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INTRODUCTION

Classification and taxonomy problems are pervasive in the design of weapons systems. The
increasing capabilities of sensors and signal processing computers require ever more sophisticated
algorithms. Two-dimensional signals are becoming available in many missile systems. Infrared and
inverse synthetic aperture radar provide two-dimensional signals for guidance and target selection systems.
One-dimensional RF signals arise from range only radar profiles (active RF) and emitter recognition
(passive RF). Regardless of the signal domain involved, classification of the unknown object, or objects,
generating or reflecting the signal is often the primary task of the signal processing algorithms.

The classification procedure assumed here consists of the design and implementation of a
transformation, equivalently a function or mapping, from the set of input patterns to a set of desired
outputs. The resulting transformation is called a classifier. This conforms to the types of models usually
assumed in the pattern recognition literature. The following mathematical definitions give simplified
versions of two basic pattern classification models (References 1 and 2).

Model 1. The discrete model.

U is the universe of objects (patterns).

U is a partition (UP .... UK) of U into disjoint subsets.

Xis a collection (X1 ... XK} of finite sets satisfying Xi g U i for 1 <_ i ! K.

X is known and U is unknown.

Classification consists of the design and implementation of algorithms for determining to
which Ui unlabeled objects u belong.

Model 2. The statistical model.

U is the universe of objects (patterns).

Tis a collection (fl, ..., fK) of probability density functions (pdfs) on U.

For 1:< i < K, Xi is a finite sample from the pdf fi, and X is the collection of Xi's.

X is known and Y is unknown.

Classification consists of the design and implementation of algorithms for determining
from which fi objects u were sampled.

The geometric results presented in this report are motivated primarily by Model 1. Model 2 is the
more appealing in many classification applications. However, there is an enormous gap between the
known data set X and the unknown pdfs. One must make assumptions regarding the types of distributions
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which are possible for the fi's. A good understanding of the underlying physical process usually helps
determine the pdfs. In the presence of such understanding, the data set serves to validate the hypotheses
regarding the pdfs. Model I assumes that the data set Xis the only information available.

The set of input patterns is usually a real vector space, while the final outputs consist of a discrete
set of class labels. Typically, the classifier employs intermediate outputs which also lie in a real vector
space. The major analysis task is to determine a single mapping that sends the input patterns from distinct
classes into well-separated, easily recognizable regions of the intermediate output space. From the
intermediate output space, the mapping to the class labels should then be trivial. In the past most
classifiers were implemented on von Neumann computers. The advances of parallel processing technology
suggest new approaches to classifier design.

Of the many types of neurocomputing devices currently discussed in the engineering literature,
perhaps the simplest is the feed forward layered neural network (LNN). This network is an obvious
candidate for application to classification problems where the input patterns reside in a real vector space of
fixed dimension.

The LNN takes as input the d coordinates of the pattern x and produces an m-dimensional output
vector u. The output vectors are selected so as to facilitate the decision regarding the class to which x
belongs.

For a K-class problem, one typically takes the output dimension m to be K and the desired output
vectors to be the K elementary unit vectors

ei = (0, 0, ..., 0, 1, 0, ... 0)

with I in the ith coordinate. The network is designed and the weights are determined in order to map every
member of the ith class into a small neighborhood of ei . These two steps-network design and weight
assignment-give rise to interesting problems in the geometry of finite dimensional Euclidean spaces.

Step 1. Design the network; that is, determine the number of layers and the number of neurons in
each layer.

Step 2. Determine the weights (one for each connection in the network) so as to produce the
desired network mapping.

The two steps are clearly related. If the network does not accommodate the complexity of the
classification problem, then Step 2 will be impossible. Here we give no precise definition of complexity.
Roughly speaking, the problem complexity grows with the number of classes, the numbers of clusters
within the classes, and the number of surfaces required to separate all pairs of interclass clusters (References
I and 3). Appropriate weights may not exist if the number of connections in the network is too small
(Reference 4).

We will discuss in some detail the number of first-layer neurons required by a threshold network to
separate K convex classes in d-dimensional space. It will be shown in Sections 3 and 4 that this number
can range from lg(K) to at most (K2 - K)2, when K 5 d + 2. For K > d + 2, the upper bound is at least

(d + 1)K - (d + 1) (d + 2)/2.

For K = 10 and d = 8, this gives a range of 4 to 45 first-layer neurons. For nonconvex classes, there is no
upper bound.
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The number of classes is usually fixed. Although the dimension of the raw input patterns is also
fixed, the number d, of inputs to the LNN, may depend upon preprocessing and/or feature selection. These
procedures generally reduce the input dimension, whereas addition of monomial features increases the input
dimension (References 1 and 5).

The space of mappings R(d) -+ R(m) associated with a fixed network architecture is parameterized by
the neuron transfer function s, called the squashing function, and the weights on the connections. Results
presented here will pertain mostly to threshold transfer functions.

Section 2 presents some basic notation and terminology. Properties of decompositions by
hyperplanes and their relevance to networks of threshold neurons are discussed in Section 3. Separation
properties of disjoint convex sets are presented in Section 4.

NOTATION

R(d) is the space of real d-dimensional column vectors

y -- (Yl, Y2 .. Yd)T .

For every y E R(d), we define the extended column vector y+ by

y = (Y, Y2 .... Yd, )T"

A X by d + 1 matrix A defines an aff-me mapping y -+ A(y) from R(d) to R ) as follows:

A(y) = Ay+ .

Formally, we define the architecture of a LNN to be an ordered triple (s, h, A), where s is the neuron
transfer function, h is a positive integer, and A is an (h + I)-tuple

(XO0, %'I .... Xh)

of positive integers. The function s satisfies

-1 <s(t)l I forallreal t,

t < u = s(t) < s(u) for all real t, u,

lim[s(t) : t -4 -o1 = -1,

lim[s(t) : t -+ -oo] = 1.

By a A-network we mean a LNN, perhaps with unspecified neuron transfer function, having layers described
by A. Figure 1 shows a (2, 3, 1) network. The extra nodes at layers 0 and 1 have constant value I in order
to allow affine mappings (with nonzero bias) rather than pure linear mappings.
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u =F(x)
18

0 = node (neuron) with transfer function s

* = node with identity transfer function

FIGURE I. (2, 3, 1) LNN.

The network mapping F is the composition of h single-layer mappings, each of which is the

composition of an afftme mapping and a 'squashing' function S.

