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ABSTRACT

The-goal of this thesis was to develop a searching algorithm for simplifying Multi-

Valued Logic (MVL) functions. The algorithm was implemented as a program written

in C for the UNIX operating system. The algorithm accepts an MVL function in the

format required by HAMLET, an MVL computer-aided design tool, and produces a

minimal or near-minimal realization. The output also conforms to that required by

HAMLET to produce a layout of a programmable logic array (PLA) integrated circuit

that realizes the given function.

The advantage of the algorithm is that is allows backtracking to investigate alternate

solutions, producing a greater expectation of minimal results. It stops upon finding a

solution, thus producing results much faster than an exhaustive search of all possible

solutions.
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I. INTRODUCTION

Demand for speed and performance in information processing will continue to in-
crease. This, in turn, creates a need for low cost, fast Very Large Scale Integration

(VLSI) devices. As attempts are made to extract better performance from each device,

several problems surface. For example, present VLSI devices create a need for more pins
to send and receive information and to control the processes within the device. Also,
interconnecting devices on a chip is difficult and takes a large proportion of the chip

area, If each line of a device could provide more information than a I or 0, then these
problems would be partially solved. In addition, although we have not yet reached the

physical limit of miniturization, there is a limit. A possible way to push back the limit
is through Multi-Valued Logic (MVL). In MVL there are typically more logic levels

than two.
As in binary, there is a need in MVL to generate sum-of-product expressions for

implementation by a programmable logic array (PLA). If the number of product terms
can be reduced, as in binary logic, the implementation as a PLA would be easier, smaller,
and cheaper. Unfortunately, no method of finding the exact minimum solution for a

MVL functions exists other than an exhaustive search. A search of all possible solutions
for relatively complicated expressions is too time consuming.

The implementation of technologies to realize MVL circuits [Ref. 1,2,3] has inspired

research on heuristics for simplifying MVL functions. Prominent among these are
Pomper and Armstrong [Ref. 4], Besslich [Ref. 5], and Dueck and Miller [Ref. 6].
Tirumalai and Butler [Ref. 7, pp. 237-238] analyzed these heuristics and found that for
only about 39% of the functions did Pomper and Armstrong find a minimal solution.
Besslich and Dueck and Miller found minimal solutions for 52% of the functions. In
more recent research using HAMLET [Ref. 8, p. 148] where the functions have been
specified as a sum-of-products, the heuristics sometimes produced solutions with more
terms than the original function. It is desirable to produce a heuristic that will give the
designer a greater confidence of achieving a minimal or better solution without being

prohibitively expensive.
Most current heuristics [Ref. 4,5,6] proceed in a straight-line manner from problem

to solution. Once a term is chosen as part of the solution, it cannot be discarded in favor

of a better choice later on. Attempts to improve existing heuristics have focused on in-



creasing the number of choicesavailable at each step and in saving those choices in case

there is a need to discard a part of the solution and start over [Ref. 8, pp. 149-150]. In
short, heuristics are being formed which search for the minimal solution among several
possible solutions.

The minimal solution can always be found using an exhaustive search of all possible
solutions. Unfortunately, this is very expensive in terms of computer time. A middle

route was chosen in this research. A search for a solution involves several possible
choices, but not all. A searching heuristic is used rather than trying to modify a
straight-line heuristic into a search. The method chosen is an A* (pronounced A star)

search. This method is explained in detail in Chapter Ill.



II. BACKGROUND

A. DEFINITIONS
1. MVL.

Consider a multi-valued system in which there are r levels, 0, 1,..., r-1. The

quantity r is called the radix. There are operations with a behavior that is dependent

on how we wish to represent the function.

2. Sum of Products.

There are several ways of representing an MVL function. The sum of products

method is chosen. This method is preferred by most designers wishing to implement an

MVL function as a Programmable Logic Array (PLA). It is also simple and straight-

forward. An expression for a sum ofproducts MVL function of i variables and r values

can be written as follows:

n-I U-1

J=o k=o

This is composed of:

* Literals x(l,u)

x(, u) = r- I if l< x < u
= 0 otherwise

In some notations, this is denoted Ixv,.

* Products of a constant and literals. The product is implemented as a minimum
function. That is, the product ab has the value min(a, b).

1-!

CHxk(lk, uk) is the minimum value of all xk(lk, uk) and C
k=O

* Sum. , represents the truncated sum operation + . That is, a+ b has a value
which is the sum of a and b (with logic values viewed as integers), except when the
sum exceeds r., in which case it is assigned the value r-l.

3. Minterm.

An MVL function can also be represented as a map such as the one in Figure

1. Figure 1 represents a MVL function of radix four with two inputs. If we designate a

specific value for each of the input variables, the function assumes some value. If this

3



value is nonzero, it is called a minterm. For example if x, -0 and x2  1, the function

assumes the value 3. The entry 3 is a minterm.

4. Implicant.

Several minterms can be grouped together to form a single product term. This

product term is called an implicant. For example, the grouping of the four minterms:

xI = 1, x2 = I
x, = 2, x2 = I
x, = I,x 2 = 2
x, = 2, x2 -- 2

is an implicant which can be writen as Ix,(,2)x2(1,2). Specifically, a minterm is covered

by an implicant if the implicant is nonzero for the assignment of variables such that the

minterm is nonzero. For example, the product term 1x,(l,2)x 2(1,2) covers the four

minterms listed above. Since implicants are added using a truncated sum, the value of

a minterm can be determined by more than one implicant. For example, if exactly two

implicants cover a minterm and both are 1, the value of the minterm is 2 (if the radix is

three or greater).

