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PROJECT SUMMARY

This report studies some aspects of analysis and controller design for linear systems

with parameter uncertainties. It is assumed that the uncertainties are qiantified as

intervals and the relevant parameter can assume any value from the interval.

Unlike conventional methods, use of interval arithmetic is investigated. Interval

arithmetic provides a mechanism for dealing with the uncertainties in a very general

framework. All the calculations have to be performed in terms of intervals instead of

real and/or complex numbers.

Historically, the use of interval arithmetic was motivated by an effort to find

bounds on round-off errors in numerical computations, and therefore, typically the

intervals used were of the order of the last significant place after the decimal on

the computer on which it was being employed. The premises in this report is that

by increasing the interval size to accommodate model uncertainty, if a controller iFc

designed for an interval instead of a particular value from that interval, stability of

the system in face of complete variation in corresponding parameter is aut niatically

guaranteed!

At the current time the above objective is achieved only at the cost of overboulnd-

ing the uncertainties hence the controller, when it exists, will ),, conservative.
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1. INTRODUCTION AND OVERVIEW

1.1. INTRODUCTION

The fields of optimization and control theory are well developed disciplines with very

strong theoretical and methodological foundations. Although a significant effort has

been underway to develop both of the above areas independently, a large variety of

current problems require us to pool the resources from these and other related areas

and to put forth a combined effort to solve them. Among the problems presenting

these challenges is the development of a symbiotic relationship between system theory

principles and practical problems such as design of flight control systems, communi-

cation systems, transportation systems, etc.

Control theory has been a subject of intensive research for several decades. How-

ever, until recently, the principle effort of research was focussed on classical design

methodologies such as Bode diagram, root locus, Nyquist plots, etc. These design

methods are extremely effective for solving small scale and relatively less complicated

problems. However, they have limited utility in modern multivariable control sys-

tems analysis and design due to the stringent design and performance requirements

commanded by current technology.

An important aspect of analysis and design of a system is to make it "robust"

in face of uncertainties in the model parameters and/or operating conditions [3], [5].

[7], [9], [12], [16], [35], [40] and [44]. The need to incorporate robustness in design



is necessitated by the fact that for most practical systemns, the model is known only

approximately. For example, in the aircraft industry, the aircraft model is consti lwted

using the data obtained from the wind-tunnel experiments on the aircraft body. As

a consequence, the parameters of the model would not have a specific value, rather

they are known to lie within an interval. Since the actual flight data are not available.

the controller should be able to account for the unmodeled parameters that can be

obtained only when the aircraft is airborne. Design of a "robust" controller therefore

becomes a priority in such applications.

Fortunately, in the last decade the momentum has visibly shifted to integrating

more sophisticated mathematical theories to solve these problems. As a consequence

the newer design techniques are capable of meeting the required performance measures

and at the same time giving the designer sufficient freedom to incorporate additional

"desirable features" of robustness. Several theories, notably those developed in [3].

[9], [11], [13], [14], [19], [24], [33] and [44] have been put forth that enable us to design

robust systems. One assumption underlying all of these theories is that the non7.??al

model of the system is known. The design is carried out based on this model, and the

final product is analyzed for the degree of robustness.

The approach adopted in the proposed research io significantly different from the

conventional approaches to the solution of this problem. In this project, we will inves

tigate the application of interval maI, hcratics in analysis and design of rnultivariable

control systems. Interval analysis, as introduced by Moore [26], [27] and extended

by several researchers c.g., [1], [30], considers each min'ber as an interval invtu('d (,f

a fixed point in the complex plane. Although tH original i(,tivatloi )elhind,1 th im c
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of interval analysis was to capture all rounding-errors during computations, the in-

terval arithmetic was developed as a parallel to conventional arithmetic. Since, as

discussed, the parameters of the models in modern multivariable systems are usually

known to be within an i'nterval. the use of interval arithmetic for their analysis and

design appears to be a logical direction.

The prediction and control of dynamical processes described by general physical

laws or experimental data is a basic problem in engineering. Therefore, the starting

point in analysis and design of a practical system is to obtain an accurate description

or a model. These models are usually obtained by means of simulations and/or

laboratory experiments. If the model parameters are known precisely, the solution of

this representation problem is very well understood. In practice, the real conditions

under which the system would operate can only be approximated in the laboratory

experiments. Hence it is reasonable to assume that a precise knowledge of the process

or model parameters is atypical. This is especially true in the case of the aircraft

industry where wind-tunnel tests are used to obtain the best possible approximation

of the "true" model of the aircraft. The control elements such as rudder, elevator,

etc., are installed based on the available model.

For applications such as the one described above, although a precise model is

almost never available, the extensive experience with such experiments over the past

several decades does enable the engineers to specify the degree of uncertainty associ-

ated with various parameters that determine the performance of given system.

In classical frequency domain techniques for single-input, single-output systems,

the concept of gain and phase margins are well understood. These margins provide

3



effective measure in determining the robustness of the given plant. These notions,

however, do not directly extend to multi-input, multi-output plants. In fact, it h-is

been shown for the multivariable case that even if each channel in the feedback mech-

anism possesses some desired gain and phase margins, a small perturbation in the

system can result in closed-loop instability.

Analysis and design of a system whose parameters are known to lie within a

range (rather than having an exact value) has received considerable attention over

the last decade. Various analysis and design methodologies used by control systems

engineers are essentially meant for application to a "nominal" model. The resulting

design is said to be robust if the system performs within acceptable limits in the face

of significant parameters variations and model uncertainties.

This situation has led to fundamental extensions and re-evaluations of the mod-

eling philosophy, an extensive and rigorous development of powerful estimation tech-

niques and the advent of various approaches to the design of controllers that are

robust against such uncertainties. Some of the more important of the advances that

address the design of robust controllers are (1) Robust Servomechanism Control, where

a good understanding of the nature of uncertainties associated with the system and

the environment in which it operates enables us to design servomechanism controllers

that guarantee asymptotic regulation, (2) Linear Quadratic Regulator with multiple

loop state feedback. These regulators have excellent robustness properties when inea-

sured by classical criteria of gain and phase margins and can undergo substantial gain

and phase perturbations without becoming ur-table, and (3) Optimal Hankel Norm

Optimization based techniques that use matrix valued interpolation theory to obtain

... . .. . .. = , m eee nnn unm I I



robust controllers for the given plant.

In practically all of the research that has been conducted in robust controller

design, the underlying model is assumed to have some nominal values of the param-

eters. This choice of parameters is carried through the design. Once a controller is

found, the robustness of the resulting controller is determined from the final design.

Intuitively, it appears more appealing to perform the complete design using intervals

in which these parameters lie, instead of selecting one particular value from these in-

tervals. This leads to the natural choice of interval arithmetic as the most logical tool

to address the problem of robust controller design. The subject of interval analysis

was developed in mid-sixties in quest for rigor in numerical computations on com-

puters using finite precision arithmetic. Interval arithmetic treats intervals as a new

kind of number. Computations in appropriately rounded arithmetic produce results

that contain both ordinary machine arithmetic results as well as infinite precision

arithmetic results.

The use of interval arithmetic was motivated by an effort to find bounds on round-

off errors in numerical computations, and therefore, typically the intervals used were

of the order of the last significant place after the decimal on the computer on which it

was being employed. However, since the underlying principles for various operations

such as addition and multiplication of the intervals have already been established,

it remains to increase the interval size that suits the practical problem of enclosing

the uncertainty in the model parameters, and extend the methods of analysis and

design of systems using interval arithmetic. It is not too difficult to visualize that if a

controller is designed for an interval instead of a particular value from that interval,
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stability of the system in face of complete variation in corresponding parameter is

automatically guaranteed! It should be emphasized that this is achieved only at the

cost of overbounding the uncertainties hence the controller, when it exists, will be

conservative.

In the rest of this report, we will consider system described by their state-space

representation:

dx(t)
d- = Ax(t) + Bu(t) (1.la)

y() = Cx(t), (1.lb)

where x(t) E IR", u(t) E IRm and y(t) E IRP . Or in their transfer function represen-

tation:

Y(s) = G(s)U(s) (1.2a)

- N ) U(s) (1.2b)
d( s)

= C(sI - A) - ' BU(s) (1.2c)

In most existing analysis and design techniques, it is assumed that the matrices

A, B and C (describing the various parameters of the system) are known precisely.

However, as mentioned in the previous section, for most practical systems, this is

seldom the case. Therefore, it will be assumed that A E lIIR ">', B E HlIft l and C

E IIIRP× , where the notation IR1 stands for an interval over the field of real numbers.

Accordingly A, B and C are matrices whose elements (some or all) are intervals over

the field of real numbers. In a similar manner, it will be assumed that the coefficients

of various polynomials in the transfer function (matrix) are intervals.

6I



1.2. LAYOUT OF THE REPORT

The remainder of this report is organized as follows:

1. REVIEW OF INTERVAL ARITHMETIC TECHNIQUES: Although interval

arithmetic was conceived roughly 20 years ago, its use has been restricted to the

numerical analysis community. Therefore to make the project self-contained, a

sufficiently detailed review was conducted.

2. ANALYSIS OF MULTIVARIABLE SYSTEMS: Frequently, a good under-

standing and knowledge of the system under consideration enables one to design

a better controller. Hence various analysis techniques using interval arithmetic

were developed. These analysis techniques are (a) the solution of systems of dif-

ferential equations with interval coefficients and/or interval initial conditions, (b)

and the solution of linear interval equations.

3. DESIGN OF ROBUST CONTROLLERS: Since the underlying principles of

interval analysis implicitly account for a range of numbers rather than a particular

number, it is easy to see that the design, when it exists, will automatically be

robust albeit with some conservatism. In particular, the problems of feedback

stabilization by means of state feedback and simultaneous stabilization for single

input single output systems were addressed.

