| |
042 i D

AD-A238
G

oVR

RELATIONAL PROCESSOR
EXPERIMENTS
(FINAL REPORT)

June 21, 1991

Stephanie 1.ockhart
Kevin Walker
Pat Watson

IBM Corporation 250/060
9500 Godwin Dr
Manassas, VA 22110

NoooId-8§8-L-07YS
TS ST TR
res avad for pris ot 15
M et Gomaed

91 7 10 101 91-04618
MR

Contents

1.0 Introduction, 1
1.1 Relational Processor Experiment Description 1
1.1.I Mardware Configuration)
1.1.2 Software Configuration 2
1.1.3 DOSE Experiment c2
1.2 Time Measurement Mcthodology 4
1.2.1 Muitiple Commands - Sequence A L 5
1.2.2 Multiple Iterations - Sequence Bo 5
1.3 Imsert Measurements L 6
1.4 Update Measurements L. 7
1.5 Selection Measurements 9
1.6 Summary 11
1.7 References 12

: P —==t
Accecion for i]
e T
NTIS 6R24 v ;
BYiC aE P i
Jranenuieced o i
sthcate !
j
By . !
Distripatios! i
T LT T
Av,xlv:::'.'.-:f v '
i AN i
Dist | R |
;
]
’l " i
J f

//

([(\)1 i

e
\;..../

Contents i

1.0 Introduction

For the past scveral years IBM, the Office of Naval Research (ONR), and the Distributed
Command and Control (IDC2) project at the Naval Occan System Center (NOSC), San Dicgo
have co-sponsored complementary distributed real-time system research at Carnegic Mellon Uni-
versity (CMU) and the University of Virginia (UVA). Onc arca of IBM concentration that has
become of increcasing importance to ONR and the DC2 project is real-time distributed databasc
management. IBM, becausc of its involvement in the design of real-time submarine combat
systems, had to address thc real-time issucs in this area earlicr than most system architecture
rescarchers. Real-time systems which need very fast as well as predictable response time perform-
ance cannot use standard commercial approaches to database resource and consistency manage-
ment. In order to provide acceptable responsc for critical transactions, real-time database
managers should use responsc driven transaction scheduling, c.g., rate-monotonic techniques.
This implies that database managers should use a precedence mechanism (such as priority) that is
based on transaction response requircments for sclecting which transaction to process next and
they should support the notion of prcemption so that transactions with higher precedence may
move ahead of already executing lower precedence transactions. To avoid unbounded precedence
(or priority) inversions resulling from databasc consistency management requirements, techniques
such as the priority ceiling protocol (ref 1) which avoids deadlock, minimizes blocking, and makes
response times morc predictable should be used. To provide fast responsc, memory-based data-
base managers are needed as well as special hardware designed for highly cfficient processing of
relational queries.

IBM has been very involved in designing systems where these characteristics are essential. IBM
reached the prototyping stage for rcal-time relational database technology in 1990, ic., the tech-
nology became available for experimenting with different application domains such as command
and control, survcillance systems, ctc. Under IBM and now NOSC/ONR sponsorship, CMU
and UVA are implementing a rcal-time relational databasc manager which will support the sched-
uling concepts already developed by CMU and UVA. CMU and UVA arc integrating the real-
time relational database manager into a real-time opcrating system in order to prove the validity
of the scheduling theory.

IBM acquired an Ada programmable Versa Module Europa (VME) based relational processor
(RP) which is capable of at lcast one order of magnitude morc transactions per second than is
typical of currently available relational databasc software packages. While this special relational
database hardware is not prcemptable, transactions can be scheduled by its control processor.
Because of its speed it can support real-time systems where use of a softwarc/disk based relational
databasc manager would not provide acceptable response performance. 'urthermore, given the
semantic knowledge derived from a particular application’s implementation it is possible to bound
transaction exccution times 0 that closed form scheduling analysis and prediction techniques can
be supported.

The remainder of this paper describes the experiments that IBM has performed for NOSC/ONR
in an initial evaluation of the relational processor as applied to Navy command and control
trackfile management problems. This effort uses the same track data as NOSC's Distributed
Operating System Experiments (DOS1) eescarch task (ref 2).