5. Don't-Cares.

For a given MVL function, if we do not care what value a minterm is we call it
simply a 'don't-care'. This is represented by the radix r in a map of the function. During

simplification of the MVL function, the don't-care assumes any value that assists in re-

ducing the number of product terms necessary to solve the function.

B. PLA CIRCUIT TOOL ENVIRONMENT

In order to adequately test the searching algorithm, it is necessary to perform a

search on a large number of functions of different types and compare the algorithm's

perfomance against other existing heuristics. Because of the large number of searches

required and the large amount of record-keeping involved, the best approach is to im-

plement the search as a computer program. A program allows many searches to be

performed in a short period of time. If the search method is found to be superior, it may

be included in a computer aided design (CAD) tool for use in circuit design or further

research.

The program astar performs the A* search. It is designed to be compatible with

HAMLET [Ref. 8]. astar is not currently available under HAMLET but accepts input

4



Xl
X2 0 1 2 3

1 3 1 1 3

2 1J

3 2 2

Figure 1. Four Valued MVL Function of Two Variables

files of identical format and produces output files of correct format for generation of a

circuit layout.

1. HAMLET

HAMLET is a CAD tool written in C for a UNIX operating system. It is

modular in design to facilitate future improvements in minimization heuristics and future

1MVL-PLA technologies. Its major components arc:
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mvlc This module performs a function similar to astar. It takes an MVL function
(or functions) of the proper format from a file and tries to find a simpler expression
that describes the same, function. It is capable of using Dueck and Miller [Ref. 6]
or Pomper and Armstrong [Ref. 4] to find the simplest expression. It will also use
both heuristics and pick the best solution (called the Gold heuristic), or perform a
search variation on either Dueck and Miller or Pomper and Armstrong. astar takes
the place of mvlc to simplify the given MVL function.

• mvii This module takes the simplified function from mvlc and constructs an MVL
PLA circuit that implements the function. Currently HAMLET implements the
circuit using current-mode CMOS technology. The layout is in MAGIC format,
suitable for submission to a chip manufacturer.

MvIa This module analyzes the performance of a heuristic, It takes performance
data from successive runs of mvlc and produces various statistical data. mvla was
used to analyze astar.

mvlt This module generates random test functions to user specifications of proper
format, mvit was used to generate the test functions for astar.

2. Input Format

The input to astar is a file containing one or more functions, The function(s)

must be expressed as a sum-of-products in the following format:

radix of the function:number of inputs:

For each implicant-

+first coefficient*Xl(lower bound,upper bound)*...

There must be a lower and upper bound for each input.

The last implicant ends with a semi-colon.

The function in Figure 1 would be expressed as:

4: 2:

+3*Xl(O,O)*X2(1,1)

+l*Xl( 1,2)*X2( 1,2)

+3*Xl(3,3)*X2(l, 1)

+2*X1(1,2)*X2(3,3);

3. Output Format

astar must express the simplified function in the following format in order for

mvii to convert it into a PLA.

6



•numbeir of inputs (blank) number of outputs

For each expression in the solution-

coeff,

For each, input variable-

lower upper

99

The function in Figure I would look like the following ifit were formatted for input into
mvII

21
3

00

1

12

12

3

33

2

12

33

99
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III. DESCRIPTION OF MINIMIZATION ALGORITHM

In order to find a simplified solution to the MVL function, a searching algorithm
was used. The starting point is the MVL function that needs to be minimized. Any one
of several implicants can be chosen that covers a part of the function. Each implicant is
a branch in the search. Once an implicant is chosen and subtracted from the original
function, a smaller, simpler function remains. This function also has several choices for
a next implicant. The choices are represented by branches in a tree similar to the one
found at Figure 2. The search looks for the shortest depth of the search tree that com-

pletely describes the function.
Figure 2 is a possible search tree for the function in Figure 1. The circles represent

nodes. Each node is an MVL function with the top node being the original MVL func-
tion and the subnodes being smaller MVL functions. These subnodes result from sub-
tracting an implicant from the parent node. The branches are labeled with the implicant
they represent. The solution is the sequence of branches on the far left expressed by
lx(1,2)x2(l,3) + lx(1,2)x2(3,3) + 3x1(0,0) + 3x(3,3)x 2(l,l),

The criteria used to choose the next branch to be investigated constitutes a search-
ing strategy. The strategy we will use is an A* search Ftrategy [Ref. 9, p. 203]. The A*
search is characterized by determining the cost for choosing each branch and evaluating
it for closeness to a final solution. A measure of the overall worth of a branch is found
by summing the value of the cost and evaluation functions. The effect is for the evalu-
ation function to steer the solution towards what seems to be the best solution. The cost
function brings us back to try alternative branches when the number of implicants in the
expression becomes large.

A. DESCRIPTION OF THE SEARCH STRATEGY
A formal description of the algorithm of the computer program is found at Appen-

dix 1. An informal description follows.
The search method will be described as if it were already in the middle of a search.

The procedure is the same at the beginning as in the middle except that the starting node
is the original MVL function and the agenda is empty.

