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1. INTRODUCTION

Determining the interconnection weights of a feed-forward multilayered

neural network so that the resulting transfer function (input-output map)

will map a certain set of inputs to a corresponding set of desired outputs is

viewed here as an interpolation problem. The layered net, which has L a I

layers of weights, is described in the next section together with a statement of

the interpolation problem and some preliminary results.

In Section 3 it is shown how one can interpolate through a set of mL.1 + 1

input-output points (or less) with distinct inputs, where mL.1 is the number of

neurons in the layer preceding the output layer. This can be accomplished by

a proper choice of the last layer of weights. A closed-form expression for
these weights is given in terms of the mL.1 + 1 points of interpolation. These

weights are a function of all of the weights in the preceding layers, which

may be chosen at random.

Section 4 discusses nets with only two layers of weights (L = 2). A method

is presented for determining all of its weights so that its transfer function

interpolates through a set of m0 + I points (or less), where m0 is the number of

neurons in the input layer. The two methods for selecting the weights are

compared in Section 5, and suggestions for their applications are given.

The freedom that exists in the selection of the first L - 1 layers of weights

when using the method of Section 3 can be used to reduce the sensitivity (to

noisy input patterns) of the resulting input-output map. The sensitivity of the

transfer function at an interpolation point is measured here by the norm of

the Jacobian matrix (total derivative) of the transfer function at the given

point. Since a small change in the input produces a change in the output

whose magnitude is approximately bounded by the product of the norm of the

3
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Jacobian matrix and the magnitude of the change in the input, it is suggested

that by minimizing the norm of the Jacobian matrix at the interpolation points

the change in output produced by a small change in the input can be

minimized. Thus, an expression for the Jacobian matrix of the transfer

function is derived and is presented in Section 6. Before computing its norm,

the induced (p, q) matrix norms are introduced together with some of their

properties. A judicious choice for p and q yields computable upper bounds for

the norm of the Jacobian matrix. The results suggest that small weights are

required for low sensitivity.

For an introduction to feed-forward layered neural nets (FLNNs) and some

of their basic properties, the reader is referred to References 1 and 2.

2. NOTATION, PROBLEM STATEMENT, AND PRELIMINARY RESULTS

We will consider layered neural nets with architecture rh =(m0,m 1.... mL).

This means (Reference 2) that the net consists of L + I layers of neurons with
m i neurons in the ith layer (0 -< i 5 L). The activation function of each neuron

will be denoted by S: R - (-1, 1), where R is the set of real numbers and S is

assumed to be a strictly increasing continuous sigmoid mapping R onto

the open interval (-1, 1). Thus, S is invertible with inverse S-1: (-1,I) R.

Euclidean n-space with the standard metric topology will be denoted by R n, the
set of real nxm matrices will be denoted by Rnxm, and (-1, 1 )n a {x = [x1 , x2, .
XnT r Rn: Ixi < 1, i =1, 2, ... , n}. For each positive integer n, let Sn: Rnn- (-1, 1 )n

be defined by Sn(x) = [S(xl), S(x 2) ..... S(xn)IT, for all x = [x1 , x2  x]T e R n.

Similarly, let S1: (-1, 1)n R n be defined by S;l(x) - [Sl(xl), S' 1 (x 2 ), .

S'l(xn)] T, for all x = [x1 , x2, ... xn] T e (-1, I)n .  The superscript T denotes

transpose.

For each 3 e Rn, let 0: R"-+ Rn denote the operator defined by O(x) m x +

(x e R n). If f and g are two functions with the range of g contained in the

domain of f, then fog will denote the composition of f and g. The same symbol

4
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will be used to represent a linear transformation and its matrix with respect to

the standard orthonormal bases on its domain and range.

If Wi E: Rmixr ' (1 < i < L) and 3i e Rmi (0 < i < L), let Ti a (SmOpioWi): Rm' l -

(-1, )m1 (1 < i L) and let To: Rm 0-+ Amo denote either the identity map [in

which case, A = R], the composition SmoO mo, or simply Smo [in which cases,

A = (-1,1)]. Note that To is injective; thus, one may define its inverse To1 as

follows:
To: Rmo -+ R mo, if To = identity map

Too 1 S (-1, )mO -- RmO,  if To = Smom0  -1 m

(- 3
0 ) oSmo: (-, 1 )mO -. R m°, if To= Smo O30 .

With this notation, the transfer function (input-output map) of the FLNN with

architecture xi = (MO, M1 , .... mL ) and activation function S that will be

considered here can be written as the composition

t -a TLoTL-lo ... oTloO0: Rm°--- (-1,1) ML.  (2.1)

Remark 2.1. For the sake of generality, three possibilities have been

allowed for T o in order to accommodate exceptions or variations in the

interpretation or in the use of the first layer of neurons, which is considered

by some authors as being only an "input layer" (To = identity function), or may

be used simply to "normalize the input" (To = Sm 0), or to "normalize and center

the input" (To = SmoOo). However, if To = Smo o0, it will be assumed that [0 e Rmo

is free to be chosen to satisfy some criterion other than the interpolation

problem (e.g., to "center" the set of input data) and that once 0o has been

chosen, it remains fixed. Therefore, the only free parameters are Wi and Pi,

for i = 1, 2, ..., L.