OIL-7



2. REVIEW OF INTERVAL ARITHMETIC

2.1. NOTATION

Unless stated otherwise, we will use the following notation in the rest of this report:

interval scalars

i flower and upper limits of interval scalar

[k, A ]interval matrix

A, A lower and upper limits of interval matrices

[ A, A ] interval vector

a, a lower and upper limits of interval vectors

x a point from the interval [:k, i ]

x a point vector from the interval vector [ fc, i

X a point matrix from the interval matrix [X, X]

IR field of real numbers

IIR interval scalar assuming value in IR

I11 Rn  interval vector assuming value in IR"

JRn x m interval matrix assuming value in JRn x "

[&, a]v[b, b] joint of [ a, & ] and [ b, b ] = [min{di b}, max{i,b }]

w([ A, A]) width of[A, A ] = A - A

A 0t) B Kronecker product of two matrices (lefined in eq. (4.2)

vec (A) a vector of the columns of a matrix defined in eq. (4.3)

8



2.2. INTERVAL SCALARS & FUNCTIONS

Let II be the set of real compact intervals [ Zt, d], i, & E IR. General interval operations

can be defined as [1], [27]:

Definition 2.1: Let * be a binary operation on the set of real numbers IR. If [ a, &],

[b, b] E HfIR, then

[a, a]*[b, b] = {a*b : aE[d, a], bE[b, b]}, [&, a],[b, b]E I, (2.1)

where * stands for +, -, • and /. Further the operator / is only defined for the

operations [, a ]/[ b, b], 0 [ b, ]

It is clear from the above definition that

a*b E [a, a]*[b, b] (2.2)

defined as the inclusion principle of interval arithmetic. It can be interpreted to mean

that the sum, difference, product and quotient of the reals (possibly unknown) are

contained in the sum, difference, product and quotient of the including intervals which

are known precisely.

The real numbers can be defined as point intervals,

a = [a, a] = [a, d] = [a, a]. (2.3)

With the above definition of point intervals, we can define the operations be-

tween point intervals and intervals with finite width. Further, the usual arithmetic

operations are carried over to intervals as follows:

9



Definition 2.2: Let [6, a], [HI, ] e 11n1, then

[a, a] + [&, ] = [a+b, a+b]

[a, a] - [b, b] = [a-,~ a-b]

[a, a l [b, b] = [min(b, aib, 6b, ab), max(&b, ab, a b ] (2.4)

a]/[ b, b] = [a, a] [0, ] 0 [b, b].

Equation (2.4) clearly indicates that subtraction and division in interval arith-

metic are not the inverse operations of addition and multiplication. In fact this is

one of the main properties of interval arithmetic that distinguishes it from the real

arithmetic. Some of the properties of interval operations that will be useful in the

sequel are:

Definition 2.3: Let [d, a], [ b , [6, ] E HIR, then

[a, a]+[i, ] = (b, b]+[a, &I (commutativity)

[a, a]±([b, b]+[,, Q]) = ([a, a]+[b, b)+[e, a] (associativity)

[a, a]. [b, b] = [b, b]. [a, a] (commutativity)

[a, a]([b, b].[Z, ]) = ([a, &].[b, b] ] (associativity)

[a, a]([ b, b] + [e, ]) c[a, a][ b, b] + [a, a ][, ] (subdistributivity)

a([b, ,] + [6, ]) =a[,, b] + a[e, aEIR

[a, a]_ [,, ,], [e, , C [d, d] = [a, a,[e, ] _ [b, b][d, d]

(2.5)

The last property is called inclusion isotonicity of interval operations.

Note that all these operations reduce to real arithmetic when the intervals are degen-

erate intervals or point intervals i.e., a = a and b = b. In particular in the division

operation with point intervals, 0 E [b, b] if and only if b = = 0.

10



The operations defined by Definition 2.4 are the binary operation on the oper-

ators. In addition to the binary operations, there are operations that are associated

with a single interval, called unary operations, characterized next.

Definition 2.4: If r(x) is a unary operation on IR, then

r([±, D [ minr(x) maxr(x) (2.6)r([ ,]) = xE[+, i], xE[,]

defines a (subordinate) unary operation on lllR.

For example, the above definition accounts for operations like [, ]k, k E R,

e[ ' 1 , ln([ !, i ]), sin[ :E, i ]), cos([ , ;i ]), etc.

An important property of interval computation is the interval monoionicity de-

fined as follows:

Definition 2.5: Let [ (k, ]), a ] ](k) E IR, k = 1, 2 and assume that

[ , 5](k) C (k), k=1,2.

Then for the binary operations • E {±,-,.,

[a, (](1),[ , ](2) C b, ](1) [b, (2). (2.7)

Definition 2.6: The distance between two intervals [ a, i and Eb, b] E R is defined

as

d([ a, b ],[ b, b ]) = max{I1 - hi, 1P - bl}. (2.8)

It can be proved that the map d introduces a metric in HIR. Note that

d([ a, a],[b, b]) > 0 and d([ii, a],[b.b])= 0 [a ]- [., )]

d([ &, a ],[ b, b]) 5 d([ , a ],[ , ]) + d([ b, b [ ., ]). (2.9)

11



Notice that (2.9) is the triangle inequality and may be verified as follows:

> max{~ +6 - el ~ + lb * &- - I}

> max{ia- bI, I& -blI

= d([ &, ][ b, b]). 2.10)

The metric for real intervals defined above is the Hausdorff metric on 1IIR and is a

generalization of the distance between two points in a metric space. Further, it !las

been shown that the metric space is complete. Existence of metric in 111R. makes it

a topological space and therefore the concepts of convergence and continuity may be

used in the usual manner. In particular, a sequence of intervals {[ , i ](k) }, k =

0, 1,... , oo, converges to an interval [ C, b j if and only if the sequence of the bounds

of the individual members of the sequence converge to the corresponding bounds 6,

and a i.e.

lim [1, &](k) = ], ]jli m (k) = e and lim &(k) = a' (2.11)

k--.oo k-o

Theorem 2.7: Given a sequence of intervals {[ 6, a ](k)j},0, assume that the condition

& &](°) D [ d (. ) D [ ](2) D ... (2.12)

is satisfied. Then, the sequence of intervals {[ a, 'i 1(k)},_ 0 converges to the interval

S] = n 00 [ , a ](k).

The above results immediately leads to very useful notions associated with func-

tions in interval arithmetic. They are stated without proof.

12



Theorem 2.8: The operations * E +-, ",/} between intervals are continuous. 0

Theorem 2.9: Let f be a continuous function and let

f([ , ) = [ min f(x), max f(x)J, (2.13)

then f([ *, i ]) is a continuous interval expression. U

2.3. INTERVAL MATRICES

Some of the results of point matrices can be easily extended to interval matrices.

However, due to the nature of interval operations, several of them cannot be extended

directly to interval matrices. In next few paragraphs, we discuss some properties of

interval matrices and operations with interval matrices that will be of use in the

sequel.

Definition 2.10: Two interval matrices [ A, Ai ] and [f3, f3 ] E 1111 nXm are equal,

i.e., [ A, A = [ 9, f3 ] if and only if every element of the two matrices are equal i.e.,

[ ai , ai4 I = [ bi , b ].

Definition 2.11: Given [k, A] and [B, f3 E UIIR " ×nx, then

[A, Aj , [, f * [aij, a&j] [bij, b6j], (2.14)

= 1,2,...,nandj = 1,2,...,M.

The general operations between interval matrices can be defined as:

Definition 2.12: ADDITION, SUBTRACTION - Given [A, A ] and [f3, f E ]IR " x ,

with elements [ aij, aij ] and [bij, bjj ] respectively, then

[A,A] ± [BfB]= ( 6hj[ 1 1j]) (2.15)

13



where the right hand side denotes the (i,j)-th element of the sum or difference of thc

two matrices on the left hand side.

MULTIPLICATION - Let [ A,] E 11IRnr and [ fB, 1B] E 1111 rXn , with elements

[baij, iij I and [ bii, bi ] respectively, then

[A, f][B, 1] = ([ ik, aik ][ brj, brj) (2.16)
k=1

defines the product of two interval matrices. Interval matrix and interval vector

product can be defined in an identical manner.

The next theorem outlines some useful properties of interval matrices:

Theorem 2.13: Let [A, A], [B f, B§ ] and [ t, 1] be interval matrices of appropriate

dimensions, then

[A&, Aj I + [ A, b I = [3, + [A, (commutativity)

[A, -l + Q[f, f] + [ -, i) = ([A, , + [B, B]) + [ t, c]

(associativity)

([A, A] + [ , e d [A, A [t, 4] + [A, Aj) .' C]

(subdistributivity)

[A, A] + 0 [A, A] 0 is a null matrix

[ A, Au [, A] I is an identity matrix

A([Bf, B] + [C, ,]) = A[B, f3] + A[C, ] A anominalmatrix

14



3. SOLUTION OF INTERVAL DIFFERENTIAL

EQUATIONS

The solution of high order ordinary differential equations (ODE) is a standard compo-

nent of all control design and analysis techniques and extremely efficient techniques

exist for the solution of the same [7], [19]. However, frequently there is some un-

certainty in the exact knowledge of the initial conditions. This in conjunction with

uncertainty in the parameter values can lead to misinterpretation of the actual solu-

tions. With that in mind, in this section, we present the solution of the differential

equations with interval coefficients and interval initial conditions. The aim of this

section is to estimate the inclusion of the solution set for such differential equations.

It should be clearly stated here that the rest of this section has been adopted from a

paper entitled "An Interval Method for Systems of ODE" that appeared in the Pro-

ceedings of 1985 International Symposium on Interval Mathematics. Since the result

is an extremely important one and not easily accessible, it has been rewritten (with

some modifications) and included in this report.

Consider the following system of n ODE's:

dx(t)
= f(t, [ e, E ],x(t)), x(to) = [ko, *0 ] (3.1)dt

where C E [c] = [4, E ] E ll1R t and xo E [x0] = [k0, xo I E IIIR" are the system param-

eters and initial conditions respectively. Note that the uncertainty in the parameters

15



as well as that in the initial conditions is assumed to lie within the correspolting

interval vectors.

Let the time interval on which we wish to deter-ine the solution of the ,

problem be denoted by [ t, ] = [to, tl. Then, the problem that we address is tiiat of

determining an enclosure [ 1, of the set {x(t)} of all solutions of (3.1 (assuiniig

that the solutions exist) on the desired time interval. Equivalently, we deterineinc

[,, ,] such that

§(t) < x(t) < 9(t) V x (3.2)

for each t E It., tfl. Let f define a mapping

f : f- [, ] x [/,/1x [d, H 1 R (3.3)

where [d, d ] is the domain of x. We impose the following conditions on the function:

1. f(.) is continuous with respect to c

2. Lipschitziant with respect to x and t

3. and isotone with respect to x.

Then, the following algorithm will compute the required enclosures.

Algorithm ODE: Compute Enclosure of a System of ODE

Let h > 0 be a sufficiently small step such that tk = to + kh E [ t, F]. where k is

an integer and let k = 0.1,...,.

