AD-A238 046 I
LT E,.?;o\ k

RL-TR-91-76, Vol | (of four) ‘”& JULL 01991 &

Final Technical Report S %
June 1991 é’ﬁ @

EXPERT SYSTEMS ON
MULTIPROCESSOR
ARCHITECTURES Summary

Stanford University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. 5291

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

4335
”lll‘l'l'l”! m :’l,'lll i

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
express=d or implied, of the Defense Advanced Research Projects Agency or the U.S.
Government. ’

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

91 7 8- 0286

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-91-76, Volume I (of four) has been reviewed and is approved
for publication.

APPROVED: W lp W E@Qh

NORTHRUP FOWLER III
Project Engineer

/.] \—"__
APPROVED: (.

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

LV
FOR THE COMMANDER: W/ /‘{;(7(2%?/ D)

RONALD RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL(COE) Griffiss AFB, NY 13441-5700. This will assist us in maintaining a 1
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

EXPERT SYSTEMS ON MULTIPROCESSOR ARCHITECTURES,

Summary
Edward A. Feigenbaum
Robert Engelmore
H. Penny Nii
James P. Rice
Contractor: Stanford University

Contract Number: F30602-85-.-0012

Effective Date of Contract: 14 March 1985
Contract Expiration Date: 31 March 1990
Short Title of Work: Concurrent Expert Systems

Architecture
Program Code Number: 0E20
Period of Work Covered: Mar 85 - Mar 90

Principal Investigator: Edward A. Feigenbaum
Phone: (415) 723-4878°

RL Project Engineer:
Phone:

Northrup Fowler III
(315) 330-7794

/

ncea'sica Por
TEiE GRAZY

r‘ bution/

laviiite Codesn
anil andler

P/

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced

Research Projects Agency of the Department of

Defense and was monitored by Northrup Fowler III,

RL (COE), Griffiss AFB NY 13441-5700 under Contract

F30602-85~C-0012.

REPORT DOCUMENTATION PAGE | GvBnERs0e01es

Public reparting burden for this colection of formanon ¢ estimsted to sversgs 1 hour per respones, Maluding ths TINe HOr 19 Swing NINLIIONS, SeWCNg Jestng CX3 SOUCES
gathenng and martasing the dets Needed, and corrpistng and reviewing the colecton of rformation. Send comments rgaNdNgG ths DLFCKYY ESTTIN.S OF 57V XNer 3506t of 1S
colecuon of rformation, nducng suggeetons for redLcing this burden to Washinggon Hesdqueters Sevicss, Orectoracs for Fforrnetion Opwreirs ardRepats. 1215 LeHersor
Davis Highway, Siuke 1204, Arington, YA 222024302, and to thwe Offics of Menegemert ard Budget, Paperwork Rediuction Proect (G7T04-0188) Washnggon 8C 2753

1. AGENCY USE ONLY (Loave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1591 Final Mar 85 - Oct S0
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
EXPERT SYSTEMS ON MULTIPROCESSOR ARCHITECTURES, C - F30602-85-C-0012
Summary PE - 62301E
- E2

6. AUTHOR(S) -gi - 0091

Edward A. Feigenbaum, Robert Engelmore, WG - 0L

H. Penny Nii and James P. Rice

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Knowledge Systems Laboratory AEPORT NUMBER

Stanford University N/A

701 Welch Rd, Bldg C
Palo Alto CA 94304

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Defense Advanced Research Rome Laboratory (COE) AGENCY REPORT NUMBER
Projects Agency Ggiffiss _AFB NY 13441-5700 RL-TR-91-76, Vol I (of

1400 Wilson Blvd four)
Arlington VA 22209-2308

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Northrup Fowler IIL/COE/ (315)330-7794

12a. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Me#rum 200 worde) . . :
This final report documents the results of a five-year investigation of methods for

achieving higher performance for knowledge-based systems through the design of
innovative software and hardware systems architectures. Volume I summarizes the work
performed and lessons learned, and serves as an annotated index to the set of over
50 project technical reports. Volumes II through IV contain the project technical
reports.

NOTE: Rome Laboratory/RL (formerly Rome Air Development Center/RADC)

14. SUBJECT TERMS 15 NUMBER OF PAGES
Multiprocessor Architectures, Artificial Intelligence, 60
Blackboard Systems 14 PRICE CODE
17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION {19. SECURITY CLASSIFICATION UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT 2.
_llINCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Stanawd Fam 298 *He. I 29)

Prescrioec by ANS1 Siz {2218
20102

1....... Introduction

1.1.....Project Goals

1.2.....Personnel

2....... Hardware-Level Systems Studics
2.1.....Simple and Helios
2:2.....CARE

3....... Operating Systems and Languages
3.1.....CAREL
3.2.....CAOS
3.3.....LAMINA

3.4.....Inter-Processor and Inter-Process Communication
3.5.....Load-Balancing

3.6.....Concurrent and High Performance Lisp
3.7.....Distributed Cache Coherence

Problem-Solving Frameworks

4.1.....Cage
4.2.....Poligon
Applications
5.1.....Elint
5.2.....AirTrac
5.3.....ParAble

5.4.....Numerical and Semi-numerical programs
Conclusions, Observations Results

6.1.....Speedup over serial computation
6.2.....Pipelines

6.3.....Basic computational metaphor
6.4.....Communication
6.5.....Problem Solving Methods
6.6.....Development strategy
6.7.....Analysis of the application

6.8.....Load balancing

Bibliography of Expert Systems on Multiprocessor Architectures: Project

Publications

Bibliography of Referenced Work Not Performed on the Project

) 1 1 1 [)] 1] 1 pmad puh ok pomdk ok pod Pk pvnd pamd Pk
] [] 1] 1

HLAWNDODN=OOWOONINANDN == OOO\O 0000 A WL

ok fuemd Pk ot pumd Juenh pummd Jowed Pumad Jusedh Pued Pk Pk poved puos) Woasd paud pmd pured pomd ot
L L] 1)

p— bt
1
W
oW >

Abstract

This final report documents the results of a five-year investigation of methods for achieving
higher performance for knowledge-based systems through the design of innovative
software and hardware systems architectures. Volume 1 summarizes the work performed
and lessons learned, and serves as an annotated index to the set of over 50 project technical
reports. Volumes 2 through 4 contain the project technical reports.

1. Introduction ,'

The Expert Systems on Multiprocessor Architectures (ESMA) project was initiated in
March 1985, and technical work was completed in 1990. The research was conducted at
Stanford Univessity's Knowledge Systems Laboratory. The results and findings of the
project were published in a series of technical reports, which comprise Volume 2 of this
Final Report, Volume 1 sets forth the basic concepts that underlie the research, and
provides a road map to guide the reader through that technical literature. Volume 1 ends
with a project bibliography, which serves as a table of contents for Volumes 2 through 4.
ESMA builds upon and straddles a number of areas of research in computer science,
including artificial intelligence, programming languages, operating systems,
communication protocols and hardware. Prior to this project, some work was done on
analyzing the performance of rule-based systems on parallel architectures, most notably by
Gupta [Gupta 86]). On the hardware side, there are commercially available machines that
are simila, in some respects to the architectures considered here, notably the Ametek
machine. The relationship of ESMA to work in other fields is documented copiously in the
papers cited below.

On the other hand, this investigation is unique: the project focussed on applications
characterized by symbouic (largely non-numerical) computation; took an end-to-end multi-
level approach toward identifying and exploiting concurrency; and used highly
instrumented simulation to permit careful analysis of experimental results.

In the remainder of this chapter we set forth the goals of the project and list the personnel
who contributed toward achieving those goals. Chapters 2 through 5 describe and
summarize each of the four levels of analysis in our multi-level, vertical-slice strategy.
Chapter 6 draws together the princinal conclusions and lessons that were learned from this
research. Chapter 7 is a full bibliography of the technical reports that were produced by
project staff. Chapter 8 lists other referenced works.

1.1. Project Goals

The project's primary goal is to find ways to increase the performance of expert systems
through the use of the new, emergent, parallel hardware designs.

The number of possible implementation strategies for such a project is huge. One has only
to look at the large number of different hardware designs that are emerging and at the num-
ver of different problem-solving methods to see how combinatorial the problem would be if
we endeavored to investigate all of the reasonable and plausible combinations of architec-
tures. It was decided, therefore, that we could learn a great deal simply from making a
commitment to one, or at least a small number of different options at each point in the sys-
iem's make-up. We thus decided to take a "vertical slice” through the space of possible
soiutions. Clearly we did not intend to investigate any options that seemed non-useful, so
we knew from the outset that, although we could not prove that we had the best design to

1-1

=== -

meet our goals, our design would nevertheless be at least a plausible architecture for a fu-
ture computational environment.

We viewed the task of implementing concurrent expert systems as being one which was
split into a number of implementation layers. If we could achieve speed-up at each one ot
these layers, then we could hope for a substantial overall performance improvement com-
pared to existing Al systems. Our model of the layers into which the project could be split
is shown in Figure .

Applications

Problem-Solving Frameworks

Knowledge Retrieval

Resource Management

Programming Languages

Operating Systems

Systems Architectures

Figure 1. The layers of system implementation through which we hoped to
achieve computational speed-up in the project.

It was originally anticipated that the needs of the applications would drive the development
of the problem-solving frameworks and so on down through the implementation hierarchy
shown in Figure 1 until eventually the hardware would be designed under the constraints
passed down from above. In practice, however, this did not happen. Because of the diffi-
culty of finding and mounting an application suitable to our needs and the early availability
of personnrl interested in the hardware design aspect, the hardware design went ahead
more rapid‘y than the other layers. This resulted in our designs being more hardware
driven than application driven. This approach has its advantages, for example, an entirely
top-down design process could easily have resulted in low-level system requirements
which were not implementable.

As well as the thrust of the project coming from the bottom rather than the top, the levels of
abstraction actually implemented differed significantly from those shown *n Figure 1.
Figure 2 gives 2 m:ore realistic representation of the layers that were actually investigated,
as opposed to what. we intended to do.

1-2

Applications

Problem-Solving Frameworks

Resource Management

Programming Languages

Hardware Systems Architectures,
Topologies and Protocols

Figure 2. The layers that were actually implemented in the project. Resource
Management is shown in small type because it was a recent addition and most of our
work was done without the kelp of this layer.

The Knowledge Systems Laboratory has considerably more expertise in software than in
hardware. We thus decided early on not to build any hardware - there are many other
research groups that could do this better than we. We decided, therefore, to simulate our
hardware. This would allow us to modify our software and hardware designs easily and
allow us to extract the maximum insight with the minimum effort.

The rest of this paper is split into sections which reflect the major layers shown in Figure 2.
In each of these sections the work of the relevant sub-projects will be discussed. Because
of the bottom-up thrust of the project the project's components will be discussed in a bot-
tom-up order. This will also reduce the number of forward references made, since dis-us-
sion of the higher layers will inevitably have to refer to the substrates on which they are
implemented.

1.2. Personnel

This project has employe. a large number of people over the years and it seems appropriate
to name them all here:

Ed Feigenbaum, Bob Engelmore, Penny Nii, Bruce Delagi, Harold Brown, Hiroshi
Okuno, John Delaney, Byron Davies, Hirotoshi Maegawa, Nelleke Aiello, James Rice,
Nakul Sareziya, Sayuri Nishimura, Eric Schoen, Greg Byrd, Max Hailperin, Russell
Nakano, Masafumi Minami, Chris Rogers, Alan Noble, Jean-Christophe Bandini, Manu
Thapar, Djuki Muliawan, Pandu Nayak, Jerry Yan and Sam Hahn.

2. Hardware-Level Systems Studies

As was mentioned above, hardware system design led the way in the project. In this
section we discuss a litile bit of the motivation for the hardware designs and briefly de-
scribe both the current generation of hardware designs on which we are working and the
simulator we are using.

1-3

I

Figure 3. The Simple system provides a toolkit from which to build circuits to
be simulated, a collection of probes to connect to the circuit and a set of instruments to
connect to the probes.

