
AD-A238 042

RELATIONAL PROCESSOR
EXPERIMENTS

(FINAL REPORT)

, , . ,une 21, 1991?- Lr:OT&

JUL 1 1991 Stephanie L,ckhart

Kevin Walker
D WPat Watson

I1M Corporation 250/060
9500 Godwin Dr

Manassas, VA 22110

.. 0.

9 1 7Z 1 0) o01 91-04618

Contents
1.0 Introduction .
1.1 Relational Processor Experiment Decscription. I

1.1.1 1 ardware Configuration 2
1.1.2 Software Configuration 2
1.1.3 DOSE Experiment 2

1.2 Time Measurement Methodology. 4
1.2.1 Multiple Command-, - Sequence A 5
1.2.2 Multiple Iterations - Sequence B3. 5

1.3 Insert Measurements. 6
1.4 Update Measurements 7
1.5 Selection Measurements 9
1.6 Summary. 1
1.7 References. 12

By...........

Co ivot i

1.0 Introduction
For the past several years IBM, the Office of Naval Research (ONR), and the Distributcd
Command and Control (DC2) project at the Naval Ocean System ('enter (NOSC), San Diego
have co-sponsorcd complementary distributed real-time system research at Carnegie Mellon Jni-
versity (CMU) and the University of Virginia (UVA). One area of IBM concentration that has
become of increasing importance to ONR and the DC2 project is real-time distributed database
management. IBM, because of its involvement in the design of real-time submarine combat
systems, had to address the real-time issues in this area earlier than most system architecture
researchers. Real-time systems which need very fast as well as predictable response time perform-
ance cannot use standard commercial approaches to database resource and consistency manage-
ment. In order to provide acceptable response for critical transactions, real-time database
managers should use response driven transaction scheduling, e.g., rate- monotonic techniques.
This implies that database managers should use a precedence mechanism (such as priority) that is
based on transaction response requirements for selecting which transaction to process next and
they should support the notion of preemption so that transactions with higher precedence may
move ahead of already executing lower precedence transactions. To avoid unbounded precedence
(or priority) inversions resulting from database consistency management requirements, techniques
such as the priority ceiling protocol (ref I) which avoids deadlock, minimizes blocking, and makes
response times more predictable should be used. To provide fast response, mcmory-bascd data-
base managers are needed as well as special hardware designed for highly efficient processing of
relational queries.

IBM has been very involved in designing systems where these characteristics are essential. IBM
reached the prototyping stage for real-time relational database technology in 1990, i.e., the tech-
nology became available for experimenting with different application domains such as command
and control, surveillance systems, etc. Under IBM and now NOSC/'ONR sponsorship, CMU
and UVA are implementing a real-time relational database manager which will support the sched-
uling concepts already developed by CMU and UVA. CNIU and UVA are integrating the real-
time relational database manager into a real-time operating system in order to prove the validity
of the scheduling theory.

IBM acquired an Ada programmable Versa Module Europa (VME) based relational processor
(R11) which is capable of at least one order of magnitude more transactions per second than is
typical of currently available relational database software packages. While this special relational
database hardware is not prcemptable, transactions can be scheduled by its control processor.
Because of its speed it can support real-time systems where use of a software/disk based relational
database manager would not provide acceptable response performance. Furthermore, given the
semantic knowledge derived from a particular application's implementation it is possible to bound
transaction execution times 'o that closed form scheduling analysis and prediction techniques can
be supported.

The remainder of this paper describes the experiments that IBM has performed for NOSC!ONR
in an initial evaluation of the relational processor as applied to Navy command and control
trackfile management problems. [his effort uses the same track data as NOSC's Distributed
Operating System Experimcnts (D)OS.) research task (ref 2).

!.1 Relational Processor Experiment Description

1.1.1 Hardware Configuration
The Real-'rime Relational Processor testhed consists of thle Ferranti International IRelational
Processor (ref 3) and a DY-4 single board computer (SflC) (ref 4) configure([on a VNIF chassis.
']Fie Relational Processor (RP~) contains hardware that executes relational primitives Fast;cr than
traditional database softwvare. The standard 8 megabyte Relational Processor is a 2 card VNIF,
modlule to which additional mecmory cards can bc added to bring thc total available RlI memnory
to 104 megabytes. [he VSII (VMF sub bus) provides an interface 1betweccn the Relational
Processor and the 68020-based T)Y-4 1)VME- 137 SBC. A Sun workstation connected to fihe
SBC by 2 serial ports currently serves as a monitor, which passes transaction requests and data to
and from the S13C that controls the relational processor. This is Illustrated by [iaure 1.