The starting node is the MVL function that requires simplification. Branches and
subnodes must be generated. It is possible to generate a branch and a subnode for every
possible implicant of the original MVL function. Unfortunately, this would generate an



lXl(1,2)X2(1,2)

1XI(1,2)X2(1,3)

IX1(1,1)X2( 3 2(3,3)

3X(OO)X2(1 ) 3X1(OO)X2(1,1)

3X1(3,3)X2(1,I)

Figure 2. Example Search Tree for MVL Function
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extremely large tree. Fortunately, this is not required. Since any solution must cover

each minterm, any minterm may be chosen and used to generate all the implicants that

cover it. One of these implicants must be in the solution. Of the minterms chosen to

be covered, certain are covered by fewer implicants than others. Dueck and Miller [Ref.

6, p. 223] call such minterms "most isolated minterms (mir)". Choosing the most iso-

lated minterm tends to reduce the search. Isolation is a measure of how many possible
combinations a minterm has with neighboring terms. If several minterms are equally

isolated, the first one found is chosen.

Having chosen the most isolated minterm, all the implicants that cover the minterm

are generated. If the value of the minterm is r - 1 or a don't-care, we also generate

implicants that include the minterm with values from 0 to r - 1. For each of these

implicants, we determine the cost and the evaluation function. Each of these implicants
with their cost and evaluation are put on a list of available branches called an agenda.

The branch from the agenda which has thu smallest sum of cost and evaluation is cho-
sen. The agenda contains not only the branches just generated, but all branches previ-

ously generated and not yet chosen. If several branches on the agenda have equal sums,

the one most recently added is chosen. This branch should have been generated further

along in our search and will hopefully be closer to a solution. The effect is to push the
search toward a solution and eliminate unnecessary backtracking.

Having chosen a branch (an implicant), it is subtracted from the MVL function.

This leaves a smaller, simpler function to solve. The chosen branch is taken off of the

agenda so we will not consider it again. We now rcpeat the process on the smaller MVL

function, generating more branches and putting them on the agenda. We stop the search

when the function is completely covered, i.e., when there are no more implicants to
generate. The solution is the chosen branch (implicant) plus those branches used to

solve the smaller function plus those branches chosen that brought us to this node.

1. Cost Function

The key to a successful A* search is to choose an appropriate cost and evalu-

ation function. They guide the search to the solution. If chosen correctly, they do this
quickly with few unnecessary branches. In this case, the number of implicants should

be minimized. Each implicant in the expression is another column in the PLA circuit

implementation [Ref. 10 , p. 15, 23-24]. Therefore, the number of implicants used to that

point is chosen as the initial cost function. For example, if a node (simplified function)
used a sequence of three branches (implicants) to get to it, all branches from the node

will have a cost of four, there being four implicants needed to reach the subnode.

10



Other options may be considered for the cost function. The number of
implicants may be weighted in order for its magnitude to balance that of the evaluation
function. In such a case, the cost would then be the number of implicants used times the

weighting factor. There is also a second alternative. The cost of implementing a MVL

function into circuitry may also be a function of the number of inputs required [Ref.
11]. The number of implicants determines the number of columns. The number of inputs
determines the height of the columns or the number of rows [Ref. 10 , pp. 23-24].

Therefore another cost function might be the the number of implicants multiplied by the

number of variables.

2. Evaluation Function

The evaluation function is an estimate of how close the current expression is to
the solution. As the search progresses deeper into the tree, the values of an evaluation
function grow smaller (as we get closer to a solution). Therefore the cost and evaluation
functions must be minimized. To do this, add the cost and evaluation functions,

producing a criterion number. If chosen properly, the most advantageous branch will
be the one with the smallest criterion number. In that way, both the cost and the eval-

uation functions are minimized.

Two evaluation functions are investigated, the number of non-zero minterms
and the relative break count (RBC). The objective of our search is to completely cover
the MVL function. That is, the search seeks a function containing zeros or don't-cares
exclusively. Therefore a good measure of closeness to a solution is the number of

minterms that are neither zero nor a don't-care. This number will grow smaller as we
near a solution. For simplicity, this is called the number of non-zeros.

Another measure of closeness to a solution is called the relative break count

(RBC) [Ref. 6, p. 224]. Simply stated, a break is where two adjacent minterms have
different values. For example, in Figure I there is a break between x = 0, x2 = I and

x, = 1, x2 = I . The number of breaks in a MVL function is the break count. Subtracting
an implicant from an MVL function may result in an MVL function with a different

break count. This change in the break count due to the implicant is the RBC. RBC is
related to the number of breaks introduced minus the number of breaks removed. If an

implicant intrczuces breaks, its RBC will have a positive number related to the number
of breaks added. If an implicant takes out breaks, its RBC will be a negative number of

magnitude related to the number of breaks removed. MVL functions with few breaks
can have many minterms grouped into implicants. This produces a solution with few

implicants, which is desired. If there are a lot of breaks we will be unable to group

II



minterms into implicants easily and our solution will probably have more implicants.
Therefore, if an implicant with a large (positive) RBC is chosen, more implicants are
needed to completely cover the function. While if an implicant with a small (negative)

number is chosen, it will probably develop into path with a simpler solution. In this way,
the RBC can be used as an evaluation function.

B. UNIQUE CHARACTERISTICS OF THE PROPOSED APPROACH
The difference between this research and other heuristics is that this research used

a searching strategy to find a simplified solution rather than a straight-line approach or
a straight-line approach modified to search. The other heuristics mentioned (Pomper and
Armstrong, Besslich, and Dueck and Miller) are all straight-line heuristics with no
branches. They use one criteria to determine the next implicant chosen. When they
choose an implicant it must be used in the final solution. All alternative choices are lost.

