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1. INTRODUCTION

The objective of this work was to develop adaptive finite element methods for

nonlinear structural dynamics. Adaptive methods are particularly promising for nonlinear

problems involving failure, because in failure and near-failure states of structures, three

phenomena are predominant;

1. buckling

2. shear banding

3. fracture.

All of the above phenomena are associated with localization of the deformation, by

which is meant the development of large strains in small regions of the structure, which is

accompanied by large gradients in the strain. For example, while strains are rather

distributed in elastic buckling, once plasticity develops a large part of the deformation of a

beam or shell usually occurs over narrow zone called a hingeline. Shear banding is a result

of strain softening material behavior and is also associated with very narrow I &nds of

highly strained material. In specimens ranging in size from 0.11 to 1.0 meter, shear band

widths are of the order of 10 to 100 microns. In fracture, high strain gradients occur at the

crack tip, and in addition the displacement field is discontinuous behind the crack tip.

Because of the localization of deformation in these problems, it is clear that uniform

meshes will be quite ineffective. Although some analysts have sufficient intuition to guess

where the localization will occur, generally it cannot be known a priori.

For these reasons, it seems that adaptive methods are essential in the solution of

nonlinear problems. However, perusal of the reviews of the field of adaptive finite

elements by Noor and Babuska (Ref. 1) and Oden and Demkowicz(Ref. 2) shows that the

majority of the work has been devoted to linear problems.

In this work, adaptive methods are developed for the nonlinear dynamics of shells

with both geometric and material nonlinearities. The localization phenomenon which is of
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primary interest in this class of problems is hingeline formation, but aspects of this work

should be applicable to other localization phenomena in structural dynamics. In order to

simplify data management, an explicit time integration algorithm was chosen. By focusing

the research on explicit time integration, the research should be relevart to a large class of

widely used programs such as DYNA3D.

There are three types of mesh adaptivity:

1. r-adaptive;

2. h-adaptive;

3. p-adaptive.

In the r-method, nodes are relocated in order to place most of the resolution in the

areas where they are needed. This corresponds in fact to Arbitrary Lagrangian-Eulerian

methods; these were studied in this research and reported in Ref. 3. However, r-methods

were found to be unsatisfactory for treating localization phenomena for 3 reasons:

1. in moving the nodes to areas of high strain gradients, the elements become

severely distorted, which compromises their effectiveness;

2. it is difficult to obtain sufficient resolution by simply moving nodes;

3. in shell problems, it is difficult to maintain fidelity in the modeling of the

shape of the shell as the nodes move.

In p-methods, resolution is increased where it is needed by increasing the order (or

power) of the interpolants. This method was deemed inappropriate for explicit dynamics

methods for two reasons:

1. it is difficult to construct an accurate diagonal mass for higher order elements

and explicit methods rely for their efficiency on the avoidance of triangulating

a nondiagonal mass matrix;

2. higher order elements results in very small critical time steps and rather noisy

solutions result when used with explicit integration.

-2-



In an h-method, elements are subdivided where greater resolution is needed. We

will call this process fission. In addition, in dynamic problems it is possible to conserve

resources by 'using those elements which are no longer actively deforming. An advantage

of the method is that it is possible to allocate a large number of unknowns in a small

subdomain without mesh distortion or introducing higher order elements. The h-method

has the disadvantage that the critical time step of the mesh decreases dramatically after

several levels of fission, but this can be overcome by using different time steps in different

parts of mesh.

Based on these factors, we concentrated on the h-method. This method briefly

summarized in Section 2. Section 3 gives some examples obtained by these methods and

Section 4 summarizes the research and discusses future directions.

2. SUMMARY OF METHODOLOGY

The methodology is described in Refs. 3 and 4. In this Section, some of the issues

are briefly reviewed. An explicit finite element program for the nonlinear transient analysis

of shells was used as the framework for the research. A one-point quadrature shell element

which Hallquist in DYNA3D manuals calls the Belytschko-Tsay element(Ref. 5) was used.

We encountered some difficulties with this element so they were rectified as described in

Appendix A. As indicated in Fig. 1, the h-method consists of two processes:

1. fission of a quadrilateral element into 4 elements when more refinement is

needed;

2. fusion of four quadrilaterals into a single quadrilateral when activity has

ceased in a subdomain.

The fission-fusion processes are triggered by error criteria. In this work we have

studied two error criteria:

1. the error in the flexural dissipation rate due to errors in the approximation of

the transverse displacement;
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2. the error in energy due to one-point quadrature.

