all the desired
components and names, places, and connects them appropriately. This instantiation usually happens when
the design file is loaded, but you can also instantiate designs within P-HELIOS, to view or edit the fully
created structure.

To use automatic wiring, you simply add an appropriate component, such as a Bus-Box, and specify the
parameters of the system to be built. All the subcomponents required for the system are automatically copied
from the library-when the component is instantiated, the subcomponents are replicated and connected by
P-HELIOS.

The following examples show-how to used the automatic wiring facilities to create grid, torus, and bus designs.
In addition, design files themselves may be used to create new designs, bypassing the editor altogether. This

* approactis described in section 5.2.4.

5.2.1 Example: Building a Grid or Torus

The simplest topology supported by CARE is the grid-a collection of site components, vired in a two-.
dimensional array. A torus is a grid whose connections are "wrapped around" the edges of the array. Each
processing element in a torus design is actually torus-site-a specialization of a site whose routing methods
are changed to include the wraparound connections.

To create a CAIRE torus design, create a new design, as in the previous section, and do the following:

1. Invoke the Add Box command (from the Edit Operations menu-figure 5.5) and selfct the 7orus s

protoype from the library.

2. A menu vill appear, asking you to select the Grid Type for tie design. You may select. Quad, Hea or
Octal, depending on whether each site should be connected to four, six, or eight neighbors, fespectively.
(In a CAR.E torus, diagonal connections are not. "wrapped around.")

8 To build a grid (no wraparound connections on the edges), select the Grid prototype instead of "r-tis.

* 2-392

3. Next, another menu will appear, listing the other attributes of the torus which may be specified.

(a) Select the Dimensions entry from the attributes menu. This allows you to specify the number
of rows and columns of the torus. For example, if you want to build a 4 x 4 torus, you should
respond to the prompts in the interaction window as follows:

Number of columns., 4
Number of rows: 4

(b) If you are building this design to be saved to a file for simulation at a later time, select the
Instantiate When Loaded entry from the attributes menu. Answer tt y to the prompt in the
interaction window. This specifies that design should be instantiated when the file is loaded (see
above).

(c) Move the mouse away from the attributes menu, and it will disappear.

4. Finally, a box will appear, and you will be asked to place it in the upper, left-hand corner. Move the
mouse to place the component, then click right to confirm.

5. If the design is to be saved low is the time to do so. If you want to view (or edit) the design in its
fully instantiated state, p',cd to the following step. (This can also be done after the design has been
saved.)

6. Select the Instantiate Box command from the Edit Operatons menu, and select the torus box. P-
HELIOS will go busy for while, creating and wiring the new design. When "Done!" appears in the
interaction window, the design has been instantiated. Use the commands in the Window Operatiwn
menu (figure 5.4) to view the desisn-you will probably have to zoom out to see the whole thing.

5.2.2 Example: Building a Bus

This section describes the steps required to build a single-level bus design The components which are
connected to the bus are specializations of the site components, called bus-sttcs. Bus-sites have no network
interface components, except for fifo-buffers, because there is no routing required within the site to get to the
bus (since it is connected to only one bus). The bus component uses net-inputs and net-outputs (described in
the appendix 'A Dynamic Cut-through Communications Protocol with Multicast' supplied as an appendix)
to implement the CARE routing protocol-see figure 5.6.

To build a CARE bus, create a design and do the following:

1. Select the Add Box command from the Edit Operations menu (figure 5.5), and select th,' Bus-Box

prototype from the library. Use the default name (or whatever you like).

2. Next, a menu will appear which allows you to specify the parameters of the bus

(a) Select Bus Structure from the attributes menu-- another menu will appear, giving you the option
of creating a single-level or two-level bus. Select a single-level bus, and type in the number of
sites in response to the prompt in the interaction window.

(b) If you are planning to save this design to a file, select Instantiale |Vh1n Loaded friom the attributes
menu, and type y in response to the piomnpt in the interaction i mndow. 'I hi. sp.cfis that the
design should be instantiated when the file is loaded

2-:393

Bus- NO. Bus-
site "site

Bus- NI Bus-

Figure 5.6: CARE b -.iponent.

(c) Move the mouse cursor away from the attributes and .vill disappear.

3. If the design is to be saved, now is the time to do so. If you wai to view (or edit) the design in its
fully instantiated state, proceed to the folowing step. (This can a:- be done after the design has been
saved.)

4. Select the Instantiate Box command from the Edit Operations menu, and seect the bus-box. P-
HELlOS will go busy for while, creating and wiring the new design. When "Done!" appears in the
interaction window, the design has been instantiated. Use the commands in the Window Operations
menu (figure 5.4) to view the design-you will probably have to zoom out to see the whole thing

5.2.3 Example: Building a Two-Level Bus

In addition to a single, global bus. CARE supports a m~o-le~el hierarchy of busses Clusters of sites, each
with its own local bus, are connected to a -lobal bus for intercluster communication.

Because of the combination of unbounded packet size and cut-through routing supported by the CARE
communications protocol, deadlock can cccur if simple busses are used. Ccnsider the case. shown in figure 5 7,
where a site in one cluster (cluster-I) is tr.ing to communicate with a site in another cluster (cluster-2).
and, at the same time. a site in clu.,ter.2 is tr)ing to communicate with a site in cluster-1. Each site grabs
its local bus and then tries to access the global bus. Assume that the site from cluster-I gets the global bus
first-it will not be able to continue. ince the bus in c!u, ter-2 is busy. Furthermore, the cluster-2 bus will
not go free until it gets access to the global bus. Thus. there is a cycle in the resources required to complete
the communication, resulting in deadlock.

2-394

Figure .5.7 Deadlock in a two-le,6el bus

connection to another bus

NJur N~R ulbscrpnn

Bus- NJNO-Bus

To avoid this possibility, each local bus is implemented as a dual-bus (see figure 5.8). There are separate busses
for packets leaving the sites and entering the sites, and there is a net-input/net-output pair connecting these
two busses for intracluster communication. In terms of our earlier example, the transmission from clusiei-I
will complete, because the inpul bus for cluster-2 is not busy, even though the Cutput bus is.

The global bus, however, is implemented as a regular, single bus, as in figure 5.6.

To build a two-level bus, create a new design and go through same steps as for the single-level bus. The
only difference is in specifying the bus structure-in step 2(a), choose a two-level bus. You will be prompted
in the interaction window to specify the number of local busses and the number of sites connected to each
local bus.

2- 96

5.2.4 Bypassing the Editor

The fastest way of creating a new CARE design (of the same type as an existing one) is to simply tran.forn

edit the textual representation c" the existing desigu. The function create-new-design is pro% ided foi that
purpose.

The r qxtd arguments to $: cxeate-new-design are:

new-desig-name The name jwithout the x extension) of the design file to be created.

existing-design-name The name of an existing design file.

The following are optional keyword arguments to create-new-design:

:existing-design-dictofy The directory containing the existing design file: defaults to the value of
s :*desiga-directory*.

.new-desigi-directory The diectory to contain the new design file; defaults to the directory specified by
-existing-design-directory.

:dimesuims For grid/torus cirvaits, this dotted pair specifies the number of columns and the number of
row, respectively, in the nev design. For example, a value of (3 - 4) would create a grid/torus with
3 coluns and 4 rows.

munlmh -a-busses For two-level busses, this specifies the number of local busses to create. A vale of 1
does aot create a single-level bus-it creates a two-level bus with one cluster!

:sites-per-bus For a smgle-le.el bus. this specifies how many sites are connected to the bus. For a two-le. el
bus, this specifes how may sites are connected to each local bus.

If any of the parameters of the new design (such as :dimensions) are not specified, you arc promptt d to
enter them, based on the type of the existing desig. If the exising deig, is not a grid, torus, 0! . i0
cannot automatically generate a nk-w desig

Exampies:

To create an octally-connected, 4 x 4 tonis from a:; existing 2 x 2, type

(create-new-design 'amy-octors-16 'octorus-4 :diuensions '(4 4))

or type

(create-new-design 'my-octorus-16 'octorus-4)

-.

and answer the prompts.

To create a two-level bus with four clusters of six ,ites each, from an existing 2 x 2 bus, type

(create-new-design 'my-bus -46 'bus-2x
:number-of-busses 4
:sites-per-bus 6)

or type

(s: create-net-desgi 'mybus-4x6 'bus-2x)

and answer the promrpts.

5.3 Manual Wiring

The most general method of connecting components in P-l1LIOS is to ad~d lines to a design and manually
route each line between two ports. Lines represent conmmunication channels of unlimited width-any value
may be sent across a line. Ports represent the commonications interface of a component.

5.3.1 Example: Connecting Two Sites

1. Create a new design and diefine its viewing window.

2. Make the outer-levcd box big; 2nough to lioh' two sites by .,oolming out (probably a fartor of three is
enough) and reshaping the bounding box to fill the viewing wndow.

3. Add two Site coinponents, using the Add Blur comimaiid. Use the((lefailt names for the sites, and
olace them wivwlierv vOu Ii ke. (The cxerci,;kewill be mnore i ut erest. tg if you don't place themn exacly

41. The :itt Ic boxes ;iround lie ,Ades of the ste are poul... lit a ('AE it-e. four of dihese ports nikeIZ ill) a

fle ports of tb'n ri ght-hiand side of onle 6t, to t ie ports oil r i." lelV-li:11md siule C.. ointchng
two pot s iii vol ve,; dlr;'" nt a fii e blet wveii t hei

ijiv Add Lir% caii.:,d frow. the L'HOpt~ rahttI'?% in~zwi i li, iiiouse rimr or w~ill cIuie t X.
and 1he --kwmi ju s i'ppears mul flit, literart joti wiiidow-

Choose the starting port (Middle button i'f clone adding lines).

I N'::' ll'mN! I, ~ -.. i a'* it. ;Illeitl in

(Foir il feyalijl'.. c' ti i t lie (op. pc-" t l 'III It i i '~it ..Ie '.! I ' If) o lie til)p .' ti m i! ;'41 Il of
lie other, aid so forth 'v4 ho%% it Ini li"I re .- I'

C' C' 0 cm r' On

Figure .5 0 Manually wiring two sites together.

(a) Click left on the starting port. It will be highlighted-c lick riaht to confirm the selection.

(b) Choose the ending port in the same way, c licking left, then t't

(c) The interaction window prompt now iavs:

You may now specify an arbitrary zi-zagI ;.'ath of horizontal and vertical line segmen s connecting
the two points. Initially, the moise cursor specifies a position 'n the horizontal direc tion9 -click
(eft to d.-aw a line to that position. Moving the mouse and clicking left shortens or lengthens
the line. Clicking right confirms this segment of the line, and alilows you to route in the other
direction.

(d) Repeat the abovs step nil you reach the destination port, at .vhtch point the line hau been added
to the desibil1.

(e) If you are finished adding lines, click the middle button. If not- rettin to step (a).

5.4 Semi-Automatic Wiring

The array componer~t i; an exantiA .2 ,ern:-aufomaiic wiring in P-HEL:OS In this approach. you specif~y
a componertt Q! replicated in a toienoalpattern and manually wires the connections between
one tuch -nponent -itd its neighbors. Thle system then atutomatically; replicates the component and its
cor1l00*o0U.

,or the '~.iAi. ection, drfjeiding on th, port orientation.

2-399

To build an array of components, you add an Array component to the design. Tile component to be replicated
(e.g., a site) is added to the array component. You then specify the dimensions of the array-that is, the
number of rows and columns-and the spacing between rows and columns.

P-HELIOS then displays the unit cell and "phantom" copies of its neighbors.'" You then manually wire the
unit cell to its neighbors.

When the array component is instantiated, it will be replaced by a composi!e box component which contains
instantiated copies of the unit cell, connected in the specified pattern.

5.4.1 Example: Building an Array of Sites

In this example, we will build a quad-connected, 3 x 3 grid of sites. This is actually the method used to
implement automatic wiring of grids described in section 5.2.

1. Create a new design and define its viewing window. Name it whatever you like.

2. Zoom out (a factor of three is probably enough), and make the bounding box larger. Also, set the
di-play level to 2.

3. Add an Array component to the design. After it is placed, resize it (by right-clicking on Reshape
Bounding Box in the Edit Operations menu and selecting the array component) to almost fill the
outer-level bo'mding box.

4. Add a Site to the array (by right-clicking over the Add Box command and selecting the array compo-
nent) and place it in the upper, left-hand corner. At th ,oint, four sites will be displayed (probably
drawn on top of one another, because the default spa "ng is too small). These correspond to tie
"typical" site and its nearest neighbors to the right and below. The neighbor sites are phantoms, as
described above.

5. Select the Modify Attributes command from the Edit Operations menu. and select the array component.
A menu will appear listing the attributes which may be specified.

(a) C(;ck on Dirnens -'- in the attributes menu to specify the number of rows and columns in the
array, for example:

Number of colr.mns: 3
Number of rows: 3

(b) Click on Spacing in the attributes menu to specify t;.e inter-component sparieg in the array For
example, the following represent good values for sites:

Distance in the horizontal direction: 250
Distance in the vertical direction: 200

'0 The neighibor cells are nnt axtnally in-tantiated in tle representatim] of t .arra'l. l.o, ,, ,*l i h-i;,.l |, -id kil u . iI
%perifying Ihe conlectioI% between neiglhrs

2-400

SX"T'I- .- 1 SXTIE-1-1

Figure .5.10: Wiring up neighbors in a CARE trray.

(c) If tlkis design is to be saved to, a file. click on Instantiate WVhen Loaded in the attributes menu.
and type y in response to the prompt. This specifies that the design s5hould be instantiated when
the file is loaded.

(d) When finished modifying attributes, move the mouse away from the -tttributes menu, anid it will
disappear.

6. Select Redraw Window from the Window Operations menu (figure -5 4) to see the effect of the chan-.±s

7. Next, manually wire (as in section 5 3) the connections between the uipper. ltft-hand site and 1-s

neighbors, as shown in figure 5.10.

8. If the design is to be saved to a file, instantiate the site component- and then save the design. If %ou
want to view (or edit) the design in its fully instantiated state, proceed to the following state. (This
can also be done after the design is saved.)

9. Select the Instantiate Bo: command from the Edit Operations menu, and select the array P-HELIOS
will go busy for while, creating and wiring the new design. When -Done!" appears in the interac-
tion window, the design has been instantiated. Use the commands in the Wlindow Operations menu
(figure 5.4) to view the design-you will need to redraw the window

SUM~PLE doesn t know about libraries and box-descriptors and such. so "real" site must be saved, not a descriptor of one.

2- 1 11

Chapter 6

Instrument Design

This chapter describes the instrumentaticn facilities available in SIMPLE/CARE. It is organized as three
sections around the three key abstractions of the instrumentation system: probes, panels and instruments.
Each of these is described in the context of what is available in CARE, followed by a description of SIMPLE
facilities available to users interested in customizing these or in designing their own.

A CARE instrument is a facility to visualizes dynamically the internal state of a CARE (simulated) machine.'

An instrument has a window which is divided into several regions called panels. Each panel displays a
particular aspect of the state of a CARE design to which the instrument is attached. The information which
is displayed in a panel comes from one or more probes. , probe is defined for a component of a CARE design
and is responsible to monitor a particular aspect of the component.

6.1 Probes

This section describes tlh- probes available with (',R, as supplied. They may be used as a basis for special-
ization or for defining new probes.

