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ABSTRACT

Multi-Frequency Modulation (MFM) has been developed at NPS using both
differential quadrature-phase-shift-keying (DQPSK) and differential-quadrature-
amplitude-modulation (DQAM) encoding formats. Previous applications of these
encoding formats were on industry standard computers (PC) over a 16-20 kHz
channel.

This report discusses the implementation of MFM to a voice frequency
channel of 200-3400 Hz, for possible future use with high-speed modems over
switched telcphone networks. Rescarch and testing for this report included the
DQPSK and differential 16-quadrature-amplitude-modulation (D16-QAM) en-
coding formats implemented on PCs. Experimental results of the implemented
MFM signal were comparable to theory with acceptable bit error rates for input
signal-to-noise ratios (SNR) of 15 dB and higher.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research
may not have been exercised for all cases of interest. While every effort has been
made, within the time available, to ensure that the programs are free of compu-
tational and logic errors, they cannot be considered validated. Any application
of these programs without additional verification is at the risk of the user.
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I. INTRODUCTION

A. BACKGROUND

As technological improvements to communication equipment and systems
have been made, they have become more digital and less analog. This is primarily
because the advantages of digital communication far outweigh their disadvan-
tages. Some of these advantages include:

¢ Digital circuits are more reliable and can be produced at lower cost than can
analog circuits.

¢ Digital equipment is more flexible than analog equipment.

e Digital signals can be regenerated much easier than analog signals. Although
digital transmissions are degraded by electrical noise and other interferences.
the original transmitted digital pulse can be regenerated using digital signal
processing.

¢ Digital circuits are less subject to distortion and interference than analog
circuits. Since binary digital circuits are always in one of two states (fullv-on
or fully-off), it takes a large disturbance to incorrectly change the state from
one to the other.

With the digitizing of communications, and the increased use of industry stand-
ard personal computers (PC) for information exchange, the need has arisen for a
signal modulation scheme that can be easilv adapted to a variety of communi-
cation mediums, and that can emulate most existing modulation formats and
generate new formats. Multi-Frequency Modulation (MFM) is a modulation
technique that suits these needs well. It utilizes the hardware and software of the
host conmputer to modulate and multiplex, demultiplex and demodulate the sig-
nal, thereby eliminating the requirement for analog equipment to perform these
functions. MFM allows flexibility and utilizes existing PC hardware with minor

upgrades by the addition of expansion boards.




The focus of this thesis is the application of MFM to a voice frequency
channel over which high-speed (9600 bits per second (bps) or higher) modems
will communicate. Presently no standard high-speed (or low-speed) modems use
this modulation technique for transmission of data.

Chapter II gives functional descriptions of high-speed modems and of the
voice-frequency switched telephone lines. The focus of Chapter 11l is the imple-
mentation of the voice-frequency MFM system, including hardware and soft-
ware. Two differential Grav-encoding tcchniques were implemented with
software on PCs for this thesis. The encoding formats are Differential
Quadrature-Phase-Shift-Keying (DQPSK), and Differential 16-Quadrature-
Amplitude-Modulation (D16-QAM). A performance evaluation was conducted
on each technique and the results are discussed and analvzed in Chapter 1V.

Chapter V contains conclusions and recommendations.

B. THLORY OF MULTI-FREQUENCY MODULATION
The following scctions provide an overview of the theory of MFM. The
rcader is referred to Refs. 1 and 2 for a more detailed description.
1. MFM Signal Packet
The basic structure of MFM is time and frequency slots. The MFM
signals are actually sets of multiple tones which are grouped into “packets”. These
packets are arbitrarily located in the frequency spectrum and in time. They con-
sist of one or more bauds. The following terms are used in the description of

MF M:
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T : Packet length in seconds
AT : Baud length in scconds
L : Number of bauds per packet
Af=1/AT: Frequency spacing between MFM tones
k,: Baud length in number of samples
At: Time between samples in seconds
S, = 1/At: Sampling frequency in Hz for D/A and A;/D conversion
K: Number of MFM tones
¢t Phase of the k™ tone in the /” baud

Ay Amplitude of the k™ tone in the /" baud

An MFM signal packet is shown in Figure 1. Each packet is comprised
of L bauds and K tones. The information to be transmitted is independently
amplitude and/or phasc modulated onto the K tones. An orthogonal sct is formed
by these LK subsignals. In DQPSK. a single bit of information is carricd by both
the in-phase and quadrature components of ecach tone. In DI6-QAM. two bits
of information are carried by both the in-phase and quadrature components of
cach tonc. The muitiple tones that are piesent in an MFM packet are superim-
posed, i.e., occur simultancously, during a subinterval of the packet called a baud
[Ref. 1.

The sampling frequency is f, = A, Af. since At = AT/k,. The Nyquist sam-
pling theorem requires that f, be greater than twice the highest frequency con-
tained in the signal frequency spectrum. Conversely, Nvquist requires that the

highest frequency used in the signal be less than f/2. Conscquently, an MFM
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Figure 1. MFM signal packet: (after Ref. 1: p. 3).

baud is limited to a maximum of k,/2 — 2 harmonic tones spaced at Af Hz inter-
vals from Af Hz up to f,/2 — Af Hz.

An MFM signal packet includes harmonics between &, =f/Af and
k= fi/Af. The values of k, and k, are chosen to generate a signal in a given
passband anywhere between Af and f,/2 — Af. The voice frequency band between
200 Hz and 3400 Hz is the subject of this thesis. Harmonics outside the desired
passband are assigned zero amplitude. The number of tones sent in a baud is
K=k —~k +1. The signal passband is W =K xAf. The time bandwidth

product of the whole signal packet, TW = LAT x KAf, is equal to LK, the total




number of symbols that can be sent in one packet. The MFM parameters selected

for the voice frequency channel used in this thesis are shown in Table 1 below.

DESIGN PARAMETERS FOR A 1/2.5 SECOND MFM SIGNAL

Table 1.
PACKET IN A 200-3400 HZ PASSBAND

Baud length(sec) AT 1.40 1,20 1/10 1/5 1/2.5
No. of bauds L 16 8 4 2 I
Tone spacing Af 40 20 10 5 2.5
Lowest harmonic Ky 5 10 20 40 80
Lowest tone freq. N 200 200 200 200 200
Highest harmonic ky &5 170 340 680 1360
Highest tone {req S 3400 3400 3400 3400 3400
pampies per ki 256 | s12 | 1024 | 2048 | 4096
Sampling freq S 10240 | 10240 | 10240 | 10240 | 10240
No. of tonces Ky = ky 80 160 320 640 1280

The mathematical representation

[* baud is

x/(1) =

kel2=1

/
k=1

N 4y, cos(2rkAS + dy),

of the analog signal packet during the

(I— 1)AT < t < IAT,




and the corresponding sampled discrete time signal of length k, samples is

[Ref. 2: pp. 2-3]

x/n) = Z Ay cos( 22’(" + ¢,k>, 0<n<k, — 1. (2)
X

2. MFM Generation and Demodulation

The generation and demodulation of MFM is accomplished through ap-
plication of the properties of the Fast Fourier Transform (FFT) algorithm. To
generate the signal, software in the transmit PC is used to load the amplitudes
and phases of the MFM signal into the first half of a complex-valued array of
length k, for all tones between k, and k,. The sccond half of the complex array is
then loaded with the complex conjugatc images of the values that were loaded
into the first half of the array. The Inverse FFT (IFFT) is then computed to
create a real signal sequence x{n) containing &, values as given in (2). This process
is repcated until all bauds in the MFM signal have been processed. The resulting
MFM signal packet consists of &, L real values. The modulated transmitted signal
x,(¢) 1s obtained by sampling x,(r) through a digital-to-analog (D/A) converter at
/. samples per second.

Demodulation of MFM is simply the inverse of the process used to gen-
erate it. The received analog signal y,(t) is processed back into a digital signal
format in the receiving PC with an analog-to-digital (A/D) converter sampling

the signal at a rate of £, times per second. The resulting A, rcal values are loaded




into a k,-point complex array, while the imaginary parts are set to zero. The FFT
of the array is computed yielding, in thc absence of noise, the values of 4, and

¢, Which were used in the generation of the transmitted signal.




II. SYSTEM DEVELOPMENT

This chapter provides an overview of high-specd modems, the PSTN and
private telephone network, and the differential encoding schemes used for this
thesis. The actual development of the MFM system is not covered in this thesis
because it is covered sufficiently in other references. The reader is directed to
Gantenbein [Ref. 2] and Basil [Ref. 3] for a detailed description of the MFM

system development.

A. FUNCTIONAL DESCRIPTION OF HIGH-SPEED MODEMS

The definition of a high-speed modem varies from publication to publication,
but for the purpose of this thesis, high-speed modems in the voice frequency band
are considered those with a data signaling rate of 9600 bps or higher. Specifically,
the focus of this section is on full- duplex modems with a data signaling rate of
9600 bps. The international standard set by the International Tclégraph and
Telephone Consultative Committee (CCITT) for the 9600 bps modem, rcferred
to as the V.32 modem, is the standard for most U.S.-manufactured full-duplex
9600 bps modems. This standard is the basis for the discussion in the following
paragraphs. The purpose of including this section on modems is to give the reader
a broad overview of the workings of high-specd modems. Presently, MFM cannot
be applied to modems, because the modulation schemes currently used with
modems arc coded internally to the device and the actual modulation hardware
is proprictary. If MFM is to be applied to modems, a redesign of existing modems

or a new design from the ground up is necessary. This section along with the




references should provide a background for accomplishing this for future appli-
cation of MFM to high-speed modems in the voice frequency band.
1. V.32 Modem Description
The V.32 modems are intended for use on public switched telephone net-
works (PSTN) and on point-to-point leased line telephone circuits. These circuits
will be discussed in the next section. The following characteristics are common

among V.32 modems [Ref. 4 pp. 221-226]:
® Capable of full-duplex operation on the above telephone circuits at 9600 bps.
¢ Channel separation through the usc of echo cancellation techniques.

® Quadraturc-amplitude-modulation (QAM) for each channel with synchro-
nous line transmission at 2400 bauds.

® Capable of operating in the following modes:
9600 bps svnchronous,
4800 bps svnchronous,
2400 bps synchronous.

® At 9600 bps, there are two alternative modulation schemes, one using trellis
coding with 32 carrier states and one using nonredundant coding with 16
carrier siates.

® The rate sequence is exchanged during start-up to establish the data rate,
coding and any other special facilities.

Full-dupiex operation means that the modem can transmit and receive data si-
multaneously on the same frequency on a two-wire or four-wire telephone circuit.
This is accomplished through the usc of echo cancellation techniques, which will
be discussed later in this section. Synchronous transmission means that the
transmitted data is always accompanied by a clock signal. The data changes on
one edge of the clock and should be sampled by the receiving device on the other
cdge. Synchronization between the transmitting and receiving modems allows

data to be properly timed for receiving and decoding.




The V.32 modems have a carrier frequency of 1800 +1 Hz, and must be
ablc to operate with received frequency offsets of up to +7 Hz. The modulation
rate of these modems is 2400 bauds +0.01%. The signal-point constellations used

for the two alternative modulation schemes are shown in Figure 2.
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Figure 2. V.32 signal-point constellations: (from Ref 4: pp. 222,226).

Both of these schemes utilize differential coding. Trellis coding encodes four bits
as five, which increases the number of points (states) in the constellation from 16
to 32. Trellis coding, also referred to as forward error control, is actually a way
to minimize errors rather than to correct them. This modulation scheme has

proven to give a superior signal-to-noise ratio for situations where there is

10




primarily white noise, rather than burst noise. In situations where there is a lot
of burst noise, backward error correcting coding works better. Telephone
networks are much more prone to white noise than burst noise, so trellis coding
was a good choice for the V.32 modems. The big-trade off for trellis coding is
between the amount of data that is saved for decoding and the overall processing
time required for operation of the modem. When a receiving V.32 modem loses
the signal, it must “retrain” to synchronize with the transmitting modem. Unlike
slower modems, where the retrain time can be less than a second, V.32 modems
can take up to 10 to 12 scconds to retrain. If the modem has to retrain too often,
the throughput can be significantly degraded. For this reason, the timing and
trellis algorithms must be carefully thought out in the design and construction of
a V.32 modem. [Refs. 4, 5]

As with slower speed modems, V.32 modems contain a self-svnchronizing
scrambler and descrambler. Unlike slower speed modems which utilize the same
gencrating polynomial for the calling and answering modems, V.32 modems have
different generating polynomials for each transmission direction due to the use
of the same carrier frequency for transmissions in both directions. The purpose
of the scrambler is for randomizing the data sequence, not for encryption or se-
crecy. Many components in data communication systems work best with random
bit sequences, such as the adaptive equalizers and echo cancellers in the V.32
modems. There are sequences of zeros or ones, or periodic sequences that might
appear in the data sequence to be transmitted that must be recoded for trans-
mission if the data transmission equipment has trouble in transmitting these se-

quences. Scramblers recode these undesirable sequences, removing most of the




common repetitions in the input data. The data sequence to be transmitted is
formed by the scrambler effectively dividing the input data sequence by the gen-
erating polynomial and taking the coefficients of this division in descending order
at the output of the scrambler. To recover the message, the received data se-
quence at the receiving modem is multiplied by the scrambler generating
polynomial. The major drawback to the use of scramblers and descramblers is
that error performance can be affected. A single error in the transmitted data
sequence may cause multiple errors at the output of the descrambler, due to the
propagation of the bit error in the shift register of the descrambler. Fortunately,
this propagation effect only lasts for a small number of bits. [Refs. 6, 7]
2. Echo Cancellation

Echoes are impairments in the telephone channel which are caused by
signal reflections at points in the transmission path where there is a mismatch of
circuit impedances. There are several types which will be discussed. Near-end
echoes occur at the hybrid of the transmitting modem and at the hybrid of the
central office. They are caused by reflections at these points due to mismatches
of impedances between the telephone line and the modem’s hybrid. This type of
echo is predominant and is characterized by a small delay time, typically less than
25 milliseconds (ms). A hybrid is a coupler used to make connections between
two-wire and four-wire circuits on the transmission path and in modems to allow
the transmitter and recciver to be connected to the telephone line at the same
time. Two-wire lines, four-wire lines. and central offices will be discussed in the

next section.,




Far-end echoes occur at the hybrid of the receiving end central office and
the hybrid of the receiving modem. This type of echo is caused by reflections from
one of the hybrids at the far end of a four-wire circuit due to impedance mis-
matches between the four-wire to two-wire connection. The delay time for far-
end echoes is higher than for near-end echoes.

Listener echoes occur when a modem’s receiver first hears a signal and
then hears its echo, and results from the signal making a single reflection. This
type of echo is not a problem with modems because the echo is usually much
weaker than the original signal. The adaptive equalization of the modem gener-
ally removes the listener echo. Talker echo is much more troublesome than lis-
tener echo. It is caused by a signal being reflected a second time and results in a
modem’s transmitted signal being reflected back into its receiver. Talker ccho is
removed through the use of echo cancellers in the telephone network. [Ref. 3]

The ability of a high-speced modem to perform echo cancellation is a pri-
mary factor in its overall performance. There are two gencral types of echo
cancellers. One type is located within the telephone network and the other type
is located in echo cancelling modems, such as the V.32. Both types operate simi-
larly in that echoces are cancelled by subtracting an estimated replica of the echo
from the signal containing the true echo. When V.32 modems are used over the
PSTN, the network cancellers are disabled by the answer tone of the modem,
which has periodic phase reversals, unlike the stcady tone of most slower speed
modems. This phase reversal activates the canceller-disable circuits contained in
the network cancellers. The network echo cancellers, also referred to as echo

suppressors, detect data transmitted from one end of the conncction and




suppresses all signals going the other way. Since many high-speed modems are
full-duplex, the network echo cancellers must be disabled so full-duplex
communications can take place. The network cancellers are used for modems
which are not full-duplex, such as many slower speed modems. The following
discussion concerns the type of echo canceller located in the modems.

