
REPORT DOCUMENTATION PAGE F2 APro

II~i I II il111 111 111 liilii2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I Final: 09 Jan 1991 to 01 Mar 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Tartan Inc., Tartan Ada Sun/Sun, Version 4.0, Sun3/60 , SunOS version 4.0.3 (Host
& Target), 90121111.11118

6. AUTHOR(S) X

IABG-AVF iLTj
Ottobrunn, Federal Republic of Germany 17~V

mif21991I ~ ____________

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)~ 9 W 8. PERFORMING ORGANIZATION

IABG-AVF, lndustrieanlagen-Betriebsgeselschaft ~. .. REPORT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 077
D-801 2 Ottobrunn
FEDERAL REPUBLIC OF GERMANY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ONITORING AGENCY

Ada Joint Program Off ice REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301 -3081

11. SUPPLEMENTARY NOTES

123. LiSTRIBUTIONAVAlLABlLlTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.I

13. ABSTRACT (Maximum 200 wrds)

Tartan In., rartam Ada Sun/Sun Version 4.0 Sun3/60, Ottobrunn, Germany, SunOS Version 4.0.3 (Host & Target), ACVC

91-03863

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.___PRICE __CODE_

Capability. Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 1.PIECO

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION I19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED jUNCLASSIFIED
NSN 7540-01 -280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on December 11, 1990.

Compiler Name and Version: Tartan Ada Sun/Sun version 4.0

Host Computer System: Sun3/60 SunOS version 4.0.3

Target Computer System: Sun3/60 SunOS version 4.0.3

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
90121111.11118 is awarded to Tartan Inc. This certificate expires on
01 March, 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Directo , mputer & Software Engineering Division A,'-%.%,,a For
Institute for Defense Analyses 4.
Alexandria VA 22311

Ada Joint Program Office rx..
Dr. John Solomond, Director AV,2Jz1a&Atj
Department of Defense p AnVllAd/or
Washington DC 20301 t

,,.. (t I _ _ __I.,

AVF Control Number: IABG-VSR 077
9 January, 1991

== based on TEMPLATE Version 90-08-15 ==

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 90121111.11118
Tartan Inc.

Tartan Ada Sun/Sun version 4.0

Sun3/60 SunOS version 4.0.3
Host & Target

Prepared By:

IABG, ABT. ITE

DECLARATION OF CONFORMANCE

Customer: Tartan, Inc.

Certificate Awardee: Tartan, Inc.

Ada Validation Facility: IABG

ACVC Version: . 1

Ada Implementation:

Ada Compiler Name and Version: Tartan Ada Sun/Sun Version 4.0

Host Compiler System: Sun 3/60 SunOS Version 4.0.3

Target Computer System: Sun 3/60 SunOS Version 4.0.3

Declaration:

[I/we] the undersigned, declare that [I/we] have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed above.

__Date:

Customer Signature

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1

1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard (Ada83] using the

current Ada Compiler Validation Capability (ACVC) . This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to

[Pro90]. A detailed description of the ACVC may be found in the current

ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified in

this report.

The organizations represented on the signature page of this report do nr
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of

this report are available to the public from the AVF which performed this

validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization

institute for Defense Analyses
1801 North Beauregard Street

Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Proaramming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

1UG89] Ada Compiler Validation Capabilitv User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result iwhen they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECKFILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

in some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and implementation-
dependent characteristics. The modifications required for this
implementation are described in Section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.

This customization consists of making the modifications described in the

preceding paragraph, removing withdrawn tests (see Section 2.1) and,

possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow

transformation of Ada programs into executable form and

execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC

Capability user's guide and the template for the validation summary

(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada . The part of the certification body which carries out the

Validation procedures required to establish the compliance of an Ada

Facility (AVF) implementation.

Ada The part of the certification body that provides technical

Validation guidance for operations of the Ada certification system.

Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.

an Ada

Implementation

Computer A functional unit, consisting of one or more computers and

System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary

for the execution of the program; executes user-written or

user-designated programs; performs user-designated data

manipulation, including arithmetic operations and logic

coerations; and that can execute programs that modify

themselves during execution. A computer system may be a

stand-alcne unit or may consist of several inter-connected
unIts.

Conformity Fulfillment by a product, process or service of all

reaui-rements specified.

1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF

services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity

Conformance is realized or attainable on the Ada implementation for
which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found tO be
test irrelevant for the given Ada implementation.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating

systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs

Computer are executed.

System

Validated Ada The compiler of a validated Ada implementation.

Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90.

Validation The process of checking the conformity of an Ada compiler to

the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for

withdrawing each test is available from either the AVO or the AVF. The

publication date for this list o withdrawn tests is November 21, 1990.

E28005C B28006C C34006D C35702A B41308B C43004A

C45114A C45346A C45612B C45651A C46022A B49008A

A74006A C74308A B83022B B83022H B83025B B83025D

B83026B 885001L C83026A C83041A C97116A C98003B

BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A

CC1226B BC3009B ADIB08A BD1B02B BD1BO6A BD2AO2A

CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A

CD2BI5C BD3006A BD4008A CD4022A CD4022D CD4024B

CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C

ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E

CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E

CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A

CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B

CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant

for a given Ada implementation. Reasons for a test's inapplicability may

be supported by documents issued by ISO and the AJPO known as Ada

Commentaries and commonly referenced in the format AI-ddddd. For this

implementation, the following tests were determined to be inapplicable tor

the reasons indicated; references to Ada Commentaries are included as

appropriate.

2-1.

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring more

digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L. .Y (14 tests)

C35706L..Y (14 tests) C35707L. .Y (14 tests)

C35708L..Y (14 tests) C35802L .Z (15 tests)

C45241. .Y (14 tests) C45321L. .Y (14 tests)

C45421L..Y (14 tests) C45521L .Z (15 tests)

C45524L..Z (15 tests) C45621L .Z (15 tests)
C45641L..Y (14 tests) C46012L .Z (15 tests)

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C

C45502C C45503C C45504C C45504F C4561:C

_45612C C45613C C45614C C45631C C45632C

B52004D C55B07A B55B09C B86001W C86006C

CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined type

SHORTFLOAT.