The hub of all of the work done on the project has been the digital circuit simulator, ! upon
which everything else is built. This simulator is called Simple. It is an event-driven
simulator, designed to allow the user to design and specialize digital circuits in a simple and
modular way, using a circuit design tool called Helios. A sophisticated set of instrument
tools allow the user to design and specialize simulated probes which can be connected to
the circuit while it is running. This allows the connection of a number of insiruments to the
probes that permit the user to see the behavior of the circuit as it operates without interfer-
ing with the behavior of the system. We like to view this model as one of a laboratory
workbench equipped with collections of instruments, probes and circuit building compo-

INote: This simulator could be used to simulate cve::..s down to the gate level, but one of its powerful
attributes is its ability to allow the programmer to define the behavior of composite objects in terms of
methods that make these devices appear to be atomic black boxes. This ability obviates the need to do gale
level simulation of those aspects of the system whose behavior is well understood. This has enormous
bencfits in terms of simulation time.

1-4

(L AR O L S L PO SO

nents from which the user can build systems and on which the user can perform quantita-
tive experiments (see Figure 3).

The key factors that make the Simple simulator so powerful are detailed in [Delagi 86b, 2-
272]1, [Delagi 87, 2-294] and [Saraiya 90a, 4-360]. In effect, the simulator focuses on the
critical design aspects of multiprocessor design, namely interprocessor communication and
topology. The simulation is less detailed in other areas. This allows the user to simulate
the execution of sophisticated problems, rather than the toy problems or small code
fragments possible with other simulators. The instrumentation in the simulator is powerful
and flexible, not only allowing the user to observe events in the simulated system at
multiple levels of abstraction, but also readily allowing the user to modify and specialize
instrumentation so as to focus the simulator more sharply on interesting application-specific
behavior. This allows the user to gain substantial insight from simulator runs, while still
allowing the user to reconfigure the system easily and quickly in the event of an unexpected
result prompting unplanned experiments.

It was found early on that simulations of the sort we wanted to do would be computation-
ally very expensive. An experiment was performed, therefore, to parallelize the simulator
itself in an attempt to bring down the times taken for the simulations, which often exceeded
one day in duration. This resulted in AIDE, a distributed version of Simple [Saraiya 86, 4-
297]. Unfortunately, we were unable to achieve any speed-up at all for our simulations,
largely because of the communication bandwidth and latency associated with
communicating between the multiple Symbolics machines we were using via an Ethernet
and because the simulator, being event-driven, required frequent synchronization on the
event queue, which serialized the processing. Although this experiment yielded a negative
result, it was valuable in demonstrating the importance of process grain size and
synchronization effects.

2.2. CARE

The Simple simulator mentioned above was used to design and build what we refer to as

the CARE2 machine and simulation system [Delagi 88a, 2-301] (see Figure 4). The CARE
machine is that simulated machine on which all of the experiments mentioned below have
been performed. The machine's design has a few key features which are worthy of note:

 Dynamic cut-through routing with local flow control, in order to optimize network
throughput [Byrd 87c, 2-155]. This protocol uses special packet terminators and
selective buffering to avoid deadlock during multicasts.

+ Toroidal topology. Topology can be motivated by high-level, application domain
considerations, but it is also motivated by such low-level concerns as packaging
and communication protocols. Cost models were developed to characterize several
topologies and these topologies were tested under simulation. On balance, we
believe that toroidally connected networks have the best overall cost/benefit tradeoff
[Byrd 87b, 2-148].

» Non-blocking message sending, so as to encourage pipe-line processing.

« Communications network with alternative paths between points, so as to reduce
communications problems due to busy communication paths.

1 Citations fe. project reports point to the bibliography at the end of this volume and also to the page

_ number where he report can be found in volumes 2 through 4.

2The expans’ in for this acronym scems to have been lost somewhere in the wash. We think that it has
something t¢ .0 with the words Concurrent and Array.

1-5

+ AAseparate communications controller, in order to support operating system func-
tions and to implement the non-blocking send functionality mentioned above. This
communications controller is referred to as the "Operator”. The processor in each
processing element that executes user code is called the “Evaluator”.

A:Simplified model of 2 CARE machine processing element (site) is shown in Figure 4.

etwork _Po
~N
Buffers
Operator[€4—®| Memory
[Evaluator{€—®
_ Prccessing Element y,
Figure4. A CARE machine processing element (site).
These processing elements can be connected together in a number of ways, such as into
grids and bus-based networks as it shown in Figure 5. When a CARE site is used simply
as a memory controller its evaluator processor is not used. Similarly, when a site is used
just as a processor in a bus-based shared-memory machine, only the evaluator is used.

1-6

PM P/M PM P/M
P
P/M P/M P/M PM M
P
b
M
M — e — e — v > ‘;
M
p
PM P/M PM PM M
Figure 5. CARE sites can be connected together into a variety o—f distributed and
shared memory of topologies. In this example we show a six-way connecied grid and a
bus based machine.

The work on the CARE sub-project has focussed mainly on the design of inter-processor
communication networks, as is appropriate. This has meant that we have been able to ig-
nore the instruction level behavior of the processors themselves. The application programs
that we run are merely timed as they run between the points at which code fragments cause
communication between processors. Being able to avoid doing register level simulation of
the processors themselves has allowed us to execute much more complex and realistic pro-
grams on our simulated machines. We have therefore traded accuracy in our processor
simulation - assuming that the processing ¢lements will behave much like existing Lisp
Machine processors - in favor of greater realism in terms of the system's performance un-
der the load of real programs.

A number of aspects of system design have not been addressed in detail and the simulations
do not take these into account. Most significant among these, perhaps, are the fact that
memory usage, code distribution and garbage coilection are not simulated, i.¢c. the CARE
machine was assumed to have unbounded local memory and code was assumed to have
been distributed uniformly to all processors at load time. Thus, although the CARE
architecture was designed with sarbage collection in mind, this was not simulated at all. In
fact, all possible extraneous impediments to accurate and reproducible run-time
measurement were climinated. Such simulation machine system overheads as garbage
collection, paging, /O and page creation were carcfully factored out of the timing. This
resulted in timings that were not "realistic” in the sense that they did not account for certain
necessary system behavior, but these timings were nevertheless far more useful in general
because these system services are generally non-deterministic with respect to the simulation
and their behavior is a function of the performance of the simulation machine, not the
simulated machine.

The CARE/Simple simulator system is perhaps the most valuable tangible product of the
project. It is now being used in a number of research departments, both corporate and
academic, outside Stanford. Like all project sofiware, it is in the public domain.
CARE/Simple will soon be available running under Common Lisp, CLUE and X11 ona
number of different platforms.

CARE EXAMINER: EYALUATOR QUEUE LOAD
Rweat Kty sad drevsge Sy SRw

4 4 AR e 2
33 " 10 2
g '14 . g oe 2
4l o DN 40 7
% % i EE L - 58 2
(14) b= s -
i f?': =§= - R T SIIA - 0 7
e 2 4 6 8 10 oo -
Simulated Time [ms] -\99 2

Figure4. An example of instrumentation from the ZARE system.

3. Operating Systems and Languages

A considerable amount of effort has been spent on the project in working at the operating
system level of absiraction. Because our experiments dealt with a single task, and file
system issues were not considered, it was not necessary to build an operating system per
se. The CARE machine itself features a dual processor for each processing element. This
allows much of the work of an operating system, particularly inter-processor
communication, to be done by a dedicated processor in paralle]l with the execution of user

code. The behavior of this communication processor is coded directly into the simulated
hardware.

Amongst the work that has been done in this area has been work on concurrent object-ori-
ented systems, concurrent Lisp dialects, programming models and resource allocation.

3.1. CAREL

CAREL [Davies 86, 2-226] was one of the first programs written to run on the CARE
simulated machine. It was an early attempt to find a Lisp language interface to the
distributed-memory hardware provided by CARE. It took as its basis Scheme [Abelson
83] and QLisp [Gabriel 84] and included primitives to allow remote function cails and
remote consing. It was quickly found that, because of the cost of process creation, it was
desirable to make the best use of any processes that were spawned. This efficiency was
accomplished by storing application dependent data in non-ephemeral spawned processes.
State of this type was implemented in CAREL as writable closure variables. These process
closures could be used as elements in pipe-line computations or to represent mutable
communicating program objects, for instance to represent real-world objects with state.
State, as encapsulated in communicating objects, and the idea of pipe-line parallelism have
been pivotal in the design of the other systems developed on the project.

1-8

AL 1 it

The CAREL project was used mostly as a feasibility study and was soon discontinued.

3.2. CAOS

The first implementation of the Elint application, described further in Section 5.1, was
made without the benefit of any problem-solving framework, per se, but rather using an
object-oriented programming architecture. It was anticipated that the application could be
easily mounted almost directly on the CARE machine and some experiments could be run
quickly, which would allow us to learn some important lessons early in the project.

In order to mount the application, a distributed object-oriented system was implemented.
This was done because the CARE system did not, at the time, come with its own
"preferred" object system. The system that was implemented was called CAOS [Schoen
86, 4-433], a Concurrent Asynchronous Object-oriented System. It was implemented
using the Flavors system supported by the Lisp machines used by the project. It had a
number of key features:

» CAOS objects were dynamically instantiable and potentially multiprocess objects,
though each would execute on a single processor, having at least one stack group
associated with each CAOS object.

« CAOS objects were intentionally large grained. This was because it was anticipated
that the communications network would be the resource most competed for, thus
encouraging the programmer to perform a lot of computation in order to reduce the
number or size of messages sent.

» Packet-based message-passing was used as the metaphor for communication
%i\geen processes through streams in the language extensions to Lisp provided by

S.

» A large number of different message sending primitives were defined, including
non-blocking sends that did not require a reply from the target of the message,
sends that returned futures to the values returned by the targets and send operations
which blocked immediately in order to wait for a reply from their targets.

Contrary to our intuition, the communications network proved to be the least loaded of the
CARE machine's resources during our experiments on CAOS. The computational expense
of supporting its complex object model caused the granularity of the resultant computations
to be too large. However, the real-time signal interpretation application developed in
CAOS focussed our attention on such key factors as decomposition grain size and the use
of replicated pipelines of processes. Because of the computational expense for each
process, the CAOS model was inconsistent with a large number of processors executing
tightly coupled subproblems typical of reasoning systems.

3.3. LAMINA

Lamina is the object system that was designed after the lessons were learned from the
CAOS experiments [Saraiya 90b, 4-394]. It was originally intended to provide a very
small, light-weight layer on top of the CARE machine so that distributed object-oriented
programs could be implemented efficiently. A significant part of the motivation for the
design of Lamina was the desire to reduce the overhead suffered by the CAOS system in
terms of associating large stack groups with each of the CAOS objects. Lamina introduced
the idea of objects with restartable, rather than resumable code segments, which do not
require stacks to preserve their state when they are not running. Since its first appearance
Lamina has been developed extensively and, although still small and light-weight, provides
a platform for the development of computational models for functional and shared-variable
as well as object-oriented programming.

1-9

In [Delagi 86a, 2-243] not only are the three programming models - object-oriented,
shared-variable and functional - shown all to be implementable using Lamina's unifying
stream mechanism, but it also shows, by example, how these programming models can be
used to create pipelines, how to manage these software pipelines and how structures can be
dynamically created and relocated using the Lamina model. This model also allows the
substantial localization of storage reclamation, which is a crucial factor in the development
of efficient , concurrent garbage collection mechanisms.

Lamina has been used to implement a number of programs, both for direct implementations
of the two real-time expert sysiems being investigated (see Section 5), AirTrac and Elint,
and also a number of numerical programs. Lamina is now the preferred core programming
system for the CARE machine and applications in Lamina have consistently shown the
highest performance of all programs running on the CARE machine.