0

serilports

VIVIE chassis*

Sun Workstation

Figtire t. 1Ilardrtre Conripirntion

1.1.2 Software Configuration

TFhe software is primarily composed of Ada control structures and relational primitive bindings
(.SQL is not used). Eerrranti provides the Ada bindings for the relational primitives in a Program
Interface I ibrary (I'll1). The relational privnitives mre similar to the S, 0l query languaige. [h
Ada application softwvare is compiled oin a Iclesoft compiler ,ind executed with Ready' Systcenls
ARIA run timei environment.

1.1.3 DOSE Experiment

Binary data enters DOSF ' in thle Network Interla ce I nlit (Nil 1) Access Machine and is passed to
the parser manager. The p-irsed l messages are thlen vtored onl the database of thle Track Rceport
Manager anid (lisplayed hy thec G rapics Mlap Client, [his is depicted in Figure 2 onl page 3

2

Data Flow -
, Live Link 11
Messages

NIU/Access Parser Trackagep P Graphics
Machine Manager Manager Map Client

RDB

Ethernet

Figure 2. DOSE Data Flnw

The DOSE track data describes a set of contacts over time providing track number, position,
movement, and classification information. The track data has 17 attributes consisting of floating
point, characters, and integers.

The data enters the system in blocks of 2 to 57 tracks which represent an update to the scenario.
The database is searched for each track number in the current block. If a match is found, tile
entry for that track number is updated and given the new timc stamp. If the trick number is not
found in the database, a new track is inserted.

In addition to maintaining history on the contacts, the D)SI, graphics processor may request
data by track number or time stamp for display updates. lIithcr query will return all records
matching the selection criteria.

Thc D)OSE database operations arc relatively simplc and are largely characterizcd by thce Following
four queries. The querics ii-zed in tile experiment arc givecn here in thecir original SOl. format and
in the equivalent 11l1 primitives.

I. INSERTION - Add a track for the ncw track number.

SQL:
INSERT INTO relation VAL UES (track, latitude,.nuclear)

Relational Primitives:
DFFI NE TU PLES I ''OAI)D(bullptr. relation, t uple. word.-)
DEFINE 'I*TVAL-(buffptr, number)
DEFINE AlIT VAL(buffptr, value)
DEF'INE-A I 1'VAI.(hujffptr, value)

I)EFINENrV Fl'VAI.(bufptr, value)

Note: "bxfftj.1fidjgtcs the command/input/output buffer be'ing used.

2. UPD)ATE - Update previous track with new data.

SQL:
UPDATE relation SET attributec value WI fE1R17 track number
repeated for each attribute.

Relational Primitives:
SELECTION(huffptr, 17Q, tla, track, number)
UPDATE A-1T-(buffptr, track, tla, number)

U PDATEAIT(buffptr, lonitude, Ila, value)

UPDATEAJT(buffptr, nuclear, Ila, value)

Note:"tla" is the pointer set that relates the SFEUCTION results to thle 7.P)I AlT
request.

3. TRACK SELECTION - If found, return the track with the requested track number.

SQL:
SELEICT FROM relation \VIIERE track =number

Relational Primitives:
SELECTION(bufl'ptr, EQ, tla, track, number)
OUTIUT(bulfptr, tla, 0, 0)

4. TIME SELECTION - If found, return all tracks with the requested time.

SQL:
sE1.tEcr FROM relation WVI lURE time = pit

Relational Primitivns:
SEI "1 1CTION(biilfptr, EQ, tla, time, gmnt)
OIJTPUJ'(buffptr, tla. 0, 0)

1.2 Time Measurement Methodology
To measure the required prcssn time for a R P tIranisact in, a 10 ins, system clock was avil-
able. Because individual database transactions exectet on thle R P in mutch less timie thin a single
In ms clock tick, it was neccssary to peiform multiple iterations of the same transaction to get ain
accurate measurement of tli!- processing time. .As the numbewr of iterations increased to approxi-
mnately 100, thle actual processing time becamne apparent. I ire 31 on 5a~ illustrates this
point.

time (ms)
3.5

3 .-

I \\

2 .5 , - :. '-..