It has also been attempted to combine the two methods by using the rates of dissipation

associated with the two types of errors.

The studies have shown that the first error criterion, error in flexural energy

dissipation, as measured by the energy dissipated by the discontinuity in slope between two

elements, is the more effective. Furthermore, it has been difficult to derive error criteria

which are effective for the combined energies.

Another aspect of adaptive methods in transient analysis is that error criteria should

only be applied at selected intervals of the time integration process. If the error criteria and

adaptation is attempted every time step, then the fission-fusion process becomes

oscillatory, i.e. fission in an element or group of elements is rapidly followed by fusion.

This occurs because the fission process reduces the error in a group of elements

dramatically, and if the errors in these elements are now compared to the remainder of

elements, the error tends to fall near the bottom.

One technique which has been successful in eliminating this churning is to consider

the error criteria over groups of elements. In other words, instead of using an error

indicator that pertains to a single element, the error is evaluated over a group of elements

and then normalized by the volume of elements.

A second technique we have found very useful is to limit the adaptation process to

selected time steps. For example, in the problems that have been studied here, limiting the

adaptation process to every 50 time steps increases the efficiency and improves the

conditioning of the solution. The latter occurs because adaptation tends to introduce noise

in the numerical solution. However, when the number of time steps between adaptation is

moderately large, backtracking, where the integration from the previous adaptation is

repeated with the new mesh, is useful.

One aspect of an h-adaptive method that requires considerable work is the data

structure. It is necessary to keep track of the elements from which an element originated,
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and the siblings(elements formed by the same fission). In multilevel adaptivity, this

information must be available for several generations. To accomplish this task, a data

structure similar to that of Devloo, et al.(Ref. 6) was used. However, it was modified so

that it is more easily vectorizable.

It is not clear whether h-adaptive methods will be successful in resolving shear

bands in metallic structures. Shear bands in a specimen of size 10-1 m are often of the

order of 10 microns(10 "5 m). If it is desired to capture any of the structure of the shear

band, then meshes with at least 5 to 10 elements across the band will be needed. This

6entails elements with h = 10- . Even if elements of this size are used only on the band

itself, more than 106 elements would be needed(10 element across the band by 105

elements along the band plus elements for the rest of the mesh). Therefore, some type of

directional p-refinement or methods such as the spectral overlay may be more suitable.

3. NUMERICAL EXAMPLES

In this section, some of the numerical results obtained by the adaptive methods will

be described. Since closed-form solutions are not available for nonlinear transient

problems, two types of comparisons are used for the adaptive solutions:

1. numerical results obtained by finer meshes;

2. experimental results.

The first example is a cylindrical panel which is impulsively loaded over the top by

an explosive sheet in the area indicated in Fig. 2. Deformed mesh plots for the finer

adaptive mesh are shown at various times in Figs 3 and 4. Here the incremental transverse

bending energy is used for the fission-fusion criterion. It can be seen that after 0.0125

msec, the crown settle downward like a plateau and the fissioning process migrates

laterally towards the line where the curvature is maximum. During this time, the crown

moves down in a frozen plateau-like state. After that, the crown develops a convex

curvature when viewed from above, and the elements in the crown are again fission-fusion,
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Figure 2. Impulsively loaded cylindrical panel; initial velocity is applied
over domain D.



0.070 ms

Figure 3. Initial and deformed mesh for the cylindrical panel with multi-

level adaptivity.
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0.467 ms

0.600 ms

Figure 4. Deformed meshed for the cylindrical panel.
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which is a tendency that needs to be fixed: it is probably due to the fact that the incremental

work is quite small in the later stages because most of the deformation has taken place, so

the incremental work is quite uniformly distributed, allowing the fission-fusion process to

be triggered by small oscillations in the solution.

The time histories of the displacement at two points obtained by the h-adaptive

method are compared to the experimental results in Fig. 5 and 6. Experimental results have

been obtained for this shell by Morino, Leech, and Witmer(Ref. 7), who report a maximum

deflection of 1.27 in. at point A. The first fixed and adaptive meshes yield maximum

deflections of 1.17 and 1.24 in., respectively. These results show that even two-level

adaptivity is quite successful.