The heuristics do not allow backtracking. Some research has been done to expand these
heuristics into more of a search method [Ref. 6, pp. 152-153]. This usually done by
saving a fixed number of implicants at each node. This approach potentially saves too
many implicants and slows down the search or saves too few implicants and misses a
simpler solution.

The proposed approach is a search strategy with backtracking. It may backtrack and
choose an alternate solution whenever it appears that the alternate is better. Potentially,

all the implicant branches are available, if necessary, to find the simplest solution. Yet,
it generates only those branches needed and available. It uses two criteria (cost and

evaluation functions) to guide it to a solution.

12



IV. EVALUATION OF ALGORITHM PERFORMANCE

A. METHOD OF EVALUATION
In order to evaluate the performance of the A* search, its performance must be

analyzed for several MVL functions and compared to some baseline. Dueck and Miller
is chosen as the baseline since its performance is the best of the existing heuristics, The
perfomance of A* in minimizing two-input MVL functions of radix 4 is analyzed and
compared to the performance of Dueck and Miller on the same functions. MVL func-
tions of six or fewer non-zero minterms are relatively simple and all heuristics perform
the same. Therefore, only functions with six or more non-zero minterms were analyzed.
Five hundred functions were generated for each number of non-zero minterms.

Two different versions of A* were evaluated. The first version uses the number of
implicants as the cost function and RBC as the evaluation function, The second version
also uses the number of implicants as the cost function, but uses the number of non.zero
minterms as the evaluation function. invlr from HAMLET was used to generate 500
random sample functions for each number of non-zero minterms from six to 16. Each
version of A* was used minimize the same sets of sample functions. The results were
analyzed using tnvla from HAMLET. mvla provided information on the average number
of implicants needed in the solution, the average time to solve, the ratio of number of
heuristic implicants to number of given implicants and their standard deviations. The
same functions were solved using mvIc from iMLET using the Dueck and Miller

heuristic. This provided the baseline for comparison.
An exhaustive search for the absolute minimum solution was not performed due to

the excessive computer time required. To perform an exhaustive search on one function
took four hours. In this research, we solved 5500 functions for each heuristic. However,
the values for average number of implicants for Dueck and Miller were very close to
those found in Tirumalai and Butler [Ref. 7 p. 242]. We will therefore use their values for
average number of implicants for absolute minimization.

B. RESULTS
1. RBC as Evaluation Function.

The first version of A* used the number of implicants as the cost function and
the RBC as the evaluation function. Trial runs found that this version was unacceptably
slow. One run of 100 functions was not completed after running 36 hours. Investigation

13



showed that this version acted,like a breadth-first search for functions with few zeros.

In other words, the search would investigate every node in the first level and generate

every node in the second level before it began to investigate nodes on the second level.
This behavior resulted in an exhaustive search for a solution. This was because, in

functions of few zeros, the first level implicants could eliminate most of the breaks re-

sulting in very negative RBCs. At the second level, there were relatively few breaks left

to eliminate so the RBCs of these implicants were only slightly negative. Therefore, in

choosing the implicant with the smallest sum of cost and evaluation functions, the

search always picked the first level implicants. That the cost was greater for the second

level implicants only made the situation worse. An example of this effect can be found

in Figure 3.

The initial most isolated minterm (mim) chosen for the function in Figure 3 is

Ix1(O, O)x2(0, 0), This minterm has 16 implicants that range from 1x1(0, 3)x2(0, 3) with an

RBC of -24 to lx1(0, 0)x2(0, 0) with an RBC of + 1. The algorithm correctly chooses

Ix1(0, 3)x2(0, 3). This node has an rnmi of 2x,(2, 2)x2(0, 0). This mim generates four
implicants. This obvious choice is 2x,(2, 3)x2(0, 1). This has an RBC of-8 and a sum of

cost and RBC of-6. Unfortunately, there are five other implicants on the first level with

sums lower than -6. All these implicants must be chosen and investigated before we can
get to it. Three of these implicants have branches that also have implicants with RBCs

lower or equal to -6. The algorithm always looks at the most recently added implicants

first, so all these implicants must also be investigated before we chose 2x,(2, 3),2(0, 1).

The algorithr :rrectly chooses the minimal expression of two implicants, but only after

a long search.

The problem with RBC as an evaluation function is that it has no memory. It
only looks at the present node to determine its value. Previous good choices cannot

influence the value of RBCs for the present node. Yet, RBC is an excellent way to de.

termine the best implicant among several implicants at the same node. To give the

evaluation function a memory, it becomes the sum of the RBC of the implicant plus the

evaluation function of the current node. The current node is tht node (MVL function)

for which we are generating the branches (implicants). The evaluation function then

becomes the sum of the RBC for the implicant plus the RBCs of all the implicants

needed to get to it.