3.4. Inter-Processor and Inter-Process Communication

A considerable amount of work has been performed on the investigation of different mech-
anisms for inter-processor and inter-process communication. For distributed-memory ma-
chines we believe that the efficient distribution of work for large applications is crucially
linked to the efficient implementation of multicast communication [Byrd 87a, 2-116]. In
particular we have concentrated on the development of efficient cut-through routing
methods that allow the effective use of multicast. In [Byrd 88b, 2-196] several alternative
cut-through multicast protocols are described and compared experimentally. One particular
adaptive scheme is found to be superior to the others investigated both in performance and
in the fact that the protocol provides cut-through multicast without requiring dedicated
storage in the communication architecture for a full packet.

Although the principal thrust of the project has been towards the development of dis-
tributed-memory hardware, the fact that the CARE simulator can also simulate shared-
memory machines has allowed the investigation of the relative performance of these two
distinct classes of machines and the relative performance and appropriateness of shared-
variable and message-passing/object-oriented programming models. In [Byrd 88a, 2-181]
a particular parallel application is implemented in both object-oriented and shared-variable
styles. Using these examples it was possible to show how the differences in programming
model affected perforinance and what the costs associated with each model were. This, the
allowed the identification of strategies for minimizing data communication costs in each of
these programming models.

Work late in the project focussed on the design of hardware that might provide efficient
support for both the shared-variable and the message-passing programming models,
particularly through the use of cut-through multicast protocols [Byrd 89, 2-205].

3.5. Load-Balancing

We examined load-balancing problems within the context of the ““vertical slice.” (recall
Figure 2) [Hailperin 88, 3-1] In particular, this work is focussed on a load-balancing
method which migrates Lamina objects in a large network (thousands of processing ele-
ments) of CARE processing elements in order to improve the performance of soft-real-time
signal-interpretation systems such as Elint and AirTrac (see Section 5).

Experiments showed that without special attention to load balancing, performance was
seriously degraded. Without load balancing, only a lightly-loaded multicomputer, which
has cause to create processes dynamically, can in general achieve real-time performance.
The studies focussed on how to achieve global load balancing, which would be an

1-10

i
:

e Wi

attractive solut.on to this problem, as it would allow the effective use of massively-parallel
ensemble architectures for larger soft-real-time problems.

The challenge is to replace quick global communication, which is impractical in a mas-
sively-parallel system, with statistical techniques. In this vein, a novel approach to decen-
tralized load balancing was investigated based on statistical time-series analysis. Each
processing element estimates the system-wide average load using information about past
loads of individual sites and attempts to equal that average. This estimation process is
practical because the soft-real-time systems in which we are interested naturally exhibit
loads that are periodic, in a statistical sense akin to seasonality in econometrics.

A load-balancing system for Lamina/CARE was designed using this load-characterization
technique, and its implementation and experimentation with it in the context of the ELINT
and AIRTRAC applications are the subject of a Ph.D. thesis in progress..

3.6. Concurrent and High Performance Lisp

In an attempt to understand the behavior of the Lisp language on shared memory machines,

work was done on the QLisp system [Okuno 87, 3-443]. Although this work was not

used directly by other parts of the project, it investigated some of the constraints on

parallelizing production systems by studying the OPSS5 language. This was the first large

application implemented in QLisp and it was found that QLisp was able to encode all of the

gre\gously found sources of parallelism in OPSS5, which amounted to a proof of concept
or QLisp.

3.7. Distributed Cache Coherence

A significant aspect of our research into shared memory architectures was that of caching
schemes and cache coherence. During our research we have designed and developed a new
scalable cache coherence protocol for large scale shared memory architectures. This
protocol has lower cost and more robust performance than previous solutions.

Cache coherence is an important and well known problem in shared memory
multiprocessors. In such systems, each processor has an associated cache. The same data
may be shared by different processors and thus copies of the data may be present in
different caches. A cache coherence mechanism must exist in order to keep these multiple
copies consistent with each other.

Bus-based shared multiprocessors usually provide some form of "snoopy" cache coherence
protocol. The term "snoopy" arises from the fact that on a write, each cache watches the
addresses transmitted on the bus. In the case that the cache has a copy of the data, it is
either invalidated or updated. Snoopy cache coherence protocols rely on the bus to provide
a global broadcast and such systems are limited by t'ie n xmber of processors a bus can
support before it saturates.

In order to overcome the requirement of a broadcast medium, directory based protocols
may be used. Earlier centralized directory based protocols maintain information about the
caches that have copies of the iine in a directory that is an extension of the main memory.
This can potentially cause the directory to become a bottleneck. We have developed a new
distributed directory protocol that 1s based or a singly-linked list of caches. Such a system
is more scalable than earlier solutions in terms of both cost and performance. This research
is4detailed extensively in [Thapar 89a, 4-502], [Thapar 89b, 4-527] and [Thapar 90, 4-
542].

1-11

4. Problem-Solving Frameworks

One of the key layers of the vertical slice strategy was the organization of problem-solving
activity according to existing AI concepts. Al provided us with a number of different
problem-solving frameworks as candidates for this study. In fact, the project committed
itself at an early point to the Blackboard problem-solving model [Engelmore 88}. This was
not an entirely arbitrary choice. The blackboard metaphor had already been applied
successfully in the area of real-time signal processing [Nii 82], the selected problem
domain for the project. It was also anticipated that the blackboard metaphor would help us
to extract parallelism from the application in the way that the problems were formulated be-
cause the metaphor has a model of asynchrony built into it. For reasons detailed in [Rice
88a] the blackboard model turned out not to be as parallel as we might have hoped, but we
still know of no better one for concurrent execution.

The development of problem-solving frameworks for parallel computation took two distinct
courses. First was the development of a fairly conservative, concurrent implementation of
an existing blackboard system to run on shared-memory machines. This was the Cage
system, based on AGE [Nii 79] described in Section 4.1. The second course was to
rethink the blackboard metaphor from scratch in the hope of achieving really high
performance on distributed-memory multiprocessors, such as the CARE machine. This
resulted in the Poligon system described in Section 4.2.

Three generations of papers have been produced describing the strategy of the project, the
Cage and Poligon systems as they evolved, and the experimental results produced by these
systems. The early motivation for the designs of these systems is outlined in [Nii 86, 3-
196], while [Nii 88a, 3-205] and [Nii 88b, 3-233] show the evolution of these concepts
and detail the experiments performed on the two systems, dwelling in particular on the
factors that motivate and constrain the design and performance of parallel systems in
general and of parallel problem-solving systems in particular. Numerous lessons were
learned in the process of this research, which are listed in the above reports and in [Rice
88a, 4-139] and [Rice 89b, 4-219].

4.1. Cage

Cage (Concurrent AGE) [Aiello 86, 2-1], [Aiello 89, 2-26] is a reimplementation of the
AGE [Nii 79] blackboard system framework also developed at the Heuristic Programming
Project at Stanford. The central idea behind Cage is that the blackboard model provides a
certain amount of parallelism by its very nature. It should therefore be possible to exploit
this parallelism without any major redesign or rethink for the problem-solving model.
Cage is, therefore, an implementation, which is designed to allow the concurrent execution
of a blackboard system through the concurrent execution of the knowledge sources and
rules in the application (see Figure 5). A key factor in the design of Cage was that control
of which rules and knowledge sources were to be run in parallel was left entirely to the
user. This allowed the user to develop an application serially, debug it and then gradually
increase the amount of parallelism exhibited by the application. This allowed the easy
identification of bugs that were a function of the concurrent execution of small components
of the application. It also allows the developer to experiment with different configurations
of parallel execution so as to maximize the performance of the application, which might not
be tr)rllaximized by enabling all possible concurrency options because of contention
problems.

1-12

.

T T A T vy —

I

Blackboard Knowledge Base
KS

Nodg b_ Rule t—
Update event Rule
e O i Y -
I l =
Nodd | Nod | Nodd Ruel | | £
| Rule

Scheduler

Figure 5. The Cage Architecture. Update events are perceived by the scheduling
component and collected in a global event queue. The scheduler selects the knowledge
sources that are interested in any given event and can execute them in parallel. These

knowledge sources in turn inspect tke blackboard and perform updates that are seen by the
scheduler.

At the outset it was not known how difficult it would be to program such a system and how
much performance could be expected, but it was thought that such an architecture might
well be suitable for the current generation of multiprocessors, which mostly have a shared-
memory design. Blackboard systems are typically implemented using a central, shared
database to represent the blackboard. The match between the shared blackboard and the
shared memory resource seemed to be worth investigating.

The Cage system was implemented first on a simple emulator, which emulated the func-
tionality of a QLisp implementation without paying the costs of detailed simulation. It was
later ported to run on the CARE simulator, using QL an implementation of QLisp and
Multilisp language primitives built on top of the Lamina shared-variable programming
interface [Saraiya 88, 4-324].

The Elint application, described in Section 5.1 was mounted on the Cage system and exper-
iments to measure its speed-up and throughput were performed on it. These are detailed in
[Aiello 88, 2-15]) and [Rice 89a, 4-198]. The Cage system has shown that blackboard pro-
grams can, indeed, be run in parallel in a relatively simplistic manner. The performance of
Cage, however, is restricted by a number of factors [Nii 88b, 3-233]:

* its implementation, which was not highly tuned;

+ its architecture, which exhibits significant contention for global shared resources
such as the event queue;

+ the QLisp substrate, on which it is built. and

* the shared-memory hardware upon which it runs.

1-13

Thus, although the Cage architecture is a viable architecture for existing shared-memory
hardware systems, because of the close link between the Cage programming model and its
underlying hardware, we do not anticipate that future concurrent expert system tools will be
built much like Cage. We believe that the trend of multiprocessor design is broadly away
from shared-memory machines and towards distributed-memory designs because of their
greater ability to scale.

4.2. Poligon

The expectation that the next generation of multiprocessors, for reasons of simplicity, per-
formance and cost, are likely to be distributed memory machines required a reexamination
of the blackboard model before it could be mounted on such a machine in a manner likely to
deliver good performance. Poligon [Rice 86a, 4-1] and [Rice 86b, 4-19], a domain
independent blackboard-like programming language and concurrent programming
environment was developed in an attempt to address these needs. Poligon adopted the
view that processors are going to be cheap and plentiful. Thus, is would be quite
acceptable if necessary to allocate one processor or more to each node on the blackboard.

First the serializing, centralized control mechanism of conventional blackboard systems
was discarded. Distributing the nodes of the blackboard over the processor network al-
lowed the knowledge base to be spread over the blackboard as well, so as to eliminate any
performance bottleneck due to the communication costs between the knowledge base and
the blackboard. The simplest available rule invocation mechanism was selected, so as to
maximize performance; rules were directly attached to slots of the nodes on the blackboard.
A modification to a slot, to which a rule was attached, resulted in that rule being invoked.
Rule invocations were spun off into different processes on different processors for execu-
tion, thus minimizing the length of the critical sections on the processors holding black-
board nodes and allowing multiple, simultaneous rule invocations for the same modified
blackboard object (see Figure 6).

In practice, these mechanisms did indeed result in good performance, but they also resulted
in significant problems. Many uncontrolled asynchronous processes, all reading and
writing things in a shared database, are unlikely to reach a coherent or correct answer.
Extra mechanisms had to be implemented, which allowed the blackboard nodes to have
"goals" and the ability to evaluate their own performance with respect to the overall goal of
the system. This allowed the blackboard nodes to make local decisions about whether to
perform any modification operation attempted by a rule. The result was a sort of dis-
tributed hill-climbing behavior. Nodes iterated towards a good solution.

1-14

Node Rules
Pipe _

Update

| 1| K
2
3
g
3

Update/ D L_) D

Figure 6. The Poligon Architecture. Updates v the blackboard are observed by
rules which watch specific slots of blackboard nodes. These rules can fire in parallel caus-
ing further updates to the same or other nodes. This flow of updates from one node to
another implicitly forms pipes, which increase the parallelism realizable by the system.

