
NAVAL POSTGRADUATE SCHOOL
Monterey, California

A DTIC
AD-A237 939 :1 .CT

C

THESIS
EQUIPMENT READINESS CODES EXPERT SYSTEM

USING JOSHUA
FOR U.S. ARMY COMBAT DEVELOPMENT

by

Thomas Edward Chamberlin

June, 1990

Thesis Advisor: Se-Hung Kwak

Approved for public release; distribution is unlimited.

91-04492
91 7 09 066

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

a.NAME OFEFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. Naval Postgraduate School
Naval Postgraduate School 52

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Naval Postgraduate School I1
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITMonterey CA 93943 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)

EQUIPMENT READINESS CODES EXPERT SYSTEM USING JOSHUA FOR U.S. ARMY COMBAT DEVELOPMENT

12. PERSONAL AUTHOR(S)
Chamberlin, Thomas Edward

13a. TYPE OF REPORT I 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Master's Thesis I FROM TO. June 1990 97

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Equipment Readiness Codes, Combat Development, Table of
Organization and Equipment, TOE

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Expert systems have arrived as a popular productivity tool in business, industrial and managerial

environments. Such tools should be extensively employed into the U.S. Army environments as well. In this
thesis, an example of an expert system and its interface is presented. The expert system created,
EQUIPMENT READINESS CODES EXPERT SYSTEM, enables a U.S. Army Combat Development analyst
to utilize expert system technology. The advantages achieved are maintaining consistent and accurate Army
Combat Development policy, reduction of the tedious, analytical tasks to the power of the machine, and the
centralization of expert system maintenance and rule production. Furthermore, this expert system provides
the much needed but often scarce expertise to ensure qualitative performance from nonexperts, provides
efficiency and consistency of the experts, and even furnishes a training vehicle for others who need to
understand the expert's thought process.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[3 UNCLASSIFIED/UNLIMITED [] SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code 22c. OFFICE SYMBOL
Se-hung Kwak (408) 646-2168 52KW

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited.

Equipment Readiness Codes Expert System

Using Joshua

for U.S. Army Combat Development

by

Thomas Edward Chamberlin
Captain, United States Army

B.S., Virginia Polytechnic Institute and State University, 1980

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
JUNE 1990

Author: Y "______________________F______
Thomas E. Chamberlin

Approved by: - -zSe-Hlurf ak, Thesis Advisor

Major George Thurmond, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

Expert systems have arrived as a popular productivity tool in business,

industrial, and managerial environments. Such tools should be extensively employed

into the U.S. Army environments as well. In this thesis, an example of expert system

and user interface development is presented. The expert system created enables a

U.S. Army Combat Development analyst to utilize expert system technology. The

advantages achieved are maintaining consistent and accurate Army Combat

Development policy, reduction of tedious, analytical tasks to the power of a machine,

and the centralization of expert system maintanence and rule production.

Furthermore, this expert system provides the much needed but often scarce expertise

to ensure qualitative performance from nonexperts, provide efficiency and

consistency of the experts, and even furnish training for others who need to

understand the expert's thought process.

Actoasl i or -

.~~ Iu f -Cat Iye

B y ',

Distribution/_
AvSlability Codes

Dint j Special

iii

TABLE OF CONTENTS

I. INTRODUCTION.......................1

A. WHY JOSHUA?.....................1

B. SYSTEM INTERFACE..................2

C. SUMMARY OF THE CHAPTERS...............3

II. BACKGROUND INFORMATION.................4

A. OBJECTIVE......................4

B. MOTIVATION.....................4

C. TABLES OF ORGANIZATION AND EQUIPMENT (TOE) . 5

D. EQUIPMENT READINESS CODES (ERC)...........6

E. SUMM4ARY.......................7

III. DETAILED PROBLEM STATEMENT...............8

A. INTRODUCTION....................8

B. KNOWLEDGE REPRESENTATION..............8

C. INFERENCE MECHANISM.................9

D. SYSTEM INTERFACE..................10

E. SUMMARY......................10

IV. ERC EXPERT SYSTEM....................12

A. INTRODUCTION...................12

B. JOSHUA......................12

iv

1. OVERVIEW 12

2. JOSHUA PREDICATIONS 14

a. Introduction 14

b. Predications and Predicates 14

c. Defining Predicates 15

d. Predications and Truth Values 17

e. Logic Variables 20

f. Logical Connectives 22

g. Summary 23

3. RULES AND INFERENCE 23

a. Introduction 23

b. Forward Verses Backward Chaining 24

c. Defining Forward Rules 24

d. How Forward Rules Work 25

e. Rule Tracing 27

f. Summary 28

4. JOSHUA TRUTH MAINTENANCE SYSTEM 28

C. A GUIDE THROUGH THE ERC EXPERT SYSTEM 29

1. INTRODUCTION 29

2. THE GUIDE 30

D. SUMMARY 34

V. USER INTERFACE 36

A. INTRODUCTION 36

B. VISUAL INTERFACE 36

C. ERC EXPERT SYSTEM SESSION 41

v

1. Selecting a TOE 41

2. Auto Mode Verses Step Mode 41

3. ERC Determination 43

4. Window and Joshua Display Commands 43

D. ERC RULE MANAGEMENT 46

E. SUMMARY 48

VI. SUMMARY AND CONCLUSIONS 51

A. RESEARCH CONTRIBUTIONS 51

B. RESEARCH EXTENSIONS 52

APPENDIX A - TDS A-RECORD LAYOUT 53

APPENDIX B - TDS B-RECORD LAYOUT 54

APPENDIX C - TDS C-RECORD LAYOUT 55

APPENDIX D - TDS D-RECORD LAYOUT 56

APPENDIX E - TDS E-RECORD LAYOUT 57

APPENDIX F - TDS F-RECORD LAYOUT 58

APPENDIX G - TDS P-RECORD LAYOUT 59

APPENDIX H - AUTO READ TOE FUNCTION CODE 60

vi

APPENDIX I - SYSTEM FUNCTIONS CODE 62

APPENDIX J - INITIAL DATA PROGRAM CODE 64

APPENDIX K - INTERFACE PROGRAM CODE 65

APPENDIX L - SYSTEM PREDICATE DEFINITIONS 70

APPENDIX M - READ TOE FUNCTION CODE 71

APPENDIX N - AIRCRAFT/HELICOPTER RULES 72

APPENDIX 0 - BINOCULAR RULES 74

APPENDIX P - CAMOFLAGUE SYSTEM RULES 75

APPENDIX Q - NBC DEFENSE RULES 76

APPENDIX R - NIGHT OPERATION RULES 77

APPENDIX S - NIGHT VISION DEVICES RULES 78

APPENDIX T - WEAPON RULES 81

APPENDIX U - WRISTWATCH RULES 85

vii

APPENDIX V - SELECT TOE FUNCTION CODE..........86

LIST OF REFERENCES....................87

INITIAL DISTRIBUTION LIST.................88

viii

I. INTRODUCTION

This project presents a solution to the objective set by Deputy Chief of Staff for

Operations and Plans(DCSOPS), Headquarters, Department of the Army(HQDA), to

develop an Equipment Readiness Codes(ERC) expert system. This system is developed

on a 3650 Symbolics LISP machine running Common LISP. The expert system is

effected using Joshua[Ref. 1:p. 1], a Symbolics, Inc. software product specifically

designed to construct and deliver expert system applications. In addition, an interface is

incorporated utilizing the Symbolics Common Lisp Define-Program-Framework

Flavor[Ref. 2:pp. 21-46] to create an interactive environment between the user and the

knowledge represented in the Joshua database. Through use of this expert system, a

Table of Organization and Equipment(TOE) analyst is freed from the task of determining

and/or reviewing ERC codes while constructing a TOE. Therefore, maximal effort is then

placed on the primary task of analyzing organizational functionality, personnel

requirements, and equipment requirements and usage within the specified organization.

A. WHY JOSHUA?

The first issue at hand in implementing the expert system is to provide an

environment which maintains both the knowledge and rule network. Joshua is a very

compact system, organized around 30 core functions and contains built-in facilities for

application development. The Joshua system is coherent and straightforward due to the

following three traits:

1. The syntax is LISP-like, uniform and statement-oriented, so that LISP

programmers are not require to learn a new language.

2. The interface to any database is simple, consisting of only three functions, ask,

tell, and clear.

3. Joshua contains special Zmacs facilities, such as bracket matching to ease

program and rule development.

Modularity and accessibility are notable strengths of Joshua, allowing for user

interfaces, control structures, and storage structures - all of which can be customized to

the particular application. External databases are accessible; existing software tools can

be integrated into the Joshua application; performance can be fine-tuned. The Joshua

system is extensively addressed in Chapter 4.

B. SYSTEM INTERFACE

The interface is the second issue addressed in this expert system development. This

interface is not intended for the general user, but rather for one qualified to maintain the

rules within the expert system. The Flavor Design-Program-Framework is a extremely

useful tool to develop such an interface. In addition, a Symbolics LISP machine provides

an interactive code-building facility, Frame-Up Layout Designer, to aid in writing an

interface for an application program. More specifically, Frame-Up Layout Designer is

an interactive version of Design-Program-Framework[Ref. 2:pp. 103-134]. The interface

provides the Joshua comrinds to interact with and monitor the Joshua database, as well

as commands to interactively select and manage a TOE through the expert system.

2

C. SUMMARY OF THE CHAPTERS

Chapter 2 presents the background information and the motivation behind this effort

to implement the ERC EXPERT SYSTEM. Chapter 3 presents the detailed problem

statement. The ERC EXPERT SYSTEM is described in detail within Chapter 4. Chapter

5 focuses on the interface, the Define-Program-Framework Flavor, and examines the

specific, previously undocumented procedures required to generate a functional interface.

The summary and the conclusions found during development of this project are contained

in Chapter 6.

II. BACKGROUND INFORMATION

A. OBJECTIVE

The objective of this study is two-fold: first, to develop an expert system to

determine Equipment Readiness Codes(ERC) in a Table of Organization and

Equipment(TOE); and second, to insure that the expert system developed integrates easily

into the environment being used at the Organizations Directorate(ORGD), Deputy Chief

of Staff for Combat Development(DCSCD), Headquarters Training and Doctrine

Command(HQ TRADOC), Fort Monroe, Virginia,

B. MOTIVATION

There are two underlying motivations for this study. First, DCSOPS, HQDA

established an objective to develop an ERC rule-based system. Such a system was

developed and the results of that development are published in the U.S. Army Concepts

and Analysis Agency Study Report, CAA-SR-88-14[Ref. 3:pp. 1-47]. This system was

designed for DCSCD, HQ TRADOC. However, the host machine noted in the CAA

Study Report was found impractical due to memory limitations and problems found in the

shell environment[Ref. 1 :pp. 1-3]. This study solves these problems.

Secondly, even as the CAA ERC Rule System was under development, personnel

within DCSCD, HQ TRADOC were proposing the development of expert systems

possessing a different system environment to further automate and revolutionize the

4

documentation process currently employed. An ERC expert system with a comparable

environment was required. Again, the expert system developed vnder this study satisfies

this need and integrates into the current system environment at HQ TRADOC.

C. TABLES OF ORGANIZATION AND EQUIPMENT (TOE)

A Table of Organization and Equipment is the Army's requirements document

specifying a unit's mission, organizational structure, and the minimum mission essential

personnel and equipment requirements necessary for that unit to accomplish its overall

wartime mission. The governing document that entails the development of a TOE is

Army Regulation(AR) 71-31. A TOE document goes through a series of developmental

steps or levels before final approval for the document is given by HQDA.

The initial step occurs at the TRADOC proponent or s:hool level. The designated

proponent or school depends on the proposed "type" of unit to be developed. For

instance, an armor unit would be generated by the U.S. Army Arn-or School and Center,

Fort Knox, Kentucky; an artillery unit would be generated by the U.S. Army Field

Artillery School and Center, Fort Sill, Oklahoma; and so forth.

Further TOE coordination and development occurs at the next level, the integrating

center. An example of an integrating center is the Combined Arms Center at Fort

Leavenworth, Kansas. Here, all lower level development points, in this case, combat

schools, the Armor School, Infantry School, Artillery School, etc., send TOE documents

for coordination and approval. After this level, the TOE document goes under a final

5

review and subsequent approval at ORGD, DCSCD, HQ TRADOC prior to final approval

at HQDA.

At each level during the TOE developmental process, personnel and equipment are

placed into the organizational structure of the unit. Also at each level, combat readiness

requirements are determined. The following section reviews the methodology used to

determine readiness codes.

D. EQUIPMENT READINESS CODES (ERC)

As noted above, the ERC are assigned by the TRADOC service schools as part of

the TOE documentation process. Assignment is based on judgement of the TOE

developer documenting the individual TOE. This judgement is guided by the governing

document for Equipment Readiness Codes, AR 220-1[Ref. 4:p. 1]. By definition, codes

are assigned in the following fashion[Ref. 4:App. BI:

1. ERC-A or ERC-P (Primary Weapons and Equipment) - The equipment

directly essential to accomplishment of assigned unit missions and/or directly providing

means to generate unit capabilities in a TOE. ERC-A items can be "upgraded" to a

designation of ERC-P, pacing items. Pacing items are equipment items which either have

high-dollar values or are considered major weapon systems. Examples are a tank or an

attack helicopter.

2. ERC-B (Auxiliary Equipment) - Equipment which supports the primary

equipment noted above. This equipment may also replace primary equipment should such

6

equipment to become inoperative. Examples are a back-up radio or a device used to

mount a weapon.

3. ERC-C (Administrative Support Equipment) - Equipment supportive to

assigned operational missions and tasks performance. Examples are a training device or

a wrist watch.

The above guidelines provide the TOE developer with the means with which to

determine a readiness code for each piece of equipment in the TOE.

E. SUMMARY

The Combat Analysis Agency generated a rule-based system to meet the objective

of DCSOPS. However, their system has fundamental problems with the memory capacity

of the host machine and the shell environment under which it was developed. In addition,

system integration into the expert system environment in progress at HQ TRADOC may

have been difficult. The following chapter details the specific problems addressed in

generating an adequate ERC expert system to meet the DCSOPS' objective.

7

IH. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

An expert system for this thesis, ERC EXPERT SYSTEM, is created to revise the

CAA's pc-based ERC Rule System and allows integration into ongoing HQ TRADOC

TOE expert system development. The ERC EXPERT SYSTEM rules are written using

Symbolics, Inc. software, Joshua; and the system's interface is developed using

Symbolics Common LISP, Define-Program-Framework Flavor[Ref. 2:pp. 25-27]. All

system functions are written in LISP, and can be executed on any Symbolics 36xx family

of computers. Discussed below are the three key issues investigated in order to resolve

the design and implementation issues of this expert system: the knowledge-representation,

the inference mechanism, and the system interface.

B. KNOWLEDGE REPRESENTATION

Historically, expert systems capture the knowledge or expertise of an "expert", so

that others may benefit from that person, particularly in the absence of that person. The

challenge is to capture that knowledge in a manner useable to the system in which it is

designed. Thus, knowledge representation is a key component in developing an expert

system. Bowerman and Glover discuss and categorize three schemes to represent

knowledge: rule-based, frame-based, and object-oriented representations[Ref. 5:p. 1001.

Nielsen and Walters also address the first two schemes noted above, but present other

8

techniques: multiple contexts, model-based, and blackboard representations[Ref. 6:pp. 195-

319]. By far the most widely used method is rule-based, originally established by the

production rule language OPSS. The rule-based approach places emphasis on very

shallow knowledge and places all parameters of the knowledge into a single production

rule. Rules within this scheme take the form of WITHEN or EF/THEN/ELSE statements.

Appendix I of the CAA report[Ref. 3:pp. 1-1341 shows the rules of that system

represented in this fashion. The other strategies of knowledge representation are

applicable when representation of more indepth knowledge is needed. In this case of the

readiness codes, a very simple one-to-one relationship is seen between the equipment

situation and ERC assignment. Since thc scope of this study can neither readdress the

entire design phase, nor provide access to the experts for interviewing, the knowledge

representation scheme used in Module I is acceptable and appropriate to represent the

knowledge within this study's expert system.

C. INFERENCE MECHANISM

The second issue analyzed is the inference method. Here, the TOE analyst provides

the answer. In an analyst's daily work of developing a TOE, a piece of equipment is

placed into a unit to satisfy a mission requirement and/or accomplish a specified task.

In turn, equipment readiness codes are assigned in relation to the degree to which that

piece of equipment is critical to the unit's overall mission and tasks. Therefore, a unit's

mission and specified tasks determine the readiness state for that unit, as well as the

personnel and equipment requirements/readiness within the unit's structure. In other

9

words, the system can inference forward from the known predicates or facts (unit mission

and tasks list) in order to derive as many consequences as possible (readiness status/codes

for personnel and equipment). This leads to an excellent example of a data-driven or

forward chaining approach to inference on the knowledge base, also known in logic as

modus ponens reasoning[Ref. 7:p. 102].

D. SYSTEM INTERFACE

The final concern addressed is the system interface. The chosen expert system

development environment at HQ TRADOC is Common LISP. Therefore, this study also

requires a Common LISP environment. Due to Joshua's strengths, it is selected as the

application software for the rules and management of the knowledge. In addition, Joshua

allows Common LISP code anywhere within its system structures. In fact, Common LISP

functions are allowed and even expected within the structure of Joshua rules. Lastly,

Symbolics' Define-Program-Framework Flavor is the tool of choice to provide the

necessary visual window interface specifically for display of the database, rule firing, and

system commands. This also coincides with the windowing environment of HQ

TRADOC in their system developments.

E. SUMMARY

This chapter discussed the issues faced during the course of this study. For program

implementation, Common Lisp was adopted as the system environment. In addition, rule-

based knowledge representation, forward chaining inference, the Symbolics software

package Joshua, and the windowing features in Define-Program-Framework round out the

10

complete environment used within this thesis. Using these conditions, the ERC EXPERT

SYSTEM is examined in the following chapter.

11

IV. ERC EXPERT SYSTEM

A. INTRODUCTION

The ERC EXPERT SYSTEM is designed to generate ERC codes for all equipment

items within any given TOE, i.e. the TOE needs not be a DA approved TOE. The rules

to generate these ERC codes are derived from CAA Study Report, Appendix I, CAA-SR-

88-14[Ref. 3:pp. 1-134]. Thus, this system can be used during TOE development prior

to the HQ TRADOC review board process and eventual DA approval. ERC EXPERT

SYSTEM consists of two parts: the expert system itself and the interface. The expert

system and its development in Joshua are discussed within this chapter and the interface

is discussed in Chapter 5.

B. JOSHUA

1. OVERVIEW

Joshua is a software product implemented on the Symbolics 36xx family of

computers operating under the Genera operating system environment[Ref. 1 :p. 1]. Joshua

is integrated with LISP, and allows LISP code to be used within user-defined rules. The

Joshua software itself is implemented with Flavors[Ref. I :p. 1]. This allows flexibility in

the ERC EXPERT SYSTEM. The flexibility is greatly seen in the use of Common LISP

code throughout the application developed, and within Joshua structures, such as rules.

This allows for message displays not related to Joshua, but rather to the application itself.

12

In addition, external structures, such as databases, can be addressed and manipulated

directly using LISP functions and methods.

The heart of Joshua is a rule-based inference language, consisting of five major

elements:

1. Predications - The knowledge or facts of the database; also referred as statements,
or assertions.

2. Rules - The means of defining relationships among predications, as well as
procedural knowledge.

3. Database - The entire collection of predications and rules remembered by the
system.

4. Protocol of Inference - Joshua's mechanism to integrate the above elements and
execute the system reasoning.

5. Truth Maintenance System (TMS) - The system to maintain explanations of the
reasoning determined by the Protocol of Inference, and maintain overall system
consistency.

Modularity is designed within Joshua. This modularity localizes developmental changes,

and supports system modeling[Ref. l:pp. 1-6], and thus, the Protocol of Inference is

further divided into five functional groups:

1. Database Interface - Supervises additions/deletions of predications to/from the
database.

2. Truth Maintenance System (TMS) Protocol - Supervises all deductive
dependencies.

3. User Interface Protocol - Controls the interaction with a system user.

4. Rule Indexing Protocol - Manages the rules in the database.

5. Rule Customization Protocol - Manages the rule compiler.

13

Additionally, Genera's program development facilities are also available for use by

Joshua, to include the Zmacs editor, User Interface Management System, input/output

abilities, and Dynamic Windowing.

2. JOSHUA PREDICATIONS

a. Introduction

Joshua, like other Al programming facilities, entails working with facts

that represent the knowledge of the system. Programs then build, store, and reason with

these facts, going on to build, store and even remove other new facts. This cycle then

begins again until no new facts are available. Joshua facts, called predications, are really

just Flavor instances. This section discusses the essentials of creating and storing

predications. Other related topics, such as logic variables and logical connectives, are

also introduced. The process of using predications for reasoning is within the realm of

rules and is reviewed in the section 3.

b. Predications and Predicates

Predications are stored in the expert system database. The knowledge

they represent is available to the system and can be manipulated by system rules.

Broadly equivalent terms for predications are statements, assertions, and facts. The

Joshua system protocol also allows additional system manipulations other than just rule

manipulation[Ref. l:p. 13]:

1. Insertion of predications into the database.

2. Review of predications in the database.

14

3. Conduct inference of predications by system rules.

4. Supply of specific justifications to predications.

5. Deletion of predications from the database.

Note, predications can be manipulated like any other LISP object. Predications consists

of two parts - the predicate, the first item, and its corresponding arguments, zero or more.

Brackets always enclose a predication. Figure 4.1 shows some examples of predications.

[healthy Catherine]

[author-of (poems plays) Shakespeare]

[is-assigned current-lin erc-a]

Figure 4.1. Predication Examples

c. Defining Predicates

Predicates are the names of relationships; they organize knowledge within

a predication and further express the relationship among its parts. A Joshua predicate

must be defined prior to its use within a predication. The system macro define-predicate

is the vehicle to define new predicates. This definition establishes the format, specifies

the required arguments within the predication in which it is used, and optionally shows

any customized method of controlling the predicate. To remove any predicate definition,

the system macro undefine-predicate must be used. It is important to note that while

this macro removes the predicate definition, it does not remove any predications built with

that predicate prior to undefining it. These predications must be explicitly removed from

the database world. Examples of predicate definitions are shown in Figure 4.2.

15

(define-predicate healthy (any-object))

(define-predicate has-night-ops (current-toe))

Figure 4.2. Examples of Defining Predicates

Once predicates are defined, knowledge can be expressed in numerous different

predications, each using different arguments depending on the context of the specific

problem. The ERC EXPERT SYSTEM predicates are found in Appendix L. These

predicates are the first items loaded upon system load into the database, and are

immediately available for use in predications. Using the above definition of the

predicate "healthy", predications can be made as shown in figure 4.3.

[healthy eat-fruit]

[healthy exercise-regularly]

[healthy Mary]

Figure 4.3. Predications Using "healthy" Predicate

Using the context of the predicate healthy in above figure, if the problem required the

identification of healthy people then the example concerning Mary would be appropriate.

In another problem, identification of ways to maintain health, the predications of eat-fruit

and exercise-regularly are suitable. Overall, the same predicate definition can be used in

numerous applications.

16

d. Predications and Truth Values

For any predication to be "available" to the system, it must be inserted

into the database. The function tell asserts a predication into the database. The database

is the extensible collection of all predications and their associated information. The

function untell removes a predication from the database, and frees any related storage

space as well. As the name implies, untell is the opposite function of tell. Using tell

is quite simple, as shown in Figure 4.4.

(tell [has-night-ops 17487L000])
[has-night-ops 17487L000]
T

Figure 4.4. Use of the tell function

Note that tell returns the predication object that is asserted into the database and a

boolean value whether the predication is being inserted for the first time or not. This is

not the associated truth value. If the above predication were previously inserted into the

database, the boolean value nil would be returned. A truth value denotes what the system

knows about the truth state of any database predication; it is associated with a predication

when the predication is inserted into the database. The truth values of predications

change as knowledge is acquired and the database is updated. Predications can have only

one of four possible truth values:

1. *true* (appears under "True things" in database display).

2. *false* (appears under "False things" in database display).

3. *unknown* (does not appear in database display).

17

4. *contradictory* (a transient state; does not appear).

Truth values are manipulated by the user or by the Truth Maintenance System(TMS).

The TMS is covered in a future section.

Joshua has a three-valued logic system. A predication is *true* if its

arguments are believed to satisfy the predicates, and *false* if its arguments are not.

When using predications, the function tell applies the belief that a predicate's arguments

are true. The not prefix to a predication changes the truth value of a predication from

true to *false*, and vice versa. It is very important to understand that the untell

function does not reverse a truth value, but rather deletes a predication from the database.

Examples of the use of tell, untell and not follow in Figure 4.5.

If a predication is neither *true* nor *false*, it is *unknown*. A

predication becomes *unknown* when no vJ.d reason supports it. In some languages,

such as Prolog, a fact is assumed to be false until proven to be true. Joshua does not

subscribe to such a "closed world view". For example, if a predication's truth value is

originally *true*, and the underlying reasoning for its truth is removed from the database,

the predication's truth value becomes *unknown*. From a reasoning viewpoint, a

predication with a truth value of *unknown* is indistinguishable from one that is not in

the database at all. Thus, a predication whose truth value changes to *unknown*,

physically remains in the database but is conceptually not visible. If the underlying

reasoning is reinserted into the database, then the predication will again be "visible"; its

truth value will change back to *true*, and the predication will once again be used in the

inference process. This is efficient in the sense that predications do not require

18

reassertion as the database is constantly changed by system inference and reasoning. The

truth value of *unknown* is primarily useful to the TMS to maintain logical consistency

as the database is modified.

(tell [has-night-ops 17487L000])
[HAS-NIGET-OPS 17487L000]

(tell [has-night-ops 06203L000])
[HAS-NIGHT-OPS 06203L000]

Show Joshua Database
True things

[HAS-NIGNT-OPS 17487L000]
[HAS-NIGHT-OPS 06203L000]

False things
None

(tell [not [has-night-ops 17487L000])
[NOT [HAS-NIGHT-OPS 17487L000]

Show Joshua Database
True things

[HAS-NIGHT-OPS 06203L000]
False things

[HAS-NIGHT-OPS 17487L000]

(untell [not [has-night-ops 17487L000])
NIL

Show Joshua Database
True things

[HAS-NIGHT-OPS 06203L000]
False things
None

Figure 4.5. Use of tell, untell, and not

19

The final truth value for a predication is *contradictory*. This occurs

when a predication is believed to be both *true* and *false* at the same time. This truth

value is also primarily meaningful to the TMS. An excellent example of a contradiction

is reviewed below and is found in the Joshua Basics Manual[Ref. I :p. 20]. Using the

mythical story about Medea and her son Jason, two tell operations insert facts about

Medea. The first fact is a direct input into the database, (tell [loves Medea Jason]); the

second fact, [LOVES MEDEA HER-CHILDREN] is deduced from some forward

chaining rule, based on the belief that [loves Medea Jason]. Now, if the first fact's truth

value is changed by using the not prefix, the fact becomes *false*, but the second fact

that was generated by the rule remains, and thus a contradiction is generated.

e. Logic Variables

A Joshua logic variable is a special object and is recognized by Symbolics

Common Lisp. A logic variable is identified by the equivalence symbol -. In contrast

to constants, logic variables provide the ability to make more generalized statements and

queries about predications, and provide capability to generate patterns. Figure 4.6

demonstrates the use of logic variables and pattern matching. Presented first are some

statements about children using the "child" predicate. Then using the Joshua system

query function ask, with a logic variable, all of the children in the database can be found.

The query with this logic variable finds all correct matches within the database. Figurc

4.6 also shows the query concerning the assertions of the children into the database. The

query is invoked three times, once for each pattern that satisfies the query. An

explanation of this query follows. At the query onset, the logic variable =person is

20

(define-predicate child (person))

(tell [child Catherine])
[CHILD CATHERINE]
T

(tell [child Joel)
[CHILD JOE]

T

(tell [child Chris])
[CHILD CHRIS]

T

(ask [child =person] #'print-query)

[CHILD CATHERINE]
[CHILD JOE]
[CHILD CHRIS]

Figure 4.6. Logic Variables and Pattern Matching

uninstantiated and can match any database object. Therefore, this logic variable matches

any argument in the same position in the database predication, as long as the predicate

used matches the predicate child used in the query. At this point, Joshua searches the

database to find the first predication with the predicate child. The first predication found

is the one with the argument Catherine. Therefore, Catherine is temporarily instantiated

for the logic variable Eperson. The query pattern matches and the resulting answer is

printed. Once the query is executed, Joshua uninstantiates the logic variable and searches

again until all matching patterns are exhausted.

21

f. Logical Connectives

Up to this point a predication has been discussed simply as a single

predicate and its corresponding arguments. In general, knowledge statements are much

more useful when expressed in some logical combinations with other statements. Joshua

provides three logical predicates and, or, and not to accomplish this task. All of these

connectives are extremely important to the develop of the ERC rules. Inability to use

these connectives in the antecedent portion of the rule is another flaw in the expert system

shell in the CAA report. Once predicates are defined, compound predications can be

created as shown in Figure 4.7.

(tell [and [child Mallory]
[child John]])

[CHILD MALLORY]
[CHILD JOHN]

(tell [and [has-night-ops 17487L000]
[has-night-ops 06108L000]]
[has-cat-code 17487L000 1])

[HAS-NIGET-OPS 17487L000]
(HAS-NIGHT-OPS 06108L000]
[HAS-CAT-CODE 17487L000 1]

(ask [and [or [child =person]]
[and [has-night-ops Etoe-num]

[has-cat-code =toe-num 111]
'print-query)

[CHILD MALLORY]
[CHILD JOHN]
[HAS-NIGHT-OPS 17487L000]
[HAS-CAT-CODE 17487L000]

Figure 4.7. Logical Connectives/Compound Predications

22

Overall, logical connectives ease the assertion of data into the database, and additionally

focus and/or refine queries. This in turn cuts down on database search time.

g. Summary

Within this section the basic establishment of the knowledge database was

discussed. The foundation to the ERC EXPERT SYSTEM database is the predication or

fact. Predications have four possible truth values, *true*, *false*, *unknown*, and

contradictory. The use of logical variables and logical connectives enhances the

manipulation of predications created in the database. The following section about Joshua

rules details how an expert system can reason on the predications in the database.

3. RULES AND INFERENCE

a. Introduction

A rule is an independent composition of declarative and procedural

information that defines how a system conducts inference[Ref. l:p. 37]. Inference is the

process by which an expert system drives through a set of given rules, acquiring new

facts during the process, and executing rules to arrive at a conclusion[Ref. 3:p.3-1]. So

far, predications have been identified as the way to define and collect needed information

for the expert system. Predications within the ERC EXPERT SYSTEM provide the

database with facts about specific pieces of information in a given TOE. ERC rules

define the reasoning or inference process that can be made from these known equipment

facts. As noted earlier, the rules developed for the ERC EXPERT SYSTEM are derived

23

from Appendix I of the CAA Study Report[Ref. 3:pp. 1-134]. In this section, Joshua's

rule control structure, rule definition, how rules work and rule monitoring are-discussed.

From this awareness of the Joshua rule system, ERC rules are easily created.

b. Forward Verses Backward Chaining

Reasoning by rules in Joshua entails either forward or backward

chaining[Ref. 1:p. 37]. Forward chaining is data-directed inference, reasoning from

known facts to some conclusion[Ref. l:p. 37;Ref. 7:p. 1021. In Joshua, forward chaining

is activated by tell. Thus, whenever a new predication is asserted into the database, the

system examines the forward chaining rules, and reasons to derive conclusions from the

new knowledge given by the tell statement. Backward chaining, on the other hand,

reasons to satisfy some given conclusion. Backward chaining is defined as goal-directed

inference[Ref. 1:p. 37;Ref. 7:p. 100]. A backward chaining rule looks for facts to support

a goal. In this study, the TOE provides the facts about pieces of equipment and their

usage within a TOE. The rules within this expert system lead from these facts to generate

the conclusion, i.e. the correct ERC. Thus, forward chaining is the control structure

chosen for ERC EXPERT SYSTEM.

c. Defining Forward Rules

Joshua rules are defined with the system function defrule. All Joshua

rules have the following parameters:

1. A user-supplied rule name.

2. A required keyword specifying the rule's control structure(either forward or
backward chaining).

24

3. A combination of patterns divided into the antecedent (also known as the trigger

part, or if-part), and the consequent(also known as the action part, or then-part).

The Joshua syntax for the function defrule follows[Ref. 8:p. 1261:

defrule rule-name (control-structure &rest arguments)
if if-part then then-part

Figure 4.8 depicts an example of a rule definition.

(defrule dragon-id-kit (:forward)
if [and [huge -creature]

[breathes -creature fire]
[or [guards -creature gold]

[guards -creature maiden]]]
then [dragon =creature])

Figure 4.8. Example of a Rule Definition

In this forward rule, the trigger part is a compound predication pattern that must be

completely satisfied for the action part to execute or fire. This rule shows the entire

trigger part is joined by and, thus all conditions under and portion of the rule must be

met to satisfy the forward trigger. There is also an or connective, which allows any

condition within its portion to be met and then the or is satisfied. The Joshua command

Show Joshua Rules displays all currently defined rules. This command has various

options to allow for tailoring of the display[Ref. 8:pp. 133-134].

d. How Forward Rules Work

As stated previously, data-directed inference is activated by the assertion

of new facts into the database with the tell function. A fact is only new when the system

is "told" something for the first time. Once a fact is in the database, if you tell the same

fact again, it is no longer new and will not activate any rule firing. Similarly, a fact that

25

is unjustified, and then you tell that fact again, it is not new knowledge since it was never

removed from the database.

When all conditions of forward rule's if-parts are satisfied, the rule is

then triggered; it fires and executes the rule's actions in the then-parts. The action part

can stipulate any action to include LISP code. Any new facts inferred from the current

facts are automatically asserted into the database, and in turn can trigger more rules. This

can continue to generate chains of new facts and rule firings until no more new facts are

generated. Using the rule definition of a "dragon-id-kit" in Figure 4.8, the following

figures show an example of the rule firing. Figure 4.9 will provide the first two

predications necessary to trigger the rule.

(tell [huge dudley])
[HUGE DUDLEY]
T

(tell [breathes dudley fire])
[BREATHES DUDLEY FIRE]
T

Figure 4.9. Predications for Rule Triggering

At this point, the database contains the rule definition found in Figure 4.8 and the two

predications shown above. These predications satisfy the first two lines in the rule

definition. However, it will require a third predication about what the "creature" guards

before the rule is triggered. Figure 4.10 will add the final predication to trigger the

dragon-id-kit rule. Thus, the addition of the final predication completely satisfies the rule

26

(tell [guards dudley gold])
[GUARDS DUDLEY GOLD]
T
[DRAGON DUDLEY]

Figure 4.10. Final Predication to Trigger Rule

trigger, causes it to fire and generates the new fact [DRAGON DUDLEY], i.e.

identifying Dudley as a dragon. This chain of forward chained inferences continues as

long as there are new facts that fully trigger forward rules in the system.

e. Rule Tracing

To watch the execution of rules, the Joshua system command Enable

Joshua Tracing needs to be issued. This command accepts an option of Forward Rules,

Backward Rules, or All depending on the type of rule monitoring desired[Ref. 1 :pp. 110-

113]. It also presents a message every time a rule fires. With forward rules the message

appears when the if-part of the rule is completely satisfied, and just prior to the execution

of the then-part. Figure 4.11 displays forward rule tracing.

Enable Joshua Tracing (Type of tracing) Forward Rules

Forward Chaining tracing is on
Tracing All forward rules
Traced Events: Fire and Queue

(tell [guards dudley maiden])
[GUARDS DUDLEY MAIDEN]
Firing forward rule DRAGON-ID-KIT (1 trigger)

• [DRAGON DUDLEY]
NIL

Figure 4.11. Tracing Forward Rules

27

Notice that in this execution of the rule the message appeared after the predication that

satisfied the rule trigger and just before the action took place. In addition, the system

response of NIL appeared at the end because the fact of dudley's identification as a

dragon is already known in the database.

f. Summary

This section entailed the concepts of Joshua rules and the rule inference.

Forward chaining is the control structure used due to the clear dependence on the TOE

data that drives the rule definition. Joshua provides a very simple format to follow to

define any rule required. In addition, the Joshua system furnishes a tracing mechanism

to aid in debugging programs and monitoring rule dependence. The final section of this

chapter will briefly 0' d- a the Joshua Truth Maintenance System.

4. JOSItUA TRUTH MAINTENANCE SYSTEM

A Truth Maintenance System (TMS) is a device used by deductive systems to

maintain dependencies and relationships among statements or facts in a knowledge

database. There are two primary functions of TMS: first, to annotate and preserve the

reasoning support of all predications in the database; and second, to maintain the logical

consistency and truth of the predications.[Ref. l:p. 64; Ref. 6:p. 265] There are three

major types of TMS[Ref. 6:p. 268]:

1. Justification TMS (JTMS)

2. Logic-based TMS (LTMS)

3. Assumption-based (ATMS)

28

Joshua provides a TMS as part of its overall software system, and is an option that can

be included at the developer's discretion in any application development. The use of the

TMS is included in this study. Joshua supports a logical or clausal TMS(LTMS)[Ref. L:p.

64]. To use this LTMS, it must be provided as an argument to a predicate definition.

Figure 4.12 provides a predicate definition specifying the use of the Joshua LTMS.

(define-predicate has-night-ops (current-toe)
(itms: ltms-predicate-model))

Figure 4.12. Specifying the Use of LTMS

The LTMS provides the ERC EXPERT SYSTEM with the mechanism to manage the

predications in the database. In addition, the LTMS operations can be traced and

monitored in the same fashion as rules. The Joshua command Enable Joshua Tracing

TMS Operations will invoke the tracing. Once activated, this tracing will display

messages of all predication manipulation, truth value changes within the database and also

provide the underlying reason for such a change. A complete overview of the Joshua

LTMS is provided in Section 9 of the Joshua manual[Ref. l:pp 64-78].

C. A GUIDE THROUGH THE ERC EXPERT SYSTEM

1. INTRODUCTION

The basic concepts of the expert system and Joshua have been presented. A

step-by-step escort through the implementation follows. This guide details the highlights

of the ERC EXPERT SYSTEM. Predicate definitions, reading of the data from a TOE

29

into the database, rule usage, and LISP functions used within the system are all presented.

Once this review is finished, a complete understanding of the entire system should be

acquired. Further development of the system can also be accomplished.

2. THE GUIDE

The predicate definitions of the ERC EXPERT SYSTEM are maintained in the

LISP file erc-predicates. This file and all others referenced are found in the appendices.

In particular, the predicates for night operations, branch, old and new ERC, and for the

current line item number(LIN) will be addressed. The definitions for each of these

predicates are shown in Figure 4.13.

(define-predicate has-night-ops (*current-toe*)
(itms: ltms-predicate-model))

(define-predicate has-branch (current-toe *branch*)
(ltms :ltms-predicate-model))

(define-predicate is-lin (current-lin *lin*)
(itms: ltms-predicate-model))

(define-predicate has-old-erc (current-lin *old-erc*)
(itms: ltms-predicate-model))

(define-predicate has-new-erc (current-lin *new-erc*)
(itms: ltms-predicate-model))

Figure 4.13. ERC EXPERT SYSTEM Predicates

Note that in all of these predicate definitions the option to use the TMS as part of the

predicate is chosen. This aids the rule developer in "seeing" what occurs in the database

30

in order to track rule dependencies and/or correct present rules. Once all system have

been defined, assertion of data in the form of predications can occur.

The data to be asserted into the database comes from the TOE selected by the

user for evaluation. After this selection occurs, either the "auto-mode" or "step-mode"

command is chosen from the command menu. Both commands' functionality is the same

in regards to extracting data from a TOE for instantiation of the arguments of a predicate

definition. The LISP functions auto-read-current-toe and read-current-toe extract a line

of data from the TOE. Each line of data is tested for the record type, i.e. A-record, B-

record, etc., and the appropriate data is assigned to a specified global variable in

accordance to the record type. The record layouts for each type of record are found in

the appendices. The data required for the predicates being shown here are the branch for

the TOE to instantiate the *branch* variable; the current LIN and its current ERC, if any,

to instantiate the *lin* and *old-erc* variables. The *new-erc* and the *current-toe*

variables will be instantiated only if the rule is triggered, causing the variable assignment

to transpire. Again this action is seen within the Joshua Display of the interface because

the predicates are defined with the TMS option.

There are two rules to monitor which can be affected by the predicates defined

above. Both rules are shown in Figure 4.14. As each predication is asserted by the read

functions noted above, the database is continually searched to match this assertion with

any rule trigger. This repetitious procedure continues until no further predication

assertion is made. If an entire trigger of a forward rule is matched then the rule will fire.

In order to generate this rule firing here, numerous predication assertions must be made.

31

For example, a branch of 01, 07, 17, 19 or 31 that is part of the A-record layout for a

TOE must be found in the database to fire the night operations rule. Assertions must be

made into the database to execute the rule firing. The function show-rule-firng at the

end of the all rules, displays the result of a rule's action. In this case the difference or

concurrence between the *old-erc* and *new-rc* is found by the system. Figure 4.15

shows the effects of predications, made after reading numerous lines of a TOE.

(defrule niaht-opsl3l
(:forward
:documentation CAA report, p. 1-23)

if [or [has-branch CURRENT-TOE 01]
[has-branch CURRENT-TOE 07]
[has-branch CURRENT-TOE 171
[has-branch CURRENT-TOE 19]
[has-branch CURRENT-TOE 31]]

then (tell (make-predication
'(has-night-ops ,CURRENT-TOE))))

(defrule ercp5i1
(:for',ard
:documentation CAA report, p. 1-81)

if [or [is-lin CURRENT-LIN T13168]
[is-lin CURRENT-LIN T13169]
[is-lin CURRENT-LIN T13174]
[is-lin CURRENT-LIN Z77258]
[is-lin CURRENT-LIN F40307]

[is-lin CURRENT-LIN H57505]
then [and (setf *new-erc* 'P)

(tell (make-predication
'(has-new-erc CURRENT-LIN *new-erc*)))
(show-rule-firing)])

Figure 4.14. ERC EXPERT SYSTEM Rule Definitions

32

(tell (make-predication '(has-branch CURRENT-TOE 17)))
" Justifying : [HAS-BRANCH CURRENT-TOE 17] <-- Premise
" Firing forward rule NIGHT-OPS131 (1 trigger)

Justifying : [HAS-NIGHT-OPS CURRENT-TOE] <-- Rule:
Night-OPS131

(tell (make-predication ' (has-old-erc CURRENT-LIN B)
" Justifying : [HAS-OLD-ERC CURRENT-LIN A]

T

(tell (make-predication ' (is-lin CURRENT-LIN K56733)))
" Justifying : [IS-LIN CURRENT-LIN K56733] <-- Premise

T

** assertions currently have no effect on any rule **

(tell (make-predication ' (has-old-erc CURRENT-LIN A)
" Justifying : [HAS-OLD-ERC CURRENT-LIN A]

T

(tell (make-predication ' (is-lin CURRENT-LIN T13169)))
" Justifying : [IS-LIN CURRENT-LIN T13169] <-- Premise
" Firing forward rule ERCP531 (1 trigger)

w Justifying : [HAS-NEW-ERC CURRENT-LIN P] <-- Premis

TOE: 17487L000 PARA: 3 LIN: T13169 OLD-ERC: A NEW-ERC: P

Figure 4.15. Effects of Predications on Rule Triggers

33

The last feature shown in this tour of the ERC EXPERT SYSTEM is the rule

management. Any rule name that appears in the Joshua Display of the interface is

automatically mouse-active. Therefore the rule can be pointed to and various operations

can be induced on that rule. This is one of the strong points that the Joshua software

provides to the expert system developer. For instance, to view a rule definition, middle-

click with the mouse, the rule definition displays within the Joshua Display Window.

Most important are the special key meta and the left-button. This key combination

inserts the rule pointed at into the Z-macs editor for immediate editing. These operations

are addressed in Chapter 5.

Overall, while a TOE is in the development process, a question can arise

during the review of the TOE document concerning an ERC assignment. The appropriate

TOE can be selected into the expert system, stepped through to identify all rule firing and

rule consequences, and finally, provide on-the-spot corrections either in the rule itself or

the TOE document. In either case, the ERC EXPERT SYSTEM provides an extremely

powerful tool to the TOE documentation process.

D. SUMMARY

This chapter discussed the elements of the ERC EXPERT SYSTEM and the

specifications to run this system on top of the Joshua software. Predications are the

fundamental element to provide facts to the database. Through matching of predications

to the if-part of system rules, new facts are generated or conclusions found, i.e.

appropriate ERC codes are assigned to TOE equipment. The tracing capabilities of the

34

Joshua and its rule managing features, facilitate the supervision of the database a

manageable task. Lastly, the LTMS ensures overall system consistency. This guide

presented the ERC EXPERT SYSTEM's internals and demonstrated the functionality of

the overall system. Using this guide as a base, further development of the ERC EXPERT

SYSTEM can be accomplished. In the following chapter the interface is presented to

demonstrate the overall system use and provide a "visual" point of view to the system.

35

V. USER INTERFACE

A. INTRODUCTION

The ERC EXPERT SYSTEM is not a stand-alone system, but is intended to

integrate into the overall automated TOE documentation process. In this case, the ERC

EXPERT SYSTEM is designed to read the output of a TOE created by the TRADOC

DOCUMENTATION SYSTEM(TDS) database maintained at Fort Leavenworth, Kansas.

The ERC coding process should follow these steps:

1. A TDS TOE document is transmitted through some communication channel to the
Symbolics 36xx machine maintaining the ERC EXPERT SYSTEM.

2. The ERC EXPERT SYSTEM is invoked in the automatic mode.

3. The ERC codes are appropriately assigned by the system.

4. The updated TOE is retransmitted back to the TDS.

Once a TOE is available on Symbolics 36xx disk for retrieval into the ERC EXPERT

SYSTEM, a session is ready to be performed. The following sections describe the visual

interface, conduction of an ERC EXPERT SYSTEM session, and rule management.

B. VISUAL INTERFACE

The visual interface was created using the Define-Program-Framework Flavor

provided within Symbolics Common LISP. Figure 5.1 shows the interface window. The

expert system interface has the following features:

36

I-n

0

-C

.0.

az

=mom

Macr .
* I'- 00

.- ' =

(A. O3 3 3
Ux .0 0-

4A

Fiur 5..Te nefceWno

= 37

1. A set of TOE information windows displaying all relevant TOE information for
the selected TOE.

2. A Joshua display window depicting the current status of the database, assertion of
facts, display messages from the Truth Maintenance System, and user selected
information during rule maintenance.

3. A mouse-activated command menu.

4. A 'step' mode is provided for rule maintenance. In addition, this mode has the
side effect of permitting a TOE developer to learn how and why a particular ERC
code is applied to a specified piece of equipment in a TOE.

5. An 'auto' mode is provided and is the preferred method of use. User intervention
is not required for this mode to run.

The interface consists of nine windows: seven display windows, a command menu

window, and an interactor window. The entire windowing display is created using

Symbolics Common Lisp Flavor Define-Program-Framework. The details to this Flavor

are well documented[Ref. 2:pp. 21-46].

The upper six windows are display windows containing specific TOE information

for a user selected TOE. The expert system updates these display windows automatically

as the system runs. Figure 5.2 presents an example of the TOE information from left

window to right:

1. The specific TOE number of the TDS document currently in the database. The
TOE number is read from the A-record of a TOE document.

2. The TOE title of the current TOE document and is also read from the A-record.

3. The current TOE paragraph read into the database. The paragraph is derived from
the B-record of the document.

38

; I

c

*0

C,

zt.

00 C CC

I- O

- 0 0 0 0 00

- -, I ..., U, U, U

42 0

0. Q. CL I

Figure 5.2. Window with TOE Information

39

4. The current Line Item Number(LIN) read into the database. This is the actual

piece of equipment which has been read into the database and is reasoned with.

5. The "old" ERC is the current ERC code for the LIN noted above.

6. The "new" ERC is the correct ERC code determined by the ERC EXPERT
SYSTEM rules for the given piece of equipment noted above.

The large main window centered in the Symbolics monitor is also a display window

titled Joshua Display. Interactively displayed in this window are: the predications

resulting from direct assertions within the code and from forward-chaining events,

database information derived from execution of Joshua commands, and system generated

messages. The Joshua display window is a scrolling window providing easy access to the

relatively large volume of information displayed during any user session.

At the bottom of the screen are the command menu window and the interactor

window. The command menu contains all expert system commands necessary to activate

TOE selection, induces reading of the TOE, and retrieves Joshua database information.

Note, several other system commands not displayed on the command menu are embedded

into Lisp functions or consolidated into commands displayed on the menu. As the user

selects a mouse-actuated command from the command menu, the selected command is

displayed in the interactor window. Any resulting message and/or information is passed

into the Joshua Display window.

40

C. ERC EXPERT SYSTEM SESSION

1. Selecting a TOE

A TOE is selected using the command Select TOE from the command menu.

The LISP function select-toe is invoked to select the appropriate TOE. All TDS TOE

documents must be placed in a physical pathname directory toe-data under the logical

pathname used for the system. The LISP function looks into this directory to find and

display all TOEs available for selection. Figure 5.3 presents the TOE selection process.

A possible modification to this operation is to allow a selection of multiple TOE's at one

time as compared to only one at a time in this system. Once selected a TOE the ERC

EXPERT SYSTEM is now ready to read through the TOE to determine the ERC.

2. Auto Mode Versus Step Mode

The preferred method of running a session is to use the command Auto Read

Current Toe. This will initiate the reading of the TOE line by line and placing

predications into the database for reasoning. No further intervention is required after

issuing this command. The alternate command to run a session is Step Read Current Toe.

This command is specifically used for rule management as discussed in a Section D of

this chapter, but can be invoked to effect the side effect of teaching a TOE analyst how

the system executes an ERC determination and what rule was used to determine a

particular ERC. Both commands are invoked by placing the mouse pointer on the

command and clicking the left mouse button. Note all commands are executed by first

pointing to the appropriate command and then clicking with the left mouse button. Any

41

- U-

06
€

02X

Q o QI, 'j 3 3t 3t

N I-

U) m kn on

*..1

o~4o

4. x

t 4141

F r . TE .

-o-c

,42

I- I

further commands that can be invoked are noted in the standard LISP display at the

bottom of the window, noting the appropriate key-mouse combination to issue a

command. At the end of a session of a selected TOE, all windows are cleared and a

message is displayed to indicate the end of the session. See Figure 5.4 for an example.

3. ERC Determination

The system reads each line in the TOE, skipping through any personnel

records, to assert each equipment line, D-record or E-record, into the database as a

predication. The unification process matches any knowledge in the database against the

system rules to determine an ERC for the current LIN. If so, the rule is triggered and a

system message is displayed to the JOSHUA DISPLAY window. This procedure is

noted in Figure 5.5.

4. Window and Joshua Display Commands

To invoke a specific window or Joshua command is only a matter of

"mousing" on the appropriate command in the command menu. The TOE windows, the

main display window, or all windows can be flushed at any time. To redisplay any item

in the TOE display windows, each TOE window item must be selected individually.

Display in the Joshua Display occurs again automatically when the next TOE item is

read by the system and thus a specific command is not provided.

Three Joshua commands are provided for a user to see the status of the ERC

EXPERT SYSTEM. The first, Show Joshua Database, displays all current predications

in the system under the "belief' of their truth values as concluded by the LTMS. Show

43

U C)

00

3: -. .0

ZC£ -c-

0h a 0a

6. .a~- C -. U

E L rr

at

a- I- I IM C0 w Lo ~3.-2.,~

Fiue54 TECmlt Msa-.-

o CZ44

x -C

I: A

0

6 .2 .

-,LJj~ (n U Uj L U U -

LU~ C1

-CT -C - C

co z M ICL -

C ' q. N ~
N z

Z, 58 ,r o z I-w 'j
0 0 z~) z~ z , I C) UU

) w .S CLJfCl

0 a a 0~~> C

r0 cio)Lo(

Figure~Q~ 5.5 Rul TrgeigWipa

45 C c -

Joshua Predicates presents all predicates definitions. The last Joshua command, Show

Joshua Rules, offers all currently defined rules in the system. Figure 5.6 outlines all of

these commands in one display. Management of these rules is the cornerstone of

managing the entire ERC EXPERT SYSTEM process. The following section covers the

rule management.

D. ERC RULE MANAGEMENT

One of the most advantageous facets of using of the Joshua software, along with

the TMS, is the versatility of rule management. Joshua provides immediate access into

the Zmacs editor for rule revision. To invoke this aspect, first move the mouse pointer

to any rule name in the Joshua Display, whether the name was displayed after a rule

trigger or through the use of Show Joshua Rules command, and press the meta key and

the left mouse button simultaneously. This invokes the Zmacs editor buffer and inserts

the rule into this buffer for editing. Once editing is complete, compiling the new rule

definition and reloading the rule must follow for the database to be updated. If the user

desires only to examine the rule definition, moving the mouse pointer to a rule name and

clicking the middle mouse button will display the rule definition in the Joshua Display

window. Figure 5.7 is the invocation of the middle mouse button; Figure 5.8 shows a

rule in the Z-Macs buffer after utilizing the meta key with the left mouse button. These

two mouse features are the foundation for managing the system rules.

The naming convention used in this study is explicit to three items: first, the

category under which the rule is found in Appendix I of the CAA study report; secondly,

46

0 ~z
IA

(Dr~rcnIz

0 1.
D4

a. Z mu

C-- L) U
I

o 0~*CC
CC-.

4 UW~U

z (L co££

4
to

WU 00

. - 7 3 0t 3t

W UZ

ZC1 ZO-M

01 mmm

-~~ x. c 0 C l.. 2 =m.<,ICY

< 2 < .M T 0M .

C-~c IV<w 2'' O . 0 IJr < <AOC

CC 0

4c47

the number of that category; and finally, the ERC code concluded by the rule. As an

example, the name of a rule is generated using a rule found in the CAA study report.

The selected rule determines an ERC for a weapon or weapon system that is also a pacing

item[Ref. 3:p. 1-81]. This rule is found under category 5.3 WEAPON & ASSOCIATED

EQUIPMENT RULES; it is also the first rule in that category and concludes that the

ERC of P should be assigned. Thus, a suitable name for this rule is found to be

ERCP531. Following the Joshua convention of defining a rule, the rule definition is

(defrule ERCP531 (:forward) ..., and so forth to complete the entire rule definition. All

rules for a specific category are placed in the same LISP file. The LISP rule file

corresponds to the category name. In this case, the LISP file maintaining the rules for

weapons is ERC-RULES-WEAPONS.

E. SUMMARY

Chapter 5 covered the visual interface, conduction of a ERC EXPERT SYSTEM

session and most importantly, the management of the rules in the system. The interface

provides a user with the necessary information to monitor the ERC determination for

equipment within a TOE, insuring proper interpretation of the ERC regulation, AR 220-1.

If the current interpretation of a rule is inappropriate or the regulation is changed, the rule

management provided by the Joshua software eases the burden of this task by the rule

manager.

48

UM

- ~61.0

'0

00

c ..
ama

z OD ~ "

a ,

C 0 -C.O

0U < 0Uc

0 X1 SLU
r 41 z A

AJ W) 0 -nt

D1 *0 " C W CFw ujO) (Dr

) EL 1O - . 20 .

cc -0 00U

(5 - be (). S x cc c .CC . * .a C- C

.4 m En ZZ c CC£ E£ C1

<I 0 p0 D
0-

0-

00 77777,
* 2 00 0 , 1

U), U.) Ow~x

4!) V) U

Figure 5.7. Rule Definition Displayed Using Middle Buttoni

49

-1;;-- Mode: Joshua; Package: USER (really JOSHUA-USER) Synta.: Joshua--
;;; Created 4,011o,90 11:32:58 by chamberlin running on SYM4 at tIPS-CS.

I;;SECTION 5.3 22 WEAPON & ASSOCIATED EQUIPMENT ERC RULES 22

'- ---

;;EQUIPMENT TASK -- > CORE EQUIPMENT 2s 5.3.1 as

I (defrula ercp531 (:forward
:documentation 'Basis: Study Report CAA-SR-88-14 dtd June 89, p. 1-81')

11if [or [is-li nCURRENT-LIN T131681
[is-lin RCURRENT-LIN T13169]
[is-lin ECURREIIT-LIN T131743
[is-lin ECURRENT-LIN Z77258]
[is-lin ECURRENT-LIN F403871
[is-lin FCURRENT-LIN J817581
[Is-lin ECURRENT-LIN C76335]
[is-ln sCURRENT-LIN F604621
Cis-i in mCURRENT-LIN K569811
[is-lin mCURRENT-LIN K57392J
[Is-lin ECURRENT-LIN K576671
[is-lin 9CURRENT-LIN K578e31
[Is-lin NCURREtIT-LIM K578211
[is-lin UCURRENT-LIN H4575851
[is-lin uCURRENT-LIN Z3362811

then [and (setf $new-ercs P)
(tell (make-predication '(has-new-erc mCURRENT-LIN ,:new-ercs)))
(show-rule-firing))

!I;~,; (setf db-obj-1 (tell (make-predication '(has-new-erc NCURRENT-LIN $snew-ere$))))

IEQUIPMENT TASK -- > CORE EQUIPMENT as 5.3.2 22

0(defrule erca532 CWorward
~f and :documentation 'Basis: Study Report CRA-SR-8S-14 dtd June 89, p. 1-81*)
i [oCr [has-branch *CURREMT-TOE 07]

[has-branch oCURRENT-TOE 31]]
Eor [is-lin UCURRENT-LIN R95035]

Cis-lin UCURRENT-LIN R94977]
Cis-lin 8CURREtIT-LIN M96741]
Cis-lin ECURRENT-LIN R91244]

Inacs (4oshua) ERC-RULES-weapone.lisp.50 >Chamberlin~thesis SYfl4: LMore below-

1 more definition as well
Point pushed

Figure 5.8. Rule in Z-rnacs Buffer Using Meta-Left Button

50

VI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

The ERC EXPERT SYSTEM has contributions in the areas of the TOE

documentation process, and the development of a complete expert system. The

contributions are as follows. First, the system satisfies a directive given by the DCSOPS

to produce a rule-based system to handle the current arduous task of determining ERC

codes. The task is now simplified, concise and consistent with the rules defined in the

system. In addition, the task is no longer a burden to the TOE analyst; the analyst

provides the underlying reasoning for the code; the machine produces the ERC code; The

second contribution is the ease of integration of this system into concurrent system

development at HQ TRADOC. The demonstration of the Joshua software as a builder

of expert systems is a third benefit of this study. This software provides excellent tools

and features to produce expert system applications. The most important of these are the

embedding of LISP code within all Joshua structures, the ability to modify the underlying

constructs of the Joshua system to fit application needs, and the integration of rule

management directly into the system editor. The final contribution of this study is the

application of the Define-Program-Framework Flavor in producing the interface. This

feature of Symbolics Common LISP has never been attempted at this institution. This

Flavor is clearly a step above current windowing structures used in Common Lisp,

51

particularly since an interactive environment is also provided to generate the basic

windows of the interface.

B. RESEARCH EXTENSIONS

It is quite apparent that this study requires some immediate extensions. First, it is

necessary to complete all rules as noted in Appendix I of the CAA Study Report.

Completion of these rules will make the ERC EXPERT SYSTEM a complete system,

primed to automatically generate and/or verify the ERC within all TOE documents. The

system can also be extended to be more intelligent of the TOE documents themselves.

For example, careful review of the TOE documents will show functionality among groups

of personnel and equipment. Thus, rules could find the dependencies between pieces of

equipment and then apply codes to "equipment groups", therefore not requiring individual

reasoning on each piece of equipment. Meta-rules can render control over rules that may

be found to produce contradictions within a document. Lastly, as the developer of this

system gains more knowledge and experience of with Joshua, modifications can be made

to the TMS to provide better justification to the readiness codes.

52

APPENDIX A

TRADOC DOCUMENTATION SYSTEM
A - RECORD

FLD NO. NAME/DESCRIPTION LENGTH POSITION CLASS

1 SRC - SRC NUMBER 9 1 - 9 CHAR

2 PAR - PARAGRAPH NO. 3 10 - 12 CHAR
3 - FILLER 13 13 - 25
4 EDAT-YY - EFFECTIVE DATE-YEAR 2 26 - 27 CHAR
5 EDAT-MM - EFFECTIVE DATE-MONTH 2 28 - 29 CHAR
6 EDAT-DD - EFFECTIVE DATE-DAY 2 30 - 31 CHAR
7 - FILLER 6 32 - 37
8 MIC - MANAGE. INDICATOR CODE 2 38 - 39 CHAR
9 MEl - MASTER ELEMENT INDICATOR 2 40 - 41 CHAR

10 RTYP - RECORD TYPE(ALWAYS 'A') 1 42 CHAR
i DLA - DATE LAST NCTION(YYMMDD) 6 43 - 48 CHAR
12 PP - PUBLISH/PROCESS CODE 2 49 CHAR
13 - FILLER 30 50 - 79
14 CTU-YY - CTU YEAR 2 80 - 81 CHAR
15 CTU-MM - CTU MONTH 2 82 - 83 CHAR
16 PROP - PROPONENT CODE 3 84 - 86 CHAR
17 - FILLER 9 87 - 95
18 AO - ACTION OFFICER CODE 1 96 CHAR
19 ROD - REPL/OBSOL/DEL/REPLACES 1 97 CHAR
20 STAT - STATUS (DoP, or F) 1 98 CHAR
21 CAT - CATEGORY CODE 1 99 CHAR
22 DNB - DIV/NON-DIV/or BOTH 1 100 CHAR
23 PROJ - PROJECT CODE 1 101 CHAR
24 MARC - MARC CODE 4 102 - 105 CHAR
25 HIST - HISTORY 1 106 CHAR
26 TYP DIV - TYPE DIVISION I I0/ CHAR
27 LOC - LOCATION 1 106 CHAR
28 CHG NO. - CHANGE NUMBER (base ??) 2 109 - 1i0 CHAR
29 - FILLER 5 111 - 115

30 ROD SRC - REP/OBS/DEL SRC 9 116 - 124 CHAR
31 TITL - SRC TITLE 40 125 - 164 VARCHAR

53

APPENDIX B

TRADOC DOCUMENTATION SYSTEM
B - RECORD

FLD NO. NAME/DESCRIPTION LENGTH POSITION CLASS

1 SRC - SRC NUMBER 9 1 - 9 CHAR
2 PAR - PARAGRAPH NUMBER 3 10 - 12 CHAR
3 - CONSTANT '00' 2 13 - 14 CHAR
4 CELL - CELL IDENTIFIER 6 15 - 20 CHAR
5 - FILLER 11 21 - 31
6 BOIP - BOIP NUMBER 6 32 - 37 CHAR
7 MIC - MANAGE. INDICATOR CODE 2 38 - 39 CHAR

8 - FILLER 2 40 - 41
9 RTYP - RECORD TYPE (ALWAYS 'B') 1 42 CHAR

10 DLA - DATE LAST ACTION(YYMMDD) 6 43 - 48 CHAR
11 PP - PUBLISH/PROCESS CODE 1 49 CHAR
12 UMI - UNIT MULTIPLIER-i 5 50 - 54 INT
13 UM2 - UNIT MULTIPLIER-2 5 55 - 59 INT

14 L"43 - UNIT MULTIPLIER-3 5 60 - 64 INT
15 FILLER 26 65 - 92
16 AUG RMK - AUGMENTATION REMARK 3 93 - 95 CHAR
17 FILLER 6 96 - 101
18 FUNC - FUNCTION CODE 4 102 - 105 CHAR
19 FILLER 3 106 - 108
20 CHG NO. - CHANGE NUMBER (base ?) 2 109 - 110 CHAR
21 FILLER 14 Ill - 124
22 TITL - PARAGRAPH TITLE 40 125 - 164 VARCHAR

54

APPENDIX C

TRADOC DOCUMENTATION SYSTEM
C - RECORD

FLD NO. NAME/DESCRIPTION LENGTH POSITION CLASS

1 SRC - SRC NUMBER 9 1 - 9 CHAR
2 PAR - PARAGRAPH NUMBER 3 10 - 12 CHAR
3 GR - GRADE 2 13 - 14 CHAR
4 MOS - MIL. OCCUPATIONAL SPECLTY 6 15 - 20 CHAR
5 SDTC - STAND. DUTY TITLF CODE 3 21 - 23 CHAR
6 AS11 - ADDNL SKILL IDENTIFIER-i 2 24 - 25 CHAR
7 ASI2 - ADDNL SKILL IDENTIFIER-2 2 26 - 27 CHAR
8 ASI3 - ADDNL SKILL IDENTIFIER-3 2 28 - 29 CHAR
9 AS14 - ADDNL SKILL IDENTIFIER-4 2 30 - 31 CHAR

10 - FILLER 6 32 - 37
11 MIC - MGT. INDICATOR CODE 2 38 - 39 CHAR
12 OE - OPERATIONAL ELEMENT 2 40 - 41 CHAR
i3 RTYP - RECORD TYPE (ALWAYS 'C') 1 42 CHAR
14 DLA - DATE LAST ACTION (YYMMDD) 6 43 - 48 CHAR
15 PP - PUBLISH/PROCESS CODE 1 49 CHAR
16 LVLI - STRENGTH LEVEL-i o 50 - 54 INT
1 LVL2 - STRENGTH LTVEL-2 5 55 - 59 INT
18 LVL3 - STRENGTH LEVEL-3 5 60 - 64 INT
19 LVLA - STRENGTH LEVEL-A 5 65 - 69 INT
20 LVLB - STRENGTH LEVEL-B 5 70 - 74 INT
21 LVLC - STRENGTH LEVEL-C 5 75 - 79 INT
22 BR - BRANCH 2 80 - 81 CHAR
23 DCPC - DIRECT COMBAT PROBLTY CODE 2 82 - 83 CHAR
24 NOTE! - NOTE-i 3 84 - 86 CHAR
25 NOTE2 - NOTE-2 3 87 - 89 CHAR
26 NOTE3 - NOTE-3 3 90 - 92 CHAR
27 FILLER 16 93 - 108
28 CHG NO. - CHANGE NUMBER (base ?) 2 109 - 110 CHAR
29 FILLER 54 Ill - 164

55

APPENDIX D

TRADOC DOCUMENTATION SYSTEM

D - RECORD

FLD NO. NAME/DESCRIPTION LENGTH POSITION CLASS

1 SRC - SRC NUMBER 9 1 - 9 CHAR
2 PAR - PARAGRAPH NUMBER 3 10 - 12 CHAR
3 - FILLER 2 13 - 14
4 LIN - LINE ITEM NUMBER 6 15 - 20 CHAR
5 ERC - EQP. READINESS CODE 3 21 - 23 CHAR

6 - FILLER 8 24 - 31
7 BOIP - BASIS OF ISSUE PLAN NBR 6 32 - 37 CHAR
8 MIC - MGT. INDICATOR CODE 2 38 - 39 CHAR

9 OE - OPERATIONAL ELEMENT 2 40 - 41 CHAR
10 RTYP - RECORD TYPE (ALWAYS 'D') 1 42 CHAR
11 DLA - DATE LAST ACTION (YYMMDD) 6 43 - 48 CHAR

12 PP - PUBLISH/PROCESS CODE 1 49 CHAR
13 LVLI - STRENGTH LEVEL-i 5 50 - 54 CHAR
14 LVL2 - STRENGTH LEVEL-2 5 55 - 59 CHAR
15 LVL3 - STRENGTH LEVEL-3 5 60 - 64 CHAR

16 LVLA - STRENGTH LEVEL-A 5 65 - 69 CHAR
17 LVLB - STRENGTH LEVEL-B 5 70 - 74 CHAR

18 - FILLER 9 75 - 83 CHAR
20 NOTE1 - NOTE-1 3 84 - 86 CHAR
21 NOTE2 - NOTE-2 3 87 - 89 CHAR

22 NOTE3 - NOTE-3 3 90 - 92 CHAR

23 EQP RMK - EQUIPMENT REMARK 3 93 - 95 CHAR
24 DTOE - ? 1 96 CHAR
25 QTY ADJ - QUANTITY ADJUSTMENT CODE 1 97 CHAR
26 APP TOE - BOIP APPLIED TO TOE CODE 1 98 CHAR

27 OSR - OTHER SUPPORT REQUIREMENT 1 99 CHAR
28 - FILLER 9 100 - 108
29 CHG NBR - CHANGE NUMBER (Old base) 2 109 - 110 CHAR

30 - FILLER 54 !1 - 164

56

APPENDIX E

TRADOC DOCUMENTATION SYSTEM
E - RECORD

FLD NO. NAME/DESCRIPTION LENGTH POSITION CLASS
...

1 SRC - SRC NUMBER 9 1 - 9 CHAR
2 PAR - PARAGRAPH NUMBER 3 10 - 12 CHAR

3 - FILLER 2 13 - 14
4 LIN - LINE ITEM NUMBER 6 15 - 20 CHAR

5 ERC - EQUIPMENT READINESS CODE 3 21 - 23 CHAR

6 - FILLER 14 24 - 37
7 MIC - MGT. INDICATOR CODE 2 38 - 39 CHAR

8 OE - OPERATIONAL ELEMENT 2 40 - 41 CHAR

9 RTYP - RECORD TYPE (ALWAYS 'E') 1 42 CHAR
I0 DLA - DATE LAST ACTION(YYMMDD) 6 43 - 48 CHAR

11 PP - PUBLISH/PROCESS CODE 1 49 CHAR
12 LVLI - STRENGTH LEVEL-i 5 50 - 54 INT
13 LVL2 - STRENGTH LEVEL-2 5 55 - 59 INT

24 LVL3 - STRENGTH LEVEL-3 5 60 - 64 INT
15 LVLA - STRENGTH LEVEL-A 5 65 - 69 INT
16 LVLB - STRENGTH LEVEL-B 5 70 - 74 INT
17 - FILLER 9 75 - 83
18 NOTE! - NOTE NUMBER 1 3 84 - 86 CHAR

19 NOTE2 - NOTE NUMBER 2 3 87 - 89 CHAR
20 NOTE3 - NOTE NUMBER 3 3 90 - 92 CHAR
21 EDP RMJ< - EQUIPMENT REMARK NUMBER 3 93 - 95 CHAR
22 - FILLER 13 96 - 108

23 CHG NBR - CHANGE NUMBER (Old Base) 2 109 - 110 CHAR
24 - FILLER 54 Il - 164

57

APPENDIX F

TRADOC DOCUMENTATION SYSTEM
F - RECORD

FLD NO. NAME/DESCRIPTION LENGTH POSITION CLASS

1 SRC - SRC NUMBER 9 1 - 9 CHAR
2 PAR - PARAGRAPH NUMBER 3 10 - 12 CHAR
3 - FILLER 2 13 - 14
4 FRMK - F-RECORD REMARK NUMBER 6 15 - 20 CHAR
5 SEQ - REMARK SEQUENCE 3 21 - 23 CHAR
6 - FILLER 14 24 - 37 CHAR
7 MIC - MANAGE. INDICATOR CODE 2 36 - 39 CHAR
8 - FILLER 2 40 - 41
9 RTYP - RECORD TYPE (ALWAYS 'F') 1 42 CHAR

IC DLA - DATE LAST ACTION(YYMMDD) 6 43 - 48 CHAR
1i Pp - PUBLISH/PROCESS CODE 49 CHAR
12 - FILLER 59 50 - 108
13 CHG NBR - CHANGE NUMBER (Old Base) 2 109 - 110 CHAR

14 - FILLER 14 111 - 124
15 RMK LINE - REMARK 40 125 - 164 CHAR

58

APPENDIX G

TRADOC DOCUMENTATION SYSTEM
P - RECORD

FLD NO. NAME/DESCRIPTION LENGTH POSITION CLASS

1 SRC - SRC NUMBER 9 1 - 9 CHAR
2 PAR - PARAGRAPH NUMBER 3 10 - 12 CHAR
3 GR - GRADE 2 13 - 14 CHAR

4 MOS - MIL OCCUPATIONAL SKILL 6 15 - 20 CHAR
5 SDTC - STD. DUTY TITLE CODE NBR 3 21 - 23
6 ASII - ADDNL SKILL IDENT.-1 2 24 - 25 CHAR
7 A512 - ADDNL SKILL IDENT.-2 2 26 - 27 CHAR
8 A513 - ADDNL SKILL IDENT.-3 2 28 - 29 CHAR
9 AS14 - ADDNL SKILL IDENT.-4 2 30 - 31 CHAR

10 BOIP - BASIS OF ISSUE PLAN NBR 6 32 - 37 CHAR

11 MIC - MGT. INDICATOR CODE 2 38 - 39 CHAR
12 OE - OPERATIONAL ELEMENT 2 40 - 41 CHAR

13 RTYP - RECORD TYPE (ALWAYS 'P') 1 42 CHAR

14 DLA - DATE LAST ACTION (YYMMDD) 6 43 - 48 CHAR
15 PP - PUBLISH/PROCESS CODE 1 49 CHAR
'6 LVLI - STRENGTH LEVEL-I 5 50 - 54 INT
17 LVL2 - STRENGTH LEVEL-2 5 55 - 59 INT

18 LVL3 - STRENGTH LEVEL-3 5 6C - 64 INT
19 LVLA - STRENGTH LEVEL-A 5 65 - 69 INT

20 LVLB - STRENGTH LEVEL-B 5 70 - 74 INT
21 LVLC - STRENGTH LEVEL-C 5 75 - 79 INT

22 BR - BRANCH 2 80 - 81 CHAR
23 DCPC - DIRECT COMBAT PROB. CODE 2 82 - 83 CHAR

24 NOTEl - NOTE NUMBER-I 3 84 - 86 CHAR

25 NOTE2 - NOTE NUMBER-2 3 87 - 89 CHAR
26 NOTE3 - NOTE NUMBEP 3 3 90 - 92 CHAR
27 - FILLER 3 93 - 95

28 DTOE - ? 1 96 CHAR
29 QTY ADJ - QUANTITY ADJUSTMENT CODE 1 9- CHAR
30 APP TOE - BOIP APPLIED TC TOE CODE 1 98 CHAR

31 OSR - ORGANIZATIONAL SPT. ROMTS. 1 99 CHAR

32 - FILLER 9 100 - 108
33 CHG NBR - CHANGE NUMBER (Old Base) 2 109 - 110 CHAR

34 - FILLER 54 111 - 164

59

APPENDIX H

Mode: Joshua; Package: JOSHUA-USER: Syntax: Joshua -

* Cre ated 4/05/90 10:39:58 by chamberlin running on SYM4 at NPS-CS.

* FILENAME.................erc-autc-read-toe.lisp
AUTHOR...............: Cpt Thomas E. Chamberlin

* DATE CREATED.......... 5 Apr 90
* FILE DESCRIPTION ... : Contains the methods invoked by the "Auto Read Current TOE",

on the Interface command menu. A sing.e TOE record is read

tested for record type, and then depending on the record
instantiates global variables or is skipped.

* MOD:FICATIONS 1C May 9C - Adjusted format of messaoen

**

(d.e fun auto-read-current-toe ()
(setf *toe-.record* (setf *ena..o.fjfie* (read-line *izn..file* nil)))
(cond ((not (equalp *toe-record- nil))

(aujto-test- for-record))
(t (auto-read-current-toe)))

(defun auto--est-for-record ()
(cond ((a-.to-test-for-A-rec) (format t **-%-@3TA-RECORD READ !-"

(setif title-length* (- (string-length -toe-record*) 124))
(get-toe-aata -toe-record*)
(auto-read-current-toe))

(auto-test-for-B-rec) (format t "-%-@3TB-RECORD READ -

(get-toe-para *toe-record*)

(auto-read-current-toe))
((auto-test-for-C-rec((format t "-%-@3TC-RECORD READ !-"

(auto-readi-current-toe))
((auto-test-for-D-rec) (format t "-%-e3TD-RECORD READ !-A'*)

(get-eqruip-data *toe-record-)
(auto-read-current-toe))

((auto-test-for-E-rec) (format t "-%-83TE-RECORD READ -)

(get-eqruip-data -toe-record-)

(auto-read-current-toe))
((auto-test-for-F-rae) (format t "-%-@3TF-RECORD READ !!-k")

(auto-read-current-toe))
((auto-test-for-P-rec) (format t "-%-@3TP-RECORD READ !-"

(auto-read-current-toe?)
(t (com- flush- joshua-di splay)

(format t "-8%-@59T-vRZVIEWED TOE -A-:5

(:dutch :bold :very-large) *selected-toe*)
(format t "-2%-@57T-v= MORE RECORDS FOUND !-

(:dutch :bold :very-large))
(format t "-2%-@70TvCE COMPLETE !-

' (:dutch :bold :very-large)))))

60

(defun auto-test-for-A-rec (
(if (eq (string-search-char '#\A *toe-record* :start 41) 41) t))

(defun auto-test-for-B-rec ()
(if (eq (string-search-char '#\B *toe-record* :start 41) 41) t))

(defun auto-test-for-C-rec (
(if (eq (string-search-char '#\C *toe-record* :start 41) 41) t))

(defun auto-test-for-D-rec ()

(if (eq (string-search-char '#\D -toe-record* :start 41) 41) t))

(defun aut-o-test-for-E-rec ()

(if (eq (string-search-char '#\E *toe-record* :start 41) 41) t))

(defun auto-test-for-F-rec ()

(if (eq (string-search-char '#\F *toe-record* :start 41) 41) t))

(defun auto-test-for-P-rec ()
(if (eq (string-search-char '#\P *toe-record* :start 41) 41) t))

61

APPENDIX I

m ' cce: :cs nua; Pa:cage: JOSHUA-USER; syntax: Joshua
Cre ated !/0Z7/9^ .75 by charnher-in run.ning in SYM4 at NPS-CS.

....................

...... erc-funcottons. isp
ATU r 0..... :pt :homas Z. Charmerlin

* DACE- CREA-En May 90
F:1_DZszR:P=:.1 ... Contains the all methoos used by the entire svster to

instantiate all the globa- var;.ables, wntcn in turn are
used as arg-uments to the predicate defini tions. The
clohal' variabcles are defined by the record type and the
TDS reacra -aycuts (Appendices A-G).

* MZ~CZC~O~S.........:12 May 9C - aaoed mrerge pathnames' for fun.ction
select-new-toe'

~~~~.................... ............-...............

(defun select-new-toeP
(setf 'selected-zoe' , l
(select-toe)
(set! ':n-fi-e* (ooen oneroe-patnnames 'se-ected-toe, *sy4:>ch.-a-berlin.->t-oe-data>, .dat"1))

(aef-ur. cet-toe-data (-toe-record')
(Set! 'toe-n,..'

):nterr (strinc-append (str~n= aPre! *toe-record* 0))
(s tr=I n (aref -toe-:-ecord' 1))
(st ring (aref 'toe-recor&* 2))

(string (a ref 'toe-record, 3))
(string (aref 'toe-record' 4))
(string (are! -toe-record' 5))
(string (aref -toe-record, 6))
(string (aref 'toe-record' 7))
(strina (are! 'toe-record' 8)))

(set! 'toe-title' "
(cc (cou.nter" C (- cou-nter
i(eq cc 4ter --tle-enctn*) 'toe-title')

(set! 'title- cnar*
istrinc (are! tereod 124 counter))))

setf'*toe-title' (string-appenc 'toe-title' 'title-cnar')

(set! f *rancn' (9arse--nteoer 'toe-record' :start 0 :end 2))
(set! pcrop- )(. -- nteqer 'toe-record' :start 63 :end 86))
(set! 'cat-ccoe' (parse-intecer 'toe-record' :start 96 :end 99))

tell (raepeia;c '(has-toe-nu- .Z CO .toe-nur'))
(-,e-- (mae-vred;,cati on (has-brancr ZRZ:-O .- branch*))
(tell_ (ra~e-=rec~catcn '(har-proponent *"FZ-TE .Prop*)):

te(-age-=red;cat:ic '(nas-czt-coc -nUCCE*cam-cooe')fl

62



(cef'un get-toe-para (-toe-record-)

(set.f 'pare, (parse-lnteger toe-record- :start 9 :enc -1))

(defLur. get-ectuip-ciata (,toe-recorc*)
(setf "-ir-

(in~tern. (string-append (string (aref *toe-record, 14))
(str:.ng (aref -toe-record, 15))
(str.,ng (aref -toe-record, 26))
(string (are! -toe-record, 117))

(strinc (are! -toe-record, 18))
(string (are! -toe-recordl 19))

(set! *old-ercl
(irntern (string-append (string (are! -toe-reccrdl 20)))

(tell (?ake-predicatior. '(is-hir *IT I ~ir.*)))
)tel- (maxe-predication I(has-old-erc ZURRNTr-LIN Iold-erc*))))

(de!ur. show-rule-firina ()
(fcr-mat t "-1t-25@7TOF_: -A PARA: -A 'ZN: -A OLD-ERO-: -A NEW-ERC: -A-It"

-toe-nu- -pare- 2in' po-erc- -new-ercl))

63



APPENDIX J

Mode: Joshua; Package: USER (really JOSHUA-USER); Syntax: Joshua
; Created 4/05/90 10:52:48 by enamberlin running on SYM4 at NPS-CS.

* FILENAME .............. : erc-initial-data.lisp
* AUTHOR ................. Cpt Thomas E. Chamberlin

DATE CREATED ....... 5 April 9C
; FILE DESCRIPTION... : Contains al! of the global variables for the system.

Also instantiates any variables prior to system run.

; MOCIF:CATIONS .......

DEFINE ALL GLOBAL VARIABLES

(defvar *lin*) ;;; Line Item Number, read from TOE D & E records
(defvar -new-erc-) ;; ERC assigned to LIN by a rule
(defvar *old-erc-) ;:; ERZ that is currently in TOE document
(defvar *toe-num) :;; TOE number, read from A record
Idefvar -toe-record*)
(defvar *toe-title*) ;;: TOE title, read from A record
(defvar *title-char*) ;;; A single character of TOE title, used to determine title length
(defvar *tltle-length*) ;;; Length of TOE title
(defvar *branch*) ;;; Branch of the TOE
(defvar *func-) ;;; Function of TOE paragraph or LIN
(defvar *mission*) ;; Mission of TOE or TOE paragraph
(oefvar -prop-) ;: Proponent of the TOE, read from A record
(defvar -cat-code-) :;; Category code of TOE, read from A record
(defvar -para') ;;; Paragraph of TOE, read from B record
(defvar *in-file*) ;;; The variable used to capture which TDE to use
(defvar -end-of-file-) ;;; End of file marker
(defvar *selected-toe-) :;: TOE chosen to run thru system

;:; INITIALIZE VARIABLES

(setf *new-erc- 'unknown)

64



APPENDIX K

Mode: Joshua; Package: USER (really JOSHUA-USER): Syntax: Joshua -

Created 4/23/90 12:54:42 by chamberlin running on SYMI at NPS-CS.
************************************************...**..w* ** * *

FILENAME............... erc-interface.lisp
AUJTHOR..................Cpt Thomas E. Chamberlin

DATE CREATED...........23 Apr 90
FILE DESCRIPTION ... : This generates the interface windows for the expert system

Key items to note here are:
1. create desired commend needed on Command Menu first
2. delete current command table - co:delete-comand-table
3. compile entire file to update commands
4. compile 'define-program-framework' region to recreate

window interface

MODIFICATIONS .... 8I May 90 - updated display messages

(DW :DEFINE-PROGRAM-FRAMEWORK ERC-EXPERT-SYSTEM
:pretty-name ' ERC EXPERT SYSTEM'
SEIECT-KEY

* \Circle
COMMAND-DEFINER

ICOMMAND-TABLE
(:INHERJT-FROM 'Q(color' full command" "s'endarc arguments" "input editor compatibility''

.global" user")

:KBD-ACCELERATOR-P')
STATE-VARIABLES

nil
:terminal-io-pane jCSH'JA
selected-pane JOSHUA
PANES
((ERC-EXERT-SYSTEM :TITLE

:HEIGHT-IN-LINES
:reverse-video-p t

:REDISPLAY-AFTER-COMMANDS t
:default-character-style ' (:sans-serif :bolc-italic :very-.large))

(TOE-NUM :DISPLAY
:default-character-style 'W(swiss :roman :normal)
reoisplay-after-commands t

:more-p t

:margin-companents ' ((dw:margin-borders :thickness 2)
(dw:margir.-label :margin. :top

:box :inside
:centered-p t

:style (:dutch :bcld :small)
string "Current TOE Number")))

(TOE-7:TLE :DISPLAY
:default-character-style ' ):swiss :roma. :normal)
redisplay-a fter-com'nds t

* :more-p nil
:marg..n-components ' ((dw:rsargin'-borders :thickness W'

(dw:margin-label :margin. :top
:box :inside
:cerntered-p t

:string "Current TOE Title"))

655



:defa,.-c'naracter-3ZYle '(:sw±S2s :roman :normal)
redi.spla y-after-commandst

:-arg:n-ccrnponents I dIw:margir.-borders :th~ickness 2)
(ow:margin~-label :mnargin :top

:box :inside
:cer.:ered-p t
:style (0dutch :bold :sm&:1)
:string "Current TO Paragraph")))

(LIN :LrZSPLAY
:oefauat-character-style ':sw-4s3 :roman :normial)

:redisplay-afte-cornancis

:mrC.,gi-componelnts ((dw:marq-r.-bord~rs :thickness 2)
(dw:marc.n-.aDe :margin :top

:box :inside

:e,.:erea-p t
:style (:dutch- :bold s~l
:string "Curren~t LIN"f)

(CLD-ERC7 :DZSP:AY
:oefa-z1t-cnar~cter-st-vle ' :vwiss :roman :normal)
redisplay-after-commands t

:more-p n-
:mftrcgr-componen~s ( (dw:marcir.-borders :thickness 2)

(ow:rmarcir.-label :margin :top

:box :iniside
.cernterec-p t
:style (:dutch- :bold saJ
:string "Old ERC Code")))

(NK-ER: ::-SPAY
:oefa.ult-charecter-st.le )?:w3wi5 :roman :normal)
redistay-fter-co'.mancs

:imore-p i
:marqgr.-components 1() dw:marc-r-borders :thickness 2)

(ow~marcir.-.ae. :margin~ :top

:box :insioe
.cerntered-p t
:style (:dutch :bold :srmA!-)
.strinc "New ERC Code")))

:iefa;t-charac-.er-styie )(:3W Ss *roman- :ncrma.)
:recisplay-after-commanas r.-"

-iagircomonets (dw:mrc-n-borders :thickness 2)
(dw:mr-;.-scrccZ-bar :liarain :left)
(ow:marczin-lael :margin :top

:box :inside
:centered-pt
:styl±e (:dutc*- :bolc :normal)
:string "JOSHUA, D:SPLAY")))

66



C~~~~COMMAIN:-MENU-.OMN-t

:CENTER-P n_-1
:ROWSt
:MENU-LEVL ''O-EVL

(:N:ERACTOR- : INErRAC7OR
:HEIGHT-:N-LINZS 4))

:N-IURA::ONS
((Dw: :MAI N
C: LAYOU7

(DW::MAIN :COLUMN ERC-EXPER7-SYSTEM ROW-! JOSHUA COMAND-MENU-1 1XTERACTOR-11
(ROW-! :ROW TOE--NUV TOE---::Lr TOZ-PARA COLUMN-:) (COLUMN-'- : COLUMN LIN CLD-ERCZ NEW-ERC))
(:S:ZE-S

(ER:M:NCC-7EXPE-RT-SYSTEM _:LIKES) (JOS *UA 25 :LINES)
(COMMAND-MZNU-: :ASY-W:NDOW SELF :S.Zr-rOF-?ANZ COMY.AND-MEN'U-1C : RCO :UNZS)
:-HEN CROW-: :even))

(ROW-: ()TCE-NUM :even)CO-~ :even) (T.OE-PARA :even~ ) CCOLUM-1 :even')

(COLUM10,N-: (L:N :EVEN) COLD-C-RC :EVEN) (NEW-ERC :EVEN))))))

(ie !:-ne-erc-exper - syste,. -cr.-rnand
(con-display-toe-rnumber :mern2-accelerator t)

(send (dw:qet-prograrm-pane 'TO---NUM) :clea:-h43tory)
(le: C(Ista rd-output, Caw:get-prograT'-pane 'TOE-NUM)))

t. ormat t

(: L:,cr. :bo- :large) *tee-rnarr'))

,ce - rne-erc-exper: -syste-cor-rarnc

ser*c (ow:oet -vroc ra- Dane 'O-T.) clear--r_4story)

('et (,stanard-oztputl (aw:qet-prograrm-pane'O-TL)C
Cfcrrrnat -: -@-c-

C(,cutc- :bold :normal) 'toe-title*)))

(cef:ne-erc-expert-syste-corrnanci
(cor-c;,splay-toe-paragraph :renu-acceerazor t)

(send Cow:oet-progranm-pane 'TOE-PARA) :clear-1-story)
(lt (starnoard-output, (dw:oet-program-pane TOE-PARAC)))

(format t "-3 -20@T-vca-=
C(:sw.ss :bold-italic *Iaroe) para*)

(oef-ne-erc-exper: -syster.-comrnand
Ccoyr-disp.lay-current-li. :menu.-accelerator t)

(3end (dw:qet-prograr'-pane 'ZINC :clear-history)
(lt(Cstanard-outpu:, (ow:get-program-pane 'ZIN))
(forMa: t -'-.)T- (a~ :SWjss :bolc-jta.ac :normal) *-*irC)

(cif5-ne-erc-exrper:- syster-comTnar.
Ccor-cls=.a\'-rew-erc :mTe,.-acceleratcr t)

(senc (ow:oe:-proararr-pane 'NCw-rR= :c~ear-h-.storyC
)et 'saac: ( dw:ce -;:roqra--pane 'NETW-ZRC:))
(cn ( iec -new-ercl -.rnjnow.

(form~at "-*-10@T-v=T ZVkALUATCD-= 'CSwiss :joll-.tai c :rncrna-)C
Ct : format-~a- ' C:sw;ss :bo.l-ita.ic :ncrn~a,) -ew-erc' C)

67



oe f ine-erc-expe rt- syst er-oi~mand
icomri'2slay-olc'-erc :menu-accelerator t)

(send (diw~get-proral'-pane 'OLD-ERC) :clear-history)

(le: ( (standard ou.t pt* I dw:oget-prograr--pafle 'OLD-ERC))

(format t "-'m-2OeT-v~a-!5 ' (: swiss :bold-ltalic :norm&-') -olderc-))

(cdefi-ne-erc-expert -systeir-ommand
(cor-sow-Doshua-daaa8se :menu-acoelerator t)

(let () standard-output- (dw:oet-progrr-pane 'JOSHUA))
(i4: :con-show-)oshia-ataDCse))

)Oe fine-err-expe r:-systerr'-ommand
)cor-show-Zosriua-rules :Trnuacceerazor t)

((type 'keyword :defaiult ':Type)
(d-,rectio. 'symbol :default 'forward))

(I et ( (st an ard-ou2tput- (dw:get-prograrr-pane IJOSHUA))
(j-::cor-snow-joshua-rules))
(j::co--show-Joshua-rules 'type 'direction)))

(de fne-erc-expert -systemr-comimand
)cor-s . ow-josf ua-predicates :meni.-accelerator t)

(let ))Istandiard-output- (dw:get-prograr-pane 'JOSHUA))
(,:comr-show-2oshua-credi-cat es))

)oe fzne-erc-expert-sy~ter-command
(cor-trace-forwarc-rules :n rv-accelerator t)

(le- ( (Istandard-outout' (ow:get -zrograim-pane 'JCSPUA) )
(cor -enable-ics-a--rac,-n-forwari-r.;le3)

)ae fine-err-expert -systerr-comnrand
j comr-disable-a:-rue-t racinlg :menu-acceierator t)

(let ((,standard-output* (dw:oet-prograr-pane 'JOSHUA))
()j: :corm-disable-)osnua-t raci-ng)))

(oiefine-erc-expert -systemi-cornmand
(corr-f!uh-)oflhua-d~spay :mnu~x-Acceerator t)

(send (dw~oet-prograr'-pane 'JOSHUA) :clear-history))

)oe fne-erc-exe rt- systemr-corrmand
(coT'-fl-,sh-TO-windows :menu-accelerator t)

(send (dw:get-prograrr-pane 'TOE-NUM) :Clear-history)
(send (dw:get-programr-pane 0T ) clear-history)
(send (dw: get-program-pane 'Tor-PARA) : Clear-history)
(send (ow:9et-progra--pane -'--) *clear-history)
(send (ow:oet-prograrr-pane COLD-ERC) :clear-history)
(send (ow:oet-prograi'-pane 'NEW-ER:) :clear-history))

68



(define-erc-expert -system-command
(con-select-toe :menu-accelerator t)

(com-flush-all-windows)
(clear)

(select-new-toe)
(com-flush-joshua-di splay)

(format t
._-lO%-5@T-vCDE -A IS LOADED AND READY TO RUN THROUGH-5

(:dutch :bold :very-large) *selecied-toe-)

(format t
"-VcERC EXPERT SYSTEM -:
(:swiss :bold-italic :very-large)()

(de fi ne-erc-expe rt -system-command
(com-step-read-current-toC :menu-accelerator tW

(let ((standard-output- (dw:get-program-pane 'JOSHUA))))
(read-current-toe)
(ccrnd ( (test-for-A-rec)

(com-di splay-toe-number)
(cor-display-toe-title))
(test-f or-E-rec)
(com-display-toe-paragraph))
(test-for-D-rec)
(com-display-current-lin)
(com-di splay-old-erc)
(com-display-new-erc))
((test-for-E-rec)
icom-di splay-current-I in)

(com-di splay-old-erc)
(con'-di splay-new-crc))

(setf *new-erc* 'unknown))

(define-Crc-expert -system-command
(com-auto-read-current-toe :menu-accelerator W)

(coi-flush-all -windows)
(send (dw:get-prograin-pane 'JOSHUA) :set-inorc-p nil)

(auto-read-current-toe)
(send (dw:get-program-pane 'JOSHUA) :set-more-p t))

(def ine-crc-expert-system-command
(con- flush-al 1-windows :menu-accelerator t)

Isn d()-rgrmpn JSU) cerhsoy
(send (dw: get -program-pane 'JOSHU) :clear-hi story)

(send (dw:get-program-pane 'TOE-NUTL) :clear-history)

(send )dw:get-programi-pane 'TOE-TITLE) :clear-history(

(send (dw:get-program-pane 'TLI-N RA :clear-hi~tory)
(send )dw:gct-program-pane 'LN)RC :clear-history)

(send (ow~get-program-pane 'OLD-ERC) :clear-history()

(def: ne-erc-expert-system-command
* (cor-clear-joshua-database :menu-accelerator t)

(cor-f~ut5al:windows)
(clear)
(ji::comn5how-osrhua-database))

(defineerc-xprtsyste-conmand
(ccr-znte:: :inu-accelerator t)

69



APPENDIX L

Mode: Joshua; Package: USER (really JOSHUA-USER); Syntax: Joshua --

Created 4/12/90 14:19:30 by chamberlin running on SYM4 at NPS-CS.

*.........**.......***....***..*....*.

FILENAME .............. erc-predicates.lisp

AUTHOR ................ Cpt Thomas E. Chamberlin

DATE CREATED ....... : 12 Apr 90
FILE DESCRIPTION... : Contains predicates definitions or the ERC EXPERT SYLTEM

MODIFICATIONS .......

**************************w ' w~t' ww*************************************

MISSION PREDICATES

(define-predicate has-night-ops (*current-toe*)

(Itms:ltms-predicate-model)) ;:; identifies if a TOE requires night ops

TOE SPECIFIC PREDICATES

(define-predicate is-paragraph (current-toe-para *para*)
(ltms:ltms-predicate-model)) ;;; identifies current TOE paragraph

(define-predicate is-a-valid-b (valid-branch *branch,)
(ltms:ltms-predicate-model)) :;; ensure branch read from TOE is valid

(define-predicate has-branch (current-toe -branch*)
(itms:ltms-predicate-model)) ;:; identifies current TOE branch

(define-predicate has-toe-num (current-toe toe-num*)
(itms:ltms-predicate-model)) :;; identifies current TOE number

taefine-predicate has-proponent (current-toe -prop*) ;;: identifies proponent for current TOE
(!tms:ltms-predicate-model))

(oefine-predicate has-cat-code (current-toe -cat-code*) ::: identifies category code for TOE

(Itms:ltms-predicate-model)) ;;: I- cbt, 2 - cbt spt, 3 - cbt srv spt

(define-predicate has-mission (current-toe-para Wmission-)

(ltms:ltms-predicate-model)) :; predicate I believe is required to specify
specified missions of TOE paragraphs

should be down to paragraph level

LIN SPECIFIC PREDICATES

(define-predicate is-lin (current-lin *lin()
(itms:ltms-predicate-model)) ;;; predicate to id the specifed LIN of a TOE

(define-predicate has-old-erc (current-lin -old-erc*)

(tms:ltms-predicate-model)) ;;; predicate to id the old ERC of specifed 1N

(define-predicate has-new-erc (current-lin -new-erc()
(itms:tms-predicate-model)) ;;; predicate to id the new ERC of specifed WN

(define-predicate is-function (current-lin-func -func)
(itms:itms-predlcate-mooe)) ) :: predicate I believe is required to specify

;:; specified functions for pieces of equipment

*:: this is a the I & E record level

70



APPENDIX M

-Mode: Joshua; Package: JOSHUA-USER: Syntax: Joshua--
Created 4/05/92 10:39:5E by chamberlin running on SYM4 at NPS-CS.

FILENAME ............... erc-read-toe.lisp
AUTHOR.................Cpt Thomas E. Chamberlin

DATE CREATED...........5 Apr 9C
FILE DESCRIPTION ... : Contains the methods invoked by the "Read Current TOE"

or. the Interface command menu. A single TOE record is read
tested for record type, and then depending or. the record
instantiates global variables or is skipped.

MODIFICATIONS......... 10 May 90 - Adjusted format of messages

(defun read-current-toe C
(setf -toe-record- (setf -end-of-file, (read-line *in-file, nil-)))
(test-for-record))

(defun test-for-record (0
(cond ) (test-for-A-rec) (format t "-%-@3TA-RECORD READ !-%")

(setf *title-jength* (- (string-lenoth *toe-.record*) 124))

(get-toe-data -toe..record*))
))test-for-B-rec) (format t "-'-@3TB-RECORD READ !-"

(get-toe-para wtoe-.record*))
)(tes--for-C-rec) (format t "-%-T3371-RECORD READ k"

(read-t:urrent-toe))
((test-for-D-rec( (format t "-&-F37D-RECORD READ !-"

(get-equip-data -:toe-reccrdfl
)(test-for-E-rec) (format t "-%t-@3E-_-RECORD READ I)

(get-equip-aata * toe-record*))
(ts-frF-e((format t "-%-@3:F-RECDRD READ !-"

(read-current-toe))
((test-for-P-rec) (format t "-%-@3TP-RECOR2 READ '-"

(read-current-toe))
(t (co~r- flush- joshua-di splay)

(format t "-8%-059T-vMVIEW ED TOE -A-25

(:dutch :bold :very-:.aroe) s3elected-toe*,
(format t *-2%-657?T-v= MORE RECORDS FOUND

'(:dutch :bold :very-large))
(format t "-2%-@7CT-vCOTE !!-:5

(:dutch :bold :very-large))(H(

(defun test-for-A-rec ()
(if (eq (string-search-char '#\A *toer.eccrd* :start 41) 41) t))

(defun test-for-B-rec ()
(if (eq (string-search-char '#\B *toe-record* :start 41) 4") t))

(defun test-for-C-rec ()
(if (eq (string-search-char '#\C *toe-record* :start 41) 41) t))

)defun test-for-D-rec (0
(if (eq (string-search-char 'O\D *toe-record- :start 41) 41) tO)

(defun test-!or-E_-rec ()
(i! (eq (string-search-char '*\E -toe-record- :start 41) 41) to)

(defun test-for-F-rec C)
()4f (eq (string-search-char '#- *toe-rec-ord* :start 41) 41) t))

(defun test:-for-P-rec 0)
(if (eq (string-search-char '*\P -toe-record' :start 4"1 4:) t))

71



APPENDIX N

Mode: Joshua; Package: USER (really JOSHUA-USER); Syntax: Joshua
Created 12/14/89 10:16:52 by chamberlin running on SYM4 at NPS-CS.

********...............*

FILENAME............... erc-rules-acrft-hel .lisp
AUTHOR.................Cpt Thomas E. Chamberlin

DATE CREATED...........20 Apr 90
FILE DESCRIPTION ... : Rule for night operation requirement. Found in CAA Study

Report page 1-23.

MODIFICATIONS........: 16 May 90 - added 'show-rule-firing' function

SECTION 4.1 ** AIRCRAFT & HELICOPTER RULES *

CORE EQUIPMENT ** 4.. *

(defrule ercp4il (:orward
:documenvation "Basis: Study Report CAA-SR-80-14 dtd June 88, p. :-56")

if land [or [is-lin E-CURRENT-LIN N04730:
li-in NCURRENT-LIN N04596]

[is-lr. ECURRENT-LIN N15518:

(is-!in wCURRENT-LIN N047323

ls-lin ECURRENT-LIN N044561
(s-!in wCURRENT-LIN N04982:
(is-lin ECURRENT-LIN N23721
[is-lin ECURRENT-LIN W807153
[is-lin =CURRENT-LIN Y03104:
ris-lin wCURRENT-LIN N05050*.
[is-!in OCURRENT-LIN A34938.'
r1 5 lin wCURRENT-LIN N05482]

[is lin OCURpjENT-LIN A70349]]
for [i-function current-lin-func "Tactical operations"[

[is-function currenc-lin-func "Maintenance Operations"';
[is-function current-lin-func "Medical Evacuatio."]]

ther [and (setf *new-erc- 1P)

,nas-new-erc zCURRENT-LIN -new..r*
(show-rule-firing) 3)

72



* CORE E:U:?MENT ** 4.:.2

(defr'.;Ie erca4.2 (:forward
:documnentatior "Basis: Study Report CA.A-SR-88--14 dtd June 88, p. :-5E**)

4.f [and [or [4s-lir. mZURRENT-LIN N0473C]

[is-lin .CURRENT-LN N04596]
[is-lin *CURRENT-LIN N15518

[is-lin wCURRENT-LIN N04732]
[is-l.ir. mCURRENT-LIN N04456]
[is-lin vECURRENT-LIN N04982]

[is-Jin mCURRENT-LIN N237211
[is-lin wCURRENT-LIN W8C75S
L s-lin. CUFORENT-LIN Y031041
[is-lir mEZURRENT-LIN NO5C501

[is-!>. mCURRENT-LIN A34938
[is-Jin .CURREN:-LIN NC5482:
'Js-lin mC 1RRE N T-TN 134 ,

15-fu-ncion current-lin-funa "Adnmin-uog operations'JI
then [and (setf 'new-erc- 'A)

[nas-new-erc mCURRENT-IIN "new-erc*,
(snow-rule-flring)

73



APPENDIX 0

; t - Mooe: Joshua; Package: USER (really JOSHUA-USER); Syntax: Joshua
Created 12/14/89 10:16:52 by chamberlin running on SYM4 at NPS-CS.

FiLENAME .............. erc-rules-binocular.lisp
AUTHOR ................. Cpt Thomas E. Chamberlin

DAT TREATED ....... ' 12 Dec 89
FILE DESCRIPTION... : Rule for binoculars. Found in CAA Study

Report page 1-65.

MODIFICATIONS ...... ' 16 May 9C - added 'show-rule-firing' function

SECTION 4.8 *1 BINOCULAR RULE

BINOCULA? RULE .. 4.8.1

(oefrule erco481 (:forward
:oocumentation "Basis: Study Report CAA-SP-88-14 dtd June 86, p. 2-ES")

if miURRENT-LIN B67081;

is-lin sCURRENT-LIN B67211
::s-lin wCURRENT-LIN B67355J
:is-!in aCURRENT-LIN B674231
[:s-iin W*URRENT-LIN B67492]
:is-!in wsURRENT-LIN B67166)
[:s-!in mOURRENT-LIN B67771:.

tner [and (sezf 'new-erc' 'B)
*has-new-erc eCURRENT-LIN 'nc4-erc'j
(show-rsle-firing)j)

74



APPENDIX P

Mode: Joshua; Package: USER (really JOSHUA-USER); Syntax: Joshua -'-

Created 12/14/69 10:16:52 by chamberlin running on SYM4 at NPS-CS.

****************************** *

FILENAME ............ : erc-ruies-camo-system.lisp
ATTHOR ................ Cpt Thomas E. Chamberlin

DATE CREATED ....... :. 14 Dec 69

FILE DESCRIPTION... :.Rule for camoflague system and poles. Found in CAA Study
Report page :-64.

MODIFICATIONS ...... :. 16 May 90 - added 'show-rule-firing' function

SECTION 4.7 *1 CAMOFLAGUE SYSTEM RULE *

CAMOFLAGUE SYSTEM RULE -* 4.7.1

(defrule ercc4
7
1 (:forward

:documentation "Basis: Study Report CAA-SR-88-14 atd June 88, p. 1-64'"
if jor [is-lin mcurrent-1:n C89145]

lis-1in mcurrent-lin C89179;

then land (setf *new-erc* 'C)
(tell (maxe-predication (has-new-erc *CURREMT-LIN ,new-erc-)

(show-rule-firing)

75



APPENDIX Q

-; - Mode: Joshua; Package: USER (really JOSHUA-USER): Syntax: Joshua
Created 4/11/90 1::32:58 by chamberlin running on SYM4 at NPS-CS.

FILENAME ........... erc-ru:es-nbc-defense.lisp
AUTHOR..................Cpt Thomas E. Chamberlin

DATE ChEATED ......... 2C Apr 90
; FE ZESCRIPTION... : Rule for nbc defense equipment. Found in CAA Study

Report page _-91.

MODIFICATIONS ...... :. 16 May 90 - added 'show-rule-firing' function

SECTION 6.1 ** NBZ DEFENSE EQUIPMENT ERC RULES **

EQUIPMENT TASY -- > IND:VIDUAL PROTECTION ** 6.1.1 *

(defrule erca6ll (:forward
:documentation "Basis: Study Report CAA-SR-88-14 dtc June 88, p. 1-9:")

: Cr nis-lin wCURRENT-LIN M109361
:is-lin aCURRENT-LIN M1162:1
'is-ir. xCURRENT-LIN M1895 1

then [ar, (setf *new-erc* 'A)
(tell (make-predication '(has-new-erc mOURRENT-LIN *new-erc*)))

(snow-r ; e-frlrng)

76



APPENDIX R

- - Mode: Joshua: Package: JOSHUA-USER: Syntax: Joshua --

Created 4/20/90 13:49:59 by chamberlin running on SYM4 at NPS-CS.

FILENAME .............. erc-rules-night-ops.lisp
AUTHOR ................ Cpt Thomas E. Chamberlin

DATE CREATED ....... .20 Apr 90

FILE DESTRIPTION... : Rule for night operation requirement. Found in CAA Study
Report page 1-23.

MODIFICATIONS ...... :. 16 May 90 - added 'show-rule-firing' function

SECTION 1.3 ** UTILITY RULE FOR NIGHT OPERATIONS **

NIGNT OPERATIONS *1 1.3."

(defrule night-opsl31 (:forward

:documentation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. 1-23")
if [or [has-branch wCURRENT-TOE 01]

[has-branch WCURRENT-TOE 07)
[has-branch wCURRENT-TOE 171
[has-branch WCURREN-TOE 19j
[has-branch WCURRENT-TOE 31]j

then (tell (make-predication '(has-night-ops ,CURRENT-TOE))))

77



APPENDIX S

Mode: Joshua: Package: USER (really JOSHUA-USER); Syntax: Joshua -*-
Created 12/14/89 10:16:52 by chamberlin running on SYM4 at NIS-CS.

FILENAME .............. erc-rules-night-vision-devices.lisp
AUTHOR ...............: Cpt Thomas E. Chamberlin

DATE CREATED ....... .12 Dec 89
FILE DESCRIPTION... : Rule for night vision devices. Found in CAA Study

Report page 1-57.

MODIFICATIONS ...... .16 May 90 - added 'show-rule-firing' function

SECTION 4.2 -- NIGHT VISION DEVICE RULES *

INDIVIDUAL SITUATION ASSESSMENT ** 4.2.1 **

(defrule erca421 (:forward
.documentation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. 1-57")

if [and (not [has-branch WCURRENT-TOE 321J
[not [has-branch wCURRENT-TOE 34)]
Ehas-night-ops wCURRENT-TOE]
[or [is-lin =CURRENT-LIN N04730

[is-lin =CURRENT-LIN N04596J
[is-lin wCURRENT-LIN N15518]
[is-lin .CURRENT-LIN N04732]
(is-lin .CURRENT-LIN N04456
[is-lin sCURRENT-LIN N04982]
[is-lin ECURRENT-LIN N23721]
[is-lin ECURRENT-LIN W80715)
(is-lin .CURRENT-LIN Y031041
[is-lin ECURRENT-LIN N05050]
[is-lin wCURRENT-LIN A34938]
[is-lin .CURRENT-LIN N05482]
[is-lin wCURRENT-LIN A703493]]

then [and (setf -new-erc* 'A)

[has-new-erc sCURRENT-LIN *new-erc*)
(show-rule-firing)))

78



INDIVIDUAL SITUATION ASSESSMENT -- 4.2.2 ~

* (defrule ercb422 (:forward
:documnentation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. 1-57")

if [and [not (has-branch =CURRENT-TOE 32]]
[not [has-branch wCURRENT-TOE 34]]
(not [has-night-ops *CURRENT-TOE)1
[or [is-lin ECURRENT-LIN N04730)

[is-lin wCURRENT-LIN N04596]
[is-lin wCIJRRENT-LIN N15518]
[is-lin wCURRENT-LIN N04732]
(is-lin wCURRENT-LIN N04456]
[is-uin wCURRENT-LIN N04982]
[is-lin sCURRENT-LIN N23721)
[is-lin =CURRENT-LIN W80715]
[is-lin zCURRENT-LIN Y03104)
[is-lin ECURRENT-LIN N050501
[is-lin zCURRENT-LIN A34938]
[is-Jin *CURRENT-LIN N05482]
[is-lin &CURRENT-LIN A703491]]

then [and (setf -new-erc* IB)
[has-new-erc wCURRENT-LIN *new-erc*)
(show-rule-firing)])

INDIVIDUA. SITUATION ASSESSMENT -- 4.2.3

(def rule ercb423 (:forward
:documentation. "Basis: Study Report CAA-SR-88-lz dtd June 88, p. 1-57")

'f[and [noz [has-branch wCURRENT-TOE 32]]
[not [hes-branch &CURRENT-TOE 34))
[is-lin SCURRENT-LIN "STANO"]1

then [and (setf -new-erc* 'B)
[has-new-erc NCURRENT-LIN -new-erc*)

(format t "-%-25@TTOE: -A PARA: -A LIN: -A OLD-ERC: -A NEW-ERC: -A-fk" -toe-nu;' *Par.
*'in* old-erc* *new-erc-)])

* INDIVIDUAL SITUATION ASSESSMENT ** 4.2.4 *

(defrule erca424 (:forward
:documentation "Basis: Study Report CAA-S-88-14 dtd June 88, p. 1-57")

f[and [or [has-mission current-toe-para 1"24hr surveillance collection"]
[has-mission current-toe-para "Aerial Intelligence/Visual Observation"))

*[or [has-branch wCURRENT-TOE 32]
* [has-branch wCURRENT-TOE 34)]

(or [is-lin .CURRENT-LIN N04732]
( is-!in WCURAENT-LIN N04456)

*[is-lin =CURRENT-LIN Y03104)
*[is-lin NCURRENT-LIN N05050)

[-un uCURRENT-LIN N05482:
[is-!in =CURRENT-L-IN A'70349[)]

then )and (setf -new-erc- 'A)
* [nas-new-erc mCURRENT-LIN *new-erc-I

(format t "-*-25@TOE: -A PAR.A: -A LIN: -A OLD-ER=: -A NEW-ERC: -A-%" -toe-nz;m -par
* lin lcr.d-erc' *new-erc-)])

79



INDIVIDUAL SITUATION ASSESSMENT ** 4.2.5 "

;(defrule ercb425 (:forward

:documentation "Basis: Study Report CAA-SR-88-14 did June 88, p. 1-57")
if (and [or [not [has-mission current-toe-para "24hr surveillance collection")]

[not [has-mission current-toe-para "Aerial Intelligence/Visual Observation"])]
* [or [has-branch .CURRENT-TOE 32]

[has-branch OCURRENT-TOE 34]]
[or [is-lin wCURRENT-LIN N04732)

( [is-!in wCURRENT-LIN N04456]
* [is-lin wCURRENT-LIN Y03104)

[ jis-lin wCURRENT-LIN N05050]

[is-lin sCURRENT-LIN N05482)
* [is-lin wCURRENT-LIN A70349]]]

then [and (setf -new-erc" 'A)
[has-new-erc wCURRENT-LIN *new-erc*]

* (format t "-%-25@TTOE: -A PARA: -A LIN: -A OLD-ERC: -A NEW-ERC: -A-%" *toe-hum:" para
"Zin- *oid-erc- "new-erc*)])

80



APPENDIX T

Mode: Joshua; Package: USER (really JOSHUA-USER); Syntax: Joshua --

Created 4/11/90 11:32:58 by chamberlin running on SYM4 at NPS-CS.

FILENAME .............. erc-rules-weapons.lisp
AUTHOR ................ Cpt Thomas E. Chamberlin

DATE CREATED ....... : 1.. Apr 90
FILE DESCRIPTION... Rule for all weapon systems. Found in CAA Study

Report page 1-81.

MODIFICATIONS ...... .. 16 May 90 - added 'show-rule-firing' function

SECTION 5.3 *1 WEAPON & ASSOCIATED EQUIPMENT ERC RULES **

EQUIPMENT TASK -- > CORE EQUIPMENT *, 5.3.1

(aefrule ercp531 (:forward
:documentation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. 1-81")

if [or [is-lin nICURRENT-LIN T13168;
[is-lin =CURRENT-LIN T131691
[is-lin CURRENT-LIN T13!74]
[is-lir. CURRENT-LIN Z77258]
[is-lin mCURRENT-LIN F40307]
[is-lin 1CURRENT-LIN J81750,

[is-lin iCURRENT-LIN C763351
[is-lin ECURRENT-LIN F60462]
[is-lin ECURRENT-LIN K56981]
,is-lin ECURRENT-LIN K57392]
)is-hin wCURRENT-LIN K57667]
[is-lin sCURRENT-LIN K57803]
[is-lin 1CURRENT-LIN K57821]
[is-1in ECURRENT-LIN H57505
[is-!in lCURRENT-LIN Z3362831

then [and (setf -new-erc* 'P)

(tell (make-predication '(has-new-erc NCURRENT-LIN ,*new-erc-)))
(show-rule-firing)])

81



(set f db-obj- I (tell (make -predicat-ion '(has -new -erc .CURRENT-LIN *new -erc*)))

EQUIPMENT TASK -- > CORE EQUIPMENT ** 5.3.2 *

(defrule erca532 (:forward
:documentation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. 1-8111)

if [and [or (has-branch *CURRENT-TOE 07]
(has-branch .CURPENT-TOE 31]]

[or [is-lin .CURRENT-LIN R95035)
[is-lin wCURRENT-LIN R949771
[is-lin wCURRENT-LIN N967411
(is-lin wCURRENT-LIN R91244)
[is-lin wCURRENT-LIN M4090091
(is-lin wCURRENT-LIN P98152)
'is-lin wCURRENT-LIN Z13153)

(is-lin =CURRENT-LIN B490041
[is-lin =CURRENT-LIN B492723
[is-lin wCURRENT-LIN B68790)
[is-lin =CERRENT-LIN M467939]

[is-Uin wCURRENT-LIN M4021141
[is-lin wCtIRRENT-LIN M468282]
[is-Uin mCURRENT-LIN M492420)
(is-uin ECURRENT-LIN G96797]

(is-lin wCURRENT-LIN Z133223
[is-lin ECURRENT-LIN J97983]
[is-lin wCURRENT-LIN L91975;
(is-lin =CURRENT-LIN L921112'

[is-Uin =CURRENT-LIN L922603
[is-lin ECURRENT-LIN L92386,

[is-lin wCURRENT-LIN R964841))
then [and (setf *new-erc*' A)

(tell (make-predication ' (has-new-erc SCURRENT-LIN .Thew-erc*))
(show-rule-firing) ))

EQU:PMENT TASK -- > UNIT DE. . 3-E ** 5.3.3

(defrule ercp533 (:forward
:documentation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. IS"

-if [and [not (has-branch *CURRENT-TOE 07))
(not [has-branch wCURRENT-TOE 31))
[has-cat-code wCURREN7-TOE 1]
[or [is-uin ECURRENT-LIN R950353

[is-!in Ec-URRENT-LIN R949771
[as-lin .CURRENT-LIN N496741:

[is-Uin =URRENT-LIN R91244]
[-'s-lr. wCURRENT-LIN M090091
[is-lin wCURRENT-LIN P96152)

[is-lin wCURRENT-LIN Z131531,
[is-uin wCURRENT-LIN M467939)
(is-lin ECURRENT-LIN M402114)
[is-Uin .CURRENT-LIN P468282)
[is-Uin UCURRENT-LIN M492420]
[is-Uin wCURRENT-LIN G96797:
[ts-lin wC1UFJ'NT-LIN ZI?322)
[is-lin =ZURREN.T-LIN J979831
[is9-Un wCURRENT-LIN L91975;
[is-lin oMCURRLENT-LIN L92112]
tis-Jr. aCURREN--LIN L92260)

[as3-ln *CURRENT-LIN L923861,
[is-Uin ECURRENT-LIN R96484)J

Inen (and (setf *new-erc, 'A)
(tell (make-predication '(has-new-erc *CUJRRENT-LIN .*new-erc*))
(snow-rule-firinq) 3)

82



EQUIPMENT TASK -- > UNIT DEFENSE 1"5.3.4

(defrule ercp534 W:orward
:documerntation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. 1-81")

if [end [not [has-cat-code sUtRRENT-TOE 1]]
(or [is-lin .CURRENT-LIN R95035)

[is-lin =CURRENT-LIN R94977)
14s-lin WCURRENT-LIN N961741)
(is-lin OCURRENT-LIN R91244]

[is-lr. =CURRENT-LIN M09009]
(is-!in *ZURRENT-LIN P981521
(is-lin OCURRENT-LIN Z131531
[is-lin =CURRENT-LIN M924203
[is-lin .CTJRRENT-LIN G9617971
[is-lin OCURRENT-LIN J97983)
[is-lin OCtIRRENT-LIN L919751

[is-lin OCURRENT-LIN L92J1!2)
[is-lin OCURRENT-LIN L92260]

[is-lin sCURRENT-LIN L92386.

[is-lin sCURRENT-LIN R96484]1)
ther [and (setf *new-erc- 'B)

(tell (make-predication '(nas-new-erc OCURRENT-LIN ,new-erc*))

(snow-rule-firing)3

EQUIPMENT TASK -- > CORE EQUIPME~NT 5.3.5

(defrole erca535 (:forward
:documentatio. "Basis: Study Report CAA-SR-88-14 dtl June 88, p. :-81")

if [and [has-branch .CURRENT-7OE 19]

[or [is-ir ECURRENT-LIN R95C35[
[is-JHn WUtRRENT-LIN R94977)
(is-lr. =CURRENT-LIN N96741)j

[is-!in aCURRENT-LIN R91244)
ris-lin sCURREN7-LIN M090091
[is-!in mCURRENT-LIN P981523
[is-Jlr. wCURRENT-LIN z:3:53)
[is-!in uCURRENT-LIN M92420)
[is-Jin =CURRENT-LIN G96797]
[is-lin .CURREN'T-LIN J979831
[is-!in .CURRENT-LIN L91975:
ris-lin .ZURRENT-LIN L92112:
[is-Jin *CIYRRENT-LIN L92260',
(is-!in wCURRENT-LIN LWB36[
(is-!in sCURREN7-WN R964841 1)

then [and (setf *new-erc" 'A)
(tell (make-predication ' (has-new-crc wCURRENT-LIX ,'new-ercf)
(show-rule-firing))

EQUIPMENT TASK -- > UNIT DEFENSE *- 5.3.6

(defru.le erca536 (:orward
:documentation "Basis: Study Report CAA-SP-88-.4 dtd June 88, p. Z-8:")

if :and inot [has-branch *CURRENT-70E 071]

[not [has-branch sCURRENT-TOE 31])
[or [is-lir wCURREN7-LIN B49004:,

lis-lin *CURREN7-LIN B4927211[
then [and (setf *new-erc' 'B)

(tell (make-predication (has-new-crc wCURRENT-LIN *new-erc*))

* ~(show-r...e-firin'g)[)

83



*;; EQUIPMENT TASK -- > WEAPON FIRE-LAYING DEVICES -* 5.3.9 **

;;;(defrule erca539 (:forward
:documentation "Basis: Study Report CAA-SR-88-14 did June 88, p. 1-82")

*:; if [and [is-lin wCURRENT-LIN wpn-firing-laying-device]
;*; [is-function =CURRENT-LIN-func 11]]

then [and (serf new-erc* 'A)
(tell (make-predication '(has-new-erc NCURRENT-LIN ,*new-erc*)))
(show-rule-firing)])

EQUIPMENT TASK --> WEAPON FIRE-LAYING DEVICES "* 5.3.10 *

;;;(defruie ercb5310 (:forward

:documentation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. 1-82")
*;; if [and [is-lin UCURRENT-LIN wpn-firing-laying-device]

[is-function WCURRENT-LIN-func 12)

then [and (serf *new-erc* 'B)
(tell (make-predication '(has-new-er .CURRENT-LIN ,*new-erc*))))

:: EQUIPMENT TASK -- > ENHANCEMENT/SUPPORT EQUIPMENT ** 5.3.8 "

(defrule ercb538 (:forward
:documentation "Basis: Study Report CAA-SR-88-14 did June 88, p. 1-81")

if [or [is-lin =CURRENT-LIN M92362]
[is-lin .CURRENT-LIN M74364)
[is-lin .CURRENT-LIN M755771
[is-fin wCURRENT-LIN M75714]]
[is-lin mCURRENT-LIN other-assoc-item]l)

then (and Isetf *new-erc- 'B)
(tell (make-predication '(has-new-erc wCURRENT-LIN ,*new-erc*)))

(show-rule-firing) ))

84



APPENDIX U

-*- Mode: Joshua; Package: USER (really JOSHUA-USER); Syntax: Joshua -*-

Created 12/14/89 10:16:52 by chamberlin running on SYM4 at NPS-CS.

FILENAME .............. erc-rules-wristwatch.lisp

AUTHOR ...............: Cpt Thomas E. Chamberlin

DATE CREATED ....... :. 14 Dec 89

FILE DESCRIPTION... : Rule for wristwatch. Found in CAA Study

Report page 1-66.

MODIFICATIONS ...... :. 16 May 90 - added 'show-rule-firing' function

SECTION 4.9 ** WRIST WATCH RULE **

WRIST WATCH RULE -* 4.9.1 **

(defrule ercc491 (:forward
:documentation "Basis: Study Report CAA-SR-88-14 dtd June 88, p. 1-6E")

if [is-lin mCURIENT-LIN wristwatch)

then [and (setf -new-erc- 'C)

[has-new-erc wCURRENT-LIN -new-erc*,

(show-rule-firing) )

85



APPENDIX V

; . - Mode: Joshua: Package: JOSHUA-USER: Syntax: Joshua --

Created 4/25/90 10:49:28 by chamberlin running on SYM4 at NPS-CS.

FILENAME .............. erc-toe-list.lisp
AUTHOR ............. Cpt Thomas E. Chamberlin

DATE CREATED ....... 25 Apr 90
FILE DESCRIPTION... All TOE's downloaded into Symbolics machine tc run thru

expert system must have their filenames placed here under

'toe-list' to be made available for system. The interface
command 'Select TOE' invokes this function.

MOD:FICAT:ONS ...... :

(setf toe-list ' ("06037L200"

"17442L000"
"17477L000"
"17486L000"
"!'7467L000"
"17487test"
"34286L00C"

"34287L0C0"
"34288L000"
"34289L000"))

(defun select-toe ()
(setf *selected-toe*

(dw:menu-choose-fro.-set toe-list 'string
:prompt "SELEC7 A TOE"
:cenLer-p t
:momenta-y-p nil
:temporary-p t
:near-mode '(:point 600 400)

:mtnimum-width 11
:minimum-height 3

:character-style
'(:dutch :Dold :normal))))

86



LIST OF REFERENCES

1. Documentation Group of Symbolics, Inc., User's Guide to Basic Joshua, CSA
Press, 1988.

2. Documentation Group of Symbolics, Inc., Programming the User Interface, v. 7A,
CSA Press, 1986.

3. U.S. Army Concepts Analysis Agency, Study Report CAA-SR-88-14, Equipment
Readiness Code Rule System(ERCRULES), Government Printing Office, Washington
DC, 1988.

4. Department of Army Headquarters, Deputy Chief of Staff for Operations, Army
Regulation 220-1, Field Organizations, Unit Status Reporting, Govemmet Printing
Office, Washington, DC, 1988.

5. Bowerman, R. G., and Glover, D. E., Putting Expert Systems Into Practice, Van
Nostrand Reinhold Co., 1988.

6. Nielsen, N. R., and Walters, J. R., Crafting Knowledge-Based Systems, John Wiley
and Sons, 1988.

7. Rowe, N. C., Artificial Intelligence Through Prolog, Prentice-Hall, Inc., 1988.

8. Documentation Group of Symbolics, Inc., Joshua Reference Manual, CSA Press,
1988.

87



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000

4. Curriculum Officer, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, CA 93940-5000

5. HQ TRADOC 12
ATCD-O (Mr. Richards)
Fort Monroe, VA 23651-5000

6. Professor Se-Hung Kwak 5
Department of Computer Science, Code 52KW
Naval Postgraduate School
Monterey, CA 93940-5000

7. Major George Thurmond II 3
Department of Computer Science, Code 52TH
Naval Postgraduate School
Monterey, CA 93940-5000

8. Captain Thomas E. Chamberlin 4
Route #1, Box 393
Catlett, VA 22019

88