I.1 Relational Processor Experiment Description

1.1.1 Hardware Configuration

The Real-Time Relational Processor testbed consists of the Ferranti International Relational
Processor (ref 3) and a DY-4 single board computer (SBC) (ref 4) configured on a VME chassis.
The Relational Processor (RP) contains hardwarc that cxccutes relational primitives faster than
traditional database softwarc. The standard 8 megabyte Relational Processor is a 2 card VMIE
module to which additional memory cards can be added to bring the total available RP memory
to 104 megabytes. The VSB (VML sub bus) provides an interface between the Relational
Processor and the 68020-based DY-4 DVME-137 SBC. A Sun workstation connected to the
SBC by 2 serial ports currently serves as a monitor, which passes transaction requests and data to
and from the SBC that controls the relational processor. This is illustrated by Figure 1.

[3 'o'c-ooooir;‘??:o’
0 "}
—] serlal ports >
= ID ooo g‘_]

VME chassls

Sun Workstation

Figure 1. Hardware Configuration

1.1.2 Software Configuration

The software is primarily composed of Ada control structures and relational primitive bindings
(SQL is not used). Ferrranti provides the Ada bindings for the relational primitives in a Program
Interface Library (PIL). The relational primitives are similar to the SQI, query language. The
Ada application softwarce is compiled on a Telesoft compiler and exceuted with Ready Systems
ARTX run time cnvironment.

1.1.3 DOSE Experiment

Binary data enters DOSE in the Network Interface Unit (NTU) Access Machine and is passed to
the parser manager. The parsed messages are then stored on the database of the Track Report
Manager and displayed by the Graphics Map Client. This is depicted in Figure 2 on page 3.

Data Flow

--- -
" Live Link 11
“Aossagea
|
Track Report
NIU/Access Parser Manager Graphics
Machine Manager RDB Map Client

Ethernet

Figure 2. DOSE Data Flow

The DOSE track data describes a sct of contacts over time providing track number, position,
movement, and classification information. The track data has 17 attributes consisting of Hoating

point, characters, and integers.

The data enters the system in blocks of 2 to 57 tracks which represent an update to the scenario.
The database is searched for cach track numbecr in the current block. If a match is found. the
entry for that track number is updated and given the new time stamp. If the track number is not

found in the database, a ncw track is inserted.

In addition to maintaining history on the contacts, the DOSE graphics processor may request
data by track number or time stamp for display updates. Lither query will return il records

matching the selection critcria.

The DOSE database operations arc relatively simple and arc largely characterized by the following
four queries. The qucncs used in the experiment are given here in their original SQI, format and
in the equivalent RP primitives.

1. INSERTION - Add a track for the new track number.

SQL:
INSERT INTO relation VAILUES (track, latitude, ..., nuclcar)
Relational Primitives:
DEFINE_TUPLES_TO_ADD(buffptr. relation, tuple, words)
DEFINE_ATT_VAT(bufiptr, number)
DEFINE_ATT VAL (bufiptr, valuc)
DEFINE_ATTU_VAIL(bufiptr, valuc)

DEF[NE_ATI'_VAI {buflptr, value)
Note: "buffpts” indicates the command/input/output buffer being used.
2. UPDATE - Update previous track with new data.

SQL:
UPDATE rclation SET attributc = value WIERE track = number
repeated for cach attribute.

Relational Primitives:
SELECTION(bufiptr, I:Q, tla, track, number)
UPDATE_ATT(buffptr, track, tla, number)
UPDATE_ATT(buffptr, latltudc tla, valuc)
UPDATE_ATT(buffptr, longﬂudc tla, valuc)

UPDATE_/\T'I‘(buﬁptr, nuclear, tla, valuc)
Note:"tla” s the pointer sct that relates the SELECTION results to the UPDATE_ATT

rcquest.
3. TRACK SELECTION - If found, rcturn the track with the requested track number.
SQL:

SELECT * FROM rclation WIIERE track = number
Relational Primitives:

SELECTION(buffptr, EQ, tla, track, numbcr)

OUTPUT(buffptr, tla, 0,)

4. TIME SELECTTON - If found, return alt tracks with the requested time.

SQL:
SELECT * FROM rclation WHERT: time = gmt
Relational Primitives:
SELECTTION(buffptr, XQ, tla, timc, gmt)
OUTPUT(buffptr, tla, 0, 0)