These mechanisms did not come without associated costs in terms of granularity. Although
the Poligon system delivers very high performance when compared to other blackboard
systems such as AGE, it nevertheless significantly lacks the performance provided bt¥ an
application written directly in Lamina. However, an appropriate conceptualization and
decomposition of a problem is the most difficult task for a programmer, 21d the most
critical for obtaining speed-up. Poligon is a relatively high-level language compared to
Lamina, and as such gives the programmer an edge in conceptualization. Poligon,
therefore, provides a fairly general concurren . .inplementation of the blackboard problem-
solving moxlel with all of the advantages of abstraction and modularity that this confers. It
does so, however at a price. A detailed rationale and description of Poligon's design and
implementation can be found in [Rice 89b, 4-219]. This paper, through a detailed
discussion of the factors that limit the performance of blackboard systems in general and
concurrent blackboard systems in particular, shows the motivation for the design of
different aspects of Poligon, detailing the evolution of numerous different aspects of the
Poligon system, and highlighting the deficiencies of each design that was attempted and
then superseded. 1i also describes a number of means by which the performance of
Poligon could be improved by superior compilation if it were to be turned into a production
quality system.

The Elint application, described in Section 5.1, was implemented in t- “age, Poligon and
Lamina systems. The results of these experiments are reported in [Rice 88b, 4-165], [Rice
89a, 4-198] and [Nii 88b, 3-233]. These reports also describe both the motivation for and
architecture of Poligon as well as highlighting numerous experimental results, which are
analyzed with a view to the lessons that can be learned from Poligon's performance. In
[Nii 89, 3-298] a discussion is given on the way in which the serial Elint application was
recoded to as to run on the concurrent Poligon framework. This has numerous
implications for the development of concurrent real-time signal understanding problems.

1-15

Another application called ParAble, implemented using the Poligon framework, is de-
scribed in Section 5.3.

5. Applications

Our research strategy called for the project work to be application driven. The search for an
application was guided primarily by two considerations (a) practical versions of the
application would demand significant speed-up in execution, and (b) methods for
approaching the application held a certain obvious potential for concurrent execution.
Based on these considerations, the application area chosen was real-time signal
understanding. Existing blackboard systems, such as HASP/SIAP [Nii 82] and Tricero
[Williams 84] had shown both that the blackboard problem-solving model was appropriate
for this dom.ain and that the performance deliverable using existing blackboard tools was
inadequate to field such systems.

What we needed, therefore, was a problem which was complex enough to give us a rea-
sonable model of a real system, and yet z.inple enough that we would not spend too much
effort on the mechanics of its implementation. We decided initially to focus on a problem
called Elint, a system for the understanding of passive radar signals. This application,
derived from Tricero, is described in Section 5.1

After much experimentation it was determined that our ability to exploit parallelism was
being constrained by the problem we were using - it was not sufficiently complex in terms
of the amount of knowledge and the amount of data available. In the search for a more
knowledge-rich and computationally intensive application we developed the AirTrac

application, a system for interpreting active radar signals, which is described in Section
5.2.

Experiments were also performed in application domains other than that of real-time signal
understanding; ParAble, a system for fault-finding in particle accelerator beam lines has
been developed using the Poligon framework. This work is described in Section 5.3. A
number of numerical or semi-numerical programs have also been developed during our
more hardware-related experiments. These investigations are mentic ~d in Section 5.4.

1-16

5.1. Elint

(Blackboard nodes)

Clusters

3

Emitters

©)

e
Obsérvations
et xeded ;!:Lfa,,: lﬂ 3 g

Gt P T ST e L L St el T S S i
. lnput Data
s M/,y/'f %\" ip iy e B o S . ,?M zﬂ’/!

2

Figure7. The Elint Application. Sensor data is abstracted into hypothetical radar
emillers, which are tracked as clusters of emitters.

Elint is a soft real-time system for the interpretation of passive radar signals. Data are col-
lected from a number of receiving stations and are integrated so as to allow the system to
track radar emitting aircraft as they pass through the monitored airspace. The data are ab-
stracted into hypothetical radar emitting platforms. These emitters are in turn collected into
clusters of emitters, which might represent a number of planes or a single plane using
multiple radar systems, as is often the case with modem military aircraft (see Figure 7).

Elint was first implemented using the CAOS system. It was originally thought that this
work would take only a couple of months to do. In fact, the complete task — implementa-
tion, experimentation and analysis of results — took 18 months. We learned early on that
it is by no means a trivial maiter to reimplement an existing, serial applicaticn in a parallel
environment. These initial experiments, which are detailed in [Brown 86, 2-78], delivered
both qualitative and quantitative results concerning the performance of a concurrent system
such as we were envisaging, over a variety of different numbers of processors, and
investigated such critical areas as overall speed-up and "solution quality.” The concept of
solution quality arises in many knowledge-based systems, where there is no such thing as
the correct problem solution, but only satisficing (i.c., acceptable) problem solutions. A
primary objective of the experiments was to investigate the trade-offs between the
imposition of various synchronizations (and the resulting loss of concurrency) and the
quality of the problem solution.

Since the CAOS implementation, Elint has been implemented three times; using Lamina
[Delagi 88b, 2-446] [Saraiya 89, 4-337] and the Cage [Aiello 88, 2-15] and Poligon [Rice
88b, 4-165] [Nii 88b, 3-233] frameworks and a number of experiments have been
performed on them. In order to perform any of these experiments we found it necessary to
develop a technique for performance measurement that actually measured the sustainable
data-rate that the system under experimentation could maintain for a given number of

1-17

processors without being swamped by the incoming data, i.e. while still giving non-
increasing latency in its outputs. This technique is discussed in detail in [Nii 88b, 3-233].

Each of these reports details not only the underlying architecture of the solution, for
example an object-based, pipelined decomposition in the case of the Lamina experiments,
but also covers extra areas for experimentation appropriate to the framework being studied
and the intended level of abstraction of the framework. These areas included: multiple
grain sizes [Nii 88b, 3-233], [Aiello 88, 2-15], speed-up as a function of only pipeline
parallelism [Nii 88b], [Rice 88b, 4-165], [Rice 89a, 4-198], scaling with respect to
knowledge base size (number of rules) [Nii 88b], [Rice 88b], {Rice 89a] and load
balancing [Saraiya 89, 4-337].

5.2. AirTrac

The development of the Elint application showed that the amount of parallelismn that could
be demonstrated was much more dependent on the application than we had anticipated.
Following the analysis of Reddy and Newell [Reddy 77], we hypothesized that by
extracting parallelism at the different levels of the system's implementation hierarchy we
could gain multiplicative speed-up. The analysis of our experiments showed that the
speed-up was disappointing, largely because the application itself did not have enough
potential for the exploitation of parallelism.

Our response to this was to develop an application which would really stretch the hardware
and software we were developing in a realistic manner, the AirTrac application [Delaney
86, 2-459].

The AirTrac problem domain sounds superficially like that of Elint. It was a system for the
interpretation of radar data, though in this case the radar systems modeled were active, not
passive. Unlike Elint, AirTrac was designed to go beyond simply tracking aircraft and
identifying likely threats. The scenario for AirTrac was the detection of "smugglers” flying
across a border. The problem faced by existing radar users is that a large number of
legitimate aircraft travel in the same airspace as smugglers. Smugglers may take advantage
of variations in terrain in order to find areas of poor or no radar reception. They also resort
to other evasive tactics. Thus to identify and track smugglers, the AirTrac application had
to interpret the behavior of the aircraft it was tracking over time.

The system was designed in a number of layers so that different implementation efforts
could be decoupled. The first subsystem implemented was called the Data Association
component [Nakano 87, 3-149], and is the subsystem, which most closely matches the
Elint application. It was initially intended that this component would be implemented using
the Poligon framework. It was found, however, that the simulation of the Poligon system
for a problem as complex as AirTrac would take prohibitively long. Consequently AirTrac
was implemented directly in Lamina. Substantial speed-up was shown (of the order of one
hundredfold with the use of one hundred processors), which seemed to increase linearly
with the number of processors. This encouraging result was achieved by the use of
replicated pipelined sequences of objects processing .he input data. It was further found
that the degree of correctness of the solution was not compromised by the decomposition of
the problem so as to make it execute concurrently, nor was it affected by highly overloaded
input data conditions [Nakano 87].

The second component of AirTrac, Path Association, was significantly more knowledge
intensive than the first. The task of the Path Association module was to group together
tracks produced by the Data Association component into plausible aircraft flight paths.
This subsystem was also implemented directly in Lamina initially. However, programming

1-18

in the raw Lamina framework was too complex and time-consuming, so a layer was built
on top of Lamina, called ELMA [Noble 88b, 3-409], which provided the abstraction model
needed for the implementation. The experiments described in [Noble 88a, 3-309] provided
confirmation of the earlier results obtained with the Elint application.

The project leaders decided to continue to focus resources on the Path Association
component, where there was still much to learn and where we believed further speed-up
and insight could be obtained. In [Muliawan 89, 3-48], further experiments in the AirTrac
application’s Path Association component are described. The effect of high-level control
strategies on system performance is discussed, as is the effect of varying the frequency and
width of the input data, for various numbers of processors. System performance was
measured both in terms of sustainable data rate and in terms of latency, “excess ratio” and
capacity. The relationship between the quantitative and qualitative performance of the
system is also discussed.

The final, most abstract, component of AirTrac — Platform Interpretation — was intended
to classify the aircraft being tracked by the Data Association and Path Association modules
and to predict their behavior, based on these classifications and their past actions. A
platform classification module was implemented, using a general, forward-chaining,
concurrent classification system [Clancey 84]. These experiments demonstrated speedup
and are described in [Maegawa 90, 3-20]. The key idea was to view the ¢'ssification
system as a network of nodes representing classifications and subclassifications. Speedup
was achieved through the concurrent execution of multiple instances of the classification
network. Because the input track information was continuously acquired over time, the
system necessarily supports periodic reevaluation of all classifications. That is, all
conclusions drawn by the system may be continuously modified as new supporting
evidence enters the network.

5.3. ParAble

The ParAble project [Bandini 89] was an attempt, by choosing a completely different appli-
cation domain, to test the generality of the problem-solving model offered by Poligon. To
do this we made a parallel implementation of the ABLE system [Selig 87], developed also
at Stanford.

The objective of the ABLE project was to find a rational and fast way to diagnose particle
accelerator beamlines. These large and complex machines are very prone to beam
alignment problems due either to misalignment of the magnets, which steer and focus the
beam, or to problems with the power supplies to those magnets, which result in the
magnets not having the desired strength. These beamlines are so complex that it can take
many months of knob-twiddling in order to commission them. '

By the use of an analytic model of the transfer functions of the beam-line components, and
a number of heuristics that use successive runs of the model, comparing the results with the
real data to locate the faults, the ABLE system was able to find faults in such systems in
about ten minutes. As particle accelerators become more complex there may well be a need
to control them in real time, so although there is no immediate need for higher performance
in the ABLE system, it is not unreasonable to suppose that there might be in the future.

A number of Experiments have been performed on ParAble, detailed in [Bandini 89, 2-58].

The realizable paraliclism in this project was, again, found to be limited mostly by the
availability of data parallelism.

1-19

5.4. Numerical and Semi-numerical programs

The expert systems mentioned above are not ideal applications for multiprocessor execu-
tion. They are irregular and very data dependent. A large body of applications already ex-
ists in the area of numerical and semi-numerical processing, which will require the speed-
up associated with parallel execution. Indeed, such programs are already being run on a
number of multiprocessors. It is therefore essential that any machine designed with a view
to being general-purpose must also be able to execute these regular, algorithmic problems
efficiently. A number of small numerical programs were developed, to be used for
experiments in system architectures and topologies [Byrd 88a, 2-181] and [Byrd 88b, 2-
196]. These experiments allowed us to test our hardware and software ideas in a much
more controllable way than we can with any expert system application.

6. Conclusions, Observations Results

The previous sections summarized the experiments performed, the types of computations
explored, the simulation engines built to conduct the experiments, and some experimental
results. We tied each of these to specific technical reports of the project. In this section,
we add conclusions, results, and observations of a general nature. These have been drawn
from across the range of experiments performed, and we believe will be of interest to a
large body of computer scientists interested in the problems of parallel computation.