F=fh ofh.lo...of2 of 1,

where

fh S o Ah,

S =(s, , ... s),

ah(l, 1) ah(l, 2) .ah(l, 'h- + I)

Ah= ah(2 , 1) ah(2 , 2) ... ah(2 , X- + 1)

ah(.h, 1) ah,(Xh, 2) ... ah.h, Xh-I + )

and the jth coordinate of Ah(x) is

ahX-I+ 1) + ahOj, O~X,ah(J, XhI +

1=1

for 1 <j5Xh.

S is a vector of functions each of whose coordinates is s. For y = (Yl, Y2 1 .... y.) E RN,

S(y) = (s(y1), s(y 2), .... s(yk)).
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Technically, we have a sequence of functions S 1, S2. ..., where

$S : Ro) .(.)

and I denotes the unit interval [0, 1]. In order to simplify the notation, we use the unsubscripted S for all
S. when the dimension of the domain is understood. For the (2, 3, 1) network of Figure 1, the network
mapping F is given by

u = F(x) = S(A2(S(AI(x)))),

where

ra,(l,l1) al(l, 2) al(l, 3)1

A1 = al(2, 1) al(2, 2) a1 (2, 3)

[al(3, 1) a1 (3, 2) aj(3, 3)J

and

A2 =[a 2(1, 1) a2 (1,2) a2(1, 3) a2 (, 4)].

For X a R(d), Hull(X) denotes the convex hull of X. An extreme point of a convex set C is a
point c satisfying

E r C and c E Hull(E) =* c e E.

That is, c is not a convex combination of other members of C.

A convex polytope is the convex hull of a finite set of points. For X fmite and P = Hull(X), the set
of vertices V of P is the set of extreme points of P. A convex N-gon is a convex polytope in R(2). A
finite set X in R(d) is the set of vertices of a convex polytope if-and only if-

X n Hull (Y)Y

forallY r X.

rt' denotes the smallest integer not smaller than t

and

LtJ denotes the largest integer not larger than t for all t e R. For y E R(X), Ilyll is the
Euclidean norm:

I1yII = (y2 + Y2 + ... + y2)1/2
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HYPERPLANES AND THRESHOLD NEURONS

Our objective in this section is to describe, using results from combinatorial geometry, how neuron
requirements depend upon the configuration of input patterns. Reference 6 establishes a lower bound on the
number of first-layer threshold neurons required, using the formula of Theorem 1 below. We extend this
result by showing that the first-layer neuron requirement is problem dependent. That is, the lower bound on
the number of first-layer threshold neurons, as a function of the set of data points, becomes much larger
than that of Reference 6.

Combinatorial analysis of arrangements of hyperplanes in R(d) provides the foundation for threshold
LNNs. References 1, 7 and 8 contain good introductions to pattern recognition, combinatorial geometry,
and convexity, respectively. We assume here that the reader is familiar with the basics of linear algebra
(Reference 9). However, for the reader's convenience, we present some standard definitions and well-known
facts.

An affine subspace in R(d) is a translate of a (linear) subspace. A k-flat in R(d) is a k-dimensional
affine subspace. That is, H is a k-flat provided H = U + v for some k-dimensional subspace U and some
v r R.

We adopt the convention that the empty set is the unique k-flat for all negative k, whereas every
singleton (y) is a 0-flat.

DEFINITION 1.1. A hyperspace in R(d) is a linear subspace of dimension d - 1.

DEFINITION 1.2. A hyperplane in R(d) is a translate of a hyperspace. That is, H is a
hyperplane in R(d) provided there exist a hyperspace U and a vector v, both in R(d), such that H = U + v.

FACT 1. U is a hyperspace in R(d) provided there exists a nonzero vector a in R(d) such that

U = (yE R(d): a y = 0),

where a. y denotes the inner product of a and y,

d

a-y = aiyi
i=1

FACT 2. H is a hyperplane in R(d) provided there exists a nonzero vector a in R(d) and a scalar b
such that

H= (ye R(d): a" y-b=0).

It will prove helpful to view the set of hyperplanes as characterized both by Definition 1.2 and Fact 2.

Suppose H( is finite set of hyperplanes in R(d), and 1 5 e 5 d+1. We say that H is in general
position provided that the dimension of the intersection of any e-subset of His d - e.

DEFINITION 2.1. An open half-space H0 in R(d) is a subset satisfying

H°= [ye R(d): a.y-b<0)

8
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where a e R(d) and b e R. Similarly a closed half-space H" in R(d) is a subset satisfying

H'= (y e R(d) : a.y-b>0).

DEFINITION 2.2. A convex polyhedron is the intersection of a finite number of closed half-
spaces.

From the preceding definition it follows that a convex is polytope is a convex polyhedron.
However, a convex polyhedron need not be a polytope, since polytopes must be compact (bounded). A
compact convex polyhedron is convex polytope.

Now consider a LNN T= (,r, h A), where r is the threshold transfer function satisfying

-1 fort<01
'r(t) =

I for0!5t

For weight matrices A,, A2, ..., Ah, the network mapping F is given by

F(x) = fh(fh-l(.., f2 (fl(X)) ...

fj= ToAj, for 1<j<h.
T = (,r, c, ..... r)T .

Let G(x) denote the result of mapping x through only the first layer of neurons, i.e., the second layer of
nodes. Equivalently, G equals f, and is the mapping for the network (T, 1, M), where M = (d, X), d = 4,
and X = %I. We focus attention on the network M and its mapping G for the following two reasons. If
G(x) = G(y) for x, y E R(d), then F(x) = F(y). Thus, input patterns that are to be mapped into different
outputs must be separated by G. This applies to all LNNs, but is not of great consequence when s is
injective (one-to-one). The second reason applies specifically to threshold neurons; namely, the range of
the set-valued function.

G-"I : RiX) _-+ 2(Re°)

consists of a finite number of disjoint convex polyhedra in R(d). Therefore, many properties of threshold
networks depend largely upon decompositions of R(d) into polyhedra.

For the remainder of this section, we let A = A, the single X by d + I weight matrix that

defines G.

The following theorems and corollaries illuminate the relationship between the weight matrix A and
the decomposition of the input space R(d). We let

G(x) = (G1(x), G2 (x), ..., G,.(x)),

where

G.(x) = r(aj)x+),

9
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and a(j) is the jth row of A. Recalling that the rows a(j) of A are (d + 1)-vectors, we denote by a'(j) the
truncated d-dimensional row vector

a_(j) = (a(j, 1), a(j, 2), ..., a(j, d)).

