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1. INTRODUCTION

Determining the interconnection weights of a feed-forward multilayered
neural network so that the resulting transfer function (input-output map)
will map a certain set of inputs to a corresponding set of desired outputs is
viewed here as an interpolation problem. The layered net, which has L 2 1
layers of weights, is described in the next section together with a statement of

the interpolation problem and some preliminary results.

In Section 3 it is shown how one can interpolate through a set of my ; + 1
input-output points (or less) with distinct inputs, where mp_; is the number of
neurons in the layer preceding the output layer. This can be accomplished by
a proper choice of the last layer of weights. A closed-form expression for
these weights is given in terms of the my ., + 1 points of interpolation. These
weights are a function of all of the weights in the preceding layers, which

may be chosen at random.

Section 4 discusses nets with only two layers of weights (L = 2). A method
is presented for determining all of its weights so that its transfer function
interpolates through a set of my + 1 points (or less), where my is the number of
neurons in the input layer. The two methods for selecting the weights are

compared in Section 5, and suggestions for their applications are given.

The freedom that exists in the selection of the first L - 1 layers of weights
when using the method of Section 3 can be used to reduce the sensitivity (to
noisy input patterns) of the resulting input-output map. The sensitivity of the
transfer function at an interpolation point is measured here by the norm of
the Jacobian matrix (total derivative) of the transfer function at the given
point. Since a small change in the input produces a change in the output
whose magnitude is approximately bounded by the product of the norm of the

3
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Jacobian matrix and the magnitude of the change in the input, it is suggested
that by minimizing the norm of the Jacobian matrix at the interpolation points
the change in output produced by a small change in the input can be
minimized. Thus, an expression for the Jacobian matrix of the transfer
function is derived and is presented in Section 6. Before computing its norm,
the induced (p, q) matrix norms are introduced together with some of their
properties. A judicious choice for p and q yields computable upper bounds for
the norm of the Jacobian matrix. The results suggest that small weights are

required for low sensitivity.

For an introduction to feed-forward layered neural nets (FLNNs) and some

of their basic properties, the reader is referred to References 1 and 2.

2. NOTATION, PROBLEM STATEMENT, AND PRELIMINARY RESULTS

We will consider layered neural nets with architecture m = (mg,m,,...mp).

This means (Reference 2) that the net consists of L + 1 layers of neurons with
m; neurons in the ith layer (0 < i< L). The activation function of each neuron
will be denoted by S: R— (-1, 1), where R is the set of real numbers and S is
assumed to be a strictly increasing continuous sigmoid mapping R onto
the open interval (-1, 1). Thus, S is invertible with inverse sl (-1,1)- R.

Euclidean n-space with the standard metric topology will be denoted by R", the
set of real nxm matrices will be denoted by R™™, and (-1, )" = {x = [x{, x,, ...,

xn]T e R Ixj<1,i=1,2,..,n}. For each positive integer n, let S,;: R"> (-1, 1)"
be defined by S, (x) = [S(x}), S(x3), ..., S(xn)]T. for all x = [xy, x,, ..., xn]T e R".
Similarly, let S;%: (-1, 1)®> R" be defined by S;'(x) = [S7!(x;), S'(xp) ..
S'l(xn)]T. for all x = [x{, x5, ..., x,,,]-r € (-1, 1)*. The superscript T denotes

transpose.

For each B e R", let f: R"> R™ denote the operator defined by f(x) = x + B,

(x e R"). If f and g are two functions with the range of g contained in the
domain of f, then fog will denote the composition of f and g. The same symbol
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will be used to represent a linear transformation and its matrix with respect to

the standard orthonormal bases on its domain and range.

If W; ¢ R™™1 (1sisL)and Bje RM©O<i<L) let Tj= (SpofeWy): R™1

(-1, D™i(1 i< L) and let Ty: R™o 5 A™9 denote either the identity map [in
which case, A = R], the composition Smooﬁmo, or simply Smo [in which cases,

A = (-1,1)]. Note that T, is injective; thus, one may define its inverse ’1'61 as

follows:
To: R™o — R™o, if Ty = identity map
1 -1, m e
To ={Sm, 1, 1)70 - R™o, if To= S,

(-Bg) Spi: (~1,D™ — R™, if To = Sy, of.

With this notation, the transfer function (input-output map) of the FLNN with
architecture m = (mg, my, .., mg) and activation function S that will be

considered here can be written as the composition
F= Ty oTy jo...0T Ty : R™ 5 (-1,1)ML, (2.1)

Remark 2.1. For the sake of generality, three possibilities have been
allowed for T, in order to accommodate exceptions or variations in the

interpretation or in the use of the first layer of neurons, which is considered
by some authors as being only an "input layer" (T, = identity function), or may
be used simply to "normalize the input" (T = Sp, o)» Or to "normalize and center

the input” (Tg = Smooﬁo). However, if Tg= Sp ° Bo. it will be assumed that B, € R™0

is free to be chosen to satisfy some criterion other than the interpolation
problem (e.g., to "center" the set of input data) and that once B, has been

chosen, it remains fixed. Therefore, the only free parameters are W; and B;,

fori=1,2,..L.