Let 9(to) = ko and g(to) = :o;

Let Aw('],[!D]= {fdt,x): t E [T],x E [D]}, F'Z([TJ.I[D])= {f(t,.r) : f (

[7"],xE [D]},i = 1,2,...,n for each [T] C [i, i] and [D] c [d, d].

t A function satisfying Lipschitz condition: If(x, y) - f(,'. y) < f r - .j1, is said to

be Lischitzian.
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Assume further that we have already computed 9(tk) and ,(tk), such that gi(tk)

< kii(tk) < gi(tk), i = 1,2,... ,n. Then the following recursion computes the

vectors

(t) = [ .2 .n]T and

g(t) = 1, 2 ... g,,]r,

in the interval [tk,tk+l].

upper bound s(t):

i(°) [d, d], i= 1,2,... n

forr = O,1,...,f,

~ ~(r) (fQ r), idr), -(Ir)
P ,z 4(.,)] 1i 2

i r+1) = gi(tk) V (,) + pgr)h) V (gi (t') + h), 1 1- 2..

i(t) = M(tk) + (t - tk)i, i = 1,2,...,n, t E [tk, tk+i]

end

lower bound 9(t):

.o) [d, d], i = 1,2,... n

for r =O ,1,...,If,

(r+1) -i,(tk) V (,(tk)+pgr)h) V (,,(tk)+ h) i = 1,- , .

90) gitk) (t-tk)Afi , i = 1,2,. .. In, t E [tkc,tk+l]

end.

Effectively, the algorithm is computing the following quantities:

1. the intervals f,(t,[ e, i ],x(t)) = {f,(t,c,x(t)),c E [ , / }, i = 1,2,

for each value of t E[i i] and the vector x(t) E [d, d]. The functions
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j'r '  -o... ) , ' Pi(, 4"')
, " (tk, ) 1 2) and 1 ( ,j ..... . i = 1.2 ..... ,

spectively, denote the end points of each of the interva.

2. and the intervals

P[iQ], [D]) = {I,(t,x) t E [T],x G Ela] and

Fi([T], [D]) = {fi(t, x): t E [(], x E [f)],

i = 1,2,...,n for each [T] e ['ll and [D] E [d, d].

At each time step, the solution interval is obtained by determining the smaI!est

interval that will include the largest deviations in the values of xi C [ di. di '. It is

should be pointed out that the resulting solution vector will overbound the Solutions

generated by all possible variations in [ t, t 1, [ i, ] and [ a, a 1.

To prove the convergence of the above algorithm, we proceed as follows:

Theorem 3.1: For any non-negative integer r,

.(r+i) "C(r) and (i+rl C" (34i i  C i and zi  C i i  (34

PROOF: See Appendix 3.A.

Next, it will be shown that A and 9 are indeed bounds for the solution set. To

show this we will establish that the solutions x(t) are bounded as follows:

Theorem 3.2: Given the solution set {x(t)}, it is bounded as

9(t) < {x(t) < g(t) t k E [tk, tk+ ]. (3.5)

PROOF: See Appendix 3.B.

Knowing the lower and upper bounds of the time response of a linear interval

differential equation, feedback can be applied to improve the transient and/or steady
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state response of the system. Study of feedback vis a vis improvement of time response

is of considerable importance and is a possible direction in which to extend the results

presented in this report. It is conjectured that similar results can be derived for

bounding the gain and phase plots for rational functions with interval coefficients.

APPENDIX 3.A.

PROOF OF THEOREM 3.1: The proof is by induction. For r = 0, we have

i) = gi(tk) V (9:(tk) + O)h) V (i(tk) + )h , i = 1,2,... , n. (3.6)

Since, gi(tk) E [di, d], i = 1, 2,..., n, we can make the increment h sufficiently small

such that 4 1) C [di, d,] = i(o.

Next, assume that zr) C ir) for some r > 2. Then, in the interval [tk,tk+1],

since Fi is an inclusion isotone,

: ,qoC -Pi [tk,tk+1],i1( , 2 I,...,I

= [ P i , q ( 3 7 )

Therefore,

< < <(3.8)-- Pir -- qi - q

and,
g( -k) +-h<(I)h

(3.9)

g,(tk) + )h > gd(tk) + 4i )h.

Equivalently,

C+ (3.10)
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In a similar manner, it can be shown that (r+)) C()

APPENDIX 3.B.

PROOF OF THEOREM 3.2: For any non-negative integer r,

&M = .< f(t,X 11 .. ,X.), t E [tk,tk+II, i E , 12..

(3.11)

From THEOREM 3.1, it is known that (r+l) C (r), then for each t E [tk,tk4 l,

+ Cz . (3,12)

, I (). (3.13)
gj(t) = 9j(tk) + p (-) j C i  j = 1,2,.... o . ( .3

Therefore,

M 0t ,t, ().. ,t) 1,2,...,n. (3.14)

Following the proof in an analogous manner, it can be established that

If we assume that x(t) is an arbitrary solution of the interval ODE, corresponding

to some c E [c] and some Xo E [xo], then,

s(t) :5 f(t, 6(t)) < f(t, [c], §(t))

.!t > (,:,g(t)) _> f(t,[c],.g(t)) ( .6

i(to) = Ro !5 Xo < i = 9(t).

The above relations can be summarized as

s(t) _ f(t,[c],§(t))2
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R(t) =~,[],Xt)

s(t,0 ) X,

x(t,,) =x. and

9(t,) X0 .

Under the assumption that f is a quasi-isotone in x,

§(t) :5 {x(t)} :5 i(t).U
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4. A SUFFICIENT CONDITION FOR STABILITY OF A

CLASS OF INTERVAL MATRICES

In this Section we derive a sufficient condition for ensuring the stability of a class of

interval matrices called M-matrices and study its applications. The Lyapunov crite-

rion of stability of a matrix is extended to interval M-matrix matrix case. However.

in extending to the interval case, sene conservatism invariably enters the analysis

thereby rendering the criterion only sufficient. Some applications of the stability of

M-matrices to dynamical systems are presented.

It is well known that for systems described by nominal (intervals with zero width)

parameters,

Theorem 4.1: Let V(x) = xTpx, where P is a solution to the matrix Lyapunov

equation

ATp + PA = -Q. (4.1)

Then a real matrix A is a stability matrix if and only if, for any given real symmetric

positive definite matrix Q, the solution P is also symmetric positive definite. U

The solution of a matrix Lyapunov equation can be obtained using existing nu-

merically reliable software for nominal systems. However, these techniques cannot

be extended to interval matrices. Fortunately, we can use the following alternate

technique for solving the matrix Lyapunov equation.
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Define the Kronecker product of two matrices A = (aij) E ]RmXn and B E IRpxq

as A 0 B E jRmpxnq , where the product is given by

aj 1 B a12B .. a 1nB
I a 21B a22B "". a2 (B42AO®B = . .. (4.2)

[amiB am2B ainnBJ

Further, we can define
Pi

vec (P) P2 (4.3)

-P -

where pi is the i-th column of P. On noting that

vec (ABC) = CT 0 A vec (B) (4.4)

and

ATp + PA =ATpI+IPA= -Q, (4.5)

taking vec (.) on both sides, we get

(I 9 AT + AT ® I) vec (P) = - vec (Q). (4.6)

Equation (4.6) can be solved by Gaussian elimination provided (I 0 AT + AT 01)

is nonsingular. By the properties of Kronecker sums,t it is clear that the matrix on

the left hand side will be nonsingular if and only if Ai + Aj 3# 0 for all eigenvalues of

A. Clearly, if A is stable (all eigenvalues in left half plane), then the above condition

is satisfied and a unique solution exists.

t The eigenvalues of A9B are the mn numbers Ai pj, i = 1,2,...,n j = 1,2,..., m,

where Ai and pj are respectively the eigenvalues of A and B. Further, the eigenvalues

of A 0 In + I.. 0 B (called the Kronecker sum) are the numbers A + pj.
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For the case of interval systems, we cannot solve for P directly because it is nIl

easy to compute the inverse of an interval matrix. The best that ca) be done is obtain

an enclosure of the solution vector - vec (P). We next investigate how to compute

these enclosures.

4.1. SOLUTION OF LINEAR INTERVAL EQUATIONS

In this Section we study the problem of solving linear interval equations. These

will play a significant role in developing the Lyapunov stability criterion for intcrval

M-matrices. In the literature, a linear interval equation with a coefficient matrix

[ A, Ak ] and a right hand side [ b6, b6 ] is defined as a family of the linear equations

characterized by

Ax = b (4.7)

where A E [A, A] and b E [ 6, b]. Note that (4.7) implicitly assumes that A exists

for all A E [A, A]. The solution set of (4.7) may be defined as

~~([A.~~ E][6 bi { IR'Ax = b for some A E [A ]bE [16, b}

(4.8)

An obvious way to compute such a vector [ k, k ] is to extend Gaussian elim-

ination to systems of linear equations with interval coefficients. For simplicity of

presentation, assume that the (interval) elements of [ A, A] are defined as oai and

the elements of [ 6, b] are defined as bi. Then starting with the following coefficient

tableau:
a l l  a12 .. aln b

a21 a22 a2, b2
• . -. .(4.9)

an aIn2 ... an n bn

24



and employing the relations:

axj = alj 1 < j _< n

aij = aij - axi(ai /all) 2 < i, j < n

= bi

b' = bi - bi (ail /all) 2 < i < n

d,, = 0 2 <Z'< n.

We get the following modified tableau
a/I at2 .. tn b
a1  a1  1 14
o a 2  *.. a n Y (4.10)
0 al22  ... a', b

an2 a , n b'

With the above notation, we can state the following result for general Gaussian elim-

ination:

Theorem 4.2: Given [A, k ] and [6, ], the inclusion defined as

{xIAx = b, A E [A, A ], b E [b, b ]}

{yIA'y = b', A' E[A', A'], b' E [b', b' ]} (4.11)

is valid.

PROOF: See Appendix 4.A.

Now using the above result, if we carry out the Gaussian elimination for the

remaining columns, then the coefficient tableau is transformed to an upper triangular

form:
al1  a 1 2  "'" ' In bl

0 6 2 2  ... i2, b2
S . ". . . (4.12)

0 0 ... , b,
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for which

{xjAx = b, Ae[A, ], be[I. ]}

= b', 'E [ A', At, b'e[b', b'} (4.13)

is valid. Using the relations

=

X= , 1<i<n-, (4.14)
aii

it is possible to obtain a vector [ X, ] = (xi) such that

{xlAx = b, A [A, A], bE [b, b 1 [k, f] (4.15)

Theorem 4.3: Let 1 < n < 2 and assume that the n x n interval matrix [A, Ai ] =

([ j, &iJ ]) does not contain a singular matrix A, then the Gaussian algorithm can

always be carried out.