There are two stages of echo cancelling performed in modems, one can-
celling the near-end echoes and one the far-end echoes. Figure 3 is a simplified

block diagram of an echo canceller.

Anglo
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Figure 3. Simplified block diagram of an echo canceller: (after Ref. 5: p. 52.).

The echo emulator block in the diagram contains both the near-end and far-end
echo cancellers. These cancellers can be implemented as a passband circuit, where
the echo is cancelled before the signal is demodulated, or as a bandpass circuit,

where the echo is cancelled after the signal is demodulated. All echo cancellers




contain an adaptive tapped-delay line circuit which dynamically forms an echo
replica that is of approximately the same magnitude and phase of the true echo
signal. This circuit is the heart of the echo canceller. It allows the replication of
an echo signal that is nearly identical to the true echo if it is operating correctly.
The transmitted modulated signal (impaired by noise and other interferences
from the transmission path) is used as the input to the echo canceller. The echo
canceller first estimates the transfer function of the echo and then adaptively
updates the information in the canceller to approach the actual response of the
path from the original estimate. The initial estimate of the echo transfer function
is based on the delays that have been calculated for the system. These delays are
calculated during the initial handshaking sequence (defined in V.32 protocol in
Ref. 4) that takes place between the two modems during the startup phase. Dur-
ing this sequence, each modem sends a half-duplex signal through the telephone
line to find the line’s echo characteristics. This information is used to set the taps
in the echo canccller's adaptive delay circuit. The output of the adaptive circuit
after it has been updated is the replicated echo which is then subtracted from the
transmitted. modulated signal (which contains the true echo). The result is
checked for correlation with the transmitted signal using a decision-feedback-
equalizer type algorithm. If the transmitted and received signals show correlation,
the echo emulator of the canceller is modified to cancel the correlation. When the
two signals show no corrclation, the echo has been maximally removed.
[Refs. 8, 9]

Although echo cancellation may sound like a reasonably easy task after

the description above, it is very complicated. Accurately detecting the presence

15




and time delay of echoes is one of the most difficult tasks that is done during echo
cancellation. Another factor in effectively cancelling echoes is the ability of the
modem to neutralize the effects of any impairments that may affect the signal as
it passes through the transmission path such as noise, frequency translation, en-
velope delay distortion, attenuation distortion, amplitude and phase jitter,
quaintization effects, and intermodulation distortion. These impairments can dis-
tort the echo and cause it to be falsely or inadequately cancelled. The higher the
speed of the modem, the more it is affected by these impairments. The modem
must be able to perform well in the presence of impairments or it will not perform
well cn the PSTN. The reader is directed to Refs. 8 and 9 for further discussion

concerning ncutralization of impairments.

B. DESCRIPTION OF THE VOICE FREQUENCY SWITCHED
TELEPHONE LINES

This section provides a description of the PSTN and private telephone net-
work which both use a voice frequency channel in the 0-4000 Hz band for voice
and data communication. The actual voice channel used in thesc sysiems is
200-3400 Hz for m st applications. This 200-3400 Hz voice channel was simu-
lated for this thesis by a bandpass filter which will be discussed in the nest
chapter. The purpose of this section is to provide the reader with a basic know-
ledge of the system over which MFM will be applied in the future,

1. Switching Systems
The main question to be answered is, “Why use switching instead of

having direct connections between all users?”. The cost of such a system and the

number of lines and connections would be prohibitive. Switching reduces the
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number of lines required dramatically, and multiplexing on the networks reduces
the number of lines even more. There are some trade-offs associated with the use
of switching. With th: addition of switches, the system becomes more complex
and with fewer lines the system can become overloaded and blocking may occur
if the demand is too high. The network must be expandable to meet the needs of
the future, as well as peak traffic periods such as holidays or national emergen-
cies. Large switching centers have the Electronic Switching Systems (ESS), which
are capable of terminating hundreds of thousands of lines and of processing
hundreds of thousands of calls per hour.

In order to provide a logical and efficient means to switch, a hierarchy
was established. There arc two basic tvpes of switches in the PSTN, local offices
and toll offices. of which there are four levels. The local office or central office
(CO) is the lowest switch in the network. There are over 20,000 COs in the nct-
work. The user is directly connected to he CO through a transmission link. Many
COs are connected through transmission links to a single switching office, called
a toll center, which is located on the lowest level of the toll network. The three
higher ievels of switching in the toil network are called primary centers, sectional
centers, and rcgional centers (the highest level of the PSTN). Ten regional centers
arc Jocated in the United States and two in Canada. The lowest available level
of the PSTN is always used for routing traffic. This is donc because fewer net-
work facilities arc used resulting in shorter transmission paths, ultimately result-
ing in better circuit quality.

In addition to the five levels of switching in the PSTN, there is onc more

type of switching system in use, called a private branch exchange (PBX). The
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PBXs are not part of the PSTN, but do provide the users access to the PSTN
through a transmission link to the COs, as well as performing internal switching
functions for the users of the private telephone network. The private telephone
network consists of the PBXs and the transmission links connecting the users to
the PBXs. This system is available to users through leasing of the lines.

There are two types of user-to-user connections that may be established
on the telephone networks. The first, the dialed circuit, or dial-up line, is a
switched circuit telephone line connection established on the PSTN. This is the
type of connection most users cstablish on a day-to-day basis. The quality of a
dialed circuit can vary widely and is difficult to predict. One connection between
two points may have an excellent quality, while another conncction between the
same two points may be terrible. This differcnce in quality of the connectivn is
because the transmission path wili most likely be different from one call to the
next. The second type of connection, the private leased line, is a line that connects
two or more communication poins on a dedicated 24 hr/day basis. The charac-
teristics of this type of connection are guaranteed to meet certain criteria. There

are two different sets of criteria specified for leased lines:

® C-conditioning. Specification of the frequency response and envelope delay
(lincar distortion) characteristics of the line.

e D-couditioning. Spccification of thc minimum signal-to-noise ratio (SNR)
and the sccond- and third-harmonic (nonlincar) distortion minimum signal-
to-distortion ratios. [Ref. 10: pp. 691-692]

There are three types of switching presently in use in the telephone sys-
tem: circuit switching, message switching, and packet switching. Circuit switch-

ing is used for voice and data communication and is the predominant tvpe. It is




accomplished by establishing a dedicated path for the duration of the call. Not
to be confused with a leased line, this dedicated path is only for the duration of
the one call; the next call between the same two points will be on a dedicated
path, but most likely a different path. Circuit switching is most efficient for calls
of long duration and can usc three types of multiplexing: space division multi-
plexing (SDM), frequency division multiplexing (FDM), and time division multi-
plexing (TDM). Message switching is used for transmitting data only, and uses
only SDM. With this type of switching, the entire message is stored into memory
at each switching station and then forwarded to the next station as the message
traftic load permits. It is routed to the destination listed in the header information
of the message. Message and packet switching are both known as store-and-
forward switching, because the messages and packets are stored into memory at
cach switching station and then forwarded as the load permits.

Packet switching is the latest technology: it is readily adaptable to digital
processing and uses only TDM. This type of switching is uniquely different from
circuit and message switching in that the data is broken down into segments
called packets and then sent via the first open linc to the destination. As in mes-
sage switching. the packets are stored into memory at cach switching station.
With packet switching the transmission channel is only occupied during the
transmission of each packet. The packets may or may not follow the same path
and consequently may arrive out of order. When the packets arrive at the desti-
nation they are sequenced and processed in order. Packet switching is the most
efficient type of switching when the duration of the call is relatively short

compured o circuit or message switching, because of the extra overhead required
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for routing, packet construction, and sequencing. MFM is well-suited for packet
switching.
2. Transmission Lines

The transmission links between the users and the switching centers are
referred to as trunks. These trunks can be implemented with a variety of medi-
ums including twisted pair (pairs of wire), coaxial cable, point-to-point micro-
wave links, and optical cable. Most of the telephone network still uses twisted
pair, so this is the medium that is discussed here. Transmission through a single
wire (with a ground rcturn) is possible and has been used in the past, but the
noise level of the circuit is unacceptable for customer use. The twisted pair
(known as two-wire) presently used is a balanced pair of wires through which
signals propagate as a voltage difference between the two wires. Interference or
induced noise is coupied equalily into both wires of a twisted pair and propagates
along the pair in one direction. Almost all user-to-CO trunks in the PSTN are on
two-wire links. The two-wire link allows for two-way communication. The trunks
uscd for transmission between switching centers and over longer distances usually
involves a pair of two-wire lines, one for transmitting and one for receiving. in
which the two connections are to be kept separate. This configuration is referred
to as a four-wire system. These systems are often used with some form of multi-
plexing to provide multiple channels in one direction on one pair of wires.

Since most toll network circuits are four-wire, the switches for these sys-
tems are designed to connect both directions of transmission separately. Two

paths arc needed for each connection for these switches.  The switches for




two-wire systems, as used in local switching in the COs, require only one path

through the switch for each direction.

C. VOICE FREQUENCY MFM ENCODING SCHEMES

This section provides a brief description of the two encoding formats utilized
for this thesis. Bit error rate (BER) and SNR data generated for both encoding
formats is discussed in Chapter 1V,

1. DQPSK

DQPSK encoding is similar to QPSK encoding in that they both use the

same four Gray-encoded two-bit symbols in the signal constellation. Phase am-
biguity is eliminated in QPSK through the use of strict phase coherent regener-
ation of thec sampling frequency, but this results in the requirement of complex
synchronization techniques. DQPSK resolves the phase ambiguity problem by
transforming the original two-bit symbol into a new differential two-bit symbol,
which is then encoded as QPSK. This transformation is shown in Figure 4. As

can be scen in the figure, the inputs generate new symbols as shown below.

® An input of ‘00" produces a new syvmbol in the same quadrant as the previ-
ous svmbol.

e An input of ‘01" rotates the new symbol +r/2 radians from the previous
svmbol.

e An input of 10" rotates the new symbol -n/2 radians from thc previous
symbol.

e An input of "1’ rotates the new symbol = radians from the previous symbol.

Decoding of the MFM signal in the receiver is performed by determining the

phase difference between successive symbols. [Ref. 2: pp. 9-11]
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2. D16-QAM
The data rate for D16-QAM is double that of DQPSK; it uses four-bit
symbols vice the two-bit symbols of DQPSK. The Gray-encoded D16-QAM sig-
nal constellation studied in this thesis is shown in Figure 5. As can be seen in the
figure, this signal constellation has eight 45° sectors and two magnitude levels.

Although the data rate for D16-QAM is doubled, it is at the cost of an increased
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Figure 5. DI16-QAM signal constellation.

bit error rate. For the same baud size and noise level, the D16-QAM encoding
format cannot accept as much system differential phase error as the DQPSK
scheme, due to the smaller sector size. In addition, noise and other system
impairments can cause a magnitude error when using the D16-QAM scheme. A
detailed discussion of D16-QAM encoding/decoding is contained in [Ref. 3: pp.

10-13].
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III. SYSTEM IMPLEMENTATION

A. HARDWARE
The MFM system developed by LT Terry K. Gantenbein, USN, in Ref. 2
and modified by LT Peter G. Basil, USCG, in Ref. 3 is the basis for the exper-
imental part of this thesis. The hardware utilized in this research is the same with
the exception of the channel filter. The 16-20 kHz bandpass filter utilized by
Gantenbein and Basil was replaced with a 200-3400 Hz filter for the testing de-
scribed in Chapter 1V.
1. MFDM Transmitter
The MFM transmitter contains a D/A converter circuit that is built on
an IBM PC/XT interface breadboard which is inserted into an expansion slot in
the transmit PC. The original transmitter, designed and built by LT Robert D.
Childs, USN [Ref. 11], was modified by Gantenbein [Ref. 2]. The current con-
figuration of the transmitter is documented in the schematic in Appendix A. A
sccond MFM transmitter board was built during this thesis to allow flexibility
by providing a backup transmitter for testing alternate filiering schemes. The
transmitter board used in this thesis for all data transmission was this backup
transmitter.
A functional block diagram of the transmitter is given in Figure 6. The
input to the encoder is a serial binary signal which is processed through the

transmitter as discussed in Chapter 1. The enceding of the input data is
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accomplished in software and is discussed in the next chapter. The output of the

D;A converter contains MFM tone frequencies in the 200-3400 Hz band.

e
Source Encode 1FFT D/A To Link

Figure 6. Block diagram of the MFM transmitter.

2. MFM Receiver

The MFM receiver utilizes a Metrabyte, Inc., DASHI16F data acquisition
board with software routines to accomplish the A/D conversion. The
reception/demodulation of the MFM signal is the reverse of the
transmission/modulation process as discussed in Chapter 1. The receive PC uti-
lizes a PL1250 floating point processor (FPP) board from Eighteen-Eight Labo-
ratories, Inc., to perform the FFT on the output of the A/D converter for
decoding. This allows real-time demodulation of the signal as described by Basil

[Ref. 3]. A functional block diagram of the receiver is given in Figure 7.

From
Link

— A/D FFT Decode ™  Sink

Figure 7. Block diagram of the MFM receiver.




3. MFM Synchronizer

In MFM communications, each transmitted packet must be synchronized
at the receiver before the signal can be acquired and demodulated. Each trans-
mitted packet has a synchronization baud of length 256 appended to the begin-
ning of packet. The polarities of the synchronization baud are known. The
recetving PC contains a synchronization board which is pre-loaded with the
known polarities of the last 128 samples of the synchronization baud for the
purpose of svnchronization. The synchronization process and the board designed
and built to accomplish synchronization are discussed in detail by Basil [Ref. 3].

4. Voice Channel Filter

The 200-3400 Hz channel characteristic of the public switched telephone
network was simulated by a National Semiconductor TP3040J PCM monolithic
filter chip. The 16-pin TP3040J contains both a transmit filter and a receive filter
designed to the specifications used in the telephone network. The transmit filter
is a fourth-order Chebyshev highpass filter in series with a fifth-order elliptic
lowpass filter. The receive filter is a fifth-order lowpass filter designed to recon-
struct the voice or data signal from a decoded signal. Both filters are constructed
with switched capacitor integrators. [Ref, 12]

The master input clock frequency for the TP3040J can be sclected as
2.048 MHz, 1.544 MHz, or 1.536 Mhz. A clock frequency of 2.048 MHz was
used for this thesis. The gain of the filter is also selectable and can be chosen by

properly selecting the resistor values. The gain was chosen to maximize the




amplitude of the signal, without exceeding the range of the A/D converter, which

was set at +2.5 volts. The TP3040J was connected as shown in Figure 8.

TP-3040J
_[NC NCLD
_2IN¢ onpl!

_3INC CLX® : 5V

Slviro  NCPD
[T Sy cLk| 2 2. 048 WH2

8 2kn Output —OJpwro GNDM
—FNC VPRI 19 Filter input

ves vccld 5V

~d| o

-5V

<~

NC  :=Not connected

YFRO:=Recerve filler low power output

PURI=Receive friter dit! power omp 1nput

PY¥RO:=Non-inverting outpul of receive
filter power amp

VBB =Negotive power supply

V(C =Positlive power supp'y

VERI=Inpul to recerve filter

CLX =Moster clock 1npul

CLK@=inpul clock frequency select

GNG =Ground

Figure 8. Voice channel filter wiring schematic.

B. SOFTWARE

The programs used in this thesis rescarch are written and compiled in Turbo
Pascal, version 5.5, from Borland International. The programs are similar to
those written bv Gantenbein for DQPSK, but have been modified for application
to the voice frequency channel and for D16-QAM encoding/decoding. The mod-
ified DQPSK and D16-QANM programs used for this research are included as

Appendices B, C, D, and E.
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1. Transmitter

The DQPSK and D16-QAM transmit programs are called DQPSKXMIT
and DQAMXMIT respectively. The programs are divided into subroutines,
known as procedures in Pascal. The procedures are discussed in the order in
which they are called in the programs. The primary difference between the two
programs is in the encoding section of the programs, due to the different modu-
lation consteliations used. Unless otherwise noted, the following discussion ap-
plies to both programs.