2 % '

0 J

1 2 3 4 5 10 15 20 25 5'0 75 100 250 500 750

of Iterations

Sequence A Sequence B

Figure 3. Update Attribute (1000 (uples)

Transaction processing time includes R P processing time, the time associated with transferring the
command and input buffers across the VSB, as well as tihe overhead involved in the Ada con-
structs needed to duplicate the nlow of control of the DOSE, scenario. By synchronizing a timer
with the signals sent across the VSB, it would be possible to eliminate all processing not occurring
on the lu, but the method chosen provides a better estimate of the amount of time required for
real-world applications.

The RP can be programmed to amortize transaction overhead processing over a few or many
commands. Consequently, performnance was meaisured for both approaches as described below.

1.2.1 Multiple Commands - Sequence A

In order to minimize communication over the VSB, the RIP allows multiple commands to be
placed in sequence in the command buffer. Certain operations may not appear more than once in
these command buffers, but the basic functions required by our experiments are not of this
nature. By grouping a number of commands and Iransinitting tile buffer, all overhead except for a
single VSB3 transaction was avoided, and the times resulting from this method are tritch lowecr
than Sequence B where command blocking was not performed.

1.2.2 Multiple Iterations - Sequence B

The second method was to execute single transactions inside a loop, and divide the elapsed time
by the nuimber of iterations before converting to seconds. T'his mceth(includes the amo unt of
time necess ary for loop conltrol processingt, but by placing clock quecries within the lo op and€
adding tip the individual elapsed time-,, this overhead wvaq fomid to be negligible. I lowv r, ocr-
head associated with command ind data transfers pro ved to be %cry significant.

1.3 Insert Measurements
An insert was performed on a database with 75 records (the approximate size of the DO()SI1 data-
base) and on a database of 1000 records. By increasing the number of iterations on the database
with 75 records, the time required stabilized to 0.4 ms for Scqucnce A and 1.5 ms for Sequence 13
as illustrated in Figure 4. Increasing the size of the database Ino 1000 records has little impact on
the response time as illustrated in Figure 5 on page 7.

time (ms)
2.5

I \ /2

i " / •
\ / "1.I ". ;

1.5

I
i

0.5..

0
1 2 3 4 5 10 15 20 25 50 75 100 250 500 750

of Iterations
Sequence A Sequence B

Figure 4. Insertion (75 tuples)

time (ins)
2.S

2

..

05

1 2 3 4 5 10 1520 2550 75 100 250 500 750

of Iterations
Sequence A Sequence B

Figure 5. Insertion (1000 tuiple.)

1.4 Update Measuiremnts
Update measurements were performed for updating an entire tuplc wvhich consists of 17 attributes
as well as for a singlc attribute in thc tupic.

Tuple update performance mneasurements were made onl databases wvidh 75 records and a 1000
records. In thic dlatabase with 75 rccordls, the resulting timfe stabiliims to 1.6 ins for Sequence A
and 2.2 ms for Sequence 13. Increasing the size of 1hc table to 1000 record% had an insignificant
impact on the required processing time.

Next, tuple update was performed for various dlatabase sites with a constant number of iterations.
The R P is relatively insensitive to the number of hiics in the (latabase as shown inl [igure 6 onl
page R

7

time (ms)
3

2 .8 -"

2.6"'

2.6

2 .4

2

1 .8

1.6

1.4
50 75 100 250 500 750 1000

of tuples
Sequence A Sequence B

Figure 6. Update Tuple (50 itel-Itions)

An attribute update was performed varying the number of iterations while maintaining the Si~c of
the database. For a database of 75 tuples, the resulting time stabilizes to 0.2 ms for Sequence A
and 1.3 ms for Sequence B. The same results are seen for a database with 1000 tuples.

Also an attribute update was performed for various database sizes. Again. increasing the number
of tuples had very little impact on the time required to perform the update as shown in Figure 7
on page 9.

time (ms)
1.4

1...