Probes are the means by which useful data is extracted from a simulated design. In keeping with the SI.NiPLE
design philosophy of 'partitioned concerns', probes are used primarily to collect (abstracted) state data in
the design. leaving the aggregation and presentation of such data to the panels comprising the instrument,

Each probe is attached to a single component in the simulated (multiprocessor) design. During a simulation
run, it is notified of the component's state chatiges and it uses these notifications to collect state data about
the component. A probe monitors some 1part icular aspect of a component, licuce, it is not unusual to have
a number of probes (of different types) monitoring the same component. lEach prohe is also attached to one
or more panels and provides these with the ahsi ratted slat(data about thtl proh, d component during the
simulation run.

'W o'en Ism, a te n sit drsi fi.r a qwt.¢ ir" CAMt I 11 1aritio.

2-.102

Probes are implemented as flavor instances. Each type of probe is associated with a specific type of compo-
nent. Each probe type also has associated with it a probe key keyword, allowing data from a probe of this
type to be identified as such by any panels associated with the probe.

6.1.1 The Value Passing Measurement Model

CARE provides a family of probe types to monitor system components in the modeled value passing machine.
These monitor:

" The status of various components in the design. As components alternate between a busy state and a
free state, CARE status probes report these state changes, mapping them into 1 and 0 respectively.

" The queue on various components in the system. CARE probes report the sum of the lengths of the
queues providing work for that component.- For example, the queue of work for an evaluator is the
number of pending active care-processes waiting to be run, that is, the queue length associated with
it. Evaluator-Queue instance variable.

* The latency experienced by application tasks at various stages of processing. The latencies reported by
CARE probes in the value passing model are based on the LAMINA computation model of asynchronously
communicating objects. Recall that in this moddl application work is accomplished by objects passing
request messages on task streams. These messages experience various latencies before the requested
task is actually accomplished. The names used by the probes to refer to aiiese latencies are detailed in
figure 6.1, and are explained below.

Latencies in the Value Passing Model

The source del. i -; lx. ... h delay is the interval between a LAMINA object initiating a request in the evaluator
to send a turssagz (. .uding, for example), and the source operator (the operator at the sending site)
passing .1 to tle netw . I'or transmission to the target site. This measure incorporates both the time the
messae spe;%ds waitin_. -operator attention as well as the time the operator takes in performing the service
(interrupt, and forrm:." u. the message into a packet).

The net delay ;-.: the time .e packet containing the request message takes to traverse the network-from the
time the soiir- operator I.. nds it to the network to the time it arrives completely in the inrut buffer at the
target site.

Opce a packet art:'e at the target site's input buffer, it usually spends some time waiting for the target
operator's attention. This latency is referred to the operator queueing delay. Note that this latency is defined
only for arrivals from the network-locally targeted packets never enter the input buffer. Thereafter, there
is a latency associated with the target operator servicing the packet (interrupt, packet decoding, queueing
the packet on the target stream, and perhaps enabling care-processes waiting on that stream); this is
the op rator service delay. Together, the queueing delay and service delay are sometimes referred to as the
operator delay.

"Panels usually transform this integer intn a percentage.

2-403

LATENCY

source or launch aw"n0i ~

evkaor

Figure 6.1: Latence

Once a care-process that was awaiting the arrival of a message on a srream is enabled, it is passed to the
target evaluator. Here. the time it spends in the queue of runnable pr -ses is called the esaluator ,felty.
Thereafter, the runtime of the task is called the evaIutioa.

2-404

The following section describe each existing probe grouped by the type of a component to which the probe
is attached?

6.1.2 Evaluator Probes

The following probes attach to evaluator components.

Evaluator-Status-Probe Reports on the status of the associated evaluator.

Probe key: :evaluator-status
Probe object: The enclosing site component.
tpdi i items:

:new Curren status: I or 0.

:last Previous status: I or O.

Evalutor-Queghe-Probe Rtporus on the queue of the associated evaluator.

Probe ker: :evaluator-queue
Probe o0jed: The enclosing site component-
Update items:1
:busy A count of the pendtm; care-processes in Evaluator-Queue,

I plus I if evaluator is in a busy state.

Evaluator-Latency-Probe : Reports on the latencies associated with the care-process that was just
evaluated by the associa.ed evaluator.

Probe kei. :evaluator-latency
Probe okect: Object in the context slot of the care-proces that was evat-

uated (usually a LAMINA object).
Update tgeau:

:process The care-process that was evaluated.
:stream The stream that provided the above care-p-ocess with work.
:process-context Object in the contelt zo of the care-process that was eval.

nated (usually a LAMINA object).
:process-class The type of the abovv object.
:stream-queued The number of packets remaining on the above stream.
:launch-delay Simulated s. See section 6.1.1.
:net-delay Simulated ps. See section 6 1.L
-operator-delay Simulated in. See section 6.1.i
.evaluator-delay Simulated in. See section 6.1.1
:evaluation SimulatedC Ps. See section 6.i.!_

3Thw u of all d44wd prbe typ cn he f-Mm in te "-4 vari-:cnal.

2-405

Process-Activity-Probe : Reports on the activity of the process running in the evaluator. This probe
type is specific to reference passing CARE systems.

Probe key: :process-activity
Probe object: The function in either the tag or the context slot of the

care-process. .
Update items:
:process The care-process running in the evaluator.
:process-context The function in either the tag or the conte;:t slot of the

care-process.
:process-class The name of the above function.
:evaluation The simulated ps (last) spent executing without making a re-

quest to shared memory.
:busy-wait The simulated ps (last) spent waiting for a request to shared

memory to complete.

2 AG

Node-Queue-Probe : Reports on the queue load 4 ,if an evaluator which represents the specific type of
care-processes queued for an evaluator to p !ss.

Probe key: :node-queue
Probe object: The enclosing site component.
Update items:
:node-queue The queue load of a specific type of care-process to be pro-

cessed by an evaluator.

4 The queue load of a compor.ent is defined as the number of items in queues associated with the component plus one if thi(
component is busy processing an item.

2-407

6.1.3 Operator Probes

The following probes attach to operator components.

Operator-Status-Probe : Reports on the status of the associated operator.

Probe key: :operator-status
Probe object: The enclosing site component.
Update items:-,
:new Current status: 1 or 0.
:last Previous status: 1 or 0.

Operator-Queue-Probe : Reports on the queue of the associated operator.

Probe key: :operator-queue
Probe object: The enclosing site component.
Update items:
:busy The sum of the number of (1) packets in the input

buffer from the network, (2) packets from the evaluator in
From-Evaluator-Queue, and (3) locally targeted packets in
Local-Packet-Queue, plus 1 if the operator is in a busy state.

Operator-Latency-Probe : Reports on the latencies associated with packets arriving at the associated
operator from the network.

Probe key: :operator-latency
Probe object: The enclosing site component.
Update items:
:launch-delay Simulated ps, See section 6.1.1.
:net-delay Simulated ps. See section 6.1.1.
:queueing-delay Simulated ps. See section 6.1.1.
:service-delay Simulated ps. See section 6.1.1.

2-408

6.1.4 Network Probes

This section describes the ' ,-'iy, that are relevant to .dwork activity. They attach iu ziei-utitput, fb-in
and ,b-ott comiponents.

N e-Outut-Conpxa'.tion-P robe : SignaIw the path of a packet as it is routed through a site.
Probe key: :iiet-ou.- ct-conneirtion
Pojbe objet:- The net-outrut component.
Update items:

-.open or :free.
:po~bt3A list of the points are g n in termns of the x - y position

of connecting elements as defined by the designer's interaction
with the structure editor,

Network-latency-Probe Rer)rts on the net latency of a packet w~hich arriv-es at this site successfully.

Proit key: :networic-Ltency
Probe object: The fb-in component.
Update items:
tJelay The net delay which the packet hag experienced.

Utotal-size The size of the packet in (32 bit) words.

Offered-Load-Probe : Reports onA the load "offered" to the network by the associated operator through
the associated fifo buffer, Thb-out (i.e., the number of targets in packets as they ;.re launched into the
ns.-twork from the associ-xted operator). This probe is attached to a fb-out component.

Probe key: :offered-load
Probe ob..*A: jThe site compnent enclosing the fb-out.

:Ioad The number of distinct targets in the packet just laups~ea b..y
Updateitems:the flb-ut, indicating load offered to the network.

2-409

6.1.5 Bus Pribes

£his section describes the probes that are relevant to buw activity. Tihey attach to bus-mixit, ret-outiput,
and net-input compone.,x..

Bus-Qieue-Probe : Indicates whien the bus is b".oy.
Probe key: :operato-queue
Probe objecd: The bus component.
Update items:
:busy 1.0 if the bus is used, 0.0 otherwise.

Bus-Output-Connection-Probe : Signals the path taken y a packet sent to the bus.
Probe key I :bus-cov',- tio
Probe object: The net-ov ,put com- ,nent.
Update items:
:status ' :offen or .' _-
:points A lipf , the points on the path taken by the packet to the

'us. See the explanation of :points item for net-output-

. connection-probe in this section.

Bus-Input-Cornection-Probe : Sigaals the path taken by a packet send from the bus.

Probe key: :bus-connection
Probe object: The net-input component.
Update items:
:status :open or :free.
:points A list of the points on the path taken by the packet from the

bus. See the explanation of :points item for net-output-
connection-probe in this section.

2-410

6.1.6 Defining and Specializing Probes: Defprobe

This section describes the interface provided by SIMPLE to define new probe types, and discusses the essentials
of what this requires.

Probe's :Trigger Method

The fivt filtering of events for the purposes of 'instrumentation is done by probes. Some events aase no
further measurement activity since not all events merit action by the particular instrument. The decision is
made and information is collected in the :trigger method of the probe, to which is available:

i the event, which is pa:--d ire c the method as its parameter; the with-event-bindingis macro is used
to destr cture the event around the body of code:

witt-event-.Ndings event time &body body

Tie event is the same name uaed to denote the event parameter of the method (for example, s:event),
wd fime is the variable name use4 to identify the time of the event within the code (for example,
now). Ti.e lexical variables s:event-rotject, savent-slot-name and s:event-slotfvalue are bound
by the macro to their appropriate values."

" the ports and state variables of the probed component, through the macros probe-via and probe-
state.

" the state variables of the probe.

Each piece of selected information is then tagged with an identifying keyword and collected into a disembodied
property list. This list is passed along as part of the :update message to the connected panels, along with
the probe key, the probed object and the simulated time (see section 6.2.6 for the function of the :update
method). The probed object might be the probed component, some other component related to it in some
way (for example, the enclosing site), or some data structure manipulated by it (for example, a LAMINA
object).

A probe may be composed of predefined mixins to do standard calculations (for example, a time weighted
average). SIMPLE facilitates this by establishing a message protocol that is followed by all probes. Thus, the
:trigger method invokes the :calculate metbod of the probe, which, in turn, invokes its :select method,
which, finally, invokes the :update method of the selected panels -,sociated with the probe. A probe is
composed by naming it as a specialization of appropriate mixins, whizh undertake to shadow these messages
with their own methods. The default behavior is to pass information through without change to all panels
connected to the probe (see section 6.1.8 for the functions of :calculate and :select methods).

5 The b huvior predicates like state-event and via-event require the use of with-event-bindings around the code that
uses them. The ;urTent implementation of CARs requires that the symbol s:event to be used to nane the euent parameter,
and that the symbol now be used to denote the time.

2-411

Definition of Defprobe

A new probe type is needed when either (1) the information provided by existing probes for a component
type is inappropriate or (2) a new component type has been designed. The defprobe macro is provided by
SIMPLE to accomplish this task.

defprobe name (&key key-args) &body irigger-melhod

defprobe defines a flavor named name and the :trigger meLhod for the flavor (if specified). It also defines
a :before :reset method to initialize probe instance variables (if specified) when a simulation is reset.

name is an unquoted symbol identifying the type of probe being defined and the flavor of this name is to be
created.

The keyword arguments usable in key-args are;

:component-type is an unquoted symbol identifying the type of component, (for example,
c:evaluator). If left unspecified, this is presumably inherited via mizins.

:probe-key is au unquoted keyword symbol that will serve to identify the data from an instance of this

probe within a panel.

:ivs is a list of instance variables for the probe flavor, along with their initializations if any.

:mixins is an unquoted list of flavor names (types) which this probe type will specialize. Any element of

the list may be a probe defined by defprobe.

:documentation is a documentation string for the probe type.

The irigger-method body is also optional. It declares the code for the probe's :trigger method. If it is left
unspecified, the method is inherited, presumably via some mixin.

2-412

6.1.7 Example Probe Definitions

This section shows the definition of a probe for CARE, evaluator-queue-probe.

(delprobe EVALUATOR-QUEUE-PROBE
(: component-type evaluator
:probe-key :evaluator-queue
:ivs (input-queue)
:documentation "Report evaluator status")

;; Define the :trigger method. Parameter = s:event.
(with-event-bindings s:event now ; destructure event, bind time, etc.
;; with-event-bindings binds this but it is not used
(ignore s: event-slot-value)
;; status changed? process arrived from operator?
(when (or (state-event status) (via-event packet-in))

(probe-calculate ; i.e. (send self :calculate ...)
:evaluator-queue ; probe key
(list :busy

(+ (internal-queue-length input-queue evaluator-queue)
(case (probe-state status)

((ready busy-wait) 0) (otherwise 1))))
owning-box)))) ; probed object = evaluator's enclosing site

The predicates state-event (and via-event) check that their argument is identical to the value of s:event-
slot-name (bound by % ith-event-bindings). Note the use of probe-state to determine the current value
of the evaluator's instance variable Status. The macro internal-queue-length, as used, sets the probe's
own instance variable Input-Queue to the value of the evaluator's instance variable Evaluator-Queue
and returns the queue length of this value. The macro probe-calculate sends self the :calculate message
with the given parameters, after converting the time which is the value of now from event units to simulated
microseconds.

2-413

6.1.8 Probe Details

Basic Probes

All component probe flavors have s:basic-probe as their base flavor, which provides the following instance
variables:

" s:probed-component: The type of component to which the probe is attached (for example, an
evaluator). This is set and used by SIMPLE.

* owning-box: The supercomponent of the probed component (for example, a site). This is set and
used by SIMPLE.

" s:panels: The list of panels to which the probe is connected. This is set and used by SIMPLE.

" s:filter: A predicate to be applied to the probed object, the probe key, the update items and the
simulated time, within the body of the default :celculate method. A nil returned value disables
the :select message from being sent to the probe's connected panels. Changing this allows for easy
specialization of probe behavior.

" s:selector: A predicate applied to each component to determine whether a component probe of this
type must be attached to it. This is set and used by SIMPLE (see section 6.2.5 for the usage of this
instance variable).

:Trigger, :Calculate, and :Select Methods

After a probe receives a :trigger message as a result of a state change in the connected component, a
:calculate message is sent to itself. The main function of :calculate method is to provide an extra facility
to manipulate data before they are sent to panels. There is, however, another useful function which can
prevent data from being sent to panels at all by providing the s:filter instance variable of the probe with
an appropriate predicate function. The :calculate method, if not blocked by the s:filter predicate, sends a
:select message itself at last with possibly modified arguments which have received.

The :select method sends a :update message to each of the panels connected to the probe with the same
arguments as received.

The s:basic-probe defines stub methods for the :trigger, :calculate, and :select messages which any
probe can specialize.

Template Probes

When an ,trument is created, it has a list of template probes associated with it. There is one template
probe ii nce for each unique probe type re(Iiiired by the panels of the instrument. It is the task of the
template probes to attach probe instances of a specific type to the components of the design, and to reset

2-4114

these whenever the simulation is reset. In addition, the template probes carry out sundry housekeeping
tasks, like suspending and resuming probe operations.

2-415

6.2 Panels

This section describes the panels available in CARE and the SIMPLE interface for users to define new panels
or specializing existing panels.

Panels are the means by which data passed by associated probes are displayed on the screen. Panels may be
categorized into several types in terms of their graphical presentations. Presentation types are implemented
as flavors, and panels are built upon the presentation flavors with some of their instance variables, such as
probes, specialized.