The PL1250 FPP is initialized at the start of the main body of the trans-
mit programs. Next, the procedure SYNCBAUD generates the svnchronization
baud (svncbaud) of length 256 of which the last 128 samples are used for syn-
chronization with the receiver. The polarities of the syncbaud samples are identi-
cal each time SYNCBAUD is exccuted, so the receiver can acquire the
transmitted data as long as the synchronizer board has been properly loaded with
the syncbaud. SYNCBAUD calls the procedure CNVTTOTIME which, in turn,
calls the PL1250 FPP to perform the IFFT on the syncbaud tone values. Next,
SELECTBAUD chooses the values of k; and k, based on the baud length selected
by the user. The procedure TAILORPACKET then determincs the maximum
number of bauds that can be transmitted for each packet. Next, DIFFENCODE
performs the encoding of the data as described in Chapter I, using the different
encoding formats for DQPSK and D16-QAM. DIFFENCODE also calls
CNVTTOTIME to perform the IFIT on the data. The next procedure called is
SCALEDATA, which takes the time domain samples and stores them in an array

of 61440 bytes. If the message is longer than 61440 bytes, then the entire message




cannot be sent at once. DMAINIT takes the values stored in the array and clocks
them through the D/A converter. Finally, DMASTOP ends the data transfer
when all values in the arrav have been clocked through the converter. The
DQPSK and DI16-QAM transmit programs are included as Appendix B and
Appendix C, respectively.

2. Receiver

As with the transmit programs, the DQPSK and D16-QAM receive pro-
grams are very similar to cach other; both are discussed in this section. The two
receive programs arc called DQPSKREC and DQAMREC. The procedurcs in
the receive programs are discussed in the order in which they arc called, and un-
less otherwise noted, the discussion applies to both reccive programs.

The PL1250 FPP is initialized at the start of the main body of the receive
program and a pointer is set up by GETDMABUFFER to point to the array in
which the received values are stored. PACKETSETUP, the first procedure called,
determines the maximum number of bauds that can be received and assigns the
values of A, and A, based on the baud length input to the receive PC by the user.
The receive baud Iength must be the same as the baud length of the transmitted
data. The next procedure, ACQUIREDATA initializes the DASHI16F board for
the 12- bit A/D conversion process. The received data is stored in the DASHIGF
board, in 16-bit words. The four most significant bits of cach word contain
channel identification data. so the proccdure CONVERTDATA removes these
four bits. The remaining 12-bit words are sent to the main body of the program.
The PL1250 FPP performs the FFT of the data and places the resulting valucs

in the first half of the complex array as discussed in Chapter 1. The next




procedure, DIFFDECODE, performs the decoding of the data. In DQPSKREC,
DIFFDECODE decodes the phase difference between adjacent tones for all
transmitted tones. In D16-QAMREC, DIFFDECODE decodes the phase and
magnitude differences between the adjacent symbols for all transmitted tones.
The decoded symbols are displayed to the receive PC monitor as ASCII charac-
ters, with two four-bit symbols representing one ASCII character. Each baud of
the received message is processed by the receive program until the whole received
message has been displayed. The receive programs are included as Appendix D
(DQPSKREC) and Appendix E (DQAMREC).
3. Synchronizer

The synchronizer board is initialized with the program SYNCLOAD
which calls an assembly language routine named SYNCINIT. SYNCLOAD
causes the synchronizer board to be initialized with the last 128 sampies of the
syncbaud. The synchronizer board needs only to be initialized once each time the
MFEF M system is powered up, prior to transmitting any data. The syncbaud values
arc contained in the data file VALS.DAT and are loaded into the synchronizer
board by typing "SYNCLOAD” and then pressing the enter key on the receive

PC kevbouard. The program SYNCLOAD is included as Appendix F.




IV. SYSTEM TESTING AND RESULTS

This chapter discusses the performance evaluation of the MFM system over
a voice frequency channel. The first section deals with the system phase response
and the selection of the syncbaud delay to optimize the system performance. The
second section discusses the SNR and the bit error rate estimates for various in-

put SNRs.

A. SYSTEM PHASE RESPONSE

The relevant system phasc response is the difference between the received
phase and the transmitted phase for cach tone. The values used for the calcu-
lation of phase response are the reccived phase before decoding and the trans-
mitted phase after encoding. Ideally, the plot of phase response would be flat.
The DQPSK phase response plot of the system is shown in Figure 9 for three
different delays of the syncbaud. The curve for a delay of one is the most lincer
and flattest. Figure 10 is a plot of the difference between adjacont
received/transmitted tones for DQPSK. Since the sectors for DQPSK are 90° in
width, all points within £45° represent svmbols which are correctly decoded. Any
points outside +43° represent symbols which are incorrectly decoded. Figure 11
is the D16-QAM phase response for three different delays of the synchre ization
baud. A delay of one produced the most linear, flattest response. The difference

between adjacent received/transmitted tones for D16-QAM is shown in Figure

—

2. The scctors for this encoding format arc 45° in width, so all points within

+22.5° represent data which is correctly decoded.
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The phase difference between adjacent tones is introduced by the system and
varies from tone to tone. The phase differences introduced by the system increase
the possibility that the phase difference between adjacent tones will be incorrectly
decoded. Additionally, when noise is added to the system, the phase differences
increase, possibly resulting in decoding phase errors. To minimize the possibility
of the errors in decoding of phase, sync delays of onc for DQPSK and one for
D16-QAM were chosen for all subsequent testing which was conducted for this

research.

B. BIT ERRORS AND SNR

Bit errors and SNR are both discussed in the same section as they are dircctly
rclated. The number of bit errors that can be expected in a transmission is di-
rectiy related to the SNR as will be shown graphically later in this section. The
results for DQPSK and D16-QAM encoding formats are discussed separately
and will be compared and commented on in the next chapter.

System performance testing was conducted on a channel with additive white
Gaussian noise (AWGN), i.c., each transmitted sample is affected independentiy
by the noise. The output SNR was estimated for different input noise levels for
baud lengths of 2536, 5312, 1024, and 2048. The output SNR is defined as the ratio
of the square of the mecan of each of the complex multiplied adjacent tones to
their variances.

1. DQPSK Performance
Data was generated and analvzed for DQPSK encoding of approximately
10,000 bits for each baud length and each input SNR. The program QPSKSNR,

included as Appendix G, counts the number of bit errors and estimates the
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output SNR for the transmitted data. The system SNR, which is the output SNR
of the system with no input additive noise, is shown versus the frequency spacing
Af in Figure 13. As shown in the figure, the performance of DQPSK improves
with decreasing Af . This is as expected, because the phase difference between

adjacent tones gets smaller as Af gets smaller.
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Figure 13, DQPSK system SNR output.
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In Figure 14, the output SNR is shown versus various input SNRs for the
different baud lengths. The theoretical curve for output SNR versus input SNR
is also shown for comparison. According to theory, the output SNR is expected

to be equal to the narrowband input SNR [Ref. 1: pp. 24-25].
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Figure 14. DQPSK output SNR versus input SNR.
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Table 2 lists the bit errors for various input SNR levels for the different baud
lengths. In general, at higher input SNR levels, the larger baud sizes perform

better because the tones are spaced closer together.

Table 2.  BIT ERRORS IN 10,000 BITS TRANSMITTED VS BAUD TYPE AND

SNR
Af k. SNRIN (dB)
5 10 15 20 25
40 256 507 105 43 8 0
20 312 487 57 7 0
10 1024 402 42 0 0 0
5 2048 419 27 0 0 0

2. D16-QAM Performance

The data generated and analyzed for D16-QANM encoding consisted of
approximately 20,000 bits for each baud length and cach input SNR. The num-
ber of bit errors and calculation of the output SNR were generated by the pro-
gram QAMSNR. which is included as Appendix H.

The decoding procedure for D16-QANMI, like DQPSK, requires the com-
plex multiplication of adjacent tones to obtain the phase differential.  Unlike
DQPSK, which has one magnitude level as a result of the complex muitiplication,
D16-QAM has three magnitude levels as a result of the decoding procedure. In
D16-QAM, the encoded transmitted data has two possible magnitudes, depend-
ent upon whether the svmbols are from the inner (small) or the outer (large) ring
of the constellation. When decoding the reccived data. the threc possible magni-

tude levels are created as follows:
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¢ Small times small = Lowest magnitude

¢ Small times large = Middle magnitude

¢ Large times large = Highest magnitude
These three magnitude levels are affected differently by AWGN. The lowest
magnitude level is degraded most by AWGN and the highest magnitude level is
degraded least, since the AWGN will affect each magnitude level equally. Figure
15 is a plot of output SNR versus input SNR for different baud lengths. The
output SNRs contained in this {igure are only for the lowest magnitude level,
since it is the one most affected by AWGN. The performance for the other two
magnitude levels is better. As with DQPSK, the larger baud sizes in D16-QAM
perform better due to the smaller frequency spacing betwecen adjacent tones. The
theoretical curve for output SNR versus input SNR for the lowest magnitudes is

also shown for comparison and is calculated by the equation [Ref. 13]
. vp (2
SNR,,, = SI\R‘"(_C-%-—I—)’ (4)

where ¢ is the ratio of the highest magnitude to the lowest magnitude.
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Figure 15. D16-QAM output SNR versus input SNR.

Table 3 shows the number of magnitude and phase bit errors for 20,000
transmitted bits for each of the baud lengths at various input SNRs. As expected,
the system performance is better for higher input SNRs and larger baud sizes. In
general, the number of magnitude decoding errors and phase decoding errors is

approximately equal for almost all cases. Also, most of the phase errors are of
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the single bit type, indicating that the phase decoding errors occurred due to re-
ceived phases being decoded only one sector away from the transmitted sector

(since the data is Gray-encoded).

Table 3. MAGNITUDE AND PHASE BIT ERRORS FOR DI16-QAM FOR
20.000 BITS TRANSMITTED

Baud Size 256 512 1024 2048
SNRIN (db) 25

Mag bit errors 72 19 5 1

1 bit phase errors 86 11 5 1
2 bit phase errors 0 0 0 0
3 bit phase errors 0 0 0 0
SNRIN (db) 20

Mag bit errors 253 63 42 36
1 bit phase errors 311 45 35 36
2 bit phase errors 7 0 0 0
3 bit phasc errors 3 0 0

SNRIN (db) 15

Mag bit errors 495 352 379 353
1 bit phase errors 537 393 421 376
2 bit phase errors R 6 0 0
3 bit phase crrors 0 0 0 0
SNRIN (db) 10

Mag bit errors 1114 1035 949 1029
1 bit phase errors 1424 1214 1173 1171
2 bit phasc crrors 55 13 0
3 bit phasc errors S 3 0 ]




V. CONCLUSIONS AND RECOMMENDATIONS

With proper choice of synchronization delay, both differential MFM encod-
ing formats performed well in the test environment. The number of bit errors for
baud sizes of 512 and larger were acceptable for SNRs above 15 dB, which is 10
dB below the SNR specifications for the PSTN and the private telephone net-
works.

The data throughput that can be achieved by MFM signals over a voice fre-
quency channcl compares favorably with that of high-speed modems. The
DQPSK encoding format carries two bits per tone per baud, resulting in a band-
width efficiency of two bits/s/Hz. With this bandwidth efficiency, a throughput
of 6400 bps can be achieved on a telephone line having a bandwidth of 3200 Hz.
The bandwidth efficiency of the MFM DI16-QAM encoding format is four
bits/s/Hz. since this format carries four bits per tone per baud. The D16-QAM
signal can achieve a throughput of 12800 bps for this bandwidth efficiency. In
comparison. the V.32 throughput is 9600 bps.

Though not shown in tabular form in this report, the bit error ratec (BER) for
DQPSK is lower than that of D16-QAM for every case of input SNR and baud
length tested. The achievabie throughput for DQPSK is half that of D16-QANM,
but on a switched telephone network that generally has higher noise levels, such
as overseas telephonc lines, a trade-off of throughput for lower BER may be de-

sirable. D16-QAM encoding is the best choice of the two formats tested for use
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on telephone networks that have guaranteed maximum noise levels, such as the
private telephone nctworks.

Areas of further study should include the design and implementation of a PC
expansion board that contains both a transmitter and receiver to allow testing of
full-duplex MFM communications on industry standard computers. Echo can-
celling algorithms for MFM should be studied. Additionally, error control coding
should be incorporated into the existing Pascal software for improvement of the
BERSs. Error control coding for MFM is the subject of a thesis by LT Robert
W. Ives [Ref. 14]. Finally, a high-speed (V.32 compatible) modem utilizing an
MFM encoding format should be designed and built for further testing of the

MFM signal over a voice frequency channcl.
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MFM TRANSMITTER

APPENDIX A.
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APPENDIX B. DQPSK TRANSMIT PROGRAM

program DQPSKXMIT;

(*Transmits a syncbaud and message from file 'MESSAGE.DAT'.
The message is encoded using DQPSK. 'MESSAGE.DAT' is a text
file. It should already exist before using this program.
Output is used to collect data for TESTING*)

uses crt,graph,plrte55;

const
FIRST_ELEMENT = -28929;

type

TNvector = array[0..4095] of single;

TNvectorPtr = TNvector;

BCSTARRAY = array| FIRST_ELEMENT..32767] of byte;

var
kx,
k1,k2,1,w,
NUMBAUDS ,MAXNUMBAUDS,
BAUDCOUNT,BYTECOUNT,
SYMBOLCOUNT ,MAXNUMCHAR,
MESSAGESIZE ,dmachn,
n2p,bkOpsz,bklpsz,
port,Aadd,proc
Badd
MAGNITUDE,
CHARACTERS_PER_BAUD,
Xm, Xp
XREAL,XIMAG
INVERSE
TEMPBYTE ,ERROR
BCST
EYTEFILE
TESTFILE
ANSWER,
NEXTCHAR
plbuf

(SL dmainit)
(SL dmastop)

:integer;
rword;

:single;

: TNvectorPir;
:boolean;
tbyvte;

: BCSTARRAY:

file of byte;

ttext,

: char;
tarray{0..768] of integer;

(:‘.‘ ------------------------- Y *)

procedure Cnvttotime;

(*computes inverse FFT, returns values in XREAL *)

type

pass = array[0..8191] of single;
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passptr = pass;

var

FVALUES  :passptr;

begin

end;

proce

(*Process the synchronization baud and stores the 256 point

new(FVALUES);
fillchar(FVALUES ,sizeof(FVALUES ),0);
for i:= 0 to kx-1 do
begin
FVALUES [ 2%i]
FVALUES [2%i+1]
end;
plxfto(FVALUES ,Aadd,2%kx);
plwtxf;
vfieee(Aadd,Aadd, 2%kx);
cifft(Aadd,n2p);
cereal(Aadd,Badd.kx);
vtieee(Badd,Badd,kx);
plwtrn;
plxffm(Badd,XREAL ,kx);
plwtxf;
dispose(FVALUES);
(*Cnvttotime™)

[}

XREAL [1i];
XIMAG [i];

dure SyncBaud;

time domain sequence at the beginning of the packet storage

grea. ™)

var
J, TEMP :integer;
SYNCDATA :byte;
SYNCMAG :single;
syncvals P text;

begin
assign(syncvals, 'syncvals.dat');

rewrite(syncvals);

kx:=256;

n2p: =8;

SYNCMAG: = MAGNITUDE;

fillchar(XREAL ,sizeof(XREAL ),0);
fillchar(XIMAG ,sizeof(XIMAG ),0);