This makes the evaluation function very strong, in fact too strong. The evalu-

ation function drives the search deeper and deeper into the tree always using the best

RBC. The cost function is not strong enough to pull the search back and do some
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Figure 3. MVL Function that Causes RBC to do Exhaustive Search

backtracking if the current solution becomes too long. The search behaves just like a

Dueck and Miller heuristic. Having strengthened the evaluation function so the search

will look deeper, faster, we must also strengthen the cost function so they will be in

balance. As mentioned in Chapter III, an alternate cost function could be the number

of implicants multiplied by the number of variables. The number of variables is the

number of inputs to the function. This number does not change during the solution of
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a given function, but does allow the algorithm to adjust to different functions with dif-

ferent numbers of inputs. This new cost function would be a relative measure of the area

of the PLA, something that should be kept as small as possible. When this version of

A* was evaluated, its performance was better than Dueck and Miller. That is, the aver-
age number of implicants needed to solve the function was less than Dueck and Miller.

However, the improvement was statisically insignificant.

Increasing the cost function by using a weighting factor would increase back-
tracking. Increased backtracking should improve the performance of the algorithm, but

also increase the average elapsed time needed to solve for functions. Experiments were

conducted to determine a suitable weighting factor. A weighting factor of two was

found to cause sufficient backtracking for improved performance, yet did not cause the
search to slow to unacceptable levels. When this is used as the cost function, the per-

formance of the search avoids the two extremes. It is neither an exhaustive search nor

a simple Dueck and Miller.

This search algorithm was evaluated for the full 5500 functions. The cost func-
tion was the number of implicants multiplied by the nvmber of variables multiplied by

a weighting factor of two. The evaluation function was the RBC of the implicant plus

the evaluation function of the current node. The results follow.

2. Number of Non-Zero Minterms as an Evaluation Function.

This version was initially evaluated with the number of non-zero minterms as
the evaluation function and number of implicants as the cost function. Don't-cares were

treated like a zeros. Results from an earlier version of the program indicated that the
version performed very well, achieving minimal or near-minimal expressions in a short

period of time. The solutions were as good or better than Dueck and Miller. However,

comparisons on a large number of difficult functions found that Dueck and Miller was

actually performing better. Analysis showed that RBC is a better judge of the best

implicant to choose than just choosing the implicant that covers the most minterms.

That is why Dueck and Miller performs slightly better than other heuristics. The cost

function of the search was not causing enough backtracking to find the minimum sol-

utions of the more difficult functions.
If the accuracy of the cost function in predicting unsuitable implicants could

be improved, then the search would do more backtracking. As mentioned in Chapter III

and above with the RBC version, one way to obtain an improvement in the cost function

is to make it the number of implicants multiplied by the number of variables. Unfortu-

nately, when this was tried it produced a search as slow as the original RBC version.
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Further research indicated, that a value near that of number of implicants times the

number of variables was needed, but the actual value was just too slow. A cost function
of the value multiplied by a weighting factor of five-sixths was used, This seemed to

produce better results than Dueck and Miller without being unacceptably slow.

The final version analyzed for 5500 functions used the number of non-zero

minterms as the evaluation function and the number of implicants multiplied by the
number of variables multiplied by-a weighting factor of five-sixths as the cost factor.
Others.using this version of A* for MVL design or heuristic research may wish to ex-
periment with other weighting factors to achieve the proper balance of performance and

speed.

C. COMPARISON OF ALGORITHM PERFORMANCE

Table 1 shows the Average Number of Minterms used by the indicated algorithms
to cover the MVL functions. The values for Absolute Minimization come from

Tirumalai and Butler [Ref. 7, p. 242]. These values are not precisely correct for this re-
search as the random functions solved by absolute minimization are not the same ones
used in this research. This can be seen for the Number of Non-Zero Minterms equal to
six and seven, where the average number of implicants is greater for Asolute Minimiza-

tion than for any of the heuristics. Still, values for Dueck and Miller using random
functions from this research are within one tenth of the values for Dueck and Miller

using Tirumalai and Butler's functions for Number of Non-Zero Minterms greater than

seven. If absolute minimization was performed on the random functions generated here,

the average number or implicants would likely be within one-tenth of those given.

Table 1. AVERAGE NUMBER OF IMPLICANTS
Number of Number of Dueck Absolute
Non-Zero RBC Non-Zero and Minimization
Minterms Minterms Miller from Ref. 7

6 4.60 4.62 4.60 4.96
7 5.35 5.36 5.35 5.52
8 5.91 5.94 5.95 5.94
9 6.41 6.48 6.48 6.40
10 6.75 6.84 6.85 6.69
11 7.05 7.18 7.17 6.91
12 7.26 7.43 7.45 7.20
13 7.32 7.63 7.64 7.16
I4 7.34 7.71 7.64 7.07
15 7.24 7.72 7.58 6.94
16 6.89 7.20 7.13 6.69
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From this table we can see that A* using number of non-zero minterms performed
the worst, having the largest average number of implicants for all classes of functions.

A* using cumulative RBC performed as well or better than Dueck and Miller. The

closeness of A* using cumulative RBC to Absolute Minimum indicates that the number

of functions where Absolute Minimum is achieved is greater than Dueck and Miller.

There is however a trade-off. Table 2 shows the average elapsed CPU time in sec-

onds needed to solve a function for each class of function.

Table 2. AVERAGE ELAPSED TIME PER FUNCTION

Number of Number of Dueck
Non-Zero RBC Non-Zero and
Minterms Minterms Miller

6 1.378 2.500 0.334
7 2,726 4.217 0.404
8 3.814 5.137 0.475
9 5.247 6.364 0.597
10 6.346 7.810 0.693
11 8.621 10.672 0.808

12 11.673 15.412 0.928
13 16.899 20.461 1.003
14 16.531 18.349 1.172
15 12.805 14.639 1.304
16 10.115 12.833 1.383

As can be seen from Table 2, A* using number of non-zero minterms is the slowest
algorithm as well as the one with the worst performance. A* using cumulative RBC is

somewhat faster, but much slower than Dueck and Miller. Dueck and Miller is very fast.