6.2.1 Panel Presentation Types

SIMPLE provides various presentation types which are divided broadly into five groups.

Presentation Groups Presentation 7pes (flavors)]
Box and line presentations Bal-presentation
Histogram presentations Histogram-plot-presentation

Time-histogram-plot-presentation
Dual-histogram-plot-presentation
Time-dual-histogram-plot-presentation

Scrolling pattern presentations Scrolling-bar-plot-presentation
Point and line presentations Point-plot-presentation

Line-plot-presentation
Scrolling-line-plot-presentation

Text presentations Scrolling-text-presentation
Lisp-listener-presentation
Truncation-lisp-listener-presentation
Text-presentation

1. The boz and line presentations deal with data in terms of the descriptive picture of a simulated design.
It displays two different kind of objects; lines and boxes. The typical usage of Bal-presentation is
that it shows network activities in terms of lines drawn between boxes and the activities of a box in
terms of a color or a gray shade drawn inside the box.6

2. The histogram presentations deal with data displayed in the form of histogram. There are two
kinds of histogram presentations available in SIMPLE. One is an ordinary type, Histogram-plot-
presentation, which simply counts the occurrences of an event represented by each histogram bin.
The other, Time-iistogram-plot-presentationi, keeps track of time spent by a state represented
by each bin. The both types of histogram presentations may have two histogram regions which share
the x axis. Those are called Dual-histogranm-plot-presentation and Time-dual-histogram- plot-
presentation respectively.

3. The scroling bar piescntatons deal with ,lata displayed in the form of colored or shaded" bars which
scrolls over time as t he x axis tq pically represetits t he simulated time. A panel of this group displays an

6 Colors are used on a enlor monitor winir ray shades iArr ar on a bl.ak and white mntor.

2-416

aspect of some specified objects. Scrolling-bar-plot-presentation haz its screen divided horizontally
into a specified number of rectangular bars. Each bar is responsible of keeping track of the states of
one or more specified objects (see aggregation item in the table in section 6.2.1).

4. The point and line presentations deal with data displayed in the form of points and I 11es. A presentation
type of this group has x and y axes X-axis is called bottom-axis and there are two y axes; one on the
left side is called left-axis and the other on the right side is called right-axis. The right-axis may not
be used. Point-plot-presentation displays points (dots) in the x-y plane. Line-plot-presentation
displays lines (curves). Scrolling-line-plot-presentation disp!ays lines which scrolls along the x axis
which usually represents the simulated time.

5. The text presentations deal with data displayed in the form of text. Scrolling-text-presentation
displays lines of text sorted in a specified order. Text-presentation simply displays user supplied text
and does not deal with data from a probe. Lisp-listener-presentation, as well, does not interact
with any probe, and it is a lisp listener which a user can use to evaluate lisp expressions. Truncation-
lisp-listener-presentation is similar to the Lisp-listener-presentation except that if one line of
text is too long to fit in the panel region, the line is truncated.

Mouse Changeable Panel Attributes

By clicking a right button of a mouse over the region of a panel, you can change some attributes of the panel
which are specific to the type of the presentation. 7 The following table summarizes the available attributes
and the presentation types which provide the attributes.

Attribwte Names P.resentation Types

Display Interval all presentation types
except Bal-presentation, Text-presentation, Lisp-listener-
presentation, and Truncating-lisp-listener-presentation.

Sampling Interval All presentation types except Bal-presentation and all presenta-
tion types in tezt presentation group.

Scroll Range Scrolling-line-plot-presentation and
Scrolling-bar-plot-presentation.

Text font All presentation types in text presentation group.
Normalized All presentation types in histogram presentation group.
Bin Size andl Over- All presentation types in histograin presentation group.
flow threshold
Aggregation Scrolling-bar-plot-presentation.

" The display interval controls the frequency of refreshing the contents of a panel. It is specified in
real-time seconds r nil.8 Any attempt of displaying operation is ignored unless more than display
interval value of time has elapsed since the last time the panel has refreshed it- contenLs.

" The samplnq interval controls the frequency of incorporating :update messages from prohes to con-
struct the contents of the panel. By supplying non zero value to the sampling interval of ;k panel,

7The mnowte dcangeahle attributes of a panel are usually defined as instance variables of its pirsentatini, type.
"With nil all attempts of displaying operaLions are processed.

2-417

simulation may be speeded up as some of the :update messages are simply ignored, but the display
may not reflect exactly what has happened in the simulation. It is specified in simulated microseconds
or nil 9 An :update message is ignored unless this is the first message about the probed object
or more than sampling interval value of time has elapsed since last time the panel has processed an
:update message.

" The scroll range determines the range of the x axis of a scolling plot presentation.

* The tezt font controls a font used to display text. You can change it by choosing one from a list of
available fonts.

" The normalized controls histogram display format, either normalized or not. If it is normalized, the
heights of the histogram bins are marked between 0 % and 100 % by normalizing values over all the
occurrences in the case of (dual-)histogram-plot-presentation or over total time in the case of
time-(dual-)histogram-plot-presentation.

The bin size and overflow threshold controls the size of the bin and the threshold value of the overflow
bin if an overflow bin is used for any histogram presentation panel.

" The aggregation controls the aggregation of bars for scrolling-bar-plot-presentation. For example,
each bin can represent the average state of two objects by specifying two for the aggregation. You can
change the aggregation to any value as long as the height of the panel is big enough to disp!ay all the
bars.

Panel Facilities Invoked by Mouse

Some presentations have some facilities which are invoked by mouse actions. As explained in the previous
section, a right click over a panel screen is reserved for the purpose of changing the attributes specific to the
panel type. A middle click over any panel, i.e. over an instrument window, is also reserved and explained in
.section 6.3.3. Currently two types of presentations have special facilities.

" Boxes displayed in a bal-presentation panel are mouse sensitive. A left click over one of the boxes
invokes an inspector window to inspect the box. A right click over a box gives you a men'. of available
operations on the box, but there is currently just one itent on tih- II,-t which i. "inspect- and has the
same effect a.s a left click over it.

" liues displayed in a scrolling-text-presentation panel ca * mnotise, sensitive. if !h instance vari-
able mouse-sensitive-line-p has non-nil value, then clicking oil a line' invokes an Inspector window
to inspect the last iteni listed in thr text-items-form itista,,-r xariable of the pad..

" lil Iliazi- ,., -u.'lh:;g. a all 1l.- :,IpdatC tir panl r r a -u,--

2.118

6.2.2 Available Panels

A pa-iel which is used in an instrument should be defined by the SIMPLE construct defpanel (see section 6-2.5
for the definition of the defpanel). We use term presentation to in~dicate a flavor of a presentation type and
panel to indicate anything defined via defpianel. Thus, a pane! is buirlt upon a prasentation. The names of
all panels currently available are listed below with regard to the underlying presentat-ion types. 10

Presentionie Group LPanel Names
Box and line presentations Net-operator-4oad-sit-mapping-panel

Procesor-aud-meinory-qload-tnappng-panel
Bims-operator-qoad-mapzng-pande
Node-queue-logarithmic-site-mping-paneI

Histogramu presentain Evaluator-operator-histograni-paneI
Processor-meuow-his tograna-pancl

Scrolling pattrn presentations Evwluator-qload-scrolling-bar-paneI
Processor-qload-scirdffing-bar-paniel
Memory-qlod-scrolliag-br-,a-Ae

Point and ine presertatiams Cumulative-latency-pand
Evshiatoir-queue-history-panel
Prossor-queue-history-panel
Network-latency-panel
Netwourk-offered-load-latency.-panel
Operato-potentia-latency-panel
Evaluator-potentWQ-Latency -Panel

Text presentations Jnstance-actrty-panel
Class-acIvity-panrl

LisP-pane
s V-lisppanel

_____ ____ ____Notes-panel

Net-operator-qload-site-unapping-panel:
Conne.-ted probes: net-output-connectiou-probe. operator-queue-probe.
Tis paniel shows the network activity in line segmnts and thr queue load of operatoirs of sites in
painted boxes. The network wire is drawn if it is used to transmit a packet.

Process-or-aind-meniiory-qload-,nnpping-paneI
Connected probes:
ziet-ontput-connection-probe. operator-queue-probe, evaluator-queue-probe.
This panel is a shared mnemory design verion of the~ net-operator-qload-site-mapping-paneI in
the sense that a box pattern shows the queue load of cither the processor or the mnemory depending
on the function of the box.

Buis-operator-qload-niapping-panel:I
Connecrted prohfes:
busn-ouitput-coiitnection-probe- bus-input-connection-probe. bus-qunuet-probe-

"Tenam"r 4 all -k4ord panrls can be found in the global vazia^ s:Pa-pnf-nnWs:1.

2-419

This panel is a bus design version of the Net-operator-qload-site-mapping-panel. It shows the
network activity of the -is.

Node-queue-logarithmic-site-mapping-panel
Connected probes: net-output-connection-probe, node-queue-probe.
This panel is similar to the Net-operator-qload-site-mapping-panel except that the box pattern
shows the load for a specific type of care-processes in the evaluator.

Evaluator-operator-histogram-panel :
"~ Connected probes: evaluator-status-probe, operator-status-probe.

This panel has two histogram regions sharing the x axis. The x axis is divided into bins each of which
represents the number of sites if the width of the panel is big enough to display all the bins. Otherwise
some aggregation may be made over the x axis. For example, if the panel is not wide enough to display
N bins where N is the number of sites in a design, but is wide enough to display N/2 bins, then n-th
bin may be used to represent both 2n sites and 2n + 1 sites. In the case of no aggregation used, the
height of the n-th bin in the upper histogram indicates the portion of time n evaluators have been
busy while that in the lower histogram indicates the portion of time n operators have been busy.

Processor-memory-histogram-panel :
Connected probes: evaluator-status-probe, operator-status-probe.
This panel is a shared memory design version of the Evaluator-operator-histogram-panel. The up-
per histogram displays the utilization of processor site while the lower histogram displays the utilization
of me-iory site.

Evaluator- qload-scrolling-bar-panel
Connected probes: evaluator-queue-probe.
This panel associates a bar to each site if the panel height is big enough to display all the bars.
Otherwise some aggregation is performed over the sites (see aggregation item in Mouse Changeable
Panel Attributes paragraph of section 6.2.1). Each bar shows the transition of the queue load of the
evaluator of the associated site in colored or shaded rectangles over time.

Processor-qload-scrolling-bar-panel
Connected probes: evaluator-queue-probe.
This panel is similar to the Processor-memory-histogram-panel except that it is used on a shared
memory design and shows the queue load of the processor.

Memory-qload-scrolling-bar-panel
Connected probes: operator-queue-probe.
This panel is similar to the Processor-qload-scrolling-bar-panel except that it shows the queue
load of the memory.

Cumulative-latency-panel
Connected probes: evaluator-latency-probe.
This panel shows five curves of the latencies which process contexts in evaluators have experienced
The five curves indicate:

" launch delay,

" this last plus net delay,

" this last plus operator delay,

• this last plus evaluator (elay. and

2-420

* this last plus evaluation delay

of each process context1 1 . Note the five curves are strictly cumulative. Thus they may overlap each
other but may not cross each other. The x axis indicates the "rank" of each process context. A process
context lhas a "rank" assigned in decreasing order of the total delays for its most recent invocation.
The ranks are recalculated every time the panel refreshes its contents.

Evaluator-queue-history-panel :
Connected probes: evaluator-queue-probe.
This panel is an x-y plot panel with a scrolling x axis which indicates the simulated time. The curve

to be drawn shows the sum of queue lengths of all the evaluators.

Processor-queue-history-panel :
Connected probes: evaluator-queue-probe.
This panel is similar to the Evaluator-queue-history-panel except that it shows the sum of processor
queue lengths.

Network-latency-panel
Connected probes: operator-latency-probe.
This panel is a scrolling line plot panel which shows the net delays of packets observed over time.

Network-offered-load-latency-panel :
Connected probes: operator-latency-probe, offered-load-probe.
This panel is a scrolling line plot panel with the both sides of y axis utilized. The left y axis shows the
total network load offered by all the operators while the right y axis shows two latency curves; the net
delay and the sum of the net delay and the launch delay of a packet which has arrived at an operator.

Operator-potential-latency-panel :
Connected probes: operator-queue-probe, operator-latency-probe.
This panel is similar to the Network-offered-load-latency-panel except the left axis shows the two
curves about potential operators while the right axis shows the two curves of operator latencies. One
of two curves of potential operators indicates the number of operators whose queue length is less than
3 but not 0, and the other indicates the number of operators whose queue length is equal to or longer
than 3. The two latency curves are the service "lelay and the sum of the queueing delay and the service
delay of a packet which has arrived at an operator.

Evaluator-potential-latency-panel :
Connected probes: evaluator-queue-probe, evaluator-latency-probe.
This panel is similar to the Operator-potential-latency-panel except that the two poteentiaIl cu rcs
shows the numbers of potential evaluators and the two latency curves shows the evaluation time and
the sum of the evaluation time and the evaluator delay of a packet.

Instance-activity-panel -
Connected probes: evaluator-latency-probe.
This panel is a scrolling text panel which shows the activity of process contexts. Each line of text
represents the activity of a context instance. One line consists of seven items:

" the aveiage expected service time needed for the context in milliseconds 12 ,

" the stream queue length,
31See figure 6.1 for the meanings of the various latencies
12This value is calculated by multiplying the average service tine for one activat ion by the streamn queue lengt li

2-421

" the average service time for one activation of the context in milliseconds,

" the number of total context activations,

" the launch + net + operator + evaluator latency of the current packet,13

" the CARE site of the context,and

" the name of the context.

Process contexts, and thus text lines, are ordered in decreasing order of averaged expected service time,
and if the expected service times are approximately equal, in decreasing order of the latency associated
with the most recent invocation of the object.

Class-activity-panel :
Connected probes: evaluator-latency-probe.
This panel is similar to the Instance-activity-panel except that each line represents the class of a
process context. If a process context is a simple function object, then the class of the process context
is defined to be the name of the function object. If a process context is a method invocation for an
object, such as in an object oriented programming, the class of the process context is defined to be a
pair of the object class and the method name. Each line consists of six items;

* the expected service time needed for a context of the class averaged over all the instances of the
cla-s in milliseconds,

* the average stream queue length,

" the average service time for one activation of a context of the class,

" the number of total activations,

" the number of all instances of the class, and

* context class as defined above.

Lisp-panel :
Connected probes: None.
This panel is just another lisp listener that a user can use to evaluate any lisp expression.

Notes-panel :
Connected probes: None.
This panel is a text presentation panel which does not associate itself with any probe. It is useful when

user simply wants to display some comments about the simulation somewhere on the screen

Interface Specifications

Before we start talking about how to customize panels, we need to explain a common record type which
contains all :he information necessary for a panel to handle data from a probe The record type is called tile
panel-interface-spcc and a panel keeps one or more objects of this record type in the instance variable
interface-specifications 1.1 Interface specification objects of a panel are created by processing a special

I'-See figule 6.1 for the meanings of the various latencics
14 The number of the interface specification objects is detcrrnined by the presentation type of a panel. Most of the presentation

types have only one interface specification while som(of the piesentations have tno of them as they monitor two fairly
independent aspects of a design. Among the cunlentts awailable p1 ' (ntation types only the bal-presentition and the (time)-
dual-histogram-plot-presentat ion have two,.

2-422

set of instance variables which are provided by the presentation type of the panel. We call such an instance
variable an "interface instance ariable (see section 6.2.1 for various interface instance variables). The actual
procedure of customizing a panel interface is performed by specializing some of the interface instance variables
of the panel.