Interpolation Problem 1 (IPI). Given a set of points of interpolation

t {(Ii, Oi) e Rm°×(- 1,J) ML : 1 -< i < k and Ii * Ij for i * j), (2.2)
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determine Wi and Pi (1 __ i : L) such that

F(Ii) = Oi, for all i = 1, 2, ..., k. (2.3)

Since the sigmoid S is injective and PO is assumed to be fixed, the IPI can

be reduced to an apparently simpler problem that circumvents having to treat
the three possible choices for To separately. This problem is defined next.

Let F: RmO- - RmL denote the map defined by Equation 2.1 with To equal to

the identity map and TL replaced by (k3 OWL): RmL-1-4 RmL.

The Interpolation Problem (IP). Given a set of points of

interpolation,

- {(Xi, Yi) E RmoXRmL:l <i < k and x i  xj for i * j}, (2.4)

determine Wi and 3i (1 _< i _ L) such that

F(xi) = yi, for all i = 1, 2, ..., k. (2.5)

The following proposition shows to what extent the two interpolation

problems are equivalent.

Proposition 2.1. Let the integer k > 0 be fixed.

(a) If IP has a solution for every set of interpolation points L as in
Equation 2.4, then IP1 has a solution for every set of interpolation points If as in

Equation 2.2.

(b) If IPI has a solution for every set n as in Equation 2.2, then IP has

a solution for every set of interpolation points Q1, where 0 is as in Equation 2.4
if To = identity map and Q = ((xi, yi) e (-1, 1)moxRmL:l < i k and xi * xj fori * j ,

if To = Smo or To = SmoO 00.

6
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Proof. The result follows from the definition of T01 and the fact that

I:1) =0 * F(x) = y with x = T0 (I) and y = S-1 (0).
ML

It follows from part (a) of the proposition that it suffices to solve the IP. The

proposition also shows how to handle the variations in the use of the first

layer. Consequently, for the remainder of the paper it will be assumed,

without loss of generality, that the FLNN has transfer function F: Rm°-. RmL

and the FLNN will be referred to as "the net."

Remark 2.2. One reason for requiring S to be injective is for

Proposition 2.1 to hold. This increases the generality of the results that follow

by allowing several possible forms for To (see Remark 2.1) at the expense of

restricting the class of permissible activation functions. Another alternative

is to assume that the transfer function of the FLNN is given by F (which is the

case for the remainder of the paper) and remove the restriction on S of being

injective. If this is the case, then the class of permissible activation functions

may include sigmoids that saturate, in which case it will be assumed that the

range of S is the closed interval [-1, 1]. To avoid confusion, we will indicate

when a result or definition also holds for noninjective activation functions.

Thus, S is assumed to be injective throughout, unless otherwise stated.

In order to facilitate the statements of some results, we make the

following:

Definition 2.1.

(a) We shall say that F interpolates through Q2 if Q is as in Equation

2.4 and Equation 2.5 holds.

(b) If IP has a solution, we shall say that Q is realizable by the net.

(c) The largest integer k with the property that every set of points fa as

in Equation 2.4 is realizable by a net with architecture -in will be

called the interpolation capacity of the net and will be denoted

by IC(ri).

* The symbol //// indicates the end of a proof.

7
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A related problem is that of characterizing IC(Mi) for all xii e N (Here,

NL+1 denotes the set of L + I tuples of positive integers.)

By a simple dimensionality argument, it was shown (Reference 2) that for

any continuous activation function S: R-+ [-1, 1] and for all rn E NL+l the

interpolation capacity IC(rii) is bounded above by C(ri), where

C(ih) M I ± mi(mi_ 1 + 1) (mi e NL+i). (2.6)
mL i=1

Note that the augmented matrices [Wi:0j] are members of Rmix(mi-' +l),

i= 1, 2, ..., L. Thus, C(rii) is simply the number of degrees of freedom (that is,

the number of parameters that need to be specified in order to define F

uniquely) divided by the number of outputs.

As a corollary to the next proposition, one can obtain a sharper upper

bound for IC(rh ) for all mii e NL+1 with ML > mL _1 + 1.

Proposition 2.2. If Q is realizable, then at most mL_1 + 1 of the vectors

Yi r RmL (1 < i < k) can be linearly independent.

We need the following notation in the proof of this proposition: let F1 = T

and Fn = TnoFn. ! for 2 < n < L.

Proof. Since fQ is realizable, there exist Wi and Pi (1 < i < L) such that

Y= F(xd) = (I3LoWLoFL-01(xi) = WL FL..l(xi) + 3L = [WL:J3 LI (1 :5 i 5 k). (2.7)

Since the set . RmL-1 1 : 5 i 5 k} contains at most mL. 1 + I linearly

independent vectors, Equation 2.7 implies that at most ML_ 1 + I of the vectors

y1 (1 _ i _5 k) can be linearly independent. //

8
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Corollary 2.1. If mL > mL-1 + 1, k > mL.1 + 1, and the set {y eRmL: ri k}

contains more than mL.1 + 1 linearly independent vectors, then the set {(x i, yi)

e RmoxRmL:1 < i < k) is not realizable by a net with architecture m- = (mo ,m ,. ,m1)

for any choice of vector xi e RmO (1 <5 i< k).

Corollary 2.2. Iff =(mo,m1 ,.. mL)with mL> mL- 1 + 1, then I C(ri) < mL. I + 1.

Remark 2.3. Proposition 2.2 and Corollaries 2.1 and 2.2 hold for any

activation function S if the net has transfer function F. Corollary C ' also

holds for a net with transfer function I if S is invertible.