Interpolation Problem 1 (IP1). Given a set of points of interpolation

Q= {1, 0)e R™Mox(-1,1)™.: 1 i< k and I # IJ- fori = j}, (2.2)
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determine W, and B; (1 <i< L) such that
Fa) =0, foralli=1,2, ..k (2.3)

Since the sigmoid S is injective and B, is assumed to be fixed, the IPI can

be reduced to an apparently simpler problem that circumvents having to treat
the three possible choices for T, separately. This problem is defined next.

Let F: R™05 R™L denote the map defined by Equation 2.1 with Ty equal to
the identity map and Ty replaced by (B °W): R™-1 R™.,

The Interpolation Problem (IP). Given a set of points of

interpolation,
Q= {(x; y;) € R™R™:1 <i< kand x; = x; for i = j}, 2.4)
determine W,; and B; (1 € i< L) such that

F(x;)) = y; foralli= 1,2, .., k. (2.5)

The following proposition shows to what extent the two interpolation

problems are equivalent.
Proposition 2.1. Let the integer k > 0 be fixed.

(@) If IP has a solution for every set of interpolation points Q as in
Equation 2.4, then IPI has a solution for every set of interpolation points Q as in

Equation 2.2.

(b) If IP1 has a solution for every set Q as in Equation 2.2, then IP has

a solution for every set of interpolation points Q, where Q is as in Equation 2.4
if Tp = identity map and Q = ((x;, yp) € (-1, D™xR™L:1 < i< k and x; # x;fori = j},

if To = Smo or To = Smo° ﬁo.
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Proof. The result follows from the definition of '1'51 and the fact that

F() = O & F(x) = y with x = To(D) and y = S, (O). Y

It follows from part (a) of the proposition that it suffices to solve the IP. The
proposition also shows how to handle the variations in the use of the first
layer.  Consequently, for the remainder of the paper it will be assumed,
without loss of generality, that the FLNN has transfer function F: R™°— R™L
and the FLNN will be referred to as "the net."

Remark 2.2. One reason for requiring S to be injective is for
Proposition 2.1 to hold. This increases the generality of the results that follow
by allowing several possible forms for T, (see Remark 2.1) at the expense of
restricting the class of permissible activation functions.  Another alternative
is to assume that the transfer function of the FLNN is given by F (which is the
case for the remainder of the paper) and remove the restriction on S of being
injective. If this is the case, then the class of permissible activation functions
may include sigmoids that saturate, in which case it will be assumed that the
range of S is the closed interval [-1, 1]. To avoid confusion, we will indicate
when a result or definition also holds for noninjective activation functions.
Thus, S is assumed to be injective throughout, unless otherwise stated.

In order to facilitate the statements of some results, we make the

following:

Definition 2.1.

(a) We shall say that F interpolates through Q if Q is as in Equation
2.4 and Equation 2.5 holds.

(b) If IP has a solution, we shall say that Q is realizable by the net.
(c) The largest integer k with the property that every set of points Q as
in Equation 2.4 is realizable by a net with architecture m will be
called the interpolation capacity of the net and will be denoted

by IC(m).

* The symbol # indicates the end of a proof.
7
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A related problem is that of characterizing IC(m) for all m € NI+l (Here,

NL*1 denotes the set of L + 1 tuples of positive integers.)

By a simple dimensionality argument, it was shown (Reference 2) that for
any continuous activation function S: R— [-1, 1] and for all m e NM*! the

interpolation capacity IC(m) is bounded above by C(m), where

C(i) = _1_.2 mym; ;+ 1)  (me N, (2.6)
my 52

Note that the augmented matrices [W;iB;] are members of R™>(Mia+1)
i=1,2, .., L Thus, C(m) is simply the number of degrees of freedom (that is,
the number of parameters that need to be specified in order to define F

uniquely) divided by the number of outputs.

As a corollary to the next proposition, one can obtain a sharper upper
bound for IC(m) for all m € N*! with mp >my | + 1.

Proposition 2.2. If Q is realizable, then at most m; ; + 1 of the vectors
y;€ R™L (1 <i< k) can be linearly independent.

We need the following notation in the proof of this proposition: letFy =T
and F, = T,°F, ; for2<n< L.

Proof. Since Q is realizable, there exist W; and B; (1 £ i< L) such that

a . Fb—l(xi) .
yi = F(Xi) = (BL°WL°FL_1)(Xi) = WL FL-l(xi) + BL= [WL :BL] "'i"' (1 1% k) (27)
. FL-l(xl) m, ,+1 . . .
Since the set il R717:1 i<k contains at most m_; + 1 linearly

independent vectors, Equation 2.7 implies that at most mj _; + 1 of the vectors

y; (1 i< k) can be linearly independent. V///4
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Corollary 2.1. Ifm; >mp { + 1,k >my_; + 1, and the set {y;e R™: 1<i<k}
contains more than mj _; + 1 linearly independent vectors, then the set {(x;, y;)
e RMoxR™.:1 < i < k} is not realizable by a net with architecture m = (my,m,,..,m)

for any choice of vector x;€ R™0 (1 <i< k).
Corollary 2.2. Ifm =(my,my,..,m)with m; >m; ;+ 1, thenICm) <m;_;+1

Remark 2.3. Proposition 2.2 and Corollaries 2.1 and 2.2 hold for any
activation function S if the net has transfer function F. Corollary I Y also

holds for a net with transfer function F if S is invertible.