In order to avoid discussing degenerate configurations, we assume that the truncated row vectors a(j),
1 _ j _< X, lie in general position in R(d). That is, for 1 5 e 5 d, every e-subset of the a7(j)s is linearly
independent.

LEMMA 1. G-I'(-1) and Gj-'(1) are complementary open and closed half-spaces in R(d),
respectively, for 1 _< j 5 X.

LEMMA 2. For a E [-1, I)', the closure of G' (a) is a convex polyhedron in R(d).

PROOF. G' (a) = f") G.I( 1 ). Since G'(a) is the intersection of finitely many half-spaces, its

closure is a convex polyhedron. (We consider the empty set to be a convex polyhedron.)

THEOREM 1 (References 6 and 7). Let Hbe a set of X hyperplanes in general position in R(a)

then R(d) - UL(is the union of Regd(;X) connected components, each of which is a convex polyhedron,
where

w h ere R e g d ( X ) = ( J 4 +( J 41 ... + ( 7 j.
DEFINITION 3. For X c R(d), we say that a partition (X1 , X2 ) of X into two disjoint subsets is

linearly separable if there exists a hyperplane H that separates every pair of points (x 1, x2 ) with x1 E X1,
x2E X2

FACT 3. (X1, X2 1 is linearly separable provided there exists a vector a and a scalar b such that

<Oifxe X1 )
a-x -b Of X

>Oifxe X2  .

DEFINITION 4. Suppose that X = {X1 , X2 , .... XK) is a finite family of subsets of R(d) and

Hi= {H1, H2 ..., HX I is a family of hyperplanes in R(4). We say that f separates X if for every xi e Xi,
xj E X i, 1 < i < j _< K, there is at least one member of H that separates xj and xj.

FACT 4. A finite set ( of hyperplanes separates a finite family X of sets in R(d) if and only if

every connected component of R(d) - U H contains members of at most one member of X and U His

disjoint form UX.

10
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THEOREM 2 (Reference 10). Let X be a set of N points in geneial position in R(d), then .he
number of linearly separable partitions of X into two disjoint subsets is SePd(N), where

Sepd(= N )~+ (J)+ ... + ( 1.

REMARKS. Theorems 1 and 2 are 'almost dual' to one another. By moving from R (d) to

projective space P(d) with appropriately modified definitions, lines and planes may be interchanged by
projective duality. The discrepancy between the formulas for Regd(X) and Sepd(N) results from the different

topologies of R(d) and P(d). This difference is exemplified by the fact that a projective hyperplane does not
disconnect p(d), while two projective hypervmlanes decompose p(d) into two disjoint components. Of the
Regd(X) components in R(d) determined by X hyperplanes, 2Regd-1 (X-1) of them are infinite. These infinite

regions occur in Regd._(X- I) pairs that are connected when transformed into projective space P(d). Thus, the

number of connected components determined by X lines in P(d) is, in fact, SePd(A), as one would expect
from duality.

EXAMPLE 1. For d = 2 and X = 4, we have

Reg2(4) = (4) + (4) + (4)= .

Figure 2 shows four lines in the plane and the resulting decomposition into 11 regions; three finite and
eight infinite.

FIGURE 2. Eleven Regions in R(2) Determined by Four Lines.
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EXAMPLE 2. Figure Y(' shows a set Y = {yi' Y2, y3, Y4 ) of four points in R ale1a
shows the seven linear separations of Y.

(a)

Y4

Y2 Y3

(b)

Z3  Z

FIGURE 3. Quadrupes Yand Zin R.

TABLE I1(a). Separable Partitions of Y in Figure 3(a),

0 (YI Y2 Y3Y4)

(YO) (Y2 Y3 Y41

{Y2) llY 4

(y31 (y 1Y2 Y4)

(y)IY2) 1Y 4

fylY4) 1Y2 Y3)
1(y Y31 1 1Y2 Y4)

EXAMPLE 3. Figure 3(b) shows a set Z = Z1, Z2, Z31 Z4 ) of four points in R (d). Table 1(b)
shows the seven linear separations of Z.

12
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TABLE I(b). Separable Partitions of Z in Figure 3(b).

z, z2

0 fzI z2 z3 z 4}

(z1) {z2 z3 z4 )

fz2 ) {zI z3 z4 )

{z3) {zI z2 z4 )

{z4} {zI z2z3}

{ZI Z4} {z2Z3}

{ZIZ2) f Z z }

REMARKS. The 4-sets of Examples 2 and 3 both admit seven linearly separable partitions as
indicated by Theorem 2. However, the sets of partitions are not isomorphic. That is, there exists no
mapping from Y to Z that sends the linearly separable partitions of Y into those of Z. This stems from the
fact that Y and Z represent different order types in R(2). Reference 11 presents definitions and basic results
on order types in Euclidean spaces.

The fact that the partition

Z1 , Z. 31 (Z2 , Z4

is not linearly separable is what prevents one from 'solving' the exclusive-or problem with X = 1
(Reference 12).

The planar exclusive-or problem leads us naturally into pattern recognition in Euclidean spaces. We
adopt the following simple model. We are given a family

X={XI,X 2 ..... XK

of K disjoint finite subsets of R(d), with

X = XI U X 2 U... U XK

IYlx =nj1 l j<K

IXi =N=n l + 2 +...+nK.

This corresponds to a K-class problem for which Xi is the training sample for Class i. The task is to define
a neural network (or some other type of classification device) whose mapping F satisfies

JIF(x i ) - u ill < E, for all x, e X. (II)

These conditions force F to map X, into a sphere of radius E centered at ui. The uj are distinct points in
R(m), the output space, and e is some small allowable error, in particular

13
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2E < Ilui - ujll for 1:< i < j: <K, (1.2)

so that the K target spheres in R(m) are disjoint.

Our results on neuron requirements pertain only to the number X = X of first-layer threshold neurons
required in a threshold network for the network mapping F to achieve the classification objective. We
appeal to the following obvious fact.

FACT 5. If the network mapping F of a threshold network satisfies Equations 1.1 and 1.2, then
forallxie X,, and xJE Xj, 15<i<j<K:

Lemma 3 follows immediately.