We begin with words of caution. Our experiments were performed mainly in the area of
symbolic problem solving by computer-that is, the traditional mainstream area of artificial
intelligence research. The kinds of entity typically manipulated were symbolic objects and
rules, not algebraic formulas or matrices of numbers. The computations were largely
symbolic computations (as, for, example typically performed in the LISP language).

Low-level representational choices, constituting the focus of our experiments, and therefore
influencing our conclusions, include object-orientation with message passing, on a MIMD-
type machine. Most experiments were performed using distributed-memory system
architecture. One final caveat: all experiments were performed on our instrumented
simulator. Though we are confident of the quality and veracity of the simulated
computations, a simulator is only a model of reality.

Finally, one must always keep in mind the simple algebraic relationship (often called
“Amdahl’s law”). The ultimate limit to speedup of computation on a parallel machine, the
"Amdahl limit" is determined by the residual amount of “serial processing” remaining in the
computation after the programmer has extracted and used all the parallel computation
schemes possible. Thus, for example, if the intrinsic serial component of the computation

is no less than 1%, then the overall speedup can not exceed two orders of magnitude
(x100).

To repeat, in reading what follows, the reader shouid have in mind the general picture of a
two-dimensional network of LISP computers (each with a communications subprocessor)
of size NxN (typically 10x10 or 16x16). These processors are receiving, as input, streams
of encoded sensor data, and, with some latency (e.g., milliseconds or seconds of sensor
time), computing hypotheses of platform track segments, platform identity, etc.
Computational work is distributed over the multiprocessor but many of the nodes of the
NxN network are not necessarily busy all the time.

6.1. Speedup over serial computation

An early result by Gupta [Gupta 86} for parallel ruie-based computation indicated that a
speedup of approximately one order of magnitude (OM= x10) was achievable. Our
experiments confirmed that speedups of approximately one OM were readily achieved, but
not without significant programming work and ingenuity.

Speedups of 2 OM were very difficult to achieve for individual problem solving efforts but
were achievable for groups of these efforts (e.g., one aircraft versus many aircraft). We
refer to such application circumstances as being characterized by “data parallelism.” In
data-parallel situations (which may be quite normal in the world of computing
applications), the overall intrinsic parallelism can be made sufficiently high relative to the
intrinsic serialization that 2 OM (x100) is achievable.

Speedups of 3 OM (x1000) were well beyond the reach of any techniques, or any problem
size, explored in this study.

Because of the limits imposed by the inherent serialization, even when the application is
augmented by favorable data-parallelism, speedup will reach a ceiling, beyond which one
cannot push the spzedup by simply increasing the number of computing nodes.

When working in a problem environment in which data enter in continuous streams,
determining how to measure effective speedup is an important issue. QOur observation is
that stable latency in delivering a computational hypothesis (i.e., answer), after the
corresponding data are presented in the input stream, is the appropriate measure. Thus, for
each multiprocessor configuration many input data rates must be tried before a stable
latency can be found. The determination of speedup is thus a lengthy process. This
technique is in contrast to the more common method of simply dividing the application’s
run-time into the run-time on a single processor. We found this latter method to be highly
deceptive for real-time and data-reactive applications.

Our observation is that the most significant sources of “parallelization” of a problem are to
be found in the application itself, and therefore by the application programmer. Of course,
system-level language and architeciural features must be there to support this human
programmer creativity. Because the programmer plays such a vital role in realizing the
speedup from parallelization, programmer language tools for conceptualizing and writing
concurrent programs are of great importance. Equally important are well-instrumented
debugging tools to aid the programmer since the complexity of parallel run-time
environments is well beyond anything that even the best programmers have been trained to
cope with.

We can not emphasize too much the importance of a variety of software instruments in
tuning parallel computations. This must be provided, cither by the manufacturer (in the
form of software instruments responding to hardware measurements) or by a fully
instrumented, carefully designed simulator of the parallel hardware. Today, neither of
these is routinely done. We found the feedback provided by the instrumentation in our
simulator essential in refining designs: to break bottlenecks, balance pipelines, evaluate
load balancing schemes, and so forth.

Careful thought must be given to instrumentation at the application level (not just the
machine level) because execution behavior is just too complex for programmers to think
through. Experimentation is needed to decide how to instrument at the application level.
These decisions are not clear and straightforvsard.

6.2. Pipelines

The architectural approach to concurrency that most consistently proved effective in our
experiments was building pipelines for computations, and replicating them when
necessary.

« For our data-streaming application environment, pipelines were a natural fit for
exploiting the intrinsic parallelism and the data parallelism in the problem. (By
intrinsic parallelism we mean that the stages in the pipeline correspond in a natural
way to steps in the problem solving process: inference steps; subproblem pipes;
multiple hypotheses and goals, etc.)

+ Pipelines must be carefully balanced during execution. For example, if a pipeline
consists of a series of invoked knowledge sources, these must have similar “grain
size” and data density.

+ Some computations branch in a fan-out manner. The pipeline approach to fan-out
computations can be made to yield good speedup.

+ Conversely, fan-in of computations is disruptive of pipelining, and seriously
impacts the speedup that can be realized. A particular type of fan-in occurs when
symbols are passed “up” an abstraction hierarchy, e.g., when special cases are
recognized as instances of a more general case. In an abstraction hierarchy
pipeline, it is important that the communication up the hierarchy should be designed
to decrease, proportionately to the amount of “branchiness” at the lower levels, as
the symbolic data flows “up” the hierarchy.

Qur experiments with pipelines showed that resumable processes are rarely needed (hence,
the architecture r.eed not treat this issue as one of high priority). Most computational grains
can be realized in such a way that they, and therefore the processes in which they run, can
run to completion. As a corollary, our experiments showed that the significant costs
associated with process instantiation and process switching can often be avoided by the use
of this run-to-completion programming model.

6.3. Basic computational metaphor

The object-oriented message-passing paradigm, was found to be a natural and comfortable
metaphor in conceptualizing concurrent programming and in thinking through the issues of
distributed memory and communications. This model was found to be highly compatible
with the underlying message-passing, distributed-memory system architecture used in our
experiments. It is not clear that all object-oriented models will have this property. For
example, multimethods in CLOS may be incompatible with distributed memory
architectures.

6.4. Communication

Our experiments showed that communication patterns among processes were surprisingly
static. The implication for interprocess communication is to prefer “streams” to “futures,”
i.e. to amortize the cost of initiating communication between processes by maintaining
connections and passing more than one value between connected processes.

An architecture for hardware-supported multicast was designed that provided for adaptive
cut-through routing. Qur experiments proved its effectiveness for deadlock avoidance.
The scheme provides cut-through muiticast without requiring dedicated storage in the
communication facilities for a full packet.

6.5. Problem Solving Methods

A relatively straightforward “parallelization” of the blackboard problem solving framework
effective in serial environments, i.e., Cage (Concurrent AGE) versus AGE, proved to be
ineffective, i.e., did not deliver much speedup. The key issue was centralized control, ang
the consequent low "Amdahl limit", mentioned earlier, that resulted from the
synchronization at this central control point,

A radically reorganized blackboard framewor: (Poligon) using decentralized control,
enabled significant speedup.

» The Poligon experiments showed that although problems can be solved without
global control, some limited, non-local control was needed (for example, to manage
node creation).

 For the minimal control regime, each solution node should have its own goals and
evaluation functions (to enable local “hill climbing”). The use of local “hill-
climbing” resulted, in our experiments, in globally valid, mutually consistent
results, in spite of the lack of global coordination. It was observed that this local
hill-climbing reduces the latency in getting the plausible answer (i.e., performance
improves).

We must caution, however, that not all problems can be solv.J (effectively or at all) with a
control regime that enforces this “local” view. Here, as before, the choice of approach is
application-dependent, or at least dependent on the way a problem is formulated. Ore must
consider the tradeoff between global control versus local knowledge (in the form of
evaluation functions and local control).

Concerning rule processing in problem solving, our experiments showed that the rules
within sets of rules (i.e., knowledge sources) can be run in parallel, and that this
contributes to speedup. However, running rules in parallel requires encapsulation of the
data used by the rules (i.e., the rule context). Because the context can become obsolete by
the time the rule is processed, this technique needs to be used in conjunction with local hill
climbing to prevent outdated and invalid conclusions from being recorded.

We observe that the quality of a solution is an issue in paraile! problem solving. Al
problem solving methods usually “satisfice," i.e., there is no one “i.zht answer." But in
real applications some answers are better than others. With decentralizey! ¢=~trol, it can be
difficult for the programmer to orient the program's behavior always in the Ji- »-tion of the
“better” answers. Here is an obvious tradeoff-the more centralized the controf, :i.c more
programmer guidance toward the “better” answers, the less the speedup (too much
centralized control, synchronization, i.e. a low Amdahl limit). In our experiments we were
able to preserve solution quality by keeping data consistent and controlling order-critical
tasks. However, we did not extract a general technique or even a general engineering
understanding of this fascinating issue.

A related issue is the tradeoff between problem decomposition and degree of coupling
among the decomposed subproblems. We observed that as problems are decomposed into
smaller grains, the subproblems became more interdependent (more data sharing, more
communication), nullifying the potential parallelism. Thus, optimal grain size is highly
dependent on the application as well as on the processing overhead.

1-23

6.6. Development strategy
We observed a three-part strategy to be important.

a. Do a serial execution of the parallel program. This removes the obvious elementarv
bugs.

b. Proceed to a relatively crude parallel simulation, using a purely functional simulator
with raiidomized scheduling of resources. This will catch the first level of “parallel
processing” bugs.

¢. Proceed to the fine-grained instrumented simulator for the experiments and the
performance tuning.

6.7. Analysis of the application

Not enough can be said in motivating a careful study of the application to understand its
intrinsic parallelism. Previously employed serial processing schemes used to handle the
application can be seriously misleading and ineffective.

In one of our experiments (ParAble), the domain expert, a accelerator physicist, was able to
reconceptualize the computation in a way that was not only “highly parallel” (enabling a
good experimental result for us) but also “highly natural,” enabling him to understand his
problem with great clarity.

Applications analysts should not try to “force fit” their application to the parallel computing
metaphor, but rather should seek a natural, intrinsic parallel structure of the computation.

6.8. Load balancing

Balancing the computational load among the nodes of a multicomputer is a serious issue of
performance and economics. It takes both computing and communication to perform
effective load balancing, so an obvious performance tradeoff is involved.

Our experiments on adaptive global load valancing used an explicit stochastic-process
model to estimate the time evolution of processor loading and to model the dissemination of
load-information. This model allows improved estimates to be made of system-wide
loading, which allows a given level of load balance to be achieved with far fewer object
migrations. This in turn improves the system’s performance (in *2rms of consistently
meeting latency deadlines), provided that migration costs are sufficiently high (remember
the tradeoff mentioned above). The performance improvement achieved and the
circumstances under which it can be achieved, however, were found to be seriously limited
by the unexpectedly poor correlation between load-estimate quality and load balance.

1-24

7. Bibliography of Expert Systems on Multiprocessor
Architectures: Project Publications

[Aiello 86]

[Aiello 88]

[Aiello 89]
{Bandini 89]

[Brown 86]

[Byrd 87a]

[Byrd 87b]

[Byrd 87c]

[Byrd 88a]

Nelleke Aiello. User-Directed Control of Parallelism; The CAGE
System. Technical Report KSL-86-31, Heuristic Programming
Project, Computer Science Department, Stanford University, 1986.
Also in Proceedings of DARPA Expert Systems Workshop, April
1986, Science Applications International Corp., Arlington, VA.
Report SAIC-86/1701.

Nelleke Aiello. Cage: The Performance of a Concurrent
Blackboard Environment. Technical Report KSL-88-80, Heuristic
Programming Project, Computer Science Department, Stanford
University, December 1988.

Nelleke Aiello. The Cage System User’s Manual. Technical Report
KSL~89-86, Heuristic Programming Project, Computer Science De-
partment, Stanford University, December 1989.

Jean-Christophe Bandini and James Rice. An Application in
Poligon. Technical Report KSL-89-43, Heuristic Programming
Project, Computer Science Department, Stanford University, 1989.