(defstruct (panel-interface-spec (:conc-name panel-) :named)
(states-arrays-size 1)
(states-arrays-prototype nil)
(states-arrays-resource-list nil)
(states-arrays-hash (make-hash-table :size 50.))
(states-arrays-updated (make-generic-queue))
(states-arrays-display-hash (make-hash-table :size 50.))
(update-closure '))
(slot-save-functions 'C))
(analysis-closure '())
(display-operations '()))

When a panel receives data from a probe and it decides to process the data, then the data is encoded into
arrays which we call a states array and a display array. A states array is used to keep a state value of a
probed object. A reason why we keep a display array, separate from a states array, is that some panel may
want to modify a states array to meet a specific displaying goal and also keep an original states array as it
is to keep track of states of each object. Display arrays are queued in the record element, states-arrays-
updated, until they are processed to be displayed on the screen. The arrays are reused for the sake of better
performance by keeping a list of available arrays in the element, states-arrays-resource.

Two hash tables, states-arrays-hash, states-arrays-display-hash can be utilized to customize the update
method of a panel. One is meant to be used to organize a states array which contains the current or last
status of each object while the other is to organize a display array.

The update-closure element provides a closure which determines the major part of the :update behavior.
The value of the update-closure is set by pa-sing an appropriate update form instance variable provided
by the presentation type of the panel (see section 6.2.4 and section 6.2.7 for customizing update forms). The
function of the update-closure is first to extract appropriate information from probe data and save it to
a states array and a display drray, and second to queue the diplay array to the states-arrays-updated
queue. The first function for an interface specification is further defined in the slot-save-functions element
to be described shortly.

The analysis-closure element provides a closure wiich is meant to be executed to manipulate display arrays
just before the panel refreshes its display contents. The value of the analysis-closure is set by parsing an
appropriate analysis form instance variable provided by the presentation type of the panel (see section 6.2.4
and section 6.2.7 for customizing analysis forms).

Tite values of the slot-save-functions and display-operations elements are set by parsing the special
interface instance variables I5 defined for the presentation type of the panel. The slot-save-functions

'5 They are called iransformation item interlace Instance variables. See .'ncction .2 I.

2-423

provides the functions by which each element of a states array and a display array is set. The display-
operations element determines how to construct the intermediate data structure which is created from a
list of dsplay arrays and which the presentation type of the panel uses to refresh its display.

6.2.4 Interface Instance Variables

Interface instance variables need to be set properly in corresponding initialization forms of the defpanel
definition of a panel in order to make the interface to appropriate probes work correctly. They are used to
customize a panel.

There is one interface instance variable which is common to all type of panels. It is called probes and
represents types of all the probes which may send data to the panel. The probes instance variable needs
to be set to a list each element of which represents one kind of probe and consists of at least two items; the
first item is a keyword which is used to identify the probe type in any transformation item interface instance
variable as explained shortly, the other is the name of the probe type. The rest of the items are alternating
init keywords and their values for the type of probe.

The other interface instance variables are categorized into three groups. One is an update form interface
instance variable which is a form to be compiled into the update-closure of an interface specification record.
The second is an analysis form interface instance variable which is a form to be compiled into the analysis-
closure. The last is called a transformation item interface instance variable which determines what kind of
data is extracted from a probe and how it is processed for display. For each interface specification record of
a panel there exists a unique set of an update form interface instance variable and an analysis form interface
instance variable.

Update Form and Analysis Form Interface Instance Variables

An update form instance variable contains a form which determines the behavior of the panel for an instance
specification record when the panel receives an :update message from a probe.' The value of an update
form is processed and compiled into the update-closure element of a corresponding interface specification
record.

An analysis form instance variable is meant to specify an extra step of processing data received from a prolbe.
The analysis form i., processed and compiled into the analysis-clostire clenient of a corie.. londing interface
specification record. Any existing present ation type executes its compiled analh sis form just before t lie panel
displays the data, but a user can define a new presentation type which invokes it any time he wishls.1'

* The bal-presentation deals with two interface specification records, one for line drawing. and tlhe other
for box drawing. There is one set of an update form instance variable ai.d an analsis form instance
variable for each instance specification record. The instance variables are call d line-update-form.
line-analysis-form, box-update-form and box-analysis-form.

161f npdate form is neither specified in the definition of a panel not inlo-ritcd fr'm C.n11 p... Is. ii efait i. (.

self :updatr-states-array).
17 T)I invoking of the anwysi form is done by using the SIMPr'ur ronstrud perfru-.nalyi'.-Olneratin

2-424

" Each of the histogram-plot-presentation and the time-histogram-plot-l)resentation types has
one interface specification record specifying histogram-ui)date-forin and histogram-analysis-form
instance variables.

" Each of the dual-histogram-plot-presentation and t he time-dual-histograin-plot-presentation
has two interface specification records one of which is equivalent to the one for the the histogram-
plot-presentation and the time-histogram-plot-presentation. In addition to the records specified
by the histogram-update-form and the histogram-analysis-form, they have lower-histogram-
update-form and lower-histogram-analysis-form instance variables to specify the other record.

" The scrolling-bar-plot-presentation and any type of point and line presentations have one interface
specification record and have plot-update-form and plot-analysis-form instance variables to specify
this record.

* The scrolling-text-presentation has one interface specification record. The instance variables text-
update-form and text-analysis-form specify the record.

Transformation Item Interface Instance Variables

The numbers and names of transformation item interface instance variables differ from one presentation
type to another. The form of a transformation item interfice instance variable usually includes one' ore more
probe value forms which denote pieces of data from probes. A probe value form is a list consisting of a probe
key, an attribute key, and an optional save function, and arguments if any for the save function if any save
function is supplied. The probe key identifies a sender probe which is presumably defined in the probes
instance variable of the panel. The attribute key is used to extract the value of a specific ittribute of the data
as the probe may send data which consist o f more than one attribute value. The save function determines
how to save the extracted attribute value into a states array and a display array. See section 6.2.7 for more
details of save functions.

The following is an example of the definition of panel, evaluator-queuc-history-panel. (See section 6.2.5
for the definition of defpanel). The probes interface in-stance variable for thi.s panel has just one element.
implying that only one kind ofprobes are to be attached to this panel, which is the evaluator-queue-probe.
(See secition 6.1.2 for its function and section 6.1.7 for its definition.) The probe key, :queue-probe. i.,
defined in the probes instance variable initialization form and is referred to in the left-axis-form instance
variable. The left-axis-form is one of the transformation item interface, instance variables for a point and
line presentation panel. The value denoted by the probc 'alac form. (:qumie-prol, :busy save-suni).
would be a value of the :busy attribute of data received friom a probe of evalator-queue-probe typ,
identified by :queue-probe, and the value is saved into the correslponding eleiniit of a -states array and ;i
display array by the save-sum function (The save-sum is explained in the section 6.2 7).

A probe value form, considered as a whole, which appears in a form of a transformation item interface
instance variable mty be treated as an ordinary lisp expression, and therefore, can be enclosed by any kind
of lisp expressions. This leads to the potential for specializing your own instrument (se. .ection 6.2.7 for an
example).

The following list summarizes the transformation item in erfar, ivtac;ita rial, for .,ii :dhe l r, sent ation
types.

2-425

(defpanel evaJluator-queue-history-panel
((tv:name "EVALUATOR QUEUE HISTORY")
(probes '(C:queue-probe evaluator-queue-probe)))
(legend "t Total Evaluator Queue Lengths")
Cleft-axis-form '(:queue-probe :busy save-sum)))
((eft-axis (make-axis :label "Evaluator Queue Sum"

(scrllig-lne-pnelmixn)):range (make-range 0.0 nil))))

9The hal-presentation has three transformation item interface instance variables; line-points-form,
line-density-form, and box-density-form. The first two determines the attributes of lines drawn
while the last determines the attribute of boxes drawn.

- The line-points-form. determines how to obtains a graphical point list to be drawn. The net-
output-connection-probe, the bus-output-connection-probe and the bus-input-connection-
probe provide as their :points attribute the type of a point list which a hal-presentation panel
expects.18

- The line-density-form determines how to obtain the thickness of a line to be drawn. The
thickness is a positive integer where 1 indicates the density of an ordinary line and the bigger the
number is, the thicker the density becomes.

- The box-density-form determines the color or shade drawn inside a box. The value denoted
by thi., form is in absolute application units. The actual color or shade for a given value is
calcul ted according to the value of the hal-presentation instance variable box-value-range
which indicates the range of possible values, and differe.;t colors or shades available. 19

*The transformation item interface instance variables used for the histogram presentation types are
histogram-form, simulator- time-form and lower-histogram-form w here the simulator-time-
formi is only applicable to a timne- (dutal-)hiistogram-plot-presentation panel, and the lower-
histogram-form is only applicable to a (timne-)duial-histogram-plot-presenltatioiI panel.

- The histogram-formn determines how to calculate the height of each histogram bin for (time-
)hiistogrami-plot-preseiitationi panels or for tipper histograms of (tinie-)dual-liistogrni-
plot-presentation pancls. Values are in application uinits and the possible value range for the
height is dletermnined b~y the instance variab~le left-axis.

The lower-lhistograin-forin determnines how to calculate thle height of each lower histograin bin
for a histogram paniel wit It dual hist ograins. The value range of thle lower histogram of a dulal
jpanel may he specialized by supplying ant appropriate axis it riitt nre for the inistanice %ariale
lower-left-axis

'"Tle point list %itit it Pal-Prc~eutationu Panel lhas C,\i,.M te. fromi pi olwat 1l,is1 :poiuI~ttsntIhoi1% k,1ppowcul to be III the
coordlinate s) stem%% tlwre tlie design %%I- created lie1 pande use~s dir -I-I ii~r~rrenxtTraunsforni w nr! m1tI. inictio,,
s:PointLisrt to transform it to the pandl %rrerrt ,notdinate.

'An instrument ' indlow kccps a%.,ilablec IoI. ..r %duatlrs in jt-4 inutu' aw x atib s:box-alti-talei for thne pandl, of the
instruncnt to use. B default -%- in't rintwritt hav% tri differt .h .s wo sit,-,. f'o~~.ntnn *o r~dlnr ooso

~had~ fo lor intruneot ,ukr nm io.t inin ii v~ i I ~n~ Lr~~n .1 grn-Ievls ri I, i n' od' o t ant Whrl, olo
nr shiade to iivP for rarli Ir,.ui is dI. trot'it I w no it t it, inake-blox-alit-tahm . ad -om , an i.. ik m-f o III 6 to %iit w our
liarulware ni yotr prefrrit,w.'

2.126

- The simulator-time-form tX'.ermines how to extract the time value from probe data for a
time (-dual)-histogram-plot-presentation panel.

" There are two transformation item interface instance variables used by the scrolling-bar-plot-presentation.

- The bottom-axis-form is usually a form to obtain the value of time from a probe.

- The left-axis-form is a form to obtain a list of objects whose states should be displayed in bars.

* A panel of the point and line presentation type has three transformation item interface instance vari-
ables to determine its interface behavior.

- The bottom-axis-form is a form to obLain an x coordinate of a point or a curve. The value
range of the x axis may be adjusted by specializing the instance va;iable bottom-axis.

- The left-axis-form is a form to obtain a y coordinate for a point or a curve which uses the left
side y axis. The value range of the left side y axis is deternined by the instance variable left-axis.

- The right-axis-form is a form to obtain a y coordinate for a poin. o' a curve which used the
right side y axis. The value range of the right side y axis is determined by the instance variable
right axis.

" The interface of the scrolling-text-presentation type is determined by one transformation item
interface instance variable, text-items-form.

- The text-items-form is a form to obtain a list of items to be displayed in a line.

2-427

6.2.5 Defining and Specializing Panels: Defpanel

This section describes the interface provided by SIMPLE to define new panels, and discusses the essen-
tials of what this requires.

defpanel name iait-insiance-variables reset-instance-variables component-panels
&rest options

The syntax of the defpanel is similar to that of the defflavor except that it has two different kinds
of instance variables; init-instance-variables and reset-instance-variables. A defpanel definition
creates a flavor called name and the flavor inherits from all the flavors listed in component-panels.
The options are handled in the same way as they are in any deffiavor definition. The instance
variables of the panel flavor include both init-instance-variables and reset-instance-variables.
The major difference of an instance variable declared in a defpanel definition from an instance variable
declared in a defllavor definition is that any initialization from of an instance variable can refer to any
instance variable which is declared before it. In other words, the initializations of the instance variable
values are performed in the strict order in %hich the instance variables are listed in the definition.
Furthermore, the initialization of the value of an instance variable in lait-instance-variables always
precedes the initialization of any instance variable in reset-instance-variables.

An instance variable in init-instance-variables is such an instance variable that is going to have its
value computed and set according to the value initialization form at make-instance time and every
time a :set-up message20 is received by the panel. An instance variable in reset-instance-variables
is such an instance variable that is going to have its value computed and set according to the value
initialization form not only at the instantiation time and the set-up time but also every time a :reset
messge21 is received by the panel.

The components-panels argument may be a list of any panels or panel mixins which is definei by
defpanel or any presentation type flavor such as bal-presentation or line-plot-presentation.

The following code is an example of defpanel definitions. It defines the panel mixin site-mapping-
panel-mixin which has been used to define all the existing panels in the box and line presentation
group (see the table in section 6.2.2).

Note that the initialization form of the instance variable line-density-form refers to another instance
variable line-density-function which is declared above it and the initialization form of the instance
variable box-density-form refers to another iistance variable calculator. This panel has no reset-
instance-variables. It is built on top of the bal-presentation flavor.

Specializing Probes

There are two uscful instance variable of a probe to be used to specialize a probe in lhe probes instance
variable form of a panel; filter and selector.

The value of filter should be a function which ;being executed in a :calculate method of the probe,
controls the flow of data from a probe to a panel by applying the function to the arguments which the

2 0 A :setup message is sent to a panel when a panel is instantiated and when a new design i% attarliced to th instrnmrnt to
which the panel belongs.

21 A .reset message can b. sent to . panel whneiever a nstr vants to, L.ut it i, n llumy r.ilmld at the lirginning ,f eadi sin'latimi

run through the funetion simple which is a S IZ.E farility to invoke a S!M/i('A-F.. sirnnlatinn.

2-128

(defpanel site-mapping-panel-mixin
((calculator) ; presumably set by a superior panel
(line-density-function #' line-density)
(selection-predicate #' site-p)
(sample-label-format 1-2D%")
(sample-label-function

#'(lambda (level levels) (* level (floor 100 levels))))
(box-value-range (make-range 0.0 1.0))
(line-points-form '(:connection-probe :points))
(line-density-form

'(funcall ,line-density-function (:connection-probe :status)))
(box-density-form

'(funcall ,calculator (:queue-probe :busy))))
) ; no reset-instance-variables
(bal-presentation)) ; component presentation

:calculate method takes.22 If the function application returns nil, the data from the probe will not
be forwarded to a panel.

The value of selector should be a function which, taking one argument, returns T if the argument is an
object to connect a probe of this type to. A good example of it is shown below as a comparison between
the definition of evaluator-qload-scroling-bar-panel and that of processor-qload-scroiling-bar-
panel. The latter uses the same probe, ev:-i-ator-queue-probe, as the former uses except that the
probe is specialized with the :selector keyword so that the probe is only conneced to a processor
object with which the selector function processor-selector returns T.

"Thoie are probed-object, probe-key. update-items and probe-time.