0.8

0.6

0.4

0.2

1 I

0
1 10 25 50 75 100 250 500 750 1000 -

of tuples
Sequence A Sequence B

Figure 7. Update Attribute (250 iterations)

1.5 Selection M'easurements
Track and time selections were measured in several ways.

A selectin resulting in one matching tuple was measured over numerous iterations while main-
taining the size of the database. For a "time" selection, it was found that the 3equence A time
was 0.1 ms and for Sequence B the time was 3.7 ins. The "track" sclection performs tile sclect
using the primary key and the resulting response time was the same as the above "time" selection.

Next, several selections were performed varying the number of matching tuplcs whilc maintaining
the size of the database and the number of iterations. 'hesc rcs,,lts arc shown in Figure R on
page 10.

time (ins)
2.5

0 L

0 machsI -.mthe 2 m.-.-5 mtce

S

number~~ ~ ~ ~ ~ of iterations. gi h Prsos ii uafe lta h ieo lcdtbs

increased. Figure 9 on page I I depicts these measurements.

time (ms)
4

3

0
1 10 25 50 75 100 250 500 750 1000

of tuples
Sequence A Sequence 8

Figure 9. Selection (750 itcrations)

1.6 Summary
Our experiments with the Relational Processor have shown it to be a viable technology for use in
Navy command and control systems. In particular, the DOSE scenario requires that approxi-
mately 45 tracks per second be processed. Based on the experiments with Ferranti's Relational
Processor it should be able to handle a sustained rate of 590 to 2375 tracks per second depending
on the ratio of updates to inserts as determined by the existing database. This performance is
more than an order of magnitude greater than required; however, these numbers would have to be
derated by the amount of query activity directed at the Relational Processor, for instance, by the
DOS, graphics processor. See Figure 10 on page 12 to obtain performance estimates for various
mixes of track updates to inserts. While time did not permit measurements varying the number of
attributes in a tuple, information obtained from the manufacturer indicates that the Relational
Processor's performance appears to be more sensitive to the number of attributes than the
number of tuples. All measirements in this experiment were made with the 17 DOS . attributes.

II

3,000

2 ,5 0 0

0 2S 500510

% of Inserts to updates
Measured Data PoInta (Seq A)

Figure 10. Nlix of Inserts anoil Updates Ibased on Selction

'Fle experiments involved database sizes ranging from 75 to 1000 tuplcs. Thie Relational Process-
or's response characteristic,- proved to be flat over this range. The maximum size of (lie database
which can he processed by the Relational Processor is restricted by tile size of its volatile memory.
The Relational Processor experiments used 8 megabytes but can hc expanded to 104 megabytes.

Additional arcas deserving future evaluation include time driven scheduling of thle RP, perform-
ance sensitivity to databases larger than 1000 tuples and performance sensitivity to the number of
attributes in a relation. Furthermore, it would be advantageous to exercise thle Relational
Processor in a distributed system network, permitting the measuirement of additional forms of
system overhead that could further degrade the deliverable i1erformance of thle Relational
Processor in a real-world application.

This technology has great promise for future command and~ control as wvell as othecr applications
whecre speed and insensitivity to dlatabase size arc imiportant. characteristics. The inability to
pireempt thie relational processor once it has started processing a command buffer has an impact
onl system transaction scheditlahility. I lowever, given its performance, Insensitivity to database
extent, and] semantic informat ion about its use iii particular applicationis. this weakness could
often be ovecrcome by jurdicious applicat ion programining suich that houindcd rcsponse t imfe guiar-
antees could be supported.

1. 7 References
1.Sha, I ,ui, Ragunatlian Rajkurnar, and Jfohn 1P. 1 choczky, "l'rioritv Inhecritance I'rotocols: An

Approach to Real1- l'iin Synchronizat ion," IF111 Tranisact ions oni Coinptiters, Vol .39, No
Sept 1990.

2. Burtterbrodt, NIC. and .. (I.C.M (rcnt, 1" lie),tribrited Operating Sy-stemt I xpcriwnt: A
Vital Link in the lDevc~or:'1ent of a Real-TIie R~eLit ional I)atabase Fi ~vironmnenit . av-l
Ocean Systems (enter, Januiary 1990.

12

3. Ferranti Computer Systems Limited, "T)VNML-78S Relational Processor H ardware U ser
Manual," D~raft Issue - July 1999.

4. DY-4 Systems Inc., "Relational P'rocessor Tutorial," February 190.