The following example shows that there are architectures m for which
IC(m) < C(m).

Example 2.1. fL=2,my=m;+1,my=m;+2, and m; 2 1,then C(m)=2m,+1.
Since my >m; + 1, by Corollary 2.2 we have IC(m) < m; + 1, which is strictly less
than C(m).

3. THE LAST LAYER OF WEIGHTS: A LOWER BOUND FOR IC(m)

In this section, we present a characterization of the last layer of weights
[Wy:Br] of a net whose transfer function F interpolates through a set of points

Q = {(x;, ;) : 1 i< k}. This charzcterization involves the inverse of the matrix
X 4(p") defined below. Conditions under which X, (p') is invertible are explored.
We find that X,(p') is invertible under very mild conditions, in which case one

obtains the following lower bound for IC(m):

IC(m)2my _; +1, for m = (my, my, ..., mp). (3.1)

Let a = (mg, my, .., m.) € N'*1, P(m) = lJIRm‘x(m“”). and P(m) = H

j=1 i=1
R™*(Mit* D [f 2 net has architecture m, then the collection of all transfer

functions associated with the net for every possible set of weights is clearly
parametrized by P(m). For each point p = ({W;:iB;], [W5iBs), ... [WLBL)D) € P(m),

9




NWC TP 7094

let F, denote the transfer function of the net with weights p. Similarly, for
each p'= ((W; ], [WyiB,l, ... (WL 1iB1]) € P(m), let

Fp = (SmL_1°P’L-1°WL—1) o...o(Smloﬁlowl)_
n
If II: P(m) - P'(m) denotes the map ([W; B, ... (WLBL]) = ([W;Bg] ..
[wL-lEBL-I])’ then
Fp= (BLoWLan(p)). for every p = ((W,iB;], ... [WLBL) € P(m). (3.2)

Let Q = ((x;, y;): 1 <is< k} be a set of interpolation points, Q, = {(xui, yai):
1<i<mn), where a = (&g, 0z, ..., Oy) is 2 multi-index with o; € (1, 2, ..., k} for

1<i<mn. Foreachp € P(m) and multi-index o, define

Xp) = [Fp- (xal)EFp- (x"z)i EFP-(xa“)} c R(mlr1+l)><n (3.3)
l ’ *

S R

and
Yo= o {Ya, ™ Eya"] e R™ ™7,

Proposition 3.1. Letn =mp_; + 1,k21n, and a = (a;, az, ., ay) with
a;e (1,2, .., k}forlsi<n.

(a) If p e P(m), X,(IT1(p)) is invertible, and Fp interpolates through Q,,
then p = (TI1(p), [WL iBL]) with

(W Bl = Y, X ()] (3.4)

(b) Conversely, if p' € P(m), X,(p') is invertible, Equation 3.4 holds, and
p = (p. [WLBL]), then F, interpolates through Q,.

Proof. It follows from Equation 2.7 that Fp interpolates through Q, if,
and only if, p = (TII(p), [WLiBL]) and

Y = [Wp iBLIXo(TI(P)). (3.5)

10
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Thus, if X (II(p)) is invertible, then Equation 3.5 implies Equation 3.4. This
proves (a). Conversely, if Equation 3.4 holds, then [W; iB;] satisfies Equation 3.5
which proves (b). V//Z4

Remark 3.1. Ifu <n =my ; +1, a = (a;, @3, .., a,) and the columns of
X o(p") are linearly independent, then there exists a matrix U € R™*™MK) gych
that the augmented matrix [X, (p')iU] € R™7 is invertible. If the inverse of

v

[Xo(p)iU] is partitioned as [-\;1-], with Vi e R¥*" and V, € R(MFXN yhep
2

V1Xo(p) = I,, where I, is the pxp identity matrix. Therefore, if [Wy B ]1=Y,V,,

then [W) B ] satisfies Equation 3.5 so that with p = (p', Y, V) Fp interpolates

through Q,.

For each multi-index a = (a;, a3, ..., ay), with n =mp_; + 1, let E, denote the
set of all points p' in P'(m) such that the matrix Xo(p) is inverntible. We may
define a map I'y: E; » P(m) by ' (p') = (p', Ya[Xa(p')]°l). Part (b) of Proposition
3.1 says that all the transfer functions Fr,(p') (p' € Ey) interpolate through Q...

that is, they satisfy

Frpn(®) =y for all (x, y) € Q4. (3.6)

Consequently, if E, is not empty, then there exists p € P(m) such that Fp
interpolates through Q..

For a given multi-index o, whether or not the set E, is empty is difficult

to answer in general, since it depends on the type of activation function in the
net. The next proposition shows that under certain conditions the set E, is

"large” (see Remark 3.2). In order to state the proposition, we must introduce
the map A,: P(m) —» R defined by A,(p) = det X,(p), where Xq.(p) is given by
Equation 3.3, =my_; + 1 and det X (p) denotes the determinant of X, (p). Let

VAq: P() » R denote the gradient of A,, where §=E m(m, , + 1. A point p

i=1

11
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in P'(m) has & coordinates and will be denoted by p = (P1s P2y oo pg); that is, we
will identify P'(m) with R

If E; denotes the complement of E, in P'(m), then E§=A;I(O). Hence, E; is

closed. Let Ey be the set of points p such that VA ,(p) = 0.