LEMMA 3. If there exist weights for a threshold network T1= (r, h, A) such that the resulting F
satisfies Equation 1, then the set of hyperplanes determined in R(d) by the X1 first-layer neurons separates X

In order to relate threshold neuron requirements to sets of training data, we introduce six
combinatorial functions. In the following definition, point sets and sets of hyperplanes are assumed to be
in general position in R(d).

DEFINITION 5. For X a finite subset of R(d), and X= X1 , X2, .... XK)a partition of X into K
disjoint subsets:

Xnn(X/1) = min {X( : there exists a set H(of X hyperplanes which separates X). (5.1)

For a partition N= (n, n2, .... nK } of N into K positive integers,

• X in(d , v) = min (X,(X/X)) (5.2)

Xmaxms(dN, max (Xm(X/A)) (5.3)

where the minimum in Equation 5.2 and the maximtiLi in Equation 5.3 are taken over all X, X such that X
is an N-subset of R(d) and Xis a partition of X into K disjoint subsets with cardinalities ni , 1 < i < K

",M~Q = .PS

where S denotes the family of singletons 1 (x) : x e X } (5.4)

id,N) =min I X.i(X) : X c R(d) and XI=N) (5.5)

mxni (d, N) max (Xm(X) : X c Rd) and I x= N). (5.6)

For a K-class training set X, with

X= (XI , X2 .... XK),

the number of first-layer threshold neurons required is at least %mi,(X/X). If each Xi contains a single
prototype, then at least Xmi(X) first-layer threshold neurons are required.

14
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LEMMA 4 (Reference 6). If X is an N-subset of R(d), then

X.(X) > min {X : Regd(X) > N).

PROOF. Suppose Regd(IL) < N. A set Hof gi hyperplanes in R(d) decomposes R(d) into less than
N regions, so at least two of the N members of X must lie in the same region. Thus, X is not separated by
H. The conclusion of the lemma follows immediately.

Lemma 4 gives a lower bound for Xin(X) in terms of I X 1. Thus, we have a lower bound for

knimin (d, N). This lower bound is, in fact, sharp.

THEOREM 3.

k...m.(d, N) = min [X: Regd(X) > N).

PROOF. Let Hbe a set of gi hyperplanes in R(d), where

pt = min [X.: Regal(3.) > N).

Hdecomposes R(d) into r = Regd(lt) disjoint regions. Select a point from each of the regions, and let X be
an N-subset of the selected r-set. This is possible because r > N. H separates X, so Xmin(X) < gt. But
-ain(X) > t by Lemma 4. Thus, Xmi.(X) = pi, and the theorem follows.

EXAMPLE 4. Figure 4(a) shows a set W1 of 11 point-classes (prototypes) for which

X,,n(W 1) = 4. Since Reg2 (4) = 11, no set of 11 points in R(2 ) can be separated by fewer than four lines.
Figure 4(b) shows a set W2 of 11 point-classes for which mn(W 2 ) = 6.

1

5 .6

FIGURE 4(a). Eleven Points in R(2 ) Separated by Four Lines.

15



NWC TP 7106

Lemma 4 and Theorem 3 determine Xmin(d , N) exactly. Clearly, Xgmnjin(d, N) is also the lower
bound on the number of threshold neurons required to separate any N-set X in R(d). As X varies through the
N-subsets of R(d), Xmrn(X) is bounded above by X.maxmin(d, N). The set W2 in Figure 4(b) shows that
Xnamin(2, 11) > 6. This is a special case of the following theorem.

• \

FIGURE 4(b). Eleven points in R(2) Requiring Six Lines for Separation.

THEOREM 4.

Xmaxmin(2, N) ! FN/21.

PROOF. Let X be the set of N vertices of a convex N-gon C. Let B denote the boundary of C. B
is a simple, closed polygonal curve containing N vertices, the members of X, and N edges, the line
segments joining consecutive members of X. Every line in R(2 ) intersects B in at most two points. Since
C is convex, every line in R(2) intersects at most two of the edges in B. Let 9Hbe a set of X lines in R(2)

that separate X. Since each member of 2(meets at most two edges in B, u(meets at most 2X members
of B. But every edge must be cut by at least one line since X is separated. It follows that
2X > N and X > [N/21.

The N-gon in R(2 ) provides an N-set that is difficult to separate, with difficulty measured by the
number of lines required. This is a special case of N-sets lying on the moment curve in R(d) (Reference 7).

DEFINITION 6. The moment curve in R(d) is the set M(d) defined by

M(d)= (t,t2 ,t3 ... t e):tE R).

16
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Finite subsets of M(d) provide interesting examples in the study of convex polytopes. If X is a finite
subset of M(d), then every point of X is an extreme point of Hull(X). Furthermore, X is difficult to
separate, which is the property of interest here.

LEMMA 5. A hyperplane in R(d) cuts M(d) in at most d points.

PROOF. Let H be a hyperplane in R(d). From Fact 2, there exist a nonzero vector a and a scalar b
such that

H = (y e R :a-y - b = 0).

Suppose Yi E HnM(d). Since yi e (d), there exists ti E R, such that Yi = 2 Since yi E H,

we have

ay i - b = a,%. + a2t3 + ... adt- b = 0.

Thus, every yi E Hr)M(d) corresponds to a root of the polynomial

fHl(t) = a, t + a2? + ... + adt - b.

The lemma follows from the fact that fH(t) has at most d roots.

LEMMA 6. Suppose Xc M(d)and IXI =N. Then .min(X)_!F(N-1)/d1.

PROOF. We may assume the members xi of X satisfy

where

ti <t2 <... <t N .

Let M be the open interval in MO), connecting t% and t%,. for 1 <i ! N - 1. That is,

M i  = ((t, t d .... e): ti< t< ti.

The ordering of the ts guarantees that the Mis are disjoint. Now suppose that H is a family of X

hyperplanes that separates X. From Lemma 5 we know that each member Hi, 1 5 j 5 X, of 9f cuts M(d) in
at most d points. In order for X to be separated, each of the N - I segments M must be cut by a member of
H It follows that

Xd N- I
and

X >(N- 1)/di.

THEOREM 5.

r.jn(d, N) ? Lma,in(d, N),

17
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whem
L.=, d, N) = F N- l)dl.

PROOF. This inequality follows directly from Lemma 6 and the definition of ZXnn(d, N).