The following example shows that there are architectures in for which
IC(M-) < C(m- ).

Example 2.1. IfL=2,m0 =ml+l,m 2 =ml+2, and m1 > 1,then C(ri )=2m 1 +l.

Since M2 > M 1 + 1, by Corollary 2.2 we have IC(fii) < m1 + 1, which is strictly less

than C(xi).

3. THE LAST LAYER OF WEIGHTS: A LOWER BOUND FOR IC(mi)

In this section, we present a characterization of the last layer of weights
[WL:' L] of a net whose transfer function F interpolates through a set of points

0 = (xi, yi) : 1 < i < k). This characterization involves the inverse of the matrix
X a(P') defined below. Conditions under which X.(p') is invertible are explored.

We find that Xa(p') is invertible under very mild conditions, in which case one

obtains the following lower bound for IC(ini):

IC(rh) > mL. 1 + 1, for m- = (M0 , M1, ... , ML). (3.1)

Let m- " (m, i ... e m) e NL + I , P(m) - I Rmi(mi ' +1), and P'(ni) [-
i-I i-I

Rmix(mi -.+l). If a net has architecture ii, then the collection of all transfer

functions associated with the net for every possible set of weights is clearly
parametrized by P(ini). For each point p a ([W I: 3], [W 2 $ 21, ... , [WL$PLI) E P(m),

9
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let Fp denote the transfer function of the net with weights p. Similarly, for

each p'= ([W1 !131], [W2 *P2], .... [WL-ITL-1]) r P'(Mi), let

FP' = (SmL.IO 3L.OWL.I) 0 ... (SmoioWi).

If lI: P(rn) - P'(rii) denotes the map ([W 1 : 1], .... [WL*OL]) -+ ([W 1  ] .....

[WE.1 !BE.]), then

Fp= (LWoFn(p)), for every p = ([W 1:0 1 , ... E P(m). (3.2)

Let = {(xi , yi) : 1 _ i _ k} be a set of interpolation points, fl -(x .l yai):

1 _ i <11 , where a = (a,, a 2, ..... a) is a multi-index with a i E [1, 2, ..., k) for

1 5 i < T . For each p' r P'(Mii) and multi-index a, define

X4(p') LFp, (xa):Fp, (x,), ... 'Fp, ( R(11-1+l)xn (3.3)

1 1 i i

and

Ya Iya N - y.%]R Y r R mLx

Proposition 3.1. Let il = mL.I + 1, k > i, and a = (a 1 , a 2, .... a,) with

aiE [1, 2, ... ,.k) for _I _<!

(a) If p e P(rii), Xa(H(p)) is invertible, and Fp interpolates through Q a,

then p = (n(p), [WLPL]) with

[WLT3 LI = Y. " [x .((p))i 1  (3.4)

(b) Conversely, if p' r P'(Mii), Xa(P') is invertible, Equation 3.4 holds, and

p = (p', [WLL]), then Fp interpolates through Q .

Proof. It follows from Equation 2.7 that Fp interpolates through fQa if,

and only if, p = (rl(p), [WL: 3L]) and

Ya = [WL:PLIXa(rl(P))" (3.5)

10
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Thus, if X(rl(p)) is invertible, then Equation 3.5 implies Equation 3.4. This

proves (a). Conversely, if Equation 3.4 holds, then [WL$AL] satisfies Equation 3.5

which proves (b). //I

Remark 3.1. If . <I1 = mL. 1 + 1, a = (a 1,a 2 ... -a,,) and the columns of
X,,(p') are linearly independent, then there exists a matrix U E Ryx(" ') ) such

that the augmented matrix [X,(P')!U] E RT' 1 is invertible. If the inverse of

[Xa(p').Ul is partitioned as -, with V 1 E R gx and V2 E R (n ' A) " , then

V1Xa(p') = I., where IP is the gxg identity matrix. Therefore, if [WL:PLJ = Ya V1,

then [WL PL] satisfies Equation 3.5 so that with p = (p', Ya V ), Fp interpolates

through £0.

For each multi-index a = (a 1, a 2, .... a), with T' = mL. 1 + 1, let E. denote the

set of all points p' in P'(fi) such that the matrix Xa(p') is invertible. We may

define a map ro: Ea - - P(mh) by r(p') = (p', Y.[X,(p')]'I). Part (b) of Proposition
3.1 says that all the transfer functions Fr(p,) (p' e EO) interpolate through Q,;

that is, they satisfy

Fr.(p,)(x) = y for all (x, y) E Da. (3.6)

Consequently, if Ea is not empty, then there exists p e P(i) such that Fp

interpolates through Q,.

For a given multi-index a, whether or not the set E. is empty is difficult

to answer in general, since it depends on the type of activation function in the
net. The next proposition shows that under certain conditions the set E. is

"large" (see Remark 3.2). In order to state the proposition, we must introduce
the map Ac: P'(rni) -- R defined by Aa(p) a det Xa(p), where Xa(p) is given by

Equation 3.3. q1 = mL.1 + I and det X,(p) denotes the determinant of X,(p). Let

VAa: P'(tf) -- R4 denote the gradient of A., where = mi(mi_1 + 1). A point p
i-i

11
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in P'(i ) has 4 coordinates and will be denoted by p = (PII P2 -... pk); that is, we

will identify P'(i- ) with R4.