Proposition 3.3. If the activation function S: R - (-1, 1) is
continuously differentiable, then for each multi-index o« with n components

the set E';-Em has Lebesgue measure zero.

The proof of this proposition is based on the following.

’

Lemma 3.1. If S is continuously differentiable, then for each p € Efz - Ey

there exists an open set O in P'(m) such that p € O and m(EZnO) = 0, where m

denotes the Lebesgue measure on P'(m).

0 0 0 dA
Proof: 1fp° = (Py, Py, ..., Py) € E; and VA,(p°) # 0, then 'r;'(po) # 0 for
some j € {1, 2, .., &). To simplify the notation, we may assume that j = 1. Write

0 . 0 0 . . . . .
p0 = (P qo) with q0 = (pg, P3 o pg). Since the activation function S is
continuously differentiable, so is A,; therefore, by the Implicit Function

Theorem (Reference 3), there exist open sets VcR! and UcR%! with (p?, ©) e

VxU and a unique map @:U—-V such that (p(qo) = p(l). Ag(P(q). gy =0forallqe U,
and A,(py, @) # 0if (p;, @) € VxU and p; # ¢(q). Thus,

E; N [VxU] = {(9(q).9) : g € U). (3.7)

Next we will show that m(E;n [VxU]) = 0.

12
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Let m; denote the Lebesgue measure on R'(I =1, 2,..). Since E: is closed,

QEE; N [VxU] is a Borel set in RS, Therefore, by the definition of the product

measure myXmg_; (Reference 4) and Theorem 7.11 of Reference 4, we have

mg(Q = (mpxmg )XQ = [ my({p1:(e1. @ € Q) dmy1(q).

This together with Equation 3.7 gives

my(Q = [ m (0@ dmg 1@ = [ 0 ame 4@ = 0.

By letting O = VxU, the proof is finished. /4

Proof of Proposition 3.3. By Lemma 3.1, for every p € E: - E,,l , there
exists an open set OP such that p € OP and m(E; N Op) = 0. Since every Euclidean

space is second countable (Reference 5), E: - Ea can be covered by a countable

collection of the sets Op. Finally, since Lebesgue measure is countably additive,

we conclude that m(E: - Ea )=0. V///4

Remark 3.2. If also m(E;h E;) = 0, then it follows from Proposition 3.3

that all the matrices X,(p) (p € P'(m)) are invertible except for those p in the

set E; of measure zero.

As a corollary to Lemma 3.1, we can obtain a weaker condition for the
existence of an invertible X, (p).

Corollary 3.1. I1f VA, is not identically zero, then there exists p € P'(m)
such that X,(p) is invertible; that is E, = ¢.

13
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Proof. If VA, is not identically zero, there is a point p € P'(m) such that
VA, (p) # 0. Either A (p) = 0 or not. If Ay(p) # O, then X, (p) is invertible. If

Ag(p) = 0, thenp € Efl - Eu and by Lemma 3.1 there is an open set O in P'(m) such
that p € O and m(E:l M O) = 0. The set O must have positive measure, since it is

open and nonempty. Consequently, O N E, is not empty (otherwise, OCEca—a

contradiction) and any of its members satisfy the conclusion of the corollary.
V///4

Corollary 3.2. If VA is not identically zero, then there exists p € P'(m)
such that Fr,,(p) interpolates through Q..

Proof. This follows from Corollary 3.1 and Equation 3.6. V4

4. NETS WITH TWO LAYERS OF WEIGHTS

In this section, we will show how to define the weights of a net with two

layers of weights so that the transfer function of the net interpolates through

‘ ] [}
a realizable set Q = {(x;, y;) : 1 £ i< k} when the matrix Xs[xli T, xk} has
1,17 11

rank k, where k < mgy + 1.
Assume that L = 2, so that m = (my, m;, m,) and assume m, S m,.

Choose a maximal subset of {y;:1< i< k} consisting of linearly
independent vectors and let n be its cardinality; n £ m;. Without loss of
generality, we may assume that y;, yp, ... ¥, are linearly independent (the

vectors y; may be relabeled if necessary). There exist constants a; € R such

that

n

=)

Set a = max(lagl: 1<sjsn,n+1sisk].
14
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If the matrix X defined above has rank k, then there exists a matrix
V e R¥*¥0 sych that VX = Iy, where Iy is the kxk identity matrix (see the
argument in Remark 3.1). If k = mg + 1, then V = X1, the inverse of X. Let e;"‘

denote the it? column of the m;xm identity matrix (1 <i< m,;). Fix a number
e e (0, 1) such that ea < 1 and consider the following vectors z; € R™,1<i<k.

z;=Sp (eeT!) =S €], for 1si<q (4.2a)

zi=S,‘nll[2£a ¢ 1] Zs (eay) e, form+1sisk. (4.2b)

=1
Define an m;xk matrix Z by Z ={z; iz, ... { z;], and set

[W,iB;1=2ZV, (4.3)
Wp=Cly1 iyp fe iy $05..10)€ R™™,  and B, = 0. (4.4)

Proposition 4.1. Assume X has rank k. Using the notation of Section 3
with L = 2, if p = ((W;iB;], [W,iB,]) and Equations 4.3 and 4.4 hold, then Fp

interpolates through Q.