To illustrate the effectiveness of the adaptive method more clearly, Table 1 gives the

results for the maximum displacements at points A and B for various uniform meshes and

the adaptive meshes. The finest meshes were run on a Connection Machine(CM)

implementation of the program and would not be feasible on a CRAY. It is apparent with

Mesh for half-panel Description Maximum Displacement

(inch) at

n = -6.2 n = -9.42

6x 16 uniform 1.001 0.494

8x16 uniform 1.106 0.526

lOx20 uniform 1.126 0.527

12x24 uniform 1.146 0.531

16x23 uniform 1.194 0.585

512 3 level adaptive 1.234 0.606

64x128 uniform CM 1.264 0.636

64x256 uniform CM 1.261 0.631

128x256 uniform CM 1.264 0.636

Experimental Balmer and Witmer (1964) 1.28 0.68

Table I. Cylindrical Panel Results
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these extremely fine meshes, a converged solution has been obtained. The converge

solution does not agree exactly with the experimental solution, and while the ultimate test of

a computation is agreement with experimental results, in nonlinear problems it is difficult to

distinguish errors arising from deficiencies in the constitutive models, boundary modeling

and loading from errors due to insufficient mesh resolution. In the CM runs, resolution is

apparently no longer an issue, so these results can be considered a benchmark for this

problem. It is interesting to observe how slowly uniform meshes converge to this

benchmark. Even a 12 x 24 mesh(for half of the panel) is more than 10% in error; many

results reported in the structure involve even coarser meshes. On the other hand an

adaptive mesh with the same member of elements is only 4% in error.

The second example is a hollow, cylindrical column which is subjected to a

compressive axial load. This problem is of interest because it exhibits both global and local

buckling, the latter resulting in buckling of the cross section. Numerical results and

experimental results are reported for this problem by Kennedy, Belytschko, and Liu(Ref.

8).

The cylinder is loaded by prescribing an upward velocity of 500 in/sec to the

bottom nodes of the model, with the top fixed. To trigger the lateral buckling mode, an

imperfection given by

Ax = 0.01 sin 2rz

where [is the length of the column and z is the coordinate along the axis of the column, is

added to the x-coordinate of all nodes.

The problem is solved with multi-level adaptivity and the transverse energy

criterion. The pattern of adaptivity is shown in Fig. 7. Initially, the fission process is only

one level and occurs at the eventual extreme of the buckling wave. The important point to

note is that the fission process then focuses at the points of local buckling.
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0.0 msec 0.17 msec 0.30 msec
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Figure 7. Deformed adaptive meshes for the cylindrical column with multi-
level adaptivity.



Another class of example we have studied is shear banding. H-adaptivity was not

successful here so we developed a new method which is in a sense p-adaptive. In this

method, the resolution is increased by overlaying the finite element mesh with a spectral

interpolant in a zone that coincides with the shear band. The results for a tensile specimen,

shown in Fig. 8, are given in Figs 9 to 11. The noteworthy results are the complex

structure of the shear band. The sequential times A, B and C are indicated in these figures.

Most of the evolution of the shear band takes place between B and C. Note that the shear

band has considerable structure, and as can be seen from Fig. 11, its width is of the order

of several hundred microns. This is larger than observed physically but much smaller than

the element size. We have since learned that the width is determined by the scale of

imperfections.

4. SUMMARY AND DISCUSSION

The results have shown that an adaptive mesh can dramatically improve accuracy

for a transient, nonlinear finite element solution. Comparison of results for the cylindrical

panel with a converged solution obtained on a massively parallel computer on a very large

mesh of 16K elements show that the h-adaptive method can obtain similar accuracy with

528 elements, whereas a uniform mesh of this size is in error in the maximum displacement

by almost 10%.

A key finding of this work is that the error criteria generally used in linear analysis

are not well suited for problem of localization in nonlinear mechanics. The difficulty arises

because linear error criteria, such as that of Zienkiewicz and Zhu consider the difference

between a C° least-square fit to the stresses and the C"1 stress field obtained by the finite

element scheme; the error criteria of Babuska relate the error to the jumps in the stress fields

at element interfaces, but give similar results. In localization, such as buckling and shear

banding, the stress field is very homogeneous, so the difference between the C ° and C 1

fields(and the jumps in the stresses at element interfaces) are small. Thus these error
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Figure 8. Undeformed mesh for the rectangular tensile specimen with
spectral patch superimposed and deformed mesh.
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Figure 9. Force-displacement curves for rectangular tensile specimen with

various degrees of resolution in the spectral overlay.
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Figure 10. The maximum effective plastic strain in the shear band as a
function of the displacement of the ends of the specimen.
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Figure 11. Effective plastic strain in a cross-section across the shear

band.
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criteria will not be successful in determining where to refine the mesh. It appears the

development of refinement criteria for such problems may be accomplished most effectively

if the physics of the phenomena which are expected are used as guideline. Thus in this

study, where hingeline formation was of interest, we used the flexural energy as an error

indicator. Although such approaches would not be suitable for completely automatic

adaptive computation of nonlinear problems, it has appeal for skilled analysts.