If If denotes the complement of Ea in P'(nii), then If = A-1(0). Hence, Ec is

closed. Let E be the set of points p such that V A (p) = 0.

Proposition 3.3. If the activation function S: R -+ (-1, 1) is

continuously differentiable, then for each multi-index c with Tq components

the set If - F has Lebesgue measure zero.

The proof of this proposition is based on the following.

Lemma 3.1. If S is continuously differentiable, then for each p E Ec -F

there exists an open set 0 in P'(rfi) such that p E 0 and m(ECr) 0) = 0, where m

denotes the Lebesgue measure on P'(i).

0 0 aAax
Proof: If p0 = (P0, P,..., P) and VA(p0) 0, then "7 (p0) * 0 for

some j c -1, 2, .... J. To simplify the notation, we may assume that j = 1. Write
p0 (~l q) wthqO (p p 0

p (p?. qo) with q 0 - (P0, po3 ... Pt). Since the activation function S is
continuously differentiable, so is A.; therefore, by the Implicit Function

1~ 0 0Theorem (Reference 3), there exist open sets V cR 1 and U c R -1 with (p1, q ) E

VxU and a unique map (p:U--V such that 9(q0 ) = po, Aa((p(q), q) = 0 for all q E U,
and A,(pl, q) * 0 if (Pl, q) e VxU and P, * (p(q). Thus,

r [VxU] = [((p(q), q) : q E U). (3.7)

Next we will show that m(E- r) [VxU]) = 0.

12
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Let in, denote the Lebesgue measure on R1 (1 = 1, 2, ...). Since E is closed,

QmEc r [VxU] is a Borel set in R4. Therefore, by the definition of the product

measure mlxm4. 1 (Reference 4) and Theorem 7.11 of Reference 4, we have

m(Q) = (mixmk 1)(Q) = Iml({pl:(pl, q) E Q ) dim4 1 (q).

This together with Equation 3.7 gives

m4(Q) = Lm ({qp(q))) dmt-(q) = 1 0 dmt.l(q) = 0.

By letting 0 = VxU, the proof is finished. //

Proof of Proposition 3.3. By Lemma 3.1, for every p r E -f , there

exists an open set O such that p • 0 and m(EIf n Op) = 0. Since every Euclidean

space is second countable (Reference 5), E - E can be covered by a countable

collection of the sets Op. Finally, since Lebesgue measure is countably additive,

we conclude that m(E - ) O. //

Remark 3.2. If also m(F4 n E) = 0, then it follows from Proposition 3.3

that all the matrices X.(p) (p • P'(di)) are invertible except for those p in the

set E of measure zero.

As a corollary to Lemma 3.1, we can obtain a weaker condition for the
existence of an invertible Xa(p).

Corollary 3.1. If V Aa is not identically zero, then there exists p e P'(i)

such that X,(p) is invertible; that is E.1 *.

13
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Proof. If VAa is not identically zero, there is a point p E P'(Mui) such that

VA,(p) * 0. Either A,(p) = 0 or not. If Aa(p) * 0, then Xa(p) is invertible. If

Aa(p) = 0, then pe E7 -E and by Lemma 3.1 there is an open set 0 in P'(nii) such

that p e 0 and m(E c r) 0) = 0. The set 0 must have positive measure, since it is

open and nonempty. Consequently, 0 r E is not empty (otherwise, 0 c e a

contradiction) and any of its members satisfy the conclusion of the corollary.
///

Corollary 3.2. If V A. is not identically zero, then there exists p E P'(ri)

such that FrF(p) interpolates through Qo.

Proof. This follows from Corollary 3.1 and Equation 3.6. //

4. NETS WITH TWO LAYERS OF WEIGHTS

In this section, we will show how to define the weights of a net with two

layers of weights so that the transfer function of the net interpolates through

a realizable set Q = [(xi, yi) : 1 < i _< k) when the matrix X-[ x 2 ... k has

rank k, where k <_ m0 + 1.

Assume that L = 2, so that m = (m0 , m1 , m2 ) and assume M2 < Ml .

Choose a maximal subset of (yi : 1 _< i < k) consisting of linearly

independent vectors and let ql be its cardinality; q :- M2 . Without loss of

generality, we may assume that Y1 , Y2 , ..., y, are linearly independent (the

vectors yj may be relabeled if necessary). There exist constants aij e R such

that

1
Yi =  : aijYj, Tj +  1 5 i <- k. (4.1)

j-1

Set i., max(Ia ij l :51 <j <rT, + 1 <i< k).

14
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If the matrix X defined above has rank k, then there exists a matrix
V r R k~ k ° such that VX = Ik , where 'k is the kxk identity matrix (see the

argument in Remark 3.1). If k = m0 + 1, then V = X-1 , the inverse of X. Let e m'

denote the ith column of the mlxm 1 identity matrix (1 < i < ml). Fix a number

£E (0, 1) such that ea < I and consider the following vectors z i e Rm' , 1 < i< k.

Zi = s-ml(- eme ) = S'(.)eml ,  for 1 <i<i1 (4.2a)

z i = S -  Eaij em' = -1 (eaij) em ', for q + 1 :< i < k. (4.2b)= 1 m j=1

Define an mlxk matrix Z by Z [z! z 2 !.. Zk], and set

[WI:P!13 M ZV, (4.3)

W2 = L[Yl Y2 Yn 0 0] E Rmzxm',  and A2 = 0. (4.4)

Proposition 4.1. Assume X has rank k. Using the notation of Section 3
with L = 2, if p = ([W1 ! 1 1] , [W 2 $P2 ]) and Equations 4.3 and 4.4 hold, then FP

interpolates through Q.