Table 2 does not tell the whole story. For both versions of A*, the standard deviation

of average elapsed time was very large. For example, for 12 non-zero minterms, the av-

erage elapsed time is 11.673 seconds and the standard deviation is 16.158 seconds. The

latter figure is surprisingly large. It results because some functions give near instantane-

ous solutions, while others may take up to 30 seconds to solve.
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Another interesting observation from Tables I and 2 is that the.most difficult func-

tions are those with 12, 13, and 14 non-zero minterms. This is caused by. the zero

minterms forcing the implicants to go around them, In functions with few or no zeros,

the iuiplicants have more freedom-to be larger and cover more minterms.

Figures 4 and 5 are graphical representations of Tables I and 2.
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Figure 4. The average number of implicants versus the number of nonzero values

for random functions
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V. CONCLUSIONS

As with most engineering problems, there are certain trade-offs. A simplified MVL
function that is minimal or nearly so can be found with A*. But it uses significant
computer time to get it. If time is more important than a minimal solution, then a

straight-line heuristic such as Dueck and Miller is better.

A* using the number of non-zero minterms is not effective. It takes longer to reach
a solution and that solution is usually not as good as Dueck and Miller. Using the

number of implicants multiplied by the number of variables is an effective cost function.
It forces sufficient backtracking to minimize the number of implicants in the solution.

This is true even for strong evaluation functions. Dueck and Miller and other straight-

line heuristics are very fast, much faster than searching methods.

A* using cumulative RBC is an effective algorithm for finding minimal or near
minimal solution for MVL functions. It provides a smaller average number of implicants
needed to express the function than Dueck and Miller. It is much faster than an ex-

haustive search for absolute minimization. Once again RBC proves to be an excellent
method to evaluate implicants to be included in a solution. In this case, RBC was mod-

ified to provide it with memory of the quality of previous implicants. An important
question is how well A* does in finding absolute minimums. Unfortunately, time and

resources were not available to do exhaustive searches in sufficient quantities for this
research. It is a question which needs to be answered in further research. The data in
Tirumalai and Butler [Ref. 7, pp. 235-241] seems to indicate that even small improve-

ments in the average number of implicants needed to cover yields significant improve-

ment is numbers of functions where the absolute minimal realization is acheived. If this

is true, then A* using cumulative RBC may do very well in acheiving absolute minimi-
zation. The additional cost to do an exhaustive search or use an alternative heuristic is

not justified.

Both the version using the number of non-zero minterms and the version using cu-

mulative RBC needed weighting factors. Use of a weighting factor gives the user control
over the amount of backtracking (and thus confidence in a minimal or near-minimal

solution) and the amount of time needed to solve. Further research is needed to to de-

termine the best weighting factors to use.
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APPENDIX A. ALGORITHM DESCRIPTION

This Appendix provides a formal description of the of the searching algorithm as
used in the program astar. It also describes the structure of a node as used in the algo-

rithm.

algorithm
input: A file containing one or more MVL functions.

output: One or more simplified expressions of the functions

from the input.

begin

copy foriginal into f.work

while minterms remain in f.work repeat

find most isolated minterm (mim) of fwork

while implicants remain for this mim repeat

generate an implicant

generate a new node from the implicant

place the node on the agenda

end while

current-node is the node from the agenda with the lowest sum

remove currentnode from agenda

f_work is foriginal minus the implicants used to get to

current_node

end while

copy implicants used to get to current_node into fjinal

end
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a node consists of:

list of all implicants used to reach this implicant

plus this implicant

value of cost function for this implicant

value of evaluation function for this implicant

sum of cost and evaluation functions.
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APPENDIX B. PROGRAM LISTING
/* Source: astar, c

Revision: 1.1
Date: 27 FEB 90
Author: Watts

0 *!

/* This version of Astar uses the sum of all relative break counts
of all implicants used to reach the current implicant, plus the
rbc of the current implicant as the evaluation function.

The cost function is the number of implicants multiplied by the
number of variables.

This version of Astar is compatible with the following options
from HAMLET

-a provide output formated for analysis by mvla
-b do not print the version banner
-e print original expression
"i print every implicant chosen
-q quiet, don t print anything
-m print Karnaugh map of each input expression
-M do not execute the algorithm, just print the

Karnaugh map
-s print statistics on this algorithm
-Sc search for a solution until completion
-oFile output formatted solutions for mvll to "File"
-xfile output source expressions built to "File"

instead od x.mvl*1

#include "defs. h"

/* Structures and Global Variables needed by Astar */

typedef struct node-struct "

int cost,
evaluation,
criterion;

Expression *path;
struct nodestruct *next;

) Node;

Node *header,
*currentnode;

AStar()

function
-Perform an A* search on the input expression to find a solution.

algorithm
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Start with a working copy E-work of the original function E...orig;
Initialize a finall'unction Ejfinal, the agenda, and current..node;
While (there are still minterms to pick){

Find the most isolated minterm;
Find all implicants of the minterm;
Generate Nodes for eash implicant{