X,
Proof: Since VX = I, it follows that V[ l'] =eli(. where e:‘ is the ith column

of the kxk identity matrix, 1 <i< k. Thus, by Equation 4.3,
. X, X, k .
[W;:B4] 1‘ =ZV ll =Ze;=z for 1 <i< k.

Consequently, by Equations 4.2a and 4.4, for 1 <i<n, we have

Sml(Zi)

1 ] = W2(£ C'inl) =Y;

Fp(x) = [W,iB,) [

Now, by Equations 4.1, 4.2b, and 4.4, for n + 1 < i< k, we have

15
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n n
. Sm,(zp)
Fp(x;) = [W2B,] [ mi l} =W2[2 €ajj °;'nl ] =Z a;yj = Yi

=1 )=1

Hence, F

p interpolates through Q. V///4

5. COMPARISONS AND APPLICATIONS

Two different techniques for determining the weights of a FLNN so that
its transfer function interpolates through a given set of points Q have been
presented. If the cardinality of Q is k, then both techniques require a certain

matrix to have rank k in order to interpolate through all of Q.

The technique presented in Section 3 (Technique 1) requires the
columns of Xi(p') to be linearly independent (k = (1, 2, ..., k); see Remark 3.1).
Since the columns of Xi(p') are (mp_; + 1)-dimensional, k can be at the most
mp.y + 1. Thus, using Technique 1, the net can interpolate through an

arbitrary set Q as in Equation 2.4 with at most my_; + 1 points, provided VAg is

not identically zero (see Corollary 3.1).

The technique presented in Section 4 (Technique 2) was developed for
nets with m = (mg, m;, m;) and my < m;. It requires the columns of X to be

linearly independent. Since the columns of X are (mg + 1)-dimensional, k can
be at the most my + 1. Thus, using Technique 2, the net can interpolate
through a set Q as in Equation 2.4 with at most my + 1 points, provided the

matrix X has full rank.

Aside from the difference in the number of points through which the net
can interpolate using the two techniques, there is another difference.
Technique 2 will specify all the weights in the net, while Technique 1 only
specifies the last layer of weights in terms of the first L - 1 layers of weights.
When the activation function S is such that the gradient of A vanishes only

on a set of measure zero, then as Remark 3.2 suggests, one may choose the first

16
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L - 1 layers of weights at random and, loosely speaking, with probability 1 a
nonsingular matrix X (p') is obtained when k = m; , + 1. More precisely, Xi(p')
will be nonsingular for all p' except for some points p' in a set of Lebesgue
measure zero. It can be shown that any activation function S, which becomes

an entire function (Reference 6) when extended to the complex plane, has the
property that VA is zero only on a set of measure zero unless it vanishes

identically, in which case Af itself is identically zero. An example of such an S

is S(t) = 2f(t) - 1 (t € R), where

t
f(1) = ',715 Lc-"z dx, (e R).

In a similar vein, when k = my + 1, the matrix X will be nonsingular with

probability 1. That is, X is of the form [-1- ----- ] with A € R™¥ and the set of

matrices A in R™¥ for which X is singular has Lebesgue measure zero.

For nets with only one hidden layer (L = 2) and m; < m;, one has a choice

of interpolation techniques. If the goal is to interpolate through as many
points as possible, clearly one uses the technique with the largest permissible
k. However, usually one can select m;; thus, by choosing m; large enough, one
can interpolate through any number of points using Technique 1. On the
other hand, in some applications the input layer may be large enough already;

in which case, Technique 2 may be adequate with a more conservative value
for m,.

Perhaps these techniques for determining the weight will prove to be
most useful in the initialization of weights. Some of the most popular learmning
algorithms in use today (e.g., back propagation (Reference 1)) are based on
iterative steepest descent minimization procedures, where, at each step, the
approximate solution is corrected in the direction of steepest descent in order
to reduce the error. To begin an initial set of weights is required, which is
usually chosen at random. The speed of convergence depends very heavily on
the quality of the initial weights; that is, on how close the initial weights are to

17
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the correct set of weights. To improve the quality of the initial weights, one
could select my + 1 representative input-output pairs (prototypes) such that

the matrix X is invertible and calculate an initial set of weights using
Technique 2.  Alternatively, one could select m;_; + 1 representative input-

output pairs, choose the first L - 1 layer of weights at random, and calculate

the last set of weights using Technique 1.

6. JACOBIAN MATRIX OF THE TRANSFER FUNCTION

Since a small input change to the net produces an output change whose
magnitude is approximately bounded by the product of the operator norm of
the Jacobian matrix (total derivative) of the transfer function and the
magnitude of the input change, we suggest that the sensitivity of the transfer
function F to noisy input patterns at the interpolation points can be measured
by the norm of the Jacobian matrix of F at the interpolation points. Thus, in
this section, we derive an expression for the Jacobian matrix of F and compute

an upper bound for its norm.

Let Wi’j (1<is m,1<j< m ;) denote the entries of the weight matrix

W,(1 <l< L), and let B]’ (1 £j< m;) denote the components of the vector
B;(1sl<L).