In this study, the localization phenomena considered was the formation of elastic-

plastic hingelines associated with buckling. The application of these techniques to other

localization phenomena requires further work. In particular, error criteria appropriate for

other types of localization need to be devised. The error criteria developed here are not

universally applicable to nonlinear problems. Considerable additional work is needed on

error criteria if adaptive methods are to be usefully applied to nonlinear structural problems

with localization. Since accurate resolution of localization is the major reason for applying

adaptive methods to nonlinear structural problems, unless error criteria are developed,

adaptivity will not be successful.

To avoid excessive churning of the fission-fusion process, time delays had to be

incorporated in the judgment process. Thus, fission and fusion are executed only when

indicated by two or more consecutive judgment. Nevertheless, churning becomes a

problem with the incremental dissipation criterion in the later stages of impulsively loaded

problems when the work on the system decreases; rational methods of controlling it need to

be developed.

The h-adaptive procedure is limited in its ability to resolve the subdomains of

maximum deformation by the fact that the parent element configuration is fixed. Therefore,

hinge lines which occur at angles relative procedure to the mesh lines may not be captured

effectively. However the h-method appears to be the best compromise between simplicity

and effectiveness in the solution of nonlinear structures by explicit methods. The results

we have obtained show that these adaptive schemes are capable of achieving substantial
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improvements in accuracy for a given computational effort. Generally, an adaptive mesh is

capable of achieving the same accuracy with less than half of the computational resources.

The fission process tends to take place in the subdomains where the maximum deformation

occurs.

In this study, an h-method was selected because of its advantages in an explicit

integration algorithm. However, further study on quadratic element technology has

indicated that effective 9 node elements can be developed with 4 quadrature points. It has

also been found that by iterating on the off-diagonal terms of the mass matrix only once or

twice, it is possible to obtain good solutions to transient problems with these higher order

elements without triangulating the complete consistent mass. Therefore p-method deserves

further consideration in these problems.
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APPENDIX A

1. INTRODUCTION

Four-node quadrilateral shell elements with one quadrature point in the mid-surface have
become widely used in programs with explicit time integration. The first of these elements was
described by Belytschko and Tsay (Ref. 3); also see Belytschko, Lin and Tsay (Ref. 4). This
element is used in DYNA3D, PAMCRASH and other programs developed for crashworthiness
studies. Hallquist (Ref. 7) also adapted the Hughes and Liu (Refs. 8 and 9) shell element to
these programs by adding an hourglass control similar to that in Ref. 4.

The major objective in the development of the Belytschko-Tsay element was to attain a
convergent, stable element with the minimum number of computations. For this reason, the
element uses bilinear isoparametrics with one quadrature point in the mid-plane when the
material is elastic. If the material is nonlinear, several quadrature points are used through the
thickness at a single mid-plane point. Because this element with one-point quadrature would be
rank deficient, i.e., it would possess so-called "hourglass modes" or "spurious singular modes",
an hourglass control is added. This hourglass control is orthogonal to all linear fields (see
Belytschko and Tsay (Ref. 3) and Belytschko, Lin and Tsay (Ref. 4)), so the consistency for
linear fields is not impaired.

Because of the emphasis on speed, several shortcuts were made in formulating the element
equations. On the whole, the element has performed quite well, but it has two shortcomings:

1. It performs poorly when warped, and in particular, it does not correctly solve the

twisted beam prolem.

2. It does not pass the quadratic Kirchhoff-type patch test in the thin plate limit.

The latter shortcoming is shared by the Hughes-Liu element, and its importance was not
realized until recently.

In this paper, modifications to the Belytschko-Tsay element which overcome these
drawbacks are described. The first shortcoming is eliminated by adding terms into the strain-
displacement equations which couple the curvatures to the translations: these terms are shown
to be essential to obtaining the correct response when the shell is twisted and the mid-plane
shape depends strongly on the bilinear term.

The second shortcoming is eliminated by adding a nodal projection to the shear calculation.
The concept of a projection operator to improve element performance was originated by
Belytschko, Stolarski and Carpenter (Ref. 5) and studied in a quadrilateral by Stolarski,
Carpenter and Belytschko (Ref. 15). The particular projection used here is similar to that
developed independently by Hughes and Tezduyar (Ref. 10) and MacNeal (Ref. 12).