C35713D and B860O1Z check for a predefined floating-point type with a name

cther than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point operations

for types that require a SYSTEM.MAX_MA-NTISSA of 47 or greater; for this
implementation, there is no such type.

C45536A, C46013B, C46031B, C46033B, and C46034B contain 'SMALL

representation clauses which are not powers of two or ten.

C45624A and C45624B are not applicable as MACHINEOVERFLOWS is TRUE for

floating-point types.

B86001Y checks for a predefined fixed-point type other than DURATION.

CA2009A, CA2009C. .D (2 tests), CA2009F and BC3009C instantiate generic units

before their bodies are compiled; this implementation creates a dependence on

generic units as allowed by AI-00408 & AI-00506 such that the compilation of

the generic unit bodies makes the instantiating units obsolete. (see 2.3.)

=1009C uses a representation clause specifying a non-default size for a

floating-point type.

CD2A53A checks operations of a fixed-point type for which a length clause

specifies a power-of-ten type'small; this implementation does not support

decimal smalls. (see 2.3.)

=:2A64A, CD2A84:, CD2A84I..J (2 tests), and CD2A840 use representation

clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

CD2Bl5B checks that STORAGEERROR is raised when the storage size specif*ej

for a collection is too small to hold a single value of the designated type:

this implementation allocates more space than what the length clause

specified, as allowed by AI-%0558.

BD8001A, BD80C3A, BD8004A..B (2 tests), and AD8011A use machine code

insertions.

AE2101C and EE2201D..E (2 tests) use instantiations of package SEQUENTIAL Ic

with unconstrained array types and record types with discrim-nants without

defaults. These instantiations are rejected by this compiler.

AE2101H, EE2401D, and EE240IG use instantiations of package D:Rac 10 with

unconstrained array types and record types with discriminants witho:ut

defaults. These instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised if the

given file operations are not supported for the given combination of mode and
access method; this implementation supports these operations.

Test File Operation Mode File Access Method

CE2!02D CREATE INFILE SEQUENTIAL_10

CE2102E CREATE OUTFILE SEQUENTIAL_10

CE2102F CREATE INOUTFILE DZRECTIO

CE21021 CREATE IN FILE DIRECT_10

CE2102J CREATE OUT FILE DIRECT_10

CE2102N OPEN INFILE SEQUENTIALIO

CE21020 RESET INFILE SEQUENTIAL_10

CE2102P OPEN OUTFILE SEQUENTIAL_10

CE2102Q RESET OUTFILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT_10

CE2102S RESET INOUTFILE DIRECT_10
CE2102T OPEN IN FILE DIRECT_10
CE2102U RESET IN FILE DIRECT_10

CE2102V OPEN OUT FILE DIRECT 1O
CE2102W RESET OUT FILE DIRECT_10

CE31C2E CREATE IN FILE TEXT 10

CE3102F RESET Any Mode TEXT_10

CE31C2G DELETE TEXT 10

CE3102I CREATE OUT FILE TEXT_10

CE3102J OPEN IN FILE TEXT_10

CE3102K OPEN OUTFILE TEXTIO

CE2203A checks that WRITE raises USE ERROR if the capacity of the external
file is exceeded for SEQUENTIAL_10. This implementation does not restrict

file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the external

file is exceeded for DIRECT 10. This implementation does not restrict file

capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE3111B and CE3115A associate multiple internal text files with the same
external file and attempt to read from one file what was written to the
other, which is assumed to be immediately available; this implementation

buffers output. (see 2.3.)

CE3304A checks that USE ERROR is raised if a call to SET LINELENGTH or
SETPAGELENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either line
length or page length.

CE3413B checks that PAGE raises LAYOUTERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of COUNT'LAST
is greater than 150000 making the checking of this objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see Section 1.3) were required for 109 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24007A B24009A B25002B B32201A B33204A
B33205A B35701A B36171A B36201A B37101A B37102A
B37201A B37202A B37203A B37302A B38003A B38003B

B38008A B38008B B38009A B38009B B38103A B38103B
B38103C B38103D B38103E B43202C B44002A B48002A
B48002B B48002D B48002E B48002G B48003E B49003A
B49005A B49006A B49006B B49007A B49007B B49009A

B4A010C B54A20A B54A25A B58002A B58002B B59001A
B59001C B59001I B62006C B67001A B67001B B67001C
B67001D B74103E B74104A B74307B B83EOlA B83EOlB
B85007C B85008G B85008H B91004A B91005A B95003A
B95007B B95031A B95074E BC1002A BC1109A BCI109C
BC!206A BC2001E BC3005B BD2AO6A BD2BO3A BD2DO3A

BD4003A BD4006A

E2%02 was graded inapplicable by Evaluation and Test Modification as
directed by the AVO. This test checks that pragmas may have unresolvable
arguments, and it includes a check that pragma LIST has the required effect;
but for this implementation, praoma LIST has no effect if the compilation

results in errors or warnings, which is the case when the test is processed
witnout mcdification. This test was also processed with the pragmas at line-
46, 58, 70 and 71 commented out so that pragma LIST had effect.

2-4

IMPLEMENTATION DEPENDENCIES

Tests C45524A. .K (11 tests) were graded passed by Test Modification as
directed by the AVO. These tests expect that a repeated division will result
in zero; but the standard only requires that the result lie in the smallest
safe interval. Thus, the tests were modified to check that the result was
within the smallest safe interval by adding the following code after line
'4:; the modified tests were passed:

ELSIF VAL <= F'SAFESMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

C83030C and C86007A were graded passed by Test Modification as directed by
the AVO. These tests were modified by inserting "PRAGMA ELABORATE (REPORT);"
before the package declarations at lines 13 and 11, respectively. Without the
pragma, the packages may be elaborated prior to package report's body, and
thus the packages' calls to function Report.IdentInt at lines 14 and 13,
respectively, will raise PROGRAMERROR.