For each z € R™*! with components z; (1 i< my,), let D)(z) be an m;xm,;

diagonal matrix defined by

18




NWC TP 7094

(iw z. +ﬁ{]

=1

/'m,
' 1
DI(Z)E S [FZ Wz +Bz]

m
s Z Wh 2+ B

j=1 J

9

where S’ denotes the derivative of S. The expression above defines a map
D; R™H 5 R™X™M (1 <1< L). Recall that F = (BLeW)eT s -+ o T, and F, = T,°F, ;

for 1< n< L with Fy the identity map on R™°. Let T}(z) denote the Jacobian

matrix of T;at ze R™"! and [T,'(z)]ij its ijth entry (1 €i<m, 1<j<m;q, 1<1l< L)

Use a similar notation for the Jacobian matrices of F and F, (1 £ n< L).

Proposition 6.1. Assume L 2 2,

T{z) = D)W, (ze R™1,1<1<L). (6.1)
F(x) =W, rI [Dy(F;1(x)W,] (x e R™), (6.2)
i=L-1

Proof: If the components of z € R™"! are z; (1 <i< m,; ), then

reo= 3w | o 3w et oF et

Consequently,

' 3 o & wi l | & Ut
[T’(z)]”='5?,-s X’win z, + B, =S zw‘“ z,+B; (W

lsjsm,_l.lsiSm,,lsl< L.

This gives Equation 6.1.
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Applying the chain rule to the composition T,°F, ; and using Equation 6.1,

one obtains forn =1, 2, ..., L -1

F(x) = T(Fp.1(x))E,_;(x) = D(Fy 1(x))W, F_(x) (x € RMo),

Hence, by induction we have

, 1
F ) = [] [DAFL1(x)W)] (x € R™), (6.3)
i=1-1

Finally, since F(x) = W F_1(x) + B, F'(x) =W F'L_l(x), thus Equation 6.3 implies

Equation 6.2. V//4

It should be noted that the product indicated in Equations 6.2 and 6.3 is a
product of matrices that may not commute; thus, it is important to understand

the correct order of multiplication; namely,

(DL (FL.2(x))Wy 1] - [DL.o(FL.3(x))WL 3] --- [Dy(x)Wy].

The sensitivity of the transfer function F at a point x will be measured
here by the induced (p, q)-norm of the linear transformation F'(x) for
particular values of p and q. The induced (p, q)-norms are defined below.
Other operator norms could be used; however, the induced (p, q)-norms lead to
upper bounds for the norm of F'(x) that are computable for certain values of p
and q and can be interpreted qualitatively.

The induced (p, q) matrix norms are defined next. A list of properties of
(p, q@)-norms that will be needed is also included. To the author's knowledge.
some of the properties of (p, q)-norms needed here are not available in the
open literature. For completeness, this material is developed in Proposition
6.2.
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n l/p
For 1 < p < e, the p-norm of a vector x € R" is defined by lIxll; = Z|xi|p .
i=1

where x; (1 £i1< n) are the components of x with respect to the standard basis
on R" consisting of the columns of the nxn identity matrix I,. If p=oe, then

lIx#l, =max Ix;l. If A: R® > R™is a linear transformation, then the induced

1<isn
|Ax |
(p, q)-norm of A is defined by ”A"pq =sup -—-——P-I T where 1 Sp<e and 1 £ q< e,
x20 X q

Recall that we are using the same symbol to represent a linear transformation

and the matrix associated with it with respect to the standard basis on its
domain and range. If A is an mxn matrix, let A;; denote its ijth entry (1 €i< m,

1<j)< n)

Proposition 6.2. Let A:R" > R™, B: R™ - R/, and C: R’ 5 R™.

BAll,, < lIBIL, lAll, 1Sp,qrse. (6.4a)

lall, < lfaicill, 1Sp q<ee. (6.4b)

lAll,;  =max Ayl (6.5)
ij

If A is a square diagonal matrix, A = diag[A;;], then

L 1/p
“A“P'°= [21 IAiilp} 1< P < oo, (6.6)
=
m 1/p
Al =max [2 IAijl"} 1Sp<ee, (6.7)
1sjsn | i=1

n
Al =max [2 |Aij|}, (6.8)
1

1sism | j=
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1/p*
||A|L,p-max [z |Au| :l 1<p<eo, (6.9)
1sism
where p* is the conjugate exponent to p; that is, p* satisfies 1.1 - =1,
P P

Proof: The definition of |IBIl,, implies lIByll, < {IBIl, llyll, for all y ¢ R™.

|BAX| IBl_ | Ax|
Therefore, |IBAll , = su —hls sup—--l’-—— =Bl IlAll,,. This gives
Pa xac? xh X320 Ix u pr r

Inequality 6.4a.

There exists x € R" such that ||x||,‘1 =1 and ||A||pq = ||Ax||p. Consider the vector

y= [(’;] e R™. Clearly, lly"q = "X"q =1and |I[AEC]y”p = ||Ax||p = ||A||pq. Consequently,

Inequality 6.4b holds.

If llxll; = 1, then laxll, = max |2 Aj; x; |l < max Z |Au| |x I< max |AU| 2 |x | =

1sism  j=1 1gism j=1 j=1
max |A | Hence, the left-hand side (LHS) of Equation 6.5 cannot exceed the
ij
right-hand side (RHS). If lA l-max lA; | and x is the jo'" column of I, then
ij
n
lixll, = 1 and llAx]l, = max lz Ajj le =max |A | = lAiojol- This establishes Equation
lsism  jsl 1<ism

6.5.