XREAL [€8]:= -SYNCMAG ; XIMAG [68]:= -SYNCMAG ;
XREALL [69]:= ~-SYNCMAG ; XIMAG [69):= -SYNCMAG ;
XREAL [70j:= ~SYNCHAG ; XIMAG [70}:= SYNCMAG ;
XREAL [ 71):= -SYNCMAG ; XIMAG [71]:= SYNCMAG
XKEAL [72]:= SYNCMAG ; XIMAG [72]:= =SYNCMAG
YREAL [73]:= OYNCMAG ; XIMAG [73):= SYNCMAG ;
XREAL [74]:= -SYNCMAG ; XIMAG [74]:= SYNCMAG ;
XKEAL [75]:= SYNCMAG ; XIMAG [75]:= SYNCMAG ;
XREAL [70]:= -SYNCUAG ; XIMAG [76):= SYNCMAG ;
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XREAL [77]:= -SYNCMAG ; XIMAG [77]:= -SYNCMAG ;
XREAL [78]:= SYNCMAG ; XIMAG [78):= -SYNCMAG ;
XREAL [79]:= -SYNCMAG ; XIMAG [79]:= -SYNCMAG ;
XREAL [80]:= SYNCMAG ; XIMAG [80]:= SYNCMAG ;
XREAL [81]:= SYNCMAG ; XIMAG [81]:= ~SYNCMAG ;
XREAL [82]:= ~SYNCMAG ; XIMAG [82]:= -SYNCMAG ;
XREAL [83]:= SYNCMAG ; XIMAG [83]:= SYNCMAG ;

(*complex conjugate image¥)
for J := 68 to 83 do
begin
XREAL [256-J]:= XREAL [J);
XIMAG [256-J]):= I
end; (¥for J¥)

Cnvttotime; (*compute the 256 time domain values¥)

for J := 0 to 255 do (*force values to range 0-255%)
begin (*for d/a conversion¥®)
if (XREAL {J] > 127) then
begin
writeln('syncvals exceed range of D/A converter');
halt;
end;

TEMP: =round(XREAL [J] + 126);
if TEMP < 0 then
TEMP: =0;
SYNCDATA: =TEMP;
BCST[{ J+FIRST_ELEMENT] : =SYNCDATA;
(* writeln(syncvals,BCST{ J+FIRST_ELEMENT]); *)
end; (*for J¥)
close(syncvals);
end; (*SyncBaud¥)

procedure SelectBaud;
(**SelectBaud establishes kx, kl, and k2, and n2p*)

var
ANSWER : integer;

begin
kx: =0;
repeat
if kx < 0 then writeln('TRY AGAIN');
writeln('What is the length of the bauds (kx)?');
writeln('i.e. 256, 512, 1024, 2048, 4096');
readln{ ANSWER);
case ANSWER of
256: begin
k1l:=5; k2:=85; kx:=256; nlp:=8;
end;
512: begin
k1:=10; k2:=170; kx:=512; n2p:=9;
end;
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1024: begin
k1l:=20; k2:=340; kx:=1024; n2p:=10;
end;
2048: begin
kl:=40; k2:=680; kx:=2048; n2p:=11;
end;
4096: begin
k1l:=80; k2:=1360; kx:=4096; n2p:=12;
end;
end; (*case kx*)
if kx = 0 then kx := -1;
until kx > 0;
end; (*SelectBaud¥)

procedure TailorPacket;
(*TailorPacket sets the maximum number of baud required to
encode the message¥)

begin
MESSAGESIZE:= filesize(BYTEFILE);
writeln('Messege is ',MESSAGESIZE,' bytes.');
CHARACTERS_PER_BAUD: =(k2-k1)/4;
MAXNUMCHAR: = trunc(10240. 0/kx * CHARACTERS_PER_BAUD);
if MESSAGESIZE > MAXNUMCHAR then
begin
writeln('Message is to large. The last ',
MESSAGESIZE - MAXNUMCHAR,
characters will not be transmitted.');
MESSAGESIZE: =MAXNUMCHAR;
end;
MAXNUMBAUDS: =trunc(MESSAGESIZE / CHARACTERS_PER_BAUD);
if frac(MESSAGESIZE / CHARACTERS_PER_BAUD) > 0.0 then
MAXNUMBAUDS: =MAXNUMBAUDS + 1;
repeat
writeln;
writeln('Enter number of ',kx,' bauds to process. ',
MAXNUMBAUDS,' is the maximum. ');
readln(NUMBAUDS);
until NUMBAUDS in [1..MAXNUMBAUDS];
end; (*TailorPacket¥)

procedure DiffEncode;

(*DiffEncode differential encodes symbols on a tone-to-tone
basis. BYTEFILE is read from one byte at a time. The byte
is isolated into 2-bit groups and stored in BITS. BITS is
then used to DQPSK encode the frequency domain arrays
XREAL and XIMAG. Bytes partially encoded are carried over
into the next baud by global variable TEMPBYTE. *)

var
J :integer;
BITS tbyte;




begin
fillchar(XREAL ,sizeof(XREAL ),0);
fillchar(XIMAG ,sizeof(XIMAG ),0);

(*first tone of every baud set to pi/2%)
XREAL [k1]:= MAGNITUDE;
XIMAG {k1]:= MAGNITUDE;
if SYMBOLCOUNT = O then
read(BYTEFILE,TEMPBYTE);
for J:= (k1 + 1) to k2 do
begin
SYMBOLCOUNT: =SYMBOLCOUNT + 1;
if frac(SYMBOLCOUNT / 4) = 0.25 then
BITS:= (TEMPBYTE and $C0) shr 6;
if frac{SYMBOLCOUNT / 4) = 0.5 then
BITS:= (TEMPBYTE and $30) shr 4;
if frac(SYMBOLCOUNT / 4) = 0.75 then
BITS:= (TEMPBYTE and $0C) shr 2;
if frac(SYMBOLCOUNT / &4) = 0.0 then
begin
BITS:= TEMPBYTE and $03;
if not EOF(BYTEFILE) then
read(BYTEFILE, TEMPBYTE)
else
TEMPBYTE: =$40; (*fill character¥)
end;
if (BITS < 0) and (BITS > 3) then
writeln('Bits not assigned properly');

(*differential encode’)
case BITS of
0: begin XREAL [J]:= XREAL [J-1};
XIMAG [J}:= XIMAG [J-1]; end;
1: begin XREAL [J]:=-~XIMAG [J-1];
XIMAG [J):= XREAL [J-1]; end;
2: begin XREAL {J]:= XIMAG [J-1];
XIMAG [J]:=-XREAL [J-1]; end;
3: begin XREAL [J]:=-XREAL {J-1];
XIMAG [J]:=-XIMAG (J-1]; end;
end; (*case BITS)
end; (*for J¥)

(*complex conjugate image®)
for J:= k1 to k2 do
begin

XREAL [kx - J]:= XREAL [J];

XIMAG [kx - J]:=-XIMAG [J];

Xp := arctan(ximag [ j]/xreal [j]) * 180/pi;

xm := sqrt(sqr(xreal [j])+sqr(ximag [j]));

if (ximag [j] > 0) and (xreal [j] > 0) then
Xp := Xp;

if (ximag [j] > 0) and (xreal [j] < 0) then
xp := (90+xp) + S0;

if (ximag [ j] < 0) and (xreal [j] < 0) then
xp := 180 + xp;
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if (ximag [j] < 0) and (xreal [j] > 0) then
xp := (90+xp) + 270;
(* if baudcount = 3 then %)
begin
writeln(TESTFILE,baudcount,’' ',J,' ',xm,' ',xp);
end;
end;
end; (*DiffEncode¥)

procedure ScaleData;

(*ScaleData converts each real value in XREAL down to a byte
and stores the byte in the packet storage buffer, BCST.
INDEX establishes the location in the buffer of each byte
in the packet.*)

var
INDEX,J,TEMP :integer;
DATA :byte;
begin
for J := 0 to kx-1 do
begin
if (XREAL [J] > 127) then
begin

writeln('broadcast values > 127',XREAL [J]:8:2);
(* halt; )
end;
TEMP := round(XREAL {J] + 126);
if TEMP < 0 then
TEMP := 0;
DATA := TEMP;
(*256 is added to INDEX to start message bauds
after the sync baud¥)
INDEX := J+(BAUDCOUNT=-1)*kx+FIRST_ELEMENT+256;
BCST[ INDEX] := DATA;
(* if baudcount = 3 then
writeln(testfile,J:4,"' ',round(XREAL [J])); *)
end; (*for J¥)
end; (**ScaleData*)

procedure Dmastop; external;
(**Masks DMA, stopping data transfer.*)

(7‘: ---------------------------------------------------------- *)

procedure Dmainit(var BCST: BCSTARRAY; BYTECOUNT: integer); external

(*Assembly lanuage procedure used to initialize and unmask
the DMA for data transfer. The source code must be
converted to a BIN file.*)
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begin
dmachn: =0;
plinit(dmachn,plbuf,sizecf(plbuf));
plslib('C: PL1250 PLLIB.15');
proc:=1;
port:=$0318;
bkOpsz: =0;
bklpsz:=1024;
plsprc(proc,port,bkOpsz,bklpsz);
Aadd: =$0400;
Badd: =$8400;

new(XREAL);
new(XIMAG);

(*contains hex values to be encoded and transmitted*)
assign(BYTEFILE, 'MESSAGE. DAT');
reset(BYTEFILE);

(*Output file of encoded symbols. Used for system testing?*)
assign(TESTFILE, 'XMITDAT. DAT');
rewrite(TESTFILE);

repeat
writeln('Enter magnitude of tones.(greater than 65,
less than 1501)');
readIn(MAGNITUDE);
until MAGNITUDE > 0. 0;

writeln('Loading sync baud.');
SyncBaud;

SelectBaud;

TailorPacket;

SYMBOLCOUNT: =0;
TEMPBYTE: =$00;
writeln('Number of bauds is ',numbauds);

for baudcount := 1 to numbauds do

begin
DiffEncode;
writeln('Performing IFFT ' ,BAUDCOUNT,' ',

NUMBAUDS-~BAUDCOUNT, ' left');

Cnvttotime;
ScaleData;

end; (*for BAUDCOUNT¥*)

BYTECOUNT := 256 + NUMBAUDS*kx -~ 1;
writeln(bytecount);

repeat
writeln('Press return to transmit');readln;
Dmainit(BCST,BYTECOUNT);
repeat
writeln('Transmit some more? (*yes or no*) ');




readln(ANSWER);
B.ntil ANSWER in ['n','N','y','Y'];
mastop;
until ANSWER in ['n','N'];

dispose(XREAL);
dispose(XIMAG);
close(BYTEFILE);
close(TESTFILE);
(* reset(TESTFILE);
while not EOF(TESTFILE) do
begin
while not EOLN(TESTFILE) do
begin
read(TESTFILE ,NEXTCHAR);
write(NEXTCHAR);
end;
readln(TESTFILE);
writeln;
end;
close(TESTFILE); *)
end.
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APPENDIX C. D16-QAM TRANSMIT PROGRAM

program DQAMXMIT;

(*Transmits a syncbaud and message from file 'MESSAGE.DAT'.
The message is differentially encoded using 16-QAM. 'MESSAGE. DAT'
is a8 text file. It should already exist before using this program.
Qutput is used to collect data for TESTING*)

uses crt,plrte55;

const
FIRST_ELEMENT = -28929;

type
TNvector = array|[0..4095] of single;
TNvectorPtr = TNvector;

BCSTARRAY = array[ FIRST_ELEMENT..32767] of byte;

var
kx,
k1,k2,I,w,
NUMBAUDS ,MAXNUMBAUDS,
BAUDCOUNT ,BYTECOQUNT,
SYMBOLCOUNT ,MAXNUMCHAR,
MESSAGESIZE,dmachn,
n2p,bkOpsz,bklpsz,
port,Aadd,proc :integer;
Badd :word;
MAGNITUDE,
CHARACTERS_PER_BAUD,
PREV_TONE_MAGNITUDE,PREV_PHASE :single;

XREAL,XIMAG : TNvectorPtr;

INVERSE :boolean;

TEMPBYTE ,ERROR :byte;

BCST : BCSTARRAY;

BYTEFILE : file of byte;

TESTFILE : text;

ANSVWER,

NEXTCHAR : char;

plbuf rarrayl[0..768] of integer;

(SL dmainit)
($L dmastop)

procedure Cnvttotime;
{**computes inverse FFT, returns values in XREAL *)

type
pass = array[0..8191] of single;
passptr = pass;




var
FVALUES :passptr;

begin
new(FVALUES);
fillchar(FVALUES ,sizeof(FVALUES ),0);
for i:= 0 to kx-1 do
begin
FVALUES [ 2%i]
FVALUES [ 2%i+1]
end;
plxfto(FVALUES ,Aadd,2*kx);
plwtxf;
vfieee(Aadd,Aadd,2*kx);
cifft(Aadd,n2p);
cereal(Aadd,Badd,kx);
vtieee(Badd,Badd,kx);
plwtrn;
plxffm(Badd,XREAL ,kx);
plwtxf;
dispose(FVALUES);
end; (*Cnvttotime¥)

XREAL [ i];
XIMAG [i];

procedure SyncBaud;
(*Process the synchronization baud and stores the 256 point
time domain sequence &t the beginning of the packet storage

area. ™)
var
J, TEMP : integer;
SYNCDATA : byte;
SYNCMAG : single;
syncvals : text;
begin

assign(syncvals, 'syncvals.dat');
rewrite(syncvals);

kx:=256;

n2p: =8;

SYNCHAG: = MAGNITUDE;
fillchar(XREAL ,sizeof(XREAL ),0);
fillchar(XIMAG ,sizeof(XIMAG ),0);

XREAL [68]:= -SYNCMAG ; XIMAG [68]:= -SYNCMAG ;
XREAL [69]:= -SYNCMAG ; XIMAG [69]:= -SYNCMAG ;
XREAL [70]:= -SYNCMAG ; XIMAG [70]:= SYNCMAG ;
XREAL [71]:= -SYNCMAG ; XIMAG [71]:= SYNCMAG ;
XREAL [72]:= SYNCMAG ; XIMAG [72]:= -SYNCMAG ;
XREAL [73]:= SYNCMAG ; XIMAG [73]:= SYNCMAG ;
XREAL [741:= -SYNCMAG ; XIMAG [74]:= SYNCMAG ;
XREAL [75]:= SYNCMAG ; XIMAG [75]:= SYNCMAG ;
XREAL [76]:= -SYNCMAG ; XIMAG [76]:= SYNCMAG ;
XREAL [77]:= -SYNCMAG ; XIMAG [77]:= -SYNCMAG ;
XREAL [78]:= SYNCMAG ; XIMAG [78]:= -SYNCMAG ;
XREAL [79]:= -SYNCMAG ; XIMAG [79]):= -SYNCMAG ;
XREAL [80]:= SYNCMAG ; XIMAG [80]:= SYNCMAG ;




XREAL [81]:= SYNCMAG ; XIMAG [81]:= -SYNCMAG ;
XREAL [82]:= -SYNCMAG ; XIMAG [82]:= -SYNCMAG ;
XREAL [83]:= SYNCMAG ; XIMAG [83]:= SYNCMAG ;

{(*complex conjugate image*)
for J := 68 to 83 do
begin
XREAL [256-J]:= XREAL [J];
XIMAG [ 256-J]:=-XIMAG [J];
end; (*for J¥)