B83E01B was graded passed by Evaluation Modification as directed by the AVO.
This test checks that a generic subprogram's formal parameter names (i.e.
both generic and subprogram formal parameter names) must be distinct; the
duplicated names within the generic declarations are marked as errors,
whereas their recurrences in the subprogram bodies are marked as "optional"
errors--except for the case at line 122, which is marked as an error. This
implementation does not additionally flag the errors in the bodies and thus
the expected error at line 122 is not flagged. The AVO ruled that the
implementation's behavior was acceptable and that the test need not be split
(such a split would simply duplicate the case in B83EOlA at line 15).

CA2009A, CA2009C. .D (2 tests), CA2009F and BC3009C were graded inapplicable
by Evaluation Modification as directed by the AVO. These tests instantiate
generic units before those units' bodies are compiled; this implementation
creates dependences as allowed by AI-00408 & AI-00506 such that the
compilation of the generic unit bodies makes the instantiating units
obsolete, and the objectives of these tests cannot be met.

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contain uses of the types that require a constraint. However, the
generic bodies are compiled after the units that contain the instantiations,
and this imolementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 & AI-00506 such that the compilation
sf the generic bodies makes the instantiating units obsolete--no errors are
detected. The processing of these tests was modified by compiling the
seperate files in the following order (to allow re-compilation of obsolete
units), and all intended errors were then detected by the compiler:

BC3204C: CO, Cl, C2, C3M, C4, C5, C6, C3M

BC32CD: DO, D2, :!M

2-5

IMPLEMENTATION DEPENDENCIES

BC3204D and BC3205C were graded passed by Test Modification as directed by

the AVO. These tests are similar to BC3204C and BC3205D above, except that

all compilation units are contained in a single compilation. r these two
tests, a copy of the main procedure (which later units make cbsolete) was

appended to the tests; all expected errors were then detected.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-ten value as small for

a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal

smalls may be omitted.

AD9001B and AD9004A were graded passed by Processing Modification as directed

by the AVO. These tests check that various subprograms may be interfaced to

external routines (and hence have no Ada bodies) . This implementation
requires that a file specification exists for the foreign subprogram bodies.

The following command was issued to the Librarian to inform it that the

foreign bodies will be supplied at link time (as the bodies are not actually
needed by the program, this command alone is sufficient:

adalib> interface -sys -L=library AD9004A

CE3111B and CE3115A were graded inapplicable by Evaluation Modification as
directed by the AVO. The tests assume that output from one internal file is

unbuffered and may be immediately read by another file that shares the same

external file. This implementation raises ENDERROR on the attempts to read

at lines 87 & 101, respectively.

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Mr Ron Duursma
Director of Ada Products

Tartan Inc.
300, Oxford Drive,
Monroeville, PA 15146,
USA.
Tel. (412) 856-3600

For a point of contact for sales information about this Ada implementation
system, see:,

Mr Bill Geese

Director of Sales
Tartan Inc
300, Oxfcrd Drive,
Monroeville, PA 15146,
USA.
Tel. (412) 856-3600

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

PROCESSING INFORMATION

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90.

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3792

b) Total Number of Withdrawn Tests 83

c) Processed Inapplicable Tests 94

d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 295 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation

supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that supported
by the implementation. When this compiler was tested, the tests listed in

Section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.21 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in Section 2.1 had been withdrawn because of test
errors. The AVF determined that 295 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation

testing except for 201 executable tests that use floating-point precision

exceeding that supported by the implementation. In addition, the modified
tests mentioned in Section 2.3 were also processed.

A 1/4" Data Cartridge containing the customized test suite (see Section 1.3)
was taken on-site by the validation team for processing. The contents of the

tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of

tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer an

reviewed by the validation team. See Appendix B for a complete listing of

the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing

during this test were:

3-2

PROCESSING INFORMATION

Options used for compiling:

-f forces the compiler to accept an attempt to compile a unit imported
from another library, which is normally prohibited.

-q quiet, stops output of all compiler phase names. Not documented in
product version a- it is the default setting. Option -v was the

default setting for the validation run.

-c normally the compiler creates a registered copy of the user's source
code in the library directory for proper operation of the remake and
make subcommands to Adalib.

-La forces a compiler to produce a listing even if no errors were found.

No explicit linker Options were used.

Test output, compiler and linker listings, and job logs were captured on a
1/4" Data Cartridge and archived at the AVF. The listings examined on-site
by the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

Thi4s appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG8 9). The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum~ input-line length, which is
the value for $MAX_-IN_-LEN--also listed here. These values are expressed
here as Ada string aggregates, where 'IV" represents the maximum input-line
length.

Macro Parameter Macro Value

SBIGIDi (1. .V-1 => 'A, V => '1')

SBIG_1D2 (1. .V-1 III> 'A', V => '2')

$BIG_1D3 (1. .V12 => 'A) & '3' &
(1. .V-l-V/2 => 'A')

$BIG_1D4 (1. .V/2 III> 'A) & '4' &

(1. .V-1-V/2 III> 'A)

SBIGINTLIT (1. .V-3 II> '0') & 11298"1

SBIGREALLIT (1. .v-5 => '0') & "1690.01,

$BIGSTRING1 '" & (1. .V/2 II> 'A') & I'll

$BIGSTRING2 "f & (l..V-1-V/2 I~> 'A') & '1' & '

$BLANKS I. .V-20 =>'

SIMAX L-EN INT BASED LITEPAL

&(i..V-5 POP'0) & I'll:"

$MAXLENREAL BASED LITERAL

"16:" & (1.- 0)& ".