1.2 Time Measurement Methodology

To measure the required processing time for a RP transaction, a 10 ms system clock was avail-
able. Becausc individual database transactions execute on the RP in much less time than a single
10 ms clock tick, it was ncerssary 1o perform multiple iterations of the same transaction to get an
accurate measurement of the processing time. As the number of iterations increased to approxi-
mately 100, the actual processing time became apparent. Figure 3 on page S illustrates this
point.

i { AL 1 |
10 15 20 25 50 75 100 250 500 750 .

of Iteratlons

Sequence A Sequence B

Figure 3. Update Attribute (1000 tuples)

Transaction processing time includes R processing time, the time associated with transferring the
command and input buffers across the VSB, as well as the overhead involved in the Ada con-
structs needed to duplicate the flow of control of the DOSE scenario. By synchronizing a timer
with the signals sent across the VSB, it would be possible to climinate all processing not occurring
on the RP, but the method chosen provides a better estimate of the amount of time required for
real-world applications.

The RP can be programmed to amortize transaction overhcad processing over a few or many
commands. Consequently, performance was mceasured for both approaches as described below.

1.2.1 Multiple Commands - Sequence A

In order to minimize communication over the VSB, the RP allows multiple commands to be
placed in scquence in the command bufler. Certain operations may not appear more than once in
these command buffers, but the basic functions required by our experiments arc not of this
naturc. By grouping a number of commands and transmitting the buffer, all overhead except for a
single VSB transaction was avoided, and the times resulting from this method arc much Jower
than Scquence B where command blocking was not performed.

1.2.2 Multiple Iterations - Sequence B

The sccond method was to execute single transactions inside a loop, and divide the clapsed time
by the number of itcrations before converting to seconds. This method includes the amount of
time nccessary for loop control processing, but by placing clock queries within the loop and
adding up the individual clapsed times, this overhcad was found to be negligible. Towever, over-
head associated with command and data transfers proved fo be very significant.

1.3 Insert Measurements

An insert was performed on a database with 75 records (the approximate size of the DOSE data-
basc) and on a database of 1000 records. By increasing the number of iterations on the databasc
with 75 records, the time required stabilized to 0.4 ms for Scquence A and 1.5 ms for Scequence B3
as illustrated in Figure 4. Incrcasing the size of the databasc 1o 1000 records has little impact on

the response time as illustrated in Figure 5 on page 7.

time (ms)
25
T P N e e e
15 \\
1 b o R s
!
0-5 TR ! e “ e e e e e e e e
!
!
{
0 i |] ! I 1 1 l
1 2 3 4 5 10 1 20 25 50 75 100 250 500 750

of Iterations
Sequence A Sequence

Figure 4. Inscrtion (75 tuples)

[

e e N e PR
-,'
7
i
!
]
1 1 | 1 i | 1
1 2 3 4 5 10 15 20 25 50 75 100 250 500 750 -

of Iterations
Sequence A Sequence B

Figure 5. Insecrtion (1000 tuples)

1.4 Update Measurements

Update measurements were performed for updating an entire tuple which consists of 17 attributes

as well as for a single attribute in the tuple.

Tuple update performance mcasurements were made on databases with 75 records and a 1000
records. In the database with 75 rccords, the resulting time stabilizes to 1.6 ms for Sequence A
and 2.2 ms for Sequence B. Increasing the size of the table to 1000 records had an insignificant

impact on the rcquired processing time.

Next, tuple update was performed for various databasc sives with a constant number of iterations.
T'he RP is relatively insensitive to the number of tuples in the database as shown in Iigure 6 on

page K.

time (ms)
3

2.8 - ST e i

28 o e ——r e e

B8 b

2_2 OO U e

1.8 e e e s Ceeenee s e . e e

18 |-

1.4 LL 4] !] L]
50 75 100 250 500 750 1000

of tuples
Sequence A Sequence B

Figure 6. Update Tuple (50 iterations)

An attribute update was performed varying the number of iterations while maintaining the size of
the database. [or a database of 75 tuplces, the resuiting time stabilizes to 0.2 ms for Sequence A
and 1.3 ms for Sequence B. The samec results are scen for a database with 1000 tuples.

Also an attribute update was performed for various database sizes. Again, increasing the number
of tuples had very little impact on the time required to perform the update as shown in Tigure 7
on page 9.