THEOREM 6. Discrete Ham Sandwich Theorem (Reference 7).

Suppose we have d sets X1 , X2 .... Xd in R(d), with I Xi i=n. Then there exists a hyperplane H

such that H bisects every X. That is, for 1 < i ! d, I Xir)H I and I XirH" I differ by at most 1. For ni

odd the difference is 1, and for n, even the difference is 0.

PROOF. See the Appendix.

DEFINITION 7. For positive integers d, N,

r = 1 + Llg(d)J

and

rg(N)l if N ! d+l

r+ %- 2r] ifN > d+2.

Theorem 6 enables us to bound Xmaxmi(d, N) above. The upper bound, Umaxmin(d, N), is
established by an algorithm. The idea is best seen by working through an example.

EXAMPLE S. Let X be a set of 45 points in R 4 . We invoke Theorem 6 repeatedly to define a

sequence H1 , H2, ..., H13 of hyperplanes that separate X. Initially, the best we can do is select H to bisect

X. This gives Xl of cardinalities 23 and 22. Next, we select H2 to simultaneously bisect 1 2

giving subsets X'2)1 , X2, X3PX of cardinalities 12, 11, 11, 11. Next, we select H3 to simultaneously

bisect all four X?'s. This gives eight subsets X. 1s of cardinalities 6, 6, 6, 5, 6, 5, 6, 5. At each

remaining step we can bisect four of the existing components. We select the largest four at each step.

Thus, at step 4 we bisect four of the five X.s of cardinality 6. This gives twelve components of

cardinalities

3, 3, 3, 3, 3, 3, 5, 3, 3, 5,6, 5.

The next four to be bisected have cardinalities 5, 5, 6, 5. The process yields 45 components after nine more
steps, since the number of components increases by four at each step. Therefore,

Xmin(4, 45) < 13 = Um.,min(4, 45).

18
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Note that at each step we may have created more components that those guaranteed by Theorem 6. We
ignore this possibility and continue bisecting subsets as if they had not been cut by any earlier hyperplanes.
The general algorithm follows.

SEPARATION ALGORITHM.

INPUT: An N-subset X of R(d)

OUTPUT: A set H= {HI, H2 ... HU)

of U hyperplanes that separates X,

U = Ummn(d, N).

For r as defined above,

2r1 5 d,

2> d.

If N < d, then each application of Theorem 6, except perhaps the last, doubles the number of components.

Thus, we obtain a separating set of size flg(N)1. The algorithm requires two parts: Steps A and B when
N>d.

Step A consists of Steps A.k, 1 < k < r.

Step A

Step AA: Choose H1 to bisect X giving

components )el), X1)2

Step Ak: Choose Ik to bisect the 2-'

current components X(k-1)

After Step A, we have 2r components r).

Step B consists of Steps B.k, 1 < k < s, where

s=[N d 2T]

Step B

Step Bk: Choose Hr+k to bisect the d largest of the current
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components jrk-1) ,

I j2r+ d(k - 1).

After Step BAk, there are at least 2r + dk components. Thus, the algorithm terminates after Step B.s, where

s is the smallest integer satisfying

2r + ds > N.

This gives a total of

U=r+s=r+ N 2r hyperplanes

that separate X. It follows that

Xmin(X) Umaxmin(d, N)

for X c R(d), and I X I = N. This result, together with Theorems 3 and 5, gives the following.

THEOREM 7. The number of hyperplanes required to separate N points in R(d) always lies
between Xmilmmn(d, N) and Uaxmin (d, N) with Xminmin and Um..min as defined in Theorem 3 and
Definition 7.

The lower bound is sharp, and the upper bound cannot be reduced below

Lmaxmin(d, N)= N I

Equivalently,

Lmaxmin(d, N) < k maxmin(d, N) < Umaxmin(d, N).

Table 2 shows X.inin(d, 200), Lmaxmin(d, 200), and Umaxmin(d, 200) for several

values of d.

TABLE 2. Bounds for Xmi(d, 200).

d 2 3 4 5 10 15 20 25

)Lminmin 20 11 9 8 8 8 8 8

Lmwn.i 100 67 50 40 20 14 10 8

Umaxmin 100 68 51 42 23 17 14 12
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Although Xmaxmin (d, N, ,'Dappears to be more complex than Xm,,min (d, N), because of the
additional argument N it can be bounded using the preceding results together with another example from
the moment curve.

THEOREM 8. Suppose that N= (n1 , n2 ..., nK) is a partition of N, with the parts nj labeled so
that

ni > n2 >: ... _> nK.

Then

)imaxmmn(d, N, -, -< Umxmin(d, N) (8.1)

)xmin(d, N, M > L.jin(d, N) if 2n, : N + 1, (8.2)

,xmnn(d.Nno 2N- ]2n, if 2n1 >N+ 1, (8.3)

arid

)Lminmin(d, N, M - ), imn(d, K). (8.4)

PROOF. Any set of hyperplanes that separates (X, S3), where S is the set of singletons from X,
also separates (X, A). Thus, Equation 8.1 follows from Theorem 7. Similarly Equation 8.4 follows from
the fact that the separating hyperplanes must form at least K distinct regions in R(d).

The lower bounds of Equations 8.2 and 8.3 are obtained from subsets of the moment curve M(d). Let

x, = (k., , ..... h for 1: < i-< N,

where t1 < t2 ... < tN. The xi's are consecutive points in M(d). We now assign the labels 1, 2 ... , K to the
xi's with frequencies n1 , n2, ..., nK, respectively. Let b = (bl, b2, ..., bN) be the sequence consisting of
nj l's followed by n2 2's followed by n3 3's, etc. The sequence c of labels is defined by

c = (bl, bh, b2 , bh+l, b3, bh+2, ... ),

where h = L(N + 3)/2J. For example, with d = 3, K = 4, N = 15, and N= (6, 5, 2, 2), we have

b=(1, 1, 1, 1, 1, 1,2,2,2,2,2,3,3,4,4)
ald

c = (1, 2, 1,2, 1, 2, 1, 3, 1, 3, 1,4, 2, 4, 2).

In this case, 2n, = 12 < 16 = N + 1, and at least 5 = [14/31 hyperplanes are required to separate all pairs
with different labels.