Cnvttotime; (*compute the 256 time domain values¥)

for J := 0 to 255 do (*force values to range 0-255%)
begin (*for d/a conversion¥)
TEMP: =round(XREAL [J] + 126);
if TEMP < 0 then
TEMP: =0;
SYNCDATA: =TEMP;
BCST[ J+FIRST_ELEMENT] : =SYNCDATA;
(* writeln(syncvals,BCST[ J+FIRST_ELEMENT]); *)
end; (*for J¥)
close(syncvals);
end; (*SyncBaud¥)

procedure SelectBaud;
(*SelectBaud establishes kx, k1, and k2, and n2p*)

var
ANSWER : integer;

begin
kx: =0;
repeat
if kx < 0 then writeln('TRY AGAIN');
writeln('What is the length of the bauds (kx)7');
writeln('i.e. 256, 512, 1024, 2048, 4096');
readln( ANSWER);
case ANSWER of
256: begin
kl:=5; k2:=85; kx:=256; n2p:=8;
end;
512: begin
k1:=10; k2:=170; kx:=512; n2p:=9;
end;
1024: begin
k1:=20; k2:=340; kx:=1024; n2p:=10;
end;
2048: begin
k1:=40; k2:=680; kx:=2048; n2p:=11;
end;
4096: begin
k1:=80; k2:=1360; kx:=4096; n2p:=12;
end;
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end; (*case kx*)
if kx = 0 then kx := -1;
until kx > 0;
end; (*SelectBaud¥)

procedure TailorPacket;
(*TailorPacket sets the maximum number of baud required to
encode the message®)

begin
MESSAGESIZE: = filesize(BYTEFILE);
writeln('Message is ' ,MESSAGESIZE,' bytes.');
CHARACTERS_PER_BAUD: = (k2-kl1)/2; (*for qpsk: (k2-k1)/4;%*)
MAXNUMCHAR: = trunc(10240. 0/kx * CHARACTERS_PER_BAUD);
if MESSAGESIZE > MAXNUMCHAR then
begin
writeln('Message is to large. The last ',
MESSAGESIZE - MAXNUMCHAR,
' characters will not be transmitted.');
MESSAGESIZE: =MAXNUMCHAR;
end;
MAXNUMBAUDS: =trunc(MESSAGESIZE / CHARACTERS_PER_BAUD);
if frac(MESSAGESIZE / CHARACTERS_PER_BAUD) > 0.0 then
MAXNUMBAUDS: =MAXNUMBAUDS + 1;

repeat

writeln;

writeln('Enter number of ',kx,' bauds to process. ',
MAXNUMBAUDS,' is the maximum. ');

read In(NUMBAUDS);

until NUMBAUDS in [ 1..MAXNUMBAUDS];
end; (*TailorPacket™)

procedure DiffEncode;

(*DiffEncode differentially encodes the message on & tone-to-tone
basis. BYTEFILE is read from one byte at a time. The byte
is isolated into two 4-bit groups. Then the first three bits
in each symbol of 4 bits are used to determine the phase shift
between tones, and the last bit of the 4 bit symbol is to
determine the magnitude offset . The encoded tones are
converted to rectangular coordinates and are stored in the arrays
XREAL and XIMAG. Bytes partially encoded are carried over into the
next baud by global variable TEMPBYTE *)

var
SHORT_VECTOR, LONG_VECTOR,PHASESHIFT,
TONE_MAGNITUDE,TONE_PHASE,
PREV_TONE_PHASE ,PREV_TONE_MAGNITUDE :single;
DELTAPHI ,DELTAMAG :byte;
J : integer;
begin

fillchar(XREAL ,sizeof(XREAL ),0);
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fillchar(XIMAG ,sizeof(XIMAG ),0);
LONG_VECTOR := MAGNITUDE;
SHORT_VECTOR := LONG_YECTOR*0. 5;
PREV_TONE_MAGNITUDE := SHORT_VECTOR;
PREV_PHASE 1= 22.5;

XREAL [kl1] SHORT_VECTOR * cos(22,5%pi/180.0);

XIMAG [kl1] S1HORT_VECTOR * sin(22.5%pi/180.0);
(* 4if BAUDCOUNT = 3 then *)
wrlteln(TESTFILE baudcount,' ',kl,' ',PREV_TONE_MAGNITUDE,
,PREV_PHASE);

if SYMBOLCOUNT = 0 then
read(bytefile, TEMPBYTE);

for J:= (k1 +1) to k2 do
begin
SYMBOLCOUNT := SYMBOLCOUNT + 1;
(*seperate magnitude/phase bits¥)

if frac(SYMBOLCOUNT/2) = 0.5 then

begin
DELTAPHI := (TEMPBYTE and $EO) shr 5;
DELTAMAG := (TEMPBYTE and $10) shr 4;

end;

if frac(SYMBOLCOUVT/Z) 0.0 then

begin
DELTAPHI := (TEMPBYTE and $0E) shr 1;
DELTAMAG := (TEMPBYTE and $01);

if NOT EOF(bytefile) then
reud(bytefile, TEMPEYTE)
else
TEMPBYTE := $02;
end;

(*differentially encode the last bit in the four bit symbol%*)

if PREV_TONE_MAGNITUDE = SHORT_VECTOR then
begin
case DELTAMAG of
0: TONE_MAGNITULDE :
1. TONE_MAGNITUDE :
end;
end (*previous tone short case¥)
else (*PREV_TONE_MAGNITUDE = LONG_VECTOR*)
begin
case DELTAMAG of
0: TONE_MAGNITUDE LONG_VI.CTOR;
1: TONE_MAGNITUDE SHORT_VECTOR;
end; (*end previous tone long case*)

SHORT_VECTCR;
LONG_VECTOR;

end;

(*Now use the first three bits in the symbol to determine the
amount of phase rotation to the next encoded tone®)
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case DELTAPHI of

0: PFASESHIFT := 0;
1: PHASESHIFT := 45;
2: PHASESHIFT := 135;
3: PHASESHIFT := 90;
4: PHASESHIFT := =45;
5: PHASESHIFT := =-90;
6: PHASESHIFT := 180;
7: PHASESHIFT := -135;
end; (*case DELTAPHI of*)

(*Now asuign the actual phase of the tone being encoded which is a
function of the previous phase, and the phaseshift*)

TONE_PHASE := PREV_PHASE + PHASESHIFT;
if TONE_PHASE >= 360.0 then
TONE_PHASE := TONE_PHASE - 360.0;

(*Now convert the magnitude and phase of the tone to rectangular
cocrdinates®)

XREAL [J]
XIMAG [J]

TONE_MAGNITUDE * cos(TONE_PHASE*pi/180);
TONE_MAGNITUDE * sin(TONE_PHASE*pi/180);

(*Save the newly encoded tone's magnitude and phase for the next
encoding iteration *%)

FREV_TONE_MAGNITUDLE :
PREV_PHASE

TONE_MAGNITUDE;
TONE_PHASE;

(* 4if BAUDCOUNT = 3 then *)
writeln(TESTFILE,baudcount,' ',J,' ',TONE_MAGNITUDE,' ',
TONE_PHASE);

end; (*end of encoding proce's for one tone,
encode next tone®)

(*Put the complex conjugate of the encoded tones in the second half
p 0
of the array before computing the IFFT for this baud¥)

for J:= k1 to k2 do
begin

XPEAL [{kx - J]:= XREAL [J};
XIMAG [kx - J]:=~-XIMAG [J];
end;
end; (*DiffEncode™)
(T gy g g *)

procedure ScaleData;

(**ScaleData converts each real value in XREAL down to a byte
and stores the byte in the packet storage buffer, BCST.
INDEY esteblishes the location in the buffer of each byte
in the packet. )




var

INDEX,J, TEMP i integer;
DATA :byte;
begin
for J := 0 to kx-1 do
begin
IF (xreal [J] > 127) then
begin

writeln('broadcast values > 127',xreal [J]:8:2);
(* halt; *)
end;
TEMP := rouad(XREAL [J] + 126);
if TEMP < 0 then
TEMP := 0;
DATA := TEMP;
(*256 is added to INDEX to start message bauds
after the sync baud¥®)
INDEX := J+(BAUDCOUNT-1)*kx+FIRST_ELEMENT+256;
BCST{ INDEX] := DATA4;
(* if baudcount = 1 then
writeln(testfile,J:4,' ',round(XREAL [J])); *)
end; (% for J¥%)
end; (¥*ScaleData®)

(G R e L R L L L LT *)

procedure Dmastop; external;
(*Masks DMA, stopping data transfer.¥)

procedure Dmainit(var BCST: BCSTARRAY;, BYTECOUNT: integer) ;external;
(*Assembly language procedure used to initialize and unmask

the DMA for data transfer. The source code must be

converted to a OBJ file. ™)

(-.'r .......................................................... *)
dmachn: =0;

plinit(dmachn,plbuf,sizeof(plbuf));
plslib('C: PL1250 PLLIB.15');

proc: =1;
port:=50318;
bkOpsz: =0;

bklpsz: =1024;
plsprc(proc,port,bkOpsz,bklpsz);
Aadd: =50400;

Badd: =$§8400;

new( XREAL);
new(XIMAG);

(*contains hex values to be encoded and transmitted®*)
assign(BYTEFILE, 'MESSGE. DAT');
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reset(BYTEFILE);

(*Output file of encoded symbols. Used for system testing*)
assign(TESTFILE, 'XMITDAT. DAT');
rewrite(TESTFILE);

repeat
writeln('Enter magnitude of tones. (greater than 65, less than
1501)");
readln(MAGNITUDE);
until MAGNITUDE > 0.0;

writeln('Loading sync baud.');
SyncBaud;

SelectBaud;

TailorPacket;

SYMBOLCOUNT: =0;
TEMPBYTE: =$00;
writeln('Number of bauds is ',numbauds);

for baudcount := 1 to numbauds do
begin
DiffEncode;
writeln('Performing IFFT ',BAUDCOUNT,' ',
NUMBAUDS-BAUDCOUNT, ' left');
Cnvttotime;
ScaleData;

end; (*for BAUDCOUNT¥)

BYTECOUNT := 256 + NUMBAUDS*kx - 1;
writeln(bytecount);

repeat
writeln('Press return to transmit');readln;
Dmainit(BCST,BYTECOUNT);

repeat
writeln('Transmit some more? (*yes or no*) ');
readIn(ANSWER);

until ANSWER in ['n','N','y','Y'];

Dmastop;

until ANSWER in ['n','N'];

dispose(XREAL);

dispose( XIMAG);

close(BYTEFILE);

close(TESTFILE);
end.
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APPENDIX D. DQPSK RECEIVE PROGRAM

program DQPSKREC;

(*Acquires the signal. Stores it in a memory buffer.
Differential decodes between tones. Maximum number of bauds
are received. The number of bauds processed is a user input¥)

uses Graph,Crt,tp55d16,plrte5s;

($I-)
($R-)
const Max_Buffer = 65500;

type
(*TYPE for real and imaginary data for FFT routing¥)

TNvector = array[0..4095] of single;

TNvectorPtr = TNvector; (*Pointer for FFT data array
which allows dynamic
allocation of memory¥*)

clr = array[0..4095]) of word;

clrptr = clr;

var
INVERSE :boolean;
XREAL,XIMAG : TNvectorPtr;
~olor :clrptr;
ERROR, TEMPBYTE :byte;

J,I,xradd,xroadd,proc,port,
k1,k2,kx,ANSWER,ERR_CODE,
BAUDCOUNT, SYMBOLCOUNT ,n2p,
NUMBAUDS ,MA¥NUMBAUDS ,dmachn,

bkOpsz,bkipsz :integer;

MAGNITUDE , PHASE treal;

DATAVECTOR : integer;

DMAFPOINTER :pointer;

QUTFILE,recdat : TEXT,;

plbuf ;array[ 0..4095] of integer;
T T T T *)

procedure PacketSetUp;

begin
repeat

clrscr;
if kx < 0 then writeln('TRY AGAIN');
writeln( 'Enter baud size ');
readln(ANSWER);
case ANSWER of

256; begin

kx:= 256; n2p:=8; kl:=5; k2:=85;
end;
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512: begin
kx:= 512; n2p:=9; kl:=10; k2:=170;
end;
1024: begin
kx:=1024; n2p:=10; k1:=20; k2:=340;
end;
2048: begin
kx:=2048; n2p:=11; kl:=40; k2:=680;
end;
4096: begin
kx:=4096; n2p:=12; kl1l:=80; k2:=1360;
end;

end; (*case®)

if kx = 0 then kx := -1;
until kx > O;

MAXNUMBAUDS := trunc((MAX_BUFFER/2)/kx);

repeat
writeln;
writeln('Enter number of ',kx,' bauds to process. ',
MAXNUMBAUDS,' is the maximum.');
readln(NUMBAUDS);
until NUMBAUDS in [ 1..MAXNUMBAUDS];
end; (*%PacketSetUp*)

procedure AcquireData;

(*AcquireData initializes Metrobyte DASH-16F data acquisition
board, using TTOOLS procedure D16_int and D16_ainm. Data
transfer is controlled by the DMA controller and initialized
by D16_ainm and disabled by D16_dma_int_disable. TTOOLS
procedures are external procedures included by ‘uses' tp4dlé.+*)

var
RATE: real;
I,CNT_NUM, MODE, CYCLE, TRIGGER,
BASE_ADR, INT_LEVEL, DMA_LEVEL,
BOARD_NUM, CHANLO,
OP_TYPE, STATUS, NEXT_CNT, ERR_CODE_S : integer;
begin

BOARD_NUM := C; INT_LEVEL := 7; DMA_LEVEL := 1;
BASE_ADR := §300;

D16_init(BOARD_NUM,BASE_ADR,INT_LEVEL,DMA_LEVEL,ERR_CODE);

CHANLO := 0;

CYCLE: =0; (*0-one sweep of the DMA 1-autoinitialize¥)
TRIGGER:=0; (*0 - external 1 - internal¥)
CNT_NUM:=32767; (*# of samples¥)

RATE := 10000.0; (%*used for internal trigger™)

MODE := 2; (*DMA mode*)

writeln('Ready to acquire');
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D16_ainm(BOARD_NUM,CHANLO,MODE ,CYCLE ,TRIGGER,CNT_NUM,
RATE, DATAVECTOR ,ERR_CODE);

STATUS := 11,

(*status indicates the progress of acquisition. When all
samples have been acquired status=0%¥)
repeat
D16_dma_int_status(BOARD_NUM,O0P_TYPE,STATUS ,NEXT_CNT,
ERR_CODE_S);
until STATUS = 0;
writeln('Data received');

if ERR_CODE <> 0 then
D16_print_error(ERR_CODE);
D16_dma_int_disable(BOARD_NUM,ERR_CODE);
end; (*Acquire¥)

(* --------------------------------------------------------- *)

procedure ConvertData;
(*ConvertData seperates channel and acquired data. CHAN_DATA
is not used. Acquired data is stored in XREAL. *)

var
AD_DATA: array[0..4095] of integer;
1,CHAN_DATA,ERR_CODE,

SEGMENTPART ,OFFSETPART :integer;

NEWDATAVECTOR tinteger;

TEMPPOINTER : pointer;
begin

fillchar(xreal ,sizeof(xreal ),0);

fillchar(ximag ,sizeof(ximag ),0);

SEGMENTPART: =seg(DATAVECTOR );

OFFSETPART: =ofs(DATAVECTOR ) + 2 * kx * (BAUDCOUNT - 1);

TEMPPOINTER: =ptr( SEGMENTPART,OFFSETPART);

NEWDATAVECTOR := TEMPPOINTER;

d16_convert_data(2047 ,kx,NEWDATAVECTOR ,AD_DATA[ O],
CHAN_DATA,O0,ERR_CODE);

for I:= 0 to (kx - 1) do

begin
xreal [i] := AD_datal[i];
end;
end; (*ConvertData’™)
(#=memceemamcncccamacacmcecmamcecscsenescecsccenmeemoea——a *)

procedure DiffDecode;

(*DiffDecode differentially decodes complex frequency domain
arrays XREAL and XIMAG. Four decoded symbols are recombined
into a byte and transferred to file BYTESOUT. DAT. %)

var




I

TEMPREAL,

BITS
TEMPCHAR

begin

: integer;
:single;
:byte;

: char;

TEMPIMAG

fillchar(color ,sizeof(color ),0);

for I :
begin

kl to (k2 - 1) do

(*Complex multiply two adjacent tones, I and the complex

conjugate of I+l. This will give the phase difference
between the two tones. The answer is in rectangular

notation¥)
TEMPREAL: =XREAL [I] * XREAL [I+1] +
XIMAG [I] * XIMAG [I+1];
TEMPIMAG: =XREAL [I] * XIMAG [I+1] -~
XREAL [I+1] * XIMAG [I];

(*Complex multiply (TEMPREAL + j TEMPIMAGE) and (1+j).
This rotates the differential vector pi/4 radians.
XREAL [I] and XIMAG [I] are used to store the results.
This eliminate the original data¥*)