Proof: Since VX = Ik , it follows that V[x]= ek, where ek is the ith column

of the kxk identity matrix, 1 < i<5 k. Thus, by Equation 4.3,

[W 01$ 1] [11 = ZV 1 1 =Zek=zi for 1 < i < k.

Consequently, by Equations 4.2a and 4.4, for 1 < i < Ti, we have

F Ix) W2 :02] Siz) W2(£ CT') = yi.

Now, by Equations 4.1, 4.2b, and 4.4, for nj + 1 < i < k, we have

15
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Fp(xi) = [W2 :32] [SW2m ) e aij e = aijYj = yi.

Hence, Fp interpolates through Q. //I

5. COMPARISONS AND APPLICATIONS

Two different techniques for determining the weights of a FLNN so that

its transfer function interpolates through a given set of points fl have been

presented. If the cardinality of Q is k, then both techniques require a certain

matrix to have rank k in order to interpolate through all of Q.

The technique presented in Section 3 (Technique 1) requires the

columns of Xi(p') to be linearly independent (k = (1, 2, ..., k); see Remark 3.1).

Since the columns of Xi(p') are (mL.1 + 1)-dimensional, k can be at the most

m L- 1 + 1. Thus, using Technique 1, the net can interpolate through an

arbitrary set fl as in Equation 2.4 with at most mL_1 + 1 points, provided V&.i is

not identically zero (see Corollary 3.1).

The technique presented in Section 4 (Technique 2) was developed for

nets with rii = (MO, M1 , M2 ) and m2 < M1. It requires the columns of X to be

linearly independent. Since the columns of X are (m0 + 1)-dimensional, k can

be at the most m0 + 1. Thus, using Technique 2, the net can interpolate

through a set Q as in Equation 2.4 with at most m0 + 1 points, provided the

matrix X has full rank.

Aside from the difference in the number of points through which the net

can interpolate using the two techniques, there is another difference.

Technique 2 will specify all the weights in the net, while Technique I only

specifies the last layer of weights in terms of the first L - I layers of weights.

When the activation function S is such that the gradient of Ai vanishes only

on a set of measure zero, then as Remark 3.2 suggests, one may choose the first

16
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L - 1 layers of weights at random and, loosely speaking, with probability 1 a
nonsingular matrix Xk (p') is obtained when k = mL.1 + 1. More precisely, X (p')

will be nonsingular for all p' except for some points p' in a set of Lebesgue

measure zero. It can be shown that any activation function S, which becomes

an entire function (Reference 6) when extended to the complex plane, has the
property that VA, is zero only on a set of measure zero unless it vanishes

identically, in which case Aj itself is identically zero. An example of such an S

is S(t) a 2f(t) - 1 (t e R), where

f(t) f *- e- dx, (t e R).

In a similar vein, when k = mo + 1, the matrix X will be nonsingular with

probability 1. That is, X is of the form [-.-A. with A e Rmoxk, and the set of

matrices A in R m° k for which X is singular has Lebesgue measure zero.

For nets with only one hidden layer (L = 2) and m2 < in1 , one has a choice

of interpolation techniques. If the goal is to interpolate through as many

points as possible, clearly one uses the technique with the largest permissible

k. However, usually one can select ml; thus, by choosing m1 large enough, one

can interpolate through any number of points using Technique 1. On the

other hand, in some applications the input layer may be large enough already;

in which case, Technique 2 may be adequate with a more conservative value

for m 1 .

Perhaps these techniques for determining the weight will prove to be

most useful in the initialization of weights. Some of the most popular learning

algorithms in use today (e.g., back propagation (Reference 1)) are based on

iterative steepest descent minimization procedures, where, at each step, the

approximate solution is corrected in the direction of steepest descent in order

to reduce the error. To begin an initial set of weights is required, which is

usually chosen at random. The speed of convergence depends very heavily on

the quality of the initial weights; that is, on how close the initial weights are to

17
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the correct set of weights. To improve the quality of the initial weights, one

could select m0 + 1 representative input-output pairs (prototypes) such that

the matrix X is invertible and calculate an initial set of weights using
Technique 2. Alternatively, one could select mL1 + 1 representative input-

output pairs, choose the first L - 1 layer of weights at random, and calculate

the last set of weights using Technique 1.

6. JACOBIAN MATRIX OF THE TRANSFER FUNCTION

Since a small input change to the net produces an output change whose

magnitude is approximately bounded by the product of the operator norm of

the Jacobian matrix (total derivative) of the transfer function and the

magnitude of the input change, we suggest that the sensitivity of the transfer

function F to noisy input patterns at the interpolation points can be measured

by the norm of the Jacobian matrix of F at the interpolation points. Thus, in

this section, we derive an expression for the Jacobian matrix of F and compute

an upper bound for its norm.

Let W! (1 < i < mi, 1 < j < ml. 1) denote the entries of the weight matrix

WI(1 < 1 ! L), and let ! (1 < j <i ml ) denote the components of the vector

10 l L).