If 2n, > N + 1, then n, > N - nj. Thus, the number of l's exceeds the number of remaining
symbols. Placing the remaining symbols in separate intervals between l's produces a sequence requiring
two cuts for each symbol different from 1. The number of cuts is 2(N - n1 ), which proves Equation 8.3.
As an example, suppose K = 4, N = 15, and N= (10, 2, 2, 1). There are nine intervals separating the ten

l's, and 126 = (9) ways of placing the remaining symbols in five separate intervals. Each of the resulting

sequences requires 10 cuts. One such sequence is
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c =(1, 1, 1, 2, 1. 2, 1, 3, 1, 3, 1, 4, 1, 1, 1).

REMARKS. For most pattern recognition problems the training set (X/ A) satisfies 2n, 5 N + 1.
We have treated the case 2n, > N + I for the sake of mathematical completeness. The extreme of the latter
case occurs with K = 2, and n2 = 1. Here,X mi(X/A) = 1 or 2. Let y be the single member of X2. If y is
an extreme point of Hull(X), then kminX/.X) = 1. Otherwise, y can be separated from X1 by a pair of
parallel hyperplanes. This is accomplished by first choosing any hyperplane H through y that is disjoint
from X1. The two hyperplanes are then chosen parallel to H and on opposite sides of H, sufficiently close
together so that no point of X1 lies between them. This construction generalizes in the following way, and

yields an improvement on Equation 8.1. Suppose Y Q Xj and I Y I - d. There exists a hyperplane H
(which is unique if I Y I = d) which contains Y and is disjoint from X - Y. Since X - Y is finite, one can
select two hyperplanes parallel to H and on opposite sides of H with no member of X - Y lying between
them. Repeating this contruction on d-subsets of X2, X3 ... , XK, one obtains a family H(of X hyperplanes
that separate (X/ ) where

X=2(Fn21+FnT1I+...+FnK]).
This provides a better upper bound for 7,.e in(d, N, M) when n, is sufficiently large.

EXAMPLE 8. Suppose d = 3, K = 4, N = 50, and N = (32, 6, 6, 6). Then the construction
above shows that

(r61(3, 50, !'v) 2(Ft1 + R1 + Fl) = 12,
whereas the upper bound provided by Therorem 8 is 18.

SEPARATION OF CONVEX SETS

We assume in this section that the classes to be separated occupy disjoint regions of the input space
R(d). The task now becomes separation of regions rather than finite sets of points. This approach is useful
in conjunction with certain data analysis techniques. Both cluster analysis and density estimation yield
regions of the input space that are associated with single classes. Separating these regions at the first layer
of a LNN becomes a requirement of the network mapping. Linear separability of finite sets generalizes to
linear separability of subsets.

DEFINITION 8. Two subsets C1, C2 of R(d) are linearly separable provided there exists a
hyperplane H that cuts every segment joining a point in C, to a point in C2; equivalently, C, and C2 lie in

different components of R(d) - H.

DEFINITION 9. A set Hof hyperplanes in R(d) separates a family C of disjoint subsets of R(d)

provided that every segment, which joins two points lying in different members of C is cut by at least one
member of 9*

FACT 6. Two finite subsets of R(d) are linearly separable if and only if their convex hulls are
disjoint.
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FACT 7. Two compact convex subsets of R(d) are linearly separable if and only if they are

disjoint.

The preceding definitions and facts are used implicitly in the discussion below.

Clustering within classes generates partitions of each class into disjoint subsets. In general, there is
no guarantee that the regions for Class i are disjoint from those of Class j. Successive refinements of the
clusterings will, however, yield disjoint sets.

EXAMPLE 6. For a K-class problem, we have training data (X/X) where

x= [X1, X2, ... , XK)
and

X = Xl U X 2 U ... U XK.

At step 1, each Xi is clustered to obtain a partition X(i, I) of X. Replacing each element of X(i, I) with its
convex hull gives a covering C(i, I) of X, with convex sets. At step r, the partition X(i, r - 1) is refined
(i.e., each of its components is partitioned) to obtain a partition X(i, r) of Xi. Again the convex hulls of
the members of X(i, r) give a covering C(i, r) of X by convex sets. This procedure is continued through
step s, when all of the members of the total covering

C(s) = C(I, s) U C(2, s) U ... U C0K, s)

are pairwise disjoint. This is possible, since the partition of each Xi into singletons satisfies the
disjointness requirement.

REMARK. It should be noted that a set Hof hyperplanes that separates every pair of sets in C(s)
must also separate (X/X). Conversely, if we have a set H'of hyperplanes that separate (X/), the convex
hulls of the unseparated subsets of X form a covering of X by disjoint convex sets. An obvious question
is: Why cluster the data, rather than proceed directly to a search for a separating set Hof hyperplanes? We
have no precise answer. However, it may well be that a good way to start the search for His to look for
clusters.

Regions may also be associated with individual classes when the training data is used to define
density functions. For K density functions Pl, P2,. .PK, one may assign disjoint regions R1 , R2 , ...' RK
to the classes in such a way as to maximize (some function of) the K associated probabilities:

Pi = Prob[x e R, given x E Class i];

for such a model, the problem ultimately becomes the separation of the K regions. As with the clustering
model, each R, may be replaced by a finite family of convex sets that cover Ri, so that all of the resulting
sets are pairwise disjoint.

Thus, we proceed to consider the problem of separation of disjoint convex sets.

DEFINITION 10. For C a finite family of disjoint compact convex subsets of R(d), we define

mm(C) = rin (y : there exists a set Hfof y hyperplanes which separates C} (10.1)

ymi,,i(d, N) = min{ ymin(C)) (10.2)
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'ymaxnmi(d, N) = max {ryai(c)}, (10.3)

where the minimum in Equation 10.2 and the maximum in Equation 10.3 are taken over all families Cof N
disjoint convex subsets of R(d).

Since a point in R(d) is a convex set, separation of convex sets includes rzparation of points as a

special case. The following theorem is a consequence of Lemma 4 and Theorem 3.

THEOREM 9.

y minmin(d, N) = minl y: Regd(y) > N).

Theorem 9 says, in effect, that the easiest problems for convex sets are just the easy problems for
points. However, the worst case cost of separability is much greater for general convex sets than for finite
sets. Here, cost is measured by the number of hyperplanes required for separation. We employ two
techniques to establish a lower bound for y,,ii(d, N). The first involves constructing families of convex
sets as the Voronoi regions of finite families of points. The second technique replaces junction points in
the arrangement of Voronoi regions with new convex sets.