Harold Brown, Eric Schoen, Bruce A. Delagi. An Experiment in
Knowledge-Base Signal Understanding Using Parallel
Architectures. Technical Report STAN-CS-86-1136 (KSL-86-
69), Heuristic Programming Project, Computer Science Department,
Stanford University, October 1986.

Gregory T. Byrd, Russell T. Nakano and Bruce A. Delagi. A
Point-to-Point Multicast Communications Protocol. Technical
Report KSL-87-02, Heuristic Programming Project, Computer
Science Department, Stanford University, January 1987.

Gregory T. Byrd, Bruce A. Delagi. Considerations for
Multiprocessor Topologies. Technical Report KSL-87-07,
Heuristic Programming Project, Computer Science Department,
Stanford University, January 1987. Also in Proceedings of
DARPA Knowledge Based Systems Workshop, April 1987.

Gregory T. Byrd, Russell T. Nakano, Bruce A. Delagi. A
Dynamic, Cut-Through Communications Protocol with Multicast.
Technical Report STAN-CS-87-1178 (KSL-87-44), Heuristic
Programming Project, Computer Science Department, Stanford
University, August 1987.

Gregory T. Byrd, Bruce A. Delagi. A Performance Comparison of
Shared Variables vs. Message Passing. Technical Report KSI-88-
10, Heuristic Programming Project, Computer Science Department,
Stanford University, January 1988. Also in Proceedings of Third
International Conference on Supercomputing, pages 1-7, Boston,
MA, March 1988 International Supercomputing Institute.

1-25

[Byrd 88b)

[Byrd 89]

[D:..ies 8€]

[Delagi 86a]

[Delagi 86b]

[Delagi 87]

[Delagi 88a]

[Delagi 88b]

Gregory T. Byrd, Nakul P. Saraiya and Bruce A. Delagi. Multicast
Communication in Multiprocessor Systems. Technical Report
KSL-88-81, Heuristic Programming Project, Computer Science
Department, Stanford University, June 1989.

Gregory T. Byrd. Support for Fine-Grained Message Passing in
Shared Memory Multiprocessors. Technical Report KSL-89-15,
Heuristic Programming Project, Computer Science Department,
Stanford University, March 1989. Also to appear in Proceedings of
the 5th Annual Computer Science Symposium, University of South
Carolina, April 7-8, 1989

Davies, Byron. CAREL: A Visible Distributed Lisp. Technical
Report KSL-86-14, Heuristic Programming Project, Computer
Science Department, Stanford University, March 1986. Also in
Proceedings of DARPA Expert Systems Workshop, April 1986,
Science Applications International Corp., Arlington, VA. Report
SAIC-86/1701.

Bruce A. Delagi, Nakul P. Saraiya, Gregory T. Byrd. LAMINA:
CARE Applications Interface. Technical Report KSL-86-67,
Heuristic Programming Project, Computer Science Department,
Stanford University, November 1987. Also in Proceedings of
Third International Conference on Supercomputing, pages 12-21,
Boston, MA, March 1988 International Supercomputing Institute.

Bruce A. Delagi, Nakul P. Saraiya, Sayuri Nishimura, Gregory T.
Byrd. An Instrumented Architectural Simulation System. Technical
Report KSL-86-36, Heuristic Programming Project, Computer
Science Department, Stanford University, January 1987. Also in
[Stanford 88] and Artificial Intelligence and Simulation: The di-
versity of Application. The Society for Computer Simulation
International, February 1988.

Bruce A. Delagi, Nakul P. Saraiya, Sayuri Nishimura, Gregory T.
Byrd. Instrumented Architectural Simulation. Technical Report
STAN-CS-87-1189 (KSL-87-65), Heuristic Programming Project,
Computer Science Department, Stanford University, November
1987. Also in Proceedings of Third International Conference on
Supercomputing, pages 8-11, Boston, MA, March 1988
International Supercomputing Institute.

Bruce A. Delagi, Nakul P. Saraiya, Gregory T. Byrd and Sayuri
Nishimura. CARE User's Manual. Technical Report KSL-88-53,
Heuristic Programming Project, Computer Science Department,
Stanford University, September 1990.

Bruce A. Delagi and Nakul P. Saraiva. ELINT in LAMINA:
Application of a Concurrent Object Lunguage. Technical Report
KSL~88-33, Heuristic Programming Project, Computer Science
Department, Stanford University, July 1988. Also in SIGPLAN
Notices, February 1989.

1-26

[Delaney 86]

[Hailperin 88]

[Maegawa 90]

[Muliawan 89i

[Nakano 87]

[Nii 86]

[Nii 88a)

[Nii 88b]

John R. Delaney. Multi-System Report Integration Using
Blackboards. Technical Report KSL~86-20, Heuristic
Programming Project, Computer Science Department, Stanford
University, March 1986. Also in Proceedings of DARPA Expert
Systems Workshop, April 1986, Science Applications International
Corp., Arlington, VA. Report SAIC-86/1701.

Max Hailperin. Load Balancing for Massively Parallel Soft-Real-
Time Systems. Technical Report KSL-88-62, Heuristic
Programming Project, Computer Science Department, Stanford
University, August 1988. A condensed version of appears in the
proceedings of "Frontiers '88: The Second Symposium on the
Frontiers of Massively Parallel Computation.”

Hirotoshi Maegawa. The Parallel Solution of Classification
Problems. Technical Report KSL-89-68, Heuristic Programming
Project, Computer Science Department, Stanford University, March
1990.

Djuki Muliawan. Performance Evaluation of a Parallel Knowledge-
Based System. Technical Report KSL-89-51, Heuristic
Programming Project, Computer Science Department, Stanford
University, June 1989

Russell T. Nakano, Masafumi Minami. Experiments with a
Knowledge-Based System on a Multiprocessor. Technical Report
KSL-87-61, Heuristic Programming Project, Computer Science
Department, Stanford University, October 1987. Also ina
shortened form in Proceedings of Third International Conference on
Supercomputing, pages 22—24, Boston, MA, March 1988
International Supercomputing Institute.

H. Penny Nii. CAGE and POLIGON: Two Frameworks for
Blackboard-based Concurrent Problem Solving. Technical Report
KSL-86-41, Knowledge Systems Laboratory, Computer Science
Department, Stanford University, April 1986. Also in Proceedings
of DARPA Expert Systems Workshop, April 1986, Science
Applications International Corp., Arlington, VA. Report SAIC-
86/1701.

H. Penny Nii, Nelleke Aiello, James Rice. Frameworks for
Concurrent Problem Solving: A Report on CAGE and Poligon.
Technical Report KSL-88-02, Heuristic Programming Project,
Computer Science Department, Stanford University, March 1988.
Also in [Engelmore 88], and proceedings of AAAI 88 Blackboard
Workshop.

H. Penny Nii, Nelleke Aiello, James Ricc. Experiments on Cage
and Poligon: Measuring the performance of Parallel Blackboard
Systems. Technical Report KSL-88-66, Heuristic Programming
Project, Computer Science Department, Stanford University,
February 1989. Also in Distributed Artificial Intelligence II. L.
Gasser and M. N. Huhns (eds.). Pitman Publishing Ltd. and
Morgan Kaufmann, 1989.

1-27

[Nii 89]

[Noble 88a]

[Noble 88b]

[Okuno 87]

[Rice 86a]

[Rice 86b]

[Rice 88a]

[Rice 88b]

[Rice 88c]

H. Penny Nii, James Rice. Signal Understanding and Problem
Solving: A Concurrent Approach to Soft Real-Time Systems.
Technical Report KSL-89-73, Heuristic Programming Project,
Computer Science Department, Stanford University, October 1989.
Also in Proceedings of Twenty-third Asilomar Conference on
Signals, Systems and Computers. October-November 1989, Maple
Press, San Jose, CA.

Alan C. Noble and Everett C. Rogers. AIRTRAC Path Association:
Development of a Knowledge-Based System for a Multiprocessor.
Technical Report KSL~-88—41, Heuristic Programming Project,
Computer Science Department, Stanford University, June 1988.

Alan C. Noble. ELMA Programmer's Guide. Technical Report
KSL~88-42, Heuristic Programming Project, Computer Science
Department, Stanford University, August 1988.

Hiroshi G. Okuno, Anoop Gupta. Parallel Execution of OPSS in
QLISP. Technical Report KSL-87—43, Heuristic Programming
Project, Computer Science Department, Stanford University, June
1987.

James Rice. Poligon, A System for Parallel Problem Solving.
Technical Report KSL-86-19, Heuristic Programming Project,
Computer Science Department, Stanford University, April 1986.
Also in Proceedings of DARPA Expert Systems Workshop, April
1986, Science Applications International Corp., Arlington, VA.
Report SAIC-86/1701.

James Rice. The Poligon User's Manual. Technical Report KSL~
86-10, Heuristic Programming Project, Computer Science
Department, Stanford University, May 1989.

James Rice. Problems with Problem-Solving in Parallel: The
Poligon System. Technical Report KSL-88-04, Heuristic
Programming Project, Computer Science Department, Stanford
University, January 1988. Also in Proceedings of Third
International Conference on Supercomputing, pages 25-34, Boston,
MA, March 1988 International Supercomputing Institute, Artificial
Intelligence, Simulation and Modelling, Lawrence Widman (ed.),
John Wiley Publishing Company, New York 1989.

James Rice. The Elint Application on Poligon: The Architecture
and Performance of a Concurrent Blackboard System. Technical
Report KSL-88-69, Heuristic Programming Project, Computer
science Department, Stanford University, December 1988. Also in
Proceedings of 1JCAI §9.

James Rice. The Advanced Architectures Project. Technical Report
KSL~88-71, Heuristic Programming Project, Computer Science
Department, Stanford University, March 1989, also in Al Magazine
Winter 1989, Vol. 11, No. 4 pages 26-39.

1-28

[Rice 89a]

[Rice 89b]

[Saraiya 86]

[Saraiya 88]

[Saraiya 89]

{Saraiya 90a]

[Saraiya 90b]

[Schoen 86]

[Thapar 89a]

James Rice and Nelieke Aiello. See How They Run... The
Architecture and Performance of Two Concuirrent Blackboard
Systems. Technical Report KSL-89-08, Heuristic Programming
Project, Computer Science Department, Stanford University, March
1989. Also in Blackboard Architectures and Applications: Current
Trends, V. Jagannathan and R. Dodhiawala (eds.), Academic Press,
1989.

James Rice. The Design of a High Performance, Concurrent
Problem Solving System...and many Lessons Learned on the Way.
Technical Report STAN-CS-89-1294 (KSL~89-37), Heuristic
Programming Project, Computer Science Department, Stanford Uni-
versity, November 1989,

Nakul P. Saraiya. AIDE: A Distributed Environment for Design and
Simulation. Technical Report KSL-86-56, Heuristic Programming
Project, Computer Science Department, Stanford University, June
1986. Also in Proceedings of DARPA Expert Systems Workshop,
April 1986, Science Applications International Corp., Arlington,
VA. Report SAIC-86/1701 (preliminary version).

Nakul P. Saraiya. A Shared Memory Lisp Package for CARE.
Technical Report KSL-88-85, Heuristic Programming Project,
Computer Science Department, Stanford University, January 1989.

Nakul P. Saraiya. Design and Performance Evaluation of a Parallel
Report Integration System. Technical Report KSL-89-16, Heuristic
Programming Project, Computer Science Department, Stanford
University, Aprii 1989.

Nakul P. Saraiya, Bruce A. Delagi and Sayuri Nishimura.
SIMPLE/CARE. An Instrumented Simulator for Multiprocessor
Architectures. Technical Report KSL-90-66, Heuristic Pro-
gramming Project, Computer Science Department, Stanford
University, September 1990. .

Nakul P. Saraiya and James P. Rice. The LAMINA Programming
Model: A Worked Example. Technical Report KSL-90-82,
Heuristic Programming Project, Computer Science Department,
Stanford University, December 1990.