2-429

(defpanel evaluator-qload-scrolliug-bar-panel
((tY :naae "EVALUATOR QUEUE LOAD")
(probes '((:qeueprob evaluator-queue-probe)))
(legend "Recent History and Average by Site")
(object-list-function
#'(lambda (box) (collect-objects box #'site-p))))

0
(scrolling-bar-panel-mumi))

(defpanel processor-qload-scrolling-bar-panel
((stv:name "PROCSSOR QUEUE LOAD")
(probes '((:queue-probe evaluator-queue-probe

selector processor-selector)))
(object-list-function 'all-processors))

(:Documetatioi
"Like a normal evaluator-qload-scrolling-bar-plot-panel only it

connects itself only to Processor type sites for the shared memory
model.O)

2-4110

6.2.6 Panel :Update Method

A panel receives from a probe data in the message :update after a sequence of messages :trigger.
:calculate and :select are handled by the probe. Ali :update message consists of four things; a probe
key keyword which allows a panel to identify the sender probe of the message, a probed object (often
the probed component's enclosing site, in CARE), update items (a disembodied property list containing
the abstracted state data on this object), and probe time which is the simulated time at which the
data was collected. In order to simplify the process of designing a new panel, the above four values
are stored in global variables as soon as a panel receives an :update message from a probe. Those are
called *probe-key*, *probed-object*, *update-items*, and *probe-time* respectively. These
global variables may be used to customize the update, save or analyze behavior of your panel. There
is another global variable, *spec*, which indicates the panel interface specification object with which
the panel is processing the :update message.

(defiethod (basic-presentation :update)
(probed-object probe-key update-items &optional probe-time)

(setq *probe-object* probed-object *probe-key* probe-key
update-items update-items *probe-time* probe-tine)

(loop for spec in interface-specifications do
(setq *spec* spec)
(funcall (panel-update-closure spec))))

A user who intends to customize interface behaviors may use the SIMPLE provided construct, with-
update-spec-bindings, to fetch those globals into your local environment. The following piece of
code is an example of with-update-spec-bindings usage. It defines the default behavior of the
update method for an interface specification object of a panel.

(defsethod (basic-presentation :update-states-array) C)
(with-update-spec-bindings

(spec save-function probed-object update-items)
(with-object-states-bindings

(old-states old-display new-states new-display)
spec probed-object
(funcall save-function new-states update-items new-display)
(unless old-display

(enqueue new-display (panel-states-arrays-updated spec))))))

The local variable. spec, save-function, probed-object and update-items, set by the with-
update-spec-bindings, contain the current interface specification record, the save function for the
record, the probed object, and the abstracted state data of the object respectively. The SIMPLE
provided construct, with-object-states-bindings, fetches appropriate values for old-states, old-
display, new-states and new-display by hashing with probed-object as a key states-arrays-
hash and states-arrays-display-hash of the spec. The old-states is a states array which contains

2-431

F-

the last states of the probed-object. The old-display is an display array of the probed-object
which was used for the last time the panel refreshed its contents. The new-states is a states array
which will contain new states of the object. The new-display is a display array which will be used for
the next display. Then, the save-function of the spec record is applied to update specific elements
of the new-states and the new-display. Finally the new-display is queued to the panel-states-
arrays-updated queue of the spec to be displayed (see section 6.2.3 for the structure of the interface
specification record and the explanation of each element).

.132

6.2.7 Customizing Interface Behaviors

The facility of customizing interface is divided into three p'arts for the modularity and for the ease of
interface customization.

Customizing Update Forits

The behavior of the :update method of a pane! is determined by the update-closure element of each
interface specification. Customizing the behavior of update-closure of an interface specification record
can be done by specializing a corresponding update form interface instance variable (see section 6.2.4
for the explanation of various interface instance variables). If the value of an update form is left nil.
then a default form is filled in.?3 One easy way to customize an update form is to define a method,
say :my-updatc, for an appropriate presentation type and provide '(send self :rnv-update args) for the
value of the update form instance variable. Some of the examples of such methods defined for existing

panel types are:

- :update-time method defined for scrolling plot presentations. It takes one argument to indicate

the element of an array which keeps the simulated time.

- :update-interval method defined for the time(-dual)-histogram-plot-presentation. It also

takes one argument to indicate the element of an array which keeps the interval of time that the
object has spent in the state represented by the array.

- :update-dass methods defined for the scrolling-text-presentation and used for the class-
activity-panel. It takes three arguments; the first is the attribute name which is used to get the
class of a probed object with, the second indicates an element in an array where the name of the
class is kept, and the third indicates an element in an array where the total nunmber of instances
of the class is kept.

Customizing Analysis Forms

The method of customizing the analysis-closure of an interface specification record is similar to
that of customizing the update-closure. That is, to specialize a corresponding analysis fiorm instance

variable. All the examples of analysis forms found in existing panels are using the function sort-arrays
which sorts collected display arrays before they are displayed.

sort-arrays conditions &optional large!

- The codtions argument detcrmines how to sort display arays. It is a list of a conditwn which
indicates one way of sorting, and therefore displky arrays can be sorted by more than once. A
condition -onsists of a sorting function, a probe value form denoting an element in an array by
which display arrays are to he sorted, and any nunher of probe value forms which ar- optional
and can be supplied if the sorting function ne-ds values of array elements denot-d by thei. to
perform desired sorting.

- The tarret argument which is optional allows you to keep the sorting result in a speifie elewent
of each array. The argurnent is a probe value form denoting an element in an array.

2 "7he amrt is '(send stf -sqdaae-states-raw) and a panwl 4 any type has an :'a - arrs i ,',-ined .,r

urkcritm-

2-.4 33

The following piece of code is used for the analysis form of the panel cumulative-latency-panel (see
section 6.2.2 for its function). The conditions argument consists of one condition which sorts display
arrays in decreasing order of the value of an array element which keeps the sum of three latency values
extracted from the data received from a probe represented by :Iatency-probe key. After the sorti r is
completed, the rank number of each display array which indicates a position of the array in the ;', 2d
lisL is stored in an element of the array denoted by the form (:cumulative-latency :rank)2 4

(sort-arrays
(list (list #,>

C: .t.ency-probe
(+ :launch-delay :net-delay :operator-delay :evaluator-delay))))

(:cumulative-latency :rank))

Customizing Save Functions

As explained in a section 6.2.4, a transformation item interface instance variable includes one or more
probe value forms The first and second element of a probe value form are required and denctes a probe
identifying keyword and an attribute keyword respectively. You can supply the third argument, save
funchon, to indicate how to save an attribute value extracted from probe data into an array element.
Therefore, the general syntax of a probe value form is a probe key, an attribute key, a save function,
followed by any special arguments for the save function. Providing no save function has the same
effect as roviding the default function, save-states. The save-states takes four arguments. Any
save function which needs other arguments than the arguments defi ,ed for the save-states function
has to list the additional arguments in its probe value form.

save-states new-value slot current-states dsplay-states

The argument new-value contains an extracted attribute value of an probed object, the argument
slot indicates the position in an array where new-value, processed if necessary, should be saved, the
current-states indicates a states array for the object, and the display-states indicates a display
array of the object. The save-states function saves the value of new-value into the slot position of
the current-states and that of the display-states.

Aside from the save-states, there are various save .unctions defined and available.

save-sum . is a function which saves new-value into current-states as save-states does. The
valut .. ved into display-states, however, is calculated by adding new-value to the result of
subtracting the "old value" from the current display value, whee the "old value" may be found
in thr- slot element of curren t-states and the current display value may be found in the slot
eler.ei of display-states. The slot element of display-states is thus ,used to keep the sum of
slot e!ement values of all the states arrays

accumulate is a function which does not use current-states and just increments the slot element
value of display-btates by new-value

2 4 The frrn (:cnniulative-laten:y :ralik) has a similar syntax as a probe %alue form and it does inicate an ekinent in a
display array. The :citntilativc-latency, hosieser, does not represent an) probe and the fomu does nnt denr,t a sali, florn a
probe as a probe value form dnes. ltcad, tlis forn, sinipl. rvselseb an element in a displa% alia, to k(u'p it, iak in,,rbei.

2-434

save-accumulation : is a fuaction which takes two special arguments, accumulation-slot, and
eount-slot. Its function is similar to the function of the save-sum except that it keeps track of
not only the sum of values, but the count which denotes how many times the function is executed
for the object which the current-states represents. The sum is kept in the accumulation-slot
element of a display array and the count is kept in the count-slot element of a display array.

save-modified-sum : is not exactly a save function which can appear in a probe value form. Instead,
it creates a save function. A save function created by the save-modified-sum with one function
argument called translation-function is a function which works in a similar manner to the
save-sum. The difference is that the translation-function is applied to both the old value of
the slot and the new value before calculating the value to be saved into display-states.

save-count : is also an example of a function which creates a save function, as the save-modified-
sum does. A save function that is created by the save-count with two function arguments,
interval-function and initializer, keeps track of the number of occurrences of events which are
grouped into several intervals by interval-function. The initializer is used to initialize the slot
element of display-states to an appropriate structure.

Customizing Extra Manipulation over Probe Data

Data from a probe, being saved into a corresponding element of a states array and a display array
according to the save function, may need to be furtler processed to assure proper interface between
the panel and the probe, or to meet the goal pertinent to your design. As explained in a section 6.2.4,
a transformation item interface instance variable may have any complex lisp expressions surrounding
a probe value form to suit your instrument design. For example, if you want a transformation item
interface instance variable to have the average value of data from two probes, then the proper form
would be:

/ (+ (:probe-i :attribute-i) (:probe-2 :attribute-2)) 2)

where the probe value forms, (:probe-1 :affribuie-1) and (:probe.2 :attrzb?,-2), denote data from two
probes.

2-435

6.3 Instruments

This section describes the instruments available in CARE and the SIMPLE interface for users to define
new instruments or specializing existing panels.

An instrument is a collection of panels each of which is associated with a specific set of probes. Hence,
the definition of an instrument is simple once you define by defpanel the component panels with
appropriate probes which may in turn be defined by defprobe.

6.3.1 Defining and Specializing Instruments: Definstrument

A new instrument can be defined by the SIMPLE construct definstrument,

definstrument name &key print-name components panels configurations
selected-panel selected-package init-ivs documentation

It creates a flavor named name and eight keyword arguments are handled as follows.

- Print-name is the name of the instrument window. It may be used in an underlying lisp machine
window system to identify the window.

- Components is a list of component flavors to be mixed into this instrument frame.

- Panels is a list of any of the following two forms:

* an atom which which is a name of a panel type defined by defpanel.

* a list of a panel name, a panel type, and alternating keyword instance variable names and
their values. The panel name is a name for the panel used in the instrument to identify it and
the panel type is a name of a panel type defined by defpanel. Suppose Panel-A is a defined
panel, then (my-panel Panel-A :ivl ivl-value :iv2 iv2-value) is a valid component of Panels if
ivl and iv2 are instance variables of Panel-A. My-panel only differs from the default Panel-A
in terms of the values of the instance variables.

- Configurations specifies the constraints for the instrument window. This call be any of the
following three forms:

" a constraint definition like that you would give to an ordinary constraint frame definition, eg.
((configl . ((.......))))

" an expression whose value will be a list of constraints. This could well be a call to any of the
constraint frame cliche functions.

" Nil. In this case the system will generate a simple constraint frame for you.

- Selected-panel is the name of the panel which will be the selected pane of the instrument
window.

- Selected-package is a package in which the user environment of the instrument resides.

- Init-ivs is a list of (name value) pairs, which provide values for some instance variables of the
instrument constraint frame defined.

-- Documentation is a documentation string for tlhe instriineut.

2-436

6.3.2 Available Configurations

The following is a list of available functions to create configurations. ' '5

- sunple-multiple-configurations takes one argument, panes (a list), and creates N different
configurations where N is the number of panes in panes. Each configuration is named 0, 1,
N-1, N and the configuration named n contains n number of panes which are the last n panes
listed in panes.

- big-box-in-the-middle takes five arguments, big-panel, left-group, middle-group, right-
group and documentation-panel, and creates a constraint frame with a big pAnel for big-
panel in the middle at the top. There is documentation-panel at the bottom. The other
panes are split into three groups; those which go down the left hand side of the screen, i.e. left-
group, those which are at the bottom, i.e. middle-group, and those which are on the right, i.e.
right-group.

- big-box-in-the-middle-with-swapable-top-and-bottomn-left-panels is just like the big-box-
n-the-middle except that an extra set of configurations are provided, which swap the top left

panel or the bottom left panel for the big box panel.

- two-rows-with-documentation takes three arguments, top-group, bottom-group and documentation-
panel. Documentation-panel lies at the bottom and the rest of the screen is divided horizon-
tally into two halves, whose top half contains top-group panels of equal size, and Nhose bottom
half contains bottom-group panels of equal size.

2 5 The names of all the available functions can be found in the variable s:*all-constraint-frame-cliches*.

2-437

6.3.3 Mouse Changeable Attributes

By clicking a middle button on any region of an instrument window, you can bring up a menu consisting
of various actions which can be taken for the instrument and the simulator to which the instrument is
attached. Menu items currently available are:

Activate/Deactivate Panels : It brings up another menu which consists of a list of all panel names
which are associated with probes. By highlighting or unhighlighting them, you can activate or
deactivate the display actions of panels respectively.

Activate/Deactivate Probes : It brings up another menu which consists of a list of all probe names
used in the instrument. By highlighting or unhighlighting them, you can activate or deactivate
the monitoring actions of probes respectively.

Modify Instrument Attributes Various instrument attributes can be modified through a menu.26

Modify Simulation Parameters : Various simulation parameters, such as processor performance
of the design which is being simulated, can be modified through a menu.

Set Configuration : The configuration of the current instrument window can be changed to one of
the configuration defined for the window.

Change Screen : The screen on which the current instrument window is created can be swapped
between black-and-white and color if a color monitor is available.

Hardcopy : It prints a hardcopy of the current instrument window image.2 7

Inspect : It puts you into an inspector window which will inspect the current instrument window
object.

2C'urirntIzy two att,ibiites are in the llrnu .nd lhu%. lar t ed %,ith ut instrincnt .%lhch niampmiates time weighted
averages of viaues.

2 7 yoll can slpcrify a printer by sea-tting v.imflatlr-iunage-prili cr*.

2-438

6.3.4 Existing Instruments

There are several instruments defined by definstrument. 28

- observer has ten panels with configurations created by the function big-box-in-the-middle-
with-swapable-top-and-bottom-left-panels. The components panels are net-operator-qload-
site-Mapping-Panel, evaluator-operator-histogram-panel, cumulative-Latency-Panel,
network-offered-load-latency-Panel, operator-potential-latency-panel, evaluator-potential-
Latency-Panel, instance-Activity-Panel, class-Activity-Panel, lisp-Panel, and notes-
panel with the lisp-panel in the biggest pane.

- examiner is a similar instrument to observer. The biggest pane is used by evaluator-qload-
scrolling-bar-panel and two potential latency panels, evaluator-potential-latency-panel and
operator-potential-latency-panel, are missing.

- basic-shared is an instrument for ashared memory design. The components panels are processor-
qload-scrolling-bar-panel, memory-qload-scrolling-bar-panel, processor-memory-histogram-
panel, network-latency-panel, processor-queue-history-panel, lisp-panel, notes-panel,
and processor-and-memory-qload-mapping-panel.

- bus-observer is an instrument for a bus design. It is just like the observer except that it uses
a special mapping panel, bus-operator-qload-mapping-panel, to show the activities around
buses.

- sv-bus-observer is an instrument which is just like basic-shared except for the use of a special
mapping panel for a bus design.

- bus-examiner is an instrument which is just like the examiner except that it uses a special
mapping panel to show the activities around buses.

2 $The names of all deftmel instrmnents can be found in the global variable s:*all-instrument-nantes*.