PROOF: See Appendix 4.B.

Unfortunately, the above result is true for n x n interval matrices where 1 < n < 2

only and cannot be extended to the case when n > 3. Note that Gaussian elimination

can be performed for the several special classes of matrices. One of the more important

ones being M-matrices. In the next section we will show that if the interval matrix

is also an M-matrix, then the solution of linear interval equations is considerably

simplified.
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4.2. CONVEX HULL OF M-MATRICES

We will consider the case of square interval matrices. The results can also be extended

to non-square interval matrices, with applications in solving interval least square

problems.

Definition 4.4: A square matrix A is called an M-matrix if aij :_ 0 for i # j and Au

> 0 for some positive vector u E IR'.

An important property of nonsingular M-matrices is that every element of their

inverse is non-negative.

As mentioned earlier, the computation of [A, A ]- for a regulart interval ma-

trix is a difficult problem. The known methods have a computational complexity

exponential in n (the order of the matrix). But for the important special case of

M-matrices, we have the following explicit result [28], [29]:

Theorem 4.5: For an n x n interval matrix [A, A ], if the matrices A and i are

regular and A-1 > 0, A-1 > 0, then [A, A] is regular and

[ A, A i =[-,AI (4.16)

PROOF: See Appendix 4.C.

4.3. STABILITY OF INTERVAL M-MATRICES

Researchers have attempted to derive necessary and sufficient conditions for estab-

lishing the Hurwitz or Schur stability of interval matrices. However, invariably, the

results have been shown true for only a smaller class of matrices or the conditions

t If all matrices A E [ A, A I have full rank, then [ A, A ]is a regular matrix
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have been proved only to be sufficient. Notably, Bialas [10] presented a result that

derived a necessary and sufficient condition of stability of general interval matrices.

This result was later disproved by several researchers e.g., Barmish and Hollot 16] and

Karl et al., [201. A sufficient condition for stability of interval matrices is derived bN

Heinen [17] and Yedavalli [43]. In [15], the authors obtain the conditions for stability

of a special class of matrices. Other related work has been in obtaining the perturba-

tion bounds on the elements of a nominal stable matrix. These bounds can be found

in the work of Patel, Toda and Sridhar [31], [32] and Yedavalli [42].

In this Section, we will derive the condition for the stability of interval NI-

matrices. The following important properties of the M-matrices will be used in the

sequel:

Theorem 4.6: POSITIVE STABILITY [8] A is a nonsingular M-matrix if and only if

there exists a solution W to the matrix equation

AW + WAT = Q (4.17)

where W and Q are symmetric positive definite matrices. U

Theorem 4.7: POSITIVITY OF PRINCIPAL MINORS [8] A is a nonsingular Mk-rmatrix

if and only if A is nonsingular and x -, 0; y = Ax, then for some subscript i. r,

0, and xiyi > 0.

Theorem 4.8: If A is a nonsingular M-matrix then (I o AT + A T 0 I) is also a

nonsingular M-i-matrix.

PROOF: See Appendix 4.D.
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The above result is fairly important for the sequel, hence it is illustrated by means

of a simple numerical example.

Example 4.1: Consider the (2 x 2) non-singular M-matrix

A= [2 21

Forming the Kroneckar products, we get

5 -2 0 0 5 0 -2 01
IOAT [1 -2 0 % AT®I [ 0 5 0 4>

0 0 5 -2 -1 0 4 0
0 0 -1 4 0 -1 0 4

Therefore,
10 -2 -2 0

IAT + AT I = -1 9 0 -2
-1 0 9 -2
0 -1 -1 8

The inverse of the above matrix is[1.0494D - 01 2.4691D - 02 2.4691D - 02 1.2346D - 02
1.2346D - 02 1.1728D - 01 6.1728D - 03 3.0864D - 02
1.2346D - 02 6.1728D- 03 1.1728D - 01 3.0864D- 02
3.0864D- 03 1.5432D - 02 1.5432D- 02 1.3272D - 01

Thereby, verifying that I 0 AT ± AT 0 I is a non-singular M-matrix.

Next, we determine the condition for the positive stability of interval M-matrices.

By definition, all eigenvalues of [A, A] are positive (i.e. the matrix is positive

stable). Therefore, to obtain a Lyapunov function to establish positive stability of

interval matrices, we need to find an interval positive definite matrix as a solution of

the following Lyapunov equation

[A, ]r[P P] + [P, P][A, A] = Q. (4.18)
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where Q is positive definite matrix. Then, if each P E [ P. P] is a positive definitc

matrix, [ A, A] is a positive stable matrix.

Equivalently, assuming that [ A, A ] is an interval A--matrix, we form the Kro-

necker sum given by (4.2) for interval matrix case and solve the following linear interval

equation for vec (P):

+ ,IT I) vec([, 5]) vec(Q). (119)

Denoting the n2 x n2 matrix on the left hand side by [A. ]. we have

[A, A] vec([P, P]) = vec (Q). (1.201

where vec (Q) > 0. Now, using the properties of interval M-matrices,

vec ( P , P1) = [A, A]-vec (Q)

= [A-', A-' ]vec (Q)

= [A-'vec (Q), A-ivec (Q) 1. (4.21)

The interval matrix [P, P ] can now be easily constructed. Clearly, [P. P ] is a

symmetric matrix.

To verify whether it is positive definite, we use the result developed by Shi and

Gao [38]. Following the notation used in [38], let U = (ui3 ) and V = (v,j) E 1R" '

be symmetric matrices and uj < vi,, Y,j = 1,2,... ,. Denoting

£C"[U,V] = {A =(aii) E IR'1"'uij _<aiu <_ i'i,; aij = aji,i,j = 1,2, n}

A:'[U,v] = S= (s,j) E IR"'"ls,j = t,j or sj = vij; sij = s,,j = 1,2. n}.

(4.22)
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Note that while the first equation represents a set of matrices with infinite members,

the second equation denotes a set of edge matrices. According to [38], an interval

matrix V'[U, VI (K'[U, V]) is termed a positive definite matrix if A (S) is positive

definite for every A E Ln[U,V] (S E K2n[U,V]). Based on the above notation, the

following result was established in [38]:

Theorem 4.9: The set C"[U,V] consists of positive definite matrices if and only if

the set Kn[U, V]) consists of only positive definite matrices. U

Using the above result, now it is clear that [ P, P ], the solution of interval Lya-

punov equation is positive definite if and only if all the vertex matrices are positive

definite. To establish the positive definiteness one would have to verify positive defi-

niteness of all vertex matrices. Note, however, the matrix A is (4.20) is over-bounded,

hence positive definiteness of P, P is only sufficient for positive stability of J A, A ].

Note further that if the entire interval Lyapunov equation is premultiplied with nega-

tive identity, parallel results can be obtained for Hurwitz stability of inverse negative

matrices (matrices whose inverse has all negative elements).

4.4. APPLICATIONS OF STABILITY OF M-MATRICES

In this Section, we study two applications of the stability conditions developed above.

The first application is in the study of robust stability of composite dynamical sys-

tems and the second application is in the study of robustness of dynamical Leontief

economic models.

4.4.1. ROBUST STABILITY OF DECENTRALIZED SYSTEMS

The earliest application of M-matrix theory to composite dynamical system stability
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problem was studied by Gurji6 and Siljak [18]; and Araki [2]. In the sequel w', will

follow the notation used by Gurji6 and Siljak. Consider a continuous time system

described by a set of n vector differential equations [37]:

dxi - gi(xi,t) + h(X,t), i = 1,2...,k (4.23)
dt

where xi E IRni, g : lR n" x IR -- IRh', h, IR" x JR 2 x ... x IR"  x IR -- IR' ' and

X: {XI,... ,Xk}.

Assume that

g,(O,t) = 0 V t E IR (4.24a)

hO...,O,t) 0 V t E 1R (4.24b)

i.e., the null state is the equilibrium state. Clearly, the above system can be regarded

as a composite system consisting of k subsystems give by

dx, - g(xi,t) + y, i 1,2,... k (4.25)

dt

where yi denotes the interconnecting relations between the various stations. When

the interaction hi(X, t) = 0, the unforced subsystem is defined as

dx,d-= gi(xi,t). (4.26)

In the subsequent paragraphs we will assume that the stability of each unforced

system has been established by determining scalar Lyapunov functions vi : IR x 1R"

JR satisfying

til (lxi 11) .5 r,,(t, x.) 5 z2 (1 lx, 1) and (4.27a)

(/ (t, X ) O x. ( 1) V t E I1 and V x, G 113" . (4.27)

(It
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The total time derivative of vi(xi, t) is given by

vi = vi + (grad vi)Tgi. (4.28)

Further, it is assumed that there exist bounded functions ij : IR x IR"' IR,

sup Ij1 = V < 00 V i,j = 1,2,...,k (4.29)
IRx IRII

subject to the following inequalities:

k

(gradvi)T hi < ij(t,Xi3(IXiIJ) i = 1,2,...,k. (4.30)
j=1

Next, we study the composite stability of the system, knowing the stability prop-

erties of individual subsystems. The total time derivative of the function vi(X, t)

along the solutions of unforced individual subsystems is given by

vi = vi + (grad vJThi. (4.31)

Using the bounds in (4.27) and (4.30), we get

k

vi < i3(IJxiI) + E jii(t,Xfi3(x~iI) i = 1,2,...,k. (4.32)
j= 1

Denoting the vector Lyapunov function as v = [vI, ..- ,vkIT and the comparison

vector function '1P = [013, 012, "'" ,€k3] T related as

< A A4D, (4.33)

the elements of A are given by (4.32) as

aj = - ij + abj (4.34)
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where, 6,j is the Kronecker symbol and

aii = ii sup j1 (X,t) -t- max{O, sup ,j(X,t)}. (4.35)
IRI x . IR" xlR

Clearly, the stability of the composite system is g(verned by the stability of the

dynamical system defined by (4.33). Notice that in (4.33), A is an M-imltrix.

Now, to illustrate the use of the theory developed in the previous Section, let us

consider the example in [18].