$MAX STRING LITERAL7 f'$ & (1. .V-2 => 'A) &'"

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$MAXINLEN 240

$ACCSIZE 32

$ALIGNMENJT 4

SCOUNTLAST 2147483646

SDEFAULT MEMSIZE 1_000_000

$DEFAULTSTORUNIT 8

SDEFAULTSYSNAME MC68000

SDELTADOC 2#1.0#E-31

SENTRYADDRESS 16*24_004#

SENTRYADDRESS1 16#24_008*

$ENTRYADDRESS2 16#2400OC#

SFIELDLAST 20

$FILETERMINATOR IFI

SFIXEDNAME NOSUCHFIXEDTYPE

$FLOATNAME THEREISNOSUCHFLOAT NAME

$FORMSTRING Il

SFORMSTRING2 "CANNOTRESTR:CT -FILE CAPACI-TY"I

$GREATERTHANDURATION

100_000.0

SGREATER THA-NDUR.ATION BASE LAST

100_000_000.0

SGREATER THANFLOATBASELAST

1. 80141E+38

SGREATER THAN FLOATSAFELARGE

1 . OE+38

A-2

MACRO PARAMETERS

$GREATERTHANSHORTFLOATSAFELARG E
1 .OE+38

$1-UGHPRIORITY 200

$ILLEGAL EXTERNAL FILE NAMEI
ILLEGALEXTERNALFILENAME1 --------

$ ILLEGALEXTERNALFILENAME2
ILLEGALEXTERNALFILE NAME2---------

$ INAPPROPRIATE LINE LENGTH
-1

S INAPPROPRIATE PAGE LENGTH
-1

SINCLUDEPRAGMA1 "PRAGMA INCLUDE ("A28006DI.TSTf"

$INCLUDEPRAGMA2 "PRAGMA INCLUDE ("B28006Fl.TST")"

SINTEGERFIRST -2147483648

SINTEGER-LAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELANGUAGE NOLANGUAGE

$LESSTHANDURATION -100_000.0

$LESSTHANDURATIONBASEFIRST

-100_000_000.0

SLIMETERMINATOR ASCII.LF

$LOWPRIORITY 10

SMACHINECODESTATEMENT
NULL;

$NACH:NECODE TYPE NOSUCHTYPE

$MANTISSADOC 31

sm.AX o:Gi:S 15

SMAX :NT 2147483647

SMAX :NT -PLUS 1 2147483648

SM:N 2N7 -2147483648

A-3

MACRO PARAMETERS

$NAME BYTEINTEGER

$NAMELIST VAX,MILSTD_1750A,MC68000,N:500v

$NAMESPECIFICATION1 DISKSAWC_2: [CROCKL. ACVC11. DEVELOP 1,X212OA.

SNAMESPECIFICAT ION.' DISKSAWC_2: [CROCKL.ACVCII.DEVE-LOP]X2120B.; -

$NAMESPECIFICATION3 DISKSAWC_2: [CROCKL. ACVC11. DEVELOP] X2120OC. 12

$NEGBASEDINT 8#77777777'7776#

$NEWMEMSIZE 500_000

$NEWSTORUNIT 8

$NEWSYSNAME VAX

$PAGETERMINATOR ASCII.FF

SRECORDDEFINITION NEW INTEGER;

SRECORDNAME NOSUCHMACHINECODETYPE

STASKSIZE 96

$TASKSTORAGESIZE 1~024

$TICK 0.01667

SVARIABLEADDRESS 16#24_000#

$VARIABLEADDRESS1 16#24_030#

$VARIABLEADDRESS2 16#24_034*

$YOURPRAGMA NOSUCHPRAGMA

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as describe his
Appendix, are provided by the customer. Unless specifically noted S,
references in this appendix are to compiler documentation and not to tnis
report.

B-I

Compilation switches for Tartan Ada Sun-Sun.

-a Generate an assembly code file. The assembly
code file has an extension .s for a body or
.ss for a specification (see Section 4.4).

-A Generate an assembly code file with
interleaved source code. The assembly code
file has an extension .s for a body or .ss
for a specification.

-c Normally, the compiler creates a registered
copy of the user's source code in the library
directory for proper operation of the remake
and make subconanda to adalib.

This option suppresses the creation of this
copy.

-d When compiling a library unit, determine
whether the unit is a refinement of its
previous version and, if so, do not make
dependent units obsolete. This check is not
done by default.

-e=<integer> Stop compilation and produce a listing after
n errors are encountered, where n is in the
range 0..255. The default value for n is
255. The -e qualifier cannot be negated.

-f Forces the compiler to accept an attempt to
compile a unit imported from another library,
which is normally prohibited.

-g Compile with debugging information for
AdaScope.

-i Cause compiler to omit data segments with the
text of enumeration literals. This text is
normally produced for exported enumeration
types in order to support the text attributes
('IMAGE, 'VALUE and 'WIDTH). You should use
-i only when you can guarantee that no unit
that will import the enumeration type will
use any of its text attributes. However, if
you are compiling a unit with an enumeration
type that is not visible to other compilation
units, this, option is not needed. The
compiler can recognize when the text
attributes are not used and will not generate
the supporting strings.

-L=[project:]library Select library and/or project for this
compilation. This option takes effect after
all commands from the .adalibrc file have
been executed, thereby possibly overriding
its effects.

2

-La Generate a listing, even if no errors were
found. The default is to generate a listing
only if an error is found.

-Ln Never generate a listing. The default is to
generate a listing only if an error is found.

-Op=n Control the level of optimization performed
by the compiler, requested by n. The
optimization levels available are:

n = 0 Minimum - Performs context

determination, constant fold-
ing, algebraic manipulation,
and short circuit analysis.

n = 1 Low - Performs level 0 op-
timizations plus common sub-
expression elimination and
equivalence propagation within
basic blocks. It also op-
timizes evaluation order.

n= 2 Best trideoff for space/time -
the default level. Performs
level 1 optimizations plus flow
analysis which is used for
common subexpression elimina-
tion and equivalence propaga-
tion across basic blocks. It
also performs invariant expres-
sion hoisting, dead code
elimination, and assignment
killing. Level 2 also performs
lifetime analysis which is used
to improve register allocation.
It also performs inline expan-
sion of subprogram calls in-
dicated by Pragma INLINE, if
possible.

n =3 Time - Performs level 2

optimizations plus inline ex-
pansion of subprogram calls
which the optimizer decides are
profitable to expand (fr'm an
execution time perspective).
Other optimizations which im-
prove execution time at a cost
to image size are performed

n = 4 Space - Performs those
optimizations which usually
produce the smallest code,

often at the expense of
speed. This optimization
level may not always produce

the smallest code, however,
another level may produce
smaller code under certain
couditions.