For each z : Rm -I. with components zi (1 < i:5 < o. 1 ), let Dj(z) be an mlxml

diagonal matrix defined by

18
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S'(z W1jz + 0jw1 z

St Wmnj zj +

where S' denotes the derivative of S. The expression above defines a map
D1 : RmI.1 Rmlxmt (1 < 1 < L). Recall that F = (I3 OWL)OTL.1 o 

.-- o T1 and Fa =Tnn.

for I < n < L with F0 the identity map on m. Let T;(z) denote the Jacobian

matrix of T1 at z e RmI '1 and [Tl(Z)]13 its ijth entry (1 i mn1, 1 < j -< rn1 1, 1 _s 1 < L).

Use a similar notation for the Jacobian matrices of F and Fn (1 _ n < L).

Proposition 6.1. Assume L > 2.

Tl(Z) - D/(z)W1  (z e Rmi '1, 15<1 < L). (6.1)

F'(x) --- WL Ilj [Di(Fi 1(X))WS] (x I R mo). (6.2)

i-L- l

Proof: If the components of z RmT are z i (1 < i < de.fi), then

Consequently,

D,: ~ ~ __ Rmm,1 -- R'"( 915L) ealta (-Lo-1 T, an1 .Tn~

[T~z)lIj~ = z Si Wn zn +~' I3 -- in

m o T zn1 t, 1 5 i S in 1, 1 1< L.

This gives Equation 6.1.
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Applying the chain rule to the composition TnoF.. 1 and using Equation 6.1,

one obtains for n = 1, 2, ..., L -1

Fn(x) = Tn(Fn-l(x))Fn_l(x) = Dn(Fnl(x))Wn F'nl(x) (x = RmO).

Hence, by induction we have

FL-I(x) = 171 [DI(F1 -I(x))WI] (x e R mo). (6.3)
I=L-1

Finally, since F(x) = WL FL.I(x) + PL, F'(x) = WL FLI(X), thus Equation 6.3 implies

Equation 6.2. //I

It should be noted that the product indicated in Equations 6.2 and 6.3 is a

product of matrices that may not commute; thus, it is important to understand

the correct order of multiplication; namely,

[DL.I(FL.2(x))WL.1]. [DL.2(FL_3(x))WL.2] ... [D1(x)W 1].

The sensitivity of the transfer function F at a point x will be measured

here by the induced (p, q)-norm of the linear transformation F'(x) for

particular values of p and q. The induced (p, q)-norms are defined below.

Other operator norms could be used; however, the induced (p, q)-norms lead to

upper bounds for the norm of F'(x) that are computable for certain values of p

and q and can be interpreted qualitatively.

The induced (p. q) matrix norms are defined next. A list of properties of

(p, q)-norms that will be needed is also included. To the author's knowledge,

some of the properties of (p, q)-norms needed here are not available in the

open literature. For completeness, this material is developed in Proposition

6.2.

20



NWC TP 7094

For 1 < p < *, the p-norm of a vector x e R n is defined by IlxllP , xilp

where xi (1 < i < n) are the components of x with respect to the standard basis

on R n consisting of the columns of the nxn identity matrix In. If p = 0*, then

1ix11. max lxii. If A: Rn -* Rm is a linear transformation, then the induced

lAxi
(p, q)-norm of A is defined by 11A pq s sup l, where 1 < p <e* and 1 q<o.

Recall that we are using the same symbol to represent a linear transformation

and the matrix associated with it with respect to the standard basis on its

domain and range. If A is an mxn matrix, let "ij denote its ijth entry (1 < i < m,

! <j < n).

Proposition 6.2. Let A: R n -+ Rm, B: Rm - R1, and C: R l
- Rm.

IIBAI1pq -< 11B11 TlAllrq 1 < p, q, r <*. (6.4a)

IIAIhrN -< II[A:CllpN I < p, q < c*. (6.4b)

IIAII.-1  =max IAijl. (6.5)
i

If A is a square diagonal matrix, A = diag[Aii], then

HIAIRP.= IAiip  1 !5 p < *,(6.6)

il/P
IIAII 1=max [ A.IJ 1 <9 p <**, (6.7)

21



NWC TP 7094

1 /
1~l=a I*I < p < **, (6.9)IIAII.P =max IlAijlp"  69

isism j=l

where p* is the conjugate exponent to p; that is, p* satisfies I + .__ 1.
p p*

Proof: The definition of iIBllpr implies IlByiIp < llBi1pr ly[[r for all y E Rm

JBAXlp I BI rrllAx I
Therefore, liBAl = S< su B xsupIX 1 iBlpr =1B1 lrq. This gives

pq X*O xq X*O 1I q P q

Inequality 6.4a.

There exists x E Rn such that lixilq = 1 and h1Ailpq = IlAxl. Consider the vector

y = [ ] . R n+1 Clearly, Ilyllq = llxllq = 1 and lI[A:C]yIp = IIAxlIp = IiAIlpq. Consequently,

Inequality 6.4b holds.

n n ni

If 1Ix1 , = 1, then IIAxl.I = max 11 Aij xjl < max IAi I xji < max IAijl I ixjI I
li:m j=l l. n j=l ii ij

max lAij . Hence, the left-hand side (LHS) of Equation 6.5 cannot exceed thei,j

right-hand side (RHS). If IAiojol = max ]AijI and x is the joth column of In, then
1,J

n

1Ixl1 , = I and IIAxll. = max 1" Aij xji = max 1Aio I = 1A io 1. This establishes Equation
1iJSM jl11 ismsio*

6.5.