If A is a diagonal (square) matrix and lIxll_ = 1, then

lAxll, = [Z AP J " [Zl, |Aﬁ|v|xi|vJ”p < [Z |Aiilp}1/

i=1 i=1

22




NWC TP 709+

Consequently, the LHS of Equation 6.6 cannot exceed the RHS. Moreover, if

i=1

n
x=(1,1,.. 11T e R", then lixll_ = 1 and llaxll, = {Z IAHIP} . This establishes

Equation 6.6.

Let 1 € p<os,llxll; = 1, and consider the m-vectors Vv; = X; a;, where a; denotes

the jth column of A (1 £ j< n). Since the vector norm || "p satisfies the triangle

n
inequality, it follows that ||z vj"p_ ZHV || Consequentily,
J=1

i=1
n

quu,,={Z|Z AP } - u; vjnpsg,uvjn,,:Z {Z lagx }

i=1  j=1 i=1 Li=l

=§‘,lxji{§‘,mﬁlv} le [,:;;,S:;.AU|J
—max[ZMUI }

1sjsnl| i=1

This shows that the LHS of Equation 6.7 cannot exceed the RHS. Now, if the
maximum on the RHS of Equation 6.7 occurs at j = jg, let x be the jo'" column of

the identity matrix. Then ||x||1 =1 and ||Ax|| = 2 IA,J IP=max Z |A,J| Hence,
1sjsn i=1

Equation 6.7 holds.

Equation 6.8 is proved in Reference 7.

Let 1 < p<eo, llxll, = 1 and let p* be the conjugate exponent to p. Note that

p(p* - 1) = p*. Then,

1/p°
laxll_ =max le,, ,lmaleA,,l Ixj < lill,;max [Zmuw} .

1sism  je=1 P sism
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where the second inequality follows from Holder's inequality (Reference 4).

Thus, the LHS of Equation 6.9 cannot exceed the RHS. Now, if the maximum on
the RHS of Equation 6.9 occurs at i = i, let x; = a A;; |Ai°j|p 2 if Ajj#0and x;=0

n _llp
if Ajj=0 (1<j<n), where a = L_Zl lAiojlp ] . Since p(p* - 1) = p*, the choice

n n n 1/p*
of a gives Ilxll, = 1 and AN, 2 1), Apyx; | = a D AP = [ZlAwlv] . This
j=1 j=1 j=1

establishes Equation 6.9. V//4

Remark 6.1. Ifo__. (A) and o

(A) denote, respectively, the largest and

the smallest singular values of the matrix A, then

llall,, =o__(A) (6.10a)
Halll,, = 1/, (A) if A is invertible. (6.10b)

See References 7 and 8.

Applying Inequality 6.4a to Equation 6.2, one obtains the following upper
bound for ”F'(x)”pq (1sp,qses, (L>2)

IF (x)llpg < WLl D Froeenlle w4l 1"'[ UIDF, el W I 0. (6.11)
l=1.-2

Note that all of the norms appearing in Inequality 6.11 can be computed using
the formulas in Proposition 6.2 whenever (p, q) = (e, q), 1 £ q< e, or (p, qQ =
(p, 1), 1 < p<e . They also can be computed when (p, q) = (2, 2). In particular,

if W= max IWi’jl (1<€l< L) and [F,_l(x)]j denotes the jt* component of F;.1(x)
ij
(1 <£jsmy,,1</< L-1), then when (p, q) = (-, 1), one obtains

L ) L-1| M my_;
IF o)l s TT W -[] 2 s[z WHF ()] + m’] : (6.12)
I=1 J=1

{=] |i=1
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Inequality 6.12 is interesting, since it shows that, qualitatively speaking, the
sensitivity at a point (x, F(x)) will be small if the weights are small. In
particular, if the derivative of the activation function S is bounded, say
S'(t) <1 forallt e R, then

liE' (o)l < n“-f’[ w! H m, (xe R™).
I=1

I=1

Moreover, if S'(1) > 0 ast — * o, then Inequality 6.12 suggests that the
sensitivity (i.e., the norm of the Jacobian matrix) can be made small at the

points of interpolation by choosing IB“ large (1 i< m;, 1<I<sL-1L 22).
Whether one can simultaneously choose the biases |B{| large, keep the

weights small, and interpolate through a set of points Q is a topic for further

research.

As an example of the applications of the theory developed in this section,
we can investigate the sensitivity of the transfer functions that are obtained
using the Interpolation Techniques 1 and 2 that were presented in earlier

sections. It will be assumed that L = 2.