Eric Schoen. The CAOS Syster. Technical Report STAN-CS-86-
1125 (KSL~86-22), Heuristic Programming Project, Computer Sci-
ence Department, Stanford University, March 1986. Alsoin
Proceedings of DARPA Expert Systems Workshop, April 1986,
Science Applications International Corp., Arlington, VA. Report
SAIC-86/1701.

Manu Thapar and Bruce A. Delagi. Design and Implementation of a
Distributed Directory Cache Coherence Protocol. Technical Report
KSL-89-72, Heuristic Programming Project, Computer Science
Department, Stanford University, April 1989.

[Thapar 89b]

[Thapar 90]

Manu Thapar and Bruce A. Delagi. Distributed Cache Coherence
for Large Scale Shared Memory Multiprocessors. Technical Report
KSL-89-83, Heuristic Programming Project, Computer Science
Department, Stanford University, December 1989.

Manu Thapar and Bruce A. Delagi. Cache Coherence for Large
Scale Shared Memory Multiprocessors. Technical Report KSL-90-
41, Heuristic Programming Project, Computer Science Department,
Stanford University, June 1990.

8. Bibliography of Referenced Work Not Performed on the

Project
[Abelson 83]

[Clancey 84]

[Engelmore 88]

[Gabriel 84]

[Gupta 86]

[Nii 79]

[Nii 82]

[Reddy 77]

[Selig 87]

Harold Abelson and Gerald Jay Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, MA
1983.

Clancey, W. 1., Classification Problem Solving, Technical Report
STAN-CS-84-1018 Heuristic Programming Project, Computer
Science Department, Stanford University. Also in Proceedings of
the AAAI-84 (1984) 49-55.

Robert Engelmore and Tony Morgan (eds..) Blackboard Systems.
Addison-Wesley Publishing Company Inc., Menlo Park 1988.

Richard P. Gabriel and John McCarthy. Queue-based Multi-pro-
cessing Lisp. Proceedings of the ACM Symposium on Lisp and
Functional Programming: 25-44, August, 1984.

Anoop Gupta. Parallelism in Productions Systems. Technical
Report, Computer Science Department, Camegie-Mellon
University, March, 1986. Ph. D. dissertation.

H. Penny Nii and Nelleke Aiello. AGE: A Knowledge-based
Program for Building Knowledge-based Programs. Technical
Report HPP-79-4, Heuristic Programming Project, Computer
Science Department, Stanford University, 1979. Alsoin
Proceedings of the 6th International Joint Conference on Artificial
Intelligence: 645-655, 1979.

H.P. Nii, E.A. Feigenbaum, J. J. Anton, and A. J. Rockmore.
Signal-to-Symbol Transformation: HASPISIAP Case Study.
Technical Report HPP-82-6, Heuristic Programming Project,
Computer Science Department, Stanford University, 1982. Also in
Al Magazine. 3:2,23-35, 1982.

D. Raj Reddy and Allen Newell. Multiplicative Speedup of
Systems. In Perspectives on Computer Science, pages 183-198,
Anita Jones (ed), Academic Press, New York 1977.

Lawrence J. Selig. An Expert System using Numerical Simulation
and Optimization to jind Particle Beam Line Errors. Technical

[Williams 84]

Report KSL-87-36, Heuristic Programming Project, Computer
Science Departrent, Stanford University, 1987.

Mark Williams, Harold Brown and Terry Barnes. TRICERO
Design Description. ESL Inc. 1984.

1-31

addresses

AL/CDE
ATTH: Northrup Fowler III
Griffiss AFT MY 13441-5700

Knowledge Systems Laboratory
Stanford University

Attn: Mr. Z. Feigenbaum

721 Welch Rd, 3ldg €

Palo alto Ca&a 94304

FL/DOVL
Technical Library
Griffiss AFS NY 13441-5707

Administrator

pefense Technical Info Center
DYIC-FDAC

Cameron Station Building 5
Alexandria VA 22304-6145

Defense Advanced Research Projects
Agency

1400 Wilson 3lvd

Arlington VA 22209-23(8

HY USAF/SCTT

Washington 9C 203306-5190

SAF/AJSC
Pentanon 3m 4D 2467
Wwash D 2J33¢

Yaval Warfare 2ssessment fenter

~ -

3I0:s Jperations Ceonter/Code 377
ATTh: & 2icharzs
Corona £~ %1720

-1

(4

numper
of copies

wn

HY AFSC/XTR
Andrews A4F3 M0 2037

H3 SAC/3CPT
SFFUTT 4F3 NT 423840

HQ TAC/DRIY
ATTN: Maj. Divine
Langley AF2 VA 23505-5575

H2 TAC/DCA
Langley AF2 VA 23665-5554

WADC/aAATI-4
wright-Patterson AF3 0Hd 45423-6543

WRDC/APAI-2
ATTN: Me Franklin Hutson
WPAFY 0OH 45433-6543

AFIT/LDZE
Ruilding 462, Area 2
Wright=Patterson &FR 9H 4S4T7I-25:3

WRDC/MTEL
Wright-21tterson 2F5 JH 454323

-—

SR EINEE
dright=2arterson &F3 28 4

(92
FoN
WA
w
t
wh
2]
~3
‘N

AUL/LSS
Aldg 1423
Maxuell 120 AL 33112-5544

Yy ARSPAZILCMINRA

STIFS Zfficer

ATTH: Ddr, A, %, “atoush
Petersan afrd £3 £85914-524

42 ATC/TT !
ATTi: Lt Col «illian
®3ndolph AF3 7YX 7:157-5221

US Army Strategic dDef
£535-14-pa

PO 20x 15373

Huntsville AL 35827-3571

Yfc of the Chisf of nN3val Soeration
ATTR: Ailliaa J.%ook

favy Tlectromigna2tic Snectrum Vit
299m 51372, DPentajon (J2-"41)
Aasn ST 2773

Coamandin: ~ffice

i
113 < . 3
faval avi
Li“rary 3
Tnitinagn

Innantiany fficor

avil T¢ain lystomg Zoantorp
Tocgnnizal Linrary

Cozss 742

FE L L TR B R

-

“aval Weaonons Ceonter
Technicil Lisrary /235711
China Lake2 £ 7355-57_1

S3uderintendent
Coide 524
'iaval 2ostaraiuste Scnonl

~ 3 ey

‘isntar2y T4 S94,3-500 70

Snace | qaval Warfare2 Systems {amnm
Washinaton HC 2:5253=51_,7

€0a, .5, Army Missile Commanid
Rzdston2 Scientific Into Center
AVSVI-SD~C3-2/ILL Socuments
2edston2 arsenal AL 353%2-5241

Advisory firoup on Zlectran Devices
221 Varicx Street, Am 1149
Yew York BY 13214

Los alamoas YNational Li3voratory
Zeport Liorary

M3 S303

Los dlamos % 37544

AiDC Linrary
Tech Fileos/%ZI-13G
Srnold 22 T4 I7339

Comnman-ar, UsSas;
LS 2H=-FCA=-C5L/Tech LiH
“ldg ~1-31

Ft muaschuca £ 5%5c

—
i
1

)
e
?
'

I

(L%

o

-t

AFEWC/=SRT
3an Antonio TXK 75247%-300C

ESD/XRR
Hanscom AF3 MA 0173%31-539D

£3Dp/SINM
Hanscom AFR3 MA 31731-35C0

S2I JPD

ATTN: Major Charles J. Pyan
“irnegie Mellon University
ittsburgh PA 15213~-383%0

Director NSA/CSS
T5122/7ToL

ATTN: D W Marjarum

Fort Meade MD 20755-6003

Director NSA/CSS

w157

2343 Savige Road

Fort v23da #p 21055-46030

NSA

8TTN: 9. Alley

Div X911

7359 Savane Ro3d

Ft Yag-de Y2 27755-4005

director

YA /L3S

411 0LF5VIL

ATTHN: 4r. “ark Z. {lesn

Fort fGaogras 45, Yegade 40 20755-4 3070

pL~-S

230

"1

2397 Savaga %o0ad

Frtoa M2ade v) 207554060,

DIANSA

599

93732 Savage Raad
Ft Moade MD 20775

Director

MSA/CSS

27238

Fort Gaorge 3. Meane M5 27755-60(A1

Rutgers University

Department of Computer Science
Attn: Dr Saul Amarel

3usch Campus

New Brunswick NJ 08903

USC~ISI

Attn: Mr Yigal Arenc
4676 Admiralty Way
Marina Del Ray, CA 90232

University of Southern California
Info Sciences Institute

Attn: Or Robert 2. Satzer

4576 Admiralty Way

Marina 420 Rey (A& 90262-6495

TI Central Resaarch Laboratories
Computer Science Lab

Attn: Dr Roger Rate, Director
PeOa Box 226015, mS 233

Ddallas TX 75255

Northwestern University
Institute for Learning Sciences
Attn: ¥r Lawrance Birnbaunm
139C Maple Avenue

gEvanston IL 52221

IsSX

Attn: ¥r Sryuce Aullock
531 Marin Street, 4214
Thousana Qaks €A 91340

bL=-+%

82N Laooratories, Inc.
Attn: ©DOr “ark Rurstein
10 Mouton Street
Cambridge, Vi 0223%

Rockwell Int'l Science Center
Attn: ®r John 4dreese

444 High Street

Palo Alto CA 943(1

General flectric Company

Corporate Res2arch and Development
Attn: Or Piero P. Bonissone

1 River Road, Building 37-567
Schanectady NY 12345

Carnegie=Mellon University
€amputer Science Department
Attn: Dr Jaime Carbonell
Schentey Fark

Pittsourgh P4 152132

Ohio State University

Dept of Comouter % Info Sciences
Attn: ©Dr 3. Chandrasekaran

2336 Neil Avenue

Columbus 2H 43210

3rown University

Attn: Dr Zugene Charniak
3ox 1910

Providence Rl (2912

Harvard University

Ytkan Comoutation Lab

Attmz Mpr Thomas £. Cneatham
33 Cxford Strest

Camirrttgesr ML 52733

.awestary Yniversity

itute for the Learnina Sciencas

ctn: Mr Ggre2qory Lollins
1393 Manle Avanue
fvainston IL 5 27

Jniversity of ¥Missachusetts

Computer 3 Infy S5cience 2apt
Attn: vr Paul Conen

Anherst Yassachus»2tts 1.7

gregon State Yniversity
Dept of Camndsuter Science
Attn: ©Or %ruce D'Ambrosio
Corvallis 2% 97331455

MIT Al Lah

Attn: Or Randall Davis
200m NEL3I-S(14A

545 Technology Square
Cambridge A 22139-1%36

3rown University

Computer 3cience Denartment
Attn: #¥r Tom Dean

8ox 191

Providence RI 2712

NASA Ames Research
Attn: Mpr Mark Drummond
Mailstop 244-17

Moffett Field CA 94035

ISX

Attn: Mr Gary £dwards
501 Marin, Suite 214
Thousand 0aks CA 91360

Tecknowledger Inc
Attn: Or Lee Erman
1853 Embarcadero
Palo Alto CA 94301

0akridge National Lab

Attn: Mr Robert f£dwards

PeOo 0x 2273

Suilding 4500 North, Mailstop €207
Dakridge TN 37931-46207

DARPA/TT)D

Attn: ¥p John H. Zntzminger
1400 wilson 3oulevard
Arlington VA 22209~2339

Stanford University
Knowloedge Systems Lab
Attn: Dr fPodbert £ngelmore
791 Welch ®o0ads, 3ldag C
Salt atto CA %424

LL-5%

|
Jet Pronulsion Lah 1 }
Attn: Ve James Firby \
M5 101443 |
4320 D3k Srove Drive |
Pasadeny L4 W1iT¢ ‘

Carnegis-“allon university 1
The Q0n0tics Institute

Attn: Yr Vark fFox

5205 Fardes Ave

Pittshurt P4 15213

6TZ Lins 1
Attn: *r 4. 4, Frawley

47 Sylvan RrRoad

waltham M3 52254

571 International 1
Al Centar

Attn: Or Tnomas . Garvey

333 Ravensso0ocd Avenue

Menlo Park CA 94025-3497

Stanford Univarsity 1
Attn: ©Or Vvichael R. Senesereth

Heuristic Programmingy °roject

731 Welch Poad, Ruilding €

Palo alto A 94334

Stanford UYniversity 1
Computer Science Department

Attn: Dr Matt Ginsberg

Stanford Ci 34335

Kestrel Institute 1
Attn: 9r, Cordell Gra2en

P81 Paye Yill Road

Palo 8lto CA %4224

dniversity af fhic3qo 1
(ownutar Scienc> Dept/«Y 135

dttn: XNris damnon g

1127 2 R3th fereet

£hiciio Illinnis 51437

Stanforgd Lniversity 1
<1owloedz> Systemns Lav

attn: s Tarnarag aay2s-3Iatn

731 welch Toad 2uilding ¢

230 &bty €4 Jull4

Taknowledye, Ince.