In addition, we describe an implementation of the patch test for explicit dynamic programs.
The patch test is usually defined in terms of a static analysis, which is not possible with a
program that includes only explicit time integration. The patch test described here can be used
directly in explicit programs without any modification, so it should prove useful.

This element formulation is based on the "resultant stress theory" (Liu, et al. (Ref. 11) and
Stanley (Ref. 14)). The starting point is the degenerated continuum (DC) approach to shells
which describes the shape and kinematics (Ref. 8). The strains are then expressed in terms of
membrane strains and curvatures. The advantage of resultant stress theories over DC shell
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elements is that the number of computations is substantially smaller, which provides significant
speed advantages in explicit computer programs.

The paper is organized as follows: In Lection 2, the starting point, the DC shell geometry
and interpolation are reviewed along with the corotational coordinate system used in this
element. Section 3 describes the new kinematic relations; two methods are presented, one
requires a knowledge of the pseudonormal vectors, the second does not. Section 4 describes the
shear projection. Section 5 describes the implementpu.ion of the element, giving the rate-of-
deformation-velocity equation. Section 6 gives some numerical results which contrast the
performance of this element with the earlier element; a recipe for performing the patch test in
explicit programs is also given.

2. GEOMETRY AND INTERPOLATION

In DC shell theories, the coordinates of the shell are given by:

Me

x = 1 [x op(l+ ) + x1,t(l_)]NI( ,ri) (la)
2=1

- Z N,( ,n)l- (xtop+xbat) + (op bbo

XT = (x1y,-D (c)

Thus, if we define the pseu Ionormal at each node I by:

[vtcp _bot 1P- " "x l ,:' (2)

where hi is the distance between the two nodes (or a pseudo-thickness at nod, I), and define the
nodes on the mid-surface by:

- (xr +,,r') (3)

then:
me

X = m + &P (4a)
me

-Z (x+ p1)NI(4,rJ) (4b)
I=1

where:

L;h 
(5)2

and
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xm= x1Nj(,, 1) (6)
1=1

In the above, me is the number of element nodes, NI are the shape functions, and h is the
pseudo-thickness. Uppercase indices refer to nodal numbers. The superscripts "top" and "bot"
refer to the top and bottom nodes which describe the actual continuum, whereas the superscript
"m" refers to the mid-surface; nodal coordinates without superscripts pertain to the midsurface.
The geometry is shown in Fig. 1.

The element corotational system (x,-yz) is constructed as shown in Fig. 2. The mid-points
of the sides are connected by lines, rac and rbd, as shown. The direction of the _z coordinate,
which corresponds to the unit vector e3 , is then obtained by:

racXrbd

racxrbdlj

The precise orientation of the two other unit vectors is usually not important; we choose:

el = rac/11 racll (8)

e2 = e3xei (9)

The choice of the unit normal e3 is also not critical, but this particular choice has an
interesting consequence. Because the two lines rac and rbd lie in the surface of the
isoparametric element, the vector e 3 is exactly normal to the mid-surface at the origin of the
reference plane. By contrast, when e3 is the cross-product of the diagonals of the element as in
Belytschko, Lin and Tsay (Ref. 4), then e is not exactly normal to the element surface, which
complicates some of the subsequent developments. The practical effects are probably not
important.

The mid-surface of the shell is given by:

4z= Nj(4,ij)Zj (10)

I=1

where NI(x,h) are the usual bilinear isoparametric shape functions, which are given by:

NJ = 1 (1+4I4)( 1+T"I1M) ( 1 1)

4

The velocity of the shell is obtained from Eq. 4:

V = i = vM + l (12a)

vm--x (12b)

Superposed dots throughout this paper indicate material time derivatives.
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3. KINEMATICS

3.1 General Description

The rate-of-deformation (or stretching) tensor in the corotational system is given by:

dij =(+ ' (13)2 axj a -

To evaluate this tensor, we need to obtain the derivatives of the velocity field. From Eqs. 4 and
12 it follows that the velocity field is given by:

4
v [vNi(4,l)+(l*Ni( ,Tl)] (14)
I=1

Using implicit differentiation, the derivatives of the shape functions are given by:

r - I
NLx _ n -Y ,4 N1,4 (15)N~y -, -,; Nr[x~ .i NLI

where J is the Jacobian. Now using Eq. 4 to express the derivatives of x,y with respect to (x,h),
and noting that Eq. 4 holds in any coordinate system, we obtain:

NC x I + bI (16)
SNI, by, Ibi

where:

jb i =.L [ P9y,T -P]( N1.4 (I17b)
t iJ -1x..n P 4_ N1.1

and

J = de (I17c)[ ij + + Y~2

As described in Belytschko, Wong and Stolarski (Ref. 6), the terms in J which are linear or

higher order in t in Eq. 17c have little effect on element performance, so the only term involving {
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which will be retained is the second term in Eq. 16. Thus, using Eqs. 13, 14 and 16 gives the
following stretching-velocity relations:

dx= [bxIvxi + J(bcgvxI + bxI~Pxi)] (18a)
1=1

dy= [byivyi + -i + byiPyl) (18b)
I=1

4%-

2dxy = [bxIVy1 + byIvXI + bcIy, + t§lxI + bxIPy, + byIPxl)] (I8c)
1=1

At the quadrature point, x = h = 0, the matrix biI is that given in Belytschko, Lin and Tsay
(Ref. 4):

aNi(0,O)
bl Y24 Y31 Y42 Y13] (19a)

1b1 =I aN 1(0,0) 2A -

by[ X,) X13 X24 x311

A = (x31Y42 +x 24Y31) = 4 J (19b)

XJ M Xj - YXI Y=yj - YI (19c)

Two methods have been developed to evaluate b5, the terms which couple curvatures to
translations. The two methods are distinguished as follows:

1. Method p involves the direct evaluation of the second term in Eq. 16; it requires the
p vectors to be available at all nodes, which is not the case for the Belytschko-Tsay
element.

2. Method z involves an estimate of these terms based on the assumption of normality
of p to the surface of the shell; the p vectors need not be available.

3.2 Method p

In Method p, the terms such as p-.n.are evaluated directly. The computation is quite simple;

from Eq. 4:

4 4

P211 = X pxjNJ,T1 = I P p^JrJ (20)
J=1 4 J=

where the last step follows from differentiation of Eq. 11. Hence, using a similar formula for Px,,
it follows that:
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(b; 1 1 iPNyK'Ii2K K i (21a)11II= "
"K=1 -4xKI"K+11IP^XK4

K

- P92-P~y4 Py^3-P91 P9y4-P~y2 P'yVPy31(2b
8j Pj4-Px2 P'xP3 Px2-Px4 P3"NP

I=1 I =2 1=3 1=4

3.3 Method

In Method 2, the normal to the mid-surface is first determined. The derivatives of this vector

then give b.'. To obtain the normal, we start with an expression for the mid-surface based on the
bilinear, isoparametric field given by Belytschko and Bachrach (Ref. 2):

4
7 n= i x x + _y yji+ y) z (22)

4 = 1

I=sI xi( JJ)by{X sJ~J) (23a)

sj =[1, 1,1,1] (23b)

7- 1 hi-b I hj-xj b y hjyj)1 (23c)

4L 4J=l J=l

hl = [+1, -1, +1, -1] (23d)

where biI are defined in Eq. 19.
The normal to the surface, p, is obtained by taking the gradient to the surface described by

Eq. 22, which gives:

-1 -Z, _ Yl zi bYI+(4T1), Y (24a)

where:

+2 2 1/2
2i Y(+ ,2+^),/ (24b)

At the origin ( fl),. =(4T1),Y = 0, because:

)= 47. + , = 0 (25)
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As described earlier, p by construction is normal to the iX- plane at the origin, so from Eqs. 24a
and 25, it follows that:

4 4

bxI I by,- = 0 (26)
=1 I--1

Therefore p* = 1 at the origin of the reference plane, i.e. at the quadrature point.

Taking the derivatives of N and p with respect to x and h (and neglecting the terms related

to p, and p*, which can be shown to be small) gives:

= - = (27a)

= - = - (27b)

.g = -Z-34 =- rl. (27c)

p^. -'. Z , . (27d)

where:

4

zY yTj = 7 yIj (27e)
1=1

Since:

=. 4 .=-1 - ' Iy i -I ( 2 8 )

where:

4

4Yll = = X j iY etc. (29'
I=1

it follows from Eqs. 16, 27 and 28 that:

b = (30a)

jb§1f 16J2 \ +lly

2Zy X1j3 X4 2 X3 1 X2 4  (30b)

Thus, this matrix involves the same terms as the b matrix given in Eq. 19.
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Remark. Method i couples curvatures to translations only for warped elements, i.e. when the
nodes are not coplanar so that zg # 0. Method p, on the other hand, also introduces a coupling
for surfaces of single curvature. In the latter case, however, the coupling appears to be
insignificant.