'Cost;
Eva luat ion;
Criterion;
Path

Place Nodes in the agenda;
Choose the Node in the agenda with the smallest criterion;
current..node = chosen node;
Subtract implicant. of current..node from E...work;
remove current.node from agenda;

globals
E...orig

side effects
STAT
E..work
E-final

.called by
main()

calls from
agendao) astar.c
allou...node() astar. c
dealloc..expr() alloc.c of HAMLET
dealloc.node() astar. c
dup..expr() alloc.c of HAMLET
free-..memo) astar. c
gen..bounds() common.c of HAMLET
initjimplicant() common.c of HAMLET
mim() dm.c of HAMLET
next..implicant() common.c of HAMLET
New-.node() astar. c
print..Node() astar. c
print..source() main.c of HAMLET
print.terms() main.c of HAMLET
remove() as.tar.c
search() astar.,c
subtract..path() astar. c
valid..implicant dm.c of HAMLET

-------------------------------------------------------*

mnt first = 0;
mnt trace = 0;
int i, betterjound;
double ratio;
Coord *X;

Node *next-node = NULL;
Node *Newnodeo, *searcho;

Bound *B;

26



Implicant *I;

extern MVL..stats AS..stat;

Eva l_.Value -V;

1Initialize all necessary values *
if (E..final.I 1= NULL)

dealloc..expr( &E.f inal);
header =NULL;.
current.node =NULL;

IIifdef KEEP..STATS
STAT = &AS..stat;

1/endif

1* Initialize the working expression to the original expression *
dup..expr(&E..work, &E..orig);

#ifdef ALEVEL..2
if (opt..print-.orig-.expr)

print.terms(&E.orig);
if (opt..print..map)(

printf('Qrig map (AS): n");
print.map(&E.work);

#endif

resource.used( START);

/* While there are still mintarms to pick repeat *
for (;;) {

/* Find the most isolated minterm *
if ((X =mim(&E..work)) = NULL)
break;

initjimplicant(X);
B =gen...bounds(X);

/* While there are still implicants to pick repeat *
while ((I = next...implicant(B)) 1= NULL) {

1* If the original value of this minterm was the max value
investigate for all possible values, not just its current
value. */

if (V. eval == (radix-l)){
for (I->coeff = X[nvar]; I->coeff < radix; (I->coeff)++){

if (valid-implicant(I)) f
next_ node = New_node(I,next..node);
agenda Cnextnode);

1* Otherwise just generate a Node for the current value. *
else [

I ->coef f = X[ nvar];
if (validjimplicant(I))(
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next~node Newjiode(I, nextjiode);
agenda(nextjiode);

/*,Set the current~node to the best choice on the agenda *
if (currentjiode I" NULL)

dealloc..node( currentjiode);
currentnode =search(header);
/* Remove the current node from the agenda *
removeC current..node);
/* E...work now consists of E..orig minus the path of implicants

needed to get to currentjiode *
subtract..path( current..node);

#ifdef ALEVEL..2
if (opt-print..eachjimpl){

printf( lncurrent node: n");
print..Node( current_..node);

# endif

resource..used( STOP);

/* If the solution found is worse than the original
use the original unless the search to completion
option is chosen. */

if (current_..node->path->nterm > E...orig.nterm){
betterjfound = 0;
if (lopt_.S..t~coverage)

dup...expr(&Ejfinal, &E..orig);

/* Otherwise us the solution found *
else (

betterjound = 1;

Idup-expr(&E-final, current-node->path);

/* Depending on the options desired, prepare the output
and write it. *

if (xf...nametO])
print...source(&Ejfinal, "AStar", E..final. nterm);

ifdef ALEVEL.l
ratio = ((double)E.final. nterm/(double)E..orig. nterm);

/* Get the output needed for analysis by mvla *
if (opt..jvla && (is...redir 11 !opt..be-.quiet)){

printf("%-4d AS: %4d/%-4d %4. 2f %6d: %3. 31d n"
expr..seq, Ejfinal.nterm, Eorig.nterm, ratio,
secs..usedo, tsecs..usedo);

else if (!opt..be...quiet)
printf("Case: %-5d User: %d n". expr.seq, E...orig.nterm);
printf("Heur: AStar Perf: ")
if (better-found)
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printf("%d n n",E-final.nterm);
else

printf("no better n n");
fflush(stdout);)

# endif'

/*-Free all the memory used in the agenda */
freemem(header);

Node *allocnode(p)
Node *p;

function
-allocates memory for a node of the agenda

returns
-the address of the node

called by
Newnode()

calls
allocexpr()

------------------------------------------------------------------*1
(

Expression *allocexpro;

if ((p=(Node *)mallocCsizeof(Node))) - NULL)
fatal("allocnode(: out of memory n");

p->pakh = NULL;
p->next = NULL;
p->path = alloc-expr(;

return(p);

Node *Newnode(I,p)
Implicant *I;
Node *p;
1* .......................................................

function
-Generates a node for the implicant I

returns
-the address of the node

called by
-AStar()

calls
alloc_implicant() from alloc.c of HAMLET
alloqnode()
Cost()
dup-expr() from alloc.c of HAMLET
Eval()