Example 4.2: Assume that the system is composed of two subsystems defined by

dx.d" = gi(xi) + h,(X) (4.36a)
dx2
dx2 = g(xl,t) + hl(X,t) (4.36b)

dt

where X - [xT xT]T , x, = [Xl Xl 2 ]T, X2 = [X2 1 x22]T,

[ X12 2 (4.37a)gl= -2xll - x~i X12]

= l [[, aIIX 12 + , ](XX21 + X22)]hi (4.37b)[~~ [, l, X12 +[ R, ]xsl + X22)J

9 =[ x22 Cos(t) - X21 (X 1 + X2)(- + sin(t)) 1
-x 21 cos(t) - x22 (x2 i + x22 )(2 + sin(t)) (4.37c)

h2 = ' 2 ]2( 22'+ 2) + O(xIt)] (4.37d)
= x2 (x 22) + (x,

where 10(xi,t)l [ i, ] ], (lixi 11) and [6, &], [ $, /1]. [ , 5'] and [ , ] are all

positive interval parameters. The interval parameters are a consequence of uncertain-

ties in the interconnection models. Selecting

v,(x,) = [0.5(2x 1 + 1r2 )] / 2, v2 (x 2 ) = lIx211 (4.38)
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and following equations (4.30)-(4.35), we get

"1 < -(1 - 8[ d, & ])013 (lixill) + 8[ 1, 0 ]¢23 (11x2 11) (4.39a)

v2 2[ 1, ])013 (lixIll) - (1 - [ , ])d 2 3 (11x2 11). (4.39b)

Equivalently,

V -l8[< &1 8[/ 1 ]] (4.40)
v 2[ , - ] -1 + [, 'S]1

Notice that, since [A, .& in (4.40) is only a 2 x 2 matrix, the stability is guaranteed

provided both diagonal elements axe negative. However, in general it will be difficult

to ensure the stability conditions.

Fortunately, [ A, A ] is an interval M-matrix, thereby, simplifying the analysis.

To apply interval matrix analysis developed in previous Section, we study the positive

stability of -[ A, A ]. If - [ A, A] is positive stable, then [ A, A ] will have Hurwitz

stability.

4.4.2. DYNAMIC LEONTIEF MODELS

One of the simpler static economical models [41] has the following characteristics:

1. no joint production; each sector or industry produces one and only one com-

modity, i.e., there is one to one correspondence between the sctors and the

commodities

2. each sector has only one technique of production; to produce one unit of com-

modity j, sector j requires ai3 units of commodity i; i,j = 1,2,..., n

3. there are no production lags

4. there is no government activity or foreign trade
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5. the model allows for only those commodities which cease to exist, in the industry,

once they are used in the production process.

With these assumptions on the activity, and denoting the following for i..1

1,2,... ,n:

xi = gross output of sector i

Xij = amount of commodity i used by the sector j

aij = xijlxj

ci = final demand for commodity i

the balance equations for each sector can be written as

n

= Exi, + c,, i = 1,2,... ,n (4.41a)
j= I

n

X, = E aiixj + ci, (4.41b)
j=i

,* x = Ax + c, (4.41c)

where a13 is the (i,j)-th element of the matrix A. The model in (4.41) is the static

economic model. The properties of the static model can be studied from the above

system of linear equations.

This model can be further generalized to the dynamic model. For the dynamic

model, we modify assumption (2) as follows - to produce one unit of commodity j,

sector j requires aj units as the current input of commodity i and bi units as the

capital input. Then defining

si = the stock of commodity i held by sector j

b0 = sij/xj,
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the continuous time balance equations for each sector can be rewritten as

-n dsij(

x = Xj + + c i , i 1,2,...,n(4.42a)

xi = Ziax j + Zbij- - + ci, i = 1,2,...,n (4.42a)
j=j j=1

dx(.4)
€ x = Ax + B- d c,  (4.42c)

dt

The above model can be expressed into the standard state space for as

dx = B-'(I - A)x + B-'c (4.43)dt

In general, the capital input is known very accurately. Allowing perturbations in

the input of the current commodity aij, we have the following interval plant:

dx = B'(I [A, A])x + B-lc (4.44)

dt

where I - [A, AL ] is a non-singular interval M-matrix, therefore we can apply the

results of Sections 4.1-4.3 and study the stability of dynamic Leontief models.

Next, we present an example to illustrate the robust stability of uncertain Leontief

models.

Example 4.3: Following the above notation, assume that the current commodity

has some uncertainty and the capital input is known precisely. The corresponding

matrices [A, A ] and B are given by:

[ 5,0.1 0] [0.10,0.301 [0.20,0.25 [1 0 01
[A, k] = 0.00,0.101 [0.15,0.20] [0.20,0.30] , B = 0 1 0

[0.10,0.20) [0.10,0.15] [0.05,0.101] 0 0 1

Then the system matrix is given by

B-1 [+0.90, +0.95] [-0.30, -0.10] [-0.25, -0.20]1
(- [ ]) [-0.10,+0.001 [+0.80,+0.85] [-0.30, -0.20]

[-0.20,-0.10] [-0.15,-0.10] [+0.90, +0.95]1
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1 0 01

Solving the associated interval Lyapunov equations with Q 1 0 . we
0 0) 1

have

[[0.5521, 0.69881 [0.0553, 0.2432] [0.0946, 0.2238]1

[P, P 1 = [0.0553, 0.24321 [0.6112, 0.7380] [0.0978, 0.2202]
[0.0946, 0.2238] [0.0978, 0.2202) [0.5466, 0.6420]]

which is a symmetric matrix (rounded to 4 decimal places). Notice that it is diagonally

dominant; therefore, one can expect favorable results. However, using the result in

(381, it was verified that the vertex matrices of [ P, P ] are indeed positive definite.

Therefore the system exhibits positive stability. Since [ P, P ] is a symmetric initrix

of order 3, there will be 26 edge matrices. In order to save space, we have given below

the plots of the eigenvalues of [ P, P 1. FIGURE 4.1 plots the three eigenvalues as the

elements of the matrix [ P, P ] are varied. The matrices are in the following sequence:

the first matrix P, is the matrix of lower bounds of each interval i.e. nP 1 = P. In

the second matrix, the (1, 1) element is the upper bound of [P1 /. ] and the rest

of the elements are the lower bounds,

0.6988 0.0553 0.0946
-P2 = 0.0553 0.6112 0.0978.

0.0946 0.0978 0.54661

The third matrix has its (1,2) and (2, 1) elements as the upper bonid of [ f12, A 21

and the rest of the elements are the lower bounds.

0.5521 0.2432 0.0946]

P 3 = 0.2432 0.6112 0.0978
0.0946 0.0978 0.5466

In this manner elements are varied till the matrix )ecomes P . All eig'nvah.es of

each matrix are positive, thereby establishing positive definiteness of the symmetric

interval matrix [P, 1.
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APPENDIX 4.A.

PROOF OF THEOREM 4.2: Assume that A E [ A I and b E [ , b] and consider

the system of linear equations

Ax = b. (4.45)

Let A = (aii), the vector b (bi), A' - (aij) and the vector b' (b'), where.

aolj =a l <j <n

aij = aij - aij(ail/a,,) 2 < i, j <_ 7

b' = b

b' = bi - b, (ail /a, 1) 2 < z < n

a -- 0 2<i<n

where 0 all. Clearly A'y = b' has the same solution as Ax = b. Then by the

inclusion monotonicity (DEFINITION 2.5), of interval operations, it follows that

A' E [A', k'] and b'E[b', b']. (4.46)

which proves the assertion. U

APPENDIX 4.B.

PROOF OF THEOREM 4.3: For n = 1, the assumption that 0 & [ 11 , &11 ] directly

proves the assertion. For ,, = 2, at. least one of the intervals [ hl1 , il I and [ h 2 1,  it21 I

must not contain zero. If this was not the case then there would exist a singular matrix
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A E [-, A], contradicting the assumption of the theorem. Assume without loss of

generality, 0 & [1,, all ]. Using the Gaussian elimination, we have

a 22 = a 2 2 - (1/all)a 2la12. (4.47)

Let aij E [ dij, aij ]. Then

a 2 2 = a 2 2 - (1/ajj)a 21 a1 2 . (4.48)

But, by assumption,

det(A) - alia22 - a21a12 # 0. (4.49)

Therefore,

a22 = (1/al,)det(A) : 0. U

APPENDIX 4.C.

PROOF OF THEOREM 4.5: Select any arbitrary vector v > 0. Then, since A-' > 0

and it is regular, u := A-'v > 0. Next, let A E [A, iA], obviously A < A < .

Then,

-'A < I< -'A. (4.50)

Therefore, B := A-A satisfies B < I and Bu = -'Au > A,-'Au = A-'v > 0.

This implies that B is an M-matrix and both B and A = AB are regular.

Now, since A- 1 = B-'A - > 0,

< A - ' <A', (4.51)

where the equality holds for A = A and A = A. •
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APPENDIX 4.D.

PROOF OF THEOREM 4.8: If A is a nonsingular M-matrix then there exists a positive

definite W such that

AW + WAT

is positive definite. Since a solution W exists, then it is clear that (I OAT + AT S I)

is a nonsingular matrix. To prove the result, it suffices to show that if x $ 0; y

Ax, then for some subscript i, xi : 0, and xy, > 0.

For simplicity of notation, let B = AT. The explicit form of 5 = (IB + BoI)

is given by

B 0 ... 0- bill b 12 1 ... bIJ
0 B ... 0 [ b2 1 I b 22 1 ... b2 J+

.0 0 ... B blI b.2I -... b,,. (452
B + b1i b121 ... binI]4.2

b2 1 I B + b2 21 -.. b2I

• . • .• "

bnI bn2 1 .. B + bnnI

By assumption, the diagonal elements of B are positive, therefore, the diagonal ele-

ments of B are also positive.
,2

Now, selecting x = bi, the i-th column of the identity matrix I E IR it is easy

to see that

y = 8x = b, (4.53)

where b, is the first column of 8. Clearly, for i = 1, xI > 0 (= 1); and yj = 2b11

(> 0 by assumption). Therefore xlyi > 0, proving the result. U
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5. INTERVAL ROUTH-HURWITZ ARRAY

AND STABILIZATION OF UNCERTAIN SYSTEMS

5.1. INTRODUCTION

Analysis and design of systems whose parameters are known to lie within a range

(rather than having an exact value) has received considerable attention over the last

decade. Various analysis and design techniques used by control systems engineers

are essentially meant for application to a "nominal" model. The resulting design is

said to be robust if the system performs within acceptable limits in the face of sig-

nificant parameters variations and model uncertainties. There is a huge amount of

literature that addresses the problems of stability and stabilization of interval poly-

nomials. The first paper that treated the problem from a true interval point of view

was the landmark paper by Kharitonov [22] regarding stability of polynomials whose

coefficients are independent intervals. Later several researchers extended the result

to more specialized interval polynomials, where the coefficients could have linearly

coupled uncertainties. Notably, the works of Barmish [4], Keel et al., [21], Saeki [361

and Zhou and Khargonekar [45], as well as the references therein provide a list of

various efforts in this direction.