-r For internal use only, this option is used by
adalib when it invokes the compiler in
(re)make mode.

-S[ACDEILORSZ] Suppress the given set of checks:

A ACCESSCHECK
C CONSTRAINTCHECK
D DISCRIMZNANTCHECK
E ELAaORATION CHECK
I INDEX CHECK
L LENGTH CHECK
O OVERFLOW CHECK
R RANGE CHECK
S STORAGE CHECM
Z "ZERO"DVISION CHECK

The -S option has the same effect as an
equivalent pragma SUPPRESS applied to the
source file. If the source program also
contains a pragma SUPPRESS, then a given
check is suppressed if either the pragma or
the switch specifies it; that is, the effect
of a pragma SUPPRESS cannot be negated with
the command line option. See LRM 11.7 for
further details. Supplying the -S option
significantly decreases the size and execu-
tion time of the compiled code. Examples
are:

-SOZ Suppress OVERFLOWCHECK and
"ZERO"DIVISIONCHECK.

-S Suppress all checks.

-SC Suppress CONSTRAINTERROR, equiv-
alent to -SADILR. (Note that -SC
is upward compatible with Version
2.0)

-v Print out compiler phase names. The compiler
prints out a short description of each
compilation phase in progress.

-w Suppress warning messages.

-x include cross reference information for the
source in the object file (see section 4.6).

In addition, the output from the compiler may be redirected using the
SunOS redirection facility including '&' for stderr; for example

4

%tada tax- sc.ada >6 tax-spec.tzt

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,

are provided by the customer. Unless specifically noted otherwise,

references in this appendix are to linker documentation and not to this

report.

Linker switches for Sun hosted Tartan Ada compilers.

COMMAND QUALIFIERS
This section describes the comand options available to a user who directly
invokes the linker. The option names can be abbreviated to unique prefixes;
the first letter is sufficent for all current option names. The option names
are not case sensitive.

-CONTROL file The specified file contains linker control commands.
Only one such file may be specified, but it can
include other files using the CONTROL command. Every
invocation of the linker must specify a control file.

-OUTPUT file The specified file is the name of the first output
object file. The module name for this file will be
null. Only one output file may be specified in this
manner. Additional output files may be specified in
the linker control file.

-ALLOCATIONS Produce a link map showing the section allocations.

-UNUSEDSECTIONS Produce a link map showing the unused sections.

-SYMBOLS Produce a link map showing global and external
symbols.

-RESOLVEMODULES This causes the linker to not perform unused section
elimination. Specifying this option will generally
make your program larger, since unreferenced data
within object files will not be eliminated. Refer to
Sections RESOLVECMD and USEPROCESSING for infor-
mation on the way that unused section elimination
works.

-MAP Produce a link map containing all information except
the unused section listings.

Note that several listing options are permitted. This is because link maps
for real systems can become rather large, and writing them consumes a
significant fraction of the total link time. Options specifying the contents
of the link map can be combined, in which case the resulting map will contain
all the information specified by any of the switches. The name of the file
containing the link map is specified by the LIST command in the linker control
file. If your control file does not specify a name and you request a listing,
the listing will be written to the standard output stream.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
Chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of this
Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this Appendix
are to compiler documentation and not to this report. The package STANDARD is
presented in this implementation's Appendix F on page 5-11.

C-I

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to the LRM which is Military Standard, Ada Programming
Language, ANSI/M]L-STD- 1815A (American National Standards Institute, Inc., February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas
This section summarizes the effects of and restrictions on predefined pragmas.

" Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHECKED DEALLOCATION will be reused by the allocation of new
objects.

" Pragma ELABORATE is supported.

* Pragina INLINE is supported.

" Pragma INTERFACE is supported. It is assumed that the foreign code interfaced adheres to Tartan Ada
calling conventions as well as Tartan Ada parameter passing mechanisms. Any LanguageName will be
accepted, but ignored, and the default will be used.

" Pragma LIST is supported but has the intended effect only if the command line option -La was supplied
for compilation, and the listing generated was not due to the presence of errors and/or warnings.

" Pragma MEMORY_SI ZE is accepted but no value other than that specified in Package SYSTEM (Section
53) is allowed.

* Pragma OPTIMIZE is supported except when at the outer level (that is, in a package specification or
body).

" Pragma PACK is supported.

" Pragma PAGE is supported but has the intended effect only if the command line option -La was supplied
for compilation, and the listing generated was not due to the presence of errors and/or warnings.

" Pragma PRIORITY is supported.

" Pragma STORAGEUNIT is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

" Pragma SHARED is not supported. No warning is issued if it is supplied.

" Pragma SUPPRESS is supported.

* Pragma SYSTEM-NAME is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

5-1

USER MANUAL FOR TARTAN ADA SUN

5.1.2. Implementation-Defined Pragmas
Implementation-defined pragmas provided by Tartan are described in the following sections.

5.1.2.1. Pragma LINKAGENAME

The pragma LINKAGENAME associates an Ada entity with a string that is meaningful externally; e.g., to a
linkage editor. It takes the form

pragma LINKAGE._NA-!r (Ada-simple-name, string-constant)

The Ada-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a runtime representation; e.g., a subprogram, exception or object. It may not be a named number or
string constanL The pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

This pragma has no effect when applied to a library subprogram or to a renames declaration; in the later case,
no warning message is given.

When determining the maximum allowable length for the external linkage name, keep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name has 5 fewer significant characters than the lower limit of other tools that need to process
the name (e.g., 40 in the case of the Tartan Linker).

5.1.2.2. Pragma FOREIGNBODY

In addition to Pragma INTERFACE, Tartan Ada supplies Pragma FOREIGNBODY as a way to access
subprograms in other languages.

Unlike Pragma INTERFACE, Pragma FOREIGNBODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

Some restrictions on Pragma FOREIGNBODY that are not applicable to Pragma INTERFACE are:

* Pragma FOREIGNBODY must appear in a non-generic library package.
" All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
" Types may not be declared in such a package.