XREAL [I}:=(TEMPREAL - TEMPIMAG) / 80;
XIMAG [I}:=(TEMPREAL + TEMPIMAG) / 80;
(*decode*)
if (XREAL [I] >= 0) and (XIMAG [I] > 0) then
begin
BITS:=$00; color [I] := 0;
end;
if (XREAL [I] < 0) and (XIMAG [I] > 0) then
begin
BITS:=$01; color [I] := 10;
end;
if (XREAL [I] < 0) and (XIMAG [I] <= 0) then
begin
BITS:=$03; color [I] := 14;
end;
if (XREAL [I] >= 0) and (XIMAG [I] <= 0) then
begin
BITS:=802; color [I] := 12;
end;

if

if

if

if

(*fill TEMPBYTE with four symbols¥)

y‘

SYMBOLCOUNT := SYMBOLCOUNT + 1;

frac(SYMBOLCOUNT / 4) = 0.25 then
TEMPBYTE := (BITS shl 6);
frac(SYMBOLCOUNT / 4) = 0.5 then
TEMPBYTE := (BITS shl 4) or TEMPBYTE;
frac(SYMBOLCOUNT / 4) = 0.75 then
TEMPBYTE := (BITS shl 2) or TEMPBYTE;
(frac(SYMBOLCOUNT / 4) = 0.0) then
begin
TEMPBYTE :
TEMPCHAR :

BITS or TEMPBYTE;
chr(TEMPBYTE);
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end;

write(tempchar);

TEMPBYTE: =0;
end; (*if frac¥)
(*for I%)

XREAL [k2]:=1;
XIMAG [k2):=1;
end; (*DiffDecode™)

procedure viewphase;

var
shade

:word;

gd,gm,pta,ptb,ptl,pt2,ynzlo,ynzhi,yzlo,yzhi :integer;

begin

gd: =detect;

initgraph(gd,gm,'C: TP DRIVERS');

if graphresult <> grOk then
halt(1);

setgraphmode(1);

setbkcolor(0);

setcolor(15);

(*draw axes¥)
1ine(50,0,50,140);
line(50,140,590,140);
1line(50,180,50,320);
1ine(50,320,590,320);

(*compressed and zoom spectrum¥)

ynzhi

73,
555;

1= 140,

15;
50 + round(0.53 * (590-50));
50 + round(0.70 * (590-50));
= 320,
:= 320 - 1304

line(pta,yzlo,ptl,ynzlo);
line(pta+30%15,yzlo,pti1+48,ynzlo);

i:= 68;

repeat
shade := color {i];
setcolor(shade);

line(ptl + 3*(i-68),ynzlo,ptl + 3*%(i-68),ynzhi);
if shade = 0 then
begin
setfillstyle(ltslashfill,14);
bar(pta+30*%(i-68)-~3,yzlo,ptat+30*%(i-68)+3,yzhi);
end
else if shade > 0 then
line(pta +30%(i-68),yzlo,pta +30%(i-68),yzhi);
i 1= i+];
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until(i=83);
setcolor(14);
settextJustlfy(centertext centertext),
outtextxy(300,10,'Zoom Spectrum s
outtextxy(zgs,getmaxy d1v 2,'Compressed Spectrum’);
outtextxy(295,ynzlo +20? Relatlve position of tone in 256 baud');
outtextxy(ptl,ynzlo+10, K1' ),
outtextxyv(ptl+16*3, ynzlo+10 'K2');
outtextxy(590,ynzlo+10, 'KX/2");
repeat
until(keypressed);

end; (*viewphase¥)

procedure Showmessage;
(*Showmessage read in decoded message¥)

var
NEXTCHAR: char;

begin
writeln;
writeln('The message transmltted is..");
assign(OUTFILE, 'MESSAGE. DAT');
reset(OUTFILE);
while not EQF(OQOUTFILE) do
begin
while not EOLN(OUTFILE) do
begin
read(QUTFILE ,NEXTCHAR);
write(NEXTCHAR);
end; (**while not EOQLN¥)
readln(OUTFILE);
writeln;
end; (*'whiile not EQF¥)
close(OUTFILE);
end; (*Showmessage™)

begin (*main body*)

dmachn: =0;
pllnlt(dmachn plbuf, 51zeof(p1buf)),
plslib('C: PL850 PLLIB.15');

proc:= 1;
port:= $O318;
bkOpsz: =0;

bklpsz:=1024;
plsprc(proc,port,bklpsz,bklpsz);

GetDMABuffer(MAX_BUFFER,DMAPOINTER,ERR_CODE);

DATAVECTOR := DMAPOINTLEK; (*This statement assigns a
generic pointer to a variable of a specific pointer




(>

type, i.e. integer, so that the pointer can be
passed to the dlé_ainm routine.*)

assign(recdat,'recdat.dat');
rewrite(recdat);

new(color);

new( XREAL);
new(XIMAG);

ERROR := 0;

kx: =0;

SYMBOLCOUNT: =0;

TEMPBYTE: =0;

PacketSetUp; (*determine baud lengths*)

AcquireData; (*AcquireData samples input analog signal¥*)

xradd: =§0400;
xrcadd: =§4400;

for BAUDCOUNT := 1 to NUMBAUDS do

begin
ConvertData;
plxfto{xreal ,xradd,kx);
plwtxf;
viieee(xradd,xradd,kx);
rfft(xradd,n2p);
vtieee(xradd,xradd,kx);
plwtrn;
plxffim(xradd,xreal ,kx);
plwtxf;
for j:= 0 to kx div 2 do
begin
xreal [j] := xreal [2*]j];
ximag [j] := xreal [2%j+1];
end;

ximag {0] := 0;
if baudcount = 3 then
begin
for i := kl to k2 do
begin
writeln(recdat,baudcount,’' ',I,' ',XREAL [I],
'O'LXIMAG [1]);
end;
end;
DiffDecode;
end;
delay(1000);
if kx = 256 then
viewphase;

close(recdat);
close(OUTFILE); *)
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dispose(XREAL);

dispose(XIMAG);

FreeDMABuffer(MAX_BUFFER »DMAPOINTER,ERR_CODE);
(* Showmessage; *)
(* writeln('Error = ',ERROR,' hit the enter key'); readln; *)
end.
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APPENDIX E. D16-QAM RECEIVE PROGRAM

program DQAMREC;

(*Acquires the signal. Stores it in a memory buffer.
Differential decodes between tones. Maximum number of bauds
are received. The number of bauds processed is a user input¥)

uses Graph, Crt, tp55di6,plrte55;

($I-)
($R-)
const Max_Buffer = 65500;

type
(*TYPE for real and imaginary data for FFT routing¥)
TNvector = array[0..4095] of single;
TNvectorPtr = TNvector;(*Pointer for FFT data array whi-h
which allows dynamic allocation of memory*)

var
INVERSE :boolean;
XREAL, XIMAG : TNvectorPtr;
ERROR, TEMPBYTE : byte;

J,I,xradd,xroadd,proc,port,
k1,k2,kx,ANSWER,ERR_CODE,
BAUDCOUNT, SYMBOLCOUNT ,n2p,
NUMBAUDS ,MAXNUMBAUDS ,dmachn,

bkOpsz,bklipsz :integer;

MAGNITUDE , PHASE :real;

DATAVECTOR : integer;

DMAPOINTER :pointer;

OCTTILE,recdat : TEXT;

plbuf :array[ 0..4095] of integer;
(¥eeemccccccmeaccmccenmctcccemenrrccreccacrmanmcsecerancaaans. *)
procedure PacketSetUp;
begin

repeat
clrscr;

if kx < 0 then writeln('TRY AGAIN');
writeln( 'Enter baud size ');

readln(ANSWER);
case ANSWER of
256: begin
kx:= 256; n2p:=8; kl:=5; k2:=85;
end;
512. begin
kx:= 512; n2p:=9; kl:=10; k2:=170;
end;
1024; begin
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kx:=1024; n2p:
end;
2048: begin
kx:=2048; n2p:
end;
4096: begin
kx:=4096; n2p:
end;
end; (*case¥)

10; k1:=20; k2:=340;

11; kl:=40; k2:=680;

12; k1:=80; k2:=1360;

if kx = 0 then kx := -1;
until kx > 0;

MAXNUMBAUDS := trunc((MAX_BUFFER/2)/kx);

repeat
writeln;
writeln('Enter number of ',kx,' bsauds to process. ',
MAXNUMBAUDS,' is the maximum.');
readln(NUMBAUDS);
until NUMBAUDS in [1..MAXNUMBAUDS];

end; (*PacketSetUp*)
(Fmmmemmemm e ccececccenmecccmcaceccceceececmee——aa- #)

procedure AcquireData;

(*AcquireData initializes Metrobyte DASH-16F data acquisition
board, using TTOOLS procedure D16_int and D16_ainm. Data
transfer is controlled by the DMA controller and initialized
by D16_ainm and disabled by D16_dma_int_disable. TTOOLS
procedures are external procedures included by 'uses' tp4dl6.*)

var

RATE: real;

I,CNT_NUM, MODE, CYCLE, TRIGGER,

BASE_ADR, INT_LEVEL, DMA_LEVEL,

BCARD_NUM, CHANLO,

OP_TYPE, STATUS, NEXT_CNT, ERR_CODE_S : integer;
begin

BOARD_NUM := 0; INT_LEVEL := 7, DMA_LEVEL := 1;
BASE_ADR := $300;

D16_init( BOARD_NUM,BASE_ADR,INT_LEVEL,DMA_LEVEL,ERR_CODE);

CHANLO := 0

CYCLE: =0; (*0-one sweep of the DMA 1-autoinitialize¥)
TRIGGER:=0; (*0 - external 1 - internal®)
CNT_NUM:=32767; (*# of samples¥)

RATE := 10000.0; (%*used for internal trigger¥)

MODE := 2; (*DMA mode™)

writeln('Ready to acquire');

D16_ainm(BOARD_NUM,CHANLO,MODE,CYCLE,TRIGGER,CNT_NUM,
RATE, DATAVECTCR ,ERR_CODE);
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STATUS := 11;
(*status indicates the progress of acquisition. When all
samples have been acquired status=0%)

repeat
D16_dma_int_status(BOARD_NUM,OP_TYPE,STATUS ,NEXT_CNT,
ERR_CODE_S);
until STATUS = 0;
writeln('Data received');

if ERR_CODE <> 0 then
D16_print_error(ERR_CODE);
D16_dma_int_disable(BOARD_NUM,ERR_CODE);
end; (*Acquire®)

procedure ConvertData;
(*ConvertData seperates channel and acquired data. CHAN_DATA
is not used. Acquired data is stored in XREAL. *)

var
AD_DATA: array[O0..4095] of integer;
I,CHAN_DATA,ERR_CODE,

SEGMENTPART,OFFSETPART tinteger;

NEWDATAVECTOR :integer;

TEMPPOINTER : pointer;
begin

fillchar(xreal ,sizeof(xreal },0);

fillchar(ximag ,sizeof(ximag ),0);

SEGMENTPART: =seg(DATAVECTOR );

OFFSETPART: =ofs(DATAVECTOR ) + Z * kx * (BAUDCOUNT - 1);

TEMPPOINTER: =ptr( SEGMENTPART,OFFSETPART);

NEWDATAVECTOR := TEMPPOINTER;

dlé_convert_data(2047,kx ,NEWDATAVECTOR ,AD_DATA[ O],
CHAN_DATA,0,ERR_CODLE);

for I:= 0 to (kx ~ 1) wuo
begin
xreal [i] := AD_data[ i);
(* writeln(valsin, Real in is ',xreal [i):8:3,
"at ',i:5); ¥)
end;
end; (*ConvertData*)

procedure DiffDecode;

(*DiffDecode differentially decodes complex frequency domain
arrays XREAL and XTMAG. Two decoded symbols are recombined
into a byte and transferred to the screen¥)

var
I i integer;
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TEMPREAL,TEMPIMAG,OLDMAG ,NEWMAG :single;

BITS,PHASEBITS ,MAGBIT :byte;
TEMPCHAR : char;
begin
for I:= kl to (k2-1) do
begin

SYMBOLCOUNT: = SYMBOLCOUNT + 1;
(*save the current and next magnitudes for future decoding¥)

OLDMAG :

sqrt(sqr(XREAL [I]) + sqr(XIMAG [I]));
NEWMAG :

sqrt(sqr(XREAL {I+1]) + sqr(XIMAG [1+1)));

(*complex multiply adjacent tones to get rhase differential¥)

TEMPREAL := XREAL [I] * XREAL [I+1] +
XIMAG [I] * XIMAG [I+1];
TEMPIMAG := XREAL [I] * XIMAG [I+1] -

XKEAL [I+1] * SIMAG [I] ;

(*now rotate phase by 22.5 degrees to line up with constellation
phase sectors¥®)

XREAL [I] := 0.92 * TEMPREAL - 0.38 * TEMPIMAG;
XIMAG {I] := 0.92 * TEMPIMAG + 0.38 * TEMPREAL;
(* writeln(freqsl,I,' ',XREAL [I]:8:4,"' ' XIMAG [I]:8:4); *)

(*decode the phase difference into the first three bits of the
symbol to be recovered¥®)

PHASEBITS := $00;

if (XREAL [I) > C) and (XIMAG [I] > 0) then
if XREAL [I] > XIMAG [I] then
PHASEBITS : = $00
else PHASEBITS := $02;

if (XREAL [I]} < 0) and (XIMAG [I] > N) then
if abs(XREAL [I]) > XIMAG [1] then
PHASEBITS := $04
else PHASEBITS := $06;

if (XREAL [I] < 0) and (XIMAG [I] < 0) then
if abs{XREAL [I]) > abs’XIMAG [I]) then
PHASTBITS := $0C
else PHASEBITS := $0L;

if (XREAL [I] > 0) and (XIMAG [I} < 0) then
if YREAL [I] > abs(XMAG [I]) then
PHASEBITS := $08
else PHASEBITS := $0A;

(*now differentially decode the magnitudes of the tones to get the
fourth and last bit in the symbol™®)
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if (NEWMAG > 1.5%0LDMAG) or (NEWMAG < 2*QLDMAG/3)
then MAGBIT := §01
else MAGBIT := $00,

(*now jam all the bits together¥)

(*£i11 TEMPBYTE with two symbols¥)
if frac(SYMBOLCOUNT / 2) = 0.5 then
TEMPBYTE := ((PHASEBITS or MAGEIT) shl 4);
if (frac(SYMBOLCOUNT / 2) = 0.0) then
begin
TEMPBYTE := (PHASEBITS or MAGBIT) or TEMPBYTE;
TEMPCHAR := chr(TEMPBYTE);
write(TEMPCHAR); (*put ascii character to screen¥)
(* write(OUTFILE,TEMPCHAR); *)
TEMPBYTE: =0;
end; (*if frac*)
end; (*for I%*)
end; (*DiffDecode)

procedure Showmessage; (*not used in this version®)
(*Showmessage read in decoded message™)

var
NEXTCHAR: char;

begin
writeln;
writeln('The message transmitted is..');
&ssign(OUTFILE, "MESSAGE. DAT');
reset(OUTFILE);
while not EQF(CUTFILE) do
begin
while not EQLN(OUTFILE) do
begin
read(OUTFILE ,NEXTCHAR);
write({ NEXTCHAR);
end; (*rvhile not EOLNY)
readln(OCTFILL);
writeln;
end; (*while noct LOTI¥)
close(GUTTILE);
enc; (*Showmessage™)

begin (“*main body¥)

dmachn: =0;
plinit{dmachn,pibuf,sizecf(plbuf));
plslib('c: pil250 pllib.153");

proc: = 1;
port:= $0218;
bklpsz: =0; .




bklpsz: =1024;
plsprc(proc,port,kapsz,bklpsz);

GetDMABuffer(MAX_BUFFER,DMAPOINTER,ERR_CODE);

. DATAVECTOR := DMAPOINTER; (*This statement assigns a
generic pointer to a variable of a specific pointer
type, i.e. integer, so that the pointer can be
passed to the dl6_ainm routine. %)

assign(recdat, 'recdat.dat');
rewrite(recdat);

new(XREAL);
new(XIMAG);