Attn: Or frederic dayes="oth
1350 Zmoarcaiero

Palo Alto €4 24301

Cornell Univearsity

Computar Science degartment
Attn: br John Hoocroft
Uoson Hall

Ithaca \NY 14753

<nowledae Systems
Medical Computer S
Attn: Mr “ric Hor
Mscs Xz 1§

Stanford Ca 94335-5479

a3k
cience Sroup
vitz

Inferenca {orporation
Attn: ©Or Philip Klahr
v a

S35 West Century Soulevard
Los Angeles CA 9(G045

UCLA

Attn: 9r %ichard Xorf
Computar Science Department
Los Anneles CA 2002

33N Systems and Tachnolosies, Coroy
Attn: r Teod Kral

4315 Hancock Street, Suite 131

San Dieco (A 92118

George Yason University

Info Tachnoloay % fngineering
attn: Or Paul Lehner

44GCC University Drive

Fairfax V2 22833

ADS

fttn: Yr Ted Linden
152C P?lymouth St

Mt, View A 244543

duxke university

{omputer 3cience Departmant
tttn: ©Or Donald d. Loveland
purham 4~ 27754

DL=1(

-

University of Chicago 1
Comouter Science dpt. RBY 155

Attn: »pr {harles Martin

110C £ S3th Street

Chicajo IL 37637

Yale University

Dept of Computer Science
Attn: Mpr OJraw McDermott
51 Prospect Street

New Yaven (T 4520

-

Oakridje Mational Lab 1
Attn: ™“r J5o0b %MclLaren

PeDe 3ox 2GO%

2uilding 5011, Mailston 4370

Oakridoge TN 37331-A3712

ONR/Code 1133 IS 1
Attn: Mr Alan Meyrowit:z

83C North uincy St

Arlington VA 22217

Intetlticorp 1
Attn: Mr Paul Morris

1975 zZ1 Camino Real West

Mountain View CA 924040

Stanford University 1
Attn: ODr H. Penny Nii

Heuristic Programming Project

701 Welch Roads, 3uilding €

Palo alto CA 94304

Stanford University 1
Computer Science Dapartment

attn: 0Or Nils J. tilsson

Margparst Jacks Hall

Stanford CA 74305

Yniversity »f Chicajo
Computer Science Dept SY 15°5
Attn: Chris “wens

1133 ¢ 57°th straet

£hic¢ayo IL 40537

-

Jabsnn folleje 1
Math Depirtment

Attn: Or Sorton D. Prichett

Tabsan Park Wi J2157=2901

5L-11

MIT AI Lab
Attn: Dr Charles ®ic¢n
200m NT43I-3T9

545 Technotogy

3qu3
Camoridga 13 92137~

-0"'.>

3o

plt, Jeranak, and Newman, Inc.

Department of Al

Attn: Mr 2, lruce Tozarts
17 4oultan 3Street
Cambridge va 32233

Tolens Research

Attn: Mr 3Stanley J. ?0soncheoin

576 Middlefiald &d
Palo Alto €A 947301

Honeywell Systems 3 Research
Attn: Mr %obert Schrag

MN 4£5-2139

3560 Technology Drive
Minneanolis YN 55418

SUNY at 3uffilo

Computar 3cience Department
Attn: Or Stuart (. Shaoiro
2246 3ell Hall

quffala NY 14240

NRL

Attn: Ddr Randall Shumaker
Code 55319

4555 Overlook Ave, SW
Washingtan DC 20375-5031

Rohotics Institute

My

Attn: Mr Steohen F. 3Saith
Schenlsy Park

Pittshurgh P4 15213

FMYC Corporation

ATTN: Ne. 3. Sridharan
CTC 1275 Coleman Ave,
Santa Clara CA 95752

Carneaie *allon Univarsity
20botics Institute

School of lomputer Science
Attn: s Xatia Sycara
Pittsburgh 2% 15213

Center

bL-1¢

AT 4pplications Institute
Attn: Yr Aystin Tate

37 South3ridae

cdinourih, IHT 14

United KXingdon

Qakrivl2 National Lab

attn: "r Sruce Tonn

P.N. Jax 29333

FJuilding 4577 North, Mailstoo £277
Jakridae TN ¥7331-6277

Lackha2az AI Conter, F-34/257%
tockhesd 235D Division

Ltrn: Sr Steven VYare

3251 Yanover 3t.

Palo aAkto (4 94354-1187

3y Systams % Technologies Cors
agtn: Mp f, Walker

13 4A2ulton Streat

Canhridge 443 322335

Texas Instruments, Inc.
Al Lab

Attn: &aj wWaltl

PoeQe Aax 555474, 4/5 238
Daltas TX 752545

ARDCITXI

Attn: Hr Michast 2, Wellman
3tag 22, 3Zg0m 53-13¢

W2AF3 CH 65433

35PI Intzrnationatl

9

Attn: “r David Wilkins
373 avenswoo i, 2J 227
“anle 23rx £33 24225

AIT AT Lan

ittn: Op ®arrick Ainston
Coom TLT--17

543 Tacnnaloly 33uare
Camoridyo, AF T21TS-12-4

DL-13

The ¥ITRZI Corporaticn
Attn: Mr Ddavic Doy
surli,mitan %oans
Bedtord =5 J173C

Mr Jos32ph Fiksal
Fale Zox 12113

135G Zabiarcadaro 24
P3lo Alto (A 3433

Australian A7 Institute
Attn: ¥r “Zichael seorgeff
1 6r3ttan S

Carlton, Vi
Australia

toria 3253

The MITPZ (orooration
Attn: s Phyltlis Koton
surlinyton #d, ™S AQ4S
3aedford MA 01738G

The MITRZ Corporation
Attn: Mr Mark Nadel
Surlington 24, MS a4n47
Aedford %A CG173C

2utgers Jniversity

Deot of (omputer Science
Hill Lenter, Zusch Campus
Attn: Mr Charles Schmidt
N2Ww Frunswick N) 279423

AFJSR/HN
Attn: Prof abraham waxsman
otling AFZ JC 2G332-454473

University of 20chester
Chairean, %ent of Comp Scisnce
Lttn: Frof James f. LLlizn
Comouter Studies 3uilding
Rochester NY 14427

Clarksan University

dten: D¢ Susan £. {onry
Zlact % Coaputer Zng'y Dant
Patsdan MY 13475-1441

aL-1s

-

RSP |

University of “assiachusetts
COINS Deoartment

Attn: ©Or Victor 2. Lesser
Lederle Graduate Research Center
Amherst #A $102C3-3401

}A54 Ames Sesearch Center
Attn: ©Dr 2pter L. Friazdland
MS 24 4-17

ode EIS&

Moffatt Fiald CA 940C35-1:93

521 International .
Attn: ¥s "3aris A, 3ienkowski
333 avenswood Ave, K377
Menlo Park CA 94025

Honeywell Systems 3 Research Centor
Attn: Mr YMark 3. 3oddy

3443 Technolagy Drive

Minneapolis ™% 55413

ESDIAY
3rown 3uilding
Hanscom 2F3 M4 JL731-5CG0

Laboratory for Computer Science
Attn: Jon Doyle

Massachusetts Institute of Tech
545 Technology Squarz

Camoridge MA 32139

UNISYS

Attn: #r Tinothy d4d. Finin
Ctr for Adv Info Techaoloay
75 Z£ast wedesford 3a
“atvern 22 10355

I3¥ Coroaoratian

Attn: Yr Zcoatt Fouse

S31 #arin Street

Suite 213

Thoussni T3ks £2 3133%)

Yniversity of *“assachusetts

Va5t of L2719 3 Info 5Sciancoe

ittn: Y3 [3vinng ~issland
]

1551075

dL-15

The 2und Lorsorition 1
Attn: Mr gefé Jdgthonser;

1725 “1in Itrapt

S5ant1 Yonicy CA IATA=1T2

ISX {naronpratioan 1
Aten: Yr Zllaen 3. Sa4ity

521 “arin Street, Suite 1.

Thousaad Saks {4 2175)

£25tr2l Instityte 1
Attn: My Soulas Zaith 1
31567 #iliview ave

Palo Alty 24 °43.4

Rockwell International 1
Attn: Mr David E. 3amith

444 Hiah Street

23lo Alto CA 4331

University of Pacnester 1
Attn: Mr Josh Tenenbara

Computer Science Deot

Wlson 2tvd

Rochester NY 14527

Stantord University 1
Attn: io wWiedarhold

Dept of CTomoutar Science

473 “arjaret Jacks 4Hall

Stanfory CA J4355-2142

Sirector 1
D13P3/1I3T72

14)0 %ilson ~lvd
irlingtaon v 2220

WAIC/TYI 1
dtea: e X
d23F 2w 133

YaSe 2rmy *2523rch 2ffico 1
Aten: 2r Divid Hislon

F.D. rax 1211

fesearch Trigngle NC 277°3-2311

aL-1»

Y.5. Aray 3allistic ?sch Las

Attn: SLCR=537-C (Y. A, Hirsnh2ra)

Ap2rieen 2roving Grouni M)

2123552425

Telos 2esearcn

Attn: “r Savid Chapman
5§72 vMiddtlefield R0ad
23ln Altn C& <4331

Yniversity 2f Michqjan
Attn: Yr Zdmund H. ourfee
Dept of Zlect Sng % €3
11C1 Beal Ave

An Arbor i 43139

¥IT73% {orporation
Attn: Chris Zlsaesser
7525 Colshirs Dajve
McLean VA 22192-343

yniversity of “aryland
Attn: Me James A. Hendler
C{omputer Science Dept

uMce

Collage Park MD 275742

University of Washington

Attn: Mr Steven J. Hanks

beot of Computer Science & &ng
FR-35

Seattle WA 95135

angerson Consulting
Attn: ¥r “ruce Johnson
127 3outh Wacker Orive
Chicagn IL 5MA4C%

Teleas Fesajrch

Attn: Leoslin P, Xaeloing
S74 Miadlefisla Poed

o3lo alto C8 24321

333 Laes 22se5reh Lenter
Attn: “at Lansley
wf3 Zad-17

voffatt Fial? (8 =01

el

cL-17

<

Lackhead 2720 Infte and {
dttn: dr William 3. 3
2251 Yarover Str2et
25-01 :uilaijnn 25¢
Palo ~Altn {5 95:24-1191

<

-

Carnegie “ellon University
Attn: 23j R2ady

School of lomecuter Science
Pittsbur~h 2a 15213

Copernican Group

tttn: “r Zarl 9. Sacerdoti
737 #elville Ave

Palo alto CA Z43(C1

MITRE Corporatisn
Attn: Mr Allen Sears
7525 Colshire Drive
M/S 1289

Mclean VA 22102

Cornell University

Attn: NMr Alberto 4. 5Se3re
Dapt of Computer Science
Ithaca NY 14253-7501

MC? Corporation
Attn: Mr, RoDert L. Simosons
S3C Tech Parkway
Atlanta 5A 3313

pPL-T3

wh

-—d

e e el

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs; and other
ESD elements to perform effe.tive acquisition of C3I systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but »ot limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

2 € B IS OC 5 I SF ICAF € 5K 9L HF IC A HAF L AF SCAF ICAF A D