4. SHEAR PROJECTION

The shear strains are calculated by a nodal projection based on:

On= A+n + -L (- J-I~) (31)

where the superscript I refers to side I and the subscript n refers to a component normal to side I;
see Fig. 3.

The transverse shears then are given by:

4Yx = NI(t, 71)0)O, (32a)
I=l

4
Yz =- NI(tr)~ (32b)

I=1

The transverse shears do not depend on w because after the projection, w is considered to have

vanished (see Refs. 5 and 15). The terms Oi' are obtained from 6! by the standard
transformation:

OZ=:(et1-e-n +( e.e)O K  (33a)

0-9: (enle^n + (en -eOn (33b)

where e- and en are unit vectors defined in Fig. 3.
Evaluating the resulting forms for the transverse shear at the quadrature point, x = h = 0,

gives:

~yzI 1= IJyl

5 2 2 (Xl-xiK) (ZflJ1JtiKYIK)- (XniTXKXIK)]4 _1 
2( yj-Y1K) (YJIJR-YIK) (inyn-yK) j (35)

yn = r/L n/L J  (36a)
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Jy= (36b)

5. IMPLEMENTATION

The implementation of this element closely parallels that described in Ref. 4. One-point
quadrature is used in conjunction with hourglass control.

The velocity strains for Method _z in the mid-surface are given by combining Eqs. 18, 19 and
30, which gives:

x = (Sy2 4 Vx13+Yl13Vx4 2 )/(2A) (37a)

dy = (x42vy13+x13vy24)/(2A) (37b)

2dy= (x4 2vxi 3 +Xi3 Vx24 +Y24 Vy1 3 +Y3 1 y2 4 )/(2A) (37c)

The curvatures are given by:

KX = (Y240y13+Y 130y42 )/(2A) (37d)

+Z4_ 3Vx 13+X42vx24)/A2

Ky = -(X420x 13 +X13(x24)/( 2A ) ( 37e)2

+ 2 zy(Y13vy13+Y42 vy24)/A

2Kxy= (X420yl3+xC13Oy24-Y24Ox13-Y31ex 24 )/(2A) (37f)

+ 2 z (Ii 3 y1 3+X4 2Vy 24 +Yl 3Vx 3 +Y4 2Vx 24

The total velocity strains are then computed by:

dx = dx + Z1Cx (38)

dy = dy + ZIy (39)

dxy = dxy + zxxy (40)

The hourglass strain rates are computed as in Ref. 4; some modifications are needed to

exactly satisfy the patch test. The transverse shear velocity strains are computed as described

in the previous section. The stresses sij and the hourglass stresses QM, QM, QB, Q? and Q
are then computed by the constitutive equation. The nodal force expressions then emanate from
the transpose of the kinematic relations.

-29-



If the corotational coordinate system -1,- 2 is updated according to the spin as described in
Ref. 4, the rate of the stress corresponds to the Green-Naghdi rate. The formulation thus
requires a constitutive law which relates the Green-Naghdi rate to the corotational stretching
tensor (Eq. 13). Under these conditions, the formulation is valid for large membrane strains.

6. NUMERICAL STUDIES

6.1 The Patch Test for Explicit Programs

The patch test is of great value in verifying the theoretical validity of elements and their
implementation. Unfortunately, it has not been used with explicit programs because the patch
test usually is stated as a linear, static problem. This type of problem is not easily treated by
nonlinear, explicit transient programs. This section describes a procedure for implementing the
patch test in an explicit program which requires no modifications of most programs.

Before describing this procedure, we will describe the standard static patch test, which will
clarify our implementation of the dynamic patch test. In the static patch test, an irregular mesh
such as shown in Fig. 4 is considered. At the boundary nodes, a displacement field which is
consistent with a state of constant strain is prescribed. The displacements of the interior nodes
should then be consistent with the linear displacement field associated with this constant strain.

In the plane patch test, the displacements around the periphery of the mesh are prescribed
by:

Ux = dlx + -2y + U3 (41a)

uy = cc4x + of"5y + U"6  (41 b)

where di are arbitrary parameters set by the user. Satisfaction of the patch test then requires
that in the static solution for this mesh, the displacements of the interior nodes match exactly
those given by Eq. 41.