ERROR := 0;
kx:=0;

PacketSetUp;

SYMBOLCOUNT: =0;
TEMPBYTE: =0;

AcquireData; (*AcquireData samples input analog signal¥)

xradd: =50400;
xroadd: =$4400;

for BAUDCOUNT := 1 to NUMBAUDS do
begin
ConvertData;

plxfto(xreal ,xradd,kx);
plwtx$;
viieee(xradd,xradd,kx);
rfft(xradd,n2p);
vtieee(xradd,xradd,kx);

plwtrn;

plxffm{xradd,xreal ,kx);

plwtxf;

for j:= 0 to kx div 2 do

begin
xreal [j] := xreal [2%j];
ximag [j] := xreal [2%j+1];

end;

ximag [0] := 0;

(* 1if baudcount = 3 then )
for i := kl to k2 do

. begin
writeln(recdat,baudcourt,' ',I,' ' ,XREAL [I],
",XIMAG [1]);
end;
‘ DiffDecode;
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delay(500);
end;

(* close(QUTFILE); %)

close(recdat);

dispose(XREAL);

dispose(XIMAG);

FreeDMABuffer(MAX_BUFFER,DMAPOINTER,ERR_CQDE);
(* Showmessage; *)
(* writeln('Error = ',ERROR,' hit the enter key');readln;
end.
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APPENDIX F. SYNCHRONIZER PROGRAM

program SYNCLOAD;

uses crt;
type
reference_array = array[l..128] of byte;
var
j :integer;
reference_values :reference_array,
num_ref_vals :integer;
vals :text;
data :byte;
testref2 : text;
($L I)

( Fereve st T Tedt ety e Y e e de v Y e e v e Yo v ot e Y e et e de e v s e de v e v e e de e de e e de e s e e de e )

procedure I(var reference_values: reference_array;num_ref_vals: integer);

external;
( Fedeseveve st s vedede e e devedk fedr e e ve Yo de v e Yo v e de de e v de e s e e e e e s e dede s e e e e e de e de deaedlede )

begin
assign(vals,'vals.dat’');
reset(vals);
assign(testref2, ' testref2. dat');
reset(testref2);
num_ref_vals := 127;
for j := 1 to 128 do
begin
read(vals,data);
reference_values{ j] := datas;
writeln(reference_values| j] );
end;
I(reference_values,num_ref_vals);
close(vals);
close(testrefl);
end.
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APPENDIX G. DQPSK STATISTICS PROGRAM

program QPSKSNR;

(* This program uses the files XMITDAT.DAT and RECDAT.DAT to generate

a color plot of the errors in the received decoded tones. Green
indicates at least one phase decoding error in the ascii character.
(note that the file XMITDAT.DAT must be imported to the receive terminal
from the transmit terminal) %)

uses crt, graph;

var
answer,answer?2 : char;
i,j,n,rbaud,xbaud,rtone,xtone,
baudcount,numbauds,kl,k2,kx,count,
symbolcount,sector,b,btot,badbaud,
numbits,badbaud2,bj,colorflag :integer;
xtempreal,rtempreal ,xtempimag,
rtempimag,totphaserrs,symerrs,del,
sumr,sumi,tot,rmean, imean,varx,
Xxmagr,Xmagi,totsnr,snravg :single;
xbits,xphasebits,xmagbit,xtempbyte,
rbits,rphasebits,rtempbyte,

phasebitdiff, hue,pbdl,pbd2 :byte;
xtempchar,rtempchar : char;
xmitdat,recdat,output : text;
xreal,ximag,rreal,rimag,xmag,xphase :array[l..1280] of single;
recdata rarray[l..48,1..120] of single;
snrin :string|4];

(o m o e e e )

begin (main body)
clrscr;
assign(output,'output.dat’);
rewrite(output);
assign(xmitdat, ' xmitdat.dat');
reset(xmitdat);
assign(recdat, 'recdat.dat');
reset(recdat);
writeln('Enter the input snr');

readln(snrin};

writeln('Enter the baud length ');

readinlkx);

writeln(output);

writeln(output, The baud length is ',kx,' and the SNRIN =', snrin);

writeln('Enter the number of bauds to be processed');
readin(numbauds);

writeln('Throw out any bauds ? ');

readln(answer);

badbaud : =0;

badbaud2: =0;
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if answer in ['y','Y'] then
begin
writeln('Which baud ?');
readln(badbaud);
writeln('Any others 7');
readln(answer2);
if answer2 in ['y','Y'] then

begin
writeln('Enter baud #');
. readln(badbaud2);
end;
end;
case kx of
256: begin
kl:=5; k2:=85;
end;
512: begin
kl:=10; k2:=170;
end;
1024: begin
k1:=20; k2:=340;
end;
2048: begin
kl:=40; k2:=680;
end;
4096: begin
k1:=80; k2:=1360;
- end;

end; (case Kx)
TOTPHASERRS :=0;
SYMBOLCOUNT : =0; numbits: =0;
pbdl: =0; pbd2:=0; bj:=0;
totsnr: =0;
( count bit errors baud by baud )
(* read in transmit and receive values *)
for j:= 1 to numbauds do
begin
del:=0; rmean:=0; imean: =0;
tot:=0; sumx:=0; sumi:=0;
fillchar(recdata,sizeof(recdata),0);
for i:= 1 to k2-kl+l do
begin
readln(xmitdat,xbaud,xtone,xmag[i],xphase[i]);
readln(recdat,rbaud,rtone,rreal[i],rimag[i]);

if (xbaud <> rbaud) or (xtone <> rtone) then
begin
writeln('RECDAT and XMITDAT do not match');
halt;
end; (if xbaud)
xreall i]):=xmag[ i] *cos(xphase[1]*pi/180);
ximag[ i]:=xmag[ i] *sin(xphase[i]*pi/180);
end; (for read data files)
writeln;
. write(j,' ');
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for I:= 1 to k2-ki1 do
begin
colorflag: =0;
symbolcount: =symbolcount+1;
(*complex multiply adjacent tones to get phase differential®)
XTEMPREAL := XREAL{ I] * XREAL[I+1] +
XIMAG[ I] * XIMAG[I+1];

XTEMPIMAG := XREAL[I] * XIMAG[I+i] -
XREAL[ I+1] * XIMAG[ I ;

RTEMPREAL := RREAL[I] * RREAL[I+1] +
RIMAG[I] * RIMAG[ I+1];

RTEMPIMAG := RREAL[I] * RIMAG[I+1] -

RREAL{ I+1] * RIMAG[I];

(*now rotate phase by 45 degrees to line up with constellation
phase sectors™)
XREAL[ T] (XTEMPREAL - XTEMPIMAG)/80;
XIMAG[ 1] (XTEMPIMAG + XTEMPREAL)/80;
RREAL[I] := (RTEMPREAL - RTEMPIMAG)/80;
RIMAG[ 1] := (RTEMPIMAG + RTEMPREAL)/80;

(*decode transmitted bits¥)
XBITS := $00;

if (XREAL[I] >= 0) and (XIMAG[I] > 0) then

begin
XBITS := $0C;
end;
if (XREAL[I] < 0) and (XIMAG[I] > 0) then
begin
XBITS := §01;
end;
if (XREAL[I) < 0) and (XIMAG[I] <= 0) then
begin
XBITS := $§03;
end;
if (XREAL[I]} >= 0) and (XIMAG[I] <= 0) then
begin
XBITS := §02;
end;

(*decode the received bits¥)

RBITS := $00;
if (RREAL{I] >= 0) and (RIMAG[1] > 0) then
begin
RBITS := $00;
end;
if (RREAL[I] < 0) &aad (RiMAG[I]) > 0) then
begin
RBITS := §01;
end;
if (RREAL{I} < 0) and (RIMAG[I] <= 0) then
begin
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RBITS := $03;
end;
if (RREAL[I] >= 0) and (RIMAG[I] <= 0) then
begin
RBITS := §02;
end;

(*determine the number of bit differences between the received decoded
bits and the decoded transmitted bits¥)

PHASEBITDIFF := XBITS xor RBITS;

if (j <> badbaud) and (j <> badbaud2) then
begin

case PHASEBITDIFF of

$01: pbdl :=pbdl+l;

$02: pbdl :=pbdl+l;

$03: pbd2 :=pbd2+1l;

end; (case PHASEBITDIFT)

(*now count the total number of phase decoding errors¥)

TOTPHASERRS :
TOTPHASERRS :

TOTPHASERRS + PHASEBITDIFF and $01;

TOTPHASERRS +

(PHASEBITDIFF and $02) shr 1;
numbits: =numbits+2;

end;

(*assign colors to the text that is in error¥)
if PHASEBITDIFF > 0 then
cclorflag :=1;
. (*now jam all the bits together and color the errors¥)

(*£i11 TEMPBYTE with four symbols)
textcolor(15);
if frac(SYMBOLCOUNT / 4) = 0.25 then

begin
XTEMPBYTE := (XBITS shl 6);
RTEMPBYTE := (RBITS shl 6);
end;

if frac(SYMBOLCOUNT / 4) = 0.5 then
begin
XTEMPBYTE := (XBITS shl 4) or XTEMPRYTE;
RTEMPBYTE := (RBITS shl &) or RTEMPBYTE;
end;

if frac(SYMBOLCOUNT / 4) = 0.75 then
begin
XTEMPBYTE := (XBITS shl 2) or XTEMPBYTE;
RTEMPBYTE := (RBITS shl 2) or KTEMPBYTEL,
end;

if frac(SYMBOLCOUNT / 4) = 0.0 then
begin

) 1f colorflag > 0 then
textcolor(138); (1. green - phase error)
XTEMPBYTE := XBITS or XTEMPBYTE,;
. XTEMPCHAR := chr(XTEMPBYTE);
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RTEMPBYTE := RBITS or RTEMPBYTE;

RTEMPCHAR :
write(rtempchar);
textcolor(15);
XTEMPBYTE :=0;
RTEMPBYTE :=0;
end; (*if frac¥)
end; (¥for I¥)

(*now calculate the means and variances and snrout*)

chr(RTEMPBYTE);

if (j <> badbaud) and (j <> badbaud2) then

begin
for I:=1 to k2-kl do
begin
tot:=tot+l;
sumr: =abs(RREAL[ I} )+sumr;
sumi: =abs(RIMAG| I} )+sumi;
end;
begin
rmean: =sumr/tot;
imean: =sumi/tot;
end;
begin
del: =del+sqr(abs(RREAL{ I] ) ~-rmean)+
sqr(abs(RIMAG] I] )-imean);
end;
end;
begin
varx: =del/(2%tot);
xmagr: =rmean/cos(45%pi/180.0);
xmagi: =imean/sin(&45%pi/180.0);
sn.avg: =sqr{(xmagr+xmagi)/2)/varx;
totsnr: =totsnr+l0%*1In(snravg)/1In(10.0);
bj:=bj+1;
end;
end; (for j:= 1 to numbauds)
writeln(output);
writeln(output, The overall SNROUT is '
(totsnr/bj):8:3,"' db');
writeln(output);
writeln(output, Total phase decoding bit
TOTPHASERRS: 5: 0,
out of ',numbits,’ bits transmitted');
writeln(output,'(',pbdi,

1

b

errors = ',

symbols with one bit phase decoding error)');

writeln(output,'(',pbd2,

' symbols with two bit phase decoding error)');

close(recdat);

close(xmitdat);

close(output),
end.




APPENDIX H. D16-QAM STATISTICS PROGRAM

program QAMSNR;

(*This program uses the files XMITDAT.DAT and RECDAT.DAT to generate

a multi color plot of the errors in the received decoded tones. Yellow
indicates at least one magnitude decoding error in the ascii character,
green indicates at least one phase decoding error in the ascii
character and red indicates a combination of magnitude and phase
decoding errors in the ascii character. (note that the file XMITDAT. DAT
must be imported to the receive terminal from the transmit terminal)*)

uses crt, graph;

var
answer,answer? : char;
i,j,n,rbaud,xbaud,rtone,xtone,dtot,
baudcount,numbauds,kl,k2,kx,count,
symbolcount,sector,b,c,d,btot,ctot,
badbaud,numbits,badbaud2,bj,cj,d]j :integer;
xoldmag,roldmag,xtempreal,rtempreal,
Xrnewmag,rnewmag,xtempimag,rtempimag,
totphaserrs,totmagerrs,symerrs,
smallmag,big,sml,del,meanbig,xmagbig,
mbig,msml,obig,osml,mmeanbig,mmeansml,
omeanbig,omeansml,mdel,odel,msnravg,
osnravg,meansml,varx,snrbig,snrsmil,
xmagsml,snravg,mvarx,ovarx,msnrbig,
msnrsml,osnrbig,osnrsml,mxmagbig,
mxmagsml ,oxmagbhig,oxmagsml,totsnr,
mtotsnr,ototsnr,bigmag :single;
xbits,xphasebits,xmagbit,xtempbvte,
rbits,rphasebits,rmagbhit,rtempbyte,
phasebitdiff,maghitdiff,hue,pbdl,

pbd2,pbd3 :byte;
xtempchar,rtempchar : char;
xmitdat,recdat,output s text;
xreal,ximag,rreal,rimag,xmag,xphase :array[l..1280] of single;
statmat :array[1l..8,1..3] of single;
recdata carray[1l..48,1..160] of single;
snrin :string| 4];
T LTy gy g ¥*)
procedure sort;
begin
if (xmag{Ij=smallmag) and (xmag{I+1]=smallmag) then
begin
statmat| sector,l]:=statmat|[sector,1l]+1;
b := round{statmat{sector,1]);

recdatal (2¥%sector)-1,b}:=RREAL[I];
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recdata[ (2*sector),b] : =RIMAG{ I];
end
else if (((xmag[I]=smallmag) and (xmag{ I+1]=bigmag)) or
((xmag| I)=bigmag) and (xmag| I+l]=smallmag))) then
begin
statmat[ sector,2]:=statmat{sector,2]+1;
b := round(statmat|sector,2});
recdatal (2*sector)-1+16,b] : =RREAL{ I];
recdata[ (2*sector)+16,b] : =RIMAG[ I};
end
else (*both xmag[I] and xmag[ I+1] are large*)
begin
statmat| sector,3) :=statmat|sector,3] +1;
b := round(statmat|sector,3]);
recdata] (2¥sector)~-1+32,b] : =RREAL[ I];
recdata] (2¥sector)+32,b] : =RIMAG[ I];

end;

begin (*main body*)
clrscr;
assign(output, 'output.dat');
rewrite(output);
assign(xmitdat, ' xmitdat.dat');
reset(xmitdat);
assign(recdat, recdat.dat');
reset(recdat);
writeln(’Enter the input snr');
readln(snrin);
writeln('Enter the baud length ');
readln(kx);
writeln(output,'The baud length is ',kx,' and the SNRIN =',snrin);
writeln('Enter the number of bauds to be processed');
readln(numbauds);
writeln('Enter the magnitude of the xmit short tones');
readln(smallmag);
bigmag := 2%smallmag;
writeln('Throw out any bauds ? ');
readln(answer);
badbaud :=0;
badbaud2: =0;
if answer in {'y','Y'] then
begin
writeln('Which baud ?7');
readln(badbaud);
writeln('Any ochers 7');
readln(answer?);
if answer2 in ['y','Y'] then
begin
writeln('Enter baud #');
readln(badbaud2);
end;
end;
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case kx of

256: begin
kl:=5; k2:=85;
end;
512: begin
k1l:=10; k2:=170;
end;
1024: begin
k1:=20; k2:=340;
end;

2048: begin
kl:=40; k2:=680;
end;
4096: begin
k1:=80; k2:=1360;
end;
end; (*case Kx¥)
TOTPHASERRS :=0;
TOTMAGERRS :=0; SYMBOLCOUNT :=0; numbits: =0;
pbd1l: =0; pbd2: =0; pbd3 :=0;bj:=0;cj:=0;dj:=0;
totsnr: =0; mtotsnr: =0; ototsnr: =0;

(*count bit errors baud by baud+*)