Use of the pragrma FOREIGNBODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the adalib foreign command
described in sections 3.3.3 and 9.5.5. The pragma is of the form:

pragma FOREIGNBODY (Language-name [, elaboration-routine name)

The parameter Languagename is a sting intended to allow the compiler to identify the calling convention used
by the foreign module (but this functionality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reentran.

The optional elaboration routine name string argument is a linkage name identifying a routine to initialize
the package. The routine specified as the elaboration routine name, which will be called for the elaboration of
this package body, must be a global routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior to any declarations within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

5-2

APPENDIX F TO MEL-STD-ISISA

The foreign body is entirely responsible for initializing objects declared in a package utilizing pragma
FOREIGN BODY. In particular, the user should be aware that the implicit initializarions described in LRM 3.2.1
are not done by the compiler. (These implict initializations are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

Pragma LINKAGE NAME should be used for all declartions in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names. If pragma LINKAGE NAME is
not used, the cross-reference qualifier, -x, (see Section 4.2) should be used when invoking the compiler and the
resulting cross-reference table of linknames inspected to identify the linknames assigned by the compiler and
determine that there are no conflicting linknames (see also Section 4.6). In the following example, we want to
call a function plmn which computes polynomials and is written in C.

package MATHFUNCS is
pragma FOREIGN BODY ("C");
function POLYNOMIAL (X:INTEGER) return INTEGER;

--Ada spec matching the C routine
pragma LINKAGENAME (POLYNOMIAL, "plmn");

--Force compiler to use name "plmn" when referring to this
-- function

end MATHFUNCS;

with MATHFUNCS; use MATHFUNCS
procedure MAIN is
X:INTEGER :- POLYNOMIAL(20);

-- Will generate a call to "plmn"
begin ...

end MAIN;

To compile, link and run the above program, you do the following steps:

1. Compile MATHFUNCS

2. Compile MAIN

3. Obtain an object module (e.g. math. tof) containing the compiled code for plmn, converted to Tartan
Object File Format (TOFF) using the aouttotoff utility (See Object File Utilities, Chapter 4).

4. Issue the command

adalib foreign math_funcs math.tof

5. Issue the command

adalib link main

Without Step 4, an attempt to link will produce an error message informing you of a missing package body for
MATHFUNCS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command adalib foreign (see
Sections 3.3.3 and 9.5.5) to use an Ada body from another library. The Ada body from another library must have
been compiled under an identical specification. The pragma LINKAGENAME must have been applied to all
entities declared in the specification. The only way to specify the linkname for the elaboration routine of an Ada
body is with the pragma FOREIGN_BODY.

S-3

USER MANUAL FOR TARTAN ADA SUN

5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES
No implementation-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM
The parameter values specified for the SUN in package system [RM 13.7.1 and Appendix C] are:

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (MC68000);
SYSTEMNAME : constant NAME :- MC68000;
STORAGEUNIT : Constant : 8;
MEMORY SIZE : Constant := 1 000 000;
MAX INY : constant : 2-147-483_647;
MIN-INT : constant : -MAX INT - 1;
MAXDIGITS : constant : 15;

MAX MANTISSA : constant :, 31;
FINE DELTA : constant :-2#1.0#e-31;
TICK- : constant : 0.01667;
subtype PRIORITY is INTEGER range 10 .. 200;
DEFAULTPRIORITY : constant PRIORITY :- PRIORITY'FIRST;
RUNTIMEERROR : exception;

end SYSTEM;

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES
The following sections explain the basic restrictions for representation specifications followed by additional

restrictions applying to specific kinds of clauses.

5.4.1. Basic Restriction
The basic restriction on representation specifications [LRM 13.1] is that they may be given only for types

declared in terms of a type definition, excluding a generic type definition (LRM 12.1) and a
private typedefinition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler, an error message is issued.

Further restictions are explained in the following sections. Any representation clauses violating those restric-
tions cause compilation to stop and a diagnostic message to be issued.

5.4.2. Length Clauses
Length clauses (LRM 13.21 are, in general, supported. For details, refer to the following sections.

5.4.2.1. Size Specificastons for Types

The rules and restrictions for size specifications applied to types of various classes are described below.

The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type irr a smaller size, even if possible. The following rules
apply with regard to feasibility:

An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine, that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example

S-4

APPENDIX FTO ML-STD-1S15A

type MyEnum is (A,B);
for Myenum'size use 1;
V,W: Myenum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V,W: My_.enum;

end record;
pragma Pack(rec);
0: rec; -- will occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing take place
automatically and are transparent to the user.

e Adjacent bits to an object that is a component of a composite object, but whose size is
non-referable, may be affected by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational sizes in different contexts.

Note: A size specification cannot be used to force a certain size in value operations of the type; for
example

type my_int is range 0..65535;
for my it'size use 16; -- o.k.
A,B: my_int;

.A + B... -- this operation will generally be
-- executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no attempt is made to take advantage of such shorter representations. In contrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

type MY INT is range 0..2**15-1;
for MY _NT'SIZE use 16; -- (1)
subtype SMALL MY INT is MYINT range 0..255;
type R is record

X: SMALL_MY_INT;

end record;

the component R.x will occupy 16 bits. In the absence of the length clause at (1), R.X may be
represented in 8 bits.

Size specifications for access types must coincide with the default size chosen by the complier for the type.

Size specifications are not supported for floating-point types or task types.

No useful effect can be achieved by using size specifications for these types.

5.42.2. Sime Specificadon for Scalar Types

The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in
the range of the values of the type). For numeric types with negative values the number of bits must account for
the sign biL No skewing of the representation is auempted. Thus

type my_int is range 100..101;

requires at least 7 bits, although it has only two values, while

$-S

USER MANUAL FOR TARTAN ADA SUN

type my int is range -101..-100;

requires 8 bits to account for the sign bit.
A size specification for a real type does not affect the accuracy of operations on the type. Such influence

should be exerted via the accuracydefinition of the type (LRM 3.5.7, 3.5.9).

A size specification for a scalar type may not specify a size larger than the largest operation size supported by
the target architecture for the respective class of values of the type.

5.4.2.3. Size Specificaon for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing stategy. Any alignment constraints on the component type (see Section 5.4.7) must be met.

The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5.4.2.4. Size Specificadon for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types, nor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record or contain relative offsets of components within a
record layout for record components of dynamic size. These implementation-dependent components cannot be
named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.4.2.5. Specificadon of Collction Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGEERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. No matter what the requested
object size, the allocator must allocate a minimum of 2 words per object. This lower limit is necessary for
administrative overhead in the allocator. For example, a request of 5 words results in an allocation of 5 words; a
request of I word results in an allocation of 2 words.

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGE ERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

S-'

APPENDDX FTO ML.-S D-1815A

5.4.2.6. Specfwadon of Task Acdvation Size

The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

Any attempt to exceed the activation size during execution causes a STORAGEERROR exception to be
raised. Unlike collections, there is no extension of task activations.

5.4.2.7. Spectwation of' SMALL

Only powers of 2 are allowed for ' SMALL.

The length of the representation may be affected by this specification. If a size specification is also given for
the type, the size specification takes precedence; the specification of ' SMALL must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses

For enumeration representation clauses [LRM 13.3), the following restrictions apply:

* The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary rntime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified encodings is costly at run time.

" Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime tanslation of the index
value into the corresponding position value of the enumeration type.

5.4.4. Record Representation Clauses

The alignment clause of record representation clauses (LRM 13.4] is observed.

Static objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the
minimum alignment of the record type, unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is already more suingent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses;
no attempt is made to utilize gaps left by tb,- user-provided allocation.

5.4.5. Address clauses
Address clauses [LRM 13.5 are supported with the following restrictions:

* When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
meaningless. Address clauses applied to local packages are not supported by Tartan Ada. Address clauses
applied to library packages are prohibited by the syntax; therefore, an address clause can be applied to a
package only if it is a body stub.

$.7

USER MANUAL FOR TARTAN ADA SUN

" Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value identifies an interrupt in a manner explained in section 5.6.

" A specified address must be an Ada static expression.

5.4.6. Pragma PACK
Pragma PACK [LRM 13.11 is supported. For details, refer to the following sections.

5.4.6.1. Praga PACK for Arrays

If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,
refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If, in addition, a length clause is applied to

1. The array type, the pragma has no effect, since such a length clause already uniquely determines the array
packing method.

2. The component type, the array is packed densely, observing the component's length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

5.4.6.2. The Predefined Type String

Package STANDARD applies Pragma PACK to the type string.

However, when applied to character arrays, this pragma cannot be used to achieve denser packing than is the
default for the target I character per 8-bit word.

5.4.63. Pragma PACKfor Records

If pragnma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that the default type mapping for records maps components of-boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types
Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-

tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically. restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in
contexts involving array indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal alignment of types. we provide the
general rule that is being enforced by the alignment rules:

$-9

APPENDIX F TO MIL-STD-ISSA

No object of scalar type including components or subcomponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object's value to be performed by two
or more extractions.

5.5. IMPLEMENTA TION-GENERATED COMPONENTS IN RECORDS
The only implementation-dependent components allocated by Tartan Ada in records contain dope information

for arrays whose bounds depend on discriminants of the record. These components cannot be n.dned by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES
Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task

entries. Tartan Ada implements the address clause

for TOENTRY use at intID;

by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of intID is both machine and compiler dependent.

Task entries can be bound to SunOS Signals via the for .. use at clause. See man signal for an
explanation of the SunOS signal mechanism.

Using the address clause
for.-useat SIGNALNUMBER

signals such as Control C can be bound to Ada handlers which allow for continuation of program execution, or
orderly termination at the user's discretion. An example of trapping Control C (SIGINT or 2) to an Ada handler
follows:

with SYSTEM; use SYSTEM;
with textio; use text io;

procedure int2 is
task taskA is

entry P;
for P use at 2;

end taskA;
task body taskA is
begin

Put Line("Package Interrupt Test");
loop

accept P do
PutLine("Ada found SIGINT (Control C)");

end;
end loop;

end taskA;

begin
for i in 1..30 loop

delay 1.0;
end loop;
abort taskA;

end int2;

All currently recognized SunOS signals may be bound to task entries, with the signal numbers ranging from I
to 31. In cases where the Ada runtimes assume a default operation for a given signal, the user's Ada trap may
prevent normal execution of Ada programs.

The most critical example of this situation is in the case SIGALRM. that is, the SunOS Alarm Clock signal.
The Ada runtimes use this signal to allow delayed tasks to wake up on schedule. If the user overwrites this
handler with a replacement SIGALRM handler, no tasks may be delayed. Undesirable, and, depending upon the
user's program, unknown execution will result SIGALRM may be sucessfully mapped to a user's Ada handler in

5-9

USER MANUAL FOR TARTAN ADA SUN

cases where no tasks are delayed and the user would like to "wake up" the task entry that serves as the S IGALRM
handler via the S IGALRM mechanism.

Other examples of default runtime functions for certain signals all involve the mapping of signals into Ada
exceptions. The user has the option, for these signals, to place a new signal handler in the Ada exception, or to
override the raise of the Ada exception, by writing a replacement handler for the signal. Currently, signals which
raise Ada exceptions are SIGEMT, which raises NUMERIC-ERROR, and SIGFPE, which raises
RUNTIMEERROR.

Currently, for all signals other than those mentioned above, there is no default handler, and a raise of the
signal by the operating system will result in the behavior as described in the SunOS manual for that signal. In
most cases, this is an abrupt termination of the program, possibly resulting in a core image dump.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS
Tartan supports UNCHECKEDCONVERSION with a restriction that requires the sizes of both source and

target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will be truncated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKEDCONVERS ION are made inline automatically.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supports all predefined input/output packages [LRM Chapter 14] with the exception of

LOWLEVEL_10.

SEQUENTIAL_10 and DIRECT 10 may not be instantiated on types whose representation size is greater
than 32255 bytes. Any attempt to rea or write values of such t)pes raises USE ERROR.

SEQUENTIALIO and DIRECTIO may not be instantiated on unconstrained array types, nor on record
record types with discriminants without default values.

An attempt to delete an external file while more than one internal file refers to this external file raises
USEERROR.

When an external file is referenced by more than one internal file, an attempt to reset one of those internal
iles to OUTFILE raises USEERROR.

An attempt to create a file with FILE_MODE INFILE raises USEERROR.

Since the implementation of the input-output packages uses buffers, output to one file cannot necessarily be
read immediately from another file associated with the same external file.

The FORM parameter of file management subprograms is ignored.

An attempt to read a non-existent data record through the operations of SEQUENTIAL_IC or DIRECT_I
raises DATAERROR, except that ENDERROR is raised when reading beyond the end of file.

If a SunOS system call returns an error number that cannot be mapped onto a predefined Ada exception, the
exception DEVICEERROR is raised.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to thai required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Program
Any Ada library subprogram unit may be designated the main program for purposes of linking (using the

adalib LINK command) provided that the subprogram has no parameters.
Tasks initiated in imported library units follow the same rules for termination as other tasks [described in

LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

5-10

APPENDIX FTO MIL-STD-1815A

5.9.2. Implementation of Generic Units
All instantiations of generic units, except the predefined generic UNCHECKEDCONVERSION and

UNCHECKEDDEALLOCATION subprograms, are implemented by code duplications. No attempt at sharing
code by multiple instantiations is made in this release of Tartan Ada.

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will casue any units that
instantiated this generic unit to become obsolete.

5.9.3. Implementation-Defined Characteristics in Package STANDARD
The implementation-dependent characteristics for SUN in package STANDARD [Annex C] are:

package STANDARD iS

typ BYTE INTEGER is range -128 .. 127;
type SHORT INTEGER is range -32768 . 32767;
type INTEGER is range -2 147 483_648 . . 2 147 483 647;
type FLOAT is digits 6 range -1'6#0.7FFFFF8#E+32 ..-16#0.7FFFFF8#E+32;

type LONG FLOAT is digits 15 range -16#0.7FFF FFFFFFFFFE#E+256
"6#0.7FFF FFFFFFFFFEO#E+256 ;-

type DURATION is delita 0.0001 range -86400.0 .. 86400.0;
-- DURATION'SMALL - 2#1.0#E-14 (that is, 6.103516E -5 sec)

end STANDARD;

5.9.4. Attributes of Type Duration
The type DURATION is defined with the following characteristics:

Atibute Value

DURATION' DELTA 0.0001 sec

DURATION' SMALL 6.103516E-5 sec

DURATION' FIRST -86400.0 sec

DURATION' .AST 86400.0 sec

5.9.5. Values of Integer Attributes
Tartan Ada supports the predefined integer types INTEGER, SHORTINTEGER and BYTEINTEGER. The

range bounds of these predefined types are:

Attribute Value

INTEGER' FIRST -2**3l

INTEGER' LAST 2"31-1

SHORTINTEGER'FIRST -2** 15

SHORTINTEGER'LAST 2*l15-l

BYTEINTEGER' FIRST -128

BYTEINTEGER' LAST 127

5-11

USER MANUAL FOR TARTAN ADA SUN

The range bounds for subtypes declared in package TEXT_10 are:

Auribute Value

COUNT' FIRST 0

COUNT' LAST INTEGER' LAST- 1

POSITIVECOUNT' FIRST 1

POSITIVECOUNT'LAST INTEGER'LAST - I

FIELD'FIRST 0

FIELD' LAST 20

The range bounds for subtypes declared in packages DIRECTIO are:

Attribute Value

COUNT' FIRST 0

COUNT' LAST INTEGER' LAST

POSITIVE COUNT'FIRST 1
POSITIVE COUNT' LAST COUNT' LAST

5.9.6. Values of Floating-Point Attributes

Tartan Ada supports the predefined floating-point types FLOAT and LONGFLOAT.

Attribute Value for FLOAT

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.100000#E-4 (approximately 9.S3674E-07)

SMALL 16#0.8000_00#E-21 (approximately 2.58494E-26)

LARGE 16#0.FFF8#E+21 (approximately 1.93428E+25)

SAFEEMAX 126

SAFESMALL 16#0.2000_000#E-31 (approximately 5.87747E-39)

SAFELARGE 16#0.3FFF._FE0#E+32 (approximately 8.50706E+37)

FIRST -16#0.7FFFJFC#E+32 (approximately -1.70141E+38)

LAST 16#0.7FFFFFC#E+32 (approximately 1.70141E+38)

MACHINERADIX 2

MACHINEMANTISSA 24

MACHINEEMAX 126

MACHINEEMIN -126

MACHINEROUNDS TRUE

MACHINEOVERFLOWS TRUE

5-12

APPENDIX F M MIL-STD. 815A

Auribute Value for LONGFLOAT

DIGITS 15

MANTISSA 53

EMAX 204

EPSILON 16#0.4000_0000_.0000_00#E-12 (approximately 8.881784 1970013E- 16)

SMALL 16#0.8000_0000_0000_00(0#E-51 (approximately 1.9446922743316E-62)

LARGE 16#0.FFFFFF pFFF_Eo0#E+51 (approximately 2.5711008708143E+61)

SAFEEMAX 1022

SAFESMALL 16#0.2000_0000_0000_000#E-255 (approximately 1.1125369292536-308)

SAFELARGE 16#0.3FFF_..FF_FFJFF_F80#E+256 (approximately 4.4942328371557E+307)

FIRST -16#0.7FFFFFFFFFFF_FE#E+256 (approximately -8.988465674312E+307)

LAST 16#0.7FFF._FFFFFFFFFE0#E+256 (approximately 8.9884656743115E+307)

MACHINERADIX 2

MACHINEMANTISSA 51

MACHINEEMAX 1022

MACHINE EMIN -1022

MACHINEROUNDS TRUE

MACHINEOVERFLOWS TRUE