In explicit programs, the implementation of a patch test is hampered by the inability to obtain
an exact static solution. Moreover, most explicit programs use rates-of-deformation as a
measure of deformation, so prescribing initial displacements will not work. However, these
difficulties can be circumvented as follows:

1. Prescribe initial velocities corresponding to Eq. 41 at all nodes of the mesh, i.e.

6x = 0x1 + cL2X + o3y (42)
Uy = c 4 + a5x + 0a6y

2. Integrate one time step with zero body forces.

3. The accelerations should vanish at all interior nodes.

Remark. The constants ai should be small enough so that any geometric nonlinearities brought
into play during the time step are insignificant.

The concept underlying this test is that if Eq. 42 is used as an initial condition on the
velocities, then after the first time step, the mesh will displace into the configuration of Eq. 41
with Ui = aiAt. The elements should then all have the same constant state of strain and stress,
so the accelerations at the interior nodes should vanish. At the boundary nodes, the
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accelerations will not vanish because an external force is needed to generate this state of
constant stress.

For plate bending, the explicit patch test consists of prescribing 6, 6, and 6y as follows:

dz = 04 + 02x + c3Y + t 4X2 + aSxy + c 6y2  (43a)

6x = adz = a3 + a 5 x + 2 6y (43b)ay

60---x- =  +ct2 +a 5 y + 2 4x (43c)

The system is integrated one time step with zero external loads. The accelerations of interior
nodes should then be almost exacly zero, with any deviations ascribable to geometric
nonlinearities. If the program is a linear program, they should be exactly zero.

6.2 Twisted Beam

The twisted beam problem is described in Fig. 5. In this problem, we used 5 degrees of
freedom per node; 6 degrees of freedom still causes errors. The time history of the displacement
at the tip for the in-plane load is given in Fig. 6 and is compared to the Belytschko-Tsay element.
As can be seen, the latter diverges immediately; without the additional terms described here, the
beam has almost no stiffness. The present element performs very well. Results have been
compared to those obtained by the Hughes-Liu element; they differ by less than 1 percent.

6.3 Hemispherical Shell

The mesh for the hemispherical shell is shown in Fig. 7. This mesh differs from the mesh in
the MacNeal-Harder test set (Ref. 13) in that there is no hole in the top. Therefore, while in the
MacNeal-Harder problem the nodes of each element are coplanar, in this mesh they are not. This
has a significant effect on the performance of the element.

As can be seen from Fig. 8, the displacement time history of the Belytschko-Tsay element is
quite erratic in this dynamic problem. The improved element, however, behaves perfectly.

6.4 Cylindrical Panel Problem

The last test problem considered here is an impulsively loaded cylindrical panel. The
problem description and the mesh are given in Fig. 9. Five integration points were used through
the thickness. The number of quadrature points has a sizable effect on the results; marked
stiffening is observed when increasing the number of quadrature points from 3 to 5.

A time history of the midpoint deflection is shown in Fig. 10, where it is compared with the
experimental results of Balmer and Witmer (Ref. 1) and with results for the Belytschko-Tsay
element. The results of the two elements differ little because most of the elements deform into
configurations in which the nodes are coplanar. It is only when a significant fraction of the
elements is warped that these modifications are important.

7. CONCLUSIONS
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Additional terms have been added to the strain-displacement equations of the Belytschko-
Tsay element, and the transverse shears have been modified by a projection. These
modifications involve hardly any additional computation time; at mos1 , a 10 percent increase in
the cost of the element has been observed.

These terms give dramatic improvements in the performance of the element in the twisted
beam problem and for a particular meshing of the hemispherical shell problem. In other problems,
the differences are insignificant. The terms are important only when the nodes of an element are
not coplanar.

An implementation of the patch test for explicit programs has also been described. This
element passes the patch test, whereas the Belytschko-Tsay and Hughes-Liu elements do not
pass the patch test. Failure to pass the patch test has significant ramifications on the
convergence of elements and their performance in distorted meshes.
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Fig. 1 The Geometry of the 4-Node Shell Element and the Degenerated Continum
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Fig 2 Orientation of Corotational Coordinates.
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Fig. 3 Nomenclature for Shear Projection
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Fig. 4 Mesh for Patch Test.
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Fig. 5 Local Coordinates for Rotation Projection
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Fig 7 Displacement at Tip Normalized to Exact Static Solution
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R=25.0
L 50.0
thickness =0.25

E =4.32 x10
v= 0.33
weight = 90.0 per unit area

Fig. 10 Impulsively Loaded Cylindrical Panel
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