If A is a diagonal (square) matrix and 1x1J. = 1, then

n lnP n i/p
IIAxII = Y,. i1xil = a IA1i~ixi I I5 1A1P

Li-i ~i J [
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Consequently, the LHS of Equation 6.6 cannot exceed the RHS. Moreover, if

x =[1, 1, .... I1T r Rn, then xL. = I and IIAxIIp = [ nAiiIP]. rhis establishes

Equation 6.6.

Let 1 < p < -, IIxIIt = 1, and consider the m-vectors vj = xj aj, where aj denotes

the jth column of A (1 < j < n). Since the vector norm 11.11 p satisfies the triangle

n n

inequality, it follows that _I_ vjl P ! IlvP. Consequently,
j=1 i=1

M n }l/p n n nP 1/pIIAxl = 1 Aix p  -[ vPl 11 1__.~ jJ I Av[p 1AjjP

~l j= l =1 i 1 i I I i j

nl/ n 1/

=X)jI IAijIP I/ P X< jI max 2IAi IP
i= i=1 J i=l [.l~j~rn i=1

l!5in I. i- IlI

This shows that the LHS of Equation 6.7 cannot exceed the RHS. Now, if the

maximum on the RHS of Equation 6.7 occurs at j = Jo, let x be the j0 th column of

m m

the identity matrix. Then Ilixil = I and IIAxIIP= I IA IP = max IAi.IP. Hence,
i1l 1<j .€n i=1

Equation 6.7 holds.

Equation 6.8 is proved in Reference 7.

Let I < p < -, IXIp = I and let p* be the conjugate exponent to p. Note that

p(p* - 1) = p0. Then,

IIAxIl. = m a x IA AIijxj < max F, lxjI < lIxilp . IAimaPx

,i-. j-1 lfi.m j-1 I n fil2
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where the second inequality follows from H61der's inequality (Reference 4).

Thus, the LHS of Equation 6.9 cannot exceed the RHS. Now, if the maximum on

the RHS of Equation 6.9 occurs at i = i0, let xj = a Aioj 1Aioj p '2 if Aioj * 0 and xi = 0n -1/p
if Aioj = 0 (1 < j < n), where a = E AiojlP .] Since p(p* - 1) = p*, the choice

j=1

of a gives IlxIIp = 1 and IIALl..p > IXA.._.i I = a =IAj IP Y IAIj I This
•=1 j-1 j=1

establishes Equation 6.9. //

Remark 6.1. If a,,..(A) and O.mi(A) denote, respectively, the largest and

the smallest singular values of the matrix A, then

IIA1I22 = a..(A) (6. 10a)

IIA'11122 = 1/oi(A) if A is invertible. (6. 10b)

See References 7 and 8.

Applying Inequality 6.4a to Equation 6.2, one obtains the following upper

bound for IIF'(x)lpq (1 < p, q < o, (L > 2)).

IIF'(x)llpq < IIWLI1pq IIDL.I(FL.2(x))IIq. IIWL1II..1 itI [IID(F/.(x))I1 . IIW1I.. 1]. (6.11)
t=L-2

Note that all of the norms appearing in Inequality 6.11 can be computed using

the formulas in Proposition 6.2 whenever (p, q) = (o, q), 1 < q < go, or (p, q) =

(p, 1), 1 < p -a. They also can be computed when (p, q) = (2, 2). In particular,

if W- - max 1W!. I (1 < 1! L) and [F/.I(x)] j denotes the jth component of Fl.I(x)

(1 < j < ml- 1, 1 < 15 L-1), then when (p, q) = (oo, 1), one obtains

IIF'(x)ll..l 5 J7 .Wj[Ft.1(x) j + (6.12)
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Inequality 6.12 is interesting, since it shows that, qualitatively speaking, the

sensitivity at a point (x, F(x)) will be small if the weights are small. In

particular, if the derivative of the activation function S is bounded, say

S'(t) < Ti for all t E R, then

IIF'(x) IL. m1  (x E Rmo).
1=1 1=1

Moreover, if S'(t) -- 0 as t --, -, then Inequality 6.12 suggests that the

sensitivity (i.e., the norm of the Jacobian matrix) can be made small at the

points of interpolation by choosing I NI large (1 _ i _ in, 1 < 1_< L - 1, L >2).

Whether one can simultaneously choose the biases i large, keep the

weights small, and interpolate through a set of points fl is a topic for further

research.

As an example of the applications of the theory developed in this section,

we can investigate the sensitivity of the transfer functions that are obtained

using the Interpolation Techniques 1 and 2 that were presented in earlier

sections. It will be assumed that L = 2.

When L = 2, Proposition 6.1 gives

F'(x) = W2 D1(x) W1  (x e R mo)

from which it follows (by Inequality 6.4a),

IIF'(x)llpq5 < "w21lr lid (x)llrt IIl ll (6.13)

If t- , we can use Equation 6.6 to compute 11DI(x)[r.. for 1 : r< G. Note that the

elements of the diagonal matrix DI(x) coincide with the components of the

vector Snl,([Wl i1] ), where Sm, is the map defined by Sm,(z) = [S'(zl), S(z 2).