LEMMA 7. ymaxmin(d, N):5 (N).

PROOF. Lemma 7 follows from Fact 7. One hyperplane for each pair of disjoir, convex sets
suffices for separation.

DEFINITION 11. For X = {xI, x2, ... , xN} a fini- subset of R(d), we define the Voronoi region
Vi associated with xi by

V i = {X E R(d) : ~x" -ill = min (llx - xill)).

That is, Vi is the set of points whose nearest neighbor in X is xi.

FACT 8. The interiors Vi of the N Voronoi regions for (xI, x2, ... , xNl are disjoint convex sets.

Voronoi regions are intimately related to linear discriminant functions. For 1 <_ i 5 N, define the
nearest prototype discriminant function Fi by

Fi(x) = 11xill 
2-2 x. x,

and for 1 5 i, j < N let

Dij(x) = Fj(x) - Fi(x).

Dij(x) is positive at those points that are closer to x, than to xj. Letting Hj be the set of points at which
Dij(x) is positive, we have

:~ I S j, N, j,* i).

Thus, each V'i is convex, since it is the intersc otion of half-spaces.
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(2)
EXAMPLE 7. Figure 5 shows the Voronoi regions for a set X of four points in R 2 . The points

x1, x2 , and x3 are the vertices of a triangle, and x4 = (xI + x2 + x3)3 is the centroid of the triangle. For

each pair xi , xj of points, there is a one-dimensional boundary separating their regions V~i and Vo.
Therefore, separation of these four regions requires six hyperplanes.

The regions of Figure 5 generalize to R(d), d _ 3. Let x1, x2 , .... Xd+ 1 be the vertices of a simplex

in R(d), and let xd+ 2 = (xI + X2 +... + xdI)/(d + 1), the centroid of the simplex. Each of the(d + 2) pairs

Vi, Vo of Voronoi regions shares a (d - 1)-dimensional boundary. Since no two of these boundary regions

lie in the same hyperplane, d 2 hyperplanes are required to separate the d + 2 convex regions.

x 
4

x 2

FIGURE 5. Four Voronoi Regions in R(2 .

LEMMA 8. 'maxmin(d, d + 2)- d "2

PROOF. The simplex and its centroid are sufficient to show that Ymaxmin(d, d + 2) (d + 2)
-- 2

and from Lemma 7 it follows that ymaxmin(d, d + 2) <( + 2).

Proceeding from the simplex construction, additional open convex regions may be added. The
collective boundary of the d + 2 regions resulting from the simplex and its centroid contains d + 1 junction
points, i.e., points at which d + I distinct (d - 1)-dimensional interfaces meet. By adding a new region,

which is an open simplex containing a junction point, one obtains d + 3 regions requiring d + 2 + d + I

hyperplanes. The d + I new hyperplanes contain the d + 1 boundaries of the new region. This construction
also adds d + I new junction points while removing one. Thus, each additional region increases the number
of junction points by d and the number of required hyperplanes by d + 1. After adding k new regions, there
are dk + d + I junction points and d + k + 2 regions requiring a total of
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7= (d+2) +k(d+ 1)

2

hyperplanes for separation. Substituting N for d + k + 2 gives the following theorem.

THEOREM 10. 7.maxm(d, N) > (d + I)N - (d + 2.

for N Z d + 2.

Thus, the cost of separation grows as N/d for points, and at least as fast as N(d + 1) for convex sets.

CONJECTURE. We conjecture that 2d regions in R(d) may require 2d2 - d hyperplanes, one for
each pair of regions. If this is the case, then

ymaxmin(d, N) > (d + 1)N - 3d

for N > 2d.

SUMMARY

The feed-forward layered neural network is the simplest of the neural computing devices proposed for
systems requiring pattern classification capabilities. The number of first-layer neurons imposes quantifiable
limits on the amount of separation that the network can achieve in the pattern space. Conversely, the
number and complexity of the pattern classes force minimal requirements on the size of the first layer of
neurons.

This report establishes bounds on the number of first-layer neurons-in terms of input dimension
and number of training patterns-required in a threshold network. Although, in general, neurons with
continuous transfer functions are more versatile than threshold neurons, the separability capabilities ')f
threshold neurons provide a baseline.

In order to completely separate N points (in general position) in d-dimensional Euclidean space, a

threshold network may require as few as Regal(N) first-layer neurons or as many as N/d. Reg I(N) is the
minimum value of X for which

(") + (X) + --- + (X) 2,N.

For example, the upper and lower bounds for 100 points in the plane are 14 and 50, respectively. For 5000
points in five-dimensional space, we obtain bounds of 16 and 1000. One does not expect to encounter
either of these extremes in real applications. The upper bound, which arises from data lying on a one-
dimensional curve in d-dimension space, is particularly unrealistic. On the other hand, it is unwise to offer
a target number to cover all contingencies, since neuron requirements will obviously depend upon the
application as well as upon the values of d and N. What is really required is either a fundamental
understanding of the processes giving rise to the patterns, or exploratory data analysis of the training
samples to determine their separability requirements. Either of these additional bodies of information will
often yield not only the number of separating hyperplanes required, but the hyperplanes themselves. The
hyperplanes in turn determine the weights on the first layer of connections.

As one might expect, the worst case separability requirements for finite families of convex sets are
considerably greater, than for points. For N disjoint convex subsets of d-dimensional Euclidean space, the
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number of hyperplanes required to separate every pair of subsets ranges from Regal(N) to (N2 - N)/2. The
lower bound is the same as for points, since points are convex sets. For N < d + 2, the upper bound is
sharp. Moreover, for small (relative to the dimension d) families of sets, the upper bound is not totally
unrealistic. For a family of multivariate distributions, the Voronoi regions of the class means may include
sections from (N2 - N)/2 hyperplanes among their boundaries. This upper bound has been proved here only
for N _< d + 2. We conjecture that it applies for N _5 2d. In any event, the worst case hyperplane
requirement for convex sets grows at least as fast as (d + 1)N, whereas the analogous growth for poinis is
only N/d.