When L = 2, Proposition 6.1 gives
F(x) = W, Dy(x) W, (x € R™)
from which it follows (by Inequality 6.4a),

IF (x)llpq < Wl Dy (o)l W Il (6.13)

If t = w, we can use Equation 6.6 to compute ||D1(x)||,,, for 1 < r<e. Note that the

elements of the diagonal matrix Djy(x) coincide with the components of the

vector S,'“,([WIEBI][’I‘]). where Sp, is the map defined by Sm (2) = [S'(z}), S'(z3),
eny S'(zml)]T for every z = [z;, 25, ..., Zm,]T e R™! Therefore, it follows from

Equation 6.6 that the (r, «)-norm of the matrix D;(x) coincides with the r-norm

of the vector s;,,l([w,sal][’l‘]).
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D, x)ll,.. = Ils;,,,([wliﬁl][’l‘])ll, (x € R™), (6.14)

Now, consider Technique 2 for interpolating through Q = {(x;, y;) €
R™xR™2: 1 < i<k}, with k =mg + 1 and my < m;. Assume X is invertible. Recall

that
S e for 1 <isn
i s (eape forn+1<is<k.
j=1
Hence, Equation 6.14 gives
S'(S1(e)) for1 si<nm
D, (xpll,.. = | - U (6.15)
i [S(S (Caij))]r forn+1<i<k.
=1

Next, if the components of the vectors y; are denoted by yj;, 1< j< my,
1<isn,and Y=maxly;.l then by Equations 4.4 and 6.5,
ij
w,ll._, = -1- Y. (6.16)
From Inequalities 6.4 and Equation 4.3 one obtains

lw,ll, sl zx U, < Tz Iy X, (6.17)

By Equations 6.9 and 4.2, and the definition of Z,

1/2
||Z|L,2=max[[8'1(s)]2 + i[s“(eaﬁ)f} : (6.18)

1sign jen+1
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Finally, since ||X'1||22= 1 (Reference 8), by combining Equations 6.15
Omin

through 6.18 and Inequality 6.17 with Inequality 6.13 with p = o, q=2,1r=1, and
t = o, one obtains the following upper bound for ||F'(xi)||_,2,

12
IF'(xpll.z < (S Y] - .l(x)- max {[S'l(e)]% ‘il (S (ea;)] 2] ID,x)ll..  (6.19)
min 44| b ol 18

Under certain conditions on the activation function S, one can obtain a

simpler but more conservative upper bound by considering a=max Iaij| and a =
ij

minlaijl. Note that if S is strictly increasing and symmetric about the origin,
ij
then |S'1(eaij)| < S'l(ei) for all i, j. Moreover, if we assume that S' is strictly

decreasing on (0, «), then S'(S7!(ea;))) < S'(S7!(ea) for all i, j. Under this

condition on S and S, it follows that

172
. - 1 ) 1, -
I pllez < (5 91 = { (s> + (e - ) [ ‘(ea)]’} Q.
S'(S 1)) for1<isn
where Q =
n S'(S"Xea)) forn+1<isk

If Technique 1 is used to interpolate through a set Q with k = m; + 1

points, then [WiB,] = Y, X ([WiB;]), where the multi-index & = (1, 2, ... k).
Note that [W,iB,] is a function of [W;iB;]. Setting p=o,r=2,t=w,andq =1 in
Inequality 6.13 and applying Inequalities 6.4 to [W,iB,], one obtains

IE ol s MY Jlog G w38,y Dy ol w11,

This inequality can be written more explicitly as
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m 1/2
IF ol <Ny Il 1 {2[5'(§w-‘- X: + -)]2} ‘Wl (6.20)
Cer= Waler Wi | &1 =i Py

As we pointed out in Section S, application of Technique 1 requires a
selection of the first layer of weights [W,iB;] before computing [W,:B,]. We
gave no guideline on how to select [W;iB;]. Here we suggest that after an

initial random choice of {W,B;], one proceeds to select new choices for [W,:B]

using iterative minimization procedures to reduce the RHS of Inequality 6.20 at
the points of interpolation x;(1 <i< k), thereby reducing the sensitivity of the
transfer function F with each iteration. The details of such a sensitivity-

minimization algorithm are still under investigation.

7. SUMMARY

Finding the weight of a feedforward layered neural network so that the
resulting transfer function maps a set of inputs to a desired set of outputs was
described as an interpolation problem. It was shown how to define the weights
so that the net interpolates through a set of my + 1 points, where mg is the

number of inputs and the net has one hidden layer.

It was also shown how to select the last layer of weights of a
multilayered net so that the net interpolates through a set of my_; + 1 points,

where my ; is the number of neurons in the layer preceding the output layer.
These two approaches (Techniques 1 and 2) provide a partial solution to the
interpolation problem posed in Section 2. Moreover, both of the numbers m; +
1 and m; + 1 serve as lower bounds for the interpolation capacity of nets with
one hidden layer, and the number mp_; + 1 is a lower bound for the

interpolation capacity of nets with L layers of weights when L > 2.

The Jacobian matrix of the transfer function was computed. Its operator
norm was used as a sensitivity measure of the transfer function to variations
in its input. The induced (p, q) matrix norms were introduced together with
some of their properties in order to obtain computable upper bounds on the
norm of the Jacobian matrix at the points of interpolation. The results suggest
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that small weights are required for low sensitivity. It was also suggested that
the freedom that exists in the selection of the first L - 1 layers of weights,
when using Technique 1 for interpolation, can be exploited in order to
minimize the sensitivity of the transfer function at the points of interpolation.
The details of such a minimization algorithm is a topic for further research.

Another problem that is still under investigation is whether the first

L - 1 layers of weights can be selected (as well as the last layer of weights) so
that the net interpolates through more than m;_; + 1 points. For example,

when L = 2 and my > m,, the net can realize more than m; + 1 points; namely,

m, + 1 using Technique 2.
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