.... S'(Zmi)]T for every z = [z1 , Z2 , .... Zmx]T e Rml. Therefore, it follows from

Equation 6.6 that the (r, 0o)-norm of the matrix DI(x) coincides with the r-norm

of the vector Sm1 ([Wl [31[ ),
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IlDi(x)lr1, = I1SM'1([w 1 $1][])11' (x r: RmO). (6.14)

Now, consider Technique 2 for interpolating through Q = {(x1 , Yl) e

RmoxRm2: 1< i<5 k), with k = m0 + 1 and m2 <5 m1 . Assume X is invertible. Recall

that

S' (We ml  for 1 _5i51

[W1 01 xIi' = =

W sW1 (eaij)eTl for + 1--_i< k.
j=1

Hence, Equation 6.14 gives

S'(S -(E)) for I <5i:51

[S'(S-I(Faij))] r 
11T for il + 1 _< i 5 k.

Next, if the components of the vectors y, are denoted by yij, 1 < j <M 2 ,

1 < i 1, and f w max lyij,1, then by Equations 4.4 and 6.5,
ij

IIW211..1 = - 1. (6.16)

From Inequalities 6.4 and Equation 4.3 one obtains

11W 111-. 2 9 11 [IZX'11..2: 11 Z 11-.2 [113x 1122. (6.17)

By Equations 6.9 and 4.2, and the definition of Z,

IIZII.. 2= Max[[S1(E)2 + ± [S1(Caji)] 2  . (6.18)
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Finally, since IIX- 1112 2  1 (Reference 8), by combining Equations 6.15
Gmin(X)

through 6.18 and Inequality 6.17 with Inequality 6.13 with p - . q = 2, r = 1, and

t = , one obtains the following upper bound for IIF'(xi)[[. 2 ,

IIF'(xi)[.2 < [. ] 1 • max [S-l(e)]2 + [S-l(eaji)] 2 IID1(xi)I1 ." (6.19)

C Omin(X) lsi.n [+1

Under certain conditions on the activation function S, one can obtain a

simpler but more conservative upper bound by considering max laij and 1
ii

m in laijl. Note that if S is strictly increasing and symmetric about the origin,
ii

then IS'I(eaij)I < s1(ca) for all i, j. Moreover, if we assume that S' is strictly

decreasing on (0, -), then S'(S l(eaij)) < S'(S-I(e&) for all i, j. Under this

condition on S and S', it follows that

1 ] 1 1[s l()]2 + (k _ TI) [sl(pa /2 .
IIF'(xi)tt,.2 _ [ Y] in(X) i [1

S'(S'(e) for I < ie1 1q

where Q =
'n S'(S'I(1)) forqT + 1 <5 i < k.

If Technique 1 is used to interpolate through a set 12 with k = m1 + 1

points, then [W2 :02] = Ya 1 ([WI* 1 ]), where the multi-index a = (1, 2, .... k).

Note that [W 2 :02] is a function of [W1!0 1]. Setting p = os, r = 2, t - ,-, and q 1 in

Inequality 6.13 and applying Inequalities 6.4 to [W2 :02], one obtains

I1FV(x)11..j <-- 11Yv1.2 1IbCX([wj Pj1])1122 IIDI(x)112. 11W111.1.

This inequality can be written more explicitly as

27



NWC TP 7094

IIF(x)@. 1 < IIY~jL2  1 [S'( W! xj + 3i)]2 1 . (6.20)
0,min(Xa([Wl 1])) fi=1 ji- I

As we pointed out in Section 5, application of Technique 1 requires a
selection of the first layer of weights [W1 :01] before computing [W2 :2]. We

gave no guideline on how to select [W1  1] . Here we suggest that after an

initial random choice of [WI513], one proceeds to select new choices for [W1 $1]
using iterative minimization procedures to reduce the RHS of Inequality 6.20 at
the points of interpolation xi (1 < i < k), thereby reducing the sensitivity of the

transfer function F with each iteration. The details of such a sensitivity-

minimization algorithm are still under investigation.

7. SUMMARY

Finding the weight of a feedforward layered neural network so that the

resulting transfer function maps a set of inputs to a desired set of outputs was

described as an interpolation problem. It was shown how to define the weights
so that the net interpolates through a set of m0 + 1 points, where m0 is the

number of inputs and the net has one hidden layer.

It was also shown how to select the last layer of weights of a
multilayered net so that the net interpolates through a set of mL.1 + 1 points,

where mL.1 is the number of neurons in the layer preceding the output layer.

These two approaches (Techniques 1 and 2) provide a partial solution to the
interpolation problem posed in Section 2. Moreover, both of the numbers m0 +

1 and m1 + 1 serve as lower bounds for the interpolation capacity of nets with

one hidden layer, and the number mL.1 + 1 is a lower bound for the

interpolation capacity of nets with L layers of weights when L > 2.

The Jacobian matrix of the transfer function was computed. Its operator

norm was used as a sensitivity measure of the transfer function to variations

in its input. The induced (p, q) matrix norms were introduced together with

some of their properties in order to obtain computable upper bounds on the

norm of the Jacobian matrix at the points of interpolation. The results suggest
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that small weights are required for low sensitivity. It was also suggested that

the freedom that exists in the selection of the first L - 1 layers of weights,

when using Technique 1 for interpolation, can be exploited in order to

minimize the sensitivity of the transfer function at the points of interpolation.

The details of such a minimization algorithm is a topic for further research.

Another problem that is still under investigation is whether the first

L - 1 layers of weights can be selected (as well as the last layer of weights) so

that the net interpolates through more than mL_1 + 1 points. For example,

when L = 2 and m0 > m, the net can realize more than m1 + I points; namely,

m 0 + 1 using Technique 2.
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