2-439

Acknowledgements

Numerous people have made significant contributions to SIMPLE/CARE. They include Harold Brown,
Gordon Foyster, Max Hailperin, Russ Nakano, James Rice, Eric Schoen, Manu Thapar, Tony Waitz,
and Jerry Yan.

We acknowledge the patience and invaluable feedback of the users of SIMPLE/CAREwho have helped
direct the development of the system. We would also like to thank the staff of the Symbolic Systems
Resources Group of the Knowledge Systems Laboratory for their excellent support of our computing
environment. Special thanks to Ed Feigenbaum for his continued leadership and support of the Knowl-
edge Systems Laboratory and the Advanced Architectures Project, which made the development of
SIMPLE/CARE possible. This work was supported by DARPA Contract F30602-85-C0012, by NASA
Ames Contract NCC 2-220-Si, by Boeing Contract W266875, and by Digital Equipment Corporation.

2-4.10

Bibliography

[lj Harold Brown, Christopher Tong, and Gordon Foyster. Palladio: An exploratory environment for
cimedit design. Computer, 16(12):41-58, December 1983.

[21 Max Hailperin. Private communication.

[3] Guy L. Steele Jr C');mmon Lisp: The Language. Digital Press, 1984.

2-441

Appendix A

Installing SIMPLE/CARE

Release 0 of SIMPLE/CARE is available both via cartridge tape and via anonymous FTP from sumez-
aim.stanford.edu.

This section describes the software provided on the tape, and the mechanics of installing the system
at a remote site.

A.1 Systems

A system is a collection of logically related files that are managed together. The Lisp Machine system
faciities allow a user to specify a group of files to be loaded, as well as the compilation and load-time
dependencies among them. (This is similar to the make facility on Unix(tm) systems.)

The SIMPLE-CARE system is simply a shell system that loads in the definitions of numerous other
systems described below.

The CARE system contains all the files which define the SIMPLE/CARE simulator. It is composed of the
following four subsystems:

1. BAL: Implements the low-level component structure and behavior representations and the event

driven simulator of SIMPLE.

2. SIMPLE: Implements the basic instrumentation of SimPIE.

3. CARE-COMPONENTS: Defines t he behavior of the simulated components used to build multiprocessor
architectures. Also defines the CARE applications interface (Lamina).

4. CARE-INSTRUMENTS: Defines the instruments. panelspecs and probes used to monitor performance
of CARE designs.

LAMINA application svstemns called LINESIM and ELINT are also supplied with the release.

The graphical editor for constructing designs and conmponenk, is lfiied by the P-HELIOS system. This
is not required to he loaded when exec utin g siniulai ions.

2-442

A.2. Installation on TI Explorer Machines

Release 9 of SIMPLE/CARE is currently supported for Release 6 on TI Explorrr machines.

1. Restore the directory structure obtained via tape or FTP. You should get a top-level directory
corresponding to HOST:SIMPLE-CA RE. VO;.

2. Edit the file 1OST'SIMPLE-CARE. VO;CONFIG.LISP and change the references to the host RAP
to your host machine corresponding to HOST in the pathname. Write out the changed file.

3. Edit the file IIOST'SIMPLE-CARE. VO;SIMPLE-CARE.SYSTEM and change the reference to
the host AAP to your host machine corresponding to HOST in the pathname. Write out the
changed file as SYS:SITE;SIMPLE-CARESYSTEM.

4. Do (make-system 'simple-care :noconfirm) to load the definitions of the systems that make
up the SIMPLE/CARE system.

5. Now you can do (sake-system 'care :noconfirM) to load up CARE.

2-I 13

Appendix B

A Dynamic, Cut-Through
Communications Protocol with
Multicast

Also available as: Technical Report No. KSL-87-44
Knowledge Systems Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305

2-444

Appendix C

HELIOS User's Manual

Also available as: Technical Report No. HPP-84-34
Knowledge Systems Laboratory
Department of Computer Science
Stanford University
Stanford. CA 94305

2-445

Knowledge Systems Laboratory July 1988

Report No. KSL-88-33

ELINT in LAMINA
Application of a Concurrent Object Language

(Extended Abstract)

Bruce A. Delagi and Nakul P. Saraiya

KNOWLEDGE SYSTEMS LABORATORY
Department of Computer Science

Stanford University
Stanford, CA 94305

Presented to:

2-446

ELINT in LAMINA

Application of a Concurrent Object Language

(Extended Abstract) *

Bruce A. Delai Nakul P. Saraiya

July 27, 1988

Abstract

The design and performance of an -expert system" ,,nal interpretion application .-rittet

in a concurrent object-based programming language. LMI.A. is described together with a

%'nopsis of the programming model that F. --ns the foundation of the language. The effects of

load balancing and the limits imposed by task granularity and m.ssae transmission costs are

studied and their consequences to application performance are measured over the range of one

to 250 processors as simulated in SIMPLE/CARE. an extensively insrumented simulation system

and computer array model.

*This work was supported by DARPA Contraiw F30602-.5-C-O012. 'NASA Ames Contract %CC 2-120-Si. a-d

Boeing Contract W266a;3.

2-447

1 FOUNDATIONS OF THE LAMINA OBJECT MODEL

1 Foundations of the LAMINA Object Model

The LA.4I1NA object programming model is based on asynchronous communicating objects. The

objects communicate using strear .., An object, as used here, is a collection of variables, the state

variables of that object, manipulated by (and only by) a set of procedures, the methods associated

with that object. Streams represent sequences of values over time; information sent to a stream

builds the sequence represented by that stream.

Each LAMINA object has associated with it a distinguished stream that is its task stream. The

information arriving on an object's task stream specifi-s tasks for the object; each such piece of

information is a message. Each message names a method to execute and includes the parameters for

-he execution. When a task execution sends a message tc. Stream, the execution is not normally

delayed to wait for a responding message (or even for an acknowlegernet of the receipt of the

message).

The information sent to a stream consisz of reference:, to streams, and unshared values, which

may be both atnms ind structures. Values that have internal structur, must be encoded before

transmission. Encoding involves both giaph structure iinearization and internal p,;9ter relativiza-

tion. When such ,t "aliue arrives -t its destination. qtorae muzt be allocated to contain it a.. it

must be decod-d, that if,, ;n.ernal pointers must be reexpressed in absolutc terms.

Like ACTORS[11, the LAMiNA object model is characteri2ed bv non-deterministic receipt of

messages; me-sage atrival order is not guaranteed to be ,n 5ending order. Like ACTORS. message

arrival tr-,,,rs computation. In uti,cr ways, however, as discussed in the t'ull paper. the LAMINA

object model departs from ACT.R3. by gene,." rrading off fle%"blity for efficienc. by dealng

2-41,8

1.1 Computational Flow

more directly with mutability, and, since streams are first-class entities, by allowing objects to

establish communications over streams other than their task streams.

1.1 Computational Flow

As illustrated in figure 1, messages arriving on the task stream of an object specify tasks to be done

by that object. There is an eternal dispatch process for each object which takes these messages

from the stream and executes them ;n turn.

: :! - -0-41 1 E - - -- --- state
task stream request - -- variables
of messages --- --_-

.... , message

continuation

response

Figure 1: Message Passing Model with Continuc ons

Tasks usually mutate the state variables of the object and generate new messages. Tasks

have exclusive access to their execution context but are preemptible and can also have implicit

continuations.

Tasks in the LAMINA object model are normally data driven and run to completion. They are

generally intended to be accomplished as the stages of a pipeline, thus organizing the worK per-

formed by the objects of the application. Objects only begin tasks wh,- all the needed information

2-449

I FOUNDATIONS OF THE LAMINA OBJECT MODEL

is available. In order not to block the pipeline, a task that is started is run to completion unless it

is preempted by the underlying system (e.g. for a debug trap or the consumption of run quanta).

Experience with the LAM4INA object model[3,4] has demonstrated that, with few exceptions, the

continuation of a task is most readily specified expLicitly as a message that is sent to an object.

When this is not sufficient, an implicit, anonymous continuation (as shown in figure 1) is used

to capture the environment needed to later continue the computation, and this is deferred until

further information is available; the object may perform other tasks while awaiting the required

information. To form the continuation, any required bindings that are on the stack are copied into

a closure and the stack storage is released. Stack allocation is thus used to the greatest extent

possible and heap allocation is minimized.

1.2 Reusing Physical Stack Storag6 .. ,ace

The internal state of a LAMINA object (its state variables) is expected to occupy on the order of

tens to hundreds of bytes. Method execution is expected to require on the order of hundreds to

thousands of instructions.

The binding and control stucks for both a task and its (implicit) continuation are empty when

execution is begun, non-empty during execution, and empty again when execution is done. Since

task preemption is in exc ptional condition and since tasks and their continuations otherwise

always run to completion, stack storage space is generally reuseable among all the tasks on a

processor. This avoids the high space penalty of using coarse-grained page-protection-based stack

limit mechanisms, allowing the ,,se of efficient virtual memory and ache mechanisms without

resorting to coarse-grained task decomposition.

2-450

1.3 The llusion of AtomicitY

1.3 The Illusion of Atomicity

When the system preempts an object's task, that object does not execute any other tasks until the

preemption is resolved. In this .ay, while the object's pipeline is indeed blocked while the preemp-

tion exception is dealt with. the illusion of atomic execution with respect to the context IC a tack is

preserved. However, tasks for other objects may be run as long as their local execution conditions

are satisfied. This means that data consistency can only be preserved if no state is shared between

objects. LAMINA objects never share structures; they communicate only by exchanging messages,

which may contain independent copies of local structures. Thus the atomicity of operations on an

object is not affected by the operations on other objects.

Implicit c'rtinuations are not part of the original task's atomic execution. Instead, the task

and its continuation are independent atomic executions. The execution of the original task is

first completed and its continuation is executed some time later, %% hen the latter's requirements for

additional information have been satisfied. In the meantime, other tasks are executed by the object,

allowing messages specifying additional work to be passed down the pipeline to other objects.

Although an implicit continuation is a separate atomic execution, it shares the spawning object's

execution environment. Therefore, any structures which are closed over may be altered by other

tasks on the same object while the continuation awaits execution: invariants must be reestablished

by the completion of each task and continuat~on.

2 Design of the ELIN J.' Application

ELINT(5] is a real-time system for interpreting processed. passively acquired radar emissions from

2-451

2 DESIGN OF THE ELINT APPLICATION

aircraft in a monitored airspace. It correlates the radar emissions that are observed by multiple,

mobile detection sites into the individual radar emitters producing those emissions. It then fuses

these emitters into clusters of emitters that are co-located over time. It also maintains the track

and activity histories of the clusters, and hypothesizes the types and number of aircraft in the

clusters based on their constituent emitters.

2.1 Pipeline Organization

ELINT is naturally organized as parallel, data-driven object pipelines, as shown in figure 2.

- match/create
-- I, . .

time, report

clueic1G1

Ob ov bteon b Fa r~-ror Stw cutrrpotS" tm

observ ati on en , '!e rreflorr

qe~Em.:aer C. ajster

Figure 2: ELINT Pipeline Organization

Observation readers read in time tagged observation strurtlre. repre'enting observed emii-

sions, and pass these on to the emitter observations for the identified imitters. Here they are

-buffered" until the end of the ciirr-nt data timeslice is detected, .%hen they are abstrcted into an

emitter-report structure and otarted down the pipUi:,._. Successive pipeline stages compute and

2-452

2.2 Replication

attach track and status information to this report.

Emitter status object link their respective emitters to an appropriate cluster, and. once clus-

tered, propagate their latest status information on to update the cluster. Each group of cluster

status objects implements a distributed database of the track and activity history of a cluster; this

is used both to report on the cluster periodically and to match against the trackr of new emitters

that attempt to cluster.

2.2 Replication

Replication is a useful means of relieving congestion. It is viable to the extent the replicated objects

have no dependencies between them. Early experience indicated that the observation readers

were obvious candidates for replication, since the rest of the system was often data starved. Emitter

managers are also replicated to scale with the size of the system: a simple modulo operation on an

emitter's identifier is used to break dependencies while maintaining consistency.

Sometimes the benefits of replication sufficiently outweigh the need to maintain consistency at

all times, especially if the system has the capacity to detect and later correct the inconsistency as

part of its regular problem solving activites. This is the case with the cluster status objects,

which form the database of a cluster's track and activity history. The database is partitioned based

on data time. As a consequence, cluster status objects detect "emitter splits" (i.e. emitters that

were part of the cluster but whose tracks have now diverged from that of the cluster) in isolation:

this can lead to inconsistent decisions as to the particular emitter that is split off, as a result of

different message arrival orders at the objects (since the first arrival determines the inherited track

of the cluster for tha, data time). However, at worst, too many emitters are split off. and the

2-453

2 DESIGN OF THE ELINT APPLICATION

system recovers because these emitters retry clustering with all extant clusters. The benefits of

replication here are two-fold: besides reducing congestion at the cluster, the grain size of the match

performed at each object during clustering is also reduced.

2.3 Clustering: Trees in a Distributed Loop

An emitter that has been uetected for a sufficient period of time must either link to an existing

cluster or create a new one. This computation is organized as a distributed loop (see figure 2).

The emitter status object creates a match-request structure containing the track histury of

the emitter and a counter of the number of clusters that it has already (unsuccessfully) matched

against, and it sends this to the cluster manager. The latter maintains a local list of all extant

clusters; it multicasts the match-request to the cluster timers of those clusters that have not

been matched against, after incrementing the counter to the total number of clusters. If the counter

shows that matcheb against all extant clusters have failed, the loop terminates and the cluster

manager creates a new cluster for the emitter.

A cluster timer defers the request until it is coincident in time, whereupon it -ulticasts the

request to its cluster status objects, specifying a randomly selerted cluster matcher as the

intermediate client of the match. The cluster matcher collects the results of the partitioned match

and then sends a match-reply structure to the original emitter status client, which awaits either

a successful reply from one clister or unsuccessful replies from all the clusters before determining

whether to continue or terminate the toop.

In this way. an emitter an march against multiple c1usters conclrrently, a cluster can match

against many emitters concurrentl%. and a cluster can match the blocks of its partitioned history

2-454

2.4 Load Balance and Other Considerations

against an emitter concurrently.

2.4 Load Balance and Other Considerations

ELINT uses only static allocation of objects with multiple allocators-the managers. Random alto-

cation performed well when the number of objects was far greater than the number of processing

sites. Performance was improved by partitioning the sites based on object classes during initial-

ization and allocating randomly within each block during runtime; the partition was based on the

relative measured activity of the classes. This reduced both the load variance and the interference

between pipeline stages.

3ther notable features of this implementation are the distribved maintenance of data time and

the enforcement of arrival ordering through the use of sequenced freams. which allow the consumer

of the stream to access it only in accordance with the sequence numbers assigned to items put

on the stream by its producers. Implicit continuations are used to hide the delay associated with

creating new objects without blocking the task pipelines.

3 Performance of the Application

ELINT has been implemented on the SIMPLE/CARE[] simulation system. The full paper details

the components and their critical perforr. ace parameters: in brief. ELINT task granularities ranged

from 80 to 300 microseconds and message sizes ranged from 10 to 50 words, with transmission

latencies from 100 microseconds to a few milliseconds.

2-455

3 PERFORMANCE OF THE APPLICATION

3.1 Making Measurements

ELINT was evaluated with respect to correctness and timeliness. Correctness was determined using

a number of different scenarios (data sets) which exercised all the decision-making capabilities of

the system. TimeL :ss was used to determine speedup. Since ELINT is a simulation of a real-time

system, sustainable data rate was the speed metric rather than time to completion. For a given

scenario and processor population. data was pushed into the system at the fastest possible rate

such that the latencies of key inferences (e.g. cluster fixes) did not grow over time.