Sets of training data for supervised learning (pattern recognition) consist of disjoint unions of finite
subsets of d-dimensional space. The distinct subsets of a training set are samples from a single class. The
separation task for this problem is to create convex subsets of the pattern space each of which contains
points of at most one class. Thus, separation of all pairs of points is not the objective. Surprisingly, in
the worst case, all pairs of points must be separated in order to separate the classes. One would expect this
type of situation to arise only when the underlying classes are nearly identical. That is, this extreme
nonseparability among the classes of training samples indicates an unsolvable pattern recognition problem.
Indeed, the number of hyperplanes required for class separation can be used as a criterion for solvability of
the problem. As the requirements increase, solvability decreases.

Of greater interest than worst case neuron requirements are expected neuron requirements. Expected
requirements, however, lead to the same dilemma that pervades computational complexity questions in
theoretical computer science. Expectations are dependent upon assumptions regarding the distributions of
the classes. Model 2 leads to questions of this type. We have treated the worst case problem at some
length in this report for two reasons. The first is simply that these results follow easily from basic
knowledge of convexity and combinatorial geometry. The second, more important, reason is the need to
construct a firm mathematical framework that exhibits the intimate relationship between the pattern space
and the role played by the first layer of neurons in the classification procedure. Understanding that such
bounds exist is perhaps more helpful than knowing their exact integer values.
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Appendix

DISCRETE HAM SANDWICH THEOREM

Our proof of the discrete Ham Sandwich Theorem uses the Borsuk Antipodal Mapping Theorem and
several basic facts. The following definitions will prove helpful.

A median cut ofr a finite N-subset X of R(d) is a hyperplane H satisfying

IH+ r) X1:5 LN2J

and

1H" n X1 5 LN/2J.

The d-dimensional sphere S(d) is the boundary of the closed unit sphere in R(d+I); i.e.,

S(d) = (a E R d+l): IIaI = 1).

For u e R N and 1 5 i < N, U(j) denotes the value of the i h smallest coordinate of u. Note that U(j)

cannot always be associated with a unique coordinate of u.

EXAMPLE. If N = 6 and u = (4,-2, 1,7,3, 1), then

"(1)  =-2 U(4)  -- 3

U(2) = 1 U(5) = 4

u(3) =1 u(6) = 7

Here, u(2) is equal to both u3 and u6.

FACT. For 1 < i 5 N, the function wo : R(N) -b R, defined by

wQ (u) = u0),

is continuous.

We define the median, Med(N ) : R(N) -+ R, as follows:

U(r) for N = 2r - 1

Med () =

M!(u(,) + U(r+l)) for N = 2r
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FACT. Since Med(N)= wG) or + Wfr0), Med" is continuous.

Now suppose that X= (XI IX2, -I.,XN) is afinite subset of R(d) and ae S(d1'). Define fx,(a) by

f11(a) = Med((P(XI, a), PKX2, a). '-. P(xN, a)),

where P denotes inner product,

P(y, a) = y-a.

Since P: R (d) x~ S(d-l) -+ R is cotnos the mapping fX :(d- 1) - R is continuous for every finite X in
R(d). The importance of the family of mappings fX rests upon the following.

FACT. The hyperplane H perpendicular to a and passing through the point fX(a)a is a median cut
for X.

Also of importance is the fact that fX is antipodal, i.e., fx(-a) = .fX(a) for all a E S. This follows
from the fact that

MedN(-u) = -Med (u)

for all U E R".

The following topological theorem provides the fundamental result required to prove the Discrete
Ham Sandwich Theorem.

BORSUK ANTIPODAL MAPPING THEOREM. If F is a continuous mapping S(d) to R (d)
satisfying F(-a) = -F(a) for all a r= S(d), then 0 lies in the range of F. That is, for some a E S

F(a) = (0, 0, ... , 0).

THEOREM 6. Discrete Ham Sandwich Theorem (Reference 7).

Suppose we have d sets X(l), X(2), ..., X(d) in R (d), With I X(i) I=n, and QX(i) in general
position. Then there exists a hyperplane H such that H bisects every X(i). That is, for 1 5 i 5 d,
I X(iYnH' I and I X(i)r)H- I differ by at most 1. For n, odd the difference is 1, and for ni even the

difference is 0.

PROOF. For 1 :9 i-,5 d-1, define F. : Sd1) 4Rb

Fi(a) = fX(i)(a) - fX(d)(a).

Since F, is the difference of continuous functions from S(d.I) to R, F, is continuous. Hence, the function F
from S(d-1) to R(d-1) defined by

F(a) = (171(a), F72(a), ... , Fd-,(a))

is also continuous. Moreover, F(-a) = -F(a), since
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Fi(-a) = -Fi(a) for 1 <i : d -1.

Applying the Borsuk Antipodal Mapping Theorem to F gives us a point a e S(d-' ) for which F(a) - 0.
Thus, for 1 < i 5 d -1, fx(i)(a) = fx(d)(a). It follows that all fx(i)(a) = A, where A is constant, and the

d
hyperplane L through Aa perpendicular to a is a median cut for each of the sets X(i). Let X = UX(i),

i=I
X" = X r L, X0 = X r L, X = X n L . Similarly we let X_(i) = X(i) r L, X0 (i) =X(i) r L, and X (i)
= X(i) n L , for 1 : i<5 d.

If X 0 is empty, then H = L bisects all X(i). If not, we must rotate L in order to obtain the bisector

H. Suppose X is non-empty. Let n- = I X'(i) I, n9 = I X0(i) I, and n+ = I X+(i) I, for I -< i :5 d. Since X
is in general gosition, X0 contains at most d points, and these points lie in general position in L. Thus,
any split of X into two subsets may be effected by a (d - 1)-flat in L (the (d - 1)-flats are the hyperplanes of
L). Our task is to select the split of XO so as to bisect all of the X(i).

Let m j - ni/2J - n-, m" = rni/21 - nt Since L is a median cut for X(i), mj" and mi are non-

negative. Moreover, m' + m+ = n, - n- - n+ = no,. Thus, we may partition X0 into Y-, Y+ as follows.

d
Split X? into disjoint subsets Yi, Y1i of cardinalities m, and in+, respectively, and let Y" = U Y", Y =i= 1

d
U Y~i. Choose a (d - 1)-flat K in L which splits X0 into Y" and Y+. Let 9fbe the family of hyperplanes in
i=1

R(d) which contain K. Every member of 9( except L, splits X0 into Y- and Y+. Since X is finite, there is
a neighborhood Nof L in Hf, all of those members split X\X0 into X" and X+ . We choose H to be a

member of k\{L). Then H splits X into X" u Y" and X u Y+. It follows that H bisects every X(i).
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