In this section, we define and develop the interval Routh-Hurwitz array [25] for a

transfer function whose denominator is a polynomial with interval coefficients. Based
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on the interval Routh-Hurwitz (1ZH) array, we will present a procedure for finding a

state feedback vector that will stabilize the entire interval system.

5.2. INTERVAL RoUTH-HURWITz ARRAYS

In this Section, we will develop the principles on which the interval 1Z-" arrays are

based. The results regarding the 1ZH arrays for the nominal systems are extended to

the case of polynomials with interval coefficients.

5.2.1. PRELIMINARIES

The starting point for the subsequent analysis in this chapter is the description of a

linear system (single input, single output) is in a differential equation of the following

form:

dn + [n- a.i Idn-1 +[ an-2 an-2 ]dn-2 + + [ &I, I1  [ &o, ao y(t)

[ dm  d"- - d 1
= +cm +mcm-dt,,_2 + +cm-2dt_2 +...+ci -+cou(t) (5.1)

whose transfer function is given by

G~s)= -CM + CM~lrn-i1 -+... + CIS + Co
G(s) = s + [ a._ 1 , a,.- ]s- 1 +.,. + [ 61, al Is + [ &0, a0 1.2)

It should be pointed out that the coefficient of the highest derivative of y(t) is assumed

to be [1, 11, i.e., the denominator polynomial of the system (5.2) is monic. Thi.

assumption is not necessary for developing the interval RI( array; however, it is

required for stabilization of (5.1) by state feedback. Note that such an assumption

is not necessary for nominal systems because the polynomial can always be made

monic by dividing it with the coefficient of the highest power of the derivative. This
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operation cannot be performed on the interval polynomials because a multiplicative

inverse is not defined for interval arithmetic. It will be assumed that the given system

is controllable for all variations in the parameters.

It is well known that any proper scalar rational function G(s) = Q(s)/P(s),

where P(s) is a monic polynomial, can be written in a controllable but not necessarily

observable state space realization given by [191:

0 1 ... 0 0 - -0-

0 0 ... 0 0 0
*(t) = .. x(t) + u(t) (5.3)

0 0 0 1 0
-Po -P1 -Pn-2 -Pn-1 J 1

y(t) = [qo q q2 ... q-2 qn-1 ]x(t) + du(t) (5.4)

where pi and qj are the coefficients of the i-th power of s in the denominator and the

numerator polynomials, respectively.

Typically, an interval R7- array for a scalar system (e.g., 5-th order system) with

the denominator polynomial having interval coefficients as shown below

d[s) = [1,1]S5 + [ a 2 , 1 , &2 , 1 ]4 + [ 61,2, a 1 ,2 ]S 3

+ [ 62,2, a2,2 S2 + [ 6,3, &1,3 ]S + [ &2,3, a2 , (5.5)

will have the following form:

S5  [1,11 [ 61, 2 , a1 ,2 I [ al,3, a1 ,3
s4 [ &2,,, a 2 ,1  1 [ a 2,3 , a2 ,3 ] [ 2,3, a2 ,3S3 [ &,1,, t3,1 I [ a3,2, Ci3,2 I
s2  [ a,,1, a4,1, I [ a4,2, Ci4,2]I
s1 [ 5,,, a5,1]
so I k,,, &6,1 1

where &,j and a,,j denote the lower and upper bonids of various interval coefficients

obtained following the usual rules of setting up the 1J"( array for polynomials with
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constant coefficients. Specifically.

a3 ,1 , a3,1 1 [[62,1, &2,1 [1,2, a, - [1, 1][ d2,2, a2,2 &]/[ 02,1, a2 ,1

[a 3 ,2 , a3,2] = [[&2,1, a2,l 1[ a1 ,3 , 1 , 3 J- [1, 1][ &2,3 2,3 ] /[ a2 ,1, a2,1

[64,1, a4, 1 ] = [[ 4,2,, a3,, ][ &2,, a, 2 ]-[02,1, 2,1 [ &3,2, 63,2 &3, ,1, ,, 63. 1

d4,2, e4,2 1 = [[ &3,, &, I[ 02,3, &2,3 1]/[ a,,, &3,1 1

&5,1, a5,1 1 = [[4,1, 04,1 ][ &3,2, &3,2 - 3,1, a3,1[ 64,2, &4,2 ]]/[ 64,1, a4,1

6,, 6,1 1 = [[ ,1, a5 ,1 [ a4,2, 04,2 1] /[ ,1, it,, ] (5.6)

The only modification in the above array compared to the 1UT" arrays for nominal

polynomials is that to compute the elements of various rows, we use the principles of

interval arithmetic following the operations reviewed in CHAPTER 2.

It was shown by Krishnamurthy [23] that for a stable system, the elements of

any row of the 1Z7" array are of the same sign. Further, for the given system, if any

element of a particular row is found to be of different sign, it can be concluded that

the system is unstable and has one or more poles in the right half plane. In the next

few paragraphs, we establish a sirn:lar result for the interval system by examining the

elements of the interval R'91 array.

5.2.2. IMPLICATIONS OF INTERVAL 1TH ARRAYS

It was shown in [23], that given a stable nominal polynomial

F(s) = a,1 s" + a21
nS - 1 -+a 1 2 s n - 2 +... a,,j > 0 (5.7)

such that all elements of the first columns of the R " array are positive, it can be

concluded that
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Theorem 5.1: For a stable polynomial, the necessary and sufficient condition of the

IZt criterion implies that all the elements of the IZ1H array are of the same sign.

PROOF: See Appendix 5.A.

For an n-th order polynomial, the following 7Z-f array can be set up:

S n  a, 1  al,2 al, 3 ... aj m
S n - 1 a 2 , 1  a2,2 a2,3  a2,'m

S n--2 a 3 ,1  a3,2 a 3 ,3 ... a3,

8
n i ~ ai,1  azi,2 ai,3 -. aij.

S3  an-2,1 an-2,2
• 2 an-1,1 an-l1,2

S 1  an,1

so an+l,1

where jm = [(n + 3 - i)/2J is the largest integer value of the column with a non-zero

entry in the i-th row. Note that the above notation is for both odd and even degree

polynomials. However, the results outlined below will be for odd degree polynomials

only. Parallel results can be easily obtained for even degree polynomials.

For a stable polynomial, the following three properties hold:

Property 1. All elements in the first column of the array are positive

a,,l>0, i = 1,2,...,n+1 (5.8)

Property 2. The number of coefficients in alternate rows is reduced by one,

aij = 0, i = 1,2,...,n + 1, j > [(n+ 3- i)/2j (5.9)

where [(.)J denotes the integer part of the number.
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Property 3. The constant term appears as the last element of alternate rows, i. c.

an+3-2k,k = constant term, k = 1,2,..., [(n ± 2)/2)J. (5.10)

To extend the result to the interval JZTI arrays, consider the following odd pow-

ered interval monic polynomial:

F(s) = [1, 1s + [d2, i2l ]gn-I + [ 6,12, a 12 ]S
n - 2 +', [ aij, ij ] > 0 (5.11)

The corresponding interval I7ZR array is given by

S" [1, 11 [a 1 ,2 , h21,2 I [6 1 ,3 , 1&1 ,3  [6a,,. 01,
s"- [ a 2 ,1 . a 2 ,1  ] [&2 ,2 , a2 ,2 ] [d2,3, 52,3 ] . [ j, a ,

,- 2+: [ &3,1 , a,,1 ] [ ,2, a, 2 ] [ a,, 3 , h,3 ] [ ai , ai,rn ]

,n a. ,, a_,, ] [ai,,, h ,, ai3 ]3dj ,aj
[ f-,1 , an-2, [n-2,2, &n-2,2

S2 [ an-1l,l, an-1,1 ]

where all elements of the array have been calculated using the principles of interval

arithmetic.

Unlike the "RII array for nominal polynomials, the PROPERTY 3 does not hold

for interval RI-i arrays. However, the following is true

d,+,ii. dn+li d.2 a1, 2 , bn- 1 ,2 ]dn-p3,3, &.- 3 ,3 ] ... D[a2jajn

(5.12)

This can be shown trivially following the sequence of operations performed to ob-

tain the in~erval TRI- array. This property will be referred to as PROPERTY 3.
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Clearly by PROPERTY 1, [ dn+,1, + ] is a positive interval, therefore, the in

tervals [ dn-1,2, a-1,2 [ - &i-3,3 [ a-,2,,rn, a2,j3, ] are also positive.

Following the same reasoning as we did for the case of nominal polynomials, we

next develop the implications of the interval 7ZH array. Obviously. from PROPERTY

1, the (n + 1)-th and n-th rows have positive intervals. Also, from PROPERTIES 1, 3,

the interval in (n - 1)-th row are positive. In (n - 2)-th row, to show that the second

interval is positive, we proceed as follows. By definition,

[ ani~a.,] = [ a.ii, an_,, [Ij af2,2, an2,2 ]-[ d.-2,,, ae_2,l 1[ Hn_1,2, a._1,2 ]

(5.13)

performing the inverse interval operations, we have

[ dn,j, &n,, ][ Ztn-1,, hn-,j I +[ an-2,,, an-2,1 1[ a-t1,2, ahl1,2 I
an_,,, a _,, I

2 []n-2,2, ai. 2 ,2 . (5.14)

Each interval of the expression on the left-hand side of (5.14) is positive, therefore.

d.a-2,2, an- 2,2 ] is contained in a positive interval.