3.2 Results

ELINT was found to perform well with respect to correctness for a number of scenarios.

The timeliness results for a typical scenario are presented in fig':re 3, in which 20 emitters form

4 clusters over .50 data time units.

20 emdrff.1z 4 cwaters. 50 time Un,

* 3o

" " ",90

Sites

F*I,,ire 3: Data Rate and Speedup

2-456

3.3 Conclusions

With one object per site, ELINT can iustain a data rate of 400 microseconds, a speedup of 50

over the serial case. Emitter observations have a task granularity of 100 microseconds and they

each receive and process three messages per cycle before initiating further pipeline activity. These

times determine a "hard" limit on the performance of the svst(.a that is independent of the size of

the data set; the limit is approached in this case.

As the load on the sites increases with smaller processing arrays, the contention for site re-

sources degrades performance, since pipelines can only go as fast as their slowest stage. To a first

approximation, the throughput of the system is limited by the throughput of the worst loaded site,

and variance in the load across sites accounts for sub-linear performance.

Clustering and dynamic object creation latencies are fixed costs (on the order of millisecc. .s)

that become more dominant with higher data rates, because wr-:k that is deferred until clustering

or creation is accomplished -costs- more data time units. Oti,..r factors that affect performance

are (1) the object pipelines are only approximately balanced. (2) contention for site resources (both

message handling and application code processing) degrade pipeline balance through interference.

(3) replication factors are computed without prior knowledge of the size of the data set, and (4)

there are parts of the system that are not pipelined. but which feed back into the pipe.

3.3 Conclusions

We have described a concurrent object model and the implementa:ion and simulated performance

of ELINT, a signal understanding application, that uses this modol. The design of ELINT was exten-

sively refined as we gained better insights into its behavior throigh the instrumentation facilities

provided by the SIMPLE/CARLE computer simulation vsytem. EUL!\T was best programmed using

2-457

REFERENCES

explicit continuations; implicit continuations were not found to be important. Once the system

had been tuned to balance pipelines, load imbalances reduced system efficiency, primarily by in-

troducing pipeline imbalances due to resource allocation considerations. In the perfectly loaded

case, ELINT was Seen to achieve the hard performance limits set by application task granularity and

message handling costs.

References

[1] Gul Agha. An ov~erview of actor languages. SIGPLA.V Notices, 21(10O):58 - 67, October 1986.

[21 Bruce A. Delagi. Nakul P. Saraiya. Savuri -Nishimura. and Gregory T. Byrd. An Instrgumented

Architectural Simulation System. Technical Report KSL-86-36, Knowledge Systems Laboratory,

Stanford University, 1986.

[31 Russell Nakano. klasafumi Mlinami. and John Delaney. Exp.-riments with a knowledge-based

system on a multiprocessor. In Third International Conference on Superrompuiing Proceeding.

1988.

[JAlan Noble and Chris Rogers. AIRTRAC Path A4ssociation: &tr-lopment of a Knowledge-Based

System for a Ifultiprocessor. Technical Report KSL.-iS-44. .nowledge Sviteriis Laboratory.

Stanford University. 1998S.

'51 Mark Williams. Harold Brown, and Terry Barnes. TRICERO Dc. zgri De--;:Ption. T.echial

Report ESL-NS53.9. E5L. Inc.. May I9) 4.

2-458

Knowledge Systems Laboratory March 1986
Report No. KSL-86-20

Multi-System Report Integration Using Blackboards

by

.. R. Delaney

KNOV. LEDGE SYSTEMS LABORMA'ORN'
Computer Science Department

Stanford University
Stanford, California 94305

2-459

ACKNOWLEDGEMENT
This work was supported by the Defense Advanced Research Projects Agency. the NASA-

Ames Research Center. Boeing Computer Services. and the National Institutes of Health.

ABSTRACT
Blackboards are an Al problem solving methodology. A blackboard system consists of a

structured data base (the blackboard) holding input and derived inferences and a collection of

procedures for deriving inferences (knowledge sources). Each knowledge source is specialized to

operate on some portion of the blackboard. The knowledge sources are invoked
opportunistically as the Information on the blackboard increases.

The best known applications of the blackboard methodology have been in speech
understanding and passive sonar data interpretation. The inputs in these cases were a single
form of raw sensor data. But the methodology is also well suited to integrating multiple
streams of fully reduced and qualitatively different data such as active radar track reports.
passive electronic intelligence reports, and human intelligence reports about enemy intentions.

This paper sketches the nature of the blackboard problem solving methodology with an
emphasis on those features suiting it to such applications. The sketch is illustrated with
examples from a relatively simple multi-system report integration problem. Relevant
applications currently under development at Stanford's Knowledge Systems Laboratory are also
described.

1. INTRODUCTION
"'Multi-System Report Integration" is an odd phrase. An alternative would have been "'Sensor

Data Fusion". But that phrase often implies a less reduced form of information to integrate
than is intended here. The reporting systems in this paper a.-:! presumed to reduce the data they
sense as fully as is practical with only that data available. The degree of processing can %ar.
from system to system. For a radar tracking system. the reports would be samples of on-going
tracks Integrating all measurements up to the present. Ftr an ELINT system dealing with
intermittent emissions, the reports might be just current emitt-r and bearing characteristics.
And for a human intelligence gathering system. the reports might be informed guesses about
near-term enemy intentions.

"Sensor Data Fusion" also usually implies that the Information to be integrated appears at
comparable time intervals or is static. But the reporting s.stems in this paper are presumed io
provide redu.ed data oer a wide range of time inter-als. The radar. ELINT. and "humint"
systems mentioned above could produce reports at -ery different interals with .ery different
degrees of regularity. Assuming that some reports are loaIII; of comparable frequency ,h'ie
others are locally static information is Procrustean.

"Blackboards" refers to a particular Al problem soling methodolog). The best kno,.
applications of the blackboard methodology are HE-\RSAN -Il. a speeth understanding s.'t:n
(2), and the HASP/SlAP sonar data interpretation sstem n.5). These applications effecti'e.
processed regular streams of data from a single sensor. "reating an. other ,nformation ..-

locally st.tic. But the blac.kboard methodology is more gener.-il,.ippLcable. In particular. ,"
provides a convenient frame%,ork for integrating ma\,mall reduced ,nformaion from mui,~I+
sources with different temporal ,.haracterstBECs. Just what ;s nieeded for multi-s.stem rep or;
integration.

In the first section below, the fundamental features of :11ac.kbo,rd s.stems ire deslr+i'e
abstractly. A consistent Set of exampies are used ;n the following se.tion to c.larify thoc
features in context of multi-sszeni report integration- The -iext section reiews those aspe..
of the blackboard methodology particularly suited to multi-,stem report integration The iL-+

section briefl describes work in progress at Stanford's Kno-Aledge S.stem Laboratory on t.-

more ambitious -xamples. It also explains how that -ork is r--mbedded In a larer effort.

2-460

2. NATURE OF BLACKBOARDS
The blackboard problem solving methodology originated approximately 10 years ago and has

been evolving ever since. The hallmarks of a blackboard system are:

" A global data store holding input data and hypotheses about the solution of the

problem derived from that data. Related information is kept together. This data
store is known as the blackboard.

" A collection of procedures for deriving hypotheses about the solution of the

problem from the input data and/or from other hypotheses. Each procedure is
specialized to operate on a particular portion of the blackboard. These procedures
are known as knowledge sources.

" A mechanism for invoking a knowledge source on relevant parts of the blackboard.
A knowledge source is invoked on a particular piece of the blackboard when the
invocation would incrementally advance the solution of the problem. This
mechanism is known as the control structure.

Each of these hallmarks is described abstractly in the remainder of this section with simple
examples appearing in the next

The blackboard holds the state of the problem solving system as the solution evolves In
conventional terms, the diniensionalit> of the state varies with time. The elements may be
discretely or continuously valued. And the elements change values at discrete times. But such
observations miss the most significant feature of the blackboard. It structures the information
it holds.

Closely related input data or h.ypotheses are collected together in the form of blackboard
nodes having certain attributes and values for those attributes. Related nodes form blackboard
levels. All the nodes in a given level having the same attributes but (potentially) different
attribute values. Levels can in turn form hierarchies of anal.,6;s or abstraction, usually with
input data nodes at the base of each hierarch%. The most ci-mmon nodal attributes are links
between nodes on different levels. Such links connect h-: theses to input data or other
hypotheses which support them. They can be links up and J..,, n levels within a hierarchy or
they can be across hierarchies.

Knowledge sources transform the state of the problem solh.te system by adding nodes to the
blackboard, by removing them. or by modifying their attrzbuce values. Knowledge sources are
effectively parametric procedures for transforming the state. A knowledge source could be
invoked on any node at a given level or a tuple of nodes at one or more levels. It operates
only on the nodeis) upon which it is invoked plus those nodes linked directly or indirectly to
them. Knowledge sources are also effectivel'.y typed procedures; a knowledge source can be
invoked only on a node of a particular level or on a reple of nodes. each of a particuiar level
This feature of knowledge sources provides them with a degree of iodularcy. in parti-uijr.
knowledge sources do not interact directly.

The procedure carried out by a knowledge source expresses knowledge of how to advance One
problem solution. It is i"pressed in the creation. mdification. and/or eilmination of part-..iar
sorts of hypotheses in the form of nodes of particular ievels. l1 th;s sense, a kno. ledge sourl.--
is a specialist in the Solution of some part of the overail problem. The details of the
procedure can be expressed ti any form. A typical form is ! set of production rules and .

policy for using them.

Each production rule spfti.'es -t logical condition on the a3rit.nute values of the node(s) upoi
which the knowledge source , invoked and an action lo be .arrted out if that condition "e
true. Both the condition and i, -on Lan be compound. The V.lue of a com-pound condition is
TRUE if the values of all its ,.aonen conditions have TR% E -alues. A ,.:,mpound action is
simply a sequence of indidu:;' ,'tdal creations. deletions, or "Modif cattons. Ealuating .
logical condition or modif..n - r>ode may require the "..pl,,:ation of Co' -x numerc
functions to attribute values. I;- i':s -a.y. production ruies mix symboltc id numerMc
computations.

Different policies for ustig a let e- nrcv;ucton rules allo, AE most one ac,:,on to occur. L.r

multiple actions but never the same one twice, or the same one repeatedly. In the first case,
the rules are scanned in order of definition with the scan terminating immediately if a rule's
action is carried out. in the second case, the logical conditions of the rules are all tested
before any actions take place. Then any actions are carried out in parallel. The third case is
simply the econd case repeated until no logical condition is TRUE. While, this st le of
programming many seem bizarre at first, it has proved quite successful in past and existing
blackboard systems.

A knowledge source describes the procedure by which it changes the blackboard when
invoked. It also describes when it is invocable. The most gencral form of this description is a
(possibly compound) logical condition on attribute values of the node(s) upon which it could
be invoked. In this manner, a knowledge source resembles a production rule. The condition is
parametric in the same sense that each knowledge source is parametric. As a result, the anle
knowledge source may be invocable on several nodes or tuples of nodes simultaneously. Each
such combination of a knowledge source and a node or tuple of nodes is called a potential
invocation. At any time, there are typically many potential invocations. The control structure
determines the set of potential invocations, picks one. and causes it to be carried out.

Many blackboard s.stems do not use the most general form to describe when a knowledge
source is invocable. They use events and logical combinations thereof. An event is a summary
of a blackboard change. A knowledge source posts the appropriate event or events when it
completes. A pointer to the affected node is associated with each event. These systems may
also use events for an additional purpose as explained below.

The control structure is intended to operate in an opportunistic manner analogous to the
ma-aner in which people solve jigsaw puzzles. Initially, the puzzle solver scans for pieces with
singular small-scale characteristics. If two such pieces have similar characteristics, they are
tested for fit. Gradually, clusters of pieces accrete as the puzzle solver continues to scan
through the unused pieces. Once the clusters become sufficiently large, scanning the pieces is
replaced by searches for specific pieces to extend a cluster. But pieces plausibly belonging
another cluster are tested for fit there if they are chanced upon during a search. Eventually.
large clusters are recognized as connected on the basis of large scale characteristics and are

jointed. If progress while searching for specific pieces bogs down, the nuzzle solver reverts to
* scanning for pieces with similar characteristics for a time. It choses th,, activity which, at the

moment, s(enis likely to make the best contribution to the o%erall solution of the pr9blem.

A variety of techniques are used by, the control structures of different blackboard s stems to
decide which potential invocation would, if carried out. make the best contribution to the
overall solution. The topic is being actively researched. One system has an additional
blackboard for handling hypotheses about the best choice (3) and another allows all potential
invocations to be carried out n parallel (6).

Several blackboard systems use events in their control structures. After a particular e%ent or
sequence of e%ents, particular knowledge sources, are preferred to others. And they are prefered
for invocation on the affected node or nodes. These same systems also use e~ents to describhe
when a knowledge source is invocable. So the control structures of these systems need onl%
attend to events arid not to the blackboard nodes themselves.

Som-e of these blackboard systems also use expectations in their control structures.
Expectations are posted b% know4ledge sources just as e ents are posted. Genermlly speaking,
they are instructions to invoke a particular knowledge source on a particular node or nodes
when, if ever, a certain e%ent or pattern of events occurs invol ing the node(s). Expectationsc
can also be negative. Such expectations cause a particular knoledge source to be invoked if t
certain event or pattern of events does not occur within a specified time interval.

3. BLACKBOARDS ILLUSTRATED
Consider the problem of producit situation map of aircraft flying o\er an area ot

interest. The situation map is hased track reports from an air surveillance radar tracknci
system, emitter/bearing reports from an ELINT system sensing airborne radar emissions, ind
warnings from a human intelligence system. The varnimgs are that particular aircraft or grour,;

2- 462

of aircraft may soon enter the area of interest with particular objectives in mind. The situation
map should identify the type of each aircraft as well as its current position and velocity. The
radar track reports are regular for aircraft in the area of interest. The ELINT reports are
intermittent by comparison. There are no reports unless an emitter is oil. And the detection
range of an active emitter can depend on its type and, in some cases, on the aircraft's aspect.

ELINT i'eports are also less accurate geometrically than radar reports. Intelligence reports are

generally less frequent than the ELINT reports. but can be updated rapidly on occasion.

SITUATION MAP
LEVEL

AIRCR T INTELLIGENCE

LEVELREPORT
LEVEL

RADAR TRACK

LEVELELINT TRACK
LEVEL

RADAR REPORT
LEVEL * ELINT REPORT

LEVEL

Figure 3-I: A Blackboard with 7 levels of nodes in 4 hierarchies

Figure 3-1 illustrates a possible blackboard configuration during the course of sol,,ing this
problem. There are seven levels on the blackboard, a t.pical number. The situation map and
aircraft levels form one hierarch. of levels. Nodes on these two levels hierarchicall. express
alternative hypotheses about the map of aircraft in the area of interest. Two situation map
hypotheses exist in this case, both including the same iwoL h.potheiical aircraft and one
including a hypothetical third aircraft as shown by links bet veen the corresponding nodes iti
the figure. One attribute of a situation map node is thus a set of womponent aircraft nodes.
Hypothesis credibility is also a situation map node attribute. -1 poeriori probabilitI ould be
a reasonable credibility measure. The alue of that attribute is a function of the credibilities
of the supporting aircraft h%potheses.

The intelligence report level Is treated as a separate. degener'ite hierarch% in the figure. The

figure shows two intelligence report nodes. Links indicate that one of these reports supports
both situation map hypotheses while the second report supports only one of them. The
credibility attribute value of each situation map node is also a function of the credibility of
each intelligence report node linked to it.