(*read in transmit and receive values¥)

for j:= 1 to numbauds do

begin
del:=0;big: =0; sml: =0; meanbig: =0; meansml: =0; btot: =0;
mdel: =0; mbig: =0; msml: =0; mmeanbig: =0; mmeansml: =0; ctot: =0;
odel: =0; obig: =0; osml: =0; omeanbig: =0; omeansml: =0; dtot: =0;
fillchar(statmat,sizeof(statmat),0);
fillchar(recdata,sizeof(recdata),0);
for i:= 1 to k2-kl+l do
begin
readln(xmitdat,xbaud,xtone,xmag[ i] ,xphase

[4i
readln(recdat,rbaud,rtone,rreal| i] ,rimag| i]

13
s

if (xbaud <> rbaud) or (xtone <> rtone) then
begin
writeln( 'RECDAT and XMITDAT do not match');
halt;
end; (*if xbaud¥®)
(* convert the xmit vals to rectangular coordinates¥)
xreal[ i} := xmag|i] *cos(xphase{ i]*pi/180);
ximag| i] := xmag i] *sin(xphase[ i) *pi/180);
end; (% for read data files*)
writeln;
write(j,' ');
for I:= 1 to k2-kl do
begin
SYMBOLCOUNT: = SYMBOLCOUNT + 1;

(*save the current and next magnitudes for future decoding¥)

XOLDMAG := sqrt(sqr(XREAL[I]) + sqr{(XIMAG[I]));
XNEWMAG := sqrt(sqr(XREAL[ I+1]) + sqr(XIMAG[I+1]));
ROLDMAG := sqrt(sqr(RREAL[1]) + sqr(RIMAG[I]));
RNEWMAG := sqrt(sqr(RREAL[ I+1]) + sqr(RIMAG[I+1}));
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(*complex multiply adjacent tones to get phase differential¥)
XTEMPREAL := XREAL[I] * XREAL[I+1] +
XIMAG[ I] * XIMAG[I+1];

XTEMPIMAG := XREAL{I] * XIMAG[I+1] -
XREAL[ I+1] * XIMAG[I] ;

RTEMPREAL := RREAL[I] * RREAL[I+1] +
RIMAG[ I] * RIMAG[I+1];

RTEMPIMAG := RREAL[I] * RIMAG[I+1] -

RREAL{ I+1] * RIMAG[I];

(*now rotate phase by 22.5 degrees to line up with constellation
phase sectors¥)

XREAL{I] := 0.92 * XTEMPREAL - 0.38 * XTEMPIMAG;

XIMAG{I] := 0.92 * XTEMPIMAG + 0.38 * XTEMPREAL;
RREAL[I] := 0.92 * RTEMPREAL ~ 0.38 * RTEMPIMAG;

RIMAG[I] := 0.92 * RTEMPIMAG + 0. 38 * RTEMPREAL;

(*decode the transmit phase difference into the first three bits of the
symbol to be recovered¥)
XPHASEBITS := $00;

if (XREAL[I]) > 0) and (XIMAG[I] > 0) then
if XREAL{I] > XIMAG[I] then
begin
XPHASEBITS := $00;
sector :=1;

sort,

end

else

begin
XPHASEBITS := $02;
sector :=Z;
sort;

end;

if (XREAL[I] < 0) and (XIMAG[I] > 0) then
if abs(XREAL[I]) > XIMAG[I] then
begin
XPHASERITS := $04;
sector := &;
sort;
end
else
begin
XPHASEBITS :
sector : = 3;
sort;
end;

$06;

if (XREAL[I] < 0) and (XIMAG{I] < 0) then
if abs(XREAL{I]) > abs(XIMAG[I]) then
begin
XPHASEBITS := $0C;
sector := 5
sort;
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end
else
begin
XPHASEBITS := $0E;
sector: =6;
sort;
end;

if (XREAL[I] > 0) and (XIMAG[I] < 0) then
if XREAL[I] > abs{XIMAG[I]) then

begin
XPHASEBITS := $08;
sector := B;
sort;

end

else

begin
XPHASEBITS := $04;
sector := 7;
sort;

end;

(*decode the received phase difference into the first three bits of the
symbol to be recovered¥)
RPHASEBITS := $00;

if (RREAL[I] > 0) a.d (RIMAG[I] > 0) then
if RREAL{I] > RIMAG[I] then
RPHASEBITS := $00
else RPHASEBITS := $02;

if (RREAL{I] < 0) and (RIMAG[I] > 0) thea
if abs(RREAL[I]) > RIMAG[I] then
RPHASEBITS := $04
else RPHASEBITS := $06;
if (RREAL[I] < 0) and (RIMAG[T] < 0) then
if abs(RREAL{I]) > abs(RIMAG|[I]) then
RPHASEKITS := $07
else RPHASEBITS := $OE;

if (RREAL[I] > 0) and (RIMAG[I] < 0) then
if RREAL[I] > abs(RIMAG[I]) then
RiHASEBITS := $08
else RPHAS BITS := $0A;

(*determine the number of bit differences between :he received decoded
phasebits and the decoded transmitted phasebits¥)

PHASEBITDIFF := XPHASEBITS xor RPHASErITS;
if (j <> badbaud) and (j <> badbaud2) tuen
begin

case PHASEBITDICT of

$01: pbdl :=pbdl+l;

$02: ©obdl :=pbdl+l;

$04: pbdl :=pbdl+l;

§08: pbdl :=pbdl+l;
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$§03: pbd2 :=pbd2+1;
$05: pbd2 :=pbd2+1;
$06: pbd2 :=pbd2+1;
$§09: pbd2 :=phd2+i;
$0A: pbd2 :=pbd2+1;
$0C: pbd2 :=pbd2+l;
$07: pbd3 :=pbd3+l;
$0B: pbd3 :=pbd3+1;
$0D: pbd3 :=pbd3+l;
$0E: pbd3 :=pbd3+1;
end; (%*case PHASEBITDIFF*)

(*now count the total number of phase decoding errors¥)

TOTPHASERRS := TOTPHASERRS + PHASEBITDIFI and §01;
TOTPHASERRS := TOTPHASERRS + (PHASEBITDIFF and $02) shr 1;
TOTPHASERRS := TOTPHASERRS + (PHASEBITDIFF and $04) shr 2;
TOTPHASERRS := TOTPHASERRS + (PHASEBITDIFF and $08) shr 3;
end;

(*now differentially decode the magnitudes of the tones to get the
fourth and last bit in the symbol¥)

if (XNEWMAG > 1.5*XOLDMAG) or (XNEWMAG < 2%XOLDMAG/3)
then XMAGBIT := §$01
else XMAGBIT := $00;
if (RNEWMAG > 1.5%ROLDMAG) or (RNEWMAG < 2*ROLDMAG/3)
then RMAGBIT := $01
else RMAGBIT := $00;
if (j <> badbaud) and (j <> badbaud2) then
begin
TOTMAGERRS := TOTMAGERRS + (XMAGBIT xor RMAGBIT);
numbits: =numbits+4;
end;
(*assign colors to the text that is in error¥)
if PHASEBITDIFF > 0 then

textcolor(138); (*1. green - phase error¥)

if RMAGBIT <> XMAGBIT then
textcolor(142); (*yellow -~ mag error¥)

if (RMAGBIT <> XMAGBIT) and (PHASEBITDIFF <> 0) then
textcolor{140); (*1. red =~ dual error¥*)

if (RMAGBIT = XMAGBIT) and (PHASEBITDIFF = 0) then
textcolor(15);

(*now jam all the bits together and color the errors¥)

(*£il1 TEMPBYTE with two symbols¥)
if frac(SYMBOLCOUNT / 2) = 0.5 then
begin
hue := textattr;
XTEMPBYTE := ((XPHASEBITS or XMAGBIT) shl 4);
RTEMPBYTE := ((RPHASEBITS or RMAGBIT) shl 4);
end; (* if frac %)
if (frac(SYMBOLCOUNT / 2) = 0.0) then
begin
if (hue = 140) or (textattr = 140) then textcolor(140);

88



if (hue
if (hue

142) and (textattr
138) and (textattr
if Chue 142) and (textattr
if (hue 138) and (textattr

XTEMPBYTE :

138) then textcolor(140);
142) then textcolor(140);
15) then textcolor(142);
15) then textcolor(138);
(XPHASEBITS or XMAGBIT) or XTEMPBYTE;
XTEMPCHAR := chr(XTEMPBYTE);
RTEMPBYTE := (RPHASEBITS or RMAGBIT) or RTEMPBYTE;
if (RTEMPBYTE = $20) and (textattr <> 15) then
RTEMPBYTE := §5f;
RTEMPCHAR := chr(RTEMPBYTE);
(*put ascii character to screen¥)
write(rtempchar);
XTEMPBYTE: =0;
RTEMPBYTE: =0;
end; (*if frac¥)
end; (*for decode xmit and rec data¥)

||

(*now calculate the means and variances and snrout*)

if (j <> badbaud) and (j <> badbaud2) then
begin
for i:=1 to 8 do
begin

b:=round(statmat[ i, 1] );
btot: =btot+b;
c:=round(statmat][i,2]);
ctot: =ctot+c;
d: =round(statmat{i,3]);
dtot: =dtot+d;
if (i=1) or (i=4) or (i=5) or (i=8) then

begin
for count := 1 to b do
begin
big:=abs(recdata[ (2*i)-1,count] }+big;
sml: =abs(recdata[ (2*i),count] )+sml;
end;
for count := 1 to ¢ do
begin

mbig: =abs(recdata[ (2*i)-1+16,count] )+mbig;
msml: =abs(recdata[ (2%i)+16,count] )+msml;
end;
for count := 1 to d do
begin
obig:=abs(recdata[ (2*i)-1+32,count] )+obig;
osml: =abs(recdata[ (2*i)+32,count] )+osml;

end;
end
else
begin
for count := 1 to b do
begin
big: =abs(recdata[ {(2%1i),count] )+big;
sml: =abs(recdata[ (2*i)-1,count] )+sml;
end;
for count := 1 to ¢ do
begin
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mbig: =abs(recdata[ (2*i)+16,count] )+mbig;
msml: =abs(recdata| (2*i)-1+16,count] )+msml;

end;

for count := 1 to d do

begin
obig: =abs(recdata] (2¥i)+32,count] )+obig;
osml: =abs(recdata] (2*%i)-1+32,count] )+osmi;

end;

end;
end;

if btot > 1 then

begin

meanbig := big/btot;
meansml := sml/btot;
end;

if ctot > 1 then
begin

mmeanbig := mbig/ctot;
mmeansml := msml/ctot;
end;

if dtot > 1 then
begin

omeanbig := obig/dtot;
omeansml := osml/dtot;
end;

for i:=1 to 8 do

b: =round(statmat{ i,1] );
c:=round(statmat{ i,2] );
d: =round(statmat{ i,3]);
if (i=1) or (i=4) or (i=5) or (i=8) then
begin
for count := 1 to b do
begin
del:=del+sqr(abs(recdata[ (2*%i)-1,count] )-meanbig)+
sqr(abs(recdata[ (2*i),count] )-meansml);
end;
for count := 1 to ¢ do
begin
mdel: =mdel+sqr(abs(recdatal (2%i)-1+16,count] )~
mmeanbig)+sqr(abs(recdataf (2*%i)+16,
count] ) -mmeansml);
end;
for count := 1 to d do
begin
odel: =odel+sqr(abs(recdata[ (2*i)-1+32,count] )-
omeanbig)+sqr(abs(recdata] (2%1i)+32,
count] )-omeansml);

end;
end
else
begin
for count := 1 to b do
begin
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(*

del:=del+sqr(abs(recdata] (2*1),count] ) -meanbig)+
sqr(abs(recdata[ (2*i)~-1,count] ) -meaunsml);

end;
for count := 1 to ¢ do
begin

mdel: =mdel+sqr(abs(recdata] (2*i)+16,count] )~
mmeanbig)+sqr(abs(recdata[ (2%i)-1+16,

count] ) -mmeansml);
end;.

for count :=1 to d do
begin

odel: =odel+sqr(abs(recdata[ (2*i)+32,count] )~
omeanbig)+sqr(abs(recdata] (2*i)-1+32,

count] ) ~omeansml);
end;
end;
end;

if (btot > 1) then

begin

varx: =del/(2*btot);

snrbig: =sqr(meanbig)/varx;

snrsml: =sqr(meansml)/varx;

xmagbig: =meanbig/cos(22. 5*%pi/180.0);
xmagsml: =meansml/sin(22. 5%pi/180.0);
snravg: =sqr( (xmagbig+xmagsml)/2)/varx;
totsnr: =totsnr+10*1n(snravg)/1n(10.0);
bj:=bj+1;

end;

if (ctot>1) then

begin

mvarx: =mdel/(2%ctot);

msnrbig: =sqr(mmeanbig)/mvarx;

msnrsml: =sqr(mmeansml)/mvarx;

mxmagbig: =mmeanbig/cos(22. 5*%pi/180.0);
mxmagsml: =mmeansml/sin(22. 5%pi/180.0);
msnravg: =sqr( (mxmagbig+mxmagsml)/2)/mvarx;
mtotsnr: =mtotsnr+10*1ln(msnravg)/1n(10.0);
cji=cj+l;

end;

if (dtot >1) then

begin

ovarx: =odel/{2*dtot);

osnrbig: =sqr(omeanbig)/ovarx;

osnrsml: =sqr(omeansml)/ovarx;

oxmagbig: =omeanbig/cos(22.5%pi/180.0);
oxmagsml: =omeansml/sin(22.5%pi/180.0);
osnravg: =sqr((oxmagbig+oxmagsml)/2)/ovarx;
ototsnr: =ototsnr+10*1ln(osnravg)/1n(10.0);
dj:=dj+1;

end;

writeln(output,'The SNROUT for baud ',j, '

10*1n(snrbig)/1n(10.0):8:3,'db for the inner blg means');
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writeln(output,'The SNROUT for baud ',j, !
10*1n(snrsm1)/1n(10 0):8:3,'db for the 1nner small means');
writeln(output,'The SNROUT for baud ',J,' is
10*1n(snravg)/ln(10 0):8:3,'db for the 1nner averaged means');
writeln(output,'The SNROUT for baud ',j,' is
10*1n(msnrb1g)/1n(10 0):8:3,'db for the m1dd1e big means');
writeln(output, 'The SNROUT for baud ',j,' is

O*In(msnrsml)/ln(lo 0):8:3,'db for the mlddle small means');
writeln(output, 'The SNROUT for baud ',j,' is ',
10*1n(msnravg)/ln(10 0):8:3,'db for the mlddle averaged means');
writeln(output,'The SNROUT for baud ',j,' is ',
10*1n(osnrb1g)/1n(10 0):8:3,'db for the outer big means');
wrlteln(output '"The SNROUT for baud ',j," is ',

O*ln(osnrsml)/ln(lo 0):8:3,"'db for the outer small means');
writeln(output,'The SNROUT for baud ',j,' is ',
10*1n(osnravg)/1n(10 0):8:3,'db for the outer averaged means');
writeln(output); *)

end;

end; (*for j := 1 to numbauds¥*)

writeln{output);

writeln(?utput,'The overall inner SNROUT is ',(totsnr/bj):8:3,

db')y;

writeln(output, The overall middle SNROUT is ',(mtotsnr/cj):8:3,
db');

writeln(output, ?he overall outer SNROUT is ',(ototsnr/dj):8:3,
db’);

wrlteln(output),

writeln(output, ' Total phase decoding bit errors = ',
TOTPHASERRS: 5: 0);
writeln(output,'(',pbdl,' symbols with one bit phase decoding

error) );
writeln(output,'(',pbdza' symbols with two bits phase decoding
error) );
writeln(output,'(',pbd3,' symbols with three bits phase decoding
error) );
writeln(output,'Total magnitude decoding bit errors = ',

TOTMAGERRS: 5: 0);
writeln(output,'out of ',numbits,' bits transmitted');
close(recdat);
close(xmitdat);
close(output);
end.
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