In the (n - 3)-th row, there are three elements, from PROPERTIES 1,3, the first

and the last elements are positive intervals. To show that the second element is also

positive, we know that

[ [ _, 2 ,,, a 2,1 [ n3,2, 0 n-3,2 - 3,1, an-3,1 1[ d a-2,2I
[ a-2,1, tin-2,1]

(5.15)

From where, performing the inverse operations, we get

[ an-i,i, a.n_, [ ,n-2,1,i, _n-2,1 ] + [ ez-,1, ,, 3,) ][ 6n-2,2, .a - 2 ,2 ]

._9 , ]
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_ [ i-3,2, b.-3.2 ] (5.16)

Again, since each element of the on the right hand side of (5.16) is positive, a.-3,2 iS

also positive.

Continuing in this manner, we show that the elements of the i-th row are positive

intervals. The first element is positive by PROPERTY 1. The j-th element of the i-th

row is given by

[ 5i+ 2 ,-1, ai+2,p-1 ]-= [ ai+i,i, ai+,,i jai, di,,, -i, J[ &j+1 ,j, &i+,j (5.17)

[ & i+ , , a i+ i ,i I

To get an inclusion for [dij, a, I from (5.17), we perform the inverse operation to

get

[ ai+i,1, &i+1,i I[ di+2,j-1, i+2,j-l I + [ a,l, ai, ][ ai+l,j, ai+l,j ] D [Oi . , .[ai+1 ,1, ai+l,]

(5.18)

Since all of the intervals on the left-hand side are either positive by PROPERTY 1 or

have been proved to be positive in the previous cycle, the interval on the right hand

side in (5.18) is positive.

Further, for even i, the last element [ i,, jj I is included in the interval

ai+i,, &i+i, ] and therefore it is positive. if i is odd, then

a i+ 2 ,J , Ui + 2,jm 1[ ai+ ll, ii+ +'l [ i't-l j - , i+ l 'j 1 ][ al i'l D [ eij , a i , 1 ,

(5.19)

which is a positive interval.

Therefore for a stable interval polynomial with positive first column of the interval

1Z'- array, every element of the array is positive. Similar results can be obtained when

n is an even ordered interval polynomial.
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It should be pointed out that unlike the classical 1ZI array, the interval Rh2"(

array provide only a sufficient condition for stability. This is due to the fact that in

performing the interval operations, the intervals are implicitly overbounded.

Example 5.1: To illustrate the above point, consider the polynomial given by

F(s) = s3 + [ 12 1, a21  2 + [ 12 , a 12 ]s1 + 1.

where [ 6 12 , & 12 = 4,61 and [ &21 , &21  = [2,3]. Now, treating the two intervals as

variable coefficients r 21 and r 12 , we get the following nominal 1zT array:

s3  1 r1 2
s2  r2 1 1
sl T12r21 --1 0

r 2 1

5s0 1 0

On substituting the values of r 12 and r2 l for maximum allowable variation in the two

uncertain coefficients, we get the following array:

s3 1 [4,6]
s2 [2,3] 1
s [3.5,5.6667] 0
so 1 0

On the contrary, if the intervals were allowed to "grow" as the array was computed,

the corresponding interval R7" array will be

s3 1 [4,6]
s2 [2,3] 1

S1 [2.3333,8.5] 0
so  [0.2745,3.6429] 0

It is clear from the above example, that using interval arithmetic, the results will be

overbounded.
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5.2.3. REMOVAL OF CONSERVATISM

The example (EXAMPLE 5.1) presented in the previous section provides a possible

way to remove the conservatism in the analysis procedure. Next, we formalize one

possible way for removing the conservatism in developing the interval 1Z7H arrays.

To get an intuitive understanding of the procedure, let us consider the element

X31 in the first column of si row from EXAMPLE 5.1 given by

X 31 -= r2r2- 1 (5.20)r2l

Notice that using interval arithmetic, x13 is determined as

-t13, i13 rI2 r2 -1

r 21

[4,6][2,3] - [1,1]

[2,3]

= [7,17][1/3,1/2]

= [2.3333,8.5].

The element r 21 occurs both in the numerator and the denominator. The interval

inclusion obtained above does not account for this fact. It treats each interval as

independent of the other intervals and in the process overbounds the interval.

If, on the other hand, we account for the fact that r 2l can only assume one

value both in the numerator as well as the denominator, then the interval [ 113, iz13 I

(= [3.5, 5.6667]) so obtained is the maximum variation in light of multiple occurrence

of r 21 . This fact can be utilized to remove the conservatism from the interval 17-H

arrays.

To enable us to obtain such minimum and maximum values for each interval in the

first column of the interval 1Z71 array, we need a numerical algorithm that computes
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the extrema. Fortunately, Moore [27] and Skelboe [39] provide the necessary details

for developing an efficient algorithm for obtaining the extrema. A detailed account

of these techniques is presented by Ratschek and Rokne in [34]. In the sequel, we

present the highlights of the algorithm. The notation that we have adopted is similar

to the one in [34].

The problem that we need to address is that of the global unconstrained opti-

mization which can be stated as follows: Let IR be the set of reals, let X C IR n be

a compact right parallelepiped parallel to the axes (denoted by a G), f : X -- IR any

function and f(X) the range of the function f over X, i.e.

Qf(X) = {f(x) : x E X}. (5.21)

The global minimum (if it exists in IR), defined as infimum ( f(X)) is denoted by I.

The global maximum (if it exists in IR), defined as supremum (f(X)) is denoted by f.

Note that infimum and supremum are being computed instead of minimum and max-

imum because of lack of assumption of continuity on the function. Mathematically,

the problem defined above can be stated as

minimize f(x) subject to x E X (5.22a)

maximize f(x) subject to x E X. (5.22b)

In the following paragraphs, only minimization will be considered. The procedure for

maximization is identical except for a change in sign of f.

Given the bounded function f, the domain [ XC, X J E IIIR and an initial choice of

inclusion function F : IIIR(X) --- IIIR of f(x), the algorithm works by splitting up the

domain X in each step, into subboxes of not necessarily the same size. The search for
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f is done in the subboxes. A direct search would be computationally very demanding.

hence a branching principle is used. At each iteration, the search is continued in a

box Y, where f has the smallest lower bound y, because the chances of finding ] are

the best in this box.

Algorithm 5.1: GLOBAL UNCONSTRAINED OPTIMIZATION

Set Y:= X

Calculate F(Y)

Set y :m= min F(Y)

Initialize list C := ((Y, y))

Iterate:

Select a coordinate direction k parallel to which Y = Y1 x ... x Y, has an edge

of maximum length i.e. k E {i : w(Y) = w(Y,)}

Bisect Y normal to direction k obtaining boxes V1 and V 2 such that Y = V 1

U V 2

Calculate F(VI) and F(VI)

Set vi = Fb(Vi), i = 1,2

Delete (Y, y) from the list £

Include (V,vi) and (V 2 , v 2 ) in the list such that second members of all

pairs of list do not decrease

Denote the first pair of the list by (Y, y)

If w(F(Yk)) < e then terminate else iterate

The detailed implementation of the algorithm as well as further details regarding

the convergence and termination criteria can be found in [34]. It suffices to say that tile
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necessary tools for obtaining the correct bounds on the intervals in the first column of

the interval T"'H array are available. It is also worth mentioning that several software

packages that implement machine interval arithmetic exist. Some of the commonly

used ones are TRIPLEX-ALGOL-60, PASCAL-SC, FORTRAN-SC, ACRITH and

ARITHMOS.

Using above algorithm, we can make the condition on the interval 1Z7- array both

necessary and sufficient. The modified procedure would require the determination of

the elements of the first column of the array symbolically and then application of above

algorithm will provide us with the correct lower and upper bounds of each element

in the first column of the interval RZ7 array. For symbolic computation software

packages like MATHEMATICA can be used.

5.3. STABILITY OF SYSTEMS WITH DEPENDENT UNCERTAINTIES

Unlike systems described in earlier section, where each coefficient has variations that

are totally independent of the rest, many systems exhibit dependent uncertainties [4],

[21], [361 [45]. Specifically, each coefficient may have several uncertain parameters.

Further, these parameters may exhibit some functional behavior. In this section, we

will extend the results of SECTION 5.2.3 to systems with dependent uncertainties. It

will be shown that in view of the previous section, the stability of interval polynomi-

als with dependent uncertainties can be determined in a simple manner. Note that

several papers deal with the above issue, however, the techniques tend to be either too

complicated or computationally extremely demanding. In the next few paragraphs

we show that the procedure outlined in the previous section could be easily applied

to study the stability properties of polynomials whose coefficients exhibit linear and
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non-linear dependent uncertainties. Formal proofs of the material presented in the

sequel have not been developed. Hence, only examples have been used to illustrate

the concepts.

Let us denote the characteristic polynomial of the systems with coupled uncer-

tainties as
n-I

dfs) = s" + YS[fi(r)]s (5.23)
i=O

where fi(r) denotes the coefficient of the i-th power of s and r is the vector of uncertain

terms.

We discuss three possible ways to treat the situation discussed above.

1. The first approach could be to overbound the various coefficients using interval

arithmetic directly, and use interval 1Z7" criterion. As expected this would lead to

conservative results.

Example 5.2: To illustrate this point, consider the polynomial described by

d[s] = s' + [r, + r2]s 2 + [rlr2]S + [r'],

where, ri E [0.74,0.76] and r 2 E [2.00,2.501. The polynomial has two uncertain

elements which appear as coupled uncertainties in various coefficients. On expanding

the polynomial, the numerical values in various coefficients are given by

dis] = s3 + [2.74,3.26]s 2 + [1.48,1.91.s + 14,6.25].

Now, using interval JZ-T array, we have:

33 1 [1.48, 1.90]
52 [2.74,3.26] [4.00,6.25]
sT [-0.8010,.80071 -
s o  undefined 0
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Note that in the above array, the first element in the third row includes zero, since

the elements of the subsequent rows would require division by this element, we cannot

proceed any further. Clearly the criterion suggests a sign change in the first column

and hence instability.

2. The second possibility is to verify whether the expanded polynomial meets

Kharitonov's criterion. This entails checking the stability of the following four poly-

nomials:

s 3 + 3.26s2 + 1.48s + 4.00

s3 + 2.74s2 + 1.90s + 6.25

s3 + 3.26s 2 + 1.90s + 4.00

s 3 + 2.74s2 + 1.48s + 6.25.

While the first and third polynomials are stable, the second and the fourth polynomials

are unstable, hence use of Kharitonov criterion on the expanded polynomial also

indicates instability.