08

0.6

0.4

0.2

! 1 { H ! 1 1 1
1 10 25 50 75 100 250 500 750 1000

of tuples
Sequence A Sequence B

Figure 7. Update Attribute (250 iterations)

1.5 Selection Measurements

Track and time sclections were measured in several ways.

A sclectiun resulting in onc matching tuple was mcasurcd over numecrous iterations while main-
taining the size of the databasc. For a “time” sclection, it was found that the Sequence A time
was 0.1 ms and for Sequence B the time was 3.7 ms. The “track” sclection performs the sclect

using the primary key and the resulting responsc time was the same as the above “time” selection.

Next, several sclections were performed varying the number of matching tuples while maintaining
the size of the database and the number of iterations. ‘These residts are shown in Figure 8 on

page [0.

9

time (ms)
25

of iterations

0 matches 11 matches 25 matches 56 matches

Figure 8. Sclection (Sequence A, 75 tuples)
Vinally, a sclection was performed varying the size of the database while maintaining a constant

number of iterations. Again the R response time remained flat as the size of the database
increased. Figure 9 on page 11 depicts these measurements.

10

4
3 - e e et ieee e e e e e s
2 T D
i
1 T T
H
o 1 I) p— 1 L 1 i L i M
1 10 25 50 75 100 250 500 750 1000 -
of tuples

Sequence A Sequence B

Figure 9. Selection (750 iteratinns)

1.6 Summary

Our experiments with the Relational Processor have shown it to be a viable technology for use in
Navy command and control systems. In particular, the DOSE scenario requires that approxi-
matcly 45 tracks per sccond be processed. Basced on the experiments with Ferranti's Relational
Processor it should be able to handle a sustained rate of 590 to 2375 tracks per sccond depending
on the ratio of updates to inserts as determined by the cxisting database. This performance is
more than an order of magnitude greater than required; however, these numbers would have to be
derated by the amount of query acuvlly directed at the Relational Processor, for instance, by the
DOSE gr'lplucs processor. Sce Figure 10 on page [2 to obtain performance estimates for various
mixes of track updates to inserts. While time did not permit mcasurcments varying the number of
attributes in a tuple, information obtained from the manufacturer indicates that the Relational
Processor’s performance appears to be more sensitive to the number of attributes than the
number of tuples. All measurements in this experiment were made with the 17 DOSE attributes.

3,000

2,500

2,000

of tracks

-
0
(=
o

1,000

0 25 50 75 100

% of Inserts to updates
Measured Data Points (Seq A)
—_——

Figure 10. Mix of Inserts and Updates bascd on Selection

The experiments involved databasc sizes ranging from 75 to 1000 tuples. The Relational Process-
or’s response characteristics proved to be flat over this range. The maximum size of the databasc
which can be processed by the Relational Processor is restricted by the size of its volatile memory.
The Relational Processor experiments used 8 megabytes but can be expanded to 104 megabytes.

Additional arcas deserving future cvaluation include time driven scheduling of the RP, perform-
ance sensitivity to databascs larger than 1000 tuples and performance sensitivity to the number of
attributes in a relation. Turthermore, it would be advantageous to cxercise the Relational
Processor in a distributed system nctwork, permitting the measurement of additional forms of
system overbead that could further degrade the deliverable performance of the Relational
Processor in a rcal-world application.

This technology has great promise for future command and control as well as other applications
where speed and insensitivity to database size arc important characteristics. The inability to
preempt the rclational processor once it has started processing a commmand buffer has an impact
on system transaction schedulability. Towever, given its performance, insensitivity to database
extent, and scmantic information about its use in particular applications. this weakness could
often be overcome by judicious application programming stuch that bounded response time guar-
antees could be supported.

1.7 References

1. Sha, ILui, Ragunathan Rajkumar, and John P. I choczky, “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization,” TEFE Transactions on Computers, Vol 39, No 9,
Sept 1990.

2. Butterbrodt, M.C. and 1.C.M. Green, “T'he Distributed Operating Svstem Fxperiment: A
Vital Link in the Development of a Real-Time Relational Database Fnvironment,” Naval
Occan Systems Center, January 1990,

3. Ferranti Computer Systems Limited, "“DVME-785 Relational Processor Iardware User
Manual,” Draft Issue - July 1988.

4. DY-4 Systems Inc., "Relational Processor Tutorial,” I'chruary 1990.