The radar track and radar report levels form another hierarchy. So do the ELINT track and
ELINT relport levels. A sequence of report nodes is linked to a corresponding track node to
represent the hypothesis that the% were all caused by the sane object, aircraft or emitter.

2-463

Similarly, the links between the aircraft nodes and both kinds of track nodes represent the
hypothesis that the tracks are all of the same aircraft. The credibility of an aircraft hypothesis
is a function of the credibilities of the two kinds of track hypotheses supporting it.

It will prove useful later to have explicit definitions of certain attributes of radar report and
radar track nodes. We do so in pseudo-computerese as follows:

Level: radar-report
Attributes: report-time

track- identifier
state-estimate

North position
East position
North velocity
East velocity

state-covariance

associated-tracks

Level: radar-track
Attributes: last-associated- report

report-history
track-credibility

The names of the attributes suggest their intended meanings. But attributes are given pragmatic
meaning by the way the attributes are manipulated by knowledge sources. They are analogous to
the elements of a .tate vector in this sense.

Knowledge sources embody knowledge about how to solve a problem. Consider the following
fragment of knowledge about radar tracking:

A sequence of radar reports caused by a particular aircraft usually have the same
track identifier. An exception may occur if two aircraft approach closely at some
time, in which case the track identifiers are swapped at roughly the time of closest
approach.

It can be converted into the followi,.i fragments of knowledge about collecting radar reports
into radar tracks:

Given a radar report node that is not associated with any radar track node and
given a radar track node. if the radar report node's track identifier is the same as
that of the radar track node's last associated radar renort node, then associate them.

Given two radar track nodes, if their histories _J associated radar report nodes
indicate a close approach, then create two new radar traLk nodes with histories
composed by splitting the original track nodes' histories at the time of closest
approach and rejoining them with the track identifiers swapped after that time.

A knowledge source based on the first of these fragments is expressed in pseudo-computerese
as follows:

Applies-to:
a-radar-track . .- radar- report

lnvocatic -condition:
associated-tracks of a-radar-report

empt. - et

Use-policy:
all-true-once

Production-rule I:
Condition:

track- identifier of last -associated-report

2-464

of a-radar-track
track-identifier of a-radar-report

Action: last-associated-report of a-radar-track

:= link to a-radar-report
report-history of a-radar-track

:== link to a-radar-report
associated-tracks of a-track-report

:= link to a-radar-track

Here ":=" symbolizes assignment, ":==" signifies addition to a set, and ... sequences simple
actions in a compound one.

The knowledge source is quite simple, with just one production rule. That is atypical.
Knowledge sources using production rules typically employ between ten and thirty production
rules. A knowledge source realizing the second fragment would be more complex. It would
include one or more production rules used to determine whether a possible close approach
occurred and when.

The details of any particular control structure are complex. And the motivation for that
complexity is not apparent in an example involving just one or two knowledge sources and a
few nodes. So no attempt is made to include control structure details in this illustration. A
sketch of the blackboard changes one would prefer under particular circumstances provides a
better feel for the control structure's gross behavior. It also illustrates how the different
components of a blackboard system can come together to solve a problem.

Assume that no reports have been received of any sort by the blackboard system., Then one
situation map node exists with no links to aircraft nodes. This represents the hypothesis that
no aircraft are in the area of interest. Then an intelligence report is posted on the blackboard.
It warns that some number of aircraft of a particular type or types are expected to enter the
area during a specified time interval across a specified portion of the area's boundary. Aircraft
nodes are then created with the appropriate types, all linked to a new situation map node. The
credibility of this new situation map node is the same as that of the intelligence report. The
credibility of the old situation map node is appropriately adjusted downward.

The radar track attribute of each new aircraft node is not filled in at this point. There are
no radar track nodes yet. But an expectation is established that later examines newly created
radar track nodes. If one is created in the appropriate time interval and the appropriate place.
a link to that radar track becomes the value of the associated track attribute. If the
expectation goes unstisfied, the aircraft node is deleted and the credibility of each associated
situation map is reduced. Whenever the credibility of a situation map node slips below a
certain level, that node is also deleted. Any aircraft nodes linked only to that situation nmap
node ire also deleted. The credibilities of all remaining situation maps are then re-normalized.

Ret.eipt of the first few radar track reports causes them to be posted on the blat.kboard. but
no more. Only when three report nodes having the same track identifier appear oi the
blackboard is a radar track node created to represent the hypothesis that (hey are from a singte
aircraft. In this mnner, the creaion of false radar track nodes based on radar false alarms i,

largely avoided. The resulting node may then be linked to an existing aircraft node b.y [he
aforementioned expectation.

Failing that, a new aircraft node is created to which the new radar track noce is linked
Then the cross-product is formed of the old situation map hypotheses and the pair of
hypotheses that the radai tratk was or was not caused by an aircraft. One new situation map
node is created corresponding to each existing one. The new situation map nodes ar-- pies ,.,f
the old nodes, each with a link to this aircraft node added. Some portion of the cre. "lility of
each old situation map hypothesis ti.ust also be transferred to the corresponding ne.-,
hypothesis. At this point, the knowledge sour.e AhiLh removes insufficiently credible situatiun
map nodes is again applied to reduLe the number of situation map hypotheses maintained.

The accretion of ELINT reports int) ELINT tracks is similar to that of radar reports i:',

radar tracks. But the creation an of ELINT track does not satisfy any expectatnons or trigger

2-465

the creation of an aircraft node. Rather it triggers a search for aircraft nodes of a type ,vhich
could produce the sensed emission and which has a history of estimated positions (implicit in
the radar tracks' report history) consistent with the ELINT track's history of bearings (similarly
implicit). The ELINT track node is linked with any and all such aircraft nodes. The
credibility of any such aircraft nodes is increased appropriately to reflect evidence that the
hypothesis it represents is correct. Such a credibility increase must also be propagated up to
the situation map nodes. Creation of a new aircraft node triggers a similar search for
supporting ELINT tracks.

Prioritization among the knowledge sources carrying out the aforementioned actions can be
relatively simple. The arrival of a new input datum should trigger a locus of activity on the
blackboard which propagates up the network of levels, with pauses to spread down along
different hierarchies as appropriate. All of the activity directly triggered by one datum should
be completed before the next input datum is posted. To keep the amount of inter-input
processing reasonable, the diversity of hypotheses created in the normal course of processing
must be limited. Thus as additional radar reports arrive, the posted nodes are simply
associated with radar tracks on the basis of track identifiers as in the above knowledge source
example. It would be possible to create track nodes expressing all possible hypothetical
combination of track reports without regard to track identifiers. But the processing required to
create, qualify, and eventually delete most of these nodes would be wasteful given the number
of possible combinations.

But when should the control structure invoke the knowledge source which tests for a close
approach of two aircraft and creates new track nodes to reflect a possible confusion of track
identifiers? One answer would be after the completion of every invocation of the knowledge
source associating a new radar report with an existing radar track. But that would mean
frequent invocations, usually producing no ch.nge An alternative is to invoke that knowledge
source only when some other, less frequent, occurrence suggests the possibility of a close
approach by two aircraft and consequent track identifier confusion be considered.

In the scheme described above, ELINT trat.ks are associated with an aircraft if they are
consistent with the aircraft's hypothesized type and with the radar track. If the tracks are
geometrically consistent but the nature of the tracked emission is -nconsistent with the aircraft
type, one possibility is that the aircraft hypothesis was wrong with regard to type and should
be discarded or modified. But another possibility is that the radar track history actually

,rresponds to two different aircraft at two different times due to a track identifier confusion
.uring a close approach. If ELINT tracks are already linked with the aircraft node as support
for the hypotheses, the possibility of a close approac.h should be investigated first.

The above sketch does not reflect the only manner in which the example problem might be
solved. It reflects various options for incrementally adv.ning the problem solution. Choosing
which option to use in a particular situation can iequire subtlety if one wishes to be
computationally efficient. Not illustrated are the additional subtleties of advising the control
structure how to achieve that sequencing. Experience is required ,o make such choices %isely.
Experience is also important in the construction of knowledge sourtes, the choiLe of
blackboard levels, and the selection of nodal attributes. Simple e\amples can only suggest the
subtleties involved.

4. SUITABILITY OF BLACKBOARDS
The above sketch of possible blackboard changes illustrates ,a major reason why the

blackboard problem solving methodology is suitable for Multi-sy,tern report integration. The
ordering of changes adapts appropriately to the arri-a! of \er. different sorts of input data in
different orders.

If any intelligence report involving a particular a,rcraft arries after radar track reports
corresponding to it, the hypothesis that it exists will still have been formed. The credibility ut
the situation map hypotheses supported b. that .:r.rft h.pothesis will be increased once the
intelhgence report is incorporated into the support Kor those situanon map hypotheses. ELI% I
reports are not discarded immediat.lv if they do not ..onfirm ,an e\isting aircraft hypothesi-
They are saved for possible Lonfirmation in rhe future \nd exceptional o.currences need h,

2-466

considered only when evidence suggests they occur. The close approach of two aircraft leading
to track identifier confusion being the case in point.

This adaptability in the operation of a blackboard system is a consequence of the control

structure's opportunistic invocation of knowledge sources, the knowledge sources' modularity of
forming or altering hypotheses, and the blackboard's structured composition of hypotheses. Any
knowledge source can be invoked after any dther completes, depending on the state of the
blackboard, i.e., of the problem's solution, at that point in time.

The blackboard methodology also provides a means for managing the complexity of large
multi-system report integration problems. Knowledge sources are modular in their applicability
to all nodes of a given level, or tuples of given bee", but only to those nodes. Modularity is
also achieved by expressing a partial problem solutio as hypotheses supported by a hierarchy,
or a set of linked hierarchies, of sub-hypotheses ultimately based on input data. Solution to
individual parts of a particular multi-system report integration problem can be conceptualized
and implemented without dwelling on the details of how the results of solving one part are
used in the solutions of other parts.

Standard algorithms can be used where apnropriate to so;ving part of the oroblem. But
special pre- or post-processing may be required. Such pragmatic features of a standard
algorithm's use in a particular context can be isolated from the algorithm itself by
encapsulatiig them in separate knowledge sources. Explicitly separating formal and heuristic
aspects of a problem's solution can highlight the heuristic aspects. It illuminates the
assumptions, explicit or Implicit, upon which they are based. Modifying the heuristic aspects
without compromising the formal aspects also becomes easier.

5. WORK IN PROGRESS
The Heuristic Programming Project Group of Stanford's Knowledge System Laboratory is

trying to

* realize a new generation of software architectures using parallel computation to
speed up Al applications and

* specify multiprocessor s.stem architectures for carrying .ut those computations
efficiently.

Among the issues being inestivated are

* recognition of opportunities for parallelism in the solution to a problem and

* expression of that potential parallelism in a problem sol%.ing framework that can
exploit It.

In particular. this effort is focusing on signal underst,inding pr,2blems and bla.kboard-like
frameworks.

Blackboard systems appear to be intrinsically parallel. At .in time. there can be many
potential invocations of knowledge sources. Those mn'oking different nodes seem eligible for
parallel execution. Within kno.ledge sourLes. produ.cion rule ,.ndiaons could be e aluated in
parallel. And some production rule actions could be safely e\eLuted n parallel. Currently t: c
different blackboard systems are under development. cth in'le.t0g.tJinig a different approa,.h (o
expressing opportunities for parallel .ornpution or requiremen for ser.al computation.
Applications of these experimental s;stems used In eal atng their effe .nieness.

The focus on signal understanding problems follows in !lrce part from the focus on
blackboard systems. The t%o mate Aell But signal -ardersiandin -rihlems ire important In
their own right. When signal understaidmg is defilied hr,,jdl: it n,udes se:or data fusion
and multi-system report integrat.-on Tia.t J,'s problems T a.ge an of -nisiderable
interest to the military.

Two signal understanding pro'hinis hae been -n',esto~ated 'o ,r .s part oF the Lurrent

I 2-467

project. They are referred to as the TRICERO/ELINT and AIRTRAC problems. While
generally similar, each problem is expected to push the research into recognizing opportunities

for, and expressing, parallel computation in different directions.

In the TRICERO/ELINT problem, streams of ELINT emitter/bearing measurements must be

combined to estimate the flight paths and operating modes of non-cooperating aircraft. The

problem is named after ESL's'TRICERO blackboard system for solving a problem of which
this one is just a component. The knowledge of how to solve the TRICERO/ELINT problem

has already been worked out, albeit without attention to opportunities for parallel computation.
So work on this problem is further ,long.

The AIRTRAC problem is recognizing aircraft flying across a national border and heading
for particular airfields used by smugglers. The smugglers' aircraft must be picked out of the
normal air traffic across that border. To solve the problem, aircraft destinations must be
recognized, not just flight paths and types. Streams of radar reports from multiple radar
systems are available. But the low altitude coverage of those radars is assumed to be limited
and the smugglers are assumed to know the coverage limits. So smugglers can try to aoid
detection. They can also maneuver their air.raft evasively to disrupt tracking. Such behavior is
a sure sign of a smuggler's aircraft. but makes the recognition of a destination difficult.

To complicate the AIRTRAC problem further, distributed aeroacoustic tracking systems using
modest batteries of acoustic sensor arrays(1.7) are placed across large holes in radar coverage.
These systems provide tracking reports within their limited coverage. Because such systems are
passive and readily moved, the smugglers are assumed to be unaware of their coverage and so
unable to avoid detection by these systems. These systems also use acoustic signature
information to provide aircraft class estimates along %hith tracking reports.

Initial solutions to both problems should be completed in both experimental blackboard
systems by the end of the year. Moreover. each solution should have been applied to several
problem scenarios on realistic simulated multiprocessors. These experiments will determine how
much parallelism was realized and may suggest alternatrie ways of realizing more parallelism.

6. REFERENCES
(1) J.R. Delaney and R.R. Tenney. "Broadcast Communicat:cn Policies for Distributed

Aeroacoustic Tracking". Proceedings of the Xth %IT/ONR Workshop on C3 Systems.
Cambridge. MA. July,. 1985, pp.195-199.

(2) L.D. Erman. F. Hayes-F.oth, V.R. Lesser, and D R. Reddy, "The HEARSAY-Il Speech
Understanding System: Integrating Knowledge To Resolve Ltncertainty". Compuwing Surve.
v. 12, December 1980. pp. 213-253. Also reprinted in (8).

(3) B.Hayes-Roth, "A Blackboard Architecture ror Control". \r'f!',Al Inteliigence. .ol. 26. no.
3. July 1985, pp. 251-321.

(4) H.P. Nii and E.A. Feigeiibaum. "Rule-Based Lnderst.cidnig of Sgnals". in D.A. Watermina
and F. Hayes-Roth. Pattern-Directed Inference Stems. A .. demic Press. San Francis,.o.
1978, pp. 483-501,

(5) H.P. Nii, E.A. Feigenbaum. JJ. Anton, and A J. R,_.,.kmore. "Signal-to-Symbol
Transformation: HASP/SIAP Case Study". AI \lMagazine. vol 3. no. 2. Spring 1982, pp
23-35.

(6) 1. Rice, "POLIGON: A System for Parallel Problem So;.:ng", Kno'ledge S:,stems
Laboratory Technical Report 86-19. Stanford Lnrversiz. 1986

(7) R.R. Tenney and J R. Delaney. "A Distribured Aer-acci ic Track:ng Alkorithm".
Proceedings of the 1984 American Control C-')ference. San Diego. CA. June 1984. pp
1440-1450.

(8) B.L. Webber and N.J. Nilsson (eds.). Read'ngs In -%rr-.f.tli In ,elligence. Tioga P-e,;
Company. Palo Alro. 1981.

2-468

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C31) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C31 systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintai-s technical competence and research programs in areas
including, but not Limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