3. Finally, the third approach would be to use the Global Unconstrained Optimization

on the elements of the symbolic 1ZRt array and infer stability from there. The array

takes the following form:
s3  1 rjr2
s2 ri r 2  r2r2 (r - r2

S r r r, + r2S 1

Now, using unconstrained optimization, the first element in the third row is found

to be [0.0201, 0.0884], which is positive and hence the polynomial with dependent

coefficients is stable.
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The technique is simple to apply because the optimization technique is conmer-

cially available in packages that implement interval arithmetic.

5.4. FEEDBACK STABILIZATION OF UNCERTAIN SYSTEMS

This section presents results on the use of the techniques developed above in

robust synthesis of feedback control systems. The results presented in this section are

for single input, single output systems only.

5.4.1. SYSTEMS WITH INDEPENDENT UNCERTAINTIES

In this section, we will show that by using the interval 17" arrays, we can determine

a state feedback vector k (when it exists) such that the closed loop "interval" system

is always stable. For the purpose of illustration, we will develop all results for a fifth

order system. The final results will be stated for the general order. It is assumed that

the uncertainties in various coefficients are mutually independent. Further assume

that the system is in the following canonical form:

dt I [a x(t) + bu(t) (5.24)

y(t) cx(t) (5.25)

where

[al' [ &[2 ,3 , a2,3 6 [1,3, -al,3 [62,2, a2 ,2 ] d1iL.2, &1,2 ld[2,I. Ci2, 1

bT [0 0 0 0 1]

C-[ C2, C1,3 C2,2 C1, 2 C2,1

Define a state feedback vector k = [k2 ,3 kl,3 ... k2 .1]. Then the state matrix
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of the closed loop state space system under the feedback law

u(t) = v(t) - kTx(t) (5.26)

becomes

= [ ]
where [a(k)] is given by

[& 2,31 a2,3 -k2,&1,3, &1l,3 - kl,3

[a(k)] = a2,2, a2,2 k2,2 (5.27)
il,2, (1l,2 kl,2
9[a2,1, a2,1 ] k2,1

Since Act is in the companion form, its characteristic polynomial is given by

dc[s] - [1,1]s 5 + [&2,1 + k]2 ,1 ,C 2 , 1 + k 2 , 1 IS 4

+ [61,2 + kl, 2, al, 2 + kl, 2]s3 + [a2,2 + k2 ,2 , a 2,2 + k2,2 1S2

+ [&1,3 + k 1 ,3 , a 1 ,3 + ki, 3 ]S I + [d 2 ,3 + k2 ,3 , a 2 , 3 + k 2 ,3 ]S0 , (5.28)

and the corresponding interval 1Z 7 array is modified to

S5  [1, 1] [61,2(k), &,2 (k)] [dl, 3(k), a1 ,3 (k)]s 4  [d2,1 (k-), C2, (k)] [&2,2(k),1&2,2(k)] [162,3(k), a2,3(k)]
S 3 [63,1 (k), e3,1 (k)] [a3,2 (k), aa,2 (k)]
S 2 [a4,1 (k),a'4, (k)] [Oi4,2 (k), t4,2 (k)]I
S 1  [&,1l(k ),,i5,1 (k )]
so [a6,1 (k), 46,1 (k)]

where i,,j(k) and ai,(k) are now functions of the elements of the state feedback

vector k. Now extending the property of classical TZ7I arrays to interval TRI arrays.

we have the following result:
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Theorem 5.2 A sufficient condition for all roots of the interval polynomial d[sJ to li

in the left half plane is that the intervals [ &,j(k), 5i,j(k) ], i = 1,2,..., + 1. V j.

of the interval IZi array have the same sign.

To solve for the elements of k, assuming that the coefficient of the highest power

of s is [1, 1], we set up the following n non-linear algebraic inequalities in n unknowns:

a 2,1(k) > 0

6 3 ,1 (k) > 0

a.+ 1 ,1 (k) > 0. (5.29)

It is fairly straightforward to see that if a solution to above simultaneous inequalities

exists, it will provide us with an n dimensional coefficient space, any element from

which would ensure the stability of the interval system.

Note that by the definition of an interval, it is assured that the first element of

the interval is smaller than the second. Hence, if the lower extreme of the intervals in

the first columns have positive sign, then the upper extremes are guaranteed to have

the same sign. Further, from the results in SECTION 3.2, every element of each row

will have the same sign, satisfying the condition in [23]. The above design procedure

is illustrated by means of a 3rd order system.

Example 5.3: Assume that the denominator polynomial of the interval system is

d[s] = [1,i.,3 + [-2,11s2 + [2,31s + [0,2].

Clearly, the interval polynomial is not stable. We need to find a state feedback vector
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kT = [ko ki k2] such that

d[s] = [1,1]s 3 + [-2 + k2 ,1 + k2]s 2

+ [2+kl,3+k]s + [0+ko,2+ko]

is stable for the entire interval. Using the interval RN"- array, and a fair amount

of painful symbolic manipulation, one gets the following set of non-linear algebraic

inequalities:

-2 + k2 >0

(2 + k)(-2 + k2) - (2 + ko) >0

ko(-2 + k2 )((2 + k1 )(-2 + k2 ) - (2 + ko)) >0

that define the region from which the parameters of k can be obtained to stabilize

the system. One possible stabilizing feedback vector is obtained as k = [1 2 3]. The

corresponding closed loop characteristic polynomial is given by

d,[s] = [1,i]s + [1,4]S2 + [4,5]s + [1,3].

It can be readily verified that de[s] is stable for entire range of interval coefficients.

Since the stability condition presented above is only sufficient, clearly the design

so obtained will be conservative in nature. However, the usefulness of employing

interval arithmetic is self-evident in that it provides us with a solution (when it exists)

in a fairly straightforward manner.

It is easy to see that the above results can bc used for simultaneous stabilization

by means of state feedback. Assume that we are given N plants with characteristic
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polynomials

n-I

d[') (s) n V + Ea ]s

i=0

n-1

d[N() - . + E a,(5.30)

/=0

Assume further that the order of each plant is n. Then, we can easily obtain an

interval plant defined as

d[s] = Sn + [, &(k] 1s, (5.31)
i=0

where a= mink]) and &[l = max(a-"), j = 12, ... , N. If a controller that can

stabilize the above interval plant can be found then, clearly, it will stabilize all the

plants in the above family.

APPENDIX 5.A.

PROOF OF THEOREM 5.1: Although the proof appears in [23], an abbreviated version

of the proof is included for the sake of completeness. For an n-th order polynomial,

the following iZWt array can be set up:

S
n  a1,1 al,2 al, 3  al,

S n - 1  a 2 ,1 a 2 ,2 a 2 ,3  a 2,j.
sn-2 a3 ,1  a3 ,2 a3 ,3  a 3,j.

,n-i+ ai, ai,2  a5 ,3  " ij,

Sq3 an-2,1 an - 2, 2

., n-1,1 an n.an-1,2

.1 an,1

90  n.{i, 1
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where j, = [(n + 3 - i)/2J is the largest integer value of the column with a non-zero

entry in the i-th row.

For a stable polynomial, the following three properties (repeated here for the sake

of completeness) hold:

Property 1. All elements in the first column of the array are positive

aj, 1 > 0, i = 1,2,..., n + 1 (5.32)

Property 2. The number of coefficients in alternate rows is reduced by one,

a,,3 = 0, i = 1,2,...,n+1, j > (n+3-i)/2J (5.33)

where L(.)i denotes the integer part of the number.

Property 3. The constant term appears as the last element of alternate rows, i.e.

an+3-2k,k = constant term, k = 1, 2,..., L(n ± 2)/2)J. (5.34)

Now, from PROPERTY 1, the (n + 1)-th and n-th rows are clearly positive. From

PROPERTIES 1, 3, the elements in (n - 1)-th row are positive. In (n - 2)-th row, to

show that the second element is positive,

an-2,2 = an,1 + a 1 ,2 . (5.35)atn-,1

Since each element of the elements on the right hand side of (5.35) is positive, an-2,2

is also positive.

In the (n-3)-th row, there are three elements, from PROPERTIES 1,3 the first and

the last elements are positive. To show that the the second element is also positive,

(In-3,1

a,-3,2 = an-1 ,1 + 1an-2,2. (5.36)
aI3-2,1
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Again, since each element of the elements on the right hand side of (5.36) is positive

an-3,2 is also positive.

Proceeding in a similar manner, consider the elements of the i-th row. The first

element is positive by PROPERTY 1.

ai,2 = ai+ 2 ,1 + ai ai 1,2  (5.37)
ai+1,1

where ai+1, 2 would have been proved to be positive from previous iteration, hence

ai,2 is positive. Taking the general term

aij = ai+ 2 .j-I + ai+l,j (5.38)
ai+1, ,

is positive by the same reasoning as above.

For even i, the last element ai,j, is the same as the constant term and therefore

it is positive. If i is odd, then

ai,jm = ai+2 ,jm + a"'ai+I,j,. (5.39)
ai+l,1,

Therefore, aijm is also positive. Similar results hold when n is even ordered. U
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6. RECOMMENDATIONS FOR FUTURE WORK

The results presented in this report are preliminary findings on the use of interval

arithmetic in analysis and design of control systems. Considerable amount of work

needs to be done to make it viable for applications in practical systems.

Some of the issues that were not addressed in this report and would make inter-

esting topics for extension of this work are:

1. For the state space representation the analysis was restricted to the class of

systems where the state matrix is an M-matrix. A more general framework that

addresses a broader class of systems is certainly desirable. This would encompass

developing necessary and sufficient conditions for stability of less restrictive class

of matrices. Several results (see list of references) in this direction have been

reported, however, they tend to be computationally very demanding. Additional

work is required to make these methods computationally efficient.

2. Possibilities of the use of symbolic arithmetic should be explored to reduce the

conservatism experienced in analysis techniques. Symbolic arithmetic together

with Global Unconstrained Optimization presented in SECTION 5.2 could provide

the necessary machinery to circumvent the problem of conservatism.

3. The topic of multi-parameter as well as non-linear uncertainties can be dealt with

following the approach presented in Section 5.3. Formal methodologies as well as

mathematical justificaition needs to be investigated.
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4. The results presented for state feedback design are restricted to single input single

output systems. An extremely important research problem could be to explore

the possibility of extending them to multi-input systems.

5. In practical control systems, state feedback may not always be feasible, hence

investigation of observer based feedback as well as output feedback problems are

important. One possible approach to address output feedback control may be

the generalization of methods that use Sylvester equations for feedback control.
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