-------------------------------------------------------------------*

int i, term;
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p-= allo6_node(p);

p->cost = Cost(I);
p->evaluation = EvaiC I);
p .>criterion = p->cost + p->evaluation;
p->nekt = NULL;

p->path->radix = E~work. radix;
p->path->nvar =E..work.nvar;

if (current..node -'NULL){

p->path->nterm 1;
p->path->I = alloc...implicant(p->path->I, I->coeff, 1);

for (1i0; 1 < nvar;,i++){
p->path->I[ 0]. B[i]. lower = I->B[ il. lower;,
p->path->I[ 0]. B[ i].upper = I->B[ i]. upper;

else (
dup...expr(p->path, current..node->path);
term =p->path->nterm;
p->path->nterm++;
p->path->I =alloc...implicant(p->path->I, I->coeff, p->path->nterm);
for (i0O; i < nvar; i++) {

p->path->IE term]. B(i]. lower = I->B( i]. lower;
p->path->Itterm].B[i].upper = I->B[i].upper;

return(p);

Expression *allocexpr()
/*........................................................

function
-allocates memory for an expression

returns
-the address of the expression

called by
alloc..node()

------------------------------------- *..............

Expression *p;

if ((p = (Expression *)malloc(sizeof(Expression))) =NULL)
fatal("alloc.nodeo: out of memory n)

p->I = NULL;
p->nvar =0;
p->radix 0;

return(p);
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a#genda(p)
Node- *p;

function
-places a node pointed to by p on the agenda. The agenda is
implemented as a linked list.

called by
AStar()

/* If the agenda is empty, just put the new node in it */
if (header = NULL)

header = p;

/* Otherwise, put the new node at the first slot and have it
point to the old first node. */

else (
p->next = header;
header = p;

I

Node *search(p)
Node *p;

function
-finds the best node on the agenda and sets currentnode to that
node

returns
-the address of the best node

called by
astar. c

......i~i.. ... . . . . . . .. . . . . . .....ii i i i. I ~ w . ., m m. I....... ......... /

{
Node *best;

/* Initialize the best choice to the first node on the agenda */
best = p;

# ifdef KEEPSTATS
STAT->calls-pickimp licant++;

# endif
* Repeat until we reach the end of the agenda */

for (;p != NULL;) (
/* If this node is better than the node in best

this node becomes best. */
if (p->criterion < best->criterion)

best = p;
/* Go to next node */
p = p->next;
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retuirn(best);

deal locjiode(p)
Node *p;

- --------------- -------- ------ ---------------------
function

-frees memory of a node
called by

-astar. c
calls

dealoc..expr() from alloc.c of HAMLET

-- - - - - - - - --{ -- - - - - - - - - - - --

dealloc..expr(p->path);
free(p);

remove(p)
Node .*p,;
/*.................................................----------

function
-removes a node from the agenda

called by
astar, c

{ . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

Node *np;

/* If the node is the first node, change the header *
if (p =header)

header = header->next;

/* Else traverse the agenda until we find the node we wish to
remove. Fix the pointer of the previous node to point to the
next node. *

else (
np = header;
for (;np 1=NULL;){

if (np->next = p)
np->next =np->next->next;
break;

else np = np->next;

subtract..path( p)
Node *p;

function
-finds the remainder of the function left to solve by taking
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E-orig-and subtracting the path of the currentnode.
called by

astar. c
calls

alloc_implicanto) from alloc.c of HAMLET
deallocexpr() from alloc.c of HAMLET
dupexpr() from alloc.c of HAMLET

side effects
Ework

....................................................*

int i, J, term;

deallocexpr(&Ework);
dupexpr(&Ework, &Eorig);

for (i = 0; i < p->path->nterm; i++) (
term = E_work.nterm;
E_work.nterm++;
E_work. I

= alloc-implicant(Ework. I, -(p->path->I[i].coeff), Ework. nterm);
for (j = 0; j < nvar; j++) (

Eyork. I( term]. B( j]. lower
= p->path->I[ i]. B[ j]. lower;

E-work. I[ term]. B[ j]. upper
= p->path->I( i]. B( j]. upper;

printNode(p)
Node *p;

function
-to print out the contents of a node pointed to by p

called by
astar. c

calls
printterms() from main.c of HAMLET

printf("cost = %3d evaluation = %3d criterion = %3d n"',
p->cost, p->evaluation, p->criterion);

print-terms(p->path);

int Cost(I)
Implicant *I;

function
-Determines the cost of an implicant I

returns
-the cost of the implicant I

called by
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New..node()*

mnt i;
/* The cost is the number of'implicants times the number of

variables times a weighting factor of 2 */
i = (E...work.nterm - E...orig.nterm + 1) * nvar * 4 / 2;
return(i);

int Eval(I)
Implicant *I;
1*.............................................---------

function
-Evaluates the Implicant I for closeness to final solution

returns
-an integer that represents how much closer we are to a
solution. The smaller the number the closer we are.

called by
New..node()

calls
compute..rbc() from dm.c of HAMLET

------........... t--------------------------------*

short i;
int J, k;

/* The evaluation function is the relative break count (rbc)
of the current iniplicant plus the cumulative rbcts of the
implicants in the path to this implicant. *

i = compute..rbc(I);
if (current-node I= NULL)(

j =(currentnode->evaluation);
k =i + j;
return(k);

else
return( i);

free.mem( p)
Node *p;
1*eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee----------

- function:
-frees all the memory for the next function

called by
astar()

-------------------------------------------- ---------- *

Node *hold;

/* Traverse the agenda freeing all the pointers. *
for (; p I= NULL;){

hold = p->next;
free(p->path->I ->B);
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free(p->path->I);
freCp->path);
free(p);
p